Science.gov

Sample records for alkaline earth ion

  1. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  2. Ultrafine Na-4-mica: uptake of alkali and alkaline earth metal cations by ion exchange.

    PubMed

    Kodama, Tatsuya; Ueda, Masahito; Nakamuro, Yumiko; Shimizu, Ken-ichi; Komarneni, Sridhar

    2004-06-01

    The cation exchange properties of alkali and alkaline earth metal cations at room temperature were investigated on an ultrafine, highly charged Na-4-mica (with the ideal mica composition Na4Mg6Al4Si4O20F4.xH2O). Ultrafine mica crystallites of 200 nm in size led to faster Sr2+ uptake kinetics in comparison to larger mica crystallites. The alkali metal ion (K+, Cs+, and Li+) exchange uptake was rapid, and complete exchange occurred within 30 min. For the alkaline earth metal ions Ba2+, Ca2+, and Mg2+, however, the exchange uptake required lengthy periods from 3 days to 4 weeks to be completed, similar to its Sr uptake, as previously reported. Kinetic models of the modified Freundlich and parabolic diffusion were examined for the experimental data on the Ba2+, Ca2+, and Mg2+ uptakes. The modified Freundlich model described well the Ba2+ ion uptake kinetics as well as that for the Sr2+ ion, while for the Ca2+ and Mg2+ ions the parabolic diffusion model showed better fitting. The alkali and alkaline earth ion exchange isotherms were also determined in comparison to the Sr2+ exchange isotherm. The thermodynamic equilibria for these cations were compared by using Kielland plots evaluated from the isotherms. PMID:15984251

  3. Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    Theoretical dissociation energies are presented for the alkaline-earth fluoride, hydroxide, and oxide positive ions that are considered to be accurate to 0.1-0.2 eV. The r(e) for the positive ions are found to be consistently shorter than the corresponding neutrals by 0.07 + or -0.02 A. The bonding in the ground states is demonstrated to be of predominantly M + 2 X - character. The a 3 Pi and A 1 Pi are found to lie considerably above the X 1 Sigma + ground states of the alkaline-earth fluoride and hydroxide positive ions. The overall agreement of the theoretical ionization potentials with the available experimental appearance potentials is satisfactory; these values should represent the most accurate and consistent set available.

  4. Isotope fractionation in surface ionization ion source of alkaline-earth iodides

    SciTech Connect

    Suzuki, T.; Kanzaki, C.; Nomura, M.; Fujii, Y.

    2012-02-15

    The relationship between the isotope fractionation of alkaline-earth elements in the surface ionization ion source and the evaporation filament current, i.e., filament temperature, was studied. It was confirmed that the isotope fractionation depends on the evaporation filament temperature; the isotope fractionation in the case of higher temperature of filament becomes larger. The ionization and evaporation process in the surface ionization ion source was discussed, and it was concluded that the isotope fractionation is suppressed by setting at the lower temperature of evaporation filament because the dissociations are inhibited on the evaporation filament.

  5. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  6. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  7. Radiative properties of few F- and Cl- like alkali and alkaline-earth metal ions

    NASA Astrophysics Data System (ADS)

    Nandy, D. K.; Singh, Sukhjit; Sahoo, B. K.

    2015-09-01

    We present high-accuracy calculations of radiative properties such as oscillator strengths and transition probabilities, of the allowed ns 2S1/2 → np 2P1/2, 3/2 transitions and of the forbidden np 2P1/2 → np 2P3/2 transitions in the F- and Cl-like alkali and alkaline-earth ions with the ground state principal quantum number n of the respective ion. For this purpose, we have employed the Dirac-Fock, relativistic second-order many-body perturbation theory and an all-order perturbative relativistic method in the coupled-cluster (CC) theory framework. To test the validity of these methods for giving accurate results, we first evaluated the ionization potentials in the creation processes of these ions and compare them with their experimental values listed in the National Institute of Science and Technology data base. Moreover, both the allowed and forbidden transition amplitudes are estimated using the above three methods and a comparative analysis is made to follow-up the electron correlation trends in order to demonstrate the need of using a sophisticated method like the CC theory for their precise determination. For astrophysical use, we provide the most precise values of the transition properties by combining the experimental energies, which suppresses uncertainties from the calculated energies, using the transition amplitudes from the CC method. These data will be useful in the abundance analysis of the considered ions in the astronomical objects and for the diagnostic processes of astrophysical plasmas.

  8. Quantitative parameters for the sequestering capacity of polyacrylates towards alkaline earth metal ions.

    PubMed

    De Stefano, Concetta; Gianguzza, Antonio; Piazzese, Daniela; Sammartano, Silvio

    2003-10-17

    The complex formation constants of polyacrylic (PAA) ligands (1.4ions were determined in different ionic media at different ionic strengths, 0alkaline earth metal complexes is discussed in the light of sequestering effects in natural waters. PMID:18969177

  9. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  10. EPR and optical absorption studies of Cu{sup 2+} ions in alkaline earth alumino borate glasses

    SciTech Connect

    Ramesh Kumar, V.; Rao, J.L. . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2005-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in alkaline earth alumino borate glasses doped with different concentrations of CuO have been studied. The EPR spectra of all the glasses exhibit the resonance signals, characteristic of Cu{sup 2+} ions present in axially elongated octahedral sites. The number of spins participating in the resonance has been calculated as a function of temperature for calcium alumino borate (CaAB) glass doped with 0.1 mol% of CuO. From the EPR data, the paramagnetic susceptibility ({chi}) was calculated at different temperatures (T) and from the 1/{chi}-T graph, the Curie temperature of the glass has been evaluated. The optical absorption spectra of all the glasses show a single broad band, which has been assigned to the {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g} transition of the Cu{sup 2+} ions. The variation in the intensity of optical absorption with the ionic radius of the alkaline earth ion has been explained based on the Coulombic forces. By correlating the EPR and optical absorption spectral data, the nature of the in-plane {sigma} bonding between Cu{sup 2+} ion and the ligands is estimated. From the fundamental ultraviolet absorption edges of the glasses, the optical energy gap (E {sub opt}) and the Urbach energy ({delta}E) are evaluated. The variation in E {sub opt} and {delta}E is explained based on the number of defect centers in the glass.

  11. Application of flowing stream techniques to water analysis Part III. Metal ions: alkaline and alkaline-earth metals, elemental and harmful transition metals, and multielemental analysis.

    PubMed

    Miró, Manuel; Estela, José Manuel; Cerdà, Víctor

    2004-05-28

    In the earlier parts of this series of reviews [1,2], the most relevant flowing stream techniques (namely, segmented flow analysis, continuous flow analysis, flow injection (FI) analysis, sequential injection (SI) analysis, multicommuted flow injection analysis and multisyringe flow injection analysis) applied to the determination of several core inorganic parameters for water quality assessment, such as nutrients and anionic species including nitrogen, sulfur and halogen compounds, were described. In the present paper, flow techniques are presented as powerful analytical tools for the environmental monitoring of metal ions (alkaline and alkaline-earth metals, and elemental and harmful transition metals) as well as to perform both multielemental and speciation analysis in water samples. The potentials of flow techniques for automated sample treatment involving on-line analyte separation and/or pre-concentration are also discussed in the body of the text, and demonstrated for each individual ion with a variety of strategies successfully applied to trace analysis. In this context, the coupling of flow methodologies with atomic spectrometric techniques such as flame atomic absorption spectrometry (FAAS), electrothermal atomic absorption spectrometry (ETAAS), inductively coupled plasma mass spectrometry (ICPMS) or hydride-generation (HG)/cold-vapor (CV) approaches, launching the so-called hyphenated techniques, is specially worth mentioning. PMID:18969420

  12. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  13. Coordination and ion-ion interactions of chromium centers in alkaline earth zinc borate glasses probed by electron paramagnetic resonance and optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Sumalatha, B.; Omkaram, I.; Rajavardana Rao, T.; Linga Raju, Ch

    2013-05-01

    Electron paramagnetic resonance (EPR), optical absorption and FT-IR studies have been carried out on chromium ions incorporated in alkaline earth zinc borate glasses. The EPR spectra exhibit two resonance signals with effective g values at g ≈ 1.99 and ≈1.97. The resonance signal at g ≈ 1.99 is attributed to the contribution from both the exchange coupled Cr3+-Cr3+ ion pairs and the isolated Cr3+ ions and the resonance signal at g ≈ 1.97 is due to Cr5+ ions. The paramagnetic susceptibility (χ) was calculated from the EPR data at various (123-303 K) temperatures and the Curie temperature (θp) was calculated from the 1/χ-T graph. The optical absorption spectra exhibit three bands at ˜360 nm, ˜440 nm and a broad band at ˜615 nm characteristic of Cr3+ ions in an octahedral symmetry. From the observed band positions, the crystal-field splitting parameter Dq and the Racah parameters (B and C) have been evaluated. From the ultraviolet edges, the optical band gap energies (Eopt) and Urbach energy (ΔE) are calculated. The theoretical optical basicity (Λth) of these glasses has also been evaluated. Chromium ions doped alkaline earth zinc borate glasses show BO3 and BO4 structural units in the FT-IR studies.

  14. Synthesis of a new family of ionophores based on aluminum-dipyrrin complexes (ALDIPYs) and their strong recognition of alkaline earth ions.

    PubMed

    Saikawa, Makoto; Daicho, Manami; Nakamura, Takashi; Uchida, Junji; Yamamura, Masaki; Nabeshima, Tatsuya

    2016-03-14

    Mononuclear and dinuclear aluminum-dipyrrin complexes (ALDIPYs) were synthesized as a new family of ionophores. They exhibited colorimetric and fluorometric responses to alkaline earth ions in an aqueous mixed solvent. The strong recognition was achieved via multipoint interactions with the oxygen atoms appropriately incorporated into the ligand framework. PMID:26935409

  15. Photolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Kriger, L. D.; Miklin, M. B.; Dyagileva, E. P.; Anan'ev, V. A.

    2013-02-01

    Peroxynitrite and nitrite ions are the diamagnetic products of photolysis (with light at a wavelength of 253.7 nm) of alkaline-earth nitrates; the paramagnetic products and hydrogen peroxide were not found. The structural water in alkaline-earth nitrate crystals did not affect the qualitative composition of the photodecomposition products. The quantum yield of nitrite ions was 0.0012, 0.0038, 0.0078, and 0.0091 quanta-1 and that of peroxynitrite ions was 0.0070, 0.0107, 0.0286, and 0.0407 quanta-1 for Sr(NO3)2, Ba(NO3)2, Ca(NO3)2 · 4H2O, and Mg(NO3)2 · 6H2O, respectively.

  16. 1H and 23Na MAS NMR spectroscopy of cationic species in CO2 selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    NASA Astrophysics Data System (ADS)

    Arévalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernández-Maldonado, Arturo J.

    2012-07-01

    The location of extraframework cations in Sr2+ and Ba2+ ion-exchanged SAPO-34 was estimated by means of 1H and 23Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO2 adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium.

  17. Alkali metal, alkaline earth metal, and ammonium ion selectivities of dibenzo-16-crown-5 compounds with functional side arms in ion-selective electrodes

    SciTech Connect

    Ohki, Akira; Lu, J.P.; Huang, X.; Bartsch, R.A. )

    1994-12-01

    Potentiometric selectivities of 11 dibenzo-16-crown-5 compounds for alkali metal, alkaline earth metal, and ammonium ions have been determined in solvent polymeric membrane electrodes. The ionophores bear one or two pendent groups on the central carbon of the three-carbon bridge in the polyether ring. Side-arm variation includes OCH[sub 3], OCH[sub 2]CH[sub 2]OCH[sub 3], OCH[sub 2]CO[sub 2]C[sub 2]H[sub 5], OCH[sub 2]C(O)N(C[sub 2]H[sub 5])[sub 2], and OCH[sub 2]C(O)N(C[sub 5]H[sub 11])[sub 2] units. Attachment of a propyl group to the ring carbon that bears an extended, oxygen-containing side arm increases the selectivity for Na[sup +] relative to larger alkali metal and alkaline earth metal cations. For a given side arm, a linear relationship is obtained when the enhancement in Na[sup +] selectivity produced by attachment of a geminal propyl group is plotted against the diameter of the interference ion. Potentiometric responses of the dibenzo-16-crown-5 compounds are rationalized in terms of the crown ether ring size and the oxygen basicity, conformational positioning, and rigidity of the side arm. 22 refs., 3 figs., 2 tabs.

  18. Mass Spectrometric Observation of Doubly Charged Alkaline-Earth Argon Ions.

    PubMed

    Hattendorf, Bodo; Gusmini, Bianca; Dorta, Ladina; Houk, Robert S; Günther, Detlef

    2016-09-01

    Doubly charged diatomic ions MAr(2+) where M=Mg, Ca, Sr or Ba have been observed by mass spectrometry with an inductively coupled plasma ion source. Abundance ratios are quite high, 0.1 % for MgAr(2+) , 0.4 % for CaAr(2+) , 0.2 % for SrAr(2+) and 0.1 % for BaAr(2+) relative to the corresponding doubly charged atomic ions M(2+) . It is assumed that these molecular ions are formed through reactions of the doubly charged metal ions with neutral argon atoms within the ion source. Bond dissociation energies (D0 ) were calculated and agree well with previously published values. The abundance ratios MAr(+) /M(+) and MAr(2+) /M(2+) generally follow the predicted bond dissociation energies with the exception of MgAr(2+) . Mg(2+) should form the strongest bond with Ar [D0 (MgAr(2+) )=124 to 130 kJ mol(-1) ] but its relative abundance is similar to that of the weakest bound BaAr(2+) (D0 =34 to 42 kJ mol(-1) ). The relative abundances of the various MAr(2+) ions are higher than those expected from an argon plasma at T=6000 K, indicating that collisions during ion extraction reduce the abundance of the MAr(2+) ions relative to the composition in the source. The corresponding singly charged MAr(+) ions are also observed but occur at about three orders of magnitude lower intensity than MAr(2+) . PMID:27252087

  19. Determination of equilibrium constants of alkaline earth metal ion chelates with Dowex A-1 chelating resin.

    PubMed

    Harju, L; Krook, T

    1995-03-01

    A complexation chemistry model is applied to chelating ion-exchange systems and a method is presented for the determination of equilibrium constants for metal ion chelates with these resins. Protonation constants for the iminodiacetic based chelating resin Dowex A-1 were determined from potentiometric pH-data. Equilibrium constants were determined for 1:1 beryllium, magnesium, calcium, strontium and barium chelates with the resin in a wide pH range by measuring the concentrations of respective metal ions in the aqueous phase with direct current plasma atomic emission spectrometry (DCP-AES). A batch technique was used for the equilibrium experiments. At pH below 7 protonated 1:1 species were also found to be formed with the resin. From the obtained equilibrium constants, theoretical distribution coefficients were calculated as function of pH for respective metal ion resin system. PMID:18966248

  20. Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.

    2012-11-01

    A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  1. Hyperpolarizabilities of alkaline-earth metal ions Be+, Mg+, and Ca+

    NASA Astrophysics Data System (ADS)

    Yin, Dong; Zhang, Yong-Hui; Li, Cheng-Bin; Gao, Ke-Lin; Shi, Ting-Yun

    2016-09-01

    The knowledge of the hyperpolarizabilities of atoms and ions is helpful for the analysis of the high order effects of the frequency shifts in precision spectroscopy experiments. Liu et al. [Phys. Rev. Lett. 114, 223001 (2015)] proposed to establish all-optical trapped ion clocks using laser at the magic wavelength for clock transition. To evaluate the high-order frequency shifts in this new scheme of optical clocks, hyperpolarizabilities are needed, but absent. Using the finite field method based on the B-spline basis set and model potentials, we calculated the electric-field-dependent energy shifts of the ground and low-lying excited states in Be+, Mg+, and Ca+ in the field strength range of 0.0-6×10-5 a.u.. The scalar and tensor polarizabilities ( α 0, α 2) and hyperpolarizabilities ( γ 0, γ 2, γ 4) were deduced. The results of the hyperpolarizabilities for Be+ showed good agreement with the values in literature, implying that the present method can be applied for the effective estimation of the atomic hyperpolarizabilities, which are rarely reported but needed in experiments. The feasibility of optical trapping of Ca+ is discussed, and the contributions of hyperpolarizabilities to the transition frequency shift for Ca+ in the optical dipole trap are estimated using quasi-electrostatic approximation.

  2. Alkaline earth metal ions mediated self-assembly in the presence of 1,10-phenanthroline, nitrate and tetrafluoroborate anions

    NASA Astrophysics Data System (ADS)

    Dimitrov, Georgi D.; Neykov, Mihail V.

    2007-10-01

    1,10-Phenanthroline (phen) was reacted with various combinations of two and in one of the cases with three alkaline earth metal cations taken in equimolar ratio. In all the competitive reactions it was obtained only one product free of any impurities, which is in accordance with the theory of self-assembly processes. The compound [Ca(phen) 2(H 2O) 2(NO 3)]NO 3 was synthesized in all the reactions where Ca 2+ was involved. In contrast, none of the reactions led to the preparation of a strontium complex. Two of the reactions, in which participated Be 2+, resulted in the compound (phen) 3(H +) 2(NO -3) 2. The second group of competitive reactions was carried out with 1,10-phenanthroline and a given alkaline earth metal cation in the presence of the anions NO 3- and BF 4-. These led to the compounds Mg(phen) 4(BF 4) 2(H 2O) 3, [Ca(phen) 2(H 2O) 2(NO 3)]BF 4, Sr(phen) 4(OH)(BF 4)(H 2O) and Ba(phen) 3.5(BF 4) 2(H 2O). All the newly synthesized substances were characterized by elemental analysis, IR- and FAB-mass-spectra.

  3. The addition effects of alkaline earth ions in the chemical synthesis of ɛ-Fe2O3 nanocrystals that exhibit a huge coercive field

    NASA Astrophysics Data System (ADS)

    Ohkoshi, Shin-ichi; Sakurai, Shunsuke; Jin, Jian; Hashimoto, Kazuhito

    2005-05-01

    An iron oxide/silica composite material, which was prepared by combining reverse-micelle and sol-gel techniques, exhibited a huge coercive field Hc of 20kOe (1.6×105Am-1) in our previous work. The key of this synthetic procedure was the added Ba2+ ions that created a single phase of ɛ-Fe2O3. In the present work, the addition effect of Ca2+ ions to this procedure was investigated. Consequently, rod-shape ɛ-Fe2O3 nanocrystals (40-120nm ×15-20nm) were obtained and a Hc value of 20kOe was observed. Thermodynamical analysis that considered the surface energy of nanoparticle suggested that a single ɛ-Fe2O3 phase was generated by retarding the crystal growth of Fe2O3 particles under the presence of alkaline earth ions.

  4. Analysis of the Local Structure around Eu and Mn Ions in Alkaline-Earth Silicate Phosphors for White Light Illumination

    SciTech Connect

    Okamoto, Kaoru; Yoshino, Masahiko; Shigeiwa, Motoyuki; Mikami, Masayoshi; Akai, Toshio; Kijima, Naoto; Honma, Tetsuo; Nomura, Masaharu

    2007-02-02

    M2SiO4-based phosphors (M: alkaline-earth metal) that emit red to blue light are expected to offer high color rendering to white light-emitting diodes (LEDs) in combination with blue or near-UV excitation sources. It is very important for the complete control of the emission color to understand the crystal field around the active elements (rare-earth and transition metals). XAFS spectroscopy is applied to a (Ba,Ca)2SiO4:Eu,Mn phosphor at Eu L3- and Ba, Ca, Eu, Mn K-edges to elucidate the local environments of Eu and Mn. Eu L3- and Mn K-edge XANES spectra showed that Eu and Mn are both divalent, like Ba and Ca. K-edge EXAFS spectra indicated that the local structures of Eu and Mn are similar to those of Ba and Ca, respectively. However, the curve-fitting analysis showed that the first coordination shell of Eu has two Eu-O bonds that are both shorter than the Ba-O bond. FEFF calculations were also performed based on a BaCaSiO4 model constructed from the crystal structure of KNaSO4. They suggested that Eu substitutes both of Ba and Ca sites with some structural modification while Mn is clearly at the octahedral Ca site that is the smallest of the substitution sites.

  5. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  6. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  7. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  8. Coordination chemistry of the alkaline earth metal ions with Zwitterionic forms of the Schift bases. X-Ray studies and other spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Tajmir-Riahi, H. A.; Lotfipoor, M.

    The non-ionized forms of tetradentate Schiff bases NN'-ethylenebis(salicylideneimine), H 2L and NN'-propane-1,3-diylbis(salicylideneimine), H 2L' react with hydrated alkaline earth halide and nitrate to give complexes of the type: M(H 2L)Cl 2· nH 2O [M = Mg(II), Ca(II), Sr(II); n = 0-4], M(H 2L) 2Cl 2 [M = Ca(II), Sr(II), M(H 2L) nBr 2 [M = Ca(II), Sr(II); n = 2, 3 and Mg 2(H 2L) 3Br 4], M(H 2L) nI 2 [M = Mg(II), Ca(II), Sr(II), Ba(II); n = 2, 3)], M(H 2L) n(NO 3) 2 and M(H 2L') n(NO 1) 2[M = Mg(II), Ca(II); n = 1, 2)]. Because of distinct spectral similarities with structurally known Ca(H 2L')(NO 3) 2 compound, the Schiff bases are coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms of the azomethine groups, which carry the protons transferred from phenolic groups on complexation. Halide and nitrate are coordinated to the central metal ion except in 2:1 nitrato complexes where the presence of both ionic and coordinated nitrate groups are evident and also in 3:1 halide complexes where the presence of non-coordinated halide cannot be excluded. X-Ray powder photographs showed no marked similarities between Ca(H 2L')(NO 3) 2 and Mg(H 2L')(NO 3) 2 while there are some isomorphic features between the same types of halide complexes. Infrared spectra and other structural information revealed the polymeric nature of the complexes. Therefore the coordination numbers exhibited by the alkaline earth metal cations would be 4, 6 or 8 in these series of Schiff base complexes.

  9. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  10. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  11. Ionic conductivity of alkaline (Li 2O, Na 2O) and alkaline-earth (BaO) borates in crystallization (vitrification) region

    NASA Astrophysics Data System (ADS)

    Solntsev, V. P.; Davydov, A. V.

    2011-11-01

    In this paper we report the existence of abnormal behavior of electric properties of alkaline (Li 2O,Na 2O) and alkaline-earth (BaO) borate in the melt—a crystal (glass) transition region. Results of measurement of conductivity in the mentioned interval evidence the existence of a strong variation of electric properties depending on the concentration of alkaline and alkaline-earth ions. The reasons of such behavior are discussed.

  12. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  13. Gas phase salt clusters from electrosprayed alkaline earth colloids

    NASA Astrophysics Data System (ADS)

    Pope, R. Marshall; Shen, Nanzhu; Nicoll, Jeremy; Tarnawiecki, Boris; Dejsupa, Chadin; Dearden, David V.

    1997-03-01

    Several distributions of small polynuclear ions of general form [nM + mA + pS]q+ (where M represents an alkaline earth cation (Mg, Ca, Sr or Ba), n = 2-10, A represents a halide, acetate or nitrate counterion originating in the divalent salt, and S represents an acetic acid or methanol adduct) are detected by FTICR when water/methanol solutions of alkaline earth salts are electrosprayed. For example, the largest cluster ion derived from 6.3 mM solutions of calcium acetate acidified with 2%x acetic acid have n= 10, m = 18, p = 5 and q = 2. Characteristics of these solutions suggest the presence of colloidal dispersions. These characteristics include stability upon aging, light scattering response and the requisite pre-etching of the glass containers. Aqueous mixtures of two group II salts produce mixed-salt cluster ions. For instance, from a mixture of calcium and magnesium acetate we trap mixed-cation clusters characterized by a complete set of binary partitions of n, for n = 2-6. Specifically, the manifold of clusters with four cations contains 4:0, 3:1, 2:2, 1:3 and 0:4 ratios of magnesium to calcium. Isolated alkaline earth clusters react with a low-pressure background of 18-crown-6 (C6) by salt abstraction exclusively. In general, the more facile abstraction from a mixed cluster produces a pair of products in which the neutral conforms to the hard-soft acid-base principle. The reactions of C6 with [MgSr(OAc)3]+ provide evidence for the existence of isomeric clusters at m/z 289. This is supported by bimodal kinetics and preliminary results of ab initio calculations.

  14. Forward and reverse ion-exchange kinetics for some alkali and alkaline earth metal ions on amorphous zirconium(IV) aluminophosphate

    SciTech Connect

    Varshney, K.G.; Pandith, A.H.

    1999-10-26

    The Nernst-Planck equations are applied to study the ion-exchange kinetics on the surface of zirconium(IV) aluminophosphate for Li{sup +}/H{sup +}, Na{sup +}/H{sup +}, K{sup +}/H{sup +}, Mg{sup 2+}/H{sup +}, Ca{sup 2+}/H{sup +}, and Sr{sup 2+}/H{sup +} exchanges in the forward and reverse directions under the conditions favoring particle diffusion. On the basis of these studies, various physical parameters such as the self-diffusion coefficient (D{sub 0}), the energy of activation (E{sub a}), and the entropy of activation ({Delta}S*) have been determined and a correlation has been made of these parameters with the ion-exchange characteristics of the material. The study gives an insight into the ion-exchange processes going on in the exchanger phase and its potential use in metal ion separations.

  15. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  16. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  17. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  18. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)) Derived from Molecular Precursors and Doped with Eu(3+) Ions.

    PubMed

    Drąg-Jarząbek, Anna; John, Łukasz; Petrus, Rafał; Kosińska-Klähn, Magdalena; Sobota, Piotr

    2016-03-24

    The effect of alkaline earth metal alkoxides on the protonation of zirconocene dichloride was investigated. This approach enabled the design of compounds with preset molecular structures for generating high-purity binary metal oxide perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)). Single-source molecular precursors [Ba4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2(η(2) -HOR)2 (HOR)2 Cl4], [Sr4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2 (HOR)4 Cl4], [Ca4 Zr2 (μ6-O)(μ3 ,η(2)-OR)8 (OR)2 Cl4], and [Ca6 Zr2 (μ2 ,η(2)-OR)12 (μ-Cl)2 (η(2) -HOR)4 Cl6 ]⋅8 CH2 Cl2 were prepared via elimination of the cyclopentadienyl ring from Cp2 ZrCl2 as CpH in the presence of M(OR)2 and alcohol ROH (ROH=CH3OCH2 CH2OH) as a source of protons. The resulting complexes were characterized by elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction. The compounds were then thermally decomposed to MCl2 /MZrO3 mixtures. Leaching of MCl2 from the raw powder with deionized water produced highly pure perovskite-like oxide particles of 40-80 nm in size. Luminescence studies on Eu(3+)-doped MZrO3 revealed that the perovskites are attractive host lattices for potential applications in display technology. PMID:26891039

  19. Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides

    NASA Astrophysics Data System (ADS)

    Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas

    Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.

  20. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    SciTech Connect

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-15

    The effect of partial substitution of alkaline earth (AE) ions, Sr{sup 2+} and Ca{sup 2+}, for the rare earth (RE) ions, La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, and Sm{sup 3+}, on the physical properties of REVO{sub 4} compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO{sub 4}-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H{sub 2} fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode. - Graphical abstract: Coulometric titration isotherms for ({open_square}) LaVO{sub 4}, ( White-Circle ) PrVO{sub 4}, ( Lozenge ) CeVO{sub 4}, ( Black-Up-Pointing-Triangle ) Ce{sub 0.7}Sr{sub 0.3}VO{sub 3.85}, and ( Black-Square ) Ce{sub 0.7}Ca{sub 0.3}VO{sub 3.85}, at 973 K. Highlights: Black-Right-Pointing-Pointer Infiltration procedures were used to prepare SOFC anodes from various vanadates. Black-Right-Pointing-Pointer Doping of Alkaline Earth to Rare Earth Vanadates showed to improve conductivity and chemical stability. Black-Right-Pointing-Pointer Alkaline Earth Doped Rare Earth Vanadates-YSZ composites showed conductivities as high as 5 S cm{sup -1} at 973 K. Black-Right-Pointing-Pointer As with other ceramic anodes, the addition of a catalyst was required to achieve low anode impedance.

  1. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  2. Phosphate glass electrode with good selectivity for alkaline-earth cations

    USGS Publications Warehouse

    Truesdell, A.H.; Pommer, A.M.

    1963-01-01

    A phosphate glass has been found to have a significant electrode specificity toward alkaline-earth ions. The order of selectivity is 2H + > Ba++ > Sr++ > Ca++ > 2K+ > 2Na+ > Mg++. Exchange properties are discussed in relation to possible structure. Its use to determine activity of Ca++ in natural systems containing Mg++ is suggested.

  3. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  4. The mechanism of radiolysis of alkaline-earth nitrates

    NASA Astrophysics Data System (ADS)

    Anan'ev, V.; Kriger, L.; Miklin, M.

    2015-04-01

    The formation of peroxynitrite and nitrite in crystalline alkaline-earth nitrates under γ-irradiation at 310 K by optical reflectance spectroscopy has been studied. The radiolysis of Sr(NO3)2 and Ba(NO3)2 results in nitrite and peroxynitrite, Mg(NO3)2·6H2O and Ca(NO3)2·4H2O - nitrite. The mechanism for nitrite and peroxynitrite formation under γ-irradiation of crystalline alkaline-earth nitrates has been discussed.

  5. The pressure induced B1-B2 phase transition of alkaline halides and alkaline earth chalcogenides. A first principles investigation

    SciTech Connect

    Potzel, Oliver; Taubmann, Gerhard

    2011-05-15

    In this work, we considered the pressure induced B1-B2 phase transition of AB compounds. The DFT calculations were carried out for 11 alkaline halides, 11 alkaline earth chalcogenides and the lanthanide pnictide CeP. For both the B1 and the B2 structures of each compound, the energy was calculated as a function of the cell volume. The transition pressure, the bulk moduli and their pressure derivatives were obtained from the corresponding equations of state. The transition path of the Buerger mechanism was described using roots of the transition matrix. We correlated the computed enthalpies of activation to some structure defining properties of the compounds. A fair correlation to Pearsons hardness of the ions was observed. -- Graphical abstract: Pressure induced transition from the B1 structure (left) via the transition state (middle) to the B2 structure (right). Display Omitted highlights: > Pressure induced phase transitions in AB compounds were considered. > Alkaline halides and alkaline earth chalcogenides were treated. > DFT calculations with periodic boundary conditions were applied. > The transition path was described by roots of the transition matrix. > The enthalpy of activation was calculated for numerous compounds.

  6. Complex formation of alkaline-earth cations with crown ethers and cryptands in methanol solutions

    SciTech Connect

    Buschman, H.J.

    1986-06-01

    The complexation of alkaline-earth cations by different crown ethers, azacrown ethers, and cryptands has been studied in methanol solutions by means of calorimetric and potentiometric titrations. The smallest monocyclic ligands examined from 2:1 complexes (ratio of ligand to cation) with cations which are too large to fit into the ligand cavity. With the smallest cryptand, only Sr/sup 2 +/ and Ba/sup 2 +/ ions are able to form exclusive complexes. In the case of the reaction of cryptand (211) with Ca/sup 2 +/, a separate estimation of stability constants for the formation of exclusive and inclusive complexes was possible for the first time. Higher values for stability constants are found for the reaction of alkaline-earth cations with cryptands compared to the reaction with alkali ions. This increase is only caused by favorable entropic contributions.

  7. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  8. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  9. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  10. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  11. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  12. Tryptophan fluorescence quenching by alkaline earth metal cations in deionized bacteriorhodopsin.

    PubMed

    Wang, G; Wang, A J; Hu, K S

    2000-12-01

    Tryptophan quenching by the addition of alkaline earth metal cations to deionized bacteriorhodopsin suspensions was determined. The results show that the addition of cation primarily quenches fluorescence from surface tryptophan residues. The quenched intensity exhibits a 1/R dependence, where R is the ionic radius of the corresponding metal ion. This observation results from a stronger energy transfer coupling between the tryptophan and the retinal. The membrane curvature may be involved as a result of cations motion and correlated conformational changes. PMID:11332888

  13. Bose-Einstein condensation of alkaline earth atoms: ;{40}Ca.

    PubMed

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of ;{40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of ;{40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2 x 10;{4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the ;{1}S-;{3}P asymptotes. PMID:19905493

  14. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  15. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  16. Instability of some divalent rare earth ions and photochromic effect

    NASA Astrophysics Data System (ADS)

    Egranov, A. V.; Sizova, T. Yu.; Shendrik, R. Yu.; Smirnova, N. A.

    2016-03-01

    It was shown that the divalent rare earth ions (La, Ce, Gd, Tb, Lu, and Y) in cubic sites in alkaline earth fluorides are unstable with respect to electron autodetachment since its d1(eg) ground state is located in the conduction band which is consistent with the general tendency of these ions in various compounds. The localization of doubly degenerate d1(eg) level in the conduction band creates a configuration instability around the divalent rare earth ion that leading to the formation of anion vacancy in the nearest neighborhood, as was reported in the previous paper [A. Egranov, T. Sizova, Configurational instability at the excited impurity ions in alkaline earth fluorites, J. Phys. Chem. Solids 74 (2013) 530-534]. Thus, the formation of the stable divalent ions as La, Ce, Gd, Tb, Lu, and Y (PC+ centers) in CaF2 and SrF2 crystals during x-ray irradiation occurs via the formation of charged anion vacancies near divalent ions (Re2+va), which lower the ground state of the divalent ion relative to the conductivity band. Photochromic effect occurs under thermally or optically stimulated electron transition from the divalent rare earth ion to the neighboring anion vacancy and reverse under ultraviolet light irradiation. It is shown that the optical absorption of the PC+ centers due to d → d and d → f transitions of the divalent rare-earth ion.

  17. Kinetic approach to evaluate the energy and entropy of activation for the exchange of alkaline earth metal ions on tin(IV) tungstate cation exchanger

    SciTech Connect

    Varshney, K.G.; Khan, A.A.; Varshney, K.; Agrawal, S.

    1984-01-01

    A new approach based on the Nernst-Planck equations has been applied to study the reaction kinetics on the surface of tin(IV) tungstate for the Mg(II)-H(I), Ca(II)-H(I), Sr(II)-H(I) and Ba(II)-H(I) exchanges under the conditions favouring a particle diffusion phenomenon. On the basis of these studies the various physical parameters such as the effective diffusion coefficients, activation energies and entropies of activation have been evaluated which give some informations regarding the mechanism of ion-exchange on the surface of inorganic materials. 25 references, 3 figures, 3 tables.

  18. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-01

    Four new metal coordination complexes, namely, [Na(BTA)]n (1), [K2(BTA)2(μ2-H2O)]n (2), and [M(BTA)2(H2O)2]n (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1-4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of {318}. Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of {311×42}. Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1-4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail.

  19. Dynamical Correlation In Some Liquid Alkaline Earth Metals Near Melting

    NASA Astrophysics Data System (ADS)

    Thakore, B. Y.; Suthar, P. H.; Khambholja, S. G.; Gajjar, P. N.; Jani, A. R.

    2010-12-01

    The study of dynamical variables: velocity autocorrelation function (VACF) and power spectrum of liquid alkaline earth metals (Ca, Sr, and Ba) have been presented based on the static harmonic well approximation. The effective interatomic potential for liquid metals is computed using our well recognized model potential with the exchange correlation functions due to Hartree, Taylor, Ichimaru and Utsumi, Farid et al. and Sarkar et al. It is observed that the VACF computed using Sarkar et al. gives the good agreement with available molecular dynamics simulation (MD) results [Phys Rev. B 62, 14818 (2000)]. The shoulder of the power spectrum depends upon the type of local field correlation function used.

  20. Ground state properties of alkali and alkaline-earth hydrides

    NASA Astrophysics Data System (ADS)

    Fuentealba, P.; Reyes, O.; Stoll, H.; Preuss, H.

    1987-11-01

    The ground state potential energy curves of alkali (LiH to CsH) and alkaline-earth monohydrides (BeH to BaH) have been calculated. A pseudopotential formalism including a core-polarization potential has been used. For the valence correlation energy, two different methods, the local spin-density functional and the configuration interaction with single and double excitations, have been employed. Dissociation energies, bond lengths, vibrational frequencies, anharmonicity constants, and dipole moments are reported. The agreement with experimental values, where available, is very good. A discussion and a comparison with other theoretical values, at different levels of approximation, are also included.

  1. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    NASA Astrophysics Data System (ADS)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  2. Alkaline earths as main group reagents in molecular catalysis.

    PubMed

    Hill, Michael S; Liptrot, David J; Weetman, Catherine

    2016-02-21

    The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds. PMID:26797470

  3. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  4. Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.

  5. Enhanced Magnetic Trap Loading for Alkaline-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser addressing the 3P1 level. For the 3P1 -->3S1 (688-nm) transition in strontium, the depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  6. Deep optical trap for cold alkaline-Earth atoms.

    PubMed

    Cruz, Luciano S; Sereno, Milena; Cruz, Flavio C

    2008-03-01

    We describe a setup for a deep optical dipole trap or lattice designed for holding atoms at temperatures of a few mK, such as alkaline-Earth atoms which have undergone only regular Doppler cooling. We use an external optical cavity to amplify 3.2 W from a commercial single-frequency laser at 532 nm to 523 W. Powers of a few kW, attainable with low-loss optics or higher input powers, allow larger trap volumes for improved atom transfer from magneto-optical traps. We analyze possibilities for cooling inside the deep trap, the induced Stark shifts for calcium, and a cancellation scheme for the intercombination clock transition using an auxiliary laser. PMID:18542375

  7. Phisicochemistry of alkaline-earth metals oxides surface

    NASA Astrophysics Data System (ADS)

    Ekimova, Irina; Minakova, Tamara; Ogneva, Tatyana

    2016-01-01

    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation.

  8. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 1. Introduction, Be and Mg

    NASA Astrophysics Data System (ADS)

    De Visscher, Alex; Vanderdeelen, Jan; Königsberger, Erich; Churagulov, Bulat R.; Ichikuni, Masami; Tsurumi, Makoto

    2012-03-01

    The alkaline earth carbonates are an important class of minerals. This volume compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1, the present paper, outlines the procedure adopted in this volume in detail, and presents the beryllium and magnesium carbonates. For the minerals magnesite (MgCO3), nesquehonite (MgCO3.3H2O), and lansfordite (MgCO3.5H2O), a critical evaluation is presented based on curve fits to empirical and/or thermodynamic models. Useful side products of the compilation and evaluation of the data outlined in the introduction are new relationships for the Henry constant of CO2 with Sechenov parameters, and for various equilibria in the aqueous phase including the dissociation constants of CO2(aq) and the stability constant of the ion pair MCO30(aq) (M = alkaline earth metal). Thermodynamic data of the alkaline earth carbonates consistent with two thermodynamic model variants are proposed. The model variant that describes the Mg2+-HCO3- ion interaction with Pitzer parameters was more consistent with the solubility data and with other thermodynamic data than the model variant that described the interaction with a stability constant.

  9. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  10. Alkaline Anion-Exchange Membranes Containing Mobile Ion Shuttles.

    PubMed

    Ge, Xiaolin; He, Yubin; Guiver, Michael D; Wu, Liang; Ran, Jin; Yang, Zhengjin; Xu, Tongwen

    2016-05-01

    A new class of alkaline anion-exchange membranes containing mobile ion shuttles is developed. It is achieved by threading ionic linear guests into poly(crown ether) hosts via host-guest molecular interaction. The thermal- and pH-triggered shuttling of ionic linear guests remarkably increases the solvation-shell fluctuations in inactive hydrated hydroxide ion complexes (OH(-) (H2 O)4 ) and accelerates the OH(-) transport. PMID:26972938

  11. Processing and electrical properties of alkaline earth-doped lanthanum gallate

    SciTech Connect

    Stevenson, J.W.; Armstrong, T.R.; McCready, D.E.; Pederson, L.R.; Weber, W.J.

    1997-10-01

    Oxides exhibiting substantial oxygen ion conductivity are utilized in a number of high-temperature applications, including solid oxide fuel cells, oxygen separation membranes, membrane reactors, and oxygen sensors. Alkaline earth-doped lanthanum gallate powders were prepared by glycine/nitrate combustion synthesis. Compacts of powders synthesized under fuel-rich conditions were sintered to densities greater than 97% of theoretical. Appropriate doping with Sr or Ba on the A-site of the perovskite structure, and Mg on the B-site, resulted in oxygen ion conductivity higher than that of yttria-stabilized zirconia (YSZ), and high ionic transference numbers. Doping with Ca and Mg resulted in lower conductivity than YSZ. Thermal expansion coefficients of the doped gallates were higher than that of YSZ.

  12. Prediction of the speciation of alkaline earths adsorbed on mineral surfaces in salt solutions

    NASA Astrophysics Data System (ADS)

    Sverjensky, Dimitri A.

    2006-05-01

    Despite the fact that the bulk compositions of most low temperature natural surface waters, groundwaters, and porewaters are heavily influenced by alkaline earths, an understanding of the development of proton surface charge in the presence of alkaline earth adsorption on the surfaces of minerals is lacking. In particular, models of speciation at the mineral-water interface in systems involving alkaline earths need to be established for a range of different minerals. In the present study, X-ray standing wave results for Sr 2+ adsorption on rutile as a tetranuclear complex [Fenter, P., Cheng, L., Rihs, S., Machesky, M., Bedyzk, M.D., Sturchio, N.C., 2000. Electrical double-layer structure at the rutile-water interface as observed in situ with small-period X-ray standing waves. J. Colloid Interface Sci.225, 154-165] are used as constraints for all the alkaline earths in surface complexation simulations of proton surface charge, metal adsorption, and electrokinetic experiments referring to wide ranges of pH, ionic strength, surface coverage, and type of oxide. The tetranuclear reaction 4>SOH+M+H2O=(>SOH)2(>SO-)2_M(OH)++3H+ predominates for the large cations Sr 2+ and Ba 2+ (and presumably Ra 2+), consistent with X-ray results. In contrast, the mononuclear reaction >SOH+M+H2O=>SO-_M(OH)++2H+ predominates for the much smaller Mg 2+ (and presumably Be 2+), with minor amounts of the tetranuclear reaction. Both reaction types appear to be important for the intermediate size Ca 2+. For all the alkaline earths on all oxides, the proportions of the different reaction types vary systematically as a function of pH, ionic strength, and surface coverage. The application of Born solvation and crystal-chemical theory enables estimation of the equilibrium constants of adsorption of all the alkaline earths on all oxides. On high dielectric constant solids (rutile, magnetite, manganese dioxide), where the solvation contribution is negligable, ion adsorption correlates with crystal

  13. Improvement of thermoelectric properties of alkaline-earth hexaborides

    SciTech Connect

    Takeda, Masatoshi . E-mail: takeda@mech.nagaokaut.ac.jp; Terui, Manabu; Takahashi, Norihito; Ueda, Noriyoshi

    2006-09-15

    Thermoelectric (TE) and transport properties of alkaline-earth hexaborides were examined to investigate the possibility of improvement in their TE performance. As carrier concentration increased, electrical conductivity increased and the absolute value of the Seebeck coefficient decreased monotonically, while carrier mobility was almost unchanged. These results suggest that the electrical properties of the hexaboride depend largely on carrier concentration. Thermal conductivity of the hexaboride was higher than 10 W/m K even at 1073 K, which is relatively high among TE materials. Alloys of CaB{sub 6} and SrB{sub 6} were prepared in order to reduce lattice thermal conductivity. Whereas the Seebeck coefficient and electrical conductivity of the alloys were intermediate between those of CaB{sub 6} and SrB{sub 6} single phases, the thermal conductivities of the alloys were lower than those of both single phases. The highest TE performance was obtained in the vicinity of Ca{sub 0.5}Sr{sub 0.5}B{sub 6}, indicating that alloying is effective in improving the performance. - Graphical abstract: Thermoelectric figure-of-merit, ZT, for (Ca,Sr)B{sub 6} alloys. The highest ZT value of 0.35 at 1073 K was obtained due to effective reduction of thermal conductivity by alloying.

  14. Porphyrin-Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue.

    PubMed

    Hou, Yuxia; Sun, Junshan; Zhang, Daopeng; Qi, Dongdong; Jiang, Jianzhuang

    2016-04-25

    A series of four porphyrin-alkaline earth metal- organic frameworks [Mg(HDCPP)2 (DMF)2 ]n ⋅(H2 O)7 n (1), [Ca(HDCPP)2 (H2 O)2 ]n (DMF)1.5 n (2), [Sr(DCPP)(H2 O)(DMA)]n (3), and [Ba(DCPP)(H2 O)(DMA)]n (4) was isolated for the first time from solvothermal reaction between metal-free 5,15-di(4- carboxyphenyl)porphyrin (H2 DCPP) and alkaline earth ions. Single-crystal X-ray diffraction analysis reveals the 2D and 3D supramolecular network with periodic nanosized porosity for 1/2 and 3/4, respectively. The whole series of MOFs, in particular, compounds 1 and 2 with intrinsic low molecular formula weight, exhibit superior adsorption performance for methylene blue (MB) with excellent capture capacity as represented by the thus far highest adsorption amount of 952 mg g(-1) for 2 and good selectivity, opening a new way for the potential application of the main group metal-based MOFs. PMID:27002679

  15. The Characterization of Eu2+-Doped Mixed Alkaline-Earth Iodide Scintillator Crystals

    SciTech Connect

    Neal, John S; Boatner, Lynn A; Ramey, Joanne Oxendine; Wisniewski, D.; Kolopus, James A; Cherepy, Nerine; Payne, Stephen A.

    2011-01-01

    The high-performance inorganic scintillator, SrI2:Eu2+, when activated with divalent europium in the concentration range of 3 to 6%, has shown great promise for use in applications that require high-energy-resolution gamma-ray detection. We have recently grown and tested crystals in which other alkaline-earth ions have been partially substituted for Sr ions. Specifically, europium-doped single crystals have been grown in which up to 30 at % of the strontium ions have been substituted for either by barium, magnesium, or calcium ions. In the case of the strontium iodide scintillator host, a material that is characterized by an orthorhombic crystal structure, there are three other column IIA elements that are obvious choices for investigations whose purpose is to realize potential improvements in the performance of SrI2:Eu2+-based scintillators via the replacement of strontium ions with either Mg2+, Ca2+, or Ba2+. Light yields of up to 81,400 photons/MeV with an associated energy resolution of 3.7% (fwhm for 662 keV gamma-rays) have been observed in the case of a partial substitution of Ba2+ for Sr2+. The measured decay times ranged from 1.1 to 2.0 s, while the peak emission wavelengths ranged from 432 to 438 nm.

  16. Modulation of cardiac ryanodine receptor channels by alkaline earth cations.

    PubMed

    Diaz-Sylvester, Paula L; Porta, Maura; Copello, Julio A

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  17. Modulation of Cardiac Ryanodine Receptor Channels by Alkaline Earth Cations

    PubMed Central

    Diaz-Sylvester, Paula L.; Porta, Maura; Copello, Julio A.

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca2+ and Mg2+. To better characterize Ca2+ and Mg2+ binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M2+: Mg2+, Ca2+, Sr2+, Ba2+) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M2+ binding to high affinity activating sites at the cytosolic channel surface, specific for Ca2+ or Sr2+. This activation was interfered by Mg2+ and Ba2+ acting at low affinity M2+-unspecific binding sites. When testing the effects of luminal M2+ as current carriers, all M2+ increased maximal RyR2 open probability (compared to Cs+), suggesting the existence of low affinity activating M2+-unspecific sites at the luminal surface. Responses to M2+ vary from channel to channel (heterogeneity). However, with luminal Ba2+or Mg2+, RyR2 were less sensitive to cytosolic Ca2+ and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca2+or Sr2+). Kinetics of RyR2 with mixtures of luminal Ba2+/Ca2+ and additive action of luminal plus cytosolic Ba2+ or Mg2+ suggest luminal M2+ differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca2+/Sr2+-specific sites, which stabilize high Po mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca2+ activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M2+ binding sites (specific for Ca2+ and unspecific for Ca2+/Mg2+) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  18. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  19. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  20. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1996-12-31

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  1. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1995-05-01

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  2. Theoretical study of the diatomic alkali and alkaline-earth oxides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.

  3. Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    NASA Astrophysics Data System (ADS)

    Taubner, I.; Böhm, F.; Eisenhauer, A.; Garbe-Schönberg, D.; Erez, J.

    2012-05-01

    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ˜13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19-32 °C) and pH (8.15-8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of -0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal

  4. Thermal poling of alkaline earth boroaluminosilicate glasses with intrinsically high dielectric breakdown strength

    NASA Astrophysics Data System (ADS)

    Smith, Nicholas J.; Lanagan, Michael T.; Pantano, Carlo G.

    2012-04-01

    Per the rectification model of thermal poling, it has been proposed that intrinsic breakdown strength plays a strong limiting role in the internal DC fields supported by the glass from the poling process. One might therefore hypothesize proportionately larger second-order nonlinearity (SON) in glasses with intrinsically high dielectric breakdown strength. We test these ideas by thermal poling of two different commercial alkali-free alkaline-earth boroaluminosilicate display glasses—one with barium only (AF45 from Schott), and the other with a mixture of alkaline-earth ions (OA-10 G from NEG). Not only are such compositions relevant from a commercial standpoint, they are also interesting in that they have been recently shown to exhibit remarkably high intrinsic dielectric breakdown strengths of 11-14 MV/cm. Quantitative Maker fringe and stack Maker-fringe measurements provide an accurate evaluation of the poling-induced SON susceptibilities, and indicate maximum χ(2) values of 0.44 and 0.26 pm/V in these glasses. These values are comparable to those reported for silica and other multicomponent glasses. Thus, the hypothesis that higher χ(2) would be observed in high intrinsic breakdown strength glasses was not validated. Based on our application of the rectification model, internal fields of the order 2-4 MV/cm were calculated, which are well below the measured intrinsic breakdown strengths at room temperature. The most plausible explanation for these observations is nonlinear electronic conduction effects taking place within the depletion region at the poling temperature, limiting internal fields to a fraction of the breakdown field.

  5. Structural investigation of Eu{sup 2+} emissions from alkaline earth zirconium phosphate

    SciTech Connect

    Hirayama, Masaaki; Sonoyama, Noriyuki; Yamada, Atsuo; Kanno, Ryoji

    2009-04-15

    Eu{sup 2+} doped A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) phosphors with the NASICON structure were synthesized by a co-precipitation method. Their photoluminescent and structural properties were investigated by photoluminescent spectroscopy and powder X-ray Rietveld analysis, which determined two sites for Eu{sup 2+} ions in the host structure, 3a and 3b. The Eu-O bond lengths were increased by changing alkaline earth ions from Ca to Ba, causing Eu{sup 2+} emission bands to shift from blue-green to blue. A correlation was observed between the peak wavelength positions and the Eu-O bond length. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect, and a schematic diagram of Eu{sup 2+} emissions is proposed for the Eu{sup 2+} doped NASICON phosphor. - Graphical abstract: Eu{sup 2+} doped NASICON structured A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) showed the blue and blue-green colored emissions attributed to 4f{sup 6}5d{sup 1}-4f{sup 7} transitions. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect using powder X-ray Rietveld analysis.

  6. Chemical trend of pressure-induced metallization in alkaline earth hydrides

    SciTech Connect

    Zhang, Sijia; Chen, Xiao-Jia; Zhang, Rui-Qin; Lin, Hai-Qing

    2010-09-02

    The pressure-induced metallization of alkaline earth hydrides was systematically investigated using ab initio methods. While BeH{sub 2} and MgH{sub 2} present different semimetallic phases, CaH{sub 2}, SrH{sub 2}, and BaH{sub 2} share the same metallic phase (P6/mmm). The metallization pressure shows an attractive decrease with each increment of metal radius, and this trend is well correlated with both the electronegativity of alkaline earth metals and the band gap of alkaline earth hydrides at ambient pressure. Our results are consistent with current experimental data, and the obtained trend has significant implications for designing and engineering metallic hydrides for energy applications.

  7. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    PubMed

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  8. Pressure studies of alkali, alkaline earth and rare earth doped C{sub 60} superconductors

    SciTech Connect

    Schirber, J.E.; Bayless, W.R.; Kortan, A.R.; Ozdas, E.; Zhou, O.; Murphy, D.; Fischer, J.E.

    1994-06-01

    Pressure studies of the superconducting transition temperature T{sub c} of the alkali metal doped C{sub 60} compounds helped to establish a universal curve of T{sub c} versus lattice constant upon which nearly all of these materials lie. Various theoretical schemes incorporate this finding and suggest that only the lattice parameter and not the details of the dopant determine T{sub c}. Ca{sub 5}C{sub 60}, the highest T{sub c} member of the alkaline earth doped C{sub 60} superconductor has a T{sub c} which lies on this universal curve so this material, from these considerations, should have the same large negative pressure derivative as the alkali doped superconductors. We have measured dT{sub c}/dP for Ca{sub 5}C{sub 60} and for Yb{sub x}C{sub 60} (x near 3) and find small and positive values indicating that the theoretical models must be expanded to include band structure effects.

  9. Tris(pyrazolyl)methanides of the alkaline earth metals: influence of the substitution pattern on stability and degradation.

    PubMed

    Müller, Christoph; Koch, Alexander; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2015-01-20

    Trispyrazolylmethanides commonly act as strong tridentate bases toward metal ions. This expected coordination behavior has been observed for tris(3,4,5-trimethylpyrazolyl)methane (1a), which yields the alkaline-earth-metal bis[tris(3,4,5-trimethylpyrazolyl)methanides] of magnesium (1b), calcium (1c), strontium (1d), and barium (1e) via deprotonation of 1a with dibutylmagnesium and [Ae{N(SiMe3)2}2] (Ae = Mg, Ca, Sr, and Ba, respectively). Barium complex 1e degrades during recrystallization that was attempted from aromatic hydrocarbons and ethers. In these scorpionate complexes, the metal ions are embedded in distorted octahedral coordination spheres. Contrarily, tris(3-thienylpyrazolyl)methane (2a) exhibits a strikingly different reactivity. Dibutylmagnesium is unable to deprotonate 2a, whereas [Ae{N(SiMe3)2}2] (Ae = Ca, Sr, and Ba) smoothly metalates 2a. However, the primary alkaline-earth-metal bis[tris(3-thienylpyrazolyl)methanides] of Ca (2c), Sr (2d), and Ba (2e) represent intermediates and degrade under the formation of the alkaline-earth-metal bis(3-thienylpyrazolates) of calcium (3c), strontium (3d), and barium (3e) and the elimination of tetrakis(3-thienylpyrazolyl)ethene (4). To isolate crystalline compounds, 3-thienylpyrazole has been metalated, and the corresponding derivatives [(HPz(Tp))4Mg(Pz(Tp))2] (3b), dinuclear [(tmeda)Ca(Pz(Tp))2]2 (3c), mononuclear [(pmdeta)Sr(Pz(Tp))2] (3d), and [(hmteta)Ba(Pz(Tp))2] (3e) have been structurally characterized. Regardless of the applied stoichiometry, magnesiation of thienylpyrazole 3a with dibutylmagnesium yields [(HPz(Tp))4Mg(Pz(Tp))2] (3b), which is stabilized in the solid state by intramolecular N-H···N···H-N hydrogen bridges. The degradation of [Ae{C(Pz(R))3}2] (R = Ph and Tp) has been studied by quantum chemical methods, the results of which propose an intermediate complex of the nature [{(Pz(R))2C}2Ca{Pz(R)}2]; thereafter, the singlet carbenes ([:C(Pz(R))2]) dimerize in the vicinity of the alkaline

  10. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  11. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  12. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  13. Ab initio study of the alkali and alkaline-earth monohydroxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.

    1986-01-01

    A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.

  14. Dissolution of alkaline earth sulfates in the presence of montmorillonite

    USGS Publications Warehouse

    Eberl, D.D.; Landa, E.R.

    1985-01-01

    In a study of the effect of montmorillonite on the dissolution of BaSO4 (barite), SrSO4 (celestite), and 226Ra from U mill tailings, it was found that: (1) More of these substances dissolve in an aqueous system that contains montmorillonite than dissolve in a similar system without clay, due to the ion exchange properties of the clay; (2) Na-montmorillonite is more effective in aiding dissolution than is Ca-montmorillonite; (3) the amount of Ra that moves from mill tailings to an exchanger increases as solution sulfate activity decreases. Leaching experiments suggest that 226Ra from H2SO4-circuit U mill tailings from Edgemont, South Dakota, is not present as pure Ra sulfate or as an impurity in anhydrite or gypsum; it is less soluble, and probably occurs as a trace constituent in barite.

  15. Extraction of alkaline earth and actinide cations by mixtures of Di(2-ethylhexyl)alkylenediphosphonic acids and neutral synergists.

    SciTech Connect

    McAlister, D. R.; Chiarizia, R.; Dietz, M. L.; Herlinger, A. W.; Zalupski, P. R.; Chemistry; Loyola Univ.

    2002-09-18

    The synergistic extraction of alkaline earth (Ca{sup 2+}, Sr{sup 2+}, Ba{sup 2+} and Ra{sup 2+}) and actinide (Am{sup 3+}, UO{sub 2}{sup 2+} and Th{sup 4+}) cations from aqueous nitric acid solutions by mixtures of P,P'-di(2-ethylhexyl) methylene-(H{sub 2}DEH[MDP]), ethylene-(H{sub 2}DEH[EDP]), and butylene-(H{sub 2}DEH[BuDP]) diphosphonic acids and neutral extractants in o-xylene has been investigated. The cis-syn-cis and cis-anti-cis stereoisomers of dicyclohexano-18-crown-6 (DCH18C6), the unsubstituted 21-crown-7 (21C7) and dicyclohexano-21-crown-7 (DCH21C7) were used as neutral synergists of the crown ether type. For Am(III) synergistic effects were also investigated using neutral organophosphorus esters, such as, tri-n-butylphosphate (TBP), diamyl amylphosphonate (DA[AP]) and tri-n-octylphosphine oxide (TOPO) as co-extractants. In all systems investigated, no synergistic extraction enhancement was observed for actinide ions. For the alkaline earth cations, synergistic effects were only observed when mixtures of H{sub 2}DEH[EDP] or H{sub 2}DEH-[BuDP] with DCH18C6 were used to extract Sr{sup 2+}, Ba{sup 2+} and Ra{sup 2+}. No synergistic effects were observed for the extraction of alkaline earth cations by H{sub 2}DEH[MDP] or for the extraction of Ca{sup 2+} by any of the diphosphonic acids studied. The synergistic effects obtained with DCH18C6 were significantly higher for the cis-syn-cis than for the cis-anti-cis stereoisomer.

  16. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  17. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  18. Luminescence properties of Eu-activated alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}

    SciTech Connect

    Wang, Jing; Huang, Yanlin; Wang, Xigang; Qin, Lin; Seo, Hyo Jin

    2014-07-01

    Highlights: • A novel yellow-emitting alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was first developed. • Under excitation with UV or near UV light the silicate presents broad emission band centered at 580 nm. - Abstract: Yellow-emitting phosphors of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was prepared by wet chemistry sol–gel method. X-ray powder diffraction and SEM measurements were applied to characterize the structure and morphology, respectively. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve (lifetimes), CIE coordinates and the internal quantum efficiencies. The excitation spectra can match well with the emission light of near UV-LED chips (360–400 nm). Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} presents a symmetric emission band from 4f{sup 6}5d{sup 1} ⟶ 4f{sup 7}({sup 8}S{sub 7/2}) transitions of Eu{sup 2+} ions on doping below 3.0 mol%. On increasing Eu-doping levels, the sample contains two kinds of emission centers, i.e., Eu{sup 2+} and Eu{sup 3+} ions, which present the characteristic broad band (5d ⟶ 4f) and narrower (4f ⟶ 4f) luminescence lines, respectively. The energy transfer, the luminescence thermal stability (activation energy ΔE for thermal quenching) and luminescence mechanism of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} phosphors were discussed by analyzing the relationship between the luminescence characteristics and the crystal structure.

  19. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  20. Improved alkaline earth-oxyhalide electrochemical cell for low-temperature use

    SciTech Connect

    Binder, M.; Walker, C.W.

    1988-05-20

    This invention relates in general to an alkaline earth-oxyhalide electrochemical cell and in particular, to an improved alkaline earth oxyhalide electrochemical cell for low temperature use. A typical cell includes a calcium anode, 1M Ca(AlCl/sub 4/)/sub 2/ thionyl chloride/75% Shawinigan - 25% acetone washed Black Pearls 2000 carbon black cathode. The improvement to this cell involves the addition of 10 vol. % bromine to the electrolyte. During discharge at about -30 C, cathode potential is raised by about 0.5 volt providing a cell voltage well above the 2.0 volt minimum which is a standard military specification. Without bromine, cell capacity is about one minute. With the addition of bromine, load voltage is initially 2.5 volts, then slowly decreases to 2.0 volts over about twelve minutes.

  1. Bose-Einstein Condensation of Alkaline Earth Atoms: {sup 40}Ca

    SciTech Connect

    Kraft, Sebastian; Vogt, Felix; Appel, Oliver; Riehle, Fritz; Sterr, Uwe

    2009-09-25

    We have achieved Bose-Einstein condensation of {sup 40}Ca, the first for an alkaline earth element. The influence of elastic and inelastic collisions associated with the large ground-state s-wave scattering length of {sup 40}Ca was measured. From these findings, an optimized loading and cooling scheme was developed that allowed us to condense about 2x10{sup 4} atoms after laser cooling in a two-stage magneto-optical trap and subsequent forced evaporation in a crossed dipole trap within less than 3 s. The condensation of an alkaline earth element opens novel opportunities for precision measurements on the narrow intercombination lines as well as investigations of molecular states at the {sup 1}S-{sup 3}P asymptotes.

  2. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    NASA Astrophysics Data System (ADS)

    Vanderdeelen, Jan

    2012-06-01

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO3 types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO3. H2O), the hexahydrate ikaite (CaCO3.6H2O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  3. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    SciTech Connect

    De Visscher, Alex; Vanderdeelen, Jan

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  4. Kondo effect in alkaline-earth-metal atomic gases with confinement-induced resonances

    NASA Astrophysics Data System (ADS)

    Zhang, Ren; Zhang, Deping; Cheng, Yanting; Chen, Wei; Zhang, Peng; Zhai, Hui

    2016-04-01

    Alkaline-earth-metal atoms have a long-lived electronic excited state, and when atoms in this excited state are localized in the Fermi sea of ground-state atoms by an external potential, they serve as magnetic impurities, due to the spin-exchange interaction between the excited- and the ground-state atoms. This can give rise to the Kondo effect. However, in order to achieve this effect in current atomic gas experiments, it requires the Kondo temperature to be increased to a sizable portion of the Fermi temperature. In this paper we calculate the confinement-induced resonance (CIR) for the spin-exchanging interaction between the ground and the excited states of the alkaline-earth-metal atoms and propose that the spin-exchange interaction can be strongly enhanced by utilizing the CIR. We analyze this system by the renormalization-group approach and show that near a CIR, the Kondo temperature can be significantly enhanced.

  5. Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Nørskov, Jens K.; Vojvodic, Aleksandra

    2015-04-01

    We present a systematic theoretical investigation of the surface properties, stability, and reactivity of rocksalt type alkaline-earth metal oxides including MgO, CaO, SrO, and BaO. The accuracy of commonly used exchange-correlation density functionals (LDA, PBE, RPBE, PBEsol, BEEF-vdW, and hybrid HSE) and random-phase approximation (RPA) is evaluated and compared to existing experimental values. Calculated surface energies of the four most stable surface facets under vacuum conditions, the (100) surface, the metal and oxygen terminated octopolar (111), and the (110) surfaces, exhibit a monotonic increase in stability from MgO to BaO. On the MgO(100) surface, adsorption of CO, NO, and CH4 is characterized by physisorption while H2O chemisorbs, which is in agreement with experimental findings. We further use the on-top metal adsorption of CO and NO molecules to map out the surface energetics of each alkaline-earth metal oxide surface. The considered functionals all qualitatively predict similar adsorption energy trends. The ordering between the adsorption energies on different surface facets can be attributed to differences in the local geometrical surface structure and the electronic structure of the metal constituent of the alkaline-earth metal oxide. The striking observation that CO adsorption strength is weaker than NO adsorption on the (100) terraces as the period of the alkaline-earth metal in the oxide increases is analyzed in detail in terms of charge redistribution within the σ and π channels of adsorbates. Finally, we also present oxygen adsorption and oxygen vacancy formation energies in these oxide systems.

  6. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  7. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  8. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2004-11-01

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  9. Enhancement of palladium-porphyrin room temperature phosphorescence by alkaline earth metal in deoxycholate aggregates solution.

    PubMed

    Wang, Ying-Te; Wang, Xiang-Wei; Zhang, Yong

    2011-01-01

    Room temperature phosphorescence (RTP) of three palladium (Pd)-phorphyrins in air-saturated solution of sodium deoxycholate (NaDC) aggregates was measured. RTP of Pd-meso-tetrakis (4-carboxyphenyl) porphyrin (Pd-TCPP) was obviously enhanced in NaDC-aggregates mediated by alkaline earth metal (AEM). Under the same experimental conditions, Ca(2+), Ba(2+) and Mg(2+) induced 200, 90 and 24 times greater enhancement in RTP of Pd-TCPP, respectively. It is ascribed to form the complex of NaDC-aggregate/AEM/Pd-TCPP in the system. The positively charged AEM has a strong capability of co-ordination with negatively charged carboxyl groups of NaDC and Pd-TCPP. The phosphor Pd-TCPP is confined in rigid NaDC-aggregates/AEM system by the coordination which decreases the probability of collision of phosphor with quenchers such as dissolved oxygen molecules and prolongs the lifetime of the phosphor on the triplet state. Long excited-state lifetimes resulted in great enhancement of Pd-TCPP phosphorescence. Observations by optical microscope showed that specific fan-like structures of NaDC were formed under the influence of AEM. Surface tension measurements supported a close interaction between Ca(2+) ions and anion aggregates of NaDC with 1:1 stoichiometric ratio. Due to its outstanding RTP behavior in NaDC-aggregates induced by Ca(2+), Pd-TCPP was used as a RTP probe to detect bovine serum albumin (BSA). A broad linear range from 1.0 × 10(-9) to 9.0 × 10(-7) g mL(-1) was obtained. Detection limit is 2.6 × 10(-11) g mL(-1), the relative standard deviation (n = 6) is 2.3% for 2.0 × 10(-9) g mL(-1) BSA. PMID:21438880

  10. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    PubMed

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima. PMID:25744028

  11. The Effect of Alkaline Earth Metal on the Cesium Loading of Ionsiv(R) IE-910 and IE-911

    SciTech Connect

    Fondeur, F.F.

    2001-01-16

    This study investigated the effect of variances in alkaline earth metal concentrations on cesium loading of IONSIV(R) IE-911. The study focused on Savannah River Site (SRS) ''average'' solution with varying amounts of calcium, barium and magnesium.

  12. Intermolecular hydroamination of vinylarenes by iminoanilide alkaline-earth catalysts: a computational scrutiny of mechanistic pathways.

    PubMed

    Tobisch, Sven

    2014-07-14

    A thorough computational exploration of the mechanistic intricacies of the intermolecular hydroamination (HA) of vinylarenes by a recently reported class of kinetically stabilised iminoanilide [{N^N}Ae{N(SiMe3)2}⋅(THF)n] alkaline-earth amido compounds (Ae = Ca, Sr, Ba) is presented. Two distinct mechanistic pathways for catalytic HA mediated by alkaline-earth and rare-earth compounds have emerged over the years that account equally well for the specific features of the process. On one hand, a concerted proton-assisted pathway to deliver the amine product in a single step can be invoked and, on the other, a stepwise σ-insertive pathway that comprises a rapid, reversible migratory olefin insertion step linked to a less facile, irreversible Ae-C alkyl bond aminolysis. The results of the study presented herein, which employed a heavily benchmarked and reliable DFT methodology, supports a stepwise σ-insertive pathway that involves fast and reversible migratory C=C bond insertion into the polar Ae-N pyrrolido σ bond. This proceeds with strict 2,1 regioselectivity via a highly polarised four-centre transition state (TS) structure, linked to irreversible intramolecular Ae-C bond aminolysis of the alkaline-earth alkyl intermediate as the energetically favourable mechanism. Turnover-limiting aminolysis is consistent with the significant KIE measured; the DFT-derived effective barrier matches the Eyring parameter empirically determined for the best-performing {N^N}Ba(NR2) catalyst gratifyingly well. It also predicts the observed trend in reactivity (Ca

  13. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  14. Surface location of alkaline-earth-metal-atom impurities on helium nanodroplets

    NASA Astrophysics Data System (ADS)

    Ren, Yanfei; Kresin, Vitaly V.

    2007-10-01

    There has been notable uncertainty regarding the degree of solvation of alkaline-earth-metals atoms, especially Mg, in free He4 nanodroplets. We have measured the electron energy dependence of the ionization yield of picked-up atoms. There is a qualitative shape difference between the yield curves of species solvated in the middle of the droplet and species located in the surface region; this difference arises from the enhanced role played by the Penning ionization process in the latter case. The measurements demonstrate that Mg, Ca, Sr, and Ba all reside at or near the droplet surface.

  15. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  16. The potential of trees to record aluminum mobilization and changes in alkaline earth availability

    SciTech Connect

    Bondietti, E.A.; Baes, C.F. III; McLaughlin, S.B.

    1988-01-01

    The mobilization of exchangeable soil cations by atmospheric depositions of mineral acid anions and the distribution of polyvalent cations in the xylem are described to provide the basis for interpreting both radial concentration and concentration ratio patterns of polyvalent cations in annual growth rings of trees. There is strong circumstantial evidence that increases in Al:Ca ratios in annual rings are related to aluminum mobilization, and that changes in the availability of alkaline earth elements and radial growth rated may also be related to cation mobilization. Suggestions for further research are presented.

  17. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOEpatents

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  18. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    SciTech Connect

    Brunson, R.J.; Deane, B.C.; Epperly, W.R.

    1982-06-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  19. Surface location of alkaline-earth-metal-atom impurities on helium nanodroplets

    SciTech Connect

    Ren Yanfei; Kresin, Vitaly V.

    2007-10-15

    There has been notable uncertainty regarding the degree of solvation of alkaline-earth-metals atoms, especially Mg, in free {sup 4}He nanodroplets. We have measured the electron energy dependence of the ionization yield of picked-up atoms. There is a qualitative shape difference between the yield curves of species solvated in the middle of the droplet and species located in the surface region; this difference arises from the enhanced role played by the Penning ionization process in the latter case. The measurements demonstrate that Mg, Ca, Sr, and Ba all reside at or near the droplet surface.

  20. Molecular mechanics (MM3) calculations on benzocrown ether complexes of the alkali and alkaline earth cations

    SciTech Connect

    Yang, Linrong R.; Hay, B.P.

    1997-12-31

    The new metal-ligand feature of MM3 has been extended to benzocrown ether complexes of alkali and alkaline earth cations. Over 50 complexes were compared with the crystal structures retrieved from Cambridge Crystal Database. The results agree with experimental data. The averages of absolute deviations between experimental and calculated structural features are: metal-oxygen bond length, 0.03 {angstrom}; Metal-oxygen-carbon angles, 4.1{degrees}; and Metal-oxygen-carbon-carbon angles: 5.1{degrees}. Development of structure-function relationships is in progress.

  1. Biogenesis and Early Life on Earth and Europa: Favored by an Alkaline Ocean?

    NASA Astrophysics Data System (ADS)

    Kempe, Stephan; Kazmierczak, Jozef

    2002-03-01

    Recent discoveries about Europa - the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface - suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  2. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  3. Three-photon process for producing a degenerate gas of metastable alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Barker, D. S.; Pisenti, N. C.; Reschovsky, B. J.; Campbell, G. K.

    2016-05-01

    We present a method for creating a quantum degenerate gas of metastable alkaline-earth-metal atoms. This has yet to be achieved due to inelastic collisions that limit evaporative cooling in the metastable states. Quantum degenerate samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent three-photon process. Numerical integration of the density-matrix evolution for the fine structure of bosonic alkaline-earth-metal atoms shows that transfer efficiencies of ≃90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the three-photon process can be set up such that it imparts no net momentum to the degenerate gas during the excitation, which will allow for studies of metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to successfully realizing our scheme, including the minimization of differential ac Stark shifts between the four states connected by the three-photon transition.

  4. A 3-photon process for producing degenerate gases of metastable alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Barker, Daniel S.; Pisenti, Neal C.; Reschovsky, Benjamin J.; Campbell, Gretchen K.

    2016-05-01

    We present a method for creating quantum degenerate gases of metastable alkaline-earth atoms. A degenerate gas in any of the 3 P metastable states has not previously been obtained due to large inelastic collision rates, which are unfavorable for evaporative cooling. Samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure of bosonic alkaline-earth atoms shows that transfer efficiencies of ~= 90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process does not impart momentum to the degenerate gas during excitation, which allows studies of these metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to the successful realization of our scheme, including the minimization of differential AC Stark shifts between the four states connected by the 3-photon transition.

  5. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Liu, Jianpeng; Vanderbilt, David; Duan, Wenhui

    2016-05-01

    Based on first-principles calculations and an effective Hamiltonian analysis, we systematically investigate the electronic and topological properties of alkaline-earth compounds A X2 (A =Ca , Sr, Ba; X =Si , Ge, Sn). Taking BaSn2 as an example, we find that when spin-orbit coupling is ignored, these materials are three-dimensional topological nodal-line semimetals characterized by a snakelike nodal loop in three-dimensional momentum space. Drumheadlike surface states emerge either inside or outside the loop circle on the (001) surface depending on surface termination, while complicated double-drumhead-like surface states appear on the (010) surface. When spin-orbit coupling is included, the nodal line is gapped and the system becomes a topological insulator with Z2 topological invariants (1;001). Since spin-orbit coupling effects are weak in light elements, the nodal-line semimetal phase is expected to be achievable in some alkaline-earth germanides and silicides.

  6. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  7. Theoretical study of the alkaline-earth metal superoxides BeO2 through SrO2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    Three competing bonding mechanisms have been identified for the alkaline-earth metal superoxides: these result in a change in the optimal structure and ground state as the alkaline-earth metal becomes heavier. For example, BeO2 has a linear 3Sigma(-)g ground-state structure, whereas both CaO2 and SrO2 have C(2v)1A1 structures. For MgO2, the theoretical calculations are less definitive, as the 3A2 C(2v) structure is computed to lie only about 3 kcal/mol above the 3Sigma(-)g linear structure. The bond dissociation energies for the alkaline-earth metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional or coupled-cluster singles and doubles level with a perturbational estimate of the triple excitations.

  8. Structure elucidation of alkaline earth impregnated MCM-41 type mesoporous materials obtained by direct synthesis: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Paz, Gizeuda L.; Silva, Francisco das Chagas M.; Araújo, Maciel M.; Lima, Francisco das Chagas A.; Luz, Geraldo E.

    2014-06-01

    In this work, MCM-41 were synthesized hydrothermally and functionalized with calcium and strontium salts by direct method, using the Si/M = 50 molar ratio, in order to elucidate the way as the alkaline earth is incorporated on MCM-41 molecular sieve. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption-desorption and theoretical calculations by DFT method. Experimental results and computer simulations showed that the alkaline earths were incorporated on MCM-41 through a complex structure, which negatively influences on basic sites formation.

  9. Assessing the Effectiveness and Side-Effects of Ocean Alkalinity Enhancement in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Jones, S. E.; Ridgwell, A. J.

    2013-12-01

    At present, the potential to decrease atmospheric carbon dioxide concentrations by manipulating the carbon cycle (carbon geoengineering) is being considered as a fourth possible option for addressing anthropogenic climate change, alongside emissions reductions, adaptation and solar geoengineering. This study sets out to assess the effectiveness and potential side-effects of ocean alkalinity enhancement, or ';liming the ocean', as a means to slow the current increase in atmospheric CO2. In order to achieve this, an Earth system model (cGENIE) was used to run both individual simulations as well as a number of 934-member ensembles, to assess each surface ocean grid cell individually, for effectiveness and side-effects of ocean alkalinity enhancement. Effectiveness and side-effects were considered both temporally and spatially and under both steady-state scenarios (of 1x, 2x and 4x pre-industrial pCO2), and using RCP scenarios 4.5 and 8.5. Some consideration of the amount of lime potentially required to have a useful impact on atmospheric CO2 concentration and ocean acidification has also been carried out and compared to current mining capabilities, as an initial step towards considering the feasibility of such an intervention. This research aims to inform the emerging debate around geoengineering by providing an initial insight into where, when and how frequently lime could be used to most efficiently contribute to efforts to slow the rate of increasing atmospheric CO2 concentrations, as well as insights into the caveats and side-effects that may accompany ocean alkalinity enhancement interventions.

  10. Effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution

    NASA Astrophysics Data System (ADS)

    Hirai, Nobumitsu; Yamamoto, Yui

    2015-10-01

    The effect of various alkaline metal ions on electrochemical behavior of lead electrode in sulfuric acid solution has been investigated. It was found that "the specific anodic oxidation peak" appears at the cathodic scan in cyclic voltammogram of lead electrode in sulfuric acid solution containing Li2SO4, K2SO4, Na2SO4, Rb2SO4, or Cs2SO4. The height of the specific anodic oxidation peak varies with the alkaline sulfate in the solution; K2SO4 >> Na2SO4 > Cs2SO4 > Rb2SO4 > Li2SO4. It should be note that alkaline ions exist in lead sulfate formed on lead electrode in sulfuric acid solution containing potassium sulfate when the electrode was immersed in the solution at the rest potential for more than 1 h.

  11. Capillary electrophoresis of alkali and alkaline-earth cations with imidazole or benzylamine buffers

    SciTech Connect

    Morin, P.; Francois, C.; Dreux, M. . Lab. de Chimie Bioorganique et Analytique)

    1994-01-01

    The separation of alkali, alkaline earth, and ammonium cations in several samples of water was achieved by capillary electrophoresis with indirect UV detection. A solution of imidazole (10[sup [minus]2] M, pH 4.5) was used as a buffer to resolve a mixture of six cations (K[sup +], Na[sup +], Ca[sup 2+], Ba[sup 2+], Li[sup +] and Mg[sup 2+]) by capillary electrophoresis at 214 nm in less than 10 min. The addition of potassium cation to the running buffer has an influence on the resolution of Ca[sup 2+]/Na[sup +] and Na[sup +]/Mg[sup 2+] peaks. A linear relationship between the corrected peak area and concentration was obtained in the 1--10 ppm range for these cations using a hydrodynamic injector. This electrophoretic system permitted the separation of these inorganic cations at a 50 ppb-level concentration with a hydrodynamic injection, thus making it possible to quantitatively determine their presence in mineral waters by capillary electrophoresis. At pH 4.5, potassium and ammonium unfortunately have identical ionic mobilities causing them to comigrate in an imidazole buffer. Using an alkaline solution of benzylamine as carrier electrolyte, their separation can be successfully achieved with excellent resolution at 204 nm. The analyses of tap water and several mineral waters have been achieved by capillary electrophoresis.

  12. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    NASA Astrophysics Data System (ADS)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  13. MODELING AN ION EXCHANGE PROCESS FOR CESIUM REMOVAL FROM ALKALINE RADIOACTIVE WASTE SOLUTIONS

    SciTech Connect

    Smith, F; Luther Hamm, L; Sebastian Aleman, S; Johnston Michael, J

    2008-08-26

    The performance of spherical Resorcinol-Formaldehyde ion-exchange resin for the removal of cesium from alkaline radioactive waste solutions has been investigated through computer modeling. Cesium adsorption isotherms were obtained by fitting experimental data using a thermodynamic framework. Results show that ion-exchange is an efficient method for cesium removal from highly alkaline radioactive waste solutions. On average, two 1300 liter columns operating in series are able to treat 690,000 liters of waste with an initial cesium concentration of 0.09 mM in 11 days achieving a decontamination factor of over 50,000. The study also tested the sensitivity of ion-exchange column performance to variations in flow rate, temperature and column dimensions. Modeling results can be used to optimize design of the ion exchange system.

  14. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Liquids in multiorbital SU(N) magnets made up of ultracold alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Xu, Cenke

    2010-04-01

    In this work we study one family of liquid states of k -orbital SU(N) spin systems, focusing on the case of k=2 which can be realized by ultracold alkaline-earth atoms trapped in optical lattices, with N as large as 10. Five different algebraic liquid states with selectively coupled charge, spin, and orbital quantum fluctuations are considered. The algebraic liquid states can be stabilized with large enough N and the scaling dimension of physical order parameters is calculated using a systematic 1/N expansion. The phase transitions between these liquid states are also studied and all the algebraic liquid states discussed in this work can be obtained from one “mother” state with SU(2)×U(1) gauge symmetry.

  17. Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential

    SciTech Connect

    Santra, Robin; Christ, Kevin V.; Greene, Chris H.

    2004-04-01

    The first three electronically excited states in the alkaline-earth-metal atoms magnesium, calcium, and strontium comprise the (nsnp){sup 3}P{sub J}{sup o}(J=0,1,2) fine-structure manifold. All three states are metastable and are of interest for optical atomic clocks as well as for cold-collision physics. An efficient technique--based on a physically motivated potential that models the presence of the ionic core--is employed to solve the Schroedinger equation for the two-electron valence shell. In this way, radiative lifetimes, laser-induced clock shifts, and long-range interaction parameters are calculated for metastable Mg, Ca, and Sr.

  18. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  19. Magnetic crystals and helical liquids in alkaline-earth fermionic gases.

    PubMed

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  20. Magnetic crystals and helical liquids in alkaline-earth fermionic gases

    PubMed Central

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  1. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  2. Permanent electric dipole moments of alkaline-earth-metal monofluorides: Interplay of relativistic and correlation effects

    NASA Astrophysics Data System (ADS)

    Prasannaa, V. S.; Sreerekha, S.; Abe, M.; Bannur, V. M.; Das, B. P.

    2016-04-01

    The interplay of the relativistic and correlation effects in the permanent electric dipole moments of the X 2Σ+ electronic ground states of the alkaline-earth-metal monofluorides (BeF, MgF, CaF, SrF, and BaF) has been studied using a relativistic coupled cluster method. The calculations were carried out using double, triple, and quadruple zeta basis sets, and with no core orbitals frozen. The results are compared with those of other calculations available in the literature and with experiments. The correlation trends in the permanent electric dipole moments of these molecules are discussed in detail. This information will be useful in throwing light on the interplay between relativistic and correlation effects of other properties that are relevant to fundamental physics.

  3. Theoretical study of the dipole moments of selected alkaline-earth halides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.; Ahlrichs, R.

    1986-01-01

    Ab initio calculations at the self-consistent-field (SCF), singles-plus-doubles configuration-interaction (SDCI), and coupled-pair functional (CPF) level, are reported for the dipole moments and dipole derivatives of the X2Sigma(+) ground states of BeF, BeCl, MgF, MgCl, CaF, CaCl, and SrF. For comparison, analogous calculations are performed for the X1Sigma(+) state of KCl. The CPF results are found to be in remarkably better agreement with experiment than are the SCF and SDCI results. Apparently higher excitations are required to properly describe the radial extent along the bond axis of the remaining valence electron on the alkaline-earth metal.

  4. Calculation of the lowest electronic excitations of the alkaline earth metals using the relativistic polarization propagator

    NASA Astrophysics Data System (ADS)

    Brandt, Sven; Pernpointner, Markus

    2015-07-01

    In this work we use the recently implemented four-component polarization propagator for accurate single excitation calculations of alkaline earth metals and compare our results to experimental data. Various approximations to the Dirac-Coulomb Hamiltonian are additionally tested. In Ca spin-orbit coupling already leads to noticeable zero field splitting, which gradually increases for the heavier homologs finally invalidating the singlet and triplet state characterizations. For all systems we observe a very good agreement with experimental transition energies in the considered energy range. For Sr, Ba and Ra non-relativistic approaches already exhibit unacceptable deviations in the reproduction of transition energies and spectral structure. The obtained excited final states are analyzed in terms of atomic donor and acceptor orbital contributions. Our results stress the necessity to use relativistic implementations of the polarization propagator for an accurate description of both electron correlation and relativistic effects contributing to excitation spectra of heavy systems.

  5. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  6. Surface charge density on silica in alkali and alkaline earth chloride electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Dove, Patricia M.; Craven, Colin M.

    2005-11-01

    The surface charge density of colloidal SiO 2 (Aerosil 380) was measured in alkali chloride (0.067 and 0.20 M LiCl, NaCl, and KCl) and alkaline earth chloride (0.067 M MgCl 2, CaCl 2, SrCl 2, BaCl 2) solutions. Measurements were conducted at 25°C by potentiometric titrations using the constant ionic medium method in a CO 2-free system. The experimental design measured surface charge for solutions with constant ionic strength as well as constant cation concentration. Alkali chloride solutions promote negative surface charge density in the order LiCl < NaCl < KCl to give the "regular" lyotropic behavior previously reported. In contrast, the alkaline earth chloride solutions exhibit a reversed lyotropic trend with increasing crystallographic radius where increasing negative charge is promoted in the order BaCl 2 < SrCl 2 < CaCl 2 < MgCl 2. The origin of the opposing affinity trends is probed by testing the hypothesis that this reversal is rooted in the differing solvent structuring characteristics of the IA and IIA cations at the silica-water interface. This idea arises from earlier postulations that solvent structuring effects increase entropy through solvent disordering and these gains must be much greater than the small, positive enthalpy associated with electrostatic interactions. By correlating measured charge density with a proxy for the solvent-structuring ability of cations, this study shows that silica surface charge density is maximized by those electrolytes that have the strongest effects on solvent structuring. We suggest that for a given solid material, solvation entropy has a role in determining the ionic specificity of electrostatic interactions and reiterate the idea that the concept of lyotropy is rooted in the solvent-structuring ability of cations at the interface.

  7. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor

    PubMed Central

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  8. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.

    PubMed

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  9. Correlation of XANES features with the scintillation efficiencies of Ce doped alkaline earth lithium silicate glasses

    SciTech Connect

    Blanchard, D.L.; Sunberg, D.S.; Craig, R.A.; Bliss, M.; Weber, M.J.

    1994-11-01

    Cerium-activated, lithium-silicate glasses are widely used as thermal neutron detectors because of their versatility, robustness and low cost. The glasses convert the energy of the neutrons to visible light pulses that may be counted. This process, scintillation, is generally thought to be composed of three steps: ionization, energy transfer, and luminescence. If defects are present, they can trap the excitations, altering the scintillation output. These features have been discussed previously. The presence of magnesium in these glasses increases scintillation efficiency, but as previously observed the effect drops by a factor greater than 2.5 with substitution through the series of alkaline earths. Here, cerium activated glasses of composition 20Li{sub 2}O{center_dot}15MO{center_dot}64.4SiO{sub 2}{center_dot}0.6Ce{sub 3}O{sub 3} (where m is Mg, Ca, Sr, or Ba) exhibit scintillation efficiencies that vary by more than a factor of 2.5 with the alkaline earth. Previous work has suggested a correlation between the microstructure of these glasses and scintillation efficiency. Measurements of the Ce L{sub III} x-ray absorption edge in the Mg, Ca and Sr glasses display a feature near the absorption edge that is suggestive of the presence of Ce{sup 4+}. The area of this peak is, in fact, correlated with the scintillation efficiency of the glass. The amount of Ce{sup 4+} indicated by the intensity of this feature is, however, too high to be a permanent population. The authors suspect that the feature is a transient phenomenon related to creation of Ce{sup 4+} and trapped electrons due to photoionization by the x-ray beam.

  10. Sensitized red luminescence from Ce{sup 3+}, Mn{sup 2+}-doped glaserite-type alkaline-earth silicates

    SciTech Connect

    Yonesaki, Yoshinori; Takei, Takahiro; Kumada, Nobuhiro; Kinomura, Nobukazu

    2010-06-15

    Bright red luminescence is observed from Ce, Mn-doped glaserite-type alkaline-earth silicates with M{sub 2}BaMgSi{sub 2}O{sub 8} (M: Ba, Sr, Ca) chemical composition. Under UV excitation, Ce-doped M{sub 2}BaMgSi{sub 2}O{sub 8} exhibits strong near-UV emission with asymmetric peak shape. UV-excited Mn-doped M{sub 2}BaMgSi{sub 2}O{sub 8} compounds show visible red emission only when Ce{sup 3+} ions are doped together. These results indicate that Mn{sup 2+}-derived red emission is caused by an efficient energy transfer from Ce{sup 3+} to Mn{sup 2+}. The red emission becomes intense with an increase in Ba-amount. This trend originates from the relaxation of the selection rule for 3d-3d transition in Mn{sup 2+} ions, which is caused by the structural deformation due to Ba{sup 2+} occupation for layer-pockets. - Graphical abstract: Glaserite-type red emitting phosphor, M{sub 2}BaMgSi{sub 2}O{sub 8}: Ce{sup 3+}, Mn{sup 2+} (M: Ba, Sr, Ca), was prepared by solid state reaction. Under UV excitation, Mn{sup 2+}-derived red emission is observed from the compounds only when Ce{sup 3+} ions are codoped, indicating that the red emission is caused by an energy transfer from Ce{sup 3+} to Mn{sup 2+}.

  11. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  12. Electrogeneration of hydroperoxide ion using an alkaline fuel cell

    SciTech Connect

    Alcaide, F.; Brillas, E.; Cabot, P.L.; Casado, J.

    1998-10-01

    Hydrogen peroxide is a pollution-control chemical commonly used as a bleaching agent, as a disinfectant, and as a nonselective oxidant for water purification and in different industrial processes. This paper describes a novel electrochemical method for the generation of HO{sub 2}{sup {minus}} using an alkaline fuel cell (AFC). The system is formed by an undivided cell containing a H{sub 2}-diffusion anode, an O{sub 2}-diffusion cathode, and a KOH solution as electrolyte. It can work in batch or in continuous mode, cogenerating electricity and HO{sub 2}{sup {minus}}, which is formed from the two-electron reduction of O{sub 2} at the cathode. The evolution of cell voltage, current density, HO{sub 2}{sup {minus}} production, and current efficiency with time have been determined when the electrolyte remains quiescent, recirculates through the cell, or is continuously injected to it. This last device yields the best operative parameters, allowing current densities of 130 mA/cm{sup 2} and current efficiencies close to 100% using 1 mol/dm{sup 3} KOH at 20 C. The effect of HO{sub 2}{sup {minus}} upon the anodic and cathodic reactions has been studied by linear sweep voltammetry. Adsorption of this species on the cathode can explain the loss of performance of the AFC with working time using a quiescent electrolyte or under recirculation conditions. The O{sub 2}-diffusion cathode and the AFC showed good reversibility when the cell contained a fresh KOH solution with HO{sub 2}{sup {minus}}.

  13. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions [1]. The vibrational FT-IR (in KBr and ATR techniques) and 1H and 13C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg → Ba were compared with series of univalent metal Li → Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  14. Investigation on the near-infrared-emitting thermal stability of Bi activated alkaline-earth aluminoborosilicate glasses

    NASA Astrophysics Data System (ADS)

    Wan, Ronghua; Song, Zhiguo; Li, Yongjin; Zhou, Yuting; Liu, Qun; Qiu, Jianbei; Yang, Zhengwen; Yin, Zhaoyi

    2015-02-01

    Stability of near-infrared (NIR) emission form Bi doped 42.5SiO2-12.5B2O3-25Al2O3-20RO (SBAR, R = Ca, Sr, Ba) glasses under treatment between annealing and softening temperature were studied. Results show that the thermal stability of Bi-NIR-emitting centers in SBAR glasses generally decreases with the increase of the radius of modifier cations but is greatly higher that in similar alkali glasses. Comparative experiments indicate these phenomena can be understood by the tendency that the smaller and higher charged alkaline earth ions as higher field strength modifier cations will increase the concentration of negative charge on non-bridging oxygens and also help to stabilize the non-bridging oxygens, which can restrain the thermally activated diffusion and valence change of Bi-activated centers, respectively. The results can provide an improved understanding for the NIR-emitting thermal stability of Bi doped glasses and a scientific reference for composition design of Bi-doped optical fiber.

  15. SEPARATION OF PLUTONYL IONS

    DOEpatents

    Connick, R.E.; McVey, Wm.H.

    1958-07-15

    A process is described for separating plutonyl ions from the acetate ions with which they are associated in certaln carrier precipitation methods of concentrating plutonium. The method consists in adding alkaline earth metal ions and subsequently alkalizing the solution, causing formation of an alkaltne earth plutonate precipitate. Barium hydroxide is used in a preferred embodiment since it provides alkaline earth metal ion and alkalizes the solution in one step forming insoluble barium platonate.

  16. Computational mechanistic elucidation of the intramolecular aminoalkene hydroamination catalysed by iminoanilide alkaline-earth compounds.

    PubMed

    Tobisch, Sven

    2015-04-27

    A comprehensive computational exploration of plausible alternative mechanistic pathways for the intramolecular hydroamination (HA) of aminoalkenes by a recently reported class of kinetically stabilised iminoanilide alkaline-earth silylamido compounds [{N^N}Ae{N(SiMe3)2}⋅(thf)n] ({N^N} = iminoanilide; Ae = Ca, Sr, Ba) is presented. On the one hand, a proton-assisted concerted N-C/C-H bond-forming pathway to afford the cycloamine in a single step can be invoked and on the other hand, a stepwise σ-insertive pathway that involves a fast, reversible migratory olefin 1,2-insertion step linked to a less rapid, irreversible metal-C azacycle tether σ-bond aminolysis. Notably, these alternative mechanistic avenues are equally consistent with reported key experimental features. The present study, which employs a thoroughly benchmarked and reliable DFT methodology, supports the prevailing mechanism to be a stepwise σ-insertive pathway that sees an initial conversion of the {N^N}Ae silylamido into the catalytically competent {N^N}Ae amidoalkene compound and involves thereafter facile and reversible insertive N-C bond-forming ring closure, linked to irreversible intramolecular Ae-C tether σ-bond aminolysis at the transient {N^N}Ae alkyl intermediate. Turnover-limiting protonolysis accounts for the substantial primary kinetic isotope effect observed; its DFT-derived barrier satisfactorily matches the empirically determined Eyring parameter and predicts the decrease in rate observed across the series Ca>Sr>Ba correctly. Non-competitive kinetic demands militate against the operation of the concerted proton-assisted pathway, which describes N-C bond-forming ring closure triggered by concomitant amino proton delivery at the C=C linkage evolving through a multi-centre TS structure. Valuable insights into the catalytic structure-activity relationships are unveiled by a detailed comparison of [{N^N}Ae(NHR)] catalysts. Moreover, the intriguingly opposite trends in reactivity

  17. Multidimensional (0D to 3D) Alkaline-Earth Metal Diphosphonates: Synthesis, Structural Diversity, and Luminescence Properties.

    PubMed

    Senthil Raja, Duraisamy; Lin, Pin-Chun; Liu, Wei-Ren; Zhan, Jun-Xiang; Fu, Xin-Yi; Lin, Chia-Her

    2015-05-01

    A series of new alkaline-earth metal diphosphonate frameworks were successfully synthesized under solvothermal reaction condition (160 °C, 3 d) using 1-hydroxyethylidene-1,1-diphosphonic acid (CH3C(OH)(H2PO3)2, hedpH4) as a diphosphonate building block and Mg(II), Ca(II), Sr(II), or Ba(II) ions as alkaline-earth metal ion centers in water, dimethylformamide, and/or EtOH media. These diphosphonate frameworks, (H2NMe2)4[Mg(hedpH2)3]·3H2O (1), (H2NMe2)2[Ca(hedpH2)2] (2), (H2NMe2)2[Sr3(hedpH2)4(H2O)2] (3), and [Ba3(hedpH2)3]·H2O (4) exhibited interesting structural topologies (zero-, one-, two-, and three-dimensional (0D, 1D, 2D, and 3D, respectively)), which are mainly depending on the metal ions and the solvents used in the synthesis. The single-crystal analysis of these newly synthesized compounds revealed that 1 was a 0D molecule, 2 has 1D chains, 3 was a 3D molecule, and 4 has 2D layers. All compounds were further characterized using thermogravimetric analysis, solid-state (31)P NMR, powder X-ray diffraction analysis, UV-vis spectra, and infrared spectroscopy. In addition, Eu(III)- and Tb(III)-doped compounds of 1-4, namely, (H2NMe2)4[Ln(x)Mg(1-x)(hedpH2)2(hedpH(2-x))]·3H2O (1Ln), (H2NMe2)2[Ln(x)Ca(1-x)(hedpH2)(hedpH(2-x))] (2Ln), (H2NMe2)2[Ln(x)Sr(3-x)(hedpH2)3(hedpH(2-x))(H2O)2] (3Ln), and [Ln(x)Ba(3-x)(hedpH2)2(hedpH(2-x))]·H2O (4Ln) (where Ln = Eu, Tb), were synthesized, and their photoluminescence properties were studied. The quantum yield of 1Eu-4Eu was measured with reference to commercial red phosphor, Y2O2S:Eu(3+) (YE), and the quantum yield of terbium-doped compounds 1Tb-4Tb was measured with reference to commercial green-emitting phosphor CeMgAl10O17:Tb(3+). Interestingly, the compound 2Eu showed very high quantum yield of 92.2%, which is better than that of the reference commercial red phosphor, YE (90.8%). PMID:25871285

  18. Collective non-equilibrium spin exchange in cold alkaline-earth atomic clocks

    NASA Astrophysics Data System (ADS)

    Acevedo, Oscar Leonardo; Rey, Ana Maria

    2016-05-01

    Alkaline-earth atomic (AEA) clocks have recently been shown to be reliable simulators of two-orbital SU(N) quantum magnetism. In this work, we study the non-equilibrium spin exchange dynamics during the clock interrogation of AEAs confined in a deep one-dimensional optical lattice and prepared in two nuclear levels. The two clock states act as an orbital degree of freedom. Every site in the lattice can be thought as populated by a frozen set of vibrational modes collectively interacting via predominantly p-wave collisions. Due to the exchange coupling, orbital state transfer between atoms with different nuclear states is expected to happen. At the mean field level, we observe that in addition to the expected suppression of population transfer in the presence of a large magnetic field, that makes the single particle levels off-resonance, there is also an interaction induced suppression for initial orbital population imbalance. This suppression resembles the macroscopic self-trapping mechanism seen in bosonic systems. However, by performing exact numerical solutions and also by using the so-called Truncated Wigner Approximation, we show that quantum correlations can significantly modify the mean field suppression. Our predictions should be testable in optical clock experiments. Project supported by NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, AFOSR, and MURI-AFOSR.

  19. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  20. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  1. Alkali and alkaline earth metallic (AAEM) species leaching and Cu(II) sorption by biochar.

    PubMed

    Li, Mi; Lou, Zhenjun; Wang, Yang; Liu, Qiang; Zhang, Yaping; Zhou, Jizhi; Qian, Guangren

    2015-01-01

    Alkali and alkaline earth metallic (AAEM) species water leaching and Cu(II) sorption by biochar prepared from two invasive plants, Spartina alterniflora (SA) and water hyacinth (WH), were explored in this work. Significant amounts of Na and K can be released (maximum leaching for Na 59.0 mg g(-1) and K 79.9 mg g(-1)) from SA and WH biochar when they are exposed to contact with water. Cu(II) removal by biochar is highly related with pyrolysis temperature and environmental pH with 600-700 °C and pH of 6 showing best performance (29.4 and 28.2 mg g(-1) for SA and WH biochar). Cu(II) sorption exerts negligible influence on Na/K/Mg leaching but clearly promotes the release of Ca. Biochars from these two plant species provide multiple benefits, including nutrient release (K), heavy metal immobilization as well as promoting the aggregation of soil particles (Ca) for soil amelioration. AAEM and Cu(II) equilibrium concentrations in sorption were analyzed by positive matrix factorization (PMF) to examine the factors underlying the leaching and sorption behavior of biochar. The identified factors can provide insightful understanding on experimental phenomena. PMID:25194478

  2. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  3. Magnetic-field-tunable Kondo effect in alkaline-earth cold atoms

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    2015-05-01

    We study quantum magnetism in strongly interacting fermionic alkaline-earth atoms (AEAs). Due to the decoupling of electronic and nuclear degrees of freedom, AEAs in two lowest electronic states (1S0 and 3P0) obey an accurate SU(N 2 I + 1) symmetry in their two-body collisions (I is the nuclear spin). We consider a system that realizes the simplest SU(2) case (for atoms prepared in two nuclear-spin states) in an optical lattice with two bands: one localized and one itinerant. For the fully filled narrow band (two atoms per lattice site) we demonstrate that an applied magnetic field provides an efficient control of the local ground state degeneracy due to mixing of spin and orbital two-body states. We derive an effective low-energy model that includes this magnetic-field effect as well as atomic interactions in the two optical lattice bands, and show that it exhibits a peculiar phenomenon of a magnetic field-induced Kondo effect, so far observed only in Coulomb blockaded quantum dots. We expect that our results can be tested with ultracold 173 Yb or 87 Sr atoms. Supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.

  4. Fermionic superfluidity with repulsive alkaline-earth atoms in optical superlattices

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    2016-05-01

    We propose a novel route to superfluidity in fermionic alkaline-earth atoms with repulsive interactions, that uses local kinetic-energy fluctuations as a ``pairing glue'' between the fermions. We exploit different polarizabilities of electronic 1S0 (g) and 3P0 (e) states of the atoms to confine the e- and g- species in different optical superlattices. For example, in a one-dimensional case the e-lattice can be implemented as an array of weakly-coupled double-wells (DWs) with large intra-DW tunneling, and contain one localized e-atom in each DW to avoid losses due to e- e collisions. On the contrary, the shallow g-lattice has a large bandwidth and an arbitrary filling. We consider a nuclear-spin polarized system and demonstrate how kinetic-energy fluctuations of the localized e-atoms mediate an attractive interaction between the g-fermions, thus leading to a p-wave superfluid. We derive a low-energy model and determine the stability of this state against charge-density wave formation and phase separation. Our results can be tested with Yb or Sr fermionic atoms and have a direct relevance for the physics of high-temperature superconductor materials. Work supported by NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  5. Magnetic-field-tunable Kondo effect in alkaline-earth cold atoms

    NASA Astrophysics Data System (ADS)

    Isaev, Leonid; Rey, Ana Maria

    We study quantum magnetism and emergent Kondo physics in strongly interacting fermionic alkaline-earth atoms in an optical lattice with two Bloch bands: one localized and one itinerant. For a fully filled narrow band (two atoms per lattice site) we demonstrate that an applied magnetic field provides an efficient control of the ground state degeneracy due to the field-induced crossing of singlet and triplet state of the localized atomic pairs. We exploit this singlet-triplet resonance, as well as magnetically tunable interactions of atoms in different electronic states via the recently-discovered inter-orbital Feshbach resonance, and demonstrate that the system exhibits a magnetic field-induced Kondo phase characterized by delocalization of local singlets and a large Fermi surface. We also determine the phase diagram of the system within an effective low-energy model that incorporates the above magnetic-field effect as well as atomic interactions in the two optical lattice bands. Our results can be tested with ultracold 173 Yb , and provide a model for the magnetic field-induced heavy-fermion state in filled skutterudites such as PrOs4Sb12 . This work was supported by the NSF (PIF-1211914 and PFC-1125844), AFOSR, AFOSR-MURI, NIST and ARO individual investigator awards.

  6. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1976-01-01

    Results are reported for measurements of the critical-field anisotropy and temperature dependence of group-VIB semiconductor MoS2 intercalated with the alkali and alkaline-earth metals Na, K, Rb, Cs, and Sr. The temperature dependences are compared with present theories on the relation between critical field and transition temperature in the clean and dirty limits over the reduced-temperature range from 1 to 0.1. The critical-field anisotropy data are compared with predictions based on coupled-layers and thin-film ('independent-layers') models. It is found that the critical-field boundaries are steep in all cases, that the fields are greater than theoretical predictions at low temperatures, and that an unusual positive curvature in the temperature dependence appears which may be related to the high anisotropy of the layer structure. The results show that materials with the largest ionic intercalate atom diameters and hexagonal structures (K, Rb, and Cs compounds) have the highest critical temperatures, critical fields, and critical-boundary slopes; the critical fields of these materials are observed to exceed the paramagnetic limiting fields.

  7. Activation of X-H and X-D bonds (X = O, N, C) by alkaline-earth metal monoxide cations: experiment and theory.

    PubMed

    Bozović, Andrea; Bohme, Diethard K

    2009-07-28

    Experimental investigations are reported for reactions of MO (+) (M = Ca, Sr, and Ba) with elemental hydrides water, ammonia and methane proceeding in the gas phase at 295 +/- 3 K in helium buffer gas at a pressure of 0.35 +/- 0.01 Torr. Measurements were taken with an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer and a novel electrospray ion source/ion selection quadrupole/selected-ion flow tube/triple quadrupole (ESI/qQ/SIFT/QqQ) mass spectrometer. All three alkaline-earth metal oxide ions exclusively abstract a H-atom from the three hydrides with rate coefficients > 1 x 10(-11) cm(3) molecule(-1) s(-1). Formation of metal hydroxide ion was followed by sequential addition of water or ammonia, but not methane. Density functional calculations have provided potential energy surfaces for the X-H bond activations leading to H-atom abstraction as well as those for O-atom transfer and H(2)O elimination (with ammonia and methane). A comparison of experimental and theoretical isotope effects points toward a mechanism involving the direct atom transfer from XH and XD to O in MO (+)via a three-centered transition structure. PMID:19588017

  8. Alkaline earth imidazolate coordination polymers by solvent free melt synthesis as potential host lattices for rare earth photoluminescence: (x)(∞)[AE(Im)2(ImH)(2-3)], Mg, Ca, Sr, Ba, x = 1-2.

    PubMed

    Zurawski, Alexander; Rybak, J-Christoph; Meyer, Larissa V; Matthes, Philipp R; Stepanenko, Vladimir; Dannenbauer, Nicole; Würthner, Frank; Müller-Buschbaum, Klaus

    2012-04-14

    The series of alkaline earth elements magnesium, calcium, strontium and barium yields single crystalline imidazolate coordination polymers by reactions of the metals with a melt of 1H-imidazole: (1)(∞)[Mg(Im)(2)(ImH)(3)] (1), (2)(∞)[AE(Im)(2)(ImH)(2)], AE = Ca (2), Sr (3), and (1)(∞)[Ba(Im)(2)(ImH)(2)] (4). No additional solvents were used for the reactions. Co-doping experiments by addition of the rare earth elements cerium, europium and terbium were carried out. They indicate (2)(∞)[Sr(Im)(2)(ImH)(2)] as a possible host lattice for cerium(III) photoluminescence showing a blue emission and thus a novel blue emitting hybrid material phosphor 3:Ce(3+). Co-doping with europium and terbium is also possible but resulted in formation of (3)(∞)[Sr(Im)(2)]:Ln, Ln = Eu and Tb (5), with both exhibiting green emission of either Eu(2+) or Tb(3+). The other alkaline earth elements do not show acceptance of the rare earth ions investigated and a different structural chemistry. For magnesium and barium one-dimensional strand structures are observed whereas calcium and strontium give two-dimensional network structures. Combined with an increase of the ionic radii of AE(2+) the coordinative demand is also increasing from Mg(2+) to Ba(2+), reflected by four different crystal structures for the four elements Mg, Ca, Sr, Ba in 1-4. Different linkages of the imidazolate ligands result in a change from complete σ-N coordination in 1 to additional η(5)-π coordination in 4. The success of co-doping with different lanthanide ions is based on a match in the chemical behaviour and cationic radii. The use of strontium for host lattices with imidazole is a rare example in coordination chemistry of co-doping with small amounts of luminescence centers and successfully reduces the amount of high price rare earth elements in hybrid materials while maintaining the properties. All compounds are examples of pure N-coordinated coordination polymers of the alkaline earth metals and were

  9. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  10. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    SciTech Connect

    Thiede, Christian Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.

  11. Proton conductors based on alkaline-earth substituted La(28-x)W(4+x)O(54+3x/2).

    PubMed

    Zayas-Rey, M J; dos Santos-Gómez, L; Cabeza, A; Marrero-López, D; Losilla, E R

    2014-05-01

    Lanthanum tungstates, "La6WO12", are mixed ion proton-electronic conductors with very interesting properties for technological applications and better phase stability compared to alkaline earth perovskites. A new series of compounds La(27.04-x)M(x)W(4.96)O(55.44-x/2□8.56+x/2) (M = Ca(2+), Sr(2+) and Ba(2+)) are investigated with the aim of increasing the concentration of oxygen vacancies and studying their effects on the structure and transport properties. The materials have been studied by high-resolution laboratory X-ray powder diffraction and scanning electron microscopy combined with energy dispersive spectroscopy (EDS). High temperature X-ray powder diffraction and thermal analysis in wet and dry N2 gas did not show any evidence of phase transition up to 800 °C. The total conductivity was studied by impedance spectroscopy under dry and wet atmospheres and as a function of the oxygen partial pressure. The electronic contribution to the conductivity was determined by the Hebb-Wagner polarization method. The generation of extrinsic vacancies in the lattice with alkaline earth doping leads to a decrease of the ionic conductivity for high doping level, suggesting a proton trapping mechanism. PMID:24622854

  12. Formation of M2+(O2)(C3H8) species in alkaline-earth-exchanged Y zeolite during propane selective oxidation.

    PubMed

    Xu, Jiang; Mojet, Barbara L; van Ommen, Jan G; Lefferts, Leon

    2005-10-01

    The adsorption of oxygen and d2-propane (CH3CD2CH3) on a series of alkaline-earth-exchanged Y zeolite at room temperature was studied with in situ infrared spectroscopy. Surprisingly at room temperature, oxygen adsorption led to the formation of supercage M2+(O2) species. Further, at low propane coverage, propane was found to adsorb linearly on Mg2+ cations, but a ring-adsorption structure was observed for propane adsorbing on Ca2+, Sr2+, and Ba2+ cations. It is demonstrated that O2 and propane can simultaneously attach to one active center (M2+) to form a M2+(O2)(C3H8) species, which is proposed to be the precursor in thermal propane selective oxidation. Selectivity to acetone in the propane oxidation reaction decreases with increasing temperature and cation size due to the formation of 2-propanol and carboxylate ions. An extended reaction scheme for the selective oxidation of propane over alkaline earth exchanged Y zeolites is proposed. PMID:16853364

  13. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  14. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  15. Basicity of the framework oxygen atom of alkali and alkaline earth-exchanged zeolites: a hard soft acid base approach

    NASA Astrophysics Data System (ADS)

    Deka, Ramesh Ch; Kinkar Roy, Ram; Hirao, Kimihiko

    2000-12-01

    The basicity of framework oxygen atoms of alkali and alkaline earth-exchanged zeolites has been studied using reactivity descriptors based on a local hard-soft acid-base (HSAB) concept. We have calculated the `local softness' and the `relative nucleophilicity' values of the framework oxygen atoms of zeolite clusters as the measure of basicity. The local softness and relative nucleophilicity appear to be more reliable descriptors to predict the experimental basicity trend, compared to the negative charge on the oxygen atom.

  16. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    SciTech Connect

    Guo, W.; Ma, H.A.; Jia, X.

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  17. Properties of Alkaline Earth Filled Skutterudite Antimonides: Ae(Fe,Ni)4Sb12, Ae=Ca,Sr,Ba

    SciTech Connect

    Singh, David J; Du, Mao-Hua

    2010-01-01

    Properties of alkaline-earth-filled skutterudite antimonides based on Fe and Ni are studied using first-principles calculations and Boltzmann transport theory. We find heavy conduction bands and a light-band-heavy-band mixture in the valence bands. The thermopower at high temperature is high for high carrier concentrations up to 0.2 per unit cell for both p type and n type. The results suggest experimental investigation of these materials as potential thermoelectrics.

  18. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  19. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.

    PubMed

    Bellham, Peter; Anker, Mathew D; Hill, Michael S; Kociok-Köhn, Gabriele; Mahon, Mary F

    2016-09-21

    a modified mechanism for group 2-mediated dimethylamine borane dehydrocoupling that is dependent on the intermediacy of key derivatives of the [NMe2·BH3](-) and [NMe2BH2NMe2BH3](-) anions but does not require the formation of high energy alkaline earth hydride intermediates. Although these results are specifically focussed on the applications of alkaline earth species, this mechanistic insight may also be relevant to other redox-inactive main group element-based systems and to our understanding of hydrogen evolution from saline derivatives of ammonia borane. PMID:27529536

  20. Formation of iron oxides in a highly alkaline medium in the presence of palladium ions

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2009-04-01

    The effect of the presence of palladium ions in a highly alkaline precipitation system on the formation of iron oxides was investigated using X-ray powder diffraction (XRPD), Mössbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Acicular α-FeOOH particles precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. The initial addition of palladium ions to that precipitation system had a significant effect on the formation of iron oxide phases and their properties. In the presence of palladium ions, the initially formed α-FeOOH has been transformed to α-Fe 2O 3 crystals in the form of hexagonal bipyramids via a dissolution-reprecipitation mechanism with a simultaneous formation of metallic palladium nanoparticles. These palladium nanoparticles acted as a catalyst for the reductive dissolution of α-Fe 2O 3 particles and the formation of Fe 3O 4 crystals in the form of octahedrons. Increase in the initial concentration of palladium ions in the precipitation system accelerated the transformation process α-FeOOH → α-Fe 2O 3 → Fe 3O 4 and influenced changes in the shape of α-Fe 2O 3 and Fe 3O 4 particles.

  1. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S; Gai, Zheng; Moreira Dos Santos, Antonio F

    2013-01-01

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data.

  2. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    SciTech Connect

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping

    2014-02-15

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba{sub 2}O{sub 11}N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2.

  3. Density Measurement of Molten Alkaline-Earth Fluorides Using Archimedean Dual-Sinker Method

    NASA Astrophysics Data System (ADS)

    Takeda, Osamu; Yanagase, Kei-ichi; Anbo, Yusuke; Aono, Masahiro; Hoshino, Yosuke; Sato, Yuzuru

    2015-11-01

    The densities of molten alkaline-earth fluorides ({MgF}2, {CaF}2, {SrF}2, and {BaF}2) were measured over the temperature range from 1526 K to 1873 K at ambient pressure using an Archimedean dual-sinker densitometer designed and set up by the authors. The volume difference between two sinkers was precisely determined by considering the wetting conditions between tungsten sinkers and water; appropriate experimental techniques were developed. The wetting condition became unstable when the sinkers were being moved for immersion in water, because the sinkers were moved in a direction that increased the contact angle. The wetting condition became stable when the sinkers were pulled up from the water, because the sinkers were moved in a direction that decreased the contact angle. The force exerted by the surface tension was efficiently canceled, and the volume difference became constant when the sinkers were pulled up. In this study, the total uncertainty was about 0.3 % at a maximum. The densities measured at high temperatures showed good linearity, with small scatter, over a wide temperature range. The densities and molar volumes increased in the following order: {MgF}2, {CaF}2, {SrF}2, and {BaF}2. The thermal-expansion coefficients showed anomalous behavior. The large thermal-expansion coefficient of {MgF}2 is attributed to a decrease in the cohesive force as a result of a partial loss of the coulombic force, because of the high charge density.

  4. Microstructure and creep behavior of magnesium-aluminum alloys containing alkaline and rare earth additions

    NASA Astrophysics Data System (ADS)

    Saddock, Nicholas David

    In the past few decades governmental regulation and consumer demands have lead the automotive companies towards vehicle lightweighting. Powertrain components offer significant potential for vehicle weight reductions. Recently, magnesium alloys have shown promise for use in powertrain applications where creep has been a limiting factor. These systems are Mg-Al based, with alkaline earth or rare earth additions. The solidification, microstructure, and creep behavior of a series of Mg-4 Al- 4 X:(Ca, Ce, La, and Sr) alloys and a commercially developed AXJ530 (Mg--5 Al--3 Ca--0.15 Sr) alloy (by wt%) have been investigated. The order of decreasing freezing range of the five alloys was: AX44, AXJ530, AJ44, ALa44 and ACe44. All alloys exhibited a solid solution primary alpha-Mg phase surrounded by an interdendritic region of Mg and intermetallic(s). The primary phase was composed of grains approximately an order of magnitude larger than the cellular structure. All alloys were permanent mold cast directly to creep specimens and AXJ530 specimens were provided in die-cast form. The tensile creep behavior was investigated at 175 °C for stresses ranging from 40 to 100 MPa. The order of decreasing creep resistance was: die-cast AXJ530 and permanent mold cast AXJ530, AX44, AJ44, ALa44 and ACe44. Grain size, solute concentration, and matrix precipitates were the most significant microstructural features that influenced the creep resistance. Decreases in grain size or increases in solute concentration, both Al and the ternary addition, lowered the minimum creep rate. In the Mg-Al-Ca alloys, finely distributed Al2Ca precipitates in the matrix also improved the creep resistance by a factor of ten over the same alloy with coarse precipitates. The morphology of the eutectic region was distinct between alloys but did not contribute to difference in creep behavior. Creep strain distribution for the Mg-Al-Ca alloys developed heterogeneously on the scale of the alpha-Mg grains. As

  5. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  6. Engineering closed optical transitions in rare-earth ion crystals

    NASA Astrophysics Data System (ADS)

    Bartholomew, John G.; Ahlefeldt, Rose L.; Sellars, Matthew J.

    2016-01-01

    We propose a protocol to preserve the spin state of rare-earth ions when they are optically cycled. This technique uses large magnetic fields to increase the probability of an optically excited ion returning to its initial spin state. This Zeeman enhanced cyclicity is shown to be applicable to non-Kramers ions in various crystals irrespective of the site symmetry. The specific example of Pr3 +:Y2SiO5 is investigated to demonstrate that the protocol can create closed optical transitions even where the point group symmetry of the site is C1. In this example, the predicted cyclicity exceeds 104. This high level of cyclicity extends the usefulness of rare-earth ion crystals for applications in quantum and classical information processing. We explore the use of this technique to enable single-ion, spin-state optical readout and the creation of ensemble-based spectral features that are robust against optical cycling.

  7. Observations of molecular ions in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Craven, P. D.; Chappell, C. R.; Kakani, L.; Olsen, R. C.

    1985-01-01

    The retarding ion mass spectrometer on Dynamics Explorer 1 operating over the polar cap during a large magnetic storm has measured fluxes of up to 10 to the 6th ions/sq cm s of the molecular ions N2(+), NO(+), and O2(+). These ions were measured beginning low in the satellite orbit (1.1 earth radii) and extending to about 3 earth radii geocentric altitude. Near perigee, the ions have a rammed distribution indicating a cold Maxwellian plasma (1000-2000 K). The molecular ions gradually shift to a field-aligned distribution at the higher alitudes. An upward flow of 5-10 km/s is found in these field-aligned measurements. The density of the molecular ions is on the order of 2/cu cm at all altitudes, and the energy of the ions generally increases as the satellite moves sunward across the southern polar cap. Kinetic energies of at least 20 eV were found at 2.5 earth-radii geocentric distance.

  8. 5d-4f emission of Eu2+ and electron-vibrational interaction in several alkaline earth sulfides doped with Eu2+ and Er3+

    NASA Astrophysics Data System (ADS)

    Kumar, G. A.; Liu, D.-X.; Tian, Y.; Brik, M. G.; Sardar, D. K.

    2015-12-01

    Several alkaline earth sulfides doped with Eu2+ and Er3+ ions have been synthesized and shown to be potential phosphors for applications in the visible spectral range. The excitation and emission spectra corresponding to the 4f-5d interconfigurational transitions of Eu2+ were analyzed with an aim of extraction of the main parameters of the electron-vibrational interaction. The values of the Huang-Rhys factor, effective phonon energies, and zero-phonon line positions were systematically compared for all studied materials; physical trends were discussed. As a test for the validity of the obtained parameters, the Eu2+ 5d-4f emission bands were modeled to yield good agreement with the experimental spectra.

  9. Energetic ion acceleration during magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Imada, Shinsuke; Hirai, Mariko; Hoshino, Masahiro

    2015-12-01

    In this paper, we present a comprehensive study of the energetic ion acceleration during magnetic reconnection in the Earth's magnetosphere using the Geotail data. A clear example of the energetic ion acceleration up to 1 MeV around an X-type neutral line is shown. We find that the energetic ions are localized at far downstream of reconnection outflow. The time variation of energetic ion and electron is almost the same. We observe ˜100 keV ions over the entire observation period. We study ten events in which the Geotail satellite observed in the vicinity of diffusion region in order to understand the reconnection characteristics that determine the energetic ion acceleration efficiency. We find that the reconnection electric field, total amount of reduced magnetic energy, reconnection rate, satellite location in the Earth's magnetosphere (both X GSM and Y GSM) show high correlation with energetic ion acceleration efficiency. Also, ion temperature, electron temperature, ion/electron temperature ratio, current sheet thickness, and electric field normal to the neutral sheet show low correlation. We do not find any correlation with absolute value of outflow velocity and current density parallel to magnetic field. The energetic ion acceleration efficiency is well correlated with large-scale parameters (e.g., total amount of reduced magnetic energy and satellite location), whereas the energetic electron acceleration efficiency is correlated with small-scale parameters (e.g., current sheet thickness and electric field normal to the neutral sheet). We conclude that the spatial size of magnetic reconnection is important for energetic ion acceleration in the Earth's magnetotail.

  10. Earth's polar cap ionization patches lead to ion upflow

    NASA Astrophysics Data System (ADS)

    Zhang, Q. H.; Zong, Q.; Lockwood, M. M.; Liang, J.; Zhang, B.; Moen, J. I.; Zhang, S.; Zhang, Y.; Ruohoniemi, J. M.; Thomas, E. G.; Liu, R.; Dunlop, M. W.; Yang, H. G.; Hu, H.; Liu, Y.; Lester, M.

    2014-12-01

    The Earth constantly losses matter through ions escaping from the polar ionosphere. This makes the ionosphere as an important source of plasma for the magnetosphere and could modulate atmospheric isotope abundances on geological timescales, depending on what fraction of the upflowing ions subsequently return to the ionosphere and what fraction are ejected into interplanetary space. It has been proposed that the magnetosphere is dynamically modulated by the presence of the ionospheric ions, particularly heavy ions O+, during magnetic substorms and storms. The origin and formation mechanism of ionospheric ion upflow is, however, poorly understood, particularly under disturbed space weather conditions. We report simultaneous direct observations of ion upflow and a patch of ionization at the center of the polar cap region during a geomagnetic storm. Our observations indicate enhanced fluxes of upwelling O+ ions originate from the patch and were accelerated by the enhanced ambipolar electric field. This enhancement is caused by soft electron precipitations. Polar cap patches therefore provide an important source of upwelling ions for accelerations mechanisms at greater altitudes which can eject the ions. These observations give new insight into the processes of ionosphere-magnetosphere coupling and the potential loss of terrestrial water dissociation products into space which, although extremely slow in the case of Earth, may be significant for other planets and moons.

  11. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  12. Alkaline-Earth-Catalysed Cross-Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism.

    PubMed

    Bellini, Clément; Dorcet, Vincent; Carpentier, Jean-François; Tobisch, Sven; Sarazin, Yann

    2016-03-18

    Alkaline-earth (Ae=Ca, Sr, Ba) complexes are shown to catalyse the chemoselective cross-dehydrocoupling (CDC) of amines and hydrosilanes. Key trends were delineated in the benchmark couplings of Ph3 SiH with pyrrolidine or tBuNH2 . Ae{E(SiMe3)2}2 ⋅(THF)x (E=N, CH; x=2-3) are more efficient than {N^N}Ae{E(SiMe3)2}⋅(THF)n (E=N, CH; n=1-2) complexes (where {N^N}(-) ={ArN(o-C6H4)C(H)=NAr}(-) with Ar=2,6-iPr2 -C6H3) bearing an iminoanilide ligand, and alkyl precatalysts are better than amido analogues. Turnover frequencies (TOFs) increase in the order Ca30 products) includes diamines and di(hydrosilane)s. Kinetic analysis of the Ba-promoted CDC of pyrrolidine and Ph3SiH shows that 1) the kinetic law is rate=k[Ba](1) [amine](0) [hydrosilane](1), 2) electron-withdrawing p-substituents on the arylhydrosilane improve the reaction rate and 3) a maximal kinetic isotopic effect (kSiH/kSiD =4.7) is seen for Ph3SiX (X=H, D). DFT calculations identified the prevailing mechanism; instead of an inaccessible σ-bond-breaking metathesis pathway, the CDC appears to follow a stepwise reaction path with N-Si bond-forming nucleophilic attack of the catalytically competent Ba pyrrolide onto the incoming silane, followed by rate limiting hydrogen-atom transfer to barium. The participation of a Ba silyl species is prevented energetically. The reactivity trend Ca

  13. Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Evans, David; Müller, Wolfgang; Oron, Shai; Renema, Willem

    2013-11-01

    Intra-test variability in Mg/Ca and other (trace) elements within large benthic foraminifera (LBF) of the family Nummulitidae have been investigated using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). These foraminifera have a longevity and size facilitating seasonal proxy retrieval and a depth distribution similar to 'surface-dwelling' planktic foraminifera. Coupled with their abundance in climatically important periods such as the Paleogene, this means that this family of foraminifera are an important but under-utilised source of palaeoclimatic information. We have calibrated the relationship between Mg/Ca and temperature in modern Operculina ammonoides and observe a ˜2% increase in Mg/Ca °C-1. O. ammonoides is the nearest living relative of the abundant Eocene genus Nummulites, enabling us to reconstruct mid-Eocene tropical sea surface temperature seasonality by applying our calibration to fossil Nummulites djokdjokartae from Java. Our results indicate a 5-6 °C annual temperature range, implying greater than modern seasonality in the mid-Eocene (Bartonian). This is consistent with seasonal surface ocean cooling facilitated by enhanced Eocene tropical cyclone-induced upper ocean mixing, as suggested by recent modelling results. Analyses of fossil N. djokdjokartae and Operculina sp. from the same stratigraphic interval demonstrate that environmental controls on proxy distribution coefficients are the same for these two genera, within error. Using previously published test-seawater alkaline earth metal distribution coefficients derived from an LBF of the same family (Raitzsch et al., 2010) and inorganic calcite, with appropriate correction systematics for secular Mg/Casw variation (Evans and Müller, 2012), we use our fossil data to produce a more accurate foraminifera-based Mg/Casw reconstruction and an estimate of seawater Sr/Ca. We demonstrate that mid-Eocene Mg/Casw was ≲2 molmol, which is in contrast to the model most

  14. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  15. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  16. Sonoluminescence for the quantitative analysis of alkali and alkaline earth chlorides

    NASA Astrophysics Data System (ADS)

    Robinson, Alex Lockwood

    2001-11-01

    The use of sonoluminescence for quantitative analysis is demonstrated with possible applications for on-line process measurement. When acoustic energy of sufficiently high intensity is applied to a liquid, microscopic bubbles are generated at weak points in the liquid. These bubbles oscillate non-linearly in the acoustic field, collapsing violently during the compressive phase in a process known as cavitation. Under the right conditions, a subset of the cavitating bubbles emits weak, broadband light, known as sonoluminescence. When certain species are present in a sonoluminescing system, such as alkali and alkaline earth metals, they emit spectral lines characteristic of their lowest energy neutral excited states. By measuring the intensity and spectral distribution of this radiation, these species may be identified and quantified over a wide range of concentrations. Data is presented from solutions of sodium, potassium, and calcium salts that have been analyzed and quantified from as low as parts per billion up to saturation concentrations. Over this wide range, spectral output is neither linear nor monotonic. Partial Least Squares analysis is used to quantify over these regions, in particular, near saturation. The presence of a second salt alters the emission of the first salt in a predictable manner, still allowing quantification. An acceptable explanation of the source of sonoluminescence remains to be found. Approximately a dozen theories, some from notable scientists, have been proposed to explain the phenomenon, but the actual mechanism remains elusive and highly debated. Experimental results presented here will argue against some of the more commonly presented explanations. The results suggest that while excitation likely originates from hydrodynamic compression, emission may result from isotropic lasing of the species. While most of the proof-of-concept data was obtained in a batch reactor cell, there are certain advantages to using a flow cell. Besides

  17. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations. PMID:24401025

  18. Evaluation of the Influence of Beam Ions Exhausted from Ion Thrusters on Earth's Environment and Communication

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Yoshiki; Kumatani, Yasuhiro; Miyamoto, Shigehiro; Otsu, Hirotaka

    The influence of exhausted beam ions from ion thrusters on Earth's environment and communication was analyzed by the detailed modeling of the exhausted ions' and electrons' motion and the energy exchange process between the exhausted ions and the circumferential particles. The analytical results showed that the density distribution of plasma components near the earth will change locally by the energy input of exhausted ions trapped by the geomagnetic field if the large scale operation of ion thrusters is performed, but its influence on earth's environment will be small compared with that by the natural phenomena such a magnetic storm. However, the influence on GPS communication will be large and the electrical charge of spacecraft will be progressed.

  19. Assessment of commercially available ion exchange materials for cesium removal from highly alkaline wastes

    SciTech Connect

    Brooks, K.P.; Kim, A.Y.; Kurath, D.E.

    1996-04-01

    Approximately 61 million gallons of nuclear waste generated in plutonium production, radionuclide removal campaigns, and research and development activities is stored on the Department of Energy`s Hanford Site, near Richland, Washington. Although the pretreatment process and disposal requirements are still being defined, most pretreatment scenarios include removal of cesium from the aqueous streams. In many cases, after cesium is removed, the dissolved salt cakes and supernates can be disposed of as LLW. Ion exchange has been a leading candidate for this separation. Ion exchange systems have the advantage of simplicity of equipment and operation and provide many theoretical stages in a small space. The organic ion exchange material Duolite{trademark} CS-100 has been selected as the baseline exchanger for conceptual design of the Initial Pretreatment Module (IPM). Use of CS-100 was chosen because it is considered a conservative, technologically feasible approach. During FY 96, final resin down-selection will occur for IPM Title 1 design. Alternate ion exchange materials for cesium exchange will be considered at that time. The purpose of this report is to conduct a search for commercially available ion exchange materials which could potentially replace CS-100. This report will provide where possible a comparison of these resin in their ability to remove low concentrations of cesium from highly alkaline solutions. Materials which show promise can be studied further, while less encouraging resins can be eliminated from consideration.

  20. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  1. First-principles study of structural properties of alkaline earth metals methanides A2C(A = Be,Mg)

    NASA Astrophysics Data System (ADS)

    Paliwal, U.; Trivedi, D. K.; Galav, K. L.; Joshi, K. B.

    2013-06-01

    The structural properties of alkaline earth binary carbides A2C(A = Be,Mg) are evaluated using first-principles periodic linear combination of atomie orbitals method based on density functional theory implemented in the CRYSTAL06 code. The total energy is computed for the two binary carbides considering the anti-Fluorite structure. The computed total energy is coupled with the Murnaghan equation of states to report the equilibrium lattice constant and bulk modulus of the compounds. The cohesive energy and density are also reported for the two compounds.

  2. Structural and luminescent properties of Eu2+ and Nd3+-doped mixed alkaline earth aluminates prepared by the sol-gel method.

    PubMed

    Čelan Korošin, Nataša; Bukovec, Nataša; Bukovec, Peter

    2015-01-01

    Alkaline earth aluminates with the overall nominal compositions Mg0.5Sr0.5Al2O4 (MSA), Ca0.5Mg0.5Al2O4 (CMA) and Ca0.5Sr0.5Al2O4 (CSA) doped with 0.5 mol% of Eu2+ and 0.25 mol% of Nd3+ ions were obtained by a modified aqueous sol-gel method and annealed in a reducing atmosphere at 900, 1000, 1100 and 1300 °C. The sample structures were investigated by XRD. Solid solubility was only confirmed for the CSA samples. UV-excited luminescence was observed in the blue region (λ = 440 nm) in the samples of CMA containing the monoclinic CaAl2O4 phase and in the green region (λ = 512 nm) in the samples of MSA containing hexagonal or monoclinic phases of SrAl2O4. The CSA samples, besides the blue region, exhibited an extended shoulder in the green region, which proved the existence of some pure strontium phases. Co-doped Nd3+ ions did not affect the wavelength of the emitted light, but the persistent luminescence at room temperature was greatly extended with respect to the aluminates doped with Eu2+ ions only. PMID:26085411

  3. Quantifying phytate in dairy digesta and feces: alkaline extraction and high-performance ion chromatography.

    PubMed

    Ray, P P; Shang, C; Maguire, R O; Knowlton, K F

    2012-06-01

    Development of an analytical method with appropriate combination of extraction and quantification approaches for undigested phytate in ruminant feces and digesta will advance knowledge of phytate degradation in ruminants and help to reduce phosphorus excretion. Established quantification methods give satisfactory results for feedstuffs and nonruminant manure but recovery of phytate is incomplete for ruminant feces and digesta because of their complex sample matrix and low ratio of phytate to inorganic P. The objective was to develop a robust, accurate, sensitive, and inexpensive method to extract and quantify phytate in feeds, ruminant feces, and digesta. Diets varying in phytate content were fed to dairy heifers, dry cows, and lactating cows to generate digesta and fecal samples of varying composition to challenge extraction and quantification methods. Samples were extracted with 0.5 M HCl or 0.25 M NaOH + 0.05 M EDTA. Acid extracts were mixed with 20% NaCl, alkaline extracts were acidified to final pH < 2, and then both extracts were clarified with C₁₈ cartridges and 0.2-μm filters. High-performance ion chromatography (HPIC) was used to quantify phytate. In feed samples, the measured phytate was comparable in alkaline and acid extracts (2,965 vs. 3,085 μg/g of DM). In digesta and fecal samples, alkaline extraction yielded greater estimates of phytate content than did acid extraction (40.7 vs. 33.6 and 202.9 vs. 144.4 μg/g of DM for digesta and fecal samples, respectively). Analysis of alkaline extracts by HPIC is usually not possible because of sample matrix interferences; acidification and C(18)-cartridge elution of alkaline extracts prevented this interference. Pure phytate added to dry samples before extraction was almost completely recovered (88 to 105%), indicating high extraction efficiency, no adverse effect of extract clean-up procedures, and accurate quantification of phytate. The proposed method is rapid, inexpensive, robust, and combines the

  4. Cold ions in the hot plasma sheet of Earth's magnetotail.

    PubMed

    Seki, Kanako; Hirahara, Masafumi; Hoshino, Masahiro; Terasawa, Toshio; Elphic, Richard C; Saito, Yoshifumi; Mukai, Toshifumi; Hayakawa, Hajime; Kojima, Hirotsugu; Matsumoto, Hiroshi

    2003-04-10

    Most visible matter in the Universe exists as plasma. How this plasma is heated, and especially how the initial non-equilibrium plasma distributions relax to thermal equilibrium (as predicted by Maxwell-Boltzman statistics), is a fundamental question in studies of astrophysical and laboratory plasmas. Astrophysical plasmas are often so tenuous that binary collisions can be ignored, and it is not clear how thermal equilibrium develops for these 'collisionless' plasmas. One example of a collisionless plasma is the Earth's plasma sheet, where thermalized hot plasma with ion temperatures of about 5 x 10(7) K has been observed. Here we report direct observations of a plasma distribution function during a solar eclipse, revealing cold ions in the Earth's plasma sheet in coexistence with thermalized hot ions. This cold component cannot be detected by plasma sensors on satellites that are positively charged in sunlight, but our observations in the Earth's shadow show that the density of the cold ions is comparable to that of hot ions. This high density is difficult to explain within existing theories, as it requires a mechanism that permits half of the source plasma to remain cold upon entry into the hot turbulent plasma sheet. PMID:12686993

  5. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S.; Santos, Antonio M. dos

    2013-02-15

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO{sub 4}{center_dot}H{sub 2}O (1) and BaCu{sub 2}Ge{sub 3}O{sub 9}{center_dot}H{sub 2}O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2{sub 1}/c with a=5.1320(2) Angstrom-Sign , b=16.1637(5) Angstrom-Sign , c=5.4818(2) Angstrom-Sign , {beta}=102.609(2) Degree-Sign , V=443.76(3) Angstrom-Sign {sup 3} and Z=4. This copper germanate contains layers of composition [CuGeO{sub 4}]{sub {infinity}}{sup 2-} comprising CuO{sub 4} square planes and GeO{sub 4} tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) Angstrom-Sign , b=10.8606(9) Angstrom-Sign , c=13.5409(8) Angstrom-Sign , V=817.56(9) Angstrom-Sign {sup 3} and Z=4. This structure contains GeO{sub 6} and CuO{sub 6} octahedra as well as GeO{sub 4} tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the {chi}T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. - Graphical abstract: Copper chains present in CaCuGeO{sub 4}{center_dot}H{sub 2}O and BaCu{sub 2}Ge{sub 3}O{sub 9}{center

  6. Diffuse ions produced by electromagnetic ion beam instabilities. [in earth's bow shock

    NASA Technical Reports Server (NTRS)

    Winske, D.; Leroy, M. M.

    1984-01-01

    The evolution of the electromagnetic ion beam instability driven by the reflected ion component backstreaming away from the earth's bow shock into the foreshock region is studied by means of computer simulation. The linear and quasi-linear stages of the instability are found to be in good agreement with known results for the resonant mode propagating parallel to the beam along the magnetic field and with theory developed in this paper for the nonresonant mode, which propagates antiparallel to the beam direction. The quasi-linear stage, which produces large amplitude delta B approximately B, sinusoidal transverse waves and 'intermediate' ion distributions, is terminated by a nonlinear phase in which strongly nonlinear, compressive waves and 'diffuse' ion distributions are produced. Additional processes by which the diffuse ions are accelerated to observed high energies are not addressed. The results are discussed in terms of the ion distributions and hydromagnetic waves observed in the foreshock of the earth's bow shock and of interplanetary shocks.

  7. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  8. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2006-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Studies at PNNL are directed toward new solvent formulation for the practical sodium pseudohydroxide extraction systems.

  9. Origins of energetic ions in the Earth's magnetosheath

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This final report describes activities under NASA contract NAS5-31213 to Lockheed Missiles and Space Company. The report covers the entire contract period from 8 May 1991 to 7 Jun. 1994. This is a contract under the NASA Guest Investigator Program for the analysis and interpretation of the combined scientific data from the Hot Plasma Composition Experiment (HPCE) and the Charge Energy Mass (CHEM) spectrometer on the AMPTE/Charge Composition Explorer (CCE) spacecraft. These combined data sets have been used to survey the energetic ion environment in the earth's magnetosheath to determine the origins and relative strengths of the energetic ion populations found there.

  10. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge. PMID:26650573

  11. Modifying the size and uniformity of upconversion Yb/Er:NaGdF4 nanocrystals through alkaline-earth doping.

    PubMed

    Lei, Lei; Chen, Daqin; Huang, Ping; Xu, Ju; Zhang, Rui; Wang, Yuansheng

    2013-11-21

    NaGdF4 is regarded as an ideal upconversion (UC) host material for lanthanide (Ln(3+)) activators because of its unique crystal structure, high Ln(3+) solubility, low phonon energy and high photochemical stability, and Ln(3+)-doped NaGdF4 UC nanocrystals (NCs) have been widely investigated as bio-imaging and magnetic resonance imaging agents recently. To realize their practical applications, controlling the size and uniformity of the monodisperse Ln(3+)-doped NaGdF4 UC NCs is highly desired. Unlike the routine routes by finely adjusting the multiple experimental parameters, herein we provide a facile and straightforward strategy to modify the size and uniformity of NaGdF4 NCs via alkaline-earth doping for the first time. With the increase of alkaline-earth doping content, the size of NaGdF4 NCs increases gradually, while the size-uniformity is still retained. We attribute this "focusing" of size distribution to the diffusion controlled growth of NaGdF4 NCs induced by alkaline-earth doping. Importantly, adopting the Ca(2+)-doped Yb/Er:NaGdF4 NCs as cores, the complete Ca/Yb/Er:NaGdF4@NaYF4 core-shell particles with excellent size-uniformity can be easily achieved. However, when taking the Yb/Er:NaGdF4 NCs without Ca(2+) doping as cores, they could not be perfectly covered by NaYF4 shells, and the obtained products are non-uniform in size. As a result, the UC emission intensity of the complete core-shell NCs increases by about 30 times in comparison with that of the cores, owing to the effective surface passivation of the Ca(2+)-doped cores and therefore protection of Er(3+) in the cores from the non-radiative decay caused by surface defects, whereas the UC intensity of the incomplete core-shell NCs is enhanced by only 3 times. PMID:24096887

  12. Ion acoustic solitons in Earth's upward current region

    SciTech Connect

    Main, D. S.; Scholz, C.; Newman, D. L.; Ergun, R. E.

    2012-07-15

    The formation and evolution of ion acoustic solitons in Earth's auroral upward current region are studied using one- and two-dimensional (2D) electrostatic particle-in-cell simulations. The one-dimensional simulations are confined to processes that occur in the auroral cavity and include four plasma populations: hot electrons, H{sup +} and O{sup +} anti-earthward ion beams, and a hot H{sup +} background population. Ion acoustic solitons are found to form for auroral-cavity ion beams consistent with acceleration through double-layer (DL) potentials measured by FAST. A simplified one-dimensional model simulation is then presented in order to isolate the mechanisms that lead to the formation of the ion acoustic soliton. Results of a two-dimensional simulation, which include both the ionosphere and the auroral cavity, separated by a low-altitude DL, are then presented in order to confirm that the soliton forms in a more realistic 2D geometry. The 2D simulation is initialized with a U-shaped potential structure that mimics the inferred shape of the low altitude transition region based on observations. In this simulation, a soliton localized perpendicular to the geomagnetic field is observed to form and reside next to the DL. Finally, the 2D simulation results are compared with FAST data and it is found that certain aspects of the data can be explained by assuming the presence of an ion acoustic soliton.

  13. First-principles Study on the Vibration Modes and Electronic Structure of Alkali and Alkaline-earth Amides and Alanates

    NASA Astrophysics Data System (ADS)

    Tsumuraya, Takao; Shishidou, Tatsuya; Oguchi, Tamio

    2009-03-01

    Light alkaline and alkaline-earth metal hydrides such as amides M(NH2)n and alanates M(AlH4)n (M=K, Na, Li, Ca, and Mg) have attracted a growing interest as reversible hydrogen storage materials recently because of their innately high hydrogen contents. [1, 2] We study the electronic structure of the amides and alanates with different cations, focusing on the role of cation states from first-principles calculations based on the all-electron FLAPW method. Calculated breathing stretch vibration modes for these compounds are compared with measured infrared and Raman spectra. In the amides, we find a significant tendency such that the breathing stretch vibration frequencies and the structural parameters of NH2 vary in accordance with the ionization energy of cation, which may be explained by the strength in hybridization between cation orbitals and molecular orbitals of (NH2)^-. We elucidate the microscopic mechanism of correlations between the breathing stretch vibration frequencies of N-H and structural parameters by analyzing the calculated electronic structure from a view point of the molecular-orbitals. A similar tendency in the alanates is also discussed. [1] P. Chen, Z. Xiong, J. Luo, J. Lin and K.L. Tan, Nature 420, 302 (2002). [2] B. Bogdanovi and M. Schwickardi, J. Alloys Compd. 253-254, 1 (1997).

  14. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Adiabatic loading of one-dimensional SU(N) alkaline-earth-atom fermions in optical lattices.

    PubMed

    Bonnes, Lars; Hazzard, Kaden R A; Manmana, Salvatore R; Rey, Ana Maria; Wessel, Stefan

    2012-11-16

    Ultracold fermionic alkaline earth atoms confined in optical lattices realize Hubbard models with internal SU(N) symmetries, where N can be as large as ten. Such systems are expected to harbor exotic magnetic physics at temperatures below the superexchange energy scale. Employing quantum Monte Carlo simulations to access the low-temperature regime of one-dimensional chains, we show that after adiabatically loading a weakly interacting gas into the strongly interacting regime of an optical lattice, the final temperature decreases with increasing N. Furthermore, we estimate the temperature scale required to probe correlations associated with low-temperature SU(N) magnetism. Our findings are encouraging for the exploration of exotic large-N magnetic states in ongoing experiments. PMID:23215502

  16. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae=Ca,Sr,Ba, as thermoelectric materials

    SciTech Connect

    Parker, David S; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2 Sn, Sr2 Sn and Ba2 Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  17. Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Zheng-Jia; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Jin, Qing-Hua

    2015-12-01

    A graphene-like BN single sheet with absorbed alkali and alkaline-earth metal atoms have been investigated by using a first-principles method within the framework of density functional theory (DFT). The electronic structure of BN sheet with adsorbed metal atoms is mainly determined by the metal electronic state which is near to the Fermi level owing to the wide band gap of pure BN sheet. So, we calculated the adsorption energy, charge transfer and work function after the metal adsorbed on BN sheet. We found that the interaction between the metal atoms and BN surface was very strong, and the stable adsorption site for all the adsorbed atoms concluded was high-coordination surface site (H-center) rather than the surface dangling bond sites from the perspective of simple bond-counting arguments. Our results indicate that the interaction of BN sheet with metal atoms could help in the development of metallic nanoscale devices.

  18. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  19. Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-07-01

    We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.

  20. Frontier Orbital Engineering of Metal-Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides.

    PubMed

    Hendon, Christopher H; Walsh, Aron; Dincă, Mircea

    2016-08-01

    The development of conductive metal-organic frameworks is challenging owing to poor electronic communication between metal clusters and the organic ligands that bridge them. One route to overcoming this bottleneck is to extend the inorganic dimensionality, while using the organic components to provide chemical functionality. Using density functional theory methods, we demonstrate how the properties of the alkaline-earth oxides SrO and BaO are transformed upon formation of porous solids with organic oxygen sources (acetate and trifluoroacetate). The electron affinity is significantly enhanced in the hybrid materials, while the ionization potential can be tuned over a large range with the polarity of the organic moiety. Furthermore, because of their high-vacuum fraction, these materials have dielectric properties suitable for low-κ applications. PMID:27267149

  1. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE PAGESBeta

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; Li, Yuwei; Xu, Qiaoling; Ma, Yanming; Zheng, Weitao

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can bemore » stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  2. Sign Changes in the Electric Dipole Moment of Excited States in Rubidium-Alkaline Earth Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2015-06-01

    In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347

  3. Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Cinthia, A. Jemmy; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Iyakutti, K.

    2015-04-01

    The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants.

  4. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba

  5. Coherent optical ultrasound detection with rare-earth ion dopants.

    PubMed

    Tay, Jian Wei; Ledingham, Patrick M; Longdell, Jevon J

    2010-08-10

    We describe theoretical and experimental demonstration for optical detection of ultrasound using a spectral hole engraved in cryogenically cooled rare-earth ion-doped solids. Our method utilizes the dispersion effects due to the spectral hole to perform phase-to-amplitude modulation conversion. Like previous approaches using spectral holes, it has the advantage of detection with large étendue. The method also has the benefit that high sensitivity can be obtained with moderate absorption contrast for the spectral holes. PMID:20697433

  6. Atomic negative ions

    SciTech Connect

    Brage, T.

    1991-01-01

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  7. Atomic negative ions

    SciTech Connect

    Brage, T.

    1991-12-31

    We review some of the recent progress in the studies of alkaline-earth, negative ions. Computations of autodetachment rates, electron affinities and transition wavelengths are discussed and some new and improved results are given.

  8. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2005-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  9. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Moyer, Bruce A.; Bonnesen, Peter V.; Custelcean, Radu; Delmau, Laetitia H.; Engle, Nancy L.; Kang, Hyun-Ah; Keever, Tamara J.; Marchand, Alan P.; Gadthula, Srinivas; Gore, Vinayak K.; Huang, Zilin; Sivappa, Rasapalli; Tirunahari, Pavan K.; Levitskaia, Tatiana G.; Lumetta, Gregg J.

    2005-09-26

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of vitrification. Principles of ion recognition are being researched toward discovery of liquid-liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudo hydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Synthesis efforts are being directed toward enhanced sodium binding by crown ethers, both neutral and proton-ionizable. Studies with real tank waste at PNNL will provide feedback toward solvent compositions that have promising properties.

  10. Magnetic properties of oxide glasses containing iron and rare-earth ions

    NASA Astrophysics Data System (ADS)

    Akamatsu, Hirofumi; Kawabata, Jun; Fujita, Koji; Murai, Shunsuke; Tanaka, Katsuhisa

    2011-10-01

    Measurements of fundamental magnetic properties including not only dc and ac susceptibilities but also magnetic aging effects have been performed for aluminoborate glasses with high concentrations of iron and rare-earth R3+ ions (R=Sm, Gd, and Tb) in order to give an insight into the magnetic structures and interactions in amorphous oxides containing both 3d transition metal and 4f rare-earth ions, which manifest magnetic interactions that differ from each other. We demonstrate that the antiferromagnetic interactions between iron and rare-earth ions as well as those between iron ions play a significant role for their magnetic properties, while those between rare-earth ions are of little importance. Most of the rare-earth ions remain paramagnetic even below the spin-freezing temperatures under the strong molecular field caused by the spin-glass freezing of the iron ions, as in the case of rare-earth garnet ferrites.

  11. Optical probes for the detection of protons, and alkali and alkaline earth metal cations.

    PubMed

    Hamilton, Graham R C; Sahoo, Suban K; Kamila, Sukanta; Singh, Narinder; Kaur, Navneet; Hyland, Barry W; Callan, John F

    2015-07-01

    Luminescent sensors and switches continue to play a key role in shaping our understanding of key biochemical processes, assist in the diagnosis of disease and contribute to the design of new drugs and therapies. Similarly, their contribution to the environment cannot be understated as they offer a portable means to undertake field testing for hazardous chemicals and pollutants such as heavy metals. From a physiological perspective, the Group I and II metal ions are among the most important in the periodic table with blood plasma levels of H(+), Na(+) and Ca(2+) being indicators of several possible disease states. In this review, we examine the progress that has been made in the development of luminescent probes for Group I and Group II ions as well as protons. The potential applications of these probes and the mechanism involved in controlling their luminescent response upon analyte binding will also be discussed. PMID:25742963

  12. Syntheses, Vibrational Spectroscopy, and Crystal Structure Determination from X-Ray Powder Diffraction Data of Alkaline Earth Dicyanamides M[N(CN) 2] 2 with M=Mg, Ca, Sr, and Ba

    NASA Astrophysics Data System (ADS)

    Jürgens, Barbara; Irran, Elisabeth; Schnick, Wolfgang

    2001-03-01

    The alkaline earth dicyanamides Mg[N(CN)2]2, Ca[N(CN)2]2, Sr[N(CN)2]2, and Ba[N(CN)2]2 were synthesized by ion exchange using Na[N(CN)2] and the respective nitrates or bromides as starting materials. The crystal structures were determined from X-ray powder diffractometry: Mg[N(CN)2]2, Pnnm, Z=2, a=617.14(3), b=716.97(3), and c=740.35(5) pm; Ca[N(CN)2]2 and Sr[N(CN)2]2, C2/c, Z=4; Ca[N(CN)2]2, a=1244.55(3), b=607.97(1), and c=789.81(1) pm, β=98.864(2)°; Sr[N(CN)2]2, a=1279.63(2), b=624.756(8), and c=817.56(1) pm, β=99.787(1)°; Ba[N(CN)2]2, Pnma, Z=4, a=1368.68(7), b=429.07(7), and c=1226.26(2) pm. The dicyanamides consist of the respective alkaline earth cations and bent planar [N(CN)2]- ions. The structural features were correlated with vibrational spectroscopic data. The thermal behavior was studied by thermoanalytical experiments.

  13. The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes

    NASA Astrophysics Data System (ADS)

    Li, Lian-Fu; Jiang, Mao-Fa; Wang, Wen-Zhong; Chen, Zhao-Ping

    2000-06-01

    The solid electrolyte cell — Mo|Cr + Cr2O3‖ZrO2(MgO)‖{Cu-Cr}alloy + (Cr2O3)fluxes|Mo+ is used at 1673 K to determine Cr2O3 activities in MO-MX 2-Cr2O3 (M = Ca2+, Ba2-, X = F- or Cl-) ternary fluxes, which are in equilibrium with the copper-chromium binary alloy. The ternary isothermal phase diagrams of CaO-CaF2-Cr2O3 and BaO-BaCl2-Cr2O3 system fluxes are inferred on the basis of the experimental results and binary phase diagrams. The results indicate that Cr2O3 activities in all fluxes always decrease with the increase of the X MO /X MX2 ratio. Partial replacement of BaO in BaO-BaF2-Cr2O3 fluxes by CaO is acceptable for economy and efficiency considerations. At the same time, partial substitution of BaO for CaO in CaO-CaF2-Cr2O3 fluxes is advantageous for phosphorus removal and chromium retention as a result of the increased Cr2O3 activities, increased basicities, and widening of the liquid zones. Compared to those in BaO-BaF2-Cr2O3 fluxes, Cr2O3 activities in CaO-CaF2-Cr2O3 fluxes approximately follow the same curve as the former, although the position and the width of the liquid zones are considerably different, and activities in BaO-BaCl2-Cr2O3 fluxes are higher at the lower Cr2O3 content, or vice versa. The activity coefficients of Cr2O3 in the fluxes decrease with the increase of the X MO /X MX 2 ratios.

  14. Magnetism of perovskite cobaltites with Kramers rare-earth ions

    SciTech Connect

    Jirák, Z. Hejtmánek, J.; Knížek, K.; Novák, P.; Šantavá, E.; Fujishiro, H.

    2014-05-07

    The band-gap insulators RECoO{sub 3} (RE = Nd{sup 3+}, Sm{sup 3+}, and Dy{sup 3+}) with Co{sup 3+} ions stabilized in the non-magnetic low-spin state have been investigated by specific heat measurements. The experiments evidence an antiferromagnetic ordering of the rare earths with Néel temperature of T{sub N} = 1.25, 1.50, and 3.60 K for NdCoO{sub 3}, SmCoO{sub 3}, and DyCoO{sub 3}, respectively. With increasing external field, the lambda peak in specific heat, indicative of the transition, shifts to lower temperatures and vanishes for field of about 3 T. Starting from this point, a broader Schottky peak is formed, centered in 1 K range, and its position is moved to higher temperatures proportionally to applied field. The origin of the peak is in Zeeman splitting of the ground Kramers doublet, and the gradual shift with field defines effective g-factors for the rare-earth pseudospins in studied compounds. The results obtained are confronted with the calculations of crystal field splitting of the rare-earth multiplets.

  15. Alkaline-Earth-Metal-Induced Liberation of Rare Allotropes of Elemental Silicon and Germanium from N-Heterocyclic Metallylenes.

    PubMed

    Blom, Burgert; Said, Amro; Szilvási, Tibor; Menezes, Prashanth W; Tan, Gengwen; Baumgartner, Judith; Driess, Matthias

    2015-09-01

    The synthesis and striking reactivity of the unprecedented N-heterocyclic silylene and germylene ("metallylene") alkaline-earth metal (Ae) complexes of the type [(η(5)-C5Me5)2Ae←:E(N(t)BuCH)2] (3, 4, and 7-9; Ae = Ca, E = Ge 3; Ae = Sr, E = Ge 4; Ae = Sr, E = Si 7; Ae = Ba, E = Si 8; Ae = Ba, E = Ge 9) are reported. All complexes have been characterized by spectroscopic means, and their bonding situations investigated by density functional theory (DFT) methods. Single-crystal X-ray diffraction analyses of examples revealed relatively long Si-Ae and Ge-Ae distances, respectively, indicative of weak E:→Ae (E = Si, Ge) dative bonds, further supported by the calculated Wiberg bond indices , which are rather low in all cases (∼0.5). Unexpectedly, the complexes undergo facile transformation to 1,4-diazabuta-1,3-diene Ae metal complexes of the type [(η(5)-C5Me5)2Ae(κ(2)-{N(t)Bu═CHCH═N(t)Bu})] (Ae = Sr 10, Ae = Ba 11) or in the case of calcium to the dinuclear complex [(η(5)-C5Me5)2Ca←:N((t)Bu)═CHCH═((t)Bu)N:→Ca(η(5)-C5Me5)2] (12) under concomitant liberation of elemental silicon and germanium. The formation of elemental silicon and germanium is proven by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray spectroscopy. Notably, the decomposition of the Si(II)→Ba complex 8 produces allo-silicon, a rare allotropic form of elemental silicon. Similarly, the analogous Ge(II)→Ba complex 9, upon decomposition, forms tetragonal germanium, a dense and rare allotrope of elemental germanium. The energetics of this unprecedented alkaline-earth-metal-induced liberation of elemental silicon and germanium was additionally studied by DFT methods, revealing that the transformations are pronouncedly exergonic and considerably larger for the N-heterocyclic germylene complexes than those of the corresponding silicon analogues. PMID:26305163

  16. Luminescence properties of Sm3+-doped alkaline earth ortho-stannates

    NASA Astrophysics Data System (ADS)

    Stanulis, Andrius; Katelnikovas, Artūras; Enseling, David; Dutczak, Danuta; Šakirzanovas, Simas; Bael, Marlies Van; Hardy, An; Kareiva, Aivaras; Jüstel, Thomas

    2014-05-01

    A series of Sm3+ doped M2SnO4 (M = Ca, Sr and Ba) samples were prepared by a conventional high temperature solid-state reaction route. All samples were characterized by powder X-ray diffraction (XRD) analysis, photoluminescence (PL), photoluminescence thermal quenching (TQ) and fluorescence lifetime (FL) measurements. The morphology of synthesized phosphor powders was examined by scanning electron microscopy (SEM). Moreover, luminous efficacies (LE) and color points of the CIE 1931 color space diagram were calculated and discussed. Synthesized powders showed bright orange-red emission under UV excitation. Based on the results obtained we demonstrate that Sm3+ ions occupy Ca and Sr sites in the Ca2SnO4 and Sr2SnO4 ortho-stannate structures, respectively. In contrast, Sm3+ substitutes Sn in the barium ortho-stannate Ba2SnO4 structure.

  17. Origins of energetic ions in the Earth's magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselter, S. A.; Shelley, E. G.; Klumpar, D. M.

    1992-01-01

    The analysis and interpretation of the combined scientific data from the Hot Plasma Composition Experiment (HPCE) and the Charge Energy Mass (CHEM) spectrometer on the Active Mesospheric Particle Tracer Experiment (AMPTE) Charge Composition Explorer (CCE) spacecraft are discussed. These combined data sets have and will be used to survey the energetic ion environment in the Earth's magnetosheath to determine the origins and relative strengths of the energetic ion populations found there. A computer code was developed to analyze and interpret the data sets. The focus of the first year was on the determination of the contribution of leaked magnetospheric protons to the total energetic proton population. Emphasis was placed on intervals when the AMPTE spacecraft was in the plasma depletion layer because it was argued that in this region, only the leaked population contributes to the energetic ion population. Manipulation of the CHEM data and comparison of the CHEM and HPCE data over their common energy range near the magnetopause also contributed directly to a second study of that region.

  18. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    PubMed

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules. PMID:24967575

  19. Recovery of gallium(III) from strongly alkaline media using a Kelex-100-loaded ion-exchange resin

    SciTech Connect

    Nakayama, Morio; Egawa, Hiroaki

    1997-10-01

    Kelex-100 [7-(4-ethyl-1-methyloctyl)-8-hydroxyquinoline] is an important liquid-chelating ion exchanger in hydrometallurgy and a highly selective extractant for gallium (Ga). In this study, Kelex-100-loaded ion-exchange resins were prepared for the recovery of Ga(III) from sodium aluminate solutions (Bayer solution) used in the Bayer process. When macroporous type ion-exchange resins were used as polymer matrices for loading Kelex-100, the physical pore structure and the ion-exchange group significantly affected the adsorption of Ga(III) from strongly alkaline media on the Kelex-100-loaded resin. In particular, the Kelex-100-loaded carboxylic type resin having a macroporous structure showed a high capacity for Ga(III) in concentrated NaOH solution and effectively recovered Ga(III) from the Bayer solution containing large amounts of aluminum(III).

  20. The Transport of Solar Ions Through the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1999-01-01

    This report covers the initial phase of an investigation that was originally selected by NASA Headquarters for funding by a grant but was later transferred to NASA GSFC for continued funding under a new and separate contract. The principal objective of the investigation, led by Dr. O.W. Lennartsson, is to extract information about the solar origin plasma in Earth's magnetosphere, specifically about the entry and transport of this plasma, using energetic (10 eV/e to 18 keV/e) ion composition data from the Lockheed Plasma Composition Experiment on the NASA/ESA International Sun-Earth Explorer One (ISEE 1) satellite. These data were acquired many years ago, from November 1977 through March of 1982, but, because of subsequent failures of similar experiments on several other spacecraft, they are still the only substantial ion composition data available from Earth's magnetotail, beyond 10 R(sub E), in the critically important sub-kev to keV energy range. All of the Lockheed data now exist in a compacted scientific format, suitable for large-scale statistical investigations, which has been archived both at Lockheed Martin in Palo Alto and at the National Space Science Data Center (NSSDC) in Greenbelt. The completion of the archiving, by processing the remaining half of the data, was made possible by separate funding through a temporary NASA program for data restoration and was given priority over the data analysis by a no-cost extension of the subject grant. By chance, the period of performance coincided with an international study of source and loss processes of magnetospheric plasma, sponsored by the International Space Science Institute (ISSI) in Bern, Switzerland, for which Dr. Lennartsson was invited to serve as one of 12 co-chairs. This study meshed well with the continued analysis of the NASA/Lockheed ISEE ion composition data and provided a natural forum for a broader discussion of the results from this unique experiment. What follows is arranged, for the most

  1. A Density Functional Theory Study of Codoping Characteristics of Sulfur with Alkaline Earth in Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Qin, Han; Liu, Zheng-Tang

    2016-04-01

    The structural, electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO2 have been investigated using the first-principles density functional theory calculations. Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms. The formation energies under different growth conditions have been calculated, showing that the codoping systems are formed easily under O-rich growth conditions. Electronic band structures and density of states have been obtained. The decreased bandgaps, enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity. Supported by the National Natural Science Foundation of China under Grant Nos. 11347199, 51402244, and 11547311, the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No. 20130184120028, the Fundamental Research Fund for the Central Universities, China under Grant Nos. 2682014CX084, 2682014ZT30, and 2682014ZT31, and the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No. SKLSP201511

  2. Structures and stabilities of alkaline earth metal peroxides XO2 (X=Ca, Be, Mg) studied by a genetic algorithm

    SciTech Connect

    Zhao, Xin; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2013-09-17

    The structures and stabilities of alkaline earth metal peroxides XO2 (X = Ca, Be, Mg) were studied using an adaptive genetic algorithm (GA) for global structure optimization in combination with first-principles calculations. From the adaptive GA search, we obtained an orthorhombic structure for CaO2 with 12 atoms in the unit cell, which is energetically more favorable than the previously proposed structures. Reaction energy of the decomposition CaO2 → CaO + 1/2O2 determined by density functional theory (DFT) calculation shows that this orthorhombic calcium peroxide structure is thermodynamically stable. The simulated X-ray diffraction (XRD) pattern using our predicted structure is in excellent agreement with experimental data. We also show that crystal phase BeO2 is unlikely to exist under normal conditions. MgO2 has a cubic pyrite structure, but it is not stable against decomposition: MgO2 → MgO + 1/2O2.

  3. Thermoelectric properties of pnictogen-substituted skutterudites with alkaline-earth fillers using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bang, Semi; Wee, Daehyun; Li, An; Fornari, Marco; Kozinsky, Boris

    2016-05-01

    First-principles calculations have been performed to investigate electronic band structures, vibrational characters, and related transport properties of pnictogen-substituted skutterudites filled with alkaline-earth elements ( MxCo4A6B6 , where M = Ca, Sr, or Ba, A = Ge or Sn, B = Se or Te, and x = 0.5 or 1). Electronic transport properties related to thermoelectricity, including the Seebeck coefficient and the electrical conductivity, are computed by using the Boltzmann transport formalism within the constant-relaxation-time approximation. The results are compared against the corresponding properties of the unfilled pnictogen-substituted ternary skutterudites ( CoA1.5B1.5 ) to identify the effects of filling to estimate the potential for thermoelectric applications. The changes in the ionic character of the interatomic bonding between the Group 14 (A) and Group 16 (B) elements, which was suspected to be a major scattering source in unfilled pnictogen-substituted ternary skutterudites, are probed by analyzing the projected density of states, the charge densities, and the Born effective charges, in an attempt to identify a potential path for improvement of the thermoelectric performance. Our computational results suggest that the analyzed performance of the filled pnictogen-substituted skutterudites should exhibit no significant improvement over that of the corresponding unfilled pnictogen-substituted ternary skutterudites, unless significant reduction in thermal conductivity is achieved by the rattling motion of the filler atoms.

  4. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char. PMID:23880130

  5. Electronic structures and second hyperpolarizabilities of alkaline earth metal complexes end-capped with NA2 (A = H, Li, Na).

    PubMed

    Banerjee, Paramita; Nandi, Prasanta K

    2016-05-14

    The ground state structures and NLO properties of a number of alkaline earth metal complexes end-capped with NA2 groups (A = H, Li, Na) are calculated by employing the CAM-B3LYP, wB97XD and B2PLYP functionals along with MP2 and CCSD(T) for 6-311++G(d,p), 6-311++G(3df,3pd), aug-cc-pVTZ, aug-pc-2 and Hypol basis sets. The complexes are found to be significantly stable. The magnitude of second hyperpolarizability enhances appreciably with increase in the number of magnesium and calcium atoms in the chain, which has been indicated by the power law dependence γ = a + bn(c) with c values ranging from 2.4-4.3 for Mg and 2.4-3.7 for Ca complexes, respectively. The largest second-hyperpolarizability (10(9) au) is obtained for the complex Ca7(NNa2)2 at the CAM-B3LYP level. The two state model has been used to explain the variation of hyperpolarizabilities. PMID:27088138

  6. Effect of alkaline earth metals on the liquid-phase hydrogenation of hydroquinone over Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Ji, Dong; Li, Yu; Liang, Yalan; Li, Gui Xian

    2015-12-01

    A series of Ru-based catalysts modified by alkaline earth metals were prepared by the impregnation-precipitation method and characterized using transmission electron microscopy, X-ray diffraction, ICP optical emission spectroscopy, Infrared Spectroscopy of adsorbed pyridine analysis and surface area analysis. The performance of the catalysts was measured via liquid-phase hydroquinone hydrogenation reaction. Results show that the Ru-Sr/NaY catalyst has the best activity and selectivity among those Ru-based catalysts. The conversion of hydroquinone and the selectivity to 1,4-cyclohexanediol reached up to 99.6% and 89.6% at optimum reaction condition (700 r/min, 423 K and 5 MPa pressure of H2 in 3 h). This may be attributed to the fact that the right amount of Strontium is beneficial to the good dispersion of the ruthenium nanoclusters on the surface of NaY and modify the acidic properties of the catalyst. Moreover, IR of adsorbed pyridine analysis suggested the proper ratio of L/B acid of the catalysts played an important role in the performance of the hydroquinone hydrogenation reaction.

  7. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    NASA Technical Reports Server (NTRS)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  8. Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites.

    PubMed

    Gaburjakova, Jana; Gaburjakova, Marta

    2016-06-01

    A growing body of evidence suggests that the regulation of cardiac ryanodine receptor (RYR2) by luminal Ca(2+) is mediated by luminal binding sites located on the RYR2 channel itself and/or its auxiliary protein, calsequestrin. The localization and structure of RYR2-resident binding sites are not known because of the lack of a high-resolution structure of RYR2 luminal regions. To obtain the first structural insight, we probed the RYR2 luminal face stripped of calsequestrin by alkaline earth metal divalents (M(2+): Mg(2+), Ca(2+), Sr(2+) or Ba(2+)). We show that the RYR2 response to caffeine at the single-channel level is significantly modified by the nature of luminal M(2+). Moreover, we performed competition experiments by varying the concentration of luminal M(2+) (Mg(2+), Sr(2+) or Ba(2+)) from 8mM to 53mM and investigated its ability to compete with 1mM luminal Ca(2+). We demonstrate that all tested M(2+) bind to exactly the same RYR2 luminal binding sites. Their affinities decrease in the order: Ca(2+)>Sr(2+)>Mg(2+)~Ba(2+), showing a strong correlation with the M(2+) affinity of the EF-hand motif. This indicates that the RYR2 luminal binding regions and the EF-hand motif likely share some structural similarities because the structure ties directly to the function. PMID:26849106

  9. Alkaline-earth oxide network modifier on optical properties of Ce3+-activated borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Sun, Xin-Yuan; Xiao, Zhuo-Hao; Zhong, Jiu-Ping

    2015-12-01

    Transparent and colorless CeO2-activated borogermanate glasses, with the nominal composition of 25B2O3-40GeO2-14Gd2O3-1CeO2-20MO (M = Ba, Sr, Ca and Mg), were synthesized by a melt-quenching method in air. Their optical properties including the transmittance, photoluminescence (excitation and emission spectra), the luminescence decay curves, as well as the temperature-dependent emission spectra were studied in detail. The room temperature photoluminescence spectra reveal that the emission intensity of the MgO glass is about two times stronger than that of the BaO glass. The blue shift of the cut-off edge, excitation and emission spectra of Ce3+-activated borogermanate glass were clearly observed in the order of BaO, SrO, CaO and MgO. And the emission intensity of Ce3+ ions as a function of temperature range in 325-475 K was also investigated.

  10. Effects of doping of lead titanate with alkaline-earth elements

    NASA Astrophysics Data System (ADS)

    Shilkina, L. A.; Reznichenko, L. A.; Razumovskaya, O. N.; Dudkina, S. I.; Vlasenko, V. G.; Shevtsova, S. I.; Guglev, K. A.; Kozakov, A. T.; Nikol'skii, A. V.

    2016-01-01

    Solid solutions of the (P{b_{1 - {α _1} - {α _2}}}S{r_{{α _1}}}B{a_{{α _2}}}) (0.02 ⩽ α1 ⩽ 0.36, 0.0073 ⩽ α2 ⩽ 0.1339) system with the ratio of Sr and Ba chosen so as to exclude the influence of the size factor on the lead titanate structure have been studied. The studies have been performed using X-ray powder diffraction (XRD), X-ray absorption spectroscopy (EXAFS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). It has been found that the removal of 2.5 at % Pb2+, which presumably occupy oxygen octahedra, from the solid solution leads to a partial relieving of the crystal lattice stress that is observed as the decrease in the parameter c, c/a, and the unit cell volume, with parameter a being unchanged. It has been shown that PbTiO3 contains up to 5 at % of Pb4+ ions at all the preparation conditions. The Sr and Ba atoms replace the Pb atoms in lead titanate in a narrow concentration range 0 < (α1 + α2) ⩽ 0.0273; at higher Sr and Ba concentrations, solid solutions SrPb x Ti1- x O3 → Sr1- y Ba y Pb x Ti1- x O3 are formed.

  11. Preparation of alkaline earth phosphates with sol containing sodium alginate and sodium diphosphate.

    PubMed

    Sugiyama, Shigeru; Fujii, Minako; Fukuta, Kazuya; Seyama, Kazunori; Sotowa, Ken-Ichiro; Shigemoto, Naoya

    2006-03-01

    Magnesium hydrogen phosphate, calcium hydroxyapatite, and strontium hydroxyapatite were successfully prepared from sol consisting of sodium alginate and Na4P2O7 with Mg2+, Ca2+, and Sr2+ in the corresponding nitrates, respectively. It is revealed that the order of the addition of those substrates and the role of sodium alginate are important factors for the preparation of desired phosphate compounds. According to the previous paper on the preparation of calcium hydroxyapatite, sodium alginate was mixed with aqueous Na4P2O7, followed by the addition of the aqueous divalent cations, resulting in the poor formation of the target phosphates. However, as a revised sol-gel technique, sodium alginate was added to the mixture of Na4P2O7 and aqueous Mg2+ and Sr2+, resulting in a rather favorable formation of MgHPO4 and strontium hydroxyapatite, respectively, while the sol thus obtained was stable within a few days. However for aqueous Ca2+, calcium hydroxyapatite could not be obtained through the revised sol-gel technique. In the preparation of magnesium hydrogen phosphate, sodium alginate contributes mainly to the sol formation of the precursor. The ion exchange between Na+ in sodium alginate and aqueous Ca2+ was important for the preparation of calcium hydroxyapatite. In contrast, the reaction of sodium alginate with the mixture of Na4P2O7 and aqueous Sr2+ afforded strontium hydroxyapatite at the specific ratio of those three substrates. The structure of calcium and strontium phosphates prepared from the revised sol-gel process evidently depended on the amount of sodium alginate introduced into the mixture of Na4P2O7 and the corresponding divalent cations. PMID:16154579

  12. Synthesis and structural determination of alkali and alkaline earth metal containing bismuth vanadates

    NASA Astrophysics Data System (ADS)

    Bliesner, Rebecca Jean

    Exploratory synthesis plays an important role in the quest to discover new materials. There are very few structurally characterized alkali metal containing bismuth vanadates. Hybridization of the 6s and 6p orbitals of Bi 3+ and the resulting lone electron pair yields some very interesting stereochemistry and steric related properties. Some of those properties include ferroelectricity, ferroelasticity, electronic and ionic conduction, superconductivity, nonlinear optical capabilities and selective catalysis. Systematic exploration of the Na-Bi-V ternary system produced a new phase of NaBi3V2O10. This material crystallizes in the P1¯ space group and the reported oxygen ion conductivity is apparently due to the presence of interstitial oxygen rather than oxygen vacancies. Stabilization of the tetragonal scheelite phase of BiVO4 has been achieved by the substitution of a M2+ for Bi3+ . This has not been accomplished previously by a M2+ cation substitution. The compound Ca0.29Bi0.71VO 3.855 crystallizes in the P4¯ space group. An investigation of the K-Bi-V ternary system resulted in the discovery of a new potassium vanadate. K10Bi4V4O 21 crystallizes in the P6¯ space group with a equal to 10.205(2)A and c equal to 7.669(2)A. Other new compounds prepared, for which structures have not been determined are alpha-Na3BiV2O8, beta-Na3BiV 2O8, K8Bi5V5O24, Rb2BiVO5, a rubidium compound with a 3:3:2 stoichiometric ratio of Rb:Bi:V, a rubidium compound with 2:1:1, a sodium compound with 2:1:1 and a lithium compound with a 1:1:1 stoichiometric ratio of Li:Bi:V.

  13. Proposal for laser cooling of rare-earth ions

    NASA Astrophysics Data System (ADS)

    Lepers, Maxence; Hong, Ye; Wyart, Jean-François; Dulieu, Olivier

    2016-01-01

    The efficiency of laser cooling relies on the existence of an almost closed optical-transition cycle in the energy spectrum of the considered species. In this respect, rare-earth elements exhibit many transitions which are likely to induce noticeable leaks from the cooling cycle. In this work, to determine whether laser cooling of singly ionized erbium Er+ is feasible, we have performed accurate electronic-structure calculations of energies and spontaneous-emission Einstein coefficients of Er+, using a combination of ab initio and least-squares-fitting techniques. We identify five weak closed transitions suitable for laser cooling, the broadest of which is in the kilohertz range. For the strongest transitions, by simulating the cascade dynamics of spontaneous emission, we show that repumping is necessary, and we discuss possible repumping schemes. We expect our detailed study on Er+ to give good insight into the laser cooling of neighboring ions such as Dy+.

  14. Spectroscopic and electron microscopic investigation of iron oxides formed in a highly alkaline medium in the presence of rhodium ions

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2010-07-01

    The effect of the presence of rhodium ions on the formation of iron oxides in a highly alkaline precipitation system was investigated using X-ray powder diffraction (XRD), 57Fe Mössbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Acicular α-FeOOH particles precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. Characterization of α-FeOOH samples formed in the presence of rhodium ions showed a somewhat smaller mean crystallite size, increased unit-cell dimensions, a reduced average hyperfine magnetic field and a slight shift in the position of IR absorption bands in comparison with the reference α-FeOOH sample. By additional heating of the precipitation system, α-FeOOH precipitated in the presence of rhodium ions transformed to α-Fe 2O 3 crystals in the form of hexagonal bipyramids via a dissolution-recrystallization process. Metallic rhodium nanoparticles were formed simultaneously by the reduction of Rh 3+ ions in the presence of the products of TMAH thermal decomposition (trimethylamine and methanol). These rhodium nanoparticles acted as a catalyst for the reductive dissolution of α-Fe 2O 3 particles and the formation of Fe 3O 4 crystals in the form of octahedrons.

  15. Complexation of Donor-Acceptor Substituted Aza-Crowns with Alkali and Alkaline Earth Metal Cations. Charge Transfer and Recoordination in Excited State.

    PubMed

    Volchkov, Valery V; Gostev, Fedor E; Shelaev, Ivan V; Nadtochenko, Viktor A; Dmitrieva, Svetlana N; Gromov, Sergey P; Alfimov, Mikhail V; Melnikov, Mikhail Ya

    2016-03-01

    Complexation between two aza-15-crown-5 ethers bearing electron donor and acceptor fragments and alkali and alkaline earth perchlorates has been studied using absorption, steady-state fluorescence and femtosecond transient absorption spectroscopy. The spectral-luminescent parameters, the stability and dissociation constants of the complexes were calculated. The intramolecular charge transfer reaction takes place both in the excited state of the crowns and their complexes 1:1; the latter is subjected to photorecoordination resulting in a weakening or a complete disruption of coordination bond between nitrogen atom and metal cation, disposed within a cavity of the crown. The compounds investigated can be viewed as novel optical molecular sensors for alkali and alkaline-earth metal cations. The photoejection of a metal cation into the bulk was not observed. PMID:26670689

  16. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  17. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on γ-Al2O3

    SciTech Connect

    Verrier, Christelle LM; Kwak, Ja Hun; Kim, Do Heui; Peden, Charles HF; Szanyi, Janos

    2008-07-15

    NOx uptake experiments were performed on a series of alkaline earth oxide (AEO) (MgO, CaO, SrO, BaO) on γ-alumina materials. Temperature Programmed Desorption (TPD) conducted on He flow revealed the presence of two kinds of nitrate species: i.e. bulk and surface nitrates. The ratio of these two types of nitrate species strongly depends on the nature of the alkaline earth oxide. The amount of bulk nitrate species increases with the basicity of the alkaline earth oxide. This conclusion was supported by the results of infrared and 15N solid state NMR studies of NO2 adsorption. Due to the low melting point of the precursor used for the preparation of MgO/Al2O3 material (Mg(NO3)2), a significant amount of Mg was lost during sample activation (high temperature annealing) resulting in a material with properties were very similar to that of the γ-Al2O3 support. The effect of water on the NOx species formed in the exposure of the AEO-s to NO2 was also investigated. In agreement with our previous findings for the BaO/γ-Al2O3 system, an increase of the bulk nitrate species and the simultaneous decrease of the surface nitrate phase were observed for all of these materials.

  18. Alkaline earth chloride hydrates: chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations.

    PubMed

    Bryce, David L; Bultz, Elijah B

    2007-01-01

    A series of alkaline earth chloride hydrates has been studied by solid-state (35/37)Cl NMR spectroscopy in order to characterize the chlorine electric field gradient (EFG) and chemical shift (CS) tensors and to relate these observables to the structure around the chloride ions. Chlorine-35/37 NMR spectra of solid powdered samples of pseudopolymorphs (hydrates) of magnesium chloride (MgCl(2).6H(2)O), calcium chloride (CaCl(2).2H(2)O), strontium chloride (SrCl(2), SrCl(2).2H(2)O, and SrCl(2).6H(2)O), and barium chloride (BaCl(2).2H(2)O) have been acquired under stationary and magic-angle spinning conditions in magnetic fields of 11.75 and 21.1 T. Powder X-ray diffraction was used as an additional tool to confirm the purity and identity of the samples. Chlorine-35 quadrupolar coupling constants (C(Q)) range from essentially zero in cubic anhydrous SrCl(2) to 4.26+/-0.03 MHz in calcium chloride dihydrate. CS tensor spans, Omega, are between 40 and 72 ppm, for example, Omega= 45+/-20 ppm for SrCl(2).6H(2)O. Plane wave-pseudopotential density functional theory, as implemented in the CASTEP program, was employed to model the extended solid lattices of these materials for the calculation of their chlorine EFG and nuclear magnetic shielding tensors, and allowed for the assignment of the two-site chlorine NMR spectra of barium chloride dihydrate. This work builds upon our current understanding of the relationship between chlorine NMR interaction tensors and the local molecular and electronic structure, and highlights the particular sensitivity of quadrupolar nucleus solid-state NMR spectroscopy to the differences between various pseudopolymorphic structures in the case of strontium chloride. PMID:17385204

  19. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    SciTech Connect

    Christensen, J.J.

    1981-04-15

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used.

  20. Ab initio study of permanent electric dipole moment and radiative lifetimes of alkaline-earth-metal--Li molecules

    SciTech Connect

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2011-12-15

    We calculate permanent electric dipole moments (PDMs), as well as spontaneous and black body lifetimes, of alkaline-earth-metal-Li (AEM-Li) ultracold polar molecules to study anisotropic long-range dipole-dipole interactions in a single quantum state. We obtain potential energy curves for the {sup 2} {Sigma} ground state of MgLi, CaLi, SrLi, and BaLi molecules at the coupled cluster singles and doubles with partial triples [CCSD(T)] level of electron correlation. Calculated spectroscopic constants for the isotopes: {sup 24}Mg{sup 7}Li, {sup 40}Ca{sup 7}Li, {sup 88}Sr{sup 7}Li, and {sup 138}Ba{sup 7}Li, show good agreement with available theoretical and experimental results. We obtain PDM curves using finite field perturbation theory at the CCSD(T) level. We find that AEM-Li molecules have moderate values of PDM at the equilibrium bond distance (MgLi: 0.90 D, CaLi: 1.15 D, SrLi: 0.33 D, and BaLi: -0.42 D) and hence might be suitable candidates for the proposed study in a single quantum state. Radiative lifetime calculations of the {nu} = 0 state ({sup 24}Mg{sup 6}Li: 22 s, {sup 40}Ca{sup 6}Li: 39 s, {sup 88}Sr{sup 6}Li: 380 s, and {sup 138}Ba{sup 6}Li: 988 s) are found to be longer than the typical time scale associated with ultracold experiments with these molecules. The uncertainty in the lifetime calculations are estimated to be less than 10%.

  1. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  2. Photoelectron Experiments and Studies of X-Ray Absorption Near Edge Structure in Alkaline-Earth and Rare - Fluorides.

    NASA Astrophysics Data System (ADS)

    Gao, Yuan

    Alkaline-earth fluorides and rare-earth trifluorides possess technological importance for applications in multi -layer electronic device structures and opto-electronic devices. Interfaces between thin films of YbF _3 and Si(111) substrates were studied by photoelectron spectroscopy and x-ray absorption spectroscopy using synchrotron radiation. Results of YbF_3 /Si(111) were compared with those of TmF _3/Si(111). While electrons in the Si valence band are prevented from occupying the empty 4f levels in TmF_3 at the interface by the on -site Coulomb repulsion energy, the charge transfer from Si to YbF_3 is possible because the totally filled 4f states in Yb still lie below the Si valence band maximum. The theory of x-ray absorption near edge structure (XANES) is incomplete except for a few particularly simple special cases. A Bragg reflection model was developed to qualitatively explain the oscillations in XANES, in terms of the scattering of the photoelectron wave between families of lattice planes as set out by the Bragg condition for backscattering. The model was found to represent the data for systems with nearly free electron like conduction bands reasonably well. High resolution CaF_2 fluorine K edge XANES was used as a prototype to understand XANES in more depth on systems with strong core hole effects. Unlike previous work which involved multiple scattering cluster calculations that include only short range order effects, both the long range order and the symmetry breaking core holes are included in a new bandstructure approach in which the core hole is treated with a supercell technique. A first principles calculation with the use of pseudopotentials successfully reproduced all the main features of the first 15 eV of the fluorine K edge in CaF_2 which had not been explained with the cluster calculations. A comparison of the theoretical and experimental fluorine K edges in CaF_2 and BaF _2 was used to identify the structure related features. The possibility

  3. Ion acceleration to supra-thermal energies in the near-Earth magnetotail

    NASA Astrophysics Data System (ADS)

    Elena, Kronberg

    2016-07-01

    We here present an analysis of ion composition measurements by the RAPID instruments onboard Cluster. We discuss the evidence for an acceleration of ions to energies above 100 keV in the near-Earth current sheet, in the vicinity of a possible near-Earth neutral line, and we investigate the physical details of such an acceleration. We present observations of tailward bulk flows in the near-Earth tail associated with plasmoid-like magnetic structures. These flows are superimposed by low-frequency magnetic and electric field fluctuations. Observations and modelling show that resonant interactions between ions and low-frequency electromagnetic fluctuations facilitate the ion energization inside plasmoids.

  4. Proposal for laser cooling of rare-earth ions

    NASA Astrophysics Data System (ADS)

    Dulieu, Olivier; Hong, Ye; Wyart, Jean-François; Lepers, Maxence

    2016-05-01

    The efficiency of laser cooling relies on the existence of an almost closed optical-transition cycle in the energy spectrum of the considered species. In this respect, rare-earth elements exhibit many transitions which are likely to induce noticeable leaks from the cooling cycle. In this work, to determine whether laser cooling of singly ionized erbium Er+ is feasible, we have performed accurate electronic-structure calculations of energies and spontaneous-emission Einstein coefficients of Er+, using a combination of ab initio and least-squares-fitting techniques. We identify five weak closed transitions suitable for laser cooling, the broadest of which is in the kilohertz range. For the strongest transitions, by simulating the cascade dynamics of spontaneous emission, we show that repumping is necessary, and we discuss possible repumping schemes.We expect our detailed study on Er+ to give good insight into the laser cooling of neighboring ions such as Dy+. Supported by ``Agence Nationale de la Recherche'' (ANR), under the project COPOMOL (Contract No. ANR-13-IS04-0004-01).

  5. Comparative Enzymology in the Alkaline Phosphatase Superfamily to Determine the Catalytic Role of an Active Site Metal Ion

    PubMed Central

    Zalatan, Jesse G.; Fenn, Timothy D.; Herschlag, Daniel

    2009-01-01

    Mechanistic models for biochemical systems are frequently proposed from structural data. Site-directed mutagenesis can be used to test the importance of proposed functional sites, but these data do not necessarily indicate how these sites contribute to function. Herein we apply an alternative approach to the catalytic mechanism of alkaline phosphatase (AP), a widely-studied, prototypical bimetallo enzyme. A third metal ion site in AP has been suggested to provide general base catalysis, but comparison with an evolutionarily-related enzyme casts doubt on this model. Removal of this metal site from AP has large differential effects on reactions of cognate and promiscuous substrates, and the results are inconsistent with general base catalysis. Instead, these and additional results suggest that the third metal ion stabilizes the transferred phosphoryl group in the transition state. These results establish a new mechanistic model for this prototypical bimetallo enzyme and demonstrate the power of a comparative approach for probing biochemical function. PMID:18851975

  6. Counter-ion specificity explored in abnormal expansion of supra-molecular aggregates in aqueous solution of alkaline metal salts.

    PubMed

    Huang, Ningdong; Tao, Jiaojiao; Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Li, Liangbin

    2015-09-21

    Ionic effects in aqueous solution of macro-ions showing specificity and unconventional characters, respectively, receive a lot of interests recently; however, the complexity of specific ion effects in unconventional phenomena remains ambiguous. In this study, the effects of univalent ions on aggregation of supra-molecular nano-fibrils with charged carboxylate groups on the surface as a prototype of macro-ions are investigated by Small Angle X-ray Scattering (SAXS) in aqueous solutions of alkaline metal chlorides. It is found that the columnar bundles of charged fibrils are expanded in certain salt concentration range contradicting the conventional screening effects of salts. The degree of expansion is dominated by cations as Na(+) induces drastic effects in comparison to rather gentle changes from K(+) and Cs(+). The specific cations effects observed by SAXS correlate with the pH behavior of the solutions, an indicator of surface charge, or number of carboxylate groups along the supra-molecular fibrils. It is postulated that while Na(+) with stronger affinity to carboxylates apparently reduces the surface charge, K(+) and Cs(+) only weakly interact with carboxylates and induce minor changes, accounting for the cation-sensitive aggregation behavior of fibrils observed by SAXS. By probing the bundling aggregation of charged supra-molecular nano-fibrils in salty water, we provide direct evidence of specific counter-ion effects in unusual expansion caused by univalent salts. PMID:26395732

  7. The influence of platinum(IV) ions on the formation of iron oxides in a highly alkaline medium

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2011-05-01

    The effect of the presence of platinum(IV) ions, in the form of Pt(OH)62- at a high pH, on the formation of iron oxides in a highly alkaline precipitation system was investigated using X-ray powder diffraction (XRD), 57Fe Mössbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Monodispersed lath-like α-FeOOH (goethite) particles precipitated by hydrothermal treatment in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. In the presence of 1 or 5 mol% of platinum ions in the precipitation system the lath-like α-FeOOH particles were formed as a single phase after a short hydrothermal treatment (2 h). No significant change in the size and shape of these particles in comparison to the reference sample was observed. After 6 h of autoclaving the formation of platinum nanoparticles at the surface of α-FeOOH particles via reduction by TMAH and/or its decomposition products became visible. These nanoparticles acted as a catalyst for the reduction of Fe(III) ions into Fe(II) and gradual transformation of α-FeOOH into a mixed Fe(II)-Fe(III) oxide (Fe 3O 4, magnetite) by the dissolution-recrystallization mechanism. The presence of a higher concentration of platinum ions accelerates the process of α-FeOOH → Fe 3O 4 transformation with the appearance of α-Fe 2O 3 (hematite) particles as an intermediate product.

  8. The influence of alkaline earth metal equilibria on the rheological, melting and textural properties of Cheddar cheese.

    PubMed

    Cooke, Darren R; McSweeney, Paul L H

    2013-11-01

    The total calcium content of cheese, along with changes in the equilibrium between soluble and casein (CN)-bound calcium during ripening can have a major impact on its rheological, functional and textural properties; however, little is known about the effect of other alkaline earth metals. NaCl was partially substituted with MgCl2 or SrCl2 (8·7 and 11·4 g/kg curd, respectively) at the salting stage of cheesemaking to study their effects on cheese. Three cheeses were produced: Mg supplemented (+Mg), Sr supplemented (+Sr) and a control Cheddar cheese. Ca, Mg and Sr contents of cheese and expressible serum obtained therefrom were determined by atomic absorption spectroscopy. Addition of Mg2+ or Sr2+ had no effect on % moisture, protein, fat and extent of proteolysis. A proportion of the added Mg2+ and Sr2+ became CN-bound. The level of CN-bound Mg was higher in the +Mg cheese than the control throughout ripening. The level of CN-bound Ca and Mg decreased during ripening in all cheeses, as did % CN-bound Sr in the +Sr cheese. The presence of Sr2+ increased % CN-bound Ca and Mg at a number of ripening times. Adding Mg2+ had no effect on % CN-bound Ca. The +Sr cheese exhibited a higher G' at 70 °C and a lower LTmax than the control and +Mg cheeses throughout ripening. The +Sr cheese had significantly lower meltability compared with the control and +Mg cheeses after 2 months of ripening. Hardness values of the +Sr cheese were higher at week 2 than the +Mg and control cheeses. Addition of Mg2+ did not influence the physical properties of cheese. Supplementing cheese with Sr appeared to have effects analogous to those previously reported for increasing Ca content. Sr2+ may form and/or modify nanocluster crosslinks causing an increase in the strength of the para-casein matrix. PMID:24124804

  9. Selectivity of ion exchangers in extracting cesium and rubidium from alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shelkovnikova, L. A.; Kargov, S. I.; Gavlina, O. T.; Ivanov, V. A.; Al'tshuler, G. N.

    2013-01-01

    We compare the ion exchange selectivity of phenol-type sorbents based on phenol formaldehyde resins, products of condensation of diatomic phenols with formaldehyde, and crosslinked polymer based on C-phenyl[4]resorcinarene resin, for cesium and rubidium ions. It is shown that phenol formaldehyde sorbents are the ones most selective. The interaction of alkali metal cations with the anion of calix[4]arene is investigated via quantum-chemical modeling. It is shown that the selectivity toward cesium and rubidium ions in ion exchangers of the phenolic type is not due to specific interactions of ions with phenolic groups.

  10. Ionizable calixarene-crown ethers with high selectivity for radium over light alkaline earth metal ions

    SciTech Connect

    Chen, X.; Ji, M.; Fisher, D.R.; Wai, C.M.

    1999-11-15

    {alpha} particle emitters are of increasing interest as the radionuclide attached to monoclonal antibodies of other targeting mechanisms for applications in cell-directed therapy of cancer. {alpha} particles are more effective than {beta}{sup {minus}} particles for cell-killing and promise a more effective treatment of cancer than other forms of radiation. This is because {alpha} particles have high initial energy (4--8 MeV), short path lengths (40--80 {micro}m, or several cell diameters), and consequently greater energy dissipation per unit length. Cell-directed immunotherapy can help improve irradiation of tumor cells while sparing normal tissues. The success of this approach will require effective chemistry for attaching the radionuclide to the antibody. Therefore, a concerted effort has been directed toward the design of chelating agents capable of holding the desired {alpha}-emitting radionuclide, both selectively and with high stability, to the antibody.

  11. Electric Quadrupole Moments of the D States of Alkaline-Earth-Metal Ions

    SciTech Connect

    Sur, Chiranjib; Latha, K.V.P.; Sahoo, Bijaya K.; Chaudhuri, Rajat K.; Das, B.P.; Mukherjee, D.

    2006-05-19

    The electric quadrupole moment for the 4d {sup 2}D{sub 5/2} state of {sup 88}Sr{sup +}; one of the most important candidates for an optical clock, has been calculated using the relativistic coupled-cluster theory. This is the first application of this theory to determine atomic electric quadrupole moments. The result of the calculation is presented and the important many-body contributions are highlighted. The calculated electric quadrupole moment is (2.94{+-}0.07)ea{sub 0}{sup 2}, where a{sub 0} is the Bohr radius and e the electronic charge while the measured value is (2.6{+-}0.3)ea{sub 0}{sup 2}. This is so far the most accurate determination of the electric quadrupole moment for the above mentioned state. We have also calculated the electric quadrupole moments for the metastable 4d {sup 2}D{sub 3/2} state of {sup 88}Sr{sup +} and for the 3d {sup 2}D{sub 3/2,5/2} and 5d {sup 2}D{sub 3/2,5/2} states of {sup 43}Ca{sup +} and {sup 138}Ba{sup +}, respectively.

  12. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    SciTech Connect

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-15

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB{sub 6}, SrB{sub 6}, BaB{sub 6} and the ternary hexaborides Ca{sub x}Sr{sub 1−x}B{sub 6}, Ca{sub x}Ba{sub 1−x}B{sub 6}, Sr{sub x}Ba{sub 1−x}B{sub 6} (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB{sub 6} (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials.

  13. The heavy ion diffusion region in magnetic reconnection in the Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Mouikis, C. G.; Kistler, L. M.; Wang, S.; Roytershteyn, V.; Karimabadi, H.

    2015-05-01

    While the plasma in the Earth's magnetotail predominantly consists of protons and electrons, there are times when a significant amount of oxygen is present. When magnetic reconnection occurs, the behavior of these heavy ions can be significantly different from that of the protons, due to their larger gyroradius. In this study, we investigate the heavy ion distribution functions in the reconnection ion diffusion region from a 2.5D three-species particle-in-cell numerical simulation and compare those with Cluster observations from the near-Earth magnetotail. From the simulation results, we find that the heavy ions are demagnetized and accelerated in a larger diffusion region, the heavy ion diffusion region. The ion velocity distribution functions show that, inside the heavy ion diffusion region, heavy ions appear as counterstreaming beams along z in the GSM x-z plane, while drifting in y, carrying cross-tail current. We compare this result with Cluster observations in the vicinity of reconnection regions in the near-Earth magnetotail and find that the simulation predictions are consistent with the observed ion distribution functions in the ion diffusion region, as well as the inflow, exhaust, and separatrix regions. Based on the simulation and observation results, the presence of a multiscale diffusion region model, for O+ abundant reconnection events in the Earth's magnetotail, is demonstrated. A test particle simulation shows that in the diffusion region, the H+ gains energy mainly through Ex, while the O+ energy gain comes equally from Ex and Ey.

  14. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere. PMID:26303652

  15. Electronic structure, optical properties and bonding in alkaline earth halo-fluoride scintillators: BaClF, BaBrF and BaIF

    SciTech Connect

    Yedukondalu, N.; Babu, K. Ramesh; Bheemalingam, Ch.; Singh, David J; Vaitheeswaran, G.; Kanchana, V.

    2011-01-01

    We report first-principles studies of the structural, electronic, and optical properties of the alkaline-earth halofluorides, BaXF (X = Cl, Br, and I), including pressure dependence of structural properties. The band structures show clear separation of the halogen p derived valence bands into higher binding energy F and lower binding energy X derived manifolds reflecting the very high electronegativity of F relative to the other halogens. Implications of this for bonding and other properties are discussed. We find an anisotropic behavior of the structural parameters especially of BaIF under pressure. The optical properties on the other hand are almost isotropic, in spite of the anisotropic crystal structures.

  16. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  17. Effect of SiO2 and Al2O3 addition on the density, Tg and CTE of mixed alkali - alkaline earth borate glass

    NASA Astrophysics Data System (ADS)

    Deshpande, A. M.; Deshpande, V. K.

    2009-07-01

    Mixed alkali — alkaline earth borate glasses, with the addition of silica and alumina, have been studied for their density, Tg and CTE with a view of exploring the applicability of these glasses in glass to metal sealing applications. It has been observed that silica addition results in an increase in density and Tg while the alumina addition decreases the density and Tg. The variation in CTE exhibits minima with the addition of both, silica and alumina. An attempt is made here to explain the observed variations in the properties on the basis of different mass of the additives, number of non bridging oxygens (NBOs) and other changes in the glass network.

  18. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-01

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field. PMID:27494550

  19. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    PubMed

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  20. Developments in MEMS scale printable alkaline and Li-ion technology

    NASA Astrophysics Data System (ADS)

    Littau, K. A.; Cobb, C. L.; Spengler, N.; Solberg, S.; Weisberg, M.; Chang, N.; Rodkin, A.

    2011-06-01

    Two technologies for MEMS (Microelectromechanical Systems) scale cell formation are discussed. First, the fabrication of planar alkaline cell batteries compatible with MEMS scale power storage applications is shown. Both mm scale and sub-mm scale individual cells and batteries have been constructed. The chosen coplanar electrode geometry allows for easy fabrication of series connected cells enabling higher voltage while simplifying the cell sealing and electrode formation. The Zn/Ag alkaline system is used due to the large operating voltage, inherent charge capacity, long shelf life, and ease of fabrication. Several cells have been constructed using both plated and spun-on silver. The plated cells are shown to be limited in performance due to inadequate surface area and porosity; however, the cells made from spun-on colloidal silver show reasonable charge capacity and power performance with current densities of up to 200 uA/mm2 and charge capacities of up to 18 mA-s/mm2. Second, a new printing method for interdigitated 3-D cells is introduced. A microfluidic printhead capable of dispensing multiple materials at high resolution and aspect ratio is described and used to form fine interdigitated cell features which show >10 times improvement in energy density. Representative structures enabled by this method are modeled, and the energy and power density improvements are reported.

  1. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification.

    PubMed

    Liu, Shufeng; Wei, Wenji; Sun, Xinya; Wang, Li

    2016-09-15

    In this article, a simple, highly sensitive and selective electrochemical DNAzyme sensor for Pb(2+) was developed on the basis of a 8-17 DNAzyme cleavage-induced template-independent polymerization and alkaline phosphatase amplification strategy. The hairpin-like substrate strand (HP DNA) of 8-17 DNAzyme was firstly immobilized onto the electrode. In the presence of Pb(2+) and the catalytic strand of 8-17 DNAzyme, the HP DNA could be cleaved to expose the free 3'-OH terminal, which could be then utilized for the cascade operation by terminal deoxynucleotidyl transferase (TdTase) for the base extension to incorporate biotinylated dUTP (dUTP-biotin). The further conjugated streptavidin-labeled alkaline phosphatase (SA-ALP) then catalyzed conversion of electrochemically inactive 1-naphthyl phosphate (1-NP) for the generation of electrochemical response signal. The currently fabricated Pb(2+) sensor effectively combines triply cascade amplification effects including cyclic Pb(2+)-dependent DNAzyme cleavage, TdTase-mediated base extension and enzymatic catalysis of ALP. An impressive detection limit of 0.043nM toward Pb(2+) with an excellent selectivity could be ultimately obtained, which was superior than most of the electrochemical methods. Thus, the developed amplification strategy opens a promising avenue for the detection of metal ions and may extend for the detection of other nucleic acid-related analytes. PMID:27093488

  2. On the origins of energetic ions in the earth's dayside magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Klumpar, D. M.; Shelley, E. G.

    1991-01-01

    Energetic ion events in the earth's dayside subsolar magnetosheath (0900 - 1300 Local Time) are surveyed using data from the AMPTE/CCE Hot Plasma Composition Experiment. Ion species carrying the signature of their origin O(+) and energetic He(2+) are used to distinguish between magnetospheric and solar wind origins for the energetic ion events. The results of this survey indicate that the majority of energetic (10-17 keV/e) H(+) and He(2+) ions observed in the dayside magnetosheath are accelerated from the solar wind population. The energetic He(2+) to H(+) density ratio in the magnetosheath is consistent with that predicted from first-order Fermi acceleration of solar wind ions in the turbulent regions upstream and downstream from the earth's quasi-parallel bow shock. The simultaneous occurrence of both energetic He(2+) and magnetospheric O(+) indicates that, on occasion, both Fermi acceleration of solar wind ions and leakage of magnetospheric ions occurs in the dayside magnetosheath.

  3. METHOD OF SEPARATING RARE EARTHS BY ION EXCHANGE

    DOEpatents

    Spedding, F.H.; Powell, J.E.

    1960-10-18

    A process is given for separating yttrium and rare earth values having atomic numbers of from 57 through 60 and 68 through 71 from an aqueous solution whose pH value can range from 1 to 9. All rare earths and yttrium are first adsorbed on a cation exchange resin, and they are then eluted with a solution of N-hydroxyethylethylenediaminetriacetic acid (HEDTA) in the order of decreasing atomic number, yttrium behaving like element 61; the effluents are collected in fractions. The HEDTA is recovered by elution with ammonia solution and the resin is regenerated with sulfuric acid. Rare earths are precipitated from the various effluents with oxalic acid, and each supernatant is passed over cation exchange resin for adsorption of HEDTA and nonprecipitated rare earths: the oxalic acid is not retained by the resin.

  4. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    PubMed

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-01

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application. PMID:26266695

  5. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    NASA Astrophysics Data System (ADS)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  6. A study of the formation and dynamics of the Earth's plasma sheet using ion composition data

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.

    1994-01-01

    Over two years of data from the Lockheed Plasma Composition Experiment on the ISEE 1 spacecraft, covering ion energies between 100 eV/e and about 16 keV/e, have been analyzed in an attempt to extract new information about three geophysical issues: (1) solar wind penetration of the Earth's magnetic tail; (2) relationship between plasma sheet and tail lobe ion composition; and (3) possible effects of heavy terrestrial ions on plasma sheet stability.

  7. A multiscale study of ion heating in Earth's magnetotail

    NASA Astrophysics Data System (ADS)

    Lapenta, Giovanni; Ashour-Abdalla, Maha; Walker, Raymond J.; El Alaoui, Mostafa

    2016-01-01

    Ion heating during a substorm on 15 February 2008, starting at 0348 UT, is studied with a new approach recently described in Ashour-Abdalla et al. (2015). The general conditions of the magnetotail are obtained from a global magnetohydrodynamic (MHD) model and are used to drive a full kinetic particle-in-cell (PIC) simulation of a 3-D region of the tail. Within the kinetic box, the ions, the electrons, and the fields evolve self-consistently. The large scales are captured by the MHD model and the small scales by the PIC model based on the MHD state. This approach is used to study ion heating. Different heating mechanisms were analyzed by examining the velocity distributions at different locations. In the x direction heating occurs as the reconnection-generated ion jet interacts with the environment in which it propagates. The heating is found mostly in the separatrices and increases downstream of the reconnection region. In the y direction the heating is less intense and is found near the dipolarization fronts. It occurs as ions become magnetized and gyrotropize the distribution function. In addition, ions can be heated in the y direction by the reconnection electric field near the reconnection site. In the z direction the ions are heated by the formation of beams moving along z between the separatrices.

  8. Relationship between Salivary Alkaline Phosphatase Enzyme Activity and The Concentrations of Salivary Calcium and Phosphate Ions

    PubMed Central

    Jazaeri, Mina; Malekzadeh, Hosein; Abdolsamadi, Hamidreza; Rezaei-Soufi, Loghman; Samami, Mohammad

    2015-01-01

    Although salivary alkaline phosphatase (ALP) can balance deand remineralization processes of enamel, there is no evidence regarding its effects on the concentrations of calcium and phosphate in saliva. The present study aims to determine the relationship between salivary ALP activity and the concentrations of calcium and phosphate in saliva. In this cross-sectional study, we evaluated salivary markers in 120 males, ages 19 to 44 years. All participants provided 5 mL of unstimulated whole saliva and the level of enzyme activity as well as calcium and phosphate concentrations were measured using a colorimetric method. Data were gathered and analyzed by statistical package for social sciences (SPSS) 13.00 using Pearson correlation test. A p value of <0.05 was considered statistically significant. The mean age of participants in the present study was 32.95 ± 8.09 years. The mean pH of saliva was 6.65 ± 0.62. Salivary parameters included average ALP activity (5.04 ± 1.866 U/dL), calcium (4.77 ± 0.877 mg/dL) and phosphate (10.38 ± 2.301 mg/dL). Pearson correlation test showed no significant relationship between ALP activity and calcium and phosphate concentrations in saliva (p>0.05). According to the results of the present study, there was no significant relation between salivary ALP activity and calcium and phosphate concentrations in saliva. However, further research is highly recommended. PMID:25870846

  9. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    SciTech Connect

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  10. Relationship between Salivary Alkaline Phosphatase Enzyme Activity and The Concentrations of Salivary Calcium and Phosphate Ions.

    PubMed

    Jazaeri, Mina; Malekzadeh, Hosein; Abdolsamadi, Hamidreza; Rezaei-Soufi, Loghman; Samami, Mohammad

    2015-01-01

    Although salivary alkaline phosphatase (ALP) can balance deand remineralization processes of enamel, there is no evidence regarding its effects on the concentrations of calcium and phosphate in saliva. The present study aims to determine the relationship between salivary ALP activity and the concentrations of calcium and phosphate in saliva. In this cross-sectional study, we evaluated salivary markers in 120 males, ages 19 to 44 years. All participants provided 5 mL of unstimulated whole saliva and the level of enzyme activity as well as calcium and phosphate concentrations were measured using a colorimetric method. Data were gathered and analyzed by statistical package for social sciences (SPSS) 13.00 using Pearson correlation test. A p value of <0.05 was considered statistically significant. The mean age of participants in the present study was 32.95 ± 8.09 years. The mean pH of saliva was 6.65 ± 0.62. Salivary parameters included average ALP activity (5.04 ± 1.866 U/dL), calcium (4.77 ± 0.877 mg/dL) and phosphate (10.38 ± 2.301 mg/dL). Pearson correlation test showed no significant relationship between ALP activity and calcium and phosphate concentrations in saliva (p>0.05). According to the results of the present study, there was no significant relation between salivary ALP activity and calcium and phosphate concentrations in saliva. However, further research is highly recommended. PMID:25870846

  11. Detection of singly ionized energetic lunar pick-up ions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Hilchenbach, M.; Hovestadt, D.; Klecker, B.; Moebius, E.

    1992-01-01

    Singly ionized suprathermal ions upstream of the earth's bow shock have been detected by using the time-of-flight spectrometer SULEICA on the AMPTE/IRM satellite. The data were collected between August and December 1985. The flux of the ions in the mass range between 23 and 37 amu is highly anisotropic towards the earth. The ions are observed with a period of about 29 days around new moon (+/- 3 days). The correlation of the energy of the ions with the solar wind speed and the interplanetary magnetic field orientation indicates the relation to the pick-up process. We conclude that the source of these pick-up ions is the moon. We argue that due to the impinging solar wind, atoms are sputtered off the lunar surface, ionized in the sputtering process or by ensuing photoionization and picked up by the solar wind.

  12. Energization of Ions in near-Earth current sheet disruptions

    NASA Technical Reports Server (NTRS)

    Taktakishvili, A.; Lopez, R. E.; Goodrich, C. C.

    1995-01-01

    In this study we examine observations made by AMPTE/CCE of energetic ion bursts during seven substorm periods when the satellite was located near the neutral sheet, and CCE observed the disruption cross-tail current in situ. We compare ion observations to analytic calculations of particle acceleration. We find that the acceleration region size, which we assume to be essentially the current disruption region, to be on the order of 1 R(sub E). Events exhibiting weak acceleration had either relatively small acceleration regions (apparently associated with pseudobreakup activity on the ground) or relatively small changes in the local magnetic field (suggesting that the magnitude of the local current disruption region was limited). These results add additional support for the view that the particle bursts observed during turbulent current sheet disruptions are due to inductive acceleration of ions.

  13. Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase.

    PubMed

    Chaudhuri, Gouri; Shah, Gaurav A; Dey, Pritam; S, Ganesh; Venu-Babu, P; Thilagaraj, W Richard

    2013-01-01

    The study was aimed at investigating the potential use of calf intestinal alkaline phosphatase (CIAP) enzyme in the removal of heavy metals (Cd(2+), Ni(2+), Co(2+) and Cr(3+/6+)) from single ion solutions as well as tannery and electroplating effluents. CIAP mediated bioremediation (white biotechnology) is a novel technique that is eco-friendly and cost effective unlike the conventional chemical technologies. Typical reactions containing the enzyme (CIAP) and p-nitrophenyl phosphate (pNPP) as substrate in Tris-HCl buffer (pH 8 and 11) and either single ion metal solutions (250 ppm and 1000 ppm) or effluents from tannery or electroplating industry were incubated at 37°C for 30 min, 60 min and 120 min. The inorganic phosphate (P(i)) generated due to catalytic breakdown of pNPP complexes free metal ions as metal-phosphate and the amount of metal precipitated was derived by estimating the reduction in the free metal ion present in the supernatant of reactions employing atomic absorption spectrophotometer (AAS). Better precipitation of metal was obtained at pH 11 than at pH 8 and between the two concentrations of different metals tested, an initial metal concentration of 250 ppm in the reaction gave more precipitation than with 1000 ppm. Experimental data showed that at pH 11, the percentage of removal of metal ions (for an initial concentration of 250 ppm) was in the following order: Cd(2+) (80.99%) > Ni(2+) (64.78%) > Cr(3+) > (46.15%) > Co(2+) (36.47%) > Cr(6+) (32.33%). The overall removal of Cr(3+) and Cr(6+) from tannery effluent was 32.77% and 37.39% respectively in 120 min at pH 11. Likewise, the overall removal of Cd(2+), Co(2+) and Ni(2+) from electroplating effluent was 50.42%, 13.93% and 38.64% respectively in 120 min at pH 11. The study demonstrates that bioprecipitation by CIAP may be a viable and environmental friendly method for clean-up of heavy metals from tannery and electroplating effluents. PMID:23030390

  14. The electromagnetic ion beam instability upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Gosling, J. T.; Forslund, D. W.

    1981-01-01

    The linear theory of the electromagnetic ion beam instability for arbitrary angles of propagation has been studied. The parameters considered in the theory are typical of the solar wind upstream of the earth's bow shock when a 'reflected' proton beam is present. Maximum growth occurs for propagation parallel to the ambient magnetic field B, but this instability also displays significant growth at wave-vectors oblique to B. Oblique, unstable modes seem to be the likely source of the compressive magnetic fluctuations recently observed in conjunction with the 'diffuse' ion population. An energetic ion beam does not directly give rise to linear growth of either ion acoustic or whistler mode instabilities.

  15. Rare earth ion doped non linear laser crystals

    NASA Astrophysics Data System (ADS)

    Jaque, D.; Romero, J. J.; Ramirez, M. O.; Garcia, J. A. S.; de Las Heras, C.; Bausa, L. E.; Sole, J. G.

    2003-01-01

    We show how non linear crystals activated with Yb3+ or Nd3+ ions can be used to develop diode pumped solid state lasers emitting in the visible region of the electromagnetic spectrum. For this purpose we have selected relevant examples of systems investigated in our laboratory.

  16. Quantum CPF gates between rare earth ions through measurement

    NASA Astrophysics Data System (ADS)

    Xiao, Yun-Feng; Han, Zheng-Fu; Yang, Yong; Guo, Guang-Can

    2004-09-01

    We propose a method to realize quantum controlled phase flip (CPF) through interaction between a single-photon pulse and two microsphere cavities with a single three-level ion respectively and final photonic measurement. Our CPF gates are scalable with extremely high fidelity and low error rate, and are more applicable based on current laboratory cavity-QED technology.

  17. Multispacecraft observations of diffuse ions upstream of Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Kis, A.; Scholer, M.; Klecker, B.; Moebius, E.; Lucek, E.; Reme, H.

    We present observations of upstream ions at times of large separation distance between the Cluster spacecraft (~5000 km). On 18 February, 2003, during particulary quiet interplanetary conditions, the Cluster spacecraft were moving inbound through the foreshock region, where for more than 12 hours they simultaneously observed a continuous presence of a diffuse ion population. Using the HIA and CODIF sensors of the CIS plasma instrument onboard SC-1 and -3, we were able to directly measure the upstream ion density gradients in the energy range 10-32 keV in several energy bands. During this time period, the spacecraft distance from the bow shock parallel to the local magnetic field varies considerably (between 0 and 15 Re). The distance to the bow shock has been determined by using upstream magnetic field and plasma parameters and a bow shock model. We find up to 10 Re from the bow shock an exponential decrease of the upstream ion density, with an e-folding distance increasing from 3.1 to 5.6 Re at energies from 10 keV to 32 keV, respectively. From the e-folding distance the parallel diffusion coefficient and its energy dependence can be determined. At distances more than 10 Re the gradient is close to zero.

  18. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  19. Magic-wave-induced {sup 1}S{sub 0}-{sup 3}P{sub 0} transition in even isotopes of alkaline-earth-metal-like atoms

    SciTech Connect

    Ovsiannikov, Vitaly D.; Pal'chikov, Vitaly G.; Taichenachev, Alexey V.; Yudin, Valeriy I.; Katori, Hidetoshi; Takamoto, Masao

    2007-02-15

    The circular polarized laser beam of the 'magic' wavelength may be used for mixing the {sup 3}P{sub 1} state into the long-living metastable state {sup 3}P{sub 0}, thus enabling the strictly forbidden {sup 1}S{sub 0}-{sup 3}P{sub 0} 'clock' transition in even isotopes of alkaline-earth-metal-like atoms, without a change of the transition frequency. In odd isotopes the laser beam may adjust to an optimum value the linewidth of the clock transition, originally enabled by the hyperfine mixing. We present a detailed analysis of various factors influencing resolution and uncertainty for an optical frequency standard based on atoms exposed simultaneously to the lattice standing wave and an additional 'state-mixing' wave, including estimations of the 'magic' wavelengths, Rabi frequencies for the clock and state-mixing transitions, ac Stark shifts for the ground and metastable states of divalent atoms.

  20. Determination of rare earth elements, uranium and thorium in geological samples by ICP-MS, using an automatic fusion machine as an alkaline digestion tool.

    NASA Astrophysics Data System (ADS)

    Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia

    2014-05-01

    At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v

  1. Transport toward earth of ions sputtered from the moon's surface by the solar wind

    NASA Astrophysics Data System (ADS)

    Cladis, J. B.; Francis, W. E.; Vondrak, R. R.

    1994-01-01

    The transport of typical ions from the surface of the Moon to the vicinity of Earth was calculated using a test particle approach. It was assumed that the ions were sputtered from the surface by the solar wind, with fluxes in the range determined experimentally by Elphic et al. (1991), and were accelerated initially to 10 eV by the potential of the Moon on its sunlit side. Si(+) and Ca(+) ions were selected for this transport analysis because their masses are within two prominent ion mass groups that have high sputtering yields. In the solar wind the ion trajectories were traced in the following superimposed fields: (1) a steady magnetic field B0 at an angle of 45 deg to the solar wind velocity VSW, (2) the motional electric field Ezero = -V(sub SW x B0, and (3) turbulent magnetic and electric fields generated by hydromagnetic waves with a k-space power spectrum of absolute value of k-5/3 propagating along both directions of the magnetic field B0. Interactions with Earth's bow shock and magnetosphere were included. Case histories of the ions were recorded in the XGSM, YGSM plane and in various planes perpendicular to the E0 x B0 drift direction of the ions between the Moon and Earth. The number density, energy and angular distributions, and directional and omnidirectional fluxes of the ions were constructed from the case histories. It was found that the diffusion of the ions increases rapidly as the amplitude of the turbulence delta Brms increases beyond the value 0.04 B0. Recent measurements of lunar ions upstream of the bow shock by Hilchenbach et al. (1992) generally confirm the predicted behavior of the ions.

  2. Spin-orbit thermal entanglement in a rare-earth-metal ion: Susceptibility witness

    NASA Astrophysics Data System (ADS)

    Duarte, O. S.; Castro, C. S.; Reis, M. S.

    2013-07-01

    In the present work, we explore the thermal entanglement between spin and orbital angular momentum in a rare-earth ion. A witness, based on the magnetic susceptibility and capable of revealing entanglement between these two angular momenta of different nature, is introduced. We found entanglement temperatures of 322 K for promethium and 715 K for samarium. These high temperatures make interesting the use of rare-earth in applications of quantum-information processes at room temperature.

  3. Observations of nonadiabatic acceleration of ions in Earth`s magnetotail

    SciTech Connect

    Frank, L.A.; Paterson, W.R.; Kivelson, M.G.

    1994-08-01

    The authors present observations of the three-dimensional velocity distributions of protons in the energy range 20 eV to 52 keV at locations within and near the current sheet of Earth`s magnetotail at geocentric radial distances 35 to 87 R{sub E}. These measurements were acquired on December 8, 1990, with a set of electrostatic analyzers on board the Galileo spacecraft during its approach to Earth in order to obtain one of its gravitational assists to Jupiter. It is found that the velocity distributions are inadequately described as quasi-Maxwellian distributions such as those found in the central plasma sheet at positions nearer to Earth. Instead the proton velocity distributions can be categorized into two major types. The first type is the `lima bean` shaped distribution with high-speed bulk flows and high temperatures that are similar to those found nearer to Earth in the plasma sheet boundary layer. The second type consists of colder protons with considerably lesser bulk flow speeds. Examples of velocity distributions are given for the plasma mantle, a region near the magnetic neutral line, positions earthward and tailward of the neutral line, and the plasma sheet boundary layer. At positions near the neutral line, only complex velocity distributions consisting of the colder protons are found, whereas both of the above types of distributions are found in and near the current sheet at earthward and tailward locations. Bulk flows are directed generally earthward and tailward at positions earthward and tailward of the neutral line, respectively. Only the high-speed, hot distribution is present in the plasma sheet boundary layer. The observations are interpreted in terms of the nonadiabatic acceleration of protons that flow into the current sheet from the plasma mantle. For this interpretation the hot, {open_quotes}lima bean{close_quotes} shaped distributions are associated with meandering, or Speiser, orbits in the current sheet. 31 refs., 13 figs.

  4. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    SciTech Connect

    Xia Zhengqiang; Chen Sanping; Wei Qing; Qiao Chengfang

    2011-07-15

    Two new energetic compounds, [M(BTE)(H{sub 2}O){sub 5}]{sub n} (M=Sr(1), Ba(2)) [H{sub 2}BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs linked up by two independent binding modes of H{sub 2}BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face {pi}-{pi} stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper. - Graphical abstract: Two novel 2D isomorphous alkaline earth metal complexes were assembled by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two independent binding modes of H{sub 2}BTE ligands, and the catalytic performances toward thermal decomposition of ammonium perchlorate and photoluminescent properties of them were investigated. Highlights: > Two novel alkaline earth energetic coordination polymers have been prepared.{yields} Both structures are layered based on 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two distinct H{sub 2}BTE coordination modes.{yields} The dehydrated products of the compounds possess good thermostability and significant catalytic effects on thermal decomposition of AP.

  5. Trivalent rare-earth ions as photon down-shifter for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Steudel, Franziska; Loos, Sebastian; Ahrens, Bernd; Schweizer, Stefan

    2014-05-01

    Rare-earth doped borate glasses are investigated for their potential as photon down-shifting cover glass for CdTe solar cells. Note, that CdTe solar cells have a poor response in the ultraviolet and blue spectral range due to absorption in the CdS buffer layer having a band gap of 2.4 eV. The following trivalent rare-earth ions are analyzed in detail: Sm3+, Eu3+, and Tb3+. These ions provide strong absorption bands in the ultraviolet / blue spectral range and an intense emission in the red (Sm3+ and Eu3+) or green (Tb3+) spectral range. The gain in short-circuit current density of a CdTe solar cell is calculated for different rare-earth ion concentrations. The calculations are based on the rare-earth's absorption coefficients as well as their photoluminescence (PL) quantum efficiency. For Sm3+, the PL quantum efficiency depends significantly on the doping concentration. Finally, the potential of double-doped borate glasses, i.e. glasses doped with two different rare-earth ions, is investigated.

  6. Luminescent instabilities in dense rare earth ion systems

    NASA Astrophysics Data System (ADS)

    Kuditcher, Amos

    1999-11-01

    This thesis reports experiments and theory on intrinsic mirrorless bistability in the luminescence of ytterbium- doped crystals and glasses. The main results are the observation of intrinsically bistable luminescence at room temperature and chromatic switching at low temperature, reported here for the first time. The nonlinear dynamics responsible for these optical phenomena are shown to arise from ion-ion interactions controlled by the application of resonant electromagnetic fields. On the theoretical side, the classical Lorentz local field correction is shown to be the lowest order term of radiation-driven correlation contributions to local polarization which arise from inter-ion coherences and cooperative relaxation and frequency shifts beyond the dynamic shift are predicted. The nonlinear Maxwell-Bloch equations are extended to describe energy transfer between different species of ions predicting bistability in excited state populations which then emit bistable luminescence as a consequence, and an intensity dependent transfer rate is predicted. Diffusive excitation migration in space is also explored as a possible mechanism for generating multiple instabilities, but is not predicted to give rise to hysteresis loops by itself. On the experimental side, original observations of intrinsic optical switching and hysteresis are reported in the luminescence of Yb:CsCdBr 3 and Yb, Tm:glass. Evidence of cross-coupling between different impurities is also presented, together with spectroscopic details of intrinsic chromatic switching between different luminescent transitions of the acceptor species in Yb, Er:CsCdBr3 excited at the infrared Yb resonance wavelength. Conclusive spectroscopic evidence that excludes thermal effects as responsible for low temperature intrinsic switching is also presented. Room temperature intrinsic optical switching and hysteresis are reported for the first time in bulk Yb,Tm:glass samples. Switching, hysteresis, and clamping of laser output

  7. Ion distributions in the Earth's foreshock upstream from the bow shock

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.

    1995-01-01

    A variety of suprathermal and energetic ion distributions are found upstream from shocks. Some distributions, such as field-aligned beams, are generated directly at the shock either through reflection processes or through leakage from the hotter downstream region. Other distributions, such as intermediate distributions, evolve from these parent distributions through wave-particle interactions. This paper reviews our current understanding of the creation and evolution of suprathermal distributions at shocks. Examples of suprathermal ion distributions are taken from observations at the Earth's bow shock. Particular emphasis is placed on the creation of field-aligned beams and specularly reflected ion distributions and on the evolution of these distributions in the Earth's ion foreshock. However, the results from this heavily studied region are applicable to interplanetary shocks, bow shocks at other planets, and comets.

  8. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  9. Chromatography of alkaline earths and transition metals on tin(iv) arsenosilicate and arsenophosphate thin layers in buffered EDTA solutions

    SciTech Connect

    Varshney, K.G.; Anwar, S.; Khan, A.A.

    1985-01-01

    The complex forming ability of ethylene diamine tetraacetic acid at various pH values and the ion exchange behavior of tin(IV) arsenosilicate and arsenophosphate cation exchangers have been combined in a chromatographic study of some metal ions. As a result some interesting observations have been made, which have led to certain analytically difficult separations such as Ca/sup 2 +/ -Sr/sup 2 +/, Ca/sup 2 +/ -Ba/sup 2 +/ and Hg/sup 2 +/ from Cu/sup 2 +/, Ni/sup 2 +/, Zn/sup 2 +/, Co/sup 2 +/ and Mn/sup 2 +/.

  10. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  11. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  12. A new method for the determination of the nitrogen content of nitrocellulose based on the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis.

    PubMed

    Alinat, Elodie; Delaunay, Nathalie; Archer, Xavier; Mallet, Jean-Maurice; Gareil, Pierre

    2015-04-01

    A new method was proposed to determine the nitrogen content of nitrocelluloses (NCs). It is based on the finding of a linear relationship between the nitrogen content and the molar ratio of nitrite-to-nitrate ions released after alkaline hydrolysis. Capillary electrophoresis was used to monitor the concentration of nitrite and nitrate ions. The influences of hydrolysis time and molar mass of NC on the molar ratio of nitrite-to-nitrate ions were investigated, and new insights into the understanding of the alkaline denitration mechanism of NCs, underlying this analytical strategy is provided. The method was then tested successfully with various explosive and non-explosive NC-containing samples such as various daily products and smokeless gunpowders. Inherently to its principle exploiting a concentration ratio, this method shows very good repeatability in the determination of nitrogen content in real samples with relative standard deviation (n = 3) inferior to 1.5%, and also provides very significant advantages with respect to sample extraction, analysis time (1h for alkaline hydrolysis, 3 min for electrophoretic separation), which was about 5 times shorter than for the classical Devarda's method, currently used in industry, and safety conditions (no need for preliminary drying NC samples, mild hydrolysis conditions with 1M sodium hydroxide for 1h at 60 °C). PMID:25562808

  13. Formation of ion acoustic solitary waves upstream of the earth's bow shock. [in solar wind

    NASA Technical Reports Server (NTRS)

    Pangia, M. J.; Lee, N. C.; Parks, G. K.

    1985-01-01

    The turbulent plasma development of Lee and Parks is applied to the solar wind approaching the earth's bow shock region. The ponderomotive force contribution is due to ion acoustic waves propagating in the direction of the ambient magnetic field. In this case, the envelope of the ion acoustic wave is shown to satisfy the cubic Schroedinger equation. Modulational instabilities exist for waves in the solar wind, thereby predicting the generation of solitary waves. This analysis further identifies that the ion acoustic waves which exhibit this instability have short wavelengths.

  14. An experimental test of the electromagnetic ion cyclotron instability within the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Mcpherron, R. L.

    1980-01-01

    Examples of propagating electromagnetic Alfven/ion cyclotron waves in plasma particle and magnetic field data observed by the ATS-6 geostationary satellite are discussed. These waves were viewed mainly near the afternoon and dusk regions of the earth's magnetosphere with normalized frequencies in the 0.05 to 0.5 range. Two wave events were analyzed: both appeared coincidentally with the encounter of cool plasma populations which joined the hot populations already present. An electromagnetic ion cyclotron instability was proposed as the wave generation mechanism; this theory was tested by evaluating the linear growth integrals under the measured anisotropic hot ion distribution.

  15. Optical spectra of triply-charged rare-earth ions in polycrystalline corundum

    NASA Astrophysics Data System (ADS)

    Kaplyanskiĭ, A. A.; Kulinkin, A. B.; Kutsenko, A. B.; Feofilov, S. P.; Zakharchenya, R. I.; Vasilevskaya, T. N.

    1998-08-01

    Solid samples of polycrystalline corundum α-Al2O3 activated by triply-charged rare-earth ions RE3+ (R=Eu3+, Er3+, Pr3+) were synthesized by the sol-gel technology. Characteristic narrow-line optical absorption and luminescence spectra produced by intraconfigurational 4 f-4 f transitions in RE3+ ions have been measured. RE3+ ions have been established to form one dominant type of optical centers in the corundum matrix, and the energy diagram of Eu3+ and Er3+ Stark levels in corundum has been determined.

  16. Behaviour of Paramagnetic Light Rare Earth Ions in LRE-123 Superconductors

    NASA Astrophysics Data System (ADS)

    Jirsa, M.; Rameš, M.; Muralidhar, M.; Volochová, D.; Diko, P.

    The slightly curved paramagnetic background (due to Brillouin dependence) of the paramagnetic light rare earth ions in 123 superconductors mixes below Tc with reversible magnetization, which hinders evaluation of the associated thermodynamic characteristics. We propose a method how to determine the effective number of magnetons per ion, the principal parameter of the Brillouin function course, even in materials with pores, with unknown or varying density and/or the local composition. The method was tested on various types of compounds containing Gd ions, like pure Gd-211, tetragonal Gd-123, (Y,Gd)-123, and (Nd,Eu,Gd)- 123 and on orthorhombic (oxygenated) Gd-123 and (Nd,Eu,Gd)-123.

  17. Performance and Comparison of Lithium-Ion Batteries Under Low-Earth-Orbit Mission Profiles

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Smart, Marshall C.; Bugga, Ratnakumar V.; Manzo, Michelle A.; Miller, Thomas B.; Gitzendanner, Rob

    2007-01-01

    The performance of two 28 V, 25 Ah lithium-ion batteries is being evaluated under low-Earth-orbit mission profiles for satellite and orbiter applications. The batteries are undergoing life testing and have achieved over 12,000 cycles to 40 percent depth-of-discharge.

  18. Investigations of hyperfine and isotope structures in optical spectra of crystals with rare-earth ions

    NASA Astrophysics Data System (ADS)

    Popova, M. N.

    2015-10-01

    This is a review of works on hyperfine and isotope structures in the spectra of rare-earth ions in crystals that have been performed at the Laboratory of Fourier Spectroscopy of the Institute for Spectroscopy, Russian Academy of Sciences. The applicability of these studies to the development of optical quantum memory is discussed.

  19. The effect of V 2O 5 on alkaline earth zinc borate glasses studied by EPR and optical absorption

    NASA Astrophysics Data System (ADS)

    Sumalatha, B.; Omkaram, I.; Rajavardhana Rao, T.; Linga Raju, Ch.

    2011-12-01

    10 wt% SrO:30 wt% ZnO:60 wt% B 2O 3 incorporated with different vanadyl concentrations were studied by means of electron paramagnetic resonance (EPR) and optical absorption techniques. The spin-Hamiltonian parameters ( g and A), bonding parameters ( α2 and β2∗2) and Fermi contact interaction parameter K have been calculated. The values of spin-Hamiltonian parameters indicate that the VO 2+ ions in strontium zinc borate glasses were present in octahedral sites with tetragonal compression. The spin concentration ( N) participating in resonance was calculated as a function of temperature (93-273 K) for strontium zinc borate glass sample containing 0.9 wt% of VO 2+ ions and the activation energy ( Ea) was calculated. From the EPR data, the paramagnetic susceptibility ( χ) was calculated at various temperatures and the Curie constant ( C) was evaluated from the 1/ χ- T graph. The optical absorption spectra of VO 2+ ions in these glasses show two bands corresponding to the transitions 2B 2g → 2B 1g and 2B 2g → 2E g in the order of decreasing energy respectively. The optical band gap energies ( Eopt) and Urbach energy (Δ E) have been determined from their ultraviolet edges. The theoretical values of optical basicity ( Λth) of these glasses have also been evaluated.

  20. Observation of Photon Echoes From Evanescently Coupled Rare-Earth Ions in a Planar Waveguide

    NASA Astrophysics Data System (ADS)

    Marzban, Sara; Bartholomew, John G.; Madden, Stephen; Vu, Khu; Sellars, Matthew J.

    2015-07-01

    We report the measurement of the inhomogeneous linewidth, homogeneous linewidth, and spin-state lifetime of Pr3 + ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3 +∶Y2SiO5 crystal allows the 3H4↔1D2 transition of Pr3 + ions to be probed by the optical evanescent field that extends into the substrate. The 2-GHz inhomogeneous linewidth, the optical coherence time of 70 ±5 μ s , and the spin-state lifetime of 9.8 ±0.3 s indicate that the properties of ions interacting with the waveguide mode are consistent with those of bulk ions. This result establishes the foundation for large, integrated, and high performance rare-earth-ion quantum systems based on a waveguide platform.

  1. Observational evidence on the origin of ions upstream of the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Schwartz, S. J.

    1983-01-01

    The kinematic formalism described by Schwartz et al. (1983) is used to quantitatively compare the zeroth order predicted energies for four different source hypotheses for ions detected upstream of the earth's bow shock with previously published observations of upstream field-aligned beams and gyrating ion events. Specular reflection of a fraction of the incident solar wind is found to be the most credible explanation of gyrating ion events observed upstream of shocks ranging from quasi-parallel to nearly perpendicular. The recent hypothesis that field-aligned beams are the result of leakage from the magnetosheath of ions which were originally specularly reflected at quasi-perpendicular portions of the shock provides good agreement with observed energies of many field-aligned beams. Only magnetic moment conserving reflection of solar wind ions is capable of accounting for two very energetic beam events.

  2. Observation of Photon Echoes From Evanescently Coupled Rare-Earth Ions in a Planar Waveguide.

    PubMed

    Marzban, Sara; Bartholomew, John G; Madden, Stephen; Vu, Khu; Sellars, Matthew J

    2015-07-01

    We report the measurement of the inhomogeneous linewidth, homogeneous linewidth, and spin-state lifetime of Pr3+ ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3+∶Y2SiO5 crystal allows the 3H4↔1D2 transition of Pr3+ ions to be probed by the optical evanescent field that extends into the substrate. The 2-GHz inhomogeneous linewidth, the optical coherence time of 70±5  μs, and the spin-state lifetime of 9.8±0.3  s indicate that the properties of ions interacting with the waveguide mode are consistent with those of bulk ions. This result establishes the foundation for large, integrated, and high performance rare-earth-ion quantum systems based on a waveguide platform. PMID:26182097

  3. Coupling of a locally implanted rare-earth ion ensemble to a superconducting micro-resonator

    SciTech Connect

    Wisby, I. Tzalenchuk, A. Ya.; Graaf, S. E. de; Adamyan, A.; Kubatkin, S. E.; Gwilliam, R.; Meeson, P. J.; Lindström, T.

    2014-09-08

    We demonstrate the coupling of rare-earth ions locally implanted in a substrate (Gd{sup 3+} in Al{sub 2}O{sub 3}) to a superconducting NbN lumped-element micro-resonator. The hybrid device is fabricated by a controlled ion implantation of rare-earth ions in well-defined micron-sized areas, aligned to lithographically defined micro-resonators. The technique does not degrade the internal quality factor of the resonators which remain above 10{sup 5}. Using microwave absorption spectroscopy, we observe electron-spin resonances in good agreement with numerical modelling and extract corresponding coupling rates of the order of 1 MHz and spin linewidths of 50–65 MHz.

  4. Lack of marked cyto- and genotoxicity of cristobalite in devitrified (heated) alkaline earth silicate wools in short-term assays with cultured primary rat alveolar macrophages.

    PubMed

    Ziemann, Christina; Harrison, Paul T C; Bellmann, Bernd; Brown, Robert C; Zoitos, Bruce K; Class, Philippe

    2014-02-01

    Alkaline earth silicate (AES) wools are low-biopersistence high-temperature insulation wools. Following prolonged periods at high temperatures they may devitrify, producing crystalline silica (CS) polymorphs, including cristobalite, classified as carcinogenic to humans. Here we investigated the cytotoxic and genotoxic significance of cristobalite present in heated AES wools. Primary rat alveolar macrophages were incubated in vitro for 2 h with 200 µg/cm² unheated/heated calcium magnesium silicate wools (CMS1, CMS2, CMS3; heat-treated for 1 week at, or 4 weeks 150 °C below, their respective classification temperatures) or magnesium silicate wool (MS; heated for 24 h at 1260 °C). Types and quantities of CS formed, and fiber size distribution and shape were determined by X-ray diffraction and electron microscopy. Lactate dehydrogenase release and alkaline and hOGG1-modified comet assays were used, ± aluminum lactate (known to quench CS effects), for cytotoxicity/genotoxicity screening. Cristobalite content of wools increased with heating temperature and duration, paralleled by decreases in fiber length and changes in fiber shape. No marked cytotoxicity, and nearly no (CMS) or only slight (MS) DNA-strand break induction was observed, compared to the CS-negative control Al₂O₃, whereas DQ12 as CS-positive control was highly active. Some samples induced slight oxidative DNA damage, but no biological endpoint significantly correlated with free CS, quartz, or cristobalite. In conclusion, heating of AES wools mediates changes in CS content and fiber length/shape. While changes in fiber morphology can impact biological activity, cristobalite content appears minor or of no relevance to the intrinsic toxicity of heated AES wools in short-term assays with rat alveolar macrophages. PMID:24495247

  5. Heterometallic Alkaline Earth-Lanthanide Ba(II)-La(III) Microporous Metal-Organic Framework as Bifunctional Luminescent Probes of Al(3+) and MnO4(.).

    PubMed

    Ding, Bin; Liu, Shi Xin; Cheng, Yue; Guo, Chao; Wu, Xiang Xia; Guo, Jian Hua; Liu, Yuan Yuan; Li, Yan

    2016-05-01

    In this work a rigid asymmetrical tricarboxylate ligand p-terphenyl-3,4″,5-tricarboxylic acid (H3L) has been employed, and a unique heterometallic alkaline earth-lanthanide microporous luminescent metal-organic framework (MOF) {[Ba3La0.5(μ3-L)2.5(H2O)3(DMF)]·(3DMF)}n (1·3DMF) (DMF = dimethylformamide) has been isolated under solvothermal conditions. Single-crystal X-ray structural analysis demonstrates that 2D inorganic Ba-O-La connectivity can be observed in 1, which are further bridged via rigid terphenyl backbones of L(3-), forming a unique I(2)O(1)-type microporous luminescent framework. A 1D microporous channel with dimensionality of 9.151(3) Å × 10.098(1) Å can be observed along the crystallographic a axis. PXRD patterns have been investigated indicating pure phases of 1. The luminescence explorations demonstrated that 1 exhibits highly selective and sensitive sensing for Al(3+) over other cations with high quenching efficiency Ksv value of 1.445 × 10(4) L·mol(-1) and low detection limit (1.11 μM (S/N = 3)). Meanwhile 1 also exhibits highly selective and sensitive sensing for MnO4(-) over other anions with quenching efficiency Ksv = 7.73 × 10(3) L·mol(-1) and low detection limit (0.28 μM (S/N = 3)). It is noted that, when different concentrations of MnO4(-) solutions (0.5 to 100 μM) were dropped into the suspension of 1, the bright blue luminescence of the suspension observed under UV light can gradually change into pink color, indicating visually luminescent sensing, which makes the detection process of MnO4(-) more convenient in practical. The result also reveals that 1 represents the first example of bifunctional heterometallic alkaline earth-lanthanide MOF-based luminescent probes for selectively detecting Al(3+) and MnO4(-) in the water solutions. PMID:27088966

  6. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  7. Emerging cool white light emission from Dy(3+) doped single phase alkaline earth niobate phosphors for indoor lighting applications.

    PubMed

    Vishwakarma, Amit K; Jha, Kaushal; Jayasimhadri, M; Sivaiah, B; Gahtori, Bhasker; Haranath, D

    2015-10-21

    Single-phase cool white-light emitting BaNb2O6:Dy(3+) phosphors have been synthesized via a conventional solid-state reaction method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) observations and spectrofluorophotometric measurements. XRD and Rietveld structural refinement studies confirm that all the samples exhibit pure orthorhombic structure [space group -C2221(20)]. SEM observations reveal the dense particle packaging with irregular morphology in a micron range. The as-prepared phosphors exhibit blue (482 nm) and yellow (574 nm) emissions under 349, 364, 386 and 399 nm excitations corresponding to (4)F9/2→(6)HJ (J = 15/2, 13/2) transitions of Dy(3+) ions. The energy transfer mechanism between Dy(3+) ions has been studied in detail and the luminescence decay lifetime for the (4)F9/2 level was found to be around 146.07 μs for the optimized phosphor composition. The calculated Commission Internationale de L'Eclairage (CIE) chromaticity coordinates for the optimized phosphor are (x = 0.322, y = 0.339), which are close to the National Television Standard Committee (NTSC) (x = 0.310, y = 0.316) coordinates. The values of CIE chromaticity coordinates and correlated color temperature (CCT) of 5907 K endorse cool white-light emission from the phosphor. The study reveals that BaNb2O6:Dy(3+) phosphor could be a potential candidate for near ultra-violet (NUV) excited white-LED applications. PMID:26374377

  8. Ion velocity distributions in the vicinity of the current sheet in Earth's distant magnetotail

    NASA Technical Reports Server (NTRS)

    Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Kivelson, M. G.; Yamamoto, T.; Fairfield, D. H.

    1994-01-01

    Observations of the three-dimensional velocity distributions of positive ions and electrons have been recently gained for the first time in Earth's distant magnetotail with the Galileo and Geotail spacecraft. For this brief discussion of these exciting results the focus is on the overall character of the ion velocity distributions during substorm activity. The ion velocity distributions within and near the magnetotail current sheet are not accurately described as convecting, isotropic Maxwellians. The observed velocity distributions are characterized by at least two robust types. The first type is similar to the 'lima bean'-shaped velocity distributions that are expected from the nonadiabatic acceleration of ions which execute Speiser-type trajectories in the current sheet. The second distribution is associated with the presence of cold ion beams that presumably also arise from the acceleration of plasma mantle ions in the electric and weak magnetic fields in the current sheet. The ion velocity distributions in a magnetic field structure that is similar to that for plasmoids are also examined. Again the velocity distributions are not Maxwellian but are indicative of nonadiabatic acceleration. An example of the pressure tensor within the plasmoid-like event is also presented because it is anticipated that the off-diagonal elements are important in a description of magnetotail dynamics. Thus our concept of magnetotail dynamics must advance from the present assumption of co-moving electron and ion Maxwellian distributions into reformulations in terms of global kinematical models and nonadiabatic particle motion.

  9. Estimation of Heavy Ion Densities From Linearly Polarized EMIC Waves At Earth

    SciTech Connect

    Kim, Eun-Hwa; Johnson, Jay R.; Lee, Dong-Hun

    2014-02-24

    Linearly polarized EMIC waves are expected to concentrate at the location where their wave frequency satisfies the ion-ion hybrid (IIH) resonance condition as the result of a mode conversion process. In this letter, we evaluate absorption coefficients at the IIH resonance in the Earth geosynchronous orbit for variable concentrations of helium and azimuthal and field-aligned wave numbers in dipole magnetic field. Although wave absorption occurs for a wide range of heavy ion concentration, it only occurs for a limited range of azimuthal and field-aligned wave numbers such that the IIH resonance frequency is close to, but not exactly the same as the crossover frequency. Our results suggest that, at L = 6.6, linearly polarized EMIC waves can be generated via mode conversion from the compressional waves near the crossover frequency. Consequently, the heavy ion concentration ratio can be estimated from observations of externally generated EMIC waves that have polarization.

  10. Nonthermal ions and associated magnetic field behavior at a quasi-parallel earth's bow shock

    NASA Technical Reports Server (NTRS)

    Wilkinson, W. P.; Pardaens, A. K.; Schwartz, S. J.; Burgess, D.; Luehr, H.; Kessel, R. L.; Dunlop, M.; Farrugia, C. J.

    1993-01-01

    Attention is given to ion and magnetic field measurements at the earth's bow shock from the AMPTE-UKS and -IRM spacecraft, which were examined in high time resolution during a 45-min interval when the field remained closely aligned with the model bow shock normal. Dense ion beams were detected almost exclusively in the midst of short-duration periods of turbulent magnetic field wave activity. Many examples of propagation at large elevation angles relative to the ecliptic plane, which is inconsistent with reflection in the standard model shock configuration, were discovered. The associated waves are elliptically polarized and are preferentially left-handed in the observer's frame of reference, but are less confined to the maximum variance plane than other previously studied foreshock waves. The association of the wave activity with the ion beams suggests that the former may be triggered by an ion-driven instability, and possible candidates are discussed.

  11. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    PubMed

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca. PMID:15978989

  12. CO(2) capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study.

    PubMed

    Duan, Yuhua; Sorescu, Dan C

    2010-08-21

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents. PMID:20726653

  13. The low temperature radiolysis of cis-syn-cis-dicyclohexano-18-crown-6 complexes with alkaline earth metal nitrates: An evidence for energy transfer to the macrocyclic ligand

    NASA Astrophysics Data System (ADS)

    Zakurdaeva, O. A.; Nesterov, S. V.; Shmakova, N. A.; Sokolova, N. A.; Feldman, V. I.

    2015-10-01

    Formation of paramagnetic intermediates in macrocyclic complexes of cis-syn-cis-dicyclohexano-18-crown-6 (DCH18C6) with alkaline earth metal nitrates under X-rays irradiation was studied by EPR spectroscopy. NO32- dianions appear to be predominant intermediate species in the samples irradiated at 77 K at low doses (up to 40 kGy). This result was interpreted as an evidence for energy transfer within the complex from crown ether to nitrate anion. Increase in the absorbed dose from 40 kGy to 284 kGy results in built-up of a new EPR signal assigned to macrocyclic -CH2-ĊH-O- radicals produced from crown ether moieties. Thermal annealing of the irradiated macrocyclic complexes at 273 К led to fast decay of NO32- . This process was accompanied by a formation of -CH2-ĊH-O- radicals in secondary reactions. The nature of the metal cations coordinated in the macrocycle cavity had no appreciable effect on the composition of radical products and their post-radiation transformations.

  14. Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    SciTech Connect

    Gopakumar, Geetha Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2014-06-14

    Electronic open-shell ground-state properties of selected alkali-metal–alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the {sup 2}Σ{sup +} ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ({sup 23}Na, {sup 39}K, {sup 85}Rb)–({sup 40}Ca, {sup 88}Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  15. Field-aligned ion beams upstream of the earth's bow shock Evidence for a magnetosheath source

    NASA Technical Reports Server (NTRS)

    Thomsen, M. F.; Gosling, J. T.; Bame, S. J.; Feldman, W. C.; Paschmann, G.; Sckopke, N.

    1983-01-01

    High time resolution ISEE-1 and -2 observations of upstream field-aligned ion beams at several crossings of the earth's bow shock indicate that some beams are due to high energy magnetosheath particles leaking through the shock into the upstream region. The distribution immediately downstream of these oblique shocks consists of a 'core' of directly transmitted, slightly heated ions, plus a crescent-shaped, high-velocity distribution, centered roughly on the magnetic field in the direction toward the upstream region, with a fairly well defined low velocity cutoff.

  16. Source Distributions of Substorm Ions Observed in the Near-Earth Magnetotail

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, M.; El-Alaoui, M.; Peroomian, V.; Walker, R. J.; Raeder, J.; Frank, L. A.; Paterson, W. R.

    1999-01-01

    This study employs Geotail plasma observations and numerical modeling to determine sources of the ions observed in the near-Earth magnetotail near midnight during a substorm. The growth phase has the low-latitude boundary layer as its most important source of ions at Geotail, but during the expansion phase the plasma mantle is dominant. The mantle distribution shows evidence of two distinct entry mechanisms: entry through a high latitude reconnection region resulting in an accelerated component, and entry through open field lines traditionally identified with the mantle source. The two entry mechanisms are separated in time, with the high-latitude reconnection region disappearing prior to substorm onset.

  17. Ion engine propelled Earth-Mars cycler with nuclear thermal propelled transfer vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    Meyer, Rudolf X.; Baker, Myles; Melko, Joseph

    1994-01-01

    The goal of this project was to perform a preliminary design of a long term, reusable transportation system between earth and Mars which would be capable of providing both artificial gravity and shelter from solar flare radiation. The heart of this system was assumed to be a Cycler spacecraft propelled by an ion propulsion system. The crew transfer vehicle was designed to be propelled by a nuclear-thermal propulsion system. Several Mars transportation system architectures and their associated space vehicles were designed.

  18. Multicomponent analysis of mixed rare-earth metal ion solutions by the electronic tongue sensor system

    SciTech Connect

    Legin, A.; Kirsanov, D.; Rudnitskaya, A.; Rovny, S.; Logunov, M.

    2007-07-01

    Novel electrochemical sensors based on well-known extracting agents are developed. Sensors have shown high sensitivity towards a variety of rear earth metal ions in acidic media at pH=2. Multi-sensor system (electronic tongue) comprising newly developed sensors was successfully applied for the analysis of binary and ternary mixtures of Ce{sup 3+}, Nd{sup 3+}, Sm{sup 3+} and Gd{sup 3+} cations in different combinations. (authors)

  19. Neutral atomic oxygen beam produced by ion charge exchange for Low Earth Orbital (LEO) simulation

    NASA Technical Reports Server (NTRS)

    Banks, Bruce; Rutledge, Sharon; Brdar, Marko; Olen, Carl; Stidham, Curt

    1987-01-01

    A low energy neutral atomic oxygen beam system was designed and is currently being assembled at the Lewis Research Center. The system utilizes a 15 cm diameter Kaufman ion source to produce positive oxygen ions which are charge exchange neutralized to produce low energy (variable from 5 to 150 eV) oxygen atoms at a flux simulating real time low Earth orbital conditions. An electromagnet is used to direct only the singly charged oxygen ions from the ion source into the charge exchange cell. A retarding potential grid is used to slow down the oxygen ions to desired energies prior to their charge exchange. Cryogenically cooled diatomic oxygen gas in the charge exchange cell is then used to transfer charge to the oxygen ions to produce a neutral atomic oxygen beam. Remaining non-charge exchanged oxygen ions are then swept from the beam by electromagnetic or electrostatic deflection depending upon the desired experiment configuration. The resulting neutral oxygen beam of 5 to 10 cm in diameter impinges upon target materials within a sample holder fixture that can also provide for simultaneous heating and UV exposure during the atomic oxygen bombardment.

  20. Laser-induced grating spectroscopy of rare earth ions in solids

    SciTech Connect

    French, V.A.

    1992-01-01

    The characteristics of energy transfer and migration processes important in the optical dynamics of Tm,Ho:YAG and Tm:YAG laser crystals were investigated using both time-resolved fluorescence spectroscopy and laser-induced grating spectroscopy. Four-wave mixing techniques were used to produce permanent laser-induced refractive index gratings in Eu-doped silicate glasses. The effects on the characteristics of these permanent gratings produced by changing the divalent modifier ions of the glass host are reported. Efficient long-range energy migration was found to take place in the [sup 3]F[sub 4] level of the Tm ions, which enhances the energy transfer to Ho ions. The parameters describing excitation migration were determined experimentally and used to calculate an overall Tm-Ho energy transfer rate. This was found to be in close agreement with the rate determined by the results of fluorescence spectral dynamics measurements. Theoretical estimates were made of the fundamental ion-ion interaction rates responsible for each of the physical processes investigated here and the results were all found to be in close agreement with the experimentally determined values. The author extends previous investigations on the Eu-doped silicate glasses by describing the variation of the four-wave-mixing signal intensity of a series of glasses with different divalent alkaline network modifier ions. The temperature dependence of the signal from one of the samples was measured and a theoretical explanation for the change in the refractive index associated with the double-minimum potential well model is developed.

  1. Femtosecond Laser-Induced Upconversion Luminescence in Rare-Earth Ions by Nonresonant Multiphoton Absorption.

    PubMed

    Yao, Yunhua; Xu, Cheng; Zheng, Ye; Yang, Chengshuai; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2016-07-21

    The upconversion luminescence of rare-earth ions has attracted considerable interest because of its important applications in photoelectric conversion, color display, laser device, multiplexed biolabeling, and security printing. Previous studies mainly explored the upconversion luminescence generation through excited state absorption, energy transfer upconversion, and photon avalanche under the continuous wave laser excitation. Here, we focus on the upconversion luminescence generation through a nonresonant multiphoton absorption by using the intense femtosecond pulsed laser excitation and study the upconversion luminescence intensity control by varying the femtosecond laser phase and polarization. We show that the upconversion luminescence of rare-earth ions under the intense femtosecond laser field excitation is easy to be obtained due to the nonresonant multiphoton absorption through the nonlinear interaction between light and matter, which is not available by the continuous wave laser excitation in previous works. We also show that the upconversion luminescence intensity can be effectively controlled by varying the femtosecond pulsed laser phase and polarization, which can open a new technological opportunity to generate and control the upconversion luminescence of rare-earth ions and also can be further extended to the relevant application areas. PMID:27367751

  2. Optical detection of a single rare-earth ion in a crystal

    PubMed Central

    Kolesov, R.; Xia, K.; Reuter, R.; Stöhr, R.; Zappe, A.; Meijer, J.; Hemmer, P.R.; Wrachtrup, J.

    2012-01-01

    Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr3+ ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr3+ ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications. PMID:22929786

  3. Optical detection of a single rare-earth ion in a crystal

    NASA Astrophysics Data System (ADS)

    Kolesov, R.; Xia, K.; Reuter, R.; Stöhr, R.; Zappe, A.; Meijer, J.; Hemmer, P. R.; Wrachtrup, J.

    2012-08-01

    Rare-earth-doped laser materials show strong prospects for quantum information storage and processing, as well as for biological imaging, due to their high-Q 4f↔4f optical transitions. However, the inability to optically detect single rare-earth dopants has prevented these materials from reaching their full potential. Here we detect a single photostable Pr3+ ion in yttrium aluminium garnet nanocrystals with high contrast photon antibunching by using optical upconversion of the excited state population of the 4f↔4f optical transition into ultraviolet fluorescence. We also demonstrate on-demand creation of Pr3+ ions in a bulk yttrium aluminium garnet crystal by patterned ion implantation. Finally, we show generation of local nanophotonic structures and cell death due to photochemical effects caused by upconverted ultraviolet fluorescence of praseodymium-doped yttrium aluminium garnet in the surrounding environment. Our study demonstrates versatile use of rare-earth atomic-size ultraviolet emitters for nanoengineering and biotechnological applications.

  4. Laser polarization and phase control of up-conversion fluorescence in rare-earth ions

    PubMed Central

    Yao, Yunhua; Zhang, Shian; Zhang, Hui; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2014-01-01

    We theoretically and experimentally demonstrate the up-conversion fluorescence control via resonance-mediated two-photon absorption in rare-earth ions by varying both the laser polarization and phase. We show that both the laser polarization and phase can control the up-conversion fluorescence, and the up-conversion fluorescence intensity is decreased when the laser polarization changes from linear through elliptical to circular. We also show that the laser polarization will affect the control efficiency of the up-conversion fluorescence by varying the laser phase, and the circular polarization will reduce the control efficiency. Furthermore, we suggest that the control efficiency by varying the laser polarization and the effect of the laser polarization on the control efficiency by varying the laser phase can be artificially manipulated by controlling the laser spectral bandwidth. This optical control method opens a new opportunity to control the up-conversion fluorescence of rare-earth ions, which may have significant impact on the related applications of rare-earth ions. PMID:25465401

  5. A chelating ion exchanger for gallium recovery from alkaline solution using 5-palmitoyl-8-hydroxyquinoline immobilized on a nonpolar adsorbent

    SciTech Connect

    Filik, H.; Apak, R.

    1998-06-01

    The recently developed method of gallium recovery from alkaline solution by alkanoyl oxine/chloroform extraction has been improved by immobilizing palmitoyl oxine on hydrophobic macroporous styrene-divinylbenzene copolymer Amberlite XAD-2 and passing the GA-containing alkaline solution of pH 13.5 through the synthesized resin column. The developed column showed reasonable efficiency after successive passages, and the selectivity of Ga over Al was very high, suggesting the utilizibility of the method in Ga recovery from the basic aluminate liquor of the Bayer process. The Ga capacity of the oxine-based resin was 3.94 {micro}mol/g. Two mg Ga retained on 10 g resin could be eluted with 25 mL of 2 N HCl at a throughput rate of 2 mL/min. The developed process has prospective use in Ga separation from Al in a strongly alkaline solution.

  6. Solid Phase Luminescence of Several Rare Earth Ions on Ion-Exchange Films

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.; Street, Kenneth W., Jr.

    1999-01-01

    The development and characterization of a novel ion-exchange film for solid-phase fluorometry and phosphorimetry is reported. This new cation-exchange material is suitable for spectroscopic applications in the ultraviolet and visible regions. It is advantageous because it, as a single entity, is easily recovered from solution and mounted in the spectrofluorometers. After preconcentration on the film, the luminescence intensity of lanthanide ions is several orders of magnitude greater than that of the corresponding solution, depending on the volume of solution and the amount of film. This procedure allows emission spectral measurements and determination of lanthanide ions at solution concentrations of < 5 (micro)g/L. The film may be stored for subsequent reuse or as a permanent record of the analysis. The major drawback to the use of the film is slow uptake of analyte due to diffusion limitations.

  7. Assessment of DNA damage of Lewis lung carcinoma cells irradiated by carbon ions and X-rays using alkaline comet assay

    NASA Astrophysics Data System (ADS)

    Li, Ping; Zhou, Li-Bin; Jin, Xiao-Dong; He, Jing; Dai, Zhong-Ying; Zhou, Guang-Ming; Gao, Qing-Xiang; Li, Sha; Li, Qiang

    2008-01-01

    DNA damage and cell reproductive death determined by alkaline comet and clonogenic survival assays were examined in Lewis lung carcinoma cells after exposure to 89.63 MeV/u carbon ion and 6 MV X-ray irradiations, respectively. Based on the survival data, Lewis lung carcinoma cells were verified to be more radiosensitive to the carbon ion beam than to the X-ray irradiation. The relative biological effectiveness (RBE) value, which was up to 1.77 at 10% survival level, showed that the DNA damage induced by the high-LET carbon ion beam was more remarkable than that induced by the low-LET X-ray irradiation. The dose response curves of “Tail DNA (%)” (TD) and “Olive tail moment” (OTM) for the carbon ion irradiation showed saturation beyond about 8 Gy. This behavior was not found in the X-ray curves. Additionally, the carbon ion beam produced a lower survival fraction at 2 Gy (SF2) value and a higher initial Olive tail moment 2 Gy (OTM2) than those for the X-ray irradiation. These results suggest that carbon ion beams having high-LET values produced more severe cell reproductive death and DNA damage in Lewis lung carcinoma cells in comparison with X-rays and comet assay might be an effective predictive test even combining with clonogenic assay to assess cellular radiosensitivity.

  8. Evidence for solar wind origin of energetic heavy ions in the earth's radiation belt

    NASA Technical Reports Server (NTRS)

    Hovestadt, D.; Klecker, B.; Scholer, M.; Gloeckler, G.; Ipavich, F. M.; Fan, C. Y.; Fisk, L. A.; Ogallagher, J. J.

    1978-01-01

    Analysis of data from our energetic ion composition experiment on ISEE-1 has revealed the presence of substantial fluxes of carbon, oxygen, and heavier ions above 400 keV/nucleon at L values between approximately 2.5 and 4 earth radii. The measured C/O ratio varies systematically from 1.3 at 450 keV/nucleon to 4.1 at 1.3 MeV/nucleon, and no iron is observed above 200 keV/nucleon. These results provide strong evidence for a solar wind origin for energetic ions in the outer radiation belt. The absence of iron and the increase of the carbon-to-oxygen ratio with energy suggest that the condition for the validity of the first adiabatic invariant may have a strong influence on the trapping of these particles.

  9. Ion conics and counterstreaming electrons generated by lower hybrid waves in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Crew, Geoffrey B.; Retterrer, John M.; Jasperse, John R.

    1989-01-01

    The exotic phenomenon of energetic ion-conic and counterstreaming electron formation by lower hybrid waves along discrete auroral field lines in the earth magnetosphere is considered. Mean-particle calculations, plasma simulations, and analytical treatments of the acceleration processes are described. It is shown that, in the primary auroral electron-beam region, lower hybrid waves could be an efficient mechanism for the transverse heating of H (+) and O(+) ions of ionospheric origin, as well as for the field-aligned heating of the ambient electrons leading to coincident counterstreaming electron distributions. For O(+) ions to be energized by such a wave-particle interaction process, however, some sort of preheating mechanism is required.

  10. Kinetic theory for the ion humps at the foot of the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Jovanović, D.; Krasnoselskikh, V. V.

    2009-10-01

    The nonlinear kinetic theory is presented for the ion acoustic perturbations at the foot of the Earth's quasiperpendicular bow shock, that is characterized by weakly magnetized electrons and unmagnetized ions. The streaming ions, due to the reflection of the solar wind ions from the shock, provide the free energy source for the linear instability of the acoustic wave. In the fully nonlinear regime, a coherent localized solution is found in the form of a stationary ion hump, which is traveling with the velocity close to the phase velocity of the linear mode. The structure is supported by the nonlinearities coming from the increased population of the resonant beam ions, trapped in the self-consistent potential. As their size in the direction perpendicular to the local magnetic field is somewhat smaller that the electron Larmor radius and much larger that the Debye length, their spatial properties are determined by the effects of the magnetic field on weakly magnetized electrons. These coherent structures provide a theoretical explanation for the bipolar electric pulses, observed upstream of the shock by Polar and Cluster satellite missions.

  11. Investigation of the Transport of Solar Ions Through the Earth's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Lennartsson, O. W.; Evans, David (Technical Monitor)

    2000-01-01

    The objective of this study has been to infer, by statistical means, the most probable mode of entry of solar wind plasma into Earth's magnetotail, using a particular set of archived data from the Lockheed Plasma Composition Experiment on the International Sun-Earth Explorer One (ISEE-1) satellite, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) in the 1970's and 80's. Despite their considerable age, the Lockheed ISEE-1 data are still, at the time of this report, the only substantial ion composition data in the sub-keV to keV energy range available from the magnetotail beyond 9 R(sub E), because of various technical problems with ion mass spectrometers on later missions, and are therefore a unique source of information about the mixing of solar and terrestrial origin plasmas in the tail, within the ISEE-1 apogee of almost 23 R(sub E). The entire set of archived data used in this study, covering the 4.5 years of operation of the instrument and comprising not only tail measurements but also data from the inner magnetosphere as well as data from outside the magnetopause, is now available to the public via the WorldWideWeb at the address: http://cis.spasci.com/ISEE_ions The fundamental assumption of this and other studies of magnetosphere ion composition is that He++ and O+ ions are virtually certain "tags" of solar and terrestrial origins, respectively. This is an assumption with strong theoretical basis and it is corroborated by observational evidence, including the often substantial differences between the velocity distribution functions of those two species. The H+ ions can have a dual origin, in principle, but the close resemblance in the ISEE-1 data between the dynamics of H+ and He++ ions indicates a predominantly solar origin of the H+ ions in the tail, at least. By the same token, the usually minor He+ ions are probably almost entirely of terrestrial origin, because of their similarity to the O

  12. High charge state carbon and oxygen ions in Earth's equatorial quasi-trapping region

    NASA Technical Reports Server (NTRS)

    Christon, S. P.; Hamilton, D. C.; Gloeckler, G.; Eastmann, T. E.

    1994-01-01

    Observations of energetic (1.5 - 300 keV/e) medium-to-high charge state (+3 less than or equal to Q less than or equal to +7) solar wind origin C and O ions made in the quasi-trapping region (QTR) of Earth's magnetosphere are compared to ion trajectories calculated in model equatorial magnetospheric magnetic and electric fields. These comparisons indicate that solar wind ions entering the QTR on the nightside as an energetic component of the plasma sheet exit the region on the dayside, experiencing little or no charge exchange on the way. Measurements made by the CHarge Energy Mass (CHEM) ion spectrometer on board the Active Magnetospheric Particle Tracer Explorer/Charge Composition Explorer (AMPTE/CCE) spacecraft at 7 less than L less than 9 from September 1984 to January 1989 are the source of the new results contained herein: quantitative long-term determination of number densities, average energies, energy spectra, local time distributions, and their variation with geomagnetic disturbance level as indexed by Kp. Solar wind primaries (ions with charge states unchanged) and their secondaries (ions with generally lower charge states produced from primaries in the magnetosphere via charge exchange)are observed throughout the QTR and have distinctly different local time variations that persist over the entire 4-year analysis interval. During Kp larger than or equal to 3 deg intervals, primary ion (e.g., O(+6)) densities exhibit a pronounced predawn maximum with average energy minimum and a broad near-local-noon density minimum with average energy maximum. Secondary ion (e.g., O(+5)) densities do not have an identifiable predawn peak, rather they have a broad dayside maximum peaked in local morning and a nightside minimum. During Kp less than or equal to 2(-) intervals, primary ion density peaks are less intense, broader in local time extent, and centered near midnight, while secondary ion density local time variations diminish. The long-time-interval baseline helps

  13. Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-02-07

    We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O)n]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O)n-1 + H2O) and the two hydrolysis channels resulting to the loss of hydronium ([MOH(H2O)n-2]+ + H3O+) and Zundel ([MOH(H2O)n-3]+ + H3O+(H2O)) cations. The Potential Energy Curves (PECs) corresponding to those three channels were constructed at the Møller-Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O)n]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.

  14. Characterization of Surface and Bulk Nitrates of γ-Al2O3-Supported Alkaline Earth Oxides using Density Functional Theory

    SciTech Connect

    Mei, Donghai; Ge, Qingfeng; Kwak, Ja Hun; Kim, Do Heui; Verrier, Christelle M.; Szanyi, Janos; Peden, Charles HF

    2009-05-14

    “Surface" and "bulk" nitrates formed on a series of alkaline earth oxides (AEOs), AE(NO3)2, were investigated using first-principles density functional theory calculations. The formation of these surface and bulk nitrates was modeled by the adsorption of NO2+NO3 pairs on gamma-Al2O3-supported monomeric AEOs (MgO, CaO, SrO, and BaO) and on the extended AEO(001) surfaces, respectively. The calculated vibrational frequencies of the surface and bulk nitrates based on our proposed models are in good agreement with experimental measurements of AEO/gamma-Al2O3 materials after prolonged NO2 exposure. This indicates that experimentally observed "surface" nitrates are most likely formed with isolated two dimensional (including monomeric) AEO clusters on the gamma-Al2O3 substrate, while the "bulk" nitrates are formed on exposed (including (001)) surfaces (and likely in the bulk as well) of large three dimensional AEO particles supported on the gamma-Al2O3 substrate. Also in line with the experiments, our calculations show that the low and high frequency components of the vibrations for both surface and bulk nitrates are systematically red shifted with the increasing basicity and cationic size of the AEOs. The adsorption strengths of NO2+NO3 pairs are nearly the same for the series of alumina-supported monomeric AEOs, while the adsorption strengths of NO2+NO3 pairs on the AEO surfaces increase in the order of MgO < CaO < SrO ~ BaO. Compared to the NO2+NO3 pair that only interacts with monomeric AEOs, the stability of NO2+NO3 pairs that interact with both the monomeric AEO and the gamma-Al2O3 substrate is enhanced by about 0.5 eV. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  15. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications. PMID:26827218

  16. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    SciTech Connect

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  17. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  18. [Ce3⁺/Tb3⁺ Doped Alkaline-Earth Borate Glasses Employed in Enhanced Solar Cells].

    PubMed

    Yang, Peng; Zhao, Xin; Wang, Zhi-qiang; Lin, Hai

    2015-12-01

    Ce³⁺ and Tb³⁺ doped alkaline earth borate (LKZBSB) glasses and the photoluminescence properties of glass system have been fabricated and investigated, and the observed violet and green fluorescences are originated from Ce³⁺ and Tb³⁺ emit- ting centers, respectively. Four emission bands peaked at 487, 543, 586 and 621 nm are attributed to the emission transitions ⁵D₄-->⁷F₆, ⁵D₄-->⁷F₅, ⁵D₄-->⁷F₄ and ⁵D₄-->⁷F₃ of Tb³⁺, respectively, and consists of a broad emission band peaking at 389 nm attributed to 5d--4ƒ electric dipole allowed transition of Ce³⁺. With the introduction of Ce³⁺, the effective excitation wavelength range of Tb³⁺ in LKZBSB glasses are remarkably expanded, and the enhanced factor of green fluorescence of Tb³⁺ in Ce³⁺/Tb³⁺ co-doped LKZBSB glasses is up to 73 times in medium-wavelength ultraviolet (UVB) excitation region, compared with that in Tb³⁺ single-doped case. The results show that the conversion from ultraviolet (UV) radiation to visible light is efficient in Ce³⁺/ Tb³⁺ doped LKZBSB glasses, demonstrating that the glasses have potential values in developing enhanced solar cell as a conver- sion layer. PMID:26964196

  19. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    NASA Astrophysics Data System (ADS)

    Davis, Barry M.; McCaffrey, John G.

    2016-01-01

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ṡ RG ground state interaction potentials. The y1P←a1S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ṡ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm-1). All of the M ṡ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  20. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4 s 2) and Sr(5 s 2) atoms

    NASA Astrophysics Data System (ADS)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-01

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular ( l = | m| = n-1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ~ n-1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau-Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li( nlm) atom with given principal n, orbital l = n-1, and magnetic m quantum numbers at thermal collisions with the Ca(4 s 2) and Sr(5 s 2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l ( l ≪ n).

  1. GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK

    SciTech Connect

    Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Dandouras, Iannis E-mail: Kis.Arpad@csfk.mta.hu

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  2. Gyrosurfing Acceleration of Ions in Front of Earth's Quasi-parallel Bow Shock

    NASA Astrophysics Data System (ADS)

    Kis, Arpad; Agapitov, Oleksiy; Krasnoselskikh, Vladimir; Khotyaintsev, Yuri V.; Dandouras, Iannis; Lemperger, Istvan; Wesztergom, Viktor

    2013-07-01

    It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Cluster spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.

  3. Investigations into the Influence of Heavy Ions on EMIC Wave Propagation in the Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Keller, S.; Kim, E. H.; Johnson, J.

    2015-12-01

    Geomagnetic pulsations in the Pc1 frequency range (0.2 to 5.0 Hz), which are known as electromagnetic ion cyclotron (EMIC) waves, are often observed at magnetically conjugate locations by spacecraft in the equatorial magnetosphere and ground-based stations. One difficulty in linking the propagation of detected radiation between these regions is the presence of stop bands near the heavy ion cyclotron resonance locations. Recent full wave calculations (Kim and Johnson, Full wave modeling of EMIC waves in the Earth's magnetosphere, 2015 AGU fall meeting) demonstrate how EMIC waves propagate to higher magnetic latitudes in an electron-proton-He+ plasma. However, while the heavy ion concentration can be large during the solar maximum and geomagnetic storms, they adopted a 5% He+ plasma. In this study, we explore the roles of heavy ion (He+ and O+) concentrations on the levels of EMIC wave energy that reach lower altitudes using a two-dimensional, finite element, full wave model. The Poynting flux and polarization of the emissions are used to monitor the propagation and absorption of wave energy, as well as mode coupling between left- and right-hand circularly polarized modes. Due to the increase in heavy ion populations in the magnetosphere, the consequences that geomagnetic storms have on EMIC wave propagation are also discussed.

  4. Shapes of Energetic Ion Spectra in Saturn's Magnetosphere Compared with those at Earth and Jupiter

    NASA Astrophysics Data System (ADS)

    Hamilton, D. C.; Mitchell, D. G.; Krimigis, S. M.

    2013-12-01

    Saturn's magnetosphere contains suprathermal and energetic ions that originate from a number of plasma sources including Enceladus, Titan, Saturn's atmosphere and ionosphere and the solar wind, with internal sources dominating. Although different species originate at different locations, transport processes and acceleration during or after transport distribute the energetic ions throughout the magnetosphere out to the magnetopause. In principle, the shapes of the energy spectra of these ions contain information on acceleration processes. However, because outside of about 9 RS long-term average spectra of all species are quite good power laws, it is difficult to pick one energy parameter (e.g., energy/charge or energy/nucleon) as better organizing the spectra by, for example, maintaining constant abundance ratios from low to high energies. Inside of 9 RS there are energy-dependent losses that alter the spectra but aren't directly related to acceleration. Here, using data from the Cassini/CHEMS sensor, we investigate ion spectra over the energy per charge range 3-220 keV/e in more detail with better resolution in both space and time, looking for evidence of spectral differences among species based on charge (e.g., O+ vs. O++) or plasma source (e.g., O+ (Enceladus) vs. He++ (solar wind)). We will compare Saturn's ion spectra with those from the magnetospheres of Earth and Jupiter and discuss implications for acceleration processes.

  5. Color-tunable heat-resistant polyaryletherketones co-coordinated with various rare earth ions

    NASA Astrophysics Data System (ADS)

    Liu, Dan; Shi, Qirong; Wang, Zhonggang

    2012-09-01

    Europium (Eu3+) and terbium (Tb3+) ions coordinated with 1,10-phenantroline (Phen), N,N-dimethylformamide (DMF) and carboxyl-containing polyaryletherketone (PEK) represent new luminescent materials (PEK-Eux3+Tb1-x3+-Phens, x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1). The results of FTIR, elemental analysis and XRD confirm that the coordination reaction indeed occurs and the rare earth ions are homogeneously dispersed in the PEK matrix. The polyarylethertone rare earth complexes exhibit high glass transition temperature and good thermal stability because of their wholly aromatic structures. The luminescence measurements indicate that the relative emission intensities of Tb3+ to Eu3+ ions depend on their ratio in the system, and the color of PEK-Eux3+Tb1-x3+-Phens under UV excitation can be tuned by changing the x value. The materials thus prepared show promising potential in the full color large area display field.

  6. Numerical simulations of the optical gain of crystalline fiber doped by rare earth and transition ion

    NASA Astrophysics Data System (ADS)

    Daoui, A. K.; Boubir, B.; Adouane, A.; Demagh, N.; Ghoumazi, M.

    2015-02-01

    A fiber laser is a laser whose gain medium is a doped fiber, although lasers whose cavity is made wholly of fibers have also been called fiber lasers. The gain media in a fiber laser is usually fiber doped with rare-earth ions, such as erbium (Er), neodymium (Nd), ytterbium (Yb), thulium (Tm), or praseodymium (Pr), which is doped into the core of the optical fiber, similar to those used to transmit telecommunications signals. Fiber lasers find many applications in materials processing, including cutting, welding, drilling, and marking metal. To maximize their market penetration, it is necessary to increase their output power. In this work, we present a detailed study based on the numerical simulation using MATLAB, of one of the principal characteristics of a fiber laser doped with rare earth ions and transition ion. The gain depends on several parameters such as the length of the doped fiber, the density, the pump power, noise, etc.). The used program resolves the state equations in this context together with those governing the light propagation phenomena. The developed code can also be used to study the dynamic operating modes of a doped fiber laser.

  7. Lithium-Ion Batteries Being Evaluated for Low-Earth-Orbit Applications

    NASA Technical Reports Server (NTRS)

    McKissock, Barbara I.

    2005-01-01

    The performance characteristics and long-term cycle life of aerospace lithium-ion (Li-ion) batteries in low-Earth-orbit applications are being investigated. A statistically designed test using Li-ion cells from various manufacturers began in September 2004 to study the effects of temperature, end-of-charge voltage, and depth-of-discharge operating conditions on the cycle life and performance of these cells. Performance degradation with cycling is being evaluated, and performance characteristics and failure modes are being modeled statistically. As technology improvements are incorporated into aerospace Li-ion cells, these new designs can be added to the test to evaluate the effect of the design changes on performance and life. Cells from Lithion and Saft have achieved over 2000 cycles under 10 different test condition combinations and are being evaluated. Cells from Mine Safety Appliances (MSA) and modules made up of commercial-off-the-shelf 18650 Li-ion cells connected in series/parallel combinations are scheduled to be added in the summer of 2005. The test conditions include temperatures of 10, 20, and 30 C, end-of-charge voltages of 3.85, 3.95, and 4.05 V, and depth-of-discharges from 20 to 40 percent. The low-Earth-orbit regime consists of a 55 min charge, at a constant-current rate that is 110 percent of the current required to fully recharge the cells in 55 min until the charge voltage limit is reached, and then at a constant voltage for the remaining charge time. Cells are discharged for 35 min at the current required for their particular depth-of-discharge condition. Cells are being evaluated in four-cell series strings with charge voltage limits being applied to individual cells by the use of charge-control units designed and produced at the NASA Glenn Research Center. These charge-control units clamp the individual cell voltages as each cell reaches its end-of-charge voltage limit, and they bypass the excess current from that cell, while allowing the full

  8. Comparative study of ion cyclotron waves at Mars, Venus and Earth

    NASA Astrophysics Data System (ADS)

    Wei, H. Y.; Russell, C. T.; Zhang, T. L.; Blanco-Cano, X.

    2011-08-01

    Ion cyclotron waves are generated in the solar wind when it picks up freshly ionized planetary exospheric ions. These waves grow from the free energy of the highly anisotropic distribution of fresh pickup ions, and are observed in the spacecraft frame with left-handed polarization and a wave frequency near the ion's gyrofrequency. At Mars and Venus and in the Earth's polar cusp, the solar wind directly interacts with the planetary exospheres. Ion cyclotron waves with many similar properties are observed in these diverse plasma environments. The ion cyclotron waves at Mars indicate its hydrogen exosphere to be extensive and asymmetric in the direction of the interplanetary electric field. The production of fast neutrals plays an important role in forming an extended exosphere in the shape and size observed. At Venus, the region of exospheric proton cyclotron wave production may be restricted to the magnetosheath. The waves observed in the solar wind at Venus appear to be largely produced by the solar-wind-Venus interaction, with some waves at higher frequencies formed near the Sun and carried outward by the solar wind to Venus. These waves have some similarity to the expected properties of exospherically produced proton pickup waves but are characterized by magnetic connection to the bow shock or by a lack of correlation with local solar wind properties respectively. Any confusion of solar derived waves with exospherically derived ion pickup waves is not an issue at Mars because the solar-produced waves are generally at much higher frequencies than the local pickup waves and the solar waves should be mostly absorbed when convected to Mars distance as the proton cyclotron frequency in the plasma frame approaches the frequency of the solar-produced waves. In the Earth's polar cusp, the wave properties of ion cyclotron waves are quite variable. Spatial gradients in the magnetic field may cause this variation as the background field changes between the regions in which

  9. Influence of other rare earth ions on the optical refrigeration efficiency in Yb:YLF crystals.

    PubMed

    Di Lieto, Alberto; Sottile, Alberto; Volpi, Azzurra; Zhang, Zhonghan; Seletskiy, Denis V; Tonelli, Mauro

    2014-11-17

    We investigated the effect of rare earth impurities on the cooling efficiency of Yb³⁺:LiYF₄ (Yb:YLF). The refrigeration performance of two single crystals, doped with 5%-at. Yb and with identical history but with different amount of contaminations, have been compared by measuring the cooling efficiency curves. Spectroscopic and elemental analyses of the samples have been carried out to identify the contaminants, to quantify their concentrations and to understand their effect on the cooling efficiencies. A model of energy transfer processes between Yb and other rare earth ions is suggested, identifying Erbium and Holmium as elements that produce a detrimental effect on the cooling performance. PMID:25402099

  10. Macroscopic ion acceleration associated with the formation of the ring current in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Meng, C.-I.

    1986-01-01

    As an illustration of the operation of macroscopic ion acceleration processes within the earth's magnetosphere, the paper reviews processes thought to be associated with the formation of the earth's ring-current populations. Arguing that the process of global, quasi-curl-free convection cannot explain particle characteristics observed in the middle (geosynchronous) to outer regions, it is concluded that the transport and energization of the seed populations that give rise to the ring-current populations come about in two distinct stages involving distinct processes. Near and outside the geostationary region, the energization and transport are always associated with highly impulsive and relatively localized processes driven by inductive electric fields. The subsequent adiabatic earthward transport is driven principally by enhanced, curl-free global convection fields.

  11. Previously hidden low-energy ions: a better map of near-Earth space and the terrestrial mass balance

    NASA Astrophysics Data System (ADS)

    André, Mats

    2015-12-01

    This is a review of the mass balance of planet Earth, intended also for scientists not usually working with space physics or geophysics. The discussion includes both outflow of ions and neutrals from the ionosphere and upper atmosphere, and the inflow of meteoroids and larger objects. The focus is on ions with energies less than tens of eV originating from the ionosphere. Positive low-energy ions are complicated to detect onboard sunlit spacecraft at higher altitudes, which often become positively charged to several tens of volts. We have invented a technique to observe low-energy ions based on the detection of the wake behind a charged spacecraft in a supersonic ion flow. We find that low-energy ions usually dominate the ion density and the outward flux in large volumes in the magnetosphere. The global outflow is of the order of 1026 ions s-1. This is a significant fraction of the total number outflow of particles from Earth, and changes plasma processes in near-Earth space. We compare order of magnitude estimates of the mass outflow and inflow for planet Earth and find that they are similar, at around 1 kg s-1 (30 000 ton yr-1). We briefly discuss atmospheric and ionospheric outflow from other planets and the connection to evolution of extraterrestrial life.

  12. Preparation and structure of carbonated calcium hydroxyapatite substituted with heavy rare earth ions

    SciTech Connect

    Yasukawa, Akemi; Kandori, Kazuhiko; Tanaka, Hidekazu; Gotoh, Keiko

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer LnCaHap solid solution particles were prepared using five types of heavy rare earth ions by a precipitation method. Black-Right-Pointing-Pointer The length and the crystallinity of the LnCaHap particles first increased and then decreased with increasing Ln{sup 3+} contents. Black-Right-Pointing-Pointer A series of YCaHap solid solution particles formed with Y/(Y + Ca) = 0-0.10 were investigated using various methods in detail. -- Abstract: Calcium hydroxyapatite (CaHap) particles substituted five types of heavy rare earth ions (Ln: Y{sup 3+}, Gd{sup 3+}, Dy{sup 3+}, Er{sup 3+} and Yb{sup 3+}) were synthesized using a precipitation method and characterized using various means. These Ln ions strongly affected the crystal phases and the structures of the products. With increasing Ln/(Ln + Ca) in the starting solution ([X{sub Ln}]), the length and the crystallinity of the particles first increased and then decreased. The rare earth metal-calcium hydroxyapatite (LnCaHap) solid solution particles were obtained at [X{sub Y}] {<=} 0.10 for substituting Y system and at [X{sub Ln}] {<=} 0.01-0.03 for substituting the other Ln systems. LnPO{sub 4} was mixed with LnCaHap at higher [X{sub Ln}] for all Ln systems. A series of yttrium-calcium hydroxyapatite (YCaHap) solid solutions with [X{sub Y}] = 0-0.10 were investigated using XRD, TEM, ICP-AES, IR and TG-DTA in detail.

  13. Stochastic Growth of Ion Cyclotron And Mirror Waves In Earth's Magnetosheath

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Grubits, K. A.

    2001-01-01

    Electromagnetic ion cyclotron and mirror waves in Earth's magnetosheath are bursty, have widely variable fields, and are unexpectedly persistent, properties difficult to reconcile with uniform secular growth. Here it is shown for specific periods that stochastic growth theory (SGT) quantitatively accounts for the functional form of the wave statistics and qualitatively explains the wave properties. The wave statistics are inconsistent with uniform secular growth or self-organized criticality, but nonlinear processes sometimes play a role at high fields. The results show SGT's relevance near marginal stability and suggest that it is widely relevant to space and astrophysical plasmas.

  14. Raman Spectroscopic Characterization of Rare Earth Ions Doped Bismuth-Based Glasses

    SciTech Connect

    Pop, L.; Culea, E.; Bosca, M.; Culea, M.

    2007-04-23

    The xReO(1-x)[3Bi2O3{center_dot}PbO] glass systems with diferent rare earth ions (ReO = CeO2, Tb4O7) have been prepared and examined with the aim of determining their structural characteristics. Raman sprectroscopy and density measurements were used to characterize the samples. Raman spectroscopy data permitted to identify some of the structural units that built up the lead bismuthate vitreous network. Density data were used to calculate the Poisson's ratio in terms of the Makishima-Mackenzie model.

  15. Local structure around rare-earth ions in B2O3 glass at high pressure

    NASA Astrophysics Data System (ADS)

    Funabiki, Fuji; Matsuishi, Satoru; Hosono, Hideo

    2013-06-01

    Melt quenching of B2O3 with less than 25 mol. % rare-earth oxide (RE2O3) at ambient pressure results in a milky white glass because of liquid-liquid phase separation into B2O3 and RE2O3.3B2O phases. In contrast, we have found that melt quenching under GPa-order pressure realizes a transparent RE-doped B2O3 glass. This study investigates the local structure around the RE ions in the B2O3 glass prepared at 3 GPa using optical measurements and electron-spin-echo envelope modulation spectroscopy. It is shown that the RE-rich microparticles disappear and the RE ions are isolated from each other in a highly symmetric crystal field formed by triangular and tetrahedral boron units. This result is consistent with that extrapolated from the data for RE-doped sodium borate glasses.

  16. Generation of electromagnetic ion cyclotron waves in the near-Earth magnetotail during dipolarization: Two-dimensional global hybrid simulation

    NASA Astrophysics Data System (ADS)

    Guo, Zhifang; Wu, Mingyu; Du, Aimin

    2016-04-01

    We employ two-dimensional global hybrid simulations to study the generation, propagation, and polarization of electromagnetic ion cyclotron (EMIC) waves in the near-Earth magnetotail (around x = - 10 R E ) during dipolarization. In our simulation, EMIC waves with left-hand polarized signals originate in the low-latitude magnetotail as a result of the ion temperature anisotropy which is due to ion heating by Alfvén waves. Subsequently, EMIC waves can propagate along the ambient magnetic field toward high-latitudes. Our work provides one possible mechanism for the generation of EMIC waves observed in the near-Earth magnetotail.

  17. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-03-01

    For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba

  18. A Study on Removal of Rare Earth Elements from U.S. Coal Byproducts by Ion Exchange

    NASA Astrophysics Data System (ADS)

    Rozelle, Peter L.; Khadilkar, Aditi B.; Pulati, Nuerxida; Soundarrajan, Nari; Klima, Mark S.; Mosser, Morgan M.; Miller, Charles E.; Pisupati, Sarma V.

    2016-03-01

    Rare earth elements are known to occur in low concentrations in U.S. coals and coal byproducts. These low concentrations may make rare earth element recovery from these materials unattractive, using only physical separation techniques. However, given the significant production of rare earths through ion exchange extraction in China, two U.S. coal byproducts were examined for ion extraction, using ammonium sulfate, an ionic liquid, and a deep eutectic solvent as lixiviants. Extraction of rare earth elements in each case produced high recoveries of rare earth elements to the solution. This suggests that in at least the cases of the materials examined, U.S. coal byproducts may be technically suitable as REE ores. More work is required to establish economic suitability.

  19. Statistical analysis of diffuse ion events upstream of the Earth's bow shock

    NASA Technical Reports Server (NTRS)

    Trattner, K. J.; Mobius, E.; Scholer, M.; Klecker, B.; Hilchenbach, M.; Luehr, H.

    1994-01-01

    A statistical study of diffuse energetic ion events and their related waves upstream of the Earth's bow shock was performed using data from the Active Magnetospheric Particle Tracer Explorers/Ion Release Module (AMPTE/IRM) satellite over two 5-month periods in 1984 and 1985. The data set was used to test the assumption in the self-consistent model of the upstream wave and particle populations by Lee (1982) that the particle acceleration through hydromagnetic waves and the wave generation are directly coupled. The comparison between the observed wave power and the wave power predicted on the observed energetic particle energy density and solar wind parameters results in a high correlation coefficient of about 0.89. The intensity of diffuse ions falls off approximately exponentially with the distance upstream from the bow shock parallel to the magnetic field with e-folding distances which vary from approximately 3.3 R(sub E) to approximately 11.7 R(sub E) over the energy range from 10 keV/e to 67.3 keV/e for both protons and alpha particles. After normalizing the upstream particle densities to zero bow shock distance by using these exponential variations, a good correlation (0.7) of the density of the diffuse ions with the solar wind density was found. This supports the suggestion that the solar wind is the source of the diffuse ions. Furthermore, the spectral slope of the diffuse ions correlates well with the solar wind velocity component in the direction of the interplanetary magnetic field (0.68 and 0.66 for protons and alpha particles) which concurs with the notion that the solar wind plays an important role in the acceleration of the upstream particles.

  20. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-11-01

    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water

  1. Suppressing gate errors through extra ions coupled to a cavity in frequency-domain quantum computation using rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Nakamura, Satoshi; Goto, Hayato; Kujiraoka, Mamiko; Ichimura, Kouichi; Quantum Computer Team

    The rare-earth-ion-doped crystals, such as Pr3+: Y2SiO5, are promising materials for scalable quantum computers, because the crystals contain a large number of ions which have long coherence time. The frequency-domain quantum computation (FDQC) enables us to employ individual ions coupled to a common cavity mode as qubits by identifying with their transition frequencies. In the FDQC, operation lights with detuning interact with transitions which are not intended to operate, because ions are irradiated regardless of their positions. This crosstalk causes serious errors of the quantum gates in the FDQC. When ``resonance conditions'' between eigenenergies of the whole system and transition-frequency differences among ions are satisfied, the gate errors increase. Ions for qubits must have transitions avoiding the conditions for high-fidelity gate. However, when a large number of ions are employed as qubits, it is difficult to avoid the conditions because of many combinations of eigenenergies and transitions. We propose new implementation using extra ions to control the resonance conditions, and show the effect of the extra ions by a numerical simulation. Our implementation is useful to realize a scalable quantum computer using rare-earth-ion-doped crystal based on the FDQC.

  2. Properties and the origin of Almost Monoenergetic Ion (AMI) beams observed near the Earth's bow shock

    NASA Astrophysics Data System (ADS)

    Lutsenko, V. N.; Gavrilova, E. A.

    2011-08-01

    Beams of Almost Monoenergetic Ions (AMI) in the energy range from 20 to 800 keV were discovered in the DOK-2 experiment (Interball project) in the magnetosheath and upstream of the Earth's bow shock. This work summarizes the analysis results of ~730 AMI events registered in 1995-2000. Statistics of AMI properties, their nature and origin are considered. The analysis of a large array of new data confirmed our earlier suggested ideas on the AMI nature, origin, and their acceleration model. These ideas were further developed and refined. According to this model, AMI are a result of solar wind ions acceleration in small regions with a potential electric field arising due to disruptions of the bow shock current sheet filaments. It has been found that the reason of the current filaments disruptions in most cases was the Hot Flow Anomaly phenomenon (HFA) caused by an interaction of a tangential discontinuity in the solar wind with the Earth's bow shock. It is shown that the study of AMI can provide new information on large-scale properties and dynamics of the bow shock current sheet.

  3. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    NASA Astrophysics Data System (ADS)

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-01

    Two novel coordination polymers, namely, [Ca(NCP)2]∞ (I) and [Sr(NCP)2]∞ (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP-)4 (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π-π interactions between the pyridine rings belonging to phenanthroline of NCP- which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability.

  4. Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"

    NASA Astrophysics Data System (ADS)

    Kislyakova, K. G.; Johnstone, C. P.; Odert, P.; Erkaev, N. V.; Lammer, H.; Lüftinger, T.; Holmström, M.; Khodachenko, M. L.; Güdel, M.

    2014-02-01

    Aims: We study the interactions between stellar winds and the extended hydrogen-dominated upper atmospheres of planets. We estimate the resulting escape of planetary pick-up ions from the five "super-Earths" in the compact Kepler-11 system and compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Methods: Assuming the stellar wind of Kepler-11 is similar to the solar wind, we use a polytropic 1D hydrodynamic wind model to estimate the wind properties at the planetary orbits. We apply a direct simulation Monte Carlo model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f within a realistic expected heating efficiency range of 15-40%. The same model is used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. From the interaction model, we study the influence of possible magnetic moments, calculate the charge exchange and photoionization production rates of planetary ions, and estimate the loss rates of pick-up H+ ions for all five planets. We compare the results between the five "super-Earths" and the thermal escape rates of the neutral planetary hydrogen atoms. Results: Our results show that a huge neutral hydrogen corona is formed around the planet for all Kepler-11b-f exoplanets. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure and gravitational effects. Non-thermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 "super-Earths" vary between ~6.4 × 1030 s-1 and ~4.1 × 1031 s-1, depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of ~1.07 × 107 g s-1 and ~6.8 × 107 g s-1 respectively, which is a few percent of the thermal escape rates.

  5. Stellar wind interaction and pick-up ion escape of the Kepler-11 "super-Earths"

    NASA Astrophysics Data System (ADS)

    Kislyakova, Kristina; Johnstone, Colin; Odert, Petra; Erkaev, Nikolai; Lammer, Helmut; Lüftinger, Theresa; Holmstöm, Mats; Khodachenko, Maxim; Güdel, Manuel

    2014-05-01

    We present the results of modeling of the interactions between stellar wind and the extended hydrogen-dominated upper atmospheres of planets and estimate the resulting escape of planetary pick-up ions from the 5 «super-Earths» in the compact Kepler-11 system. We compare the escape rates with the efficiency of the thermal escape of neutral hydrogen atoms. Assuming the stellar wind of Kepler-11 is similar to the solar wind, we used a polytropic 1D hydrodynamic wind model to estimate the wind properties at the planetary orbits. We applied a Direct Simulation Monte Carlo Model to model the hydrogen coronae and the stellar wind plasma interaction around Kepler-11b-f planets within a realistic expected heating efficiency range of 15-40%. The same model was used to estimate the ion pick-up escape from the XUV heated and hydrodynamically extended upper atmospheres of Kepler-11b-f. Modeling clarifies the influence of possible magnetic moments on escape processes and allows to estimate the charge exchange and photoionization production rates of planetary ions as well as the loss rates of pick-up H+ ions for all five planets. This study presents also the comparison of the results between the five 'super-Earths' and in a more general sense also with the thermal escape rates of the neutral planetary hydrogen atoms. Our results show that for all Kepler-11b-f exoplanets, a huge neutral hydrogen corona is formed around the planet. The non-symmetric form of the corona changes from planet to planet and is defined mostly by radiation pressure, charge-exchange and gravitational effects. According to our estimates, nonthermal escape rates of pick-up ionized hydrogen atoms for Kepler-11 «super-Earths» vary between ~ 6.4 × 1030 s-1 and ~ 4.1 × 1031 s-1 depending on the planet's orbital location and assumed heating efficiency. These values correspond to non-thermal mass loss rates of ~ 1.07 × 107 g·s-1 and ~ 6.8 × 107 g·s-1 respectively, which is a few percent of the thermal

  6. Ion Acceleration at Earth, Saturn and Jupiter and its Global Impact on Magnetospheric Structure

    NASA Astrophysics Data System (ADS)

    Brandt, Pontus

    2016-07-01

    The ion plasma pressures at Earth, Saturn and Jupiter are significant players in the electrodynamic force-balance that governs the structure and dynamics of these magnetospheres. There are many similarities between the physical mechanisms that are thought to heat the ion plasma to temperatures that even exceed those of the solar corona. In this presentation we compare the ion acceleration mechanisms at the three planetary magnetospheres and discuss their global impacts on magnetopsheric structure. At Earth, bursty-bulk flows, or "bubbles", have been shown to accelerate protons and O+ to high energies by the earthward moving magnetic dipolarization fronts. O+ ions display a more non-adiabatic energization in response to these fronts than protons do as they are energized and transported in to the ring-current region where they reach energies of several 100's keV. We present both in-situ measurements from the NASA Van Allen Probes Mission and global Energetic Neutral (ENA) images from the High-Energy Neutral Atom (HENA) Camera on board the IMAGE Mission, that illustrate these processes. The global impact on the magnetospheric structure is explored by comparing the empirical magnetic field model TS07d for given driving conditions with global plasma pressure distributions derived from the HENA images. At Saturn, quasi-periodic energization events, or large-scale injections, occur beyond about 9 RS around the post-midnight sector, clearly shown by the Ion and Neutral Atom Camera (INCA) on board the Cassini mission. In contrast to Earth, the corotational drift dominates even the energetic ion distributions. The large-scale injections display similar dipolarization front features can be found and there are indications that like at Earth the O+ responds more non-adiabatically than protons do. However, at Saturn there are also differences in that there appears to be energization events deep in the inner magnetosphere (6-9 RS) preferentially occurring in the pre

  7. A single electrochemical biosensor for detecting the activity and inhibition of both protein kinase and alkaline phosphatase based on phosphate ions induced deposition of redox precipitates.

    PubMed

    Shen, Congcong; Li, Xiangzhi; Rasooly, Avraham; Guo, Linyan; Zhang, Kaina; Yang, Minghui

    2016-11-15

    Protein kinase (PKA) and alkaline phosphatase (ALP) are clinically relevant enzymes for a number of diseases. In this work, we developed a new simple electrochemical biosensor for the detection of the activity and inhibition of both PKA and ALP. One common feature of the PKA and ALP catalyzing process is that PKA can hydrolysis adenosine-5'-triphosphate (ATP) and ALP can hydrolysis pyrophosphate, both reactions produce phosphate ions, and the amount of phosphate ion produced is proportional to enzyme activity. Our assay is based on the principle that phosphate ions react with molybdate to form redox molybdophosphate precipitates on the electrode surface, thus generating electrochemical current. The detection limit for PKA and ALP were much lower than existing assays. The biosensor has good specificity and was used to measure drug-stimulated PKA from lysates of HeLa cells. We also evaluated the use of the biosensor as a screening tool for enzyme inhibitors. To the best of our knowledge, this is the first report of a biosensor capable of detecting the activity of both PKA and ALP. This tool has the potential to simplify PKA and ALP clinical measurement, thereby improving diagnostics of relevant diseases. It also may serve as the basis for a simple screening method for new enzyme inhibitors for disease treatment. PMID:27179562

  8. Toward a System-Based Approach to Electromagnetic Ion Cyclotron Waves in Earth's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Gamayunov, K. V.; Engebretson, M. J.; Rassoul, H.

    2015-12-01

    We consider a nonlinear wave energy cascade from the low frequency range into the higher frequency domain of electromagnetic ion cyclotron (EMIC) wave generation as a possible source of seed fluctuations for EMIC wave growth due to the ion cyclotron instability in Earth's magnetosphere. The theoretical analysis shows that energy cascade from the Pc 4-5 frequency range (2-22 mHz) into the range of Pc 1-2 pulsations (0.1-5 Hz) is able to supply the level of seed fluctuations that guarantees growth of EMIC waves up to an observable level during one pass through the near equatorial region where the ion cyclotron instability takes place. We also analyze magnetic field data from the Polar and Van Allen Probes spacecraft to test this nonlinear mechanism. We restrict our analysis to magnetic spectra only. We do not analyze the third-order moment for total energy of the magnetic and velocity fluctuations, but judge whether a nonlinear energy cascade is present or whether it is not by only analyzing the appearance of power-law distributions in the low frequency part of the magnetic field spectra. While the power-law spectrum alone does not guarantee that a nonlinear cascade is present, the power-law distribution is a strong indication of the possible development of a nonlinear cascade. Our data analysis shows that a nonlinear energy cascade is indeed observed in both the outer and inner magnetosphere, and EMIC waves are growing from this nonthermal background. All the analyzed data are in good agreement with the theoretical model presented in this study. Overall, the results of this study support a nonlinear energy cascade in Earth's magnetosphere as a mechanism which is responsible for supplying seed fluctuating energy in the higher frequency domain where EMIC waves grow due to the ion cyclotron instability. Keywords: nonlinear energy cascade, ultra low frequency waves, electromagnetic ion cyclotron waves, seed fluctuationsAcknowledgments: This paper is based upon work

  9. Discovery of ions with nuclear charge Z greater than or equal to 9 stability trapped in the earth's radiation belts

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1981-01-01

    Observations of MeV heavy ions obtained by Explorer 45 in an equatorial earth orbit during a 7 month period in 1972 are presented, including data from four major magnetic storms. The spacecraft contained a heavy ion detector telescope and heavy ion discriminator electronics. Heavy ions were distinguished from protons and electrons, and He ions and ions heavier than F were recorded on separate data channels. The L equals 2.25 to L equals 4 zones were probed, and it was found that the relative enhancement in heavy ion fluxes in the radiation belts over the prestorm ion flux intensities tends to increase with increasing ion mass and/or increasing ion energy in the MeV range. The radial profiles of ions with nucleon number greater than nine peak at L equals 2.9, and MeV ions in this class decay on time scales from 23 days at L equals 3.25 to 55 days at L equals 2.25. Indirect evidence indicated a solar source for the very heavy ions in the magnetosphere.

  10. Sol-gel derived hybrid materials doped with rare earth metal ions

    NASA Astrophysics Data System (ADS)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2011-10-01

    Sol-gel derived organic-inorganic hybrid materials doped with rare earth metal ions (Pr 3+) and small amounts of lithium ions (˜0.1-0.2 wt.%) were produced from the tetraethyl orthosilicate (TEOS), AlCl 3·6H 2O (about 10 mol%), ethyl methacrylate, butyl methacrylate and some other organic additions (ca. 35-40 wt.% of organics in the fresh gels) to obtain hybrid organic-inorganic hosts. The gel and hybrid materials obtained were aged at room temperature for three weeks, then heated in an electric drier for 3 h at temperature of 125 °C and investigated for morphology, structure and luminescence properties by X-ray diffraction (XRD), scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDS), Fourier transform infrared spectroscopy (FTIR), 29Si and 27Al MAS nuclear magnetic resonance and fluorescence spectroscopy. An influence of the organic additions and inorganic dopants on microstructure of the materials obtained and their luminescence properties has been examined. Under excitation with UV radiation in a range of ˜210-350 nm, the sharp and relatively intense luminescence emission lines due to 3P 0 → 3H 4 (blue) and 3P 0 → 3F 3 (red) transitions of Pr 3+ ions were observed in the luminescence spectra of gel and hybrid materials of SA-series.

  11. Population gratings in saturable optical fibers with randomly oriented rare-earth ions

    NASA Astrophysics Data System (ADS)

    Stepanov, S.; Martinez, L. M.; Hernandez, E. H.; Agruzov, P.; Shamray, A.

    2015-07-01

    Formation of the dynamic population gratings in optical fibers with randomly oriented rare-earth ions is analyzed with a special interest to the grating component for readout with the orthogonal light polarization. It is shown that as compared with a simple model case of the collinearly oriented dipole-like centers their random orientation leads to approximately 2-times growth of the effective saturation power P sat when it is estimated from the incident power dependence of the fiber absorption or from that of the fluorescence intensity. An optimal incident power, for which the maximum of the dynamic population grating amplitude for collinear light polarization is observed, also follows this change in P sat, while formation of the grating for orthogonal polarization needs essentially higher light power. The reduced anisotropy of the active centers, which is in charge of the experimentally observed weakening of the polarization hole burning (PHB) and of the fluorescence polarization, compensates in some way the effect of random ion orientation. The ratio between the maximum conventional (i.e. for the interacting waves collinear polarizations) two-wave mixing (TWM) amplitude and the initial not saturable fiber optical density proves to be, however, nearly the same as in the model case of collinearly oriented dipoles. The ratio between the PHB effect and the amplitude of the anisotropic grating, which is responsible for TWM of the orthogonally polarized waves, is also not influenced significantly by the reduced anisotropy of ions.

  12. An Update on the Lithium-Ion Cell Low-Earth-Orbit Verification Test Program

    NASA Technical Reports Server (NTRS)

    Reid, Concha M.; Manzo, Michelle A.; Miller, Thomas B.; McKissock, Barbara I.; Bennett, William

    2007-01-01

    A Lithium-Ion Cell Low-Earth-Orbit Verification Test Program is being conducted by NASA Glenn Research Center to assess the performance of lithium-ion (Li-ion) cells over a wide range of low-Earth-orbit (LEO) conditions. The data generated will be used to build an empirical model for Li-ion batteries. The goal of the modeling will be to develop a tool to predict the performance and cycle life of Li-ion batteries operating at a specified set of mission conditions. Using this tool, mission planners will be able to design operation points of the battery system while factoring in mission requirements and the expected life and performance of the batteries. Test conditions for the program were selected via a statistical design of experiments to span a range of feasible operational conditions for LEO aerospace applications. The variables under evaluation are temperature, depth-of-discharge (DOD), and end-of-charge voltage (EOCV). The baseline matrix was formed by generating combinations from a set of three values for each variable. Temperature values are 10 C, 20 C and 30 C. Depth-of-discharge values are 20%, 30% and 40%. EOCV values are 3.85 V, 3.95 V, and 4.05 V. Test conditions for individual cells may vary slightly from the baseline test matrix depending upon the cell manufacturer s recommended operating conditions. Cells from each vendor are being evaluated at each of ten sets of test conditions. Cells from four cell manufacturers are undergoing life cycle tests. Life cycling on the first sets of cells began in September 2004. These cells consist of Saft 40 ampere-hour (Ah) cells and Lith ion 30 Ah cells. These cells have achieved over 10,000 cycles each, equivalent to about 20 months in LEO. In the past year, the test program has expanded to include the evaluation of Mine Safety Appliances (MSA) 50 Ah cells and ABSL battery modules. The MSA cells will begin life cycling in October 2006. The ABSL battery modules consist of commercial Sony hard carbon 18650 lithium-ion

  13. A simple model for the formation of 'reflected', 'intermediate', and 'diffuse' ion distributions upstream of earth's bow shock

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Skadron, G.

    1985-01-01

    Detailed energetic ion and low-frequency wave experiments on ISEE 1, 2, and 3, have established correlations between the types of ion populations and waves observed to exist in the earth's foreshock region. The present calculation has the objective to quantitatively test the picture obtained for the earth's foreshock region. An analysis is conducted of the coupled spatial and temporal evolution of upstream protons and hydromagnetic waves by means of a simple model in which the protons are represented by counterstreaming beams which resonate with hydromagnetic waves, exciting the outward propagating modes and damping the inward propagating modes at a single wave number.

  14. Cross sections for deeply inelastic transfer reactions induced by heavy ions in rare-earth targets

    NASA Astrophysics Data System (ADS)

    Rivet, M. F.; Bimbot, R.; Gardès, D.; Fleury, A.; Hubert, F.; Llabador, Y.

    1982-04-01

    Cross sections have been measured for deeply inelastic transfer reactions leading to the production of several radio-nuclides. Rare-earth targets were used and the projectiles were Ar, Cr, Fe and Cu ions. The reactions studied corresponded to transfers of two to nine protons and variable numbers of neutrons. The results obtained were used to study the evolution of some characteristics of these reactions, such as integrated cross sections and widths of the isotopic distributions, versus incident mass and transferred mass. These results confirm that mass transfer is driven by the potential energy of the composite system. The decrease of cross sections for increasing charge transfer may be quantitatively explained by assuming thermodynamical equilibrium of the mass asymmetry degree of freedom.

  15. On atmospheric loss of oxygen ions from earth through magnetospheric processes.

    PubMed

    Seki, K; Elphic, R C; Hirahara, M; Terasawa, T; Mukai, T

    2001-03-01

    In Earth's environment, the observed polar outflow rate for O(+) ions, the main source of oxygen above gravitational escape energy, corresponds to the loss of approximately 18% of the present-day atmospheric oxygen over 3 billion years. However, part of this apparent loss can actually be returned to the atmosphere. Examining loss rates of four escape routes with high-altitude spacecraft observations, we show that the total oxygen loss rate inferred from current knowledge is about one order of magnitude smaller than the polar O(+) outflow rate. This disagreement suggests that there may be a substantial return flux from the magnetosphere to the low-latitude ionosphere. Then the net oxygen loss over 3 billion years drops to approximately 2% of the current atmospheric oxygen content. PMID:11239148

  16. Influence of rare earth ions on microstructural and optical properties of ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Riyajuddin, Sk.; Naseem, Swaleha; Khan, Wasi; Ahmad, Shabbir; Faizan, M.; Naqvi, A. H.

    2016-05-01

    Pure and 3% rare earth ions (Nd3+ & Gd3+) doped ZnO samples were synthesized by sol-gel method, followed by annealing at temperature 450°C for 2hr. The samples were characterized by XRD, FTIR and UV-visible spectroscopy. XRD result confirmed single phase nature of all samples with crystalline structure. The average crystallite size of the doped samples found to be decreases as caculated using Debye-Scherrer's formula. FTIR spectra indicate absorption band centered at 464 cm-1 which is attributed to Zn-O lattice vibration. It confirms the formaton of compounds. UV-visible spectroscopy was used to study the optical properties and band gap of the synthesised materials using Tauc's relation.

  17. Birefringence and polarization rotator induced by electromagnetically induced transparency in rare earth ion-doped crystals

    NASA Astrophysics Data System (ADS)

    Li, Zhixiang; Liu, Jianji; Yu, Ping; Zhang, Guoquan

    2016-05-01

    The birefringence induced by the electromagnetically induced transparency effect in a {Pr}^{3+}:{Y}_2 {SiO}_5 crystal was studied by using a balanced polarimeter technique. The results show that it is possible to control the polarization state of the output probe beam by adjusting the experimental conditions. Particularly, the coherently prepared {Pr}^{3+}:{Y}_2 {SiO}_5 crystal can serve as a polarization rotator for a linearly polarized input probe beam at the two-photon resonant condition. Such coherent control on the polarization of light should be useful for polarization-based classical and quantum information processing such as all-optical switching, polarization preserving light pulse memory and polarization qubits based on rare earth ion-doped solids.

  18. Modification of phonon processes in nanostructured rare-earth-ion-doped crystals

    NASA Astrophysics Data System (ADS)

    Lutz, Thomas; Veissier, Lucile; Thiel, Charles W.; Cone, Rufus L.; Barclay, Paul E.; Tittel, Wolfgang

    2016-07-01

    Nano-structuring impurity-doped crystals affects the phonon density of states and thereby modifies the atomic dynamics induced by interaction with phonons. We propose the use of nano-structured materials in the form of powders or phononic bandgap crystals to enable or improve persistent spectral hole burning and coherence for inhomogeneously broadened absorption lines in rare-earth-ion-doped crystals. This is crucial for applications such as ultra-precise radio-frequency spectrum analyzers and optical quantum memories. As an example, we discuss how phonon engineering can enable spectral hole burning in erbium-doped materials operating in the convenient telecommunication band and present simulations for density of states of nano-sized powders and phononic crystals for the case of Y2SiO5 , a widely used material in current quantum memory research.

  19. [Improvement of anti-stokes energy transfer between rare earth ions--2. Numerical calculation and analysis].

    PubMed

    Chen, Xiao-bo; Wang, Ce; Kang, Dong-guo; Sawanobori, Naruhito; Wang, Shui-feng; Li, Yong-liang; Wang, Ping

    2010-08-01

    The dynamics of all levels were calculated numerically in the present article for Er(0.5)Yb(3):FOV oxyfluoride nanophase vitroceramics. The population dynamical processes were analyzed carefully. It was found for the first time that traditional phonon-assisted energy transfer theory of rare earth ion energy transfer can not well explain the observed experimental calibrated results, as it does not take into account the difference between Stokes and anti-Stokes process. A coefficient, the improved factor of the intensity ratio of Stokes to anti-Stokes process in quantum Raman theory compared to classical Raman theory, was introduced for the first time to successfully describe the anti-Stokes energy transfer. The theoretical improvement results are coincident with experiments very well. This improvement is very significant and indispensable when the photonics of nanomaterials is probed. PMID:20939297

  20. Formation and dynamics of "waterproof" photoluminescent complexes of rare earth ions in crowded environment.

    PubMed

    Ignatova, Tetyana; Blades, Michael; Duque, Juan G; Doorn, Stephen K; Biaggio, Ivan; Rotkin, Slava V

    2014-12-28

    Understanding behavior of rare-earth ions (REI) in crowded environments is crucial for several nano- and bio-technological applications. Evolution of REI photoluminescence (PL) in small compartments inside a silica hydrogel, mimic to a soft matter bio-environment, has been studied and explained within a solvation model. The model uncovered the origin of high PL efficiency to be the formation of REI complexes, surrounded by bile salt (DOC) molecules. Comparative study of these REI-DOC complexes in bulk water solution and those enclosed inside the hydrogel revealed a strong correlation between an up to 5×-longer lifetime of REIs and appearance of the DOC ordered phase, further confirmed by dynamics of REI solvation shells, REI diffusion experiments and morphological characterization of microstructure of the hydrogel. PMID:25379879

  1. Coherent phase control of resonance-mediated two-photon absorption in rare-earth ions

    SciTech Connect

    Zhang, Shian Lu, Chenhui; Jia, Tianqing; Sun, Zhenrong; Qiu, Jianrong

    2013-11-04

    We theoretically and experimentally demonstrate the quantum coherent control of the resonance-mediated two-photon absorption in rare-earth ions by the phase-shaped femtosecond laser pulse. Our theoretical results show that the resonance-mediated two-photon absorption can be effectively controlled, but the control efficiency depends on the laser repetition rate in real experiment due to the long lifetime and the short decoherence time of the excited state, and the larger laser repetition rate yields the lower control efficiency. These theoretical results are experimentally confirmed in glass sample doped with Er{sup 3+} by utilizing the femtosecond lasers with low repetition rate of 1 kHz and high repetition rate of 80 MHz.

  2. Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal

    NASA Astrophysics Data System (ADS)

    Xiu-Rong, Ma; Yu-Qing, Liang; Song, Wang; Shuang-Gen, Zhang; Yun-Long, Shan

    2016-07-01

    We investigate the intensity and efficiency of a compressed echo, which is important in arbitrary waveform generation (AWG). A new model of compressed echo is proposed based on the optical Bloch equations, which exposes much more detailed parameters than the conventional model, such as the time delay of the chirp lasers, the nature of the rare-earth-ion-doped crystal, etc. According to the novel model of compressed echo, we find that reducing the time delay of the chirp lasers and scanning the lasers around the center frequency of the inhomogeneously broadened spectrum, while utilizing a crystal with larger coherence time and excitation lifetime can improve the compressed echo’s intensity and efficiency. The theoretical analysis is validated by numerical simulations. Project supported by Special Funds for Scientific and Technological Innovation Projects in Tianjin, China (Grant No. 10FDZDGX00400) and the Tianjin Research Program of Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).

  3. In situ observations of ion scale current sheet and associated electron heating in Earth's magnetosheath turbulence

    NASA Astrophysics Data System (ADS)

    Chasapis, Alexandros; Retinò, Alessandro; Sahraoui, Fouad; Greco, Antonella; Vaivads, Andris; Sundkvist, David; Canu, Patrick

    2014-05-01

    Magnetic reconnection occurs in thin current sheets that form in turbulent plasmas. Numerical simulations indicate that turbulent reconnection contributes to the dissipation of magnetic field energy and results in particle heating and non-thermal acceleration. Yet in situ measurements are required to determine its importance as a dissipation mechanism at those scales. The Earth's magnetosheath downstream of the quasi-parallel shock is a turbulent near-Earth environment that offers a privileged environment for such a study. Here we present a study of the properties of thin current sheets by using Cluster data. We studied the distribution of the current sheets as a function of their magnetic shear angle, the PVI index and the electron heating. The properties of the observed current sheets were different for high shear (θ > 90 degrees) and low shear current sheets (θ < 90 degrees). These high-shear current sheets account for about ˜ 20% of the total and have an average thickness comparable to the ion inertial length. Enhancement of electron temperature within these current sheets suggest that they are important for local electron heating and energy dissipation.

  4. Effect of rare earth ions on the properties of glycine phosphite single crystals

    NASA Astrophysics Data System (ADS)

    Senthilkumar, K.; Moorthy Babu, S.; Kumar, Binay; Bhagavannarayana, G.

    2013-01-01

    Optically transparent glycine phosphite (GPI) single crystals doped with rare earth metal ions (Ce, Nd and La) were grown from aqueous solution by employing the solvent evaporation and slow cooling methods. Co-ordination of dopants with GPI was confirmed by X-ray fluorescence spectroscopic analysis. Single crystal X-ray diffraction analysis was carried out to determine the lattice parameters and to analyze the structural morphology of GPI with dopants, which indicates that cell parameters of doped crystals were significantly varied with pure GPI. Crystalline perfection of doped GPI crystals was determined by high resolution X-ray diffraction analysis by means of full width at half maximum values. Influence of the dopants on the optical properties of the material was determined. Paraelectric to ferroelectric transition temperature (Tc) of doped GPI crystals were identified using differential scanning calorimetric measurements. Piezoelectric charge coefficient d33 was measured for pure and doped GPI crystals. Hysteresis (P-E) loop was traced for ferroelectric b-axis and (100) plane of pure and doped GPI crystals with different biasing field and ferroelectric parameters were calculated. Mechanical stability of crystals was determined by Vickers microhardness measurements; elastic stiffness constant 'C11' and yield strength 'σy' were calculated from hardness values. Mechanical and ferroelectric properties of doped crystals were improved with doping of rare earth metals.

  5. Giant magnetostrain based on strong single ion anisotropy of rare earth materials

    NASA Astrophysics Data System (ADS)

    Doerr, M.; Raasch, S.; Rotter, M.; Frontzek, M.; Meyer, D. C.; Leisegang, T.; Zschintzsch, M.; Svoboda, P.; Loewenhaupt, M.

    2008-05-01

    The volume, shape and microstructure of solids can be influenced by magnetic fields. Much effort is focused on magnetic shape memory (MSM) materials. Recently, the MSM effect has been discovered to occur also in the paramagnetic state, e.g. in RCu2 compounds (R = rare earth). RMSM materials distinguish themselves from conventional MSM materials by the new origin of the magnetoic anisotropy: the strong rare-earth single ion anisotropy. Due to the pseudo-hexagonal symmetry of RCu2, three orientational variants exists, each of them rotated by about 60 deg with respect to the others. Switching these variants by an external field results in a change of the macroscopic shape. The strain is in the order of one percent (= Giant MagnetoStrain). The variant's fraction remains unchanged when ramping down the field. The virgin state can be recovered by heating or by a perpendicularly directed field. We present temperature and field dependent measurements of magnetostrain and magentization at the model substance Tb0.5Dy0.5Cu2. The macroscopic characterization of the sample is complemented by a detailed microscopic analysis done by elastic neutron scattering. Although the GMS effect of RCu2 was worked out at single crystals, the principle of this magneto-mechanical coupling phenomenon is also useful for polycrystalline or microscaled applications. The existence of this structural irreversibility shows the potential to construct field controlled actuators or switches.

  6. Hybrid quantum nanophotonic devices for coupling to rare-earth ions

    NASA Astrophysics Data System (ADS)

    Miyazono, Evan; Hartz, Alex; Zhong, Tian; Faraon, Andrei

    2015-03-01

    With an assortment of narrow line-width transitions spanning the visible and IR spectrum and long spin coherence times, rare-earth doped crystals are the leading material system for solid-state quantum memories. Integrating these materials in an on-chip optical platform would create opportunities for highly integrated light-matter interfaces for quantum communication and quantum computing. Nano-photonic resonators with high quality factors and small mode volumes are required for efficient on-chip coupling to the small dipole moment of rare-earth ion transitions. However, direct fabrication of optical cavities in these crystals with current nanofabrication techniques is difficult and unparallelized, as either exotic etch chemistries or physical milling processes are required. We fabricated hybrid devices by mechanically transferring a nanoscale membrane of gallium arsenide (GaAs) onto a neodymium-doped yttrium silicon oxide (Y2SiO5) crystal and then using electron beam lithography and standard III-V dry etching to pattern nanobeam photonic crystal cavities and ring resonator cavities, a technique that is easily adapted to other frequency ranges for arbitrary dopants in any rare earth host system. Single crystalline GaAs was chosen for its low loss and high refractive index at the transition wavelength. We demonstrated the potential to evanescently couple between the cavity field and the 883 nm 4I9/2- 4F3/2 transition of nearby neodymium impurities in the host crystal by examining transmission spectra through a waveguide coupled to the resonator with a custom-built confocal microscope. The prospects and requirements for using this system for scalable quantum networks are discussed.

  7. Sol-gel-derived hybrid materials multi-doped with rare-earth metal ions

    NASA Astrophysics Data System (ADS)

    Zelazowska, E.; Rysiakiewicz-Pasek, E.; Borczuch-Laczka, M.; Cholewa-Kowalska, K.

    2012-06-01

    Four different hybrid organic-inorganic materials based on TiO2-SiO2 matrices with organic additives and doped with rare-earth metal ions (III) from the group of europium, cerium, terbium, neodymium, dysprosium and samarium, were synthesized by sol-gel method. Tetraethyl orthosilicate, titanium (IV) isopropoxide and organic compounds, such as butyl acrylate, butyl methacrylate, ethyl acetoacetate, ethylene glycol dimethacrylate, ethyl acetate, propylene carbonate, organic solvents and certain inorganic salts were used in the synthesis. The inorganic part of the sols, which were used in the synthesis of all the hybrid materials, was prepared separately and then the organic parts were added. The materials obtained were aged for three weeks at room temperature and then heated in an electric oven for three hours at temperatures of 80 °C-150 °C. Scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM/EDX); X-ray diffraction (XRD); Fourier transform infrared spectroscopy (KBr technique); 29Si magic-angle spinning nuclear magnetic resonance; and fluorescence spectroscopy were used for the examination of morphology, microstructure and luminescence properties, respectively. Photoluminescence properties with relatively intense narrow emission lines of Tb, Eu, Dy, Nd, Sm respectively to the RE-ions doping, were observed for all the hybrid materials.

  8. Visible WGM emissions from rare earth ion doped ZnO microspheres

    NASA Astrophysics Data System (ADS)

    K, Fabitha; Rao, M. S. Ramachandra

    ZnO is known to be an ideal candidate for short wavelength range opto-electronic device applications due to its wide and direct bandgap (3.37 eV) and high excitonic binding energy (60 meV). Apart from the UV emission at ~380 nm (free exciton emission) ZnO also possesses a broad emission band centered at ~530 nm which is expected to be originated from the oxygen vacancy (Vo) defects. In rare earth (RE) ion doped ZnO, emissions originate from the 4f levels of RE ions will be obtained in addition to the characteristic emissions of ZnO. Small micro/nanostructures made of ZnO with high crystalline quality show unique characteristics in light emission, especially in lasing applications. A micro/ nanostructured ZnO crystal generally has a wurtzite structure with a natural hexagonal cross section, which serves as a WGM lasing micro cavity owing to its high reflective index (~2). However, there exists a potential optical loss at corners of hexagons; therefore, an isotropic structure like spheres may be a better candidate to achieve efficient light confinement. In our work, highly smooth micro spheres with different diameters were grown. Raman spectroscopy measurements confirm the hexagonal wurtzite structure of ZnO, SEM and AFM studies shows the smooth surfaced spheres. WGM lasing characteristics of ZnO spheres have been investigated using optical pumping with 488 nm laser in a micro-PL system. Details of the results will be presented.

  9. First-principles study of fission product (Xe, Cs, Sr) incorporation and segregation in alkaline earth metal oxides, HfO2, and MgO-HfO2 interface

    SciTech Connect

    Liu, Xiang-yang; Uberuaga, Blas P; Sickafus, Kurt E

    2008-01-01

    In order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.g. solution chemistry, the fission products can be separated from the fissile material. We examine a surrogate dispersion fuel composition, in which hafnia (HfO{sub 2}) is a surrogate for the fissile core and alkaline earth metal oxides are used as the inert matrix. The questions of fission product incorporation in these oxides and possible segregation behavior at interfaces are considered. Density functional theory based calculations for fission product elements (Xe, Sr, and Cs) in these oxides are carried out. We find smaller incorporation energy in hafnia than in MgO for Cs and Sr, and Xe if variation of charge state is allowed. We also find that this trend is reversed or reduced for alkaline earth metal oxides with large cation sizes. Model interfacial calculations show a strong tendency of segregation from bulk MgO to MgO-HfO{sub 2} interfaces.

  10. Rare-earth-ion-doped waveguide lasers on a silicon chip

    NASA Astrophysics Data System (ADS)

    Pollnau, Markus

    2015-03-01

    Rare-earth-ion-doped materials are of high interest as amplifiers and lasers in integrated optics. Their longer excited-state lifetimes and the weaker refractive-index change accompanied with rare-earth-ion excitation compared to electron-hole pairs in III-V semiconductors provide spatially and temporally stable optical gain, allowing for high-speed amplification and narrow-linewidth lasers. Amorphous Al2O3 deposited onto thermally oxidized silicon wafers offers the advantage of integration with silicon photonics and electronics. Layer deposition by RF reactive co-sputtering and micro-structuring by chlorine-based reactive-ion etching provide low-loss channel waveguides. With erbium doping, we improved the gain to 2 dB/cm at 1533 nm and a gain bandwidth of 80 nm. The gain is limited by migration-accelerated energy-transfer upconversion and a fast quenching process. Since stimulated emission is even faster than this quenching process, lasers are only affected in terms of their threshold, allowing us to demonstrate diode-pumped micro-ring, distributed-feedback (DFB), and distributed-Bragg-reflector (DBR) lasers in Al2O3:Er3+ and Al2O3:Yb3+ on a silicon chip. Surface-relief Bragg gratings were patterned by laser-interference lithography. Monolithic DFB and DBR cavities with Q-factors of 1.35×106 were realized. In an Er-doped DFB laser, single-longitudinal-mode operation at 1545 nm was achieved with a linewidth of 1.7 kHz, corresponding to a laser Q-factor of 1.14×1011. Yb-doped DFB and DBR lasers were demonstrated at 1020 nm with output powers of 55 mW and a slope efficiency of 67% versus launched pump power. A dual-phaseshift, dual-wavelength laser was achieved and a stable microwave signal at ~15 GHz was created via the heterodyne photo-detection of the two laser wavelengths.

  11. Corrosion of Sn-Co alloy in alkaline media and the effect of Cl - and Br - ions

    NASA Astrophysics Data System (ADS)

    Refaey, S. A. M.

    1999-05-01

    Sn-Co electrodeposits alloy of approximate composition 80% Sn-20% Co (wt%) can be obtained from a gluconate bath as single phase CoSn 2, which is similar in appearance to decorative chromium. The potentiodynamic and cyclic voltammogram techniques were used to study the corrosion behaviour of CoSn 2 in sodium borate solutions (Na 2B 4O 7) at pH=9.6. The effect of different factors such as concentration of borate ions, pH, potential scan rate, successive cyclic voltammetry, and progressive addition of halide ions (Cl - and Br -) on the electrochemical behaviour of CoSn 2 alloys are discussed. The observed corrosion resistance of electrodeposited CoSn 2 alloy is due to the formation of a thin passive film, which is examined by X-ray spectroscopy and believed to be mainly tin and cobalt oxides. The voltammograms involve four anodic peaks, the first and second of which correspond to the formation of SnO and SnO 2 and the third and fourth related to the formation of cobalt oxides. SEM examination confirms that pitting corrosion takes place in presence of borax and is increased by adding halide ions.

  12. Effects of near-Earth stochastic acceleration and reflections of magnetotail ions on the formation of auroral arcs

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Zelenyi, L. M.; Bosqued, Jean-Michael; Peroomian, V.; Wang, Z.; Schriver, D.; Richard, R.

    1992-01-01

    Findings obtained from global kinetic simulations of magnetotail plasma are discussed. A region of strongly nonadiabatic ion acceleration (known as the 'wall' region) exists in the near earth tail and demarcates two very different regimes of ion motion: adiabatic and quasi-adiabatic. After convection through the wall, ion distributions rapidly become isotropized and thermalized. A strong enhancement of the cross tail current occurs on the tailward side of the wall. Comparison of numerical and adiabatic pressure profiles indicates that nonadiabatic processes operating in this region may contribute significantly to a pressure balance relief in the course of quasi-steady magnetospheric convection.

  13. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  14. Dawn-dusk asymmetry in ion pitch-angle anisotropy in the near-Earth magnetosphere and tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Wang, C.; Zaharia, S. G.; Lyons, L. R.; Angelopoulos, V.

    2012-12-01

    We found a strong dawn-dusk asymmetry in ion pitch-angle anisotropy from spatial distributions statistically determined using THEMIS observations. The asymmetry varies significantly with ion energies and is a result of different processes. The anisotropy of ions below several hundreds eV in the tail plasma sheet (beyond X = 10 Re) and the near-Earth magnetosphere (inside r = 10 Re) is dominantly negative (relatively higher particle fluxes near 0 and 180 degree pitch-angle) and is more strongly negative in the post-midnight sector than the pre-midnight sector. The negative anisotropy is likely caused by field-aligned ionosphere outflow and the post-midnight enhancement is correlated with stronger electron precipitation energy fluxes that create stronger outflow. For ions between 1 to 10 keV in the near-Earth magnetosphere, anisotropy is found to be strongly positive (relatively higher fluxes near 90 degree pitch-angle) in the morning sector while near isotropic in the evening sector. Comparing the fluxes within the region of the positive anisotropy with other MLTs suggests that the positive anisotropy is caused by field-aligned ions not being able to drift as earthward as 90 degree ions. For ions of 10 keV and above, magnetic drift shell splitting results in strongly positive anisotropy on the dayside, while additional magnetopause shadowing causes strongly negative anisotropy in the post-midnight sector.

  15. Determination of the nitrogen content of nitrocellulose from smokeless gunpowders and collodions by alkaline hydrolysis and ion chromatography.

    PubMed

    López-López, María; Alegre, Jose María Ramiro; García-Ruiz, Carmen; Torre, Mercedes

    2011-01-31

    In this work, a method to determine the nitrogen content of nitrocellulose from gunpowders and collodions is proposed. A basic hydrolysis of nitrocellulose with 1.0% (m/v) NaOH at 150°C during 30 min was carried out for nitrocellulose from gunpowders (after its previous isolation by a protocol optimized by our research group) and from collodion samples. The concentration of nitrate and nitrite ions in the hydrolysate was determined by ion chromatography with suppression and conductimetric detection. The nitrogen content of nitrocellulose was calculated from the values of the concentration of both ions. The quantitative method was evaluated in terms of selectivity, sensitivity, robustness, limits of detection and quantification, and precision, measured as repeatability and intermediate precision. These parameters were good enough to demonstrate the validity of the method and its applicability to the determination of the nitrogen content of nitrocellulose contained in different types of gunpowders (single- and double-base gunpowders, manufactured from 1944 to 1997) and in commercial collodion samples. For gunpowders, the nitrogen content determined with the optimized method was compared with the values reported by the official label of the ammunition (obtained by a digestion/titration method) and errors, by defect, ranging from 1% to 15.2% (m/m) were calculated. The highest errors were obtained for the oldest gunpowders and could be attributed to the loss of nitro groups in the nitrocellulose molecule during aging. For collodion samples, errors could not be calculated since the real nitrogen content for these samples was not given in the label. In addition, the analysis time (2h for nitrocellulose isolation, 1.5h for nitrocellulose hydrolysis, and 0.2h for chromatographic separation) was about 10 times lower than in the digestion/titration method nowadays used for gunpowder samples. PMID:21168569

  16. Enhanced diffusive ion scattering in front of the Earth's quasi-parallel bow shock: a case study

    NASA Astrophysics Data System (ADS)

    Kis, Arpad; Scholer, Manfred; Klecker, Berndt; Lucek, Elisabeth; Dandouras, Iannis; Lemperger, István; Wesztergom, Viktor; Novák, Attila; Szalai, Sándor

    2014-05-01

    In our study we report on observations of energetic ions upstream of the Earth's quasi-parallel bow shock by Cluster at times of large inter-spacecraft separation distance. For the analysis we use the ion data provided by the CIS-HIA in the 10-32 keV energy range and the magnetic data recorded by the FGM instrument. We determine the spatial gradient of partial energetic ion densities at various distances from the bow shock. The gradient in all energy channels decreases exponentially with distance and the e-folding distance of the gradients depends approximately linearly on energy but there is a significant difference in their values obtained at the observed three upstream ion events. We demonstrate for the first time that under specific interplanetary conditions the mechanism of the diffuse ion scattering can change significantly and results in an anomalous diffusive process charactized by an unusually small e-folding distance.

  17. Spatial distributions of ion pitch angle anisotropy in the near-Earth magnetosphere and tail plasma sheet

    NASA Astrophysics Data System (ADS)

    Wang, Chih-Ping; Zaharia, Sorin G.; Lyons, Larry R.; Angelopoulos, Vassilis

    2013-01-01

    We have quantified anisotropy of ion pitch angle distributions observed by the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft and determined statistically how anisotropy varies with particle energy, as well as spatial distributions and dependences on geomagnetic activity. In the tail plasma sheet, ions from a few keV to a few tens of keV are mostly isotropic. The locations and energy ranges for these isotropic ions and their changes with Dst are consistent with ions being isotropized by current sheet scattering predicted using empirical magnetic field models. Ions of a few hundreds of keV in the tail have cigar-shaped or unidirectional pitch angle distribution (PAD) and are likely a result of Speiser motion. The majority of ions in the near-Earth magnetosphere are expected to conserve their first and second adiabatic invariants as they move with pitch angle dependent drift. This gives drift shell splitting, which plays an important role in generating pancake-shaped PAD observed from ~1 keV up to hundreds of keV. The magnetic local time of the pancake PAD rotates with increasing energy. Loss of near 90° ions due to magnetopause shadowing can further explain the butterfly-shaped PAD observed at the postmidnight sector at energies above 30 keV. For ions below a few hundreds of eV in the tail plasma sheet and the near-Earth magnetosphere, their PAD is dominantly bidirectional, which is likely due to ionosphere outflow. High-energy ions on the dayside become less anisotropic during higher AE, when pitch angle scattering by electromagnetic ion cyclotron waves may play an important role.

  18. Luminescent properties of rare earth ions in one-dimensional oxide nanowires.

    PubMed

    Song, Hongwei; Yu, Lixin; Yang, LinMei; Lu, Shaozhe

    2005-09-01

    Rare-earth doped one-dimensional oxide nanowires including LaPO4, La2O3, and Gd2O3 were synthesized by the hydrothermal method. Their luminescent properties including local environments, electronic transitions, energy transfer, and frequency up-conversion luminescence processes were systematically studied. In LaPO4:Eu and La2O3:Eu nanowires, different symmetry sites of Eu3+ ions were identified, which obviously differed from those of the corresponding micrometer-sized particles. This was attributed to crystal field degeneration in the fringe along the length axis. In LaPO4:Eu nanowires, the electronic transition rate of 5D1-sigmaJ7FJ increased approximately 2 times over that of the zero-dimensional nanoparticles and micrometer-sized particles, which was related to the variation of dipole field induced by shape anisotropy. Considering the nonradiative relaxations, meanwhile, the luminescent quantum efficiency for 5D1-sigmaJ7FJ transitions of Eu3+ in nanowires increased 100% over that in nanoparticles and 20% over that in micrometer particles. In Gd2O3:Eu3+, LaPO4:Ce3+, and LaPO4:Tb3+ nanowires and micrometer-sized particles, the electronic transition rate of rare earths had only a little variation. In LaPO4:Ce3+/Tb3+ nanowires, the energy transfer rate of Ce3+--> Tb3+ decreased 3 times compared to that in micrometer rods. Despite this, the brightness for the 5D4-7F5 green emissions of Tb3+ increased several times due to decreased energy transfer from the excited states higher than 5D4 to some defect levels. In Gd2O3:Er3+/Yb3+ nanocrystals, as the shape varied from nanopapers to nanowires, the relative intensity of up-conversion luminescence of 2H(11/2)/4S(3/2)-4I(15/2) and 4F(9/2)-4I(15/2) to the infrared down-conversion luminescence of 4I(13/2)-4I(15/2) increased remarkably, indicating efficient up-conversion luminescence. Our present results indicate that rare-earth-doped oxide nanowires is a type of new and efficient phosphors. PMID:16193968

  19. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Yang, Jin-Hui; Sun, Jin-Feng; Zhang, Ji-Heng; Wu, Fu-Yuan

    2016-03-01

    A combined study of zircon U-Pb ages, mineral chemistry, whole-rock elements and Sr-Nd-Hf isotopes was carried out for the Saima alkaline complex in the northeastern China, in order to investigate the source and petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks. The Saima alkaline complex consists of nepheline syenites, quartz-bearing syenites and alkaline volcanic rocks (i.e., phonolite and trachyte), with minor mafic dikes and carbonatitic veins. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS) zircon U-Pb dating gives consistent ages of 230-224 Ma for these rocks, suggesting that they are coeval. All alkaline rocks in the Saima complex are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs) with significant negative Nb, Ta and Ti anomalies. Geochemical data and Sr-Nd-Hf isotopic compositions indicate that the various alkaline rocks were all derived from partial melting of an ancient, re-enriched lithospheric mantle in the garnet stability field, but experienced variable siliceous- or carbonate-rich crustal contamination. Based on petrographic evidence, mineral compositions, and whole-rock geochemical data, two distinct magmatic evolutionary trends are proposed to explain the coeval emplacement of the various rock types within the Saima alkaline complex. The silica-undersaturated rocks (nepheline syenites and phonolites) result from alkali feldspar + apatite + titanite crystal fractionation of an alkaline mafic parental melt combined with assimilation of marine carbonate host rocks. In contrast, the generation of silica-saturated rocks (quartz-bearing syenites and trachytes) may be attributed to subsequent and continued clinopyroxene + apatite + biotite crystal fractionation coupled with assimilation of siliceous sediments.

  20. Impurity trapped exciton states related to rare earth ions in crystals under high hydrostatic pressure

    SciTech Connect

    Grinberg, M. Mahlik, S.

    2013-01-15

    Emission related to rare earth ions in solids takes place usually due to 4f{sup n} {yields} 4f{sup n} and 4f{sup n-1}5d{sup 1} {yields} 4f{sup n} internal transitions. In the case of band to band excitation the effective energy transfer from the host to optically active impurity is required. Among other processes one of the possibilities is capturing of the electron at excited state and hole at the ground state of impurity. Localization of electron or hole at the dopand site creates a long range Coulomb potential that attracts the second carrier which then occupies the localized Rydberg-like states. Such a system can be considered as impurity trapped exciton. Usually impurity trapped exciton is a short living phenomenon which decays non-radiatively leaving the impurity ion in the excited state. However, in several compounds doped with Eu{sup 2+} the impurity trapped exciton states become stable and contribute to the radiative processes though anomalous luminescence that appears apart of the 4f{sup 7} {yields} 4f{sup 7} and 4f{sup 7}5d{sup 1} {yields} 5f{sup 7} emission. In this contribution pressure effect on energies of the 4f{sup n-1}5d{sup 1}{yields}5f{sup n} transitions in Ln doped oxides and fluorides as well as influence of pressure on the energy of impurity trapped exciton states is discussed. The latest results on high pressure investigations of luminescence related to Pr{sup 3+}, and Eu{sup 2+} in different lattices are reviewed.

  1. Alkali-phosphate common-ion system for synthesis of rare-earth orthophosphates

    NASA Astrophysics Data System (ADS)

    Uhrin, Robert

    Rare-earth orthophosphate crystals are interesting materials for many optical applications, because their physical properties often exceed those of currently used materials. In particular, Ce:LuPO4 is useful for positron emission tomography (PET). The most important reason why this and other rare-earth orthophosphate crystals haven't been commercialized is the absence of large crystals suitable for devices. The greatest impediment is the lack of a suitable crystal growth process. A Pb2P2 O7 solution has been used for many years to produce a complete series of lanthanide orthophosphate crystals, but this solution raises some serious environmental concerns. In addition, large crystals of a reproducible size and quality that are required for device fabrication do not result, and the crystals tend to be platy. It is generally known that a change in solution acidity or basicity affects the habit of grown crystals. Consequently, it was theorized that a potassium-based system (i. e. more basic) would result in equiaxed crystals, and such a system has been investigated in an effort to obtain a partial phase diagram for the KPO3- Lu2O 3 pseudo-binary system. Various techniques were employed to confirm a molten solution composition from which crystals can be grown. LuPO4 crystals were produced from solutions with different K2O/P2O5 ratios and varied Lu2O3 concentrations. This provided information on the preferred composition range for single phase LuPO4, as well as the solid phases expected within the range of compositions that was studied. X-ray diffraction (XRD) analysis provided a useful tool to identify the solid phases. Powder synthesis with subsequent XRD analysis was also utilized in some cases, since numerous single and mixed phosphate compounds are possible and a complete set of diffraction files is not available. Knowledge of the cerium concentration is also required in the case of Ce:LuPO4, so a K2O-CeO2-Lu2O3-P2O 5 glass was developed. Samples containing varied

  2. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    PubMed

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging. PMID:26878217

  3. Synthesis and structure of some nano-sized rare-earth metal ions doped potassium hexacyanoferrates

    NASA Astrophysics Data System (ADS)

    Narayan, Himanshu; Alemu, Hailemichael; Nketsa, Pusetso F.; Manatha, Toka J.; Madhavi Thakurdesai, And

    2015-05-01

    Rare-earth ions doped potassium hexacyanoferrates (KR-HCF); with the general formula KRFe(CN)6 · 3H2 O [with, R≡Y, Gd and Yb] nanoparticles were synthesized through precipitation. Characterization was done through particle-size analyzer, scanning electron microscopy (SEM), Fourier Transform infra-red (FTIR) and Raman spectroscopy, and powder X-ray diffraction (XRD). The XRD data was analyzed on FullProf Software Suite program and the unit-cell structure and lattice parameters of KR-HCF samples were determined from scratch and refined further. All the three KR-HCF nanoparticles seem to crystallize in the orthorhombic primitive PMMM space-group. Reasonably good agreement was found with the previously reported lattice constants of KGd-HCF and KYb-HCF orthorhombic single-crystals, except that they assume different space-groups. The observed dissimilarity of space-groups may be attributed to the different time scales involved in the synthesis process. Moreover, the crystal structure of KYFe(CN)6 · 3H2 O nanoparticles is being reported for the very first time.

  4. High index contrast potassium double tungstate waveguides towards efficient rare-earth ion amplification on-chip

    NASA Astrophysics Data System (ADS)

    Sefunc, Mustafa Akin; Segerink, Frans; Garcia-Blanco, Sonia

    2015-02-01

    Rare-earth ion doped KY(WO4)2 amplifiers are proposed to be a good candidate for many future applications by benefiting from the excellent gain characteristics of rare-earth ions, namely high bit rate amplification (earth ions were conventionally fabricated on layers overgrown onto undopedKY(WO4)2 substrates. Such amplifiers exhibit a refractive index contrast between the doped and undoped layer of typically <0.02, leading to large devices not suited for the high degree of integration required in photonic applications. Furthermore, the large mode diameter in the waveguide core requires high pump input powers to fully invert the material. In this study, we experimentally demonstrate high index contrast waveguides in crystalline KY(WO4)2, compatible with the integration onto passive photonic platforms. Firstly, a layer of KY(WO4)2 is transferred onto a silicon dioxide substrate using bonding with UV curable optical adhesive. A subsequent polishing step permits precise control of the transferred layer thickness, which defines the height of the waveguides. Small-footprint (in the order of few microns) high index contrast waveguides were patterned using focused ion beam milling. When doped with rare-earth ions, for instance, Er3+ or Yb3+, such high contrast waveguides will lead to very efficient amplifiers, in which the active material can be efficiently pumped by a confined mode with very good overlap with the signal mode. Consequently, lower pump power will be required to obtain same amount of gain from the amplifier leading to power efficient devices.

  5. Ion exchange polymers and method for making

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)

    1994-01-01

    An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.

  6. Luminescent activation of planar optical waveguides in LiNbO 3 with rare earth ions Ln 3+ - a review

    NASA Astrophysics Data System (ADS)

    Tsonev, Lyubomir

    2008-02-01

    Based on the publications during the period 1990-2006, an attempt is made to summarize some of the important tendencies in integrated optics as well as the different techniques for activating lithium niobate by doping it with rare earth (lanthanide) ions. Luminescence properties of lanthanide ions in lithium niobate and in other hosts are reviewed in relation with their application in active thin film optical devices. The technological problems reported by different authors are commented. The possibilities for producing active waveguiding devices in lithium niobate only by low-temperature processes are discussed.

  7. Robust quantum gates and a bus architecture for quantum computing with rare-earth-ion-doped crystals

    SciTech Connect

    Wesenberg, Janus; Moelmer, Klaus

    2003-07-01

    We present a composite pulse controlled phase gate which, together with a bus architecture, improves the feasibility of a recent quantum computing proposal based on rare-earth-ion-doped crystals. The proposed gate operation is tolerant to variations between ions of coupling strengths, pulse lengths, and frequency shifts. In the absence of decoherence effects, it achieves worst case fidelities above 0.999 with relative variations in coupling strength as high as 10% and frequency shifts up to several percent of the resonant Rabi frequency of the laser used to implement the gate. We outline an experiment to demonstrate the creation and detection of maximally entangled states in the system.

  8. Effect of Rare Earth Ions on the Properties of Composites Composed of Ethylene Vinyl Acetate Copolymer and Layered Double Hydroxides

    PubMed Central

    Wang, Lili; Li, Bin; Zhao, Xiaohong; Chen, Chunxia; Cao, Jingjing

    2012-01-01

    Background The study on the rare earth (RE)-doped layered double hydroxides (LDHs) has received considerable attention due to their potential applications in catalysts. However, the use of RE-doped LDHs as polymer halogen-free flame retardants was seldom investigated. Furthermore, the effect of rare earth elements on the hydrophobicity of LDHs materials and the compatibility of LDHs/polymer composite has seldom been reported. Methodology/Principal Findings The stearate sodium surface modified Ni-containing LDHs and RE-doped Ni-containing LDHs were rapidly synthesized by a coprecipitation method coupled with the microwave hydrothermal treatment. The influences of trace amounts of rare earth ions La, Ce and Nd on the amount of water molecules, the crystallinity, the morphology, the hydrophobicity of modified Ni-containing LDHs and the adsorption of modifier in the surface of LDHs were investigated by TGA, XRD, TEM, contact angle and IR, respectively. Moreover, the effects of the rare earth ions on the interfacial compatibility, the flame retardancy and the mechanical properties of ethylene vinyl acetate copolymer (EVA)/LDHs composites were also explored in detail. Conclusions/Significance S-Ni0.1MgAl-La displayed more uniform dispersion and better interfacial compatibility in EVA matrix compared with other LDHs. Furthermore, the S-Ni0.1MgAl-La/EVA composite showed the best fire retardancy and mechanical properties in all composites. PMID:22693627

  9. Novel rare earth ions-doped oxyfluoride nano-composite with efficient upconversion white-light emission

    SciTech Connect

    Chen Daqin; Wang Yuansheng Yu Yunlong; Huang Ping; Weng Fangyi

    2008-10-15

    Transparent SiO{sub 2}-Al{sub 2}O{sub 3}-NaF-YF{sub 3} bulk nano-composites triply doped with Ho{sup 3+}, Tm{sup 3+} and Yb{sup 3+} were fabricated by melt-quenching and subsequent heating. X-ray diffraction and transmission electron microscopy measurements demonstrated the homogeneous precipitation of the {beta}-YF{sub 3} crystals with mean size of 20 nm among the glass matrix, and rare earth ions were found to partition into these nano-crystals. Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light, can be easily tuned by adjusting the concentrations of the rare earth ions in the material. The overall energy efficiency of the white-light upconversion was estimated to be about 0.2%. - Graphical abstract: Under single 976 nm laser excitation, intense red, green and blue upconversion emissions were simultaneously observed owing to the successive energy transfer from Yb{sup 3+} to Ho{sup 3+} or Tm{sup 3+}. Various colors of luminescence, including bright perfect white light with CIE-X=0.351 and CIE-Y=0.306, can be easily tuned by adjusting the concentrations of the rare earth ions in the transparent oxyfluoride glass ceramics.

  10. Analysis of 4-aminobiphenyl-DNA adducts in human urinary bladder and lung by alkaline hydrolysis and negative ion gas chromatography-mass spectrometry.

    PubMed Central

    Lin, D; Lay, J O; Bryant, M S; Malaveille, C; Friesen, M; Bartsch, H; Lang, N P; Kadlubar, F F

    1994-01-01

    Analysis of carcinogen-DNA adducts has been regarded as a useful means of assessing human exposure to chemical carcinogens. We have established a method for quantitation of 4-aminobiphenyl (4-ABP)-DNA adducts by alkaline hydrolysis and gas chromatography with negative ion chemical ionization mass spectrometry (GC-NICI-MS). Aliquots of DNA (typically 100 micrograms/ml) were spiked with an internal standard, d9-4-ABP, and were hydrolyzed in 0.05 N NaOH at 130 degrees C overnight. The liberated 4-ABP was extracted with hexane and derivatized using pentafluoropropionic anhydride in trimethylamine for 30 min at room temperature prior to GC-NICI-MS. With in vitro [3H]N-hydroxy-4-ABP modified DNA standards, we observed 59 +/- 7% (n = 9) recovery of the 4-ABP and a linear correlation between hydrolyzed 4-ABP and the adduct levels ranging from about 1 in 10(8) to 1 in 10(4) nucleotides (r = 0.999, n = 9). The method was further validated by comparison of the results with that obtained by the 32P-postlabeling method. There was excellent agreement (r = 0.994, p < 0.001) between the two methods for quantitation of the adduct in eight samples of Salmonella typhimurium DNA treated with 4-ABP and rat liver S9, although the 32P-postlabeling method gave slightly higher values. The DNA adducts in 11 human lung and 8 urinary bladder mucosa specimens were then determined by our GC-NICI-MS method. The adduct levels were found to be < 0.32 to 49.5 adducts per 10(8) nucleotides in the lungs and < 0.32 to 3.94 adducts per 10(8) nucleotides in the bladder samples.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4. A Figure 4. B PMID:7889831

  11. Theory for charge states of energetic oxygen ions in the earth's radiation belts

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.; Fritz, T. A.

    1978-01-01

    Fluxes of geomagnetically trapped energetic oxygen ions have been studied in detail. Ion distributions in radial locations below the geostationary orbit, energy spectra between 1 keV and 100 MeV, and the distribution over charge states have been computed for equatorially mirroring ions. Both ionospheric and solar wind oxygen ion sources have been considered, and it is found that the charge state distributions in the interior of the radiation belts are largely independent of the charge state characteristics of the sources. In the MeV range, oxygen ions prove to be a more sensitive probe for radiation belt dynamics than helium ions and protons.

  12. Simulation of the low earth orbital atomic oxygen interaction with materials by means of an oxygen ion beam

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Rutledge, Sharon K.; Paulsen, Phillip E.; Steuber, Thomas J.

    1989-01-01

    Atomic oxygen is the predominant species in low-Earth orbit between the altitudes of 180 and 650 km. These highly reactive atoms are a result of photodissociation of diatomic oxygen molecules from solar photons having a wavelength less than or equal to 2430A. Spacecraft in low-Earth orbit collide with atomic oxygen in the 3P ground state at impact energies of approximately 4.2 to 4.5 eV. As a consequence, organic materials previously used for high altitude geosynchronous spacecraft are severely oxidized in the low-Earth orbital environment. The evaluation of materials durability to atomic oxygen requires ground simulation of this environment to cost effectively screen materials for durability. Directed broad beam oxygen sources are necessary to evaluate potential spacecraft materials performance before and after exposure to the simulated low-Earth orbital environment. This paper presents a description of a low energy, broad oxygen ion beam source used to simulate the low-Earth orbital atomic oxygen environment. The results of materials interaction with this beam and comparison with actual in-space tests of the same meterials will be discussed. Resulting surface morphologies appear to closely replicate those observed in space tests.

  13. All-Optical Preparation of Coherent Dark States of a Single Rare Earth Ion Spin in a Crystal

    NASA Astrophysics Data System (ADS)

    Xia, Kangwei; Kolesov, Roman; Wang, Ya; Siyushev, Petr; Reuter, Rolf; Kornher, Thomas; Kukharchyk, Nadezhda; Wieck, Andreas D.; Villa, Bruno; Yang, Sen; Wrachtrup, Jörg

    2015-08-01

    All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a cerium ion in yttrium aluminum garnet (YAG) crystal. We find narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states. Utilizing these transitions we demonstrate the generation of a coherent dark state in electron spin sublevels of a single Ce3 + ion in YAG by coherent population trapping.

  14. Deceleration of the solar wind upstream from the earth's bow shock and the origin of diffuse upstream ions

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Feldman, W. C.; Gosling, J. T.; Paschmann, G.; Skopke, N.

    1980-01-01

    Observations with the Los Alamos Scientific Laboratory/Max-Planck-Institut crossed-fan solar wind ion experiment on ISEE I reveal that the solar wind is decelerated and deflected away from the direction of the earth's bow shock as it enters that portion of the upstream region populated by diffuse bow shock ions and long-period (10-60 s) waves. Typically, the average directed velocity vector changes by 7-10 km/s as it enters the wave region. At times, average speed changes as large as 25-40 km/s are observed. Superposed upon these changes in average flow speed are large amplitude (+ or - 15) fluctuations in flow speed associated with the waves themselves. The observations suggest that the solar wind deceleration is the result of momentum transfer from reflected bow shock ions to the wind via the long-period waves as the reflected ion beams go unstable. The broad angular distributions of the diffuse ions thus appear to be produced as a consequence of the disruption of reflected ion beams.

  15. COMBUSTION SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE ALKALINE EARTH ALUMINATE Sr4Al14O25:RE(RE = Eu, Dy, Sm)

    NASA Astrophysics Data System (ADS)

    Hedaoo, V. P.; Bhatkar, V. B.; Omanwar, S. K.

    2013-08-01

    Nanoscale phosphors have superior performance characteristics than the bulk phosphors. This paper explains the synthesis and characterization like XRD, FTIR, SEM and photoluminescence properties of nanocrystalline Sr4Al14O25 doped with rare earth elements like europium, dysprosium and samarium by combustion method. XRD showed the nanoscale crystalline nature of as-prepared samples. SEM confirmed size of the particle less than 100 nm. Photoluminescent emission spectra showed strong orange red emission at 593 nm for Sr4Al14O25:Sm3+. The green emission of Eu2+ was observed at around 490 nm for Sr4Al14O25:Eu2+.

  16. Solvent extraction of rare-earth ions based on functionalized ionic liquids

    SciTech Connect

    Sun, Xiaoqi; Dai, Sheng; Luo, Huimin

    2012-01-01

    We herein report the achievement of enhanced extractabilities and selectivities for separation of rare earth elements based on functionalized ionic liquids. This work highlights the potential of developing a comprehensive ionic liquid-based extraction strategy for rare earth elements using ionic liquids as both extractant and diluent.

  17. Stability constants and thermodynamic data for complexes of 12-crown-4 with alkali metal and alkaline-earth cations in methanol solutions

    SciTech Connect

    Buschmann, H.

    1987-03-01

    The formation of 1:1- and 2:1-complexes of the crown ether 12C4 with mono- and bivalent cations was studied in methanol solutions by calorimetric, potentiometric and conductometric titrations. It is shown that not all donor atoms of the ligand 12C4 take part in complex formation. The accuracy of the three experimental methods are checked by comparing the results for the complexation of alkali ions with crown ether 18C6.

  18. Spectroscopic and Lasing Properties of Rare-Earth Ion Based Laser Materials

    NASA Astrophysics Data System (ADS)

    Petrin, Roger Ronald

    Scope and method of study. The spectroscopic and lasing properties of several rare-earth based laser materials were investigated. The dynamics of energy transfer in Tm,Ho:YAG were studied using time-resolved spectroscopy. The results were used in a rate equation based computer simulation of laser operation. Absorption, fluorescence, and fluorescence excitation spectroscopy were used to investigate the origin of blue emission in Nd:YAG, Nd:GSGG, and Nd:ZBAN. Alexandrite laser pumped lasing properties of Nd:ZBAN were also studied. The effects of a pump wavelength dependent loss mechanism were examined using a rate equation based computer simulation of the Nd:ZBAN laser system. Findings and conclusions. Evidence for energy migration in the rm Tm^{3+} ^3H_4 multiplet was found. A mechanism producing green emission involving excited state absorption of pump photons from the Ho^ {3+} metastable state was also identified. Rate parameters for the relevant energy transfer processes for Tm,Ho:YAG were determined through spectroscopic measurements. Using the spectroscopically determined rate parameters and no fitting parameters, computer simulations of laser operation were able to reproduce the relaxation oscillations and the time delay between the pump and lasing output previously observed experimentally. The origin of the blue emission observed in Nd:YAG and Nd:GSGG was identified as the ^2P_{3/2} multiplet. An excited state absorption process involving a pump photon and an ion excited to the ^4F_ {5/2}, ^2H_{9/2} multiplets was found to populate the ^2P _{3/2} multiplet. Similar processes were also identified in the Nd:ZBAN system and the first laser operation of this material in bulk form was reported. Computer simulations indicated that only in materials with slow non-radiative decay processes and in systems with high peak power pump sources would excited state absorption of pump photons from levels above the metastable state be an important loss mechanism in Nd^{3

  19. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  20. Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO 2 in LiCl salt bath

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu

    2011-05-01

    The electrolytic reduction process of actinide oxides in a LiCl salt bath at 923 K has been developed for nuclear fuel reprocessing. Since some salt-soluble fission products, such as Cs, Sr and Ba, accumulate in the LiCl salt bath, their effect on UO 2 reduction was investigated. In the experiments, UO 2 specimens were reduced by potential- or current-controlled electrolysis in various LiCl salt baths containing up to 30 mol% of KCl, CsCl, SrCl 2 or BaCl 2. The rate of UO 2 reduction in a LiCl salt bath was considerably decreased by the addition of alkali metal chlorides (KCl and CsCl) and slightly decreased by BaCl 2 addition. SrCl 2 addition had no appreciable effect. It was suggested that the diffusion of O 2- ions from the inside of UO 2 specimens to the bulk salt determined the reduction rate during the electrolysis and that the effect of salt composition was related to the solubility of O 2- ions in the salt bath.

  1. Design and synthesis of redox-switched lariat ethers and their application for transport of alkali and alkaline-Earth metal cations across supported liquid membrane.

    PubMed

    Awasthy, Anubhuti; Bhatnagar, Mamta; Tomar, Jyoti; Sharma, Uma

    2006-01-01

    A new class of redox-switched anthraquinone derived lariat ethers 1-(1-anthraquinonyloxy) 3, 6, 9 trioxaundecane 11-ol (M(1)), 1-(1-anthraquinonyloxy) 3, 6 dioxaoctane 9-ol (M(2)), 1-(1-anthraquinonyloxy) 3 oxapentane 5-ol (M(3)), 1-(1-anthraquinonyloxy) 3 oxapentane 5-butane (M(4)), 1-(1-anthraquinonyloxy) 3, 6 dioxaoctane 9-methane (M(5)) and 1-(1-anthraquinonyloxy) 3 oxapentane 5-methane (M(6)) have been synthesized and characterized by spectral analysis. These ionophores were used in liquid membrane carrier facilitated transport of main group metal cations across supported liquid membrane (SLM). Cellulose nitrate membrane was used as membrane support. Effect of various parameters such as variation in concentration of metal as well as ionophore, effect of chain length and end group of ionophore have been studied. The sequence of metal ions transported by ionophore M(1) is Na(+) > Li(+) > K(+) > Ca(2+) > Mg(2+) and the order of metal ions transported by ionophores (M(2)-M(6)) is Li(+) > Na(+) > K(+) > Ca(2+) > Mg(2+). Ionophore M(1) is selective for Na(+), Li(+), and K(+) and ionophores (M(2)-M(6)) are selective for Li(+) and Na(+). PMID:17497021

  2. Effects of Alkali and Alkaline Earth Cocations on the Activity and Hydrothermal Stability of Cu/SSZ-13 NH3-SCR Catalysts

    SciTech Connect

    Gao, Feng; Wang, Yilin; Washton, Nancy M.; Kollar, Marton; Szanyi, Janos; Peden, Charles HF

    2015-10-13

    Using a three-step aqueous solution ion-exchange method, cocation modified Cu/SSZ-13 SCR catalysts were synthesized. These catalysts, in both fresh and hydrothermally aged forms, were characterized with several methods including temperature-programmed reduction by H2 (H2-TPR), temperature-programmed desorption of NH3 (NH3-TPD), and 27Al solid-state nuclear magnetic resonance (NMR) and diffuse reflectance Infrared Fourier Transform (DRIFT) spectroscopies. Their catalytic performance was probed using steady-state standard NH3-SCR. Characterization results indicate that cocations weaken interactions between Cu-ions and the CHA framework making them more readily reducible. By removing a portion of Brønsted acid sites, cocations also help to mitigate hydrolysis of the zeolite catalysts during hydrothermal aging as evidenced from 27Al NMR. Reaction tests show that certain cocations, especially Li+ and Na+, promote low-temperature SCR rates while others show much less pronounced effects. In terms of applications, our results indicate that introducing cocations can be a viable strategy to improve both low- and high-temperature performance of Cu/SSZ-13 SCR catalysts.

  3. Energy Transfer in Rare Earth Ion Clusters and Fluorescence from Rare Earth Doped LANTHANUM(1.85)STRONTIUM(0.15)COPPER -OXYGEN(4) Superconductors.

    NASA Astrophysics Data System (ADS)

    Tissue, Brian Max

    1988-12-01

    Laser spectroscopy of rare earth ions in solids was used to study mechanisms of non-resonant energy transfer within rare earth clusters, and to detect insulating, impurity phases in rare earth doped La_{1.85 }Sr_{0.15}CuO _4 superconductors. The mechanisms of phonon-assisted, non-resonant energy transfer were studied in well-defined dimer sites in Er^{3+ }:SrF_2 and Pr ^{3+}:CaF_2. Application of a magnetic field to Er^{3+} :SrF_2 greatly increased the energy transfer rate. The magnetic field dependence in Er^{3+}:SrF _2 indicates that the mechanism of non-resonant energy transfer is a two-phonon, resonant process (Orbach process). Application of a magnetic field to Pr ^{3+}:CaF_2 had no effect on the energy transfer rate because no significant Zeeman splittings occurred. The temperature dependence of the energy transfer rate in Pr^{3+ }:CaF_2 showed the mechanism to be a one-phonon-assisted process at low temperatures and predominantly an Orbach process above 10 K. In the second part of this thesis, laser spectroscopy of a Eu ^{3+} probe ion is developed to detect impurity phases in La_{1.85 }Sr_{0.15}CuO _4 superconductors. Two impurity phases were found in polycrystalline La_ {1.85}Sr_{0.15} CuO_4: unreacted La _2O_3 starting material, and a La-silicate phase, which formed from contamination during sintering. The spectroscopic technique was found to be more than 100 times more sensitive than powder x -ray diffraction to detect minor impurity phases. In preparing the superconductors, several studies were made on the effect of Pr^{3+}, Eu ^{3+}, Bi^{3+ }, and fluorine dopants on the superconducting properties of La_{1.85}Sr _{0.15}CuO_4 and La_2Cuo_4 . Pr^{3+}, Eu ^{3+}, Bi^ {3+}, and F_2 doping all decreased the superconductivity in La_ {1.85}Sr^{0.15} CuO_4. Treating semi-conducting La_2CuO_4 in F_2 gas converted it to a superconductor with an onset T_{rm c} of 30-35 K.

  4. Local time occurrence frequency of energetic ions in the earth's magnetosheath

    NASA Technical Reports Server (NTRS)

    Fuselier, S. A.; Hill, P.; Baumjohann, W.; Gosling, J. T.

    1993-01-01

    The occurrence frequency of energetic ions in the energy range from 8 to 40 keV/e as a function of local time in the magnetosheath is presented. Energetic ions are observed in the magnetosheath with a minimum probability of 25 percent for all local times. The occurrence frequency for the energetic ions is higher on the dawnside than on the duskside but shows a relative maximum postnoon in the local time range from 12 to 15 hours. The postnoon relative maximum is attributed to a magnetospheric source for the energetic ions while the dawn-dusk asymmetry is attributed to a quasi-parallel bow shock source.

  5. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  6. A DFT study on the correlation between topology and Bader charges: Part III, the development of charge, "size" and coordination in alkali and alkaline earth titanates(IV)

    NASA Astrophysics Data System (ADS)

    Beck, Horst P.

    2015-10-01

    The notion of a "size" of the ions plays an important role in crystal chemistry. In this paper we demonstrate how "size" varies with the combination of elements and also with varying stoichiometric composition of a compound taking the A-Ti-O series (A = Li, Na, K, Mg, Ca, Sr, Ba) as an example. We analyse the correlation between the topology of a structure, i.e. the coordination geometry and the distances observed, and the charges of the atoms as derived from a Bader analysis of the electron distribution which has been calculated in DFT relaxations of the structures. We demonstrate how charge relations of the atoms in specific stoichiometric relations are strictly fixed within small ranges which are constraint by electronegativity differences of the constituting atoms and how atomic charges are "delicately" balanced by minute movements of the atoms and changes in coordination. The balance of charges proves to be a decisive structure determining parameter.

  7. Model oxygen ions distributions in the Earth{close_quote}s magnetosphere for different pitch-angles

    SciTech Connect

    Beliaev, A.A.; Koroteyeva, E.G.; Panasyuk, M.I.

    1996-07-01

    Results of calculations of energetic, spatial and charge distributions of oxygen ions in the Earth{close_quote}s radiation belts are present. The model of oxygen radiation belts for various pitch angles is suggested. Model is based on the solution of stationary Fokker-Planck equation for particles{close_quote} diffusion due to magnetic and electric field fluctuations and accounts for particles losses due to Coulomb interactions and charge exchange. Particles{close_quote} distributions are studied as function of fluctuations{close_quote} power indices and source spectra (both solar and ionospheric) on the magnetosphere boundary. Comparison is made with experimental data. {copyright} {ital 1996 American Institute of Physics.}

  8. Uniform surface modification of diatomaceous earth with amorphous manganese oxide and its adsorption characteristics for lead ions

    NASA Astrophysics Data System (ADS)

    Li, Song; Li, Duanyang; Su, Fei; Ren, Yuping; Qin, Gaowu

    2014-10-01

    A novel method to produce composite sorbent material compromising porous diatomaceous earth (DE) and surface functionalized amorphous MnO2 is reported. Via a simple in situ redox reaction over the carbonized DE powders, a uniform layer of amorphous MnO2 was anchored onto the DE surface. The hybrid adsorbent was characterized by X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. The batch method has been employed to investigate the effects of surface coating on adsorption performance of DE. According to the equilibrium studies, the adsorption capacity of DE for adsorbing lead ions after MnO2 modification increased more than six times. And the adsorption of Pb2+ on the MnO2 surface is based on ion-exchange mechanism. The developed strategy presents a novel opportunity to prepare composite adsorbent materials by integrating nanocrystals with porous matrix.

  9. Chirped dissipative ion-cyclotron solitons in the Earth's low-altitude ionospheric plasma with two ion species

    SciTech Connect

    Kovaleva, I. Kh.

    2013-03-15

    Conditions for the excitation of small-scale nonlinear ion-cyclotron gradient-drift dissipative structures in cold ionospheric plasma are considered. The solution for the wave electric field in this structure in the form of a chirped soliton satisfying the equation of the Ginzburg-Landau type is derived in the electrostatic approach. The dissipative structure as a whole represents the chirped soliton accompanied by the comoving quasineutral plasma hump. The possibility of the excitation of two modes of this type (the high- and low-frequency ones) in plasma containing light and heavy ion impurities is considered. The role of electromagnetic corrections and the possible contribution introduced by these structures to the transport processes in the ionosphere are discussed.

  10. Energy transfer kinetics in oxy-fluoride glass and glass-ceramics doped with rare-earth ions

    SciTech Connect

    Sontakke, Atul D.; Annapurna, K.

    2012-07-01

    An investigation of donor-acceptor energy transfer kinetics in dual rare earths doped precursor oxy-fluoride glass and its glass-ceramics containing NaYF{sub 4} nano-crystals is reported here, using three different donor-acceptor ion combinations such as Nd-Yb, Yb-Dy, and Nd-Dy. The precipitation of NaYF{sub 4} nano-crystals in host glass matrix under controlled post heat treatment of precursor oxy-fluoride glasses has been confirmed from XRD, FESEM, and transmission electron microscope (TEM) analysis. Further, the incorporation of dopant ions inside fluoride nano-crystals has been established through optical absorption and TEM-EDX analysis. The noticed decreasing trend in donor to acceptor energy transfer efficiency from precursor glass to glass-ceramics in all three combinations have been explained based on the structural rearrangements that occurred during the heat treatment process. The reduced coupling phonon energy for the dopant ions due to fluoride environment and its influence on the overall phonon assisted contribution in energy transfer process has been illustrated. Additionally, realization of a correlated distribution of dopant ions causing clustering inside nano-crystals has also been reported.

  11. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry

    PubMed Central

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS2 procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%–122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  12. Some Rare Earth Elements Analysis by Microwave Plasma Torch Coupled with the Linear Ion Trap Mass Spectrometry.

    PubMed

    Xiong, Xiaohong; Jiang, Tao; Qi, Wenhao; Zuo, Jun; Yang, Meiling; Fei, Qiang; Xiao, Saijin; Yu, Aimin; Zhu, Zhiqiang; Chen, Huanwen

    2015-01-01

    A sensitive mass spectrometric analysis method based on the microwave plasma technique is developed for the fast detection of trace rare earth elements (REEs) in aqueous solution. The plasma was produced from a microwave plasma torch (MPT) under atmospheric pressure and was used as ambient ion source of a linear ion trap mass spectrometer (LTQ). Water samples were directly pneumatically nebulized to flow into the plasma through the central tube of MPT. For some REEs, the generated composite ions were detected in both positive and negative ion modes and further characterized in tandem mass spectrometry. Under the optimized conditions, the limit of detection (LOD) was at the level 0.1 ng/mL using MS(2) procedure in negative mode. A single REE analysis can be completed within 2~3 minutes with the relative standard deviation ranging between 2.4% and 21.2% (six repeated measurements) for the 5 experimental runs. Moreover, the recovery rates of these REEs are between the range of 97.6%-122.1%. Two real samples have also been analyzed, including well and orange juice. These experimental data demonstrated that this method is a useful tool for the field analysis of REEs in water and can be used as an alternative supplement of ICP-MS. PMID:26421013

  13. Low Temperature Life-Cycle Testing of a Lithium-Ion Battery for Low-Earth-Orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2006-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 Landeris undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their high specific energy, high energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned missions.

  14. Magnesiothermically reduced diatomaceous earth as a porous silicon anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Shen, Lanyao; Guo, Xianwei; Fang, Xiangpeng; Wang, Zhaoxiang; Chen, Liquan

    2012-09-01

    Three-dimensional porous silicon has been prepared by magnesiothermically reducing diatomaceous earth. BET surface area analysis shows that the specific surface area of the obtained porous silicon is about 96 m2 g-1, much higher than that of the diatomaceous earth (6 m2 g-1). The silicon products after HCl immersion have a porous structure similar to that of the diatomaceous earth, with pore sizes around 200 nm. Galvanostatic cycling tests show that the initial charge and discharge capacities of the porous silicon are 1321 mAh g-1 and 1818 mAh g-1, respectively. A reversible capacity of 633 mAh g-1 is retained after 30 cycles.

  15. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  17. Earth's ion upflow associated with polar cap patches: Global and in situ observations

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-He; Zong, Qiu-Gang; Lockwood, Michael; Heelis, Roderick A.; Hairston, Marc; Liang, Jun; McCrea, Ian; Zhang, Bei-Chen; Moen, Jøran; Zhang, Shun-Rong; Zhang, Yong-Liang; Ruohoniemi, J. Michael; Lester, Mark; Thomas, Evan G.; Liu, Rui-Yuan; Dunlop, Malcolm W.; Liu, Yong C.-M.; Ma, Yu-Zhang

    2016-03-01

    We report simultaneous global monitoring of a patch of ionization and in situ observation of ion upflow at the center of the polar cap region during a geomagnetic storm. Our observations indicate strong fluxes of upwelling O+ ions originating from frictional heating produced by rapid antisunward flow of the plasma patch. The statistical results from the crossings of the central polar cap region by Defense Meteorological Satellite Program F16-F18 from 2010 to 2013 confirm that the field-aligned flow can turn upward when rapid antisunward flows appear, with consequent significant frictional heating of the ions, which overcomes the gravity effect. We suggest that such rapidly moving patches can provide an important source of upwelling ions in a region where downward flows are usually expected. These observations give new insight into the processes of ionosphere-magnetosphere coupling.

  18. DETERMINATION OF SULFUR DIOXIDE, NITROGEN OXIDES, AND CARBON DIOXIDE IN EMISSIONS FROM ELECTRIC UTILITY PLANTS BY ALKALINE PERMANGANATE SAMPLING AND ION CHROMATOGRAPHY

    EPA Science Inventory

    A manual 24-h integrated method for determining SO2, NOx, and CO2 in emissions from electric utility plants was developed and field tested downstream from an SO2 control system. Samples were collected in alkaline potassium permanganate solution contained in restricted-orifice imp...

  19. Relative abundance of heavy ions in the inner zone of the radiation belts of the earth

    SciTech Connect

    Panasyuk, M.I.

    1986-03-01

    The energy dependences of the relative abundances of energetic (E > 1 MeV/nucleon) H, He, and O ions in the radiation belts are analyzed on the basis of experimental results obtained from measurement of their spectral characteristics on several satellites: Molniya-2, Kosmos-900, Prognoz-5, Explorer-45, ISEE-1, and OV1-19. It is shown that the formation of the energy dependence of He/H and O/H can be explained with a model providing for ion diffusion into the interior of the radiation belts with Coulomb losses taken into account under thecondition that the total-energy spectra at the boundary are more rigid for the heavy ions and are determined by such parameters of the quiet solar wind as the relative concentrations of the individual ion components and their charge states. It is shown that the fluxes of O and Fe ions with E > 1 MeV/nucleon measured on the orbital stations Salyut-6 and Skylab have an energy dependence of the relative abundances not inconsistent with above-noted mechanism for the formation of energetic ions of the inner radiation belt.

  20. Multispacecraft Observations of Few-MeV SEP Ion Event Onsets Near Earth

    NASA Astrophysics Data System (ADS)

    Eastman, T. E.; Christon, S. P.; Decker, R. B.; Roelof, E. C.

    2003-12-01

    Few-MeV-energy SEP proton flux onsets observed in interplanetary space near Earth are used to investigate the effectiveness of a single spacecraft stationed at the sunward L1 libration point ( ˜230 Re) to provide complete early warning information about Solar Energetic Particle (SEP) events. Knowledge of the behavior and distribution of few-MeV-energy protons at onset aids development of asset protection, predictive capabilities, and understanding of magnetospheric disturbances related to SEP appearance at Earth. Widely separated spacecraft, ACE near L1 and GOES-8, Geotail, and IMP-8 nearer to Earth ( ˜6.6-44 Re), provided simultaneous SEP observations from late 1997 to the present. A number of cases of spatial-temporal intensity variations between L1 and nearer-Earth observations are presented. Cases presented demonstrate large-scale transport characteristics both consistent and inconsistent with simple outward radial propagation (i.e., convection with the solar wind) of a locally planar feature over the ˜230 Re ( ˜0.01 AU) maximum separation distance.

  1. Energy density of ionospheric and solar wind origin ions in the near-Earth magnetotail during substorms

    NASA Technical Reports Server (NTRS)

    Daglis, Loannis A.; Livi, Stefano; Sarris, Emmanuel T.; Wilken, Berend

    1994-01-01

    Comprehensive energy density studies provide an important measure of the participation of various sources in energization processes and have been relatively rare in the literature. We present a statistical study of the energy density of the near-Earth magnetotail major ions (H(+), O(+), He(++), He(+)) during substorm expansion phase and discuss its implications for the solar wind/magnetosphere/ionosphere coupling. Our aim is to examine the relation between auroral activity and the particle energization during substorms through the correlation between the AE indices and the energy density of the major magnetospheric ions. The data we used here were collected by the charge-energy-mass (CHEM) spectrometer on board the Active Magnetospheric Particle Trace Explorer (AMPTE)/Charge Composition Explorer (CCE) satellite in the near-equatorial nightside magnetosphere, at geocentric distances approximately 7 to 9 R(sub E). CHEM provided the opportunity to conduct the first statistical study of energy density in the near-Earth magnetotail with multispecies particle data extending into the higher energy range (greater than or equal to 20 keV/E). the use of 1-min AE indices in this study should be emphasized, as the use (in previous statistical studies) of the (3-hour) Kp index or of long-time averages of AE indices essentially smoothed out all the information on substorms. Most distinct feature of our study is the excellent correlation of O(+) energy density with the AE index, in contrast with the remarkably poor He(++) energy density - AE index correlation. Furthermore, we examined the relation of the ion energy density to the electrojet activity during substorm growth phase. The O(+) energy density is strongly correlated with the pre-onset AU index, that is the eastward electrojet intensity, which represents the growth phase current system. Our investigation shows that the near-Earth magnetotail is increasingly fed with energetic ionospheric ions during periods of enhanced

  2. Low Temperature Life-cycle Testing of a Lithium-ion Battery for Low-earth-orbiting Spacecraft

    NASA Technical Reports Server (NTRS)

    Reid, Concha

    2004-01-01

    A flight-qualified, lithium-ion (Li-ion) battery developed for the Mars Surveyor Program 2001 lander is undergoing life-testing at low temperature under a low-Earth-orbit (LEO) profile to assess its capability to provide long term energy storage for aerospace missions. NASA has embarked upon an ambitious course to return humans to the moon by 2015-2020 in preparation for robotic and human exploration of Mars and robotic exploration of the moons of outer planets. Li-ion batteries are excellent candidates to provide power and energy storage for multiple aspects of these missions due to their low specific energy, low energy density, and excellent low temperature performance. Laboratory testing of Li-ion technology is necessary in order to assess lifetime, characterize multi-cell battery-level performance under aerospace conditions, and to gauge safety aspects of the technology. Life-cycle testing provides an opportunity to examine battery-level performance and the dynamics of individual cells in the stack over the entire life of the battery. Data generated through this testing will be critical to establish confidence in the technology for its widespread use in manned and unmanned mission. This paper discusses the performance of the 28 volt, 25 ampere-hour battery through 6000 LEO cycles, which corresponds to one year on LEO orbit. Testing is being performed at 0 C and 40% depth-of-discharge. Individual cell behaviors and their effect on the performance of the battery are described. Capacity, impedance, energy efficiency and end-of-discharge voltage at 1000 cycle intervals are reported. Results from this life-testing will help contribute to the database on battery-level performance of aerospace Li-ion batteries and low temperature cycling under LEO conditions.

  3. Ion acceleration at CME-driven shocks near the Earth and the Sun

    SciTech Connect

    Desai, Mihir; Dayeh, Maher; Ebert, Robert; Smith, Charles; Mason, Glenn; Li, G.

    2012-11-20

    We compare the behavior of heavy ion spectra during an Energetic Storm Particle (ESP) event that exhibited clear evidence of wave excitation with that observed during an intense, large gradual Solar Energetic Particle (SEP) event in which the associated <0.2 MeV/nucleon ions are delayed >12 hr. We interpret that the ESP event is an example of the first-order Fermi acceleration process where enhancements in the magnetic field power spectral densities around local ion cyclotron frequency {nu}{sub pc} indicate the presence of Alfven waves excited by accelerated protons streaming away from the in-situ interplanetary shock. The softening or unfolding of the CNO energy spectrum below {approx}200 keV/nucleon and the systematic organization of the Fe and O spectral roll-overs with the E/q ratio during the ESP event are likely due to M/Q-dependent trapping and scattering of the heavy ions by the proton-excited waves. Based on striking similarities in the spectral behavior observed upstream of both, the ESP and the SEP event, we suggest that coupling between proton-generated Alfven waves and energetic ions is also operating at the distant CME shock during the large, gradual SEP event, thereby providing us with a new, powerful tool to remotely probe the roles of shock geometries and wave-particle interactions at near-Sun CME-driven shocks.

  4. Imidazol-2-ylidene-N'-phenylureate ligands in alkali and alkaline earth metal coordination spheres--heterocubane core to polymeric structural motif formation.

    PubMed

    Naktode, Kishor; Bhattacharjee, Jayeeta; Nayek, Hari Pada; Panda, Tarun K

    2015-04-28

    The synthesis and isolation of two potassium, one lithium and two calcium complexes of imidazol-2-ylidene-N'-phenylureate ligands [Im(R)NCON(H)Ph] [(R = tBu (1a); Mes (1b) and Dipp (1c); Mes = mesityl, Dipp = 2,6-diisopropylphenyl] are described. Potassium complexes, [{κ(2)-(Im(Mes)NCONPh)K}4] (2b) and [{κ(3)-(Im(Dipp)NCONPh)K}2{KN(SiMe3)2}2]n (2c), were prepared in good yields by the reactions of 1b and 1c, respectively, with potassium bis(trimethyl)silyl amide at ambient temperature in toluene. Lithium complex [{(2,6-tBu2-4-Me-C6H2O)Li(Im(tBu)NCON(H)Ph)}2{Im(tBu)NCON(H)Ph}] (3a) was isolated by a one-pot reaction between 1a and LiCH2SiMe3, followed by the addition of 2,6-tBu2-4-Me-C6H2OH in toluene. Calcium complex [{κ(2)-(Im(tBu)NCONPh)Ca{N(SiMe3)2}-{KN(SiMe3)2}]n (4a) was isolated by the one-pot reaction of 1a with [KN(SiMe3)2] and calcium diiodide in THF at ambient temperature. The solid-state structures of ligand 1a and complexes 2b, 2c, 3a and 4a were confirmed by single-crystal X-ray diffraction analysis. It was observed that potassium was coordinated to the oxygen atom of urea group and to the nitrogen atom of the imidazolin-2-imine group, in the solid-state structure of 2b. In complex 4a, the calcium ion was ligated to the monoanionic imidazol-2-ylidene-N'-phenylureate ligand in a bi-dentate (κ(2)) fashion through the oxygen and nitrogen atoms of the isocyanate building block leaving the imidazolin-2-imine fragment uncoordinated. In the solid state of the potassium complex 2c, tri-dentate (κ(3)) coordination from the imidazol-2-ylidene-N'-phenylureate ligand was observed through the oxygen and nitrogen atoms of the isocyanate building block and of the imidazolin-2-imine fragment. In contrast, in the dimeric lithium complex 3a, the neutral imidazol-2-ylidene-N'-phenylureate ligand was bound to the lithium centre in a mono-dentate fashion (κ(1)) through an oxygen atom of the isocyanate moiety. It is to be noted that in each complex thus observed, the

  5. Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains

    NASA Technical Reports Server (NTRS)

    Crozaz, G.; Zinner, E.

    1985-01-01

    A new ion probe method for quantitative measurements of the concentrations of all the REE down to the ppm level in 5-20 micron spots is presented. The first application of the method is the determination of REE abundances in meteoritic phosphates. Results are shown to be in good agreement with previous INAA and ion probe determinations. The merrillites in the St. Severin amphoterite are richer in REE than the apatites (the enrichment factors, for various REE, range from 2.3 to 14.2) in contradiction with the results of Ebihara and Honda (1983). Provided good standards for other mineral phases are found or implanted marker ion techniques are used, the method should find a wide range of applications for the study of both terrestrial and extraterrestrial crystals at the microscopic level.

  6. Extraction Separation of Rare-Earth Ions via Competitive Ligand Complexations between Aqueous and Ionic-Liquid Phases

    SciTech Connect

    Luo, Huimin; Sun, Xiaoqi; Bell, Jason R; Dai, Sheng

    2011-01-01

    The extraction separation of rare earth elements is the most challenging separation processes in hydrometallurgy and advanced nuclear fuel cycles. The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent Extraction from Aqueous Komplexes) is a prime example of these separation processes. The objective of this paper is to explore the use of ionic liquids (ILs) for the TALSPEAK-like process, to further enhance its extraction efficiencies for lanthanides, and to investigate the potential of using this modified TALSPEAK process for separation of lanthanides among themselves. Eight imidazolium ILs ([Cnmim][NTf2] and [Cnmim][BETI], n=4,6,8,10) and one pyrrolidinium IL ([C4mPy][NTf2]) were investigated as diluents using di(2-ethylhexyl)phosphoric acid (HDEHP) as an extractant for separation of lanthanide ions from aqueous solutions of 50 mM glycolic acid or citric acid and 5 mM diethylenetriamine pentaacetic acid (DTPA). The extraction efficiencies were studied in comparison with diisopropylbenzene (DIPB), an organic solvent used as diluent for the conventional TALSPEAK extraction system. Excellent extraction efficiencies and selectivities were found for a number of lanthanide ions using HDEHP as an extractant in these ILs. The effects of different alkyl chain lengths in the cations of ILs and anions on extraction efficiencies and selectivities of lanthanide ions are also presented in this paper.

  7. Space weathering of near-Earth and main belt silicate-rich asteroids: observations and ion irradiation experiments

    NASA Astrophysics Data System (ADS)

    Marchi, S.; Brunetto, R.; Magrin, S.; Lazzarin, M.; Gandolfi, D.

    2005-12-01

    In this paper we report the results of a comparison between ion irradiation experiments (N^+, Ar^+, Ar++) on silicates, a large spectral data set of silicate-rich (S-type) asteroids, and ordinary chondrite meteorites (OCs). Ion irradiation experiments - conducted on Fe-poor olivine, Fe-poor orthopyroxene, bulk silicate-rich rocks and one OC - have been monitored by means of reflectance spectroscopy (0.3-2.5 μm). All these experiments produce reddening and darkening of reflectance spectra. The observational data consist of a set of visible and near-infrared (0.4-2.4 μm) spectra of S-type asteroids, that belong to main belt (MBAs) and near-Earth (NEOs) populations. By analyzing the spectra of OCs, MBAs, and NEOs, we find a similar mineralogy between most asteroids and meteorites, but different distributions of spectral slopes. We interpret these findings in the frame of space weathering induced by solar wind ion irradiation.

  8. Energetic heavy ions observed upstream of the Earth's bow shock by the STEP/EPACT instrument on WIND

    NASA Astrophysics Data System (ADS)

    Mason, G. M.; Mazur, J. E.; von Rosenvinge, T. T.

    The Supra-Thermal through Energetic Particle (STEP) subsystem of the EPACT experiment on the WIND spacecraft observed numerous short duration heavy ion enhancements during the ˜9 month period Nov. 1994-Sept. 1995. These enhancements were most frequent and intense when WIND was close to the magnetosphere, but were often observed also during the period when the spacecraft was >100 RE upstream. The events occur in association with high speed solar wind streams that are signatures of corotating interaction regions (CIRs). A typical event observed on January 31, 1995 when WIND was 195 RE upstream showed strong field aligned anisotropies and rapid time variations. Heavy ion abundances near 45 keV/nucleon (nuc) were He:C:O:Fe = 86 : 1.46 : ≡1 ∶ 0.12, similar to those observed at higher energies in CIRs, and distinctly different from magnetospheric ring current abundances measured on the AMPTE spacecraft. We suggest that the CIRs provide the seed population for these heavy ion events, that are then further accelerated in association with the Earth's bow shock.

  9. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  10. Nonlinear Evolution of Ion Acoustic Solitary Waves in Earth's Magnetosphere: Fluid and Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Kakad, A.; Kakad, B. A.; Omura, Y.

    2014-12-01

    In recent spacecraft observations, coherent electrostatic solitary wave (ESWs) structures are observed in various regions of the Earth's magnetosphere. Over the years, many researchers have attempted to model these observations in terms of electron/ion acoustic solitary waves by using nonlinear fluid theory/simulations. The ESW structures predicted by fluid models can be inadequate due to its inability in handling kinetic effects. To provide clear view on the application of the fluid and kinetic treatments in modeling the ESWs, we perform both fluid and particle-in-cell (PIC) simulations of ion acoustic solitary waves (IASWs) and estimate the quantitative differences in their characteristics like speed, amplitude, and width. It is noted that a long time evolution of Gaussian type perturbations in the equilibrium electron and ion densities generated the nonlinear IASW structures in both fluid and PIC simulations. The IASW structures represent vortices of trapped electrons in PIC simulations. We find that the number of trapped electrons in the wave potential is higher for the large amplitude IASW, which are generated by large-amplitude initial density perturbation (IDP). The present fluid and PIC simulation results are in close agreement for small amplitude IDPs, whereas for large IDPs they show discrepancy in the amplitude, width, and speed of the IASW, which is attributed to negligence of kinetic effects in the former approach. The speed of IASW in the fluid simulations increases with the increase of IASW amplitude, while the reverse tendency is seen in the PIC simulation. The present study suggests that the fluid treatment is appropriate to model the IASW observations when the magnitude of phase velocity of IASW is less than the ion acoustic (IA) speed obtained from their linear dispersion relation, whereas when it exceeds IA speed, it is necessary to include the kinetic effects in the model.

  11. The adsorption of rare earth ions using carbonized polydopamine nano shells

    DOE PAGESBeta

    Sun, Xiaoqi; Luo, Huimin; Mahurin, Shannon Mark; Dai, Sheng; Liu, Rui; Hou, Xisen; Dai, Sheng

    2016-01-07

    Herein we report the structure effects of nano carbon shells prepared by carbonized polydopamine for rare earth elements (REEs) adsorption for the first time. The solid carbon sphere, 60 nm carbon shell and 500 nm carbon shell were prepared and investigated for adsorption and desorption of REEs. The adsorption of carbon shells for REEs was found to be better than the solid carbon sphere. The effect of acidities on the adsorption and desorption properties was discussed in this study. The good adsorption performance of carbon shells can be attributed to their porous structure, large specific surface area, amine group andmore » carbonyl group of dopamine.« less

  12. Electric and magnetic drift of non-adiabatic ions in the earth's geomagnetic tail current sheet

    NASA Technical Reports Server (NTRS)

    Beard, D. B.; Cowley, S. W. H.

    1985-01-01

    It has been shown recently that nonadiabatic particles in the earth's magnetotail drift across the tail roughly as predicted for adiabatic particles with 90 deg pitch angles. In this paper it is shown that this result implies the existence of an approximate invariant of the motion. Adding the effect of convection associated electric fields, the approximate bounce averaged motion of nonadiabatic particles in the magnetotail can be obtained. Thus the particle motion and energization due to combined magnetic and electric drifts in the magnetotail are easily predicted.

  13. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films of Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of a fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low Earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  14. Ion beam sputter-deposited thin film coatings for protection of spacecraft polymers in low earth orbit

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Mirtich, M. J.; Rutledge, S. K.; Swec, D. M.; Nahra, H. K.

    1985-01-01

    Ion beam sputter-deposited thin films at Al2O3, SiO2, and a codeposited mixture of predominantly SiO2 with small amounts of fluoropolymer were evaluated both in laboratory plasma ashing tests and in space on board Shuttle flight STS-8 for effectiveness in preventing oxidation of polyimide Kapton. Measurements of mass loss and optical performance of coated and uncoated polyimide samples exposed to the low earth orbital environment are presented. Optical techniques were used to measure loss rates of protective films exposed to atomic oxygen. Results of the analysis of the space flight exposed samples indicate that thin film metal oxide coatings are very effective in protecting the polyimide. Metal oxide coatings with a small amount of fluoropolymer codeposited have the additional benefit of great flexibility.

  15. Ion Heating in the Earth's Magnetosphere During Substorm and Storm-time

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.; Pollock, C. J.

    2001-12-01

    In this study, energetic neutral atom (ENA) images from the Medium Energy Neutral Atom (MENA) imager on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observatory are analyzed. In the MENA imager, incident ENAs create secondary electrons at a carbon foil and then strike a detector that records their position and time of impact. The electrons are used to determine the trajectory and time-of-flight of the ENA. Trajectory information and the spacecraft spin enable two-dimensional ENA images to be constructed. The time between the electron and ENA pulses provides an energy measurement if the ENAs are assumed to be hydrogen. Using the energy spectrum of the MENA neutral flux data, images of the plasma ion temperature are created based on estimates of the peak line-of-sight ion temperature. The geomagnetic activity of the magnetosphere in the images ranges from mildly active to stormy. The spatial distribution of ion heating in the magnetosphere during storm activity will be discussed.

  16. Ion Heating in the Earth's Magnetosphere during Substorm and Storm-time

    NASA Astrophysics Data System (ADS)

    Keesee, Amy; Scime, Earl; Pollock, Craig

    2001-10-01

    In this study, energetic neutral atom (ENA) images from the Medium Energy Neutral Atom (MENA) imager on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observatory are analyzed. In the MENA imager, incident ENAs create secondary electrons at a carbon foil and then strike a detector that records their position and time of impact. The electrons are used to determine the trajectory and time-of-flight of the ENA. Trajectory information and the spacecraft spin enable two-dimensional ENA images to be constructed. The time between the electron and ENA pulses provides an energy measurement if the ENAs are assumed to be hydrogen. Using the energy spectrum of the MENA neutral flux data, images of the plasma ion temperature are created based on estimates of the peak line-of-sight ion temperature. The geomagnetic activity of the magnetosphere in the images ranges from mildly active to stormy. The spatial distribution of ion heating in the magnetosphere during storm activity will be discussed.

  17. The collective gyration of a heavy ion cloud in a magnetized plasma. [in earth ionosphere

    NASA Technical Reports Server (NTRS)

    Brenning, N.; Swenson, C.; Kelley, M. C.; Providakes, J.; Torbert, R.

    1992-01-01

    Results are reported from the ionospheric barium injection experiments CRIT I and CRIT II, during both of which a long-duration oscillation was observed with a frequency close to the gyrofrequency of barium and a time duration of about 1 sec. A model for the phenomenon which was proposed for CRIT I is compared to the results from CRIT II, which made a much more complete set of measurements. The model follows the motion of a low-beta ion cloud through a larger ambient plasma. As the ions move across the magnetic field, the space charge is continuously neutralized by magnetic-field aligned electron currents from the ambient ionosphere, drawn by the divergence in the perpendicular electric field. These currents yield a perturbation of the magnetic field related to the electric perturbation by Delta-E/Delta-B is approximately equal to V sub A. The possibility of extending the model to the active region, where the ions are produced in this type of self-ionizing injection experiments, is discussed.

  18. Influence of yttrium content on the location of rare earth ions in LYSO:Ce crystals

    SciTech Connect

    Ding, Dongzhou; Weng, Linhong; Yang, Jianhua; Ren, Guohao; Wu, Yuntao

    2014-01-15

    Single-crystal X-ray diffraction (SCD), X-ray fluorescence (XRF), inductively coupled plasma optical emission spectroscopy (ICP-OES) and X-ray excited luminescence (XEL) measurements were performed to investigate structure details and segregation coefficients of (Lu{sub 1−x}Y{sub x}){sub 2}SiO{sub 5}:Ce (x=0 at%, 8.7 at%, 25.7 at%, 44.7 at%, 65.7 at%, 87.9 at% and 100 at%). Y{sup 3+} cations were found to have a preferential occupation for RE1 site (7-oxygen-coordinated) over RE2 site (6-oxygen-coordinated), which results in a greater increase of cell parameter c than that of a with increase in Y content due to LYSO's microstructure characteristics. Results presented here revealed that the less the difference in electronegativity and effective ionic radius between the two ions, the easier substitution of one ion by the other, and hence the higher segregation coefficients. Besides, the contribution of luminescence of Ce1 and Ce2 in the whole XEL was evaluated, and the location of Ce{sup 3+} ion was discussed. - Graphical abstract: Segregation coefficients of (Lu{sub 1−x}Y{sub x}){sub 2}SiO{sub 5}:Cce:italic> at RT/ce:italic>. Display Omitted.

  19. Parity nonconservation in Fr-like actinide and Cs-like rare-earth-metal ions

    NASA Astrophysics Data System (ADS)

    Roberts, B. M.; Dzuba, V. A.; Flambaum, V. V.

    2013-07-01

    Parity-nonconservation (PNC) amplitudes are calculated for the 7s-6d3/2 transitions of the francium isoelectronic sequence (Fr, Ra+, Ac2+, Th3+, Pa4+, U5+, and Np6+) and for the 6s-5d3/2 transitions of the cesium isoelectronic sequence (Cs, Ba+, La2+, Ce3+, and Pr4+). We show in particular that isotopes of La2+, Ac2+, and Th3+ ions have strong potential in the search for new physics beyond the standard model: The PNC amplitudes are large, the calculations are accurate, and the nuclei are practically stable. In addition, 232Th3+ ions have recently been trapped and cooled [Campbell , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.233004 102, 233004 (2009)]. We also extend previous works by calculating the s-s PNC transitions in Ra+ and Ba+ and provide calculations of several energy levels, and electric dipole and quadrupole transition amplitudes for the Fr-like actinide ions.

  20. Investigation of thermophysical characteristics of SrMoO4 crystals, nominally pure and doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Popov, P. A.; Skrobov, S. A.; Matovnikov, A. V.; Ivleva, L. I.; Dunaeva, E. E.; Shekhovtsov, A. N.; Kosmyna, M. B.

    2015-11-01

    Thermophysical characteristics of SrMoO4 crystals (grown by the Czochralski method from intrinsic melts), nominally pure and doped with rare earth ions, have been investigated. The temperature and concentration dependences of the thermal conductivity are obtained for SrMoO4 samples containing Nd3+ (0.28, 0.56, 0.84, and 1.33 at %), Pr3+ (0.01 and 0.41 at %), Ho3+ (0.01 and 0.06 at %), and Ho3+ (0.13 at %) + Tm3+ (0.13 at %) in a temperature range of 50-300 K. The thermal conductivities are measured in the directions parallel and/or perpendicular to the crystal optical axis. The thermal conductivity of nominally pure SrMoO4 at 300 K in the direction perpendicular to the c axis has been found to be 4.2 W/(m K). The introduction of impurities of rare earth metals reduces the thermal conductivity of SrMoO4 crystals. The anisotropy of the thermal conductivity is weak. The measured molar specific heat C P ( T) of a nominally pure SrMoO4 crystal is 116.2 J/(mol K) at 300 K. The temperature dependence of the phonon mean free path l( T) in a SrMoO4 crystal is calculated for the temperature range of 80-300 K based on experimental data.

  1. Solar cycle variation of interstellar neutral He, Ne, O density and pick-up ions along the Earth's orbit

    NASA Astrophysics Data System (ADS)

    Sokół, Justyna M.; Bzowski, Maciej; Kubiak, Marzena A.; Möbius, Eberhard

    2016-06-01

    We simulated the modulation of the interstellar neutral (ISN) He, Ne, and O density and pick-up ion (PUI) production rate and count rate along the Earth's orbit over the solar cycle (SC) from 2002 to 2013 to verify if SC-related effects may modify the inferred ecliptic longitude of the ISN inflow direction. We adopted the classical PUI model with isotropic distribution function and adiabatic cooling, modified by time- and heliolatitude-dependent ionization rates and non-zero injection speed of PUIs. We found that the ionization losses have a noticeable effect on the derivation of the ISN inflow longitude based on the Gaussian fit to the crescent and cone peak locations. We conclude that the non-zero radial velocity of the ISN flow and the energy range of the PUI distribution function that is accumulated are of importance for a precise reproduction of the PUI count rate along the Earth orbit. However, the temporal and latitudinal variations of the ionization in the heliosphere, and particularly their variation on the SC time-scale, may significantly modify the shape of PUI cone and crescent and also their peak positions from year to year and thus bias by a few degrees the derived longitude of the ISN gas inflow direction.

  2. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  3. Alkaline earth stannates: The next silicon?

    SciTech Connect

    Ismail-Beigi, Sohrab Ahn, Charles H.; Walker, Frederick J.; Cheong, Sang-Wook; Rabe, Karin M.

    2015-06-01

    Semiconductor materials are being used in an increasingly diverse array of applications, with new device concepts being proposed each year for solar cells, flat-panel displays, sensors, memory, and spin transport. This rapid progress of invention outpaces the development of new semiconductor materials with the required properties and performance. In many applications, high carrier mobility at room temperature is required in addition to specific functional properties critical to the device concept. We review recent developments on high mobility stannate perovskite oxide materials and devices.

  4. Local structure around rare-earth ions in B{sub 2}O{sub 3} glass at high pressure

    SciTech Connect

    Funabiki, Fuji; Matsuishi, Satoru; Hosono, Hideo

    2013-06-14

    Melt quenching of B{sub 2}O{sub 3} with less than 25 mol. % rare-earth oxide (RE{sub 2}O{sub 3}) at ambient pressure results in a milky white glass because of liquid-liquid phase separation into B{sub 2}O{sub 3} and RE{sub 2}O{sub 3}{center_dot}3B{sub 2}O phases. In contrast, we have found that melt quenching under GPa-order pressure realizes a transparent RE-doped B{sub 2}O{sub 3} glass. This study investigates the local structure around the RE ions in the B{sub 2}O{sub 3} glass prepared at 3 GPa using optical measurements and electron-spin-echo envelope modulation spectroscopy. It is shown that the RE-rich microparticles disappear and the RE ions are isolated from each other in a highly symmetric crystal field formed by triangular and tetrahedral boron units. This result is consistent with that extrapolated from the data for RE-doped sodium borate glasses.

  5. Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters.

    PubMed

    Iannicelli-Zubiani, Elena Maria; Cristiani, Cinzia; Dotelli, Giovanni; Gallo Stampino, Paola; Pelosato, Renato; Mesto, Ernesto; Schingaro, Emanuela; Lacalamita, Maria

    2015-12-01

    Two mineral clays of the montmorillonite group were tested as sorbents for the removal of Rare Earths (REs) from liquid solutions. Lanthanum and neodymium model solutions were used to perform uptake tests in order to: (a) verify the clays sorption capability, (b) investigate the sorption mechanisms and (c) optimize the experimental parameters, such as contact time and pH. The desorption was also studied, in order to evaluate the feasibility of REs recovery from waters. The adsorption-desorption procedure with the optimized parameters was also tested on a leaching solution obtained by dissolution of a dismantled NdFeB magnet of a hard-disk. The clays were fully characterized after REs adsorption and desorption by means of X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS); the liquid phase was characterized via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analyses. The experimental results show that both clays are able to capture and release La and Nd ions, with an ion exchange mechanism. The best total efficiency (capture ≈ 50%, release ≈ 70%) is obtained when the uptake and release processes are performed at pH=5 and pH=1 respectively; in real leached scrap solutions, the uptake is around 40% but release efficiency is strongly decreased passing from a mono-ion system to a real system (from 80% to 5%). Furthermore, a strong matrix effect is found, with the matrix largely affecting both the uptake and the release of neodymium. PMID:26403388

  6. Investigation of thermal diffusivity dependence on temperature in a group of optical single crystals doped with rare earth ions

    NASA Astrophysics Data System (ADS)

    Trefon-Radziejewska, D.; Bodzenta, J.

    2015-07-01

    The group of YAG, YVO4 and GdCOB single crystals was examined to determine the thermal diffusivity as a function of temperature in range from 30 °C to 300 °C. Further investigations concerned on analysis of the influence of dopants on these dependencies. The experimental setup based on thermal wave method with mirage detection was used. The samples represented different crystallographic systems such as cubic (YAG) tetragonal (YVO4) and monoclinic (GdCOB). The anisotropy of thermal conductivity of investigated samples was taken into account in the investigations. The crystals were doped with calcium ions, rare earth ions such as ytterbium, neodymium, and thulium, and also with transition metal vanadium. The results confirmed that influence of doping on the thermal diffusivity of investigated materials strongly depends on temperature. In general the thermal diffusivity decreases with increasing of sample temperature from 30 °C to 300 °C, however the drop in thermal diffusivity is the highest for pure single crystals. Doping is another factor reducing the heat transport in single crystals. Introduction of dopant ions into a crystal lattice leads to a significant decrease in the thermal diffusivity at lower temperatures in comparison with pure crystals. However, the influence of dopants becomes less pronounced with increasing temperature, and in case of weakly doped crystals it becomes negligible at higher temperatures. The interpretation of thermal diffusivity dependence on temperature for single crystals was based on the Debye model of lattice thermal conductivity of solids. The results allowed to conclude that the decrease of thermal diffusivity with temperature and increasing concentration of impurities is caused by shortening of the phonons mean free path due to phonon-phonon and phonon-point defect scatterings.

  7. Origin and cycle of water on Earth as determined by Ion probe H and D/H measurements

    NASA Astrophysics Data System (ADS)

    Deloule, E.

    2009-12-01

    The question of the origin of water on Earth, and of its abundance has been the object of numerous debates, as well as for the other terrestrial planets. Furthermore the presence and amount of water, or more commonly fluids, in the mantle and continental crust are crucial issues for determining their nature and evolution. Ion probe have been a major tool during the last 3 decades to measure in situ water content, D/H ratio and other elements in various terrestrial and extraterrestrial samples of both hydrous and nominally anhydrous minerals. In a first step, the set up of D/H ratio measurements by ion probe on hydrous minerals [1], often to scarce in peridotite samples to be measurable by conventional mass spectrometry, pointed out variations of δD values in mantle peridotite [2,3] larger than expected (from 0 to -140), both at the mineral grain or regional scales. Such variations point out surface water recycling in the mantle, water exchange during metasomatic reaction and D-H fractionation during mantle processes, and a possible evolution of the Earth mantle D/H ratio through geological time. The determination of D/H ratio in the silicate phases of the matrix and chondrules of primitive meteorites provides new evidences for the source of water in the solar system: the high dD values recorded, up to 3500, implies the uptake of water ice formed in the interstellar media, during the protosolar nebula accretion [3-4]. The D-H budget suggests that up to 10% of Earth and meteorite water originated from interstellar media. The measurements of Martian meteorites [5-6] show contrasted results, with D enriched values associated to the interaction with the Martian surface water and D poor values interpreted as initial values. The development of in situ water content measurements in glasses and nominally anhydrous minerals (NAMs) [7-8] allows a more comprehensive study of the water behavior in the depth Earth. The characterization of its distribution in between the

  8. Degradation of halogenated carbons in alkaline alcohol

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiko; Shimokawa, Toshinari

    2002-02-01

    1,1,2-Trichloro-trifluoroethane, 1,2-dibromo-tetrafluoroethane, 2,3,4,6-tetrachlorophenol, 1,2,4-trichlorobenzene, and 2,4,6-trichloroanisole were dissolved in alkaline isopropyl alcohol and irradiated with 60Co gamma rays after purged with pure nitrogen gas. The concentration of the hydroxide ions and the parent molecules decreased with the dose, while that of the halide ions and the organic products, with less halogen atoms than the parent, increased. Chain degradation will occur in alkaline isopropyl alcohol.

  9. Rare-earth neutral metal injection into an electron beam ion trap plasma

    SciTech Connect

    Magee, E. W. Beiersdorfer, P.; Brown, G. V.; Hell, N.

    2014-11-15

    We have designed and implemented a neutral metal vapor injector on the SuperEBIT high-energy electron beam ion trap at the Lawrence Livermore National Laboratory. A horizontally directed vapor of a europium metal is created using a thermal evaporation technique. The metal vapor is then spatially collimated prior to injection into the trap. The source's form and quantity constraints are significantly reduced making plasmas out of metal with vapor pressures ≤10{sup −7} Torr at ≥1000 °C more obtainable. A long pulsed or constant feed metal vapor injection method adds new flexibility by varying the timing of injection and rate of material being introduced into the trap.

  10. Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning

    NASA Astrophysics Data System (ADS)

    Honma, T.; Komatsu, T.; Zhao, D.; Jain, H.

    2009-02-01

    A glass of Er3+ doped Li2O-Nb2O5-SiO2-B2O3 with an addition of CuO or Sm2O3 crystallizing nonlinear optical lithium niobate LiNbO3 (LN) is developed. Crystalline lines of LN have been fabricated on the glass surface by continuous wave Yb fiber laser irradiations with a wavelength of 1080 nm. The laser written LN crystalline lines have been found, by means of electron back scattering method, micro-Raman and second harmonic experiments, to be well oriented along the laser scanning direction. For the testing of optical waveguides crystal lines exhibit light confinements due to the refractive index (n) changes between the patterned line (n~2.2) and the glass matrix (n=1.7). The analysis of the confocal micro-luminescence spectra obtained for the crystalline line indicates the incorporation of Er3+ ions into LN crystals.

  11. Strongly luminescent rare-earth-ion-doped DNA-CTMA complex film and fiber materials

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Ishihara, Koki; Izumi, H.; Wada, M.; Zhang, Gongjian; Ishikawa, T.; Watanabe, A.; Horinouchi, Suguru; Ogata, Naoya

    2002-08-01

    A rare-earth chelate, Europium 6,6.7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5,-octanedionate, (Eu3+-FOD) doped DNACTMA complex as fiber and film materials was prepared by casting solution method and gel-spinning method. The Eu-FOD-DNA-CTMA complex was luminescent and has 750 μs of fluorescence lifetime, sharply-spiked emission spectra, excellent film and fiber formability, moderate absorption (40000M-1cm-1) at 327 nm and high quantum yield forlanthanide emission. By comparison of fluorescence lifetime of Eu-FOD doped DNA-CTMA solid matrix with that of Eu-FOD doped in PMMA, it was clear that energy transfer from DNA to FOD leads to enhancement of fluorescence emission at 613 nm. Analysis results for fluorescence spectra and fluorescence relaxation time of Eu3+ doped in the materials indicated that Eu3+-FOD is chemically bond within the DNA-CTMA matrix. Amplified spontaneous emission (ASE) at 612 nm by pumping with UV laser (355 nm) was observed in the materials. Fluorescence lifetime of the Eu-FOD doped in the DNA-CTMA solid matrix was evaluated to be 750 μs, which is ca. 230μs longer than that of Eu-FOD doped in PMMA solid matrix. Efficient Energy transfer from base of DNA to FOD, then to Eu, occurred when irradiated by UV light or 355 laser beams.

  12. Fabrication of free-standing NiCo{sub 2}O{sub 4} nanoarrays via a facile modified hydrothermal synthesis method and their applications for lithium ion batteries and high-rate alkaline batteries

    SciTech Connect

    Zheng, Qingyun Zhang, Xiangyang; Shen, Youming

    2015-03-15

    Graphical abstract: Hydrothermal-synthesized NiCo{sub 2}O{sub 4} nanoflake arrays exhibit porous structure and high capacity as well as good cycling life for lithium ion batteries and alkaline batteries. - Highlights: • Self-supported NiCo{sub 2}O{sub 4} nanoflake arrays are prepared by a hydrothermal method. • NiCo{sub 2}O{sub 4} nanoflake arrays show high capacity and good cycling life. • Porous nanoflake arrays structure is favorable for fast ion/electron transfer. - Abstract: Self-supported NiCo{sub 2}O{sub 4} nanoflake arrays on nickel foam are prepared by a facile hydrothermal method. The obtained NiCo{sub 2}O{sub 4} nanoflakes with thicknesses of ∼25 nm grow vertically to the nickel foam substrate and form an interconnected porous network with pore diameters of 50–500 nm. As anode material of LIBs, the NiCo{sub 2}O{sub 4} nanoflake arrays show a high initial coulombic efficiency of 76%, as well as good cycling stability with a capacity of 880 mAh g{sup −1} at 0.5 A g{sup −1}, and 523 mAh g{sup −1} at 1.5 A g{sup −1} after 50 cycles. As the cathode of alkaline batteries, a high capacity of 95 mAh g{sup −1} is achieved at 2 A g{sup −1} and 94% retention is maintained after 10,000 cycles. The superior electrochemical performance is mainly due to the unique nanoflake arrays structure with large surface area and shorter diffusion length for mass and charge transport.

  13. Radiative and Nonradiative Transitions of the Rare-Earth Ions Tm(3+) and Ho(3+) in Y3AI5O12 and LiYF4

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.; Armagan, Guzin; Dibartolo, Baldassare; Modlin, Edward A.

    1995-01-01

    The optical spectra of rare earth ions in solids arise primarily from electric and magnetic dipole transitions between stark split multiplets of the 4f(sup N) electronic configuration. Electric dipole transitions are parity forbidden between levels of the 4f(sup N) configuration, while those of magnetic dipole origin are allowed. It is known from experiment, however, that the significant contributions to the intensities of most transitions are electric dipole in nature. Judd and Ofelt developed the theory of forced electric dipole transitions of rare-earth ions. This study is devoted to determining electric dipole transition probabilities and branching ratios for Tm(3+) and Ho(3+) ions in Yttrium Aluminum Garnet (YAG) and Yttrium Lithium Fluoride (YLF) using the theory of Judd and Ofelt. The radiative rates determined from the Judd-Ofelt analysis are used with measured lifetimes to find nonradiative rates of relaxation.

  14. Stability and oxide ion conductivity in rare-earth aluminium cuspidines

    SciTech Connect

    Martin-Sedeno, M.C.; Marrero-Lopez, D.; Losilla, E.R.; Bruque, S.; Nunez, P.; Aranda, M.A.G. . E-mail: g_aranda@uma.es

    2006-11-15

    RE{sub 4}(Al{sub 2-}{sub x}Ge{sub x}O{sub 7+}{sub x}{sub /2}{open_square}{sub 1-}{sub x}{sub /2})O{sub 2} (RE=Gd{sup 3+} and Nd{sup 3+}) oxy-cuspidine series have been prepared by ceramic method (RE=Gd{sup 3+}) and freeze-dried precursor method (RE=Nd{sup 3+}). The compositional ranges and the high temperature stability have been determined for both series. Gadolinium aluminium cuspidines are stable at very high temperatures but the analogous neodymium compounds are only stable below 1273 K. Joint Rietveld analyses of neutron powder diffraction (NPD) and laboratory X-ray powder diffraction (LXRPD) have been carried out for Nd{sub 4}(Al{sub 2}O{sub 7}{open_square}{sub 1})O{sub 2} and Nd{sub 4}(Al{sub 1.5}Ge{sub 0.5}O{sub 7.25}{open_square}{sub 0.75})O{sub 2} compositions. Furthermore, Rietveld refinement of synchrotron X-ray powder diffraction (SXRPD) data were carried out for Gd{sub 4}(Al{sub 1.0}Ge{sub 1.0}O{sub 7.5}{open_square}{sub 0.5})O{sub 2} composition. The refinements have confirmed the known structural features of the cuspidine framework. These cuspidines series are oxide ion conductors with negligible electronic contribution as determined from impedance spectroscopy at variable oxygen partial pressures. The enhancement in the overall oxide conductivity along the two oxy-cuspidine series is two orders of magnitude. Typical ionic conductivity values for doped samples are around 4x10{sup -5} S cm{sup -1} at 973 K. - Graphical abstract: The attached figure shows the changes in the oxygen distribution of oxy-cuspidines determined by neutron powder diffraction. These oxo-salts are e ion conductors with negligible electronic contribution.

  15. Direct imaging of rare-earth ion clusters in Yb:CaF2

    NASA Astrophysics Data System (ADS)

    Lacroix, B.; Genevois, C.; Doualan, J. L.; Brasse, G.; Braud, A.; Ruterana, P.; Camy, P.; Talbot, E.; Moncorgé, R.; Margerie, J.

    2014-09-01

    The existence and the identification of only one or several coparticipating luminescent Yb3+ centers in the heavily doped Yb :CaF2 laser crystals which are considered in the development of several high intensity laser chains have been examined first by using two complementary and original experimental approaches, i.e., registration of low temperature site-selective laser excitation spectra related to near-infrared and visible cooperative emission processes, on the one hand, and direct imaging at the atomic scale of isolated ions and clusters using a high-resolution scanning transmission electron microscope in the high angle annular dark-field mode, on the other hand, and then correlating the data with simple crystal field calculations. As a consequence, and although all the experimental details could not be accounted for quantitatively, a good overall correlation was found between the experimental and the theoretical data. The results show that at the investigated dopant concentrations, Yb:CaF2 should be considered as a multisite system whose luminescent and lasing properties are dominated by a series of Yb3+ clusters ranging from dimers to tetramers. Hexameric luminescent centers may be dominant at really high dopant concentrations (likely above 20 at. %), as was originally proposed, but certainly not at the intermediate dopant concentrations which are considered for the laser application, i.e., between about 0.5 and 10 at. %.

  16. Origin, transport, and losses of energetic He(+) and He(2+) ions in the magnetosphere of the Earth - AMPTE/CCE observations

    NASA Technical Reports Server (NTRS)

    Kremser, G.; Wilken, B.; Gloeckler, G.; Hamilton, D. C.; Ipavich, F. M.; Kistler, L. M.; Tanskanen, P.

    1993-01-01

    Data from the ion charge-energy-mass spectrometer CHEM flown on AMPTE/CCE spacecraft are used to investigate the origin, transport, and losses of energetic He(+) and He(2+) ions in the earth's magnetosphere. The L profiles of the average ion phase space density f were determined as a function of the magnetic momentum. It is shown that the L profiles have an inner part, where f increases with L for both He(+) adn He(2+) and where steady-state conditions are fulfilled. The outer boundary L(lim) of this region is located at a distance that depends on the ion species and the geomagnetic activity level. Steady-state conditions continue outside L(lim) for He(+) ions, while the He(2+) ion distribution outside L(lim) is strongly influenced by ion convection causing a lack of steady-state conditions. It is concluded that solar wind is the origin of the He(2+), while a mixed origin is suggested for the He(+) ions, in which the major contribution is from the solar wind via charge exchange production from the He(2+) ions.

  17. Extractive properties towards rare-earth metal ions of calix[4]arenes substituted at the narrow rim by phosphoryl and amide groups

    SciTech Connect

    Yaftian, M.R.; Burgard, M.; Wieser, C.; Dieleman, C.B.; Matt, D.

    1998-08-01

    The extractive properties of the cone and partial-cone isomers of 5,11,17,23-tetra-tert-butyl-25,27-bis(diethylcarbamoylmethoxy)-26,28-bis(diphenylphosphinoylmethoxy)calix[4]arene (cone-1 and partial-cone-1) in 1,2-dichloroethane towards rare-earth metal ions in nitrate media at 25 C were investigated. The analysis of the extraction equilibrium obtained from a mixture of four rare-earths (La, Eu, Er and Y) revealed that the extracted species have a 1:1 metal/ligand ratio for both ligands. The intra-group separation efficiencies of the ligands have been evaluated in a competitive extraction process of 11 rare-earth metal ions (La, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb and Y). Significantly higher extractive properties were found for cone-1 with respect to partial-cone-1, suggesting the crucial role of the phosphoryl groups in the complexation of the rare-earth ions.

  18. Tuning the Origin of Magnetic Relaxation by Substituting the 3d or Rare-Earth Ions into Three Isostructural Cyano-Bridged 3d-4f Heterodinuclear Compounds.

    PubMed

    Zhang, Yan; Guo, Zhen; Xie, Shuang; Li, Hui-Li; Zhu, Wen-Hua; Liu, Li; Dong, Xun-Qing; He, Wei-Xun; Ren, Jin-Chao; Liu, Ling-Zhi; Powell, Annie K

    2015-11-01

    Three isostructural cyano-bridged 3d-4f compounds, [YFe(CN)6(hep)2(H2O)4] (1), [DyFe(CN)6(hep)2(H2O)4] (2), and [DyCo(CN)6(hep)2(H2O)4] (3), were successfully assembled by site-targeted substitution of the 3d or rare-earth ions. All compounds have been structurally characterized to display slightly distorted pentagonal-bipyramidal local coordination geometry around the rare-earth ions. Magnetic analyses revealed negligible magnetic coupling in compound 1, antiferromagnetic intradimer interaction in 2, and weak ferromagnetic coupling through dipolar-dipolar interaction in 3. Under an applied direct-current (dc) field, 1 (Hdc = 2.5 kOe, τ0 = 1.3 × 10(-7) s, and Ueff/kB = 23 K) and 3 (Hdc = 2.0 kOe, τ0 = 7.1 × 10(-11) s, and Ueff/kB = 63 K) respectively indicated magnetic relaxation behavior based on a single [Fe(III)]LS ion and a Dy(III) ion; nevertheless, 2 (Hdc = 2.0 kOe, τ0 = 9.7 × 10(-8) s, and Ueff/kB = 23 K) appeared to be a single-molecule magnet based on a cyano-bridged DyFe dimer. Compound 1, which can be regarded as a single-ion magnet of the [Fe(III)]LS ion linked to a diamagnetic Y(III) ion in a cyano-bridged heterodimer, represents one of the rarely investigated examples based on a single Fe(III) ion explored in magnetic relaxation behavior. It demonstrated that the introduction of intradimer magnetic interaction of 2 through a cyano bridge between Dy(III) and [Fe(III)]LS ions negatively affects the energy barrier and χ″(T) peak temperature compared to 3. PMID:26473654

  19. Synthesis and rare earth metal ion-sensing properties of aza-crown derivative incorporating with diaryl-1,3,4-oxadiazole

    NASA Astrophysics Data System (ADS)

    Yu, Tianzhi; Meng, Jing; Zhao, Yuling; Zhang, Hui; Han, Xiaoqian; Fan, Duowang

    2011-01-01

    A new fluorescent chemosensor (A18C6-Ox) in which a monoaza-18-crown-6 is linked to a diaryl-1,3,4-oxadiazole fluorophore by a methylene spacer has been synthesized to evaluate binding interaction with the rare earth ions by means of absorption and emission spectrophotometry. Absorption spectra of A18C6-Ox showed a broad band at 289 nm and there was no significant change in the presence of Sc 3+, La 3+, Pr 3+, Sm 3+, Gd 3+, Tb 3+, Yb 3+ and Lu 3+ except for Ce 3+ and Eu 3+. From the emission spectral change of A18C6-Ox, interaction of the rare earth ions with A18C6-Ox is very strong. The formation of A18C6-Ox complexing with Sc 3+, La 3+, Pr 3+, Sm 3+, Gd 3+, Tb 3+, Yb 3+ and Lu 3+ leads to an increase in fluorescence intensity of A18C6-Ox, while Ce 3+ and Eu 3+ ions interact strongly causing fluorescence quenching of A18C6-Ox. In addition, the optimal complexation stoichiometry of the rare earth ions with A18C6-Ox was investigated by the fluorescent titration.

  20. Optical clock transition in a rare-earth-ion-doped crystal: coherence lifetime extension for quantum storage applications

    NASA Astrophysics Data System (ADS)

    Tongning, Robert-Christopher; Chanelière, Thierry; Le Gouët, Jean-Louis; Florencia Pascual-Winter, María

    2015-04-01

    Atomic clock transitions are desirable for quantum information storage and processing thanks to the protection from decoherence they provide. In the context of rare- earth-ion-doped crystals for quantum information storage, clock Zeeman or hyperfine transitions have been identified and exploited for long-lived storage in spin degrees of freedom. We present a theoretical and experimental analysis on the existence of an optical clock transition in Tm3+:YAG, in view of storage in optical coherences. The combination of a Zeeman-like term and a quadratic electronic Zeeman term in the Hamiltonian, lead to the existence of a magnetic field amplitude (12 mT) for which the derivative of the optical transition energy with respect to the field amplitude vanishes, regardless of the magnetic field orientation. We have verified this prediction through hole-burning spectroscopy experiments. In addition to that, a study of the behavior of the Hamiltonian as a function of the magnetic field orientation yields the direction for which both derivatives with respect to the magnetic field angular coordinates also vanish. The condition for an optical clock transition with three vanishing partial derivatives is met.