Science.gov

Sample records for alkaline earth nitrates

  1. Characterization of Surface and Bulk Nitrates of γ-Al2O3-Supported Alkaline Earth Oxides using Density Functional Theory

    SciTech Connect

    Mei, Donghai; Ge, Qingfeng; Kwak, Ja Hun; Kim, Do Heui; Verrier, Christelle M.; Szanyi, Janos; Peden, Charles HF

    2009-05-14

    “Surface" and "bulk" nitrates formed on a series of alkaline earth oxides (AEOs), AE(NO3)2, were investigated using first-principles density functional theory calculations. The formation of these surface and bulk nitrates was modeled by the adsorption of NO2+NO3 pairs on gamma-Al2O3-supported monomeric AEOs (MgO, CaO, SrO, and BaO) and on the extended AEO(001) surfaces, respectively. The calculated vibrational frequencies of the surface and bulk nitrates based on our proposed models are in good agreement with experimental measurements of AEO/gamma-Al2O3 materials after prolonged NO2 exposure. This indicates that experimentally observed "surface" nitrates are most likely formed with isolated two dimensional (including monomeric) AEO clusters on the gamma-Al2O3 substrate, while the "bulk" nitrates are formed on exposed (including (001)) surfaces (and likely in the bulk as well) of large three dimensional AEO particles supported on the gamma-Al2O3 substrate. Also in line with the experiments, our calculations show that the low and high frequency components of the vibrations for both surface and bulk nitrates are systematically red shifted with the increasing basicity and cationic size of the AEOs. The adsorption strengths of NO2+NO3 pairs are nearly the same for the series of alumina-supported monomeric AEOs, while the adsorption strengths of NO2+NO3 pairs on the AEO surfaces increase in the order of MgO < CaO < SrO ~ BaO. Compared to the NO2+NO3 pair that only interacts with monomeric AEOs, the stability of NO2+NO3 pairs that interact with both the monomeric AEO and the gamma-Al2O3 substrate is enhanced by about 0.5 eV. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  3. Alkaline earth metal catalysts for asymmetric reactions.

    PubMed

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  4. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  5. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  6. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  7. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  8. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  9. ION EXCHANGE IN FUSED SALTS. II. THE DISTRIBUTION OF ALKALI METAL AND ALKALINE EARTH IONS BETWEEN CHABAZITE AND FUSED LINO3, NANO3, AND KNO3,

    DTIC Science & Technology

    ION EXCHANGE, SALTS ), (*ALKALI METALS, ION EXCHANGE), (*ALKALINE EARTH METALS, ION EXCHANGE), (*NITRATES, ION EXCHANGE), SODIUM , CALCIUM, POTASSIUM...BARIUM, RUBIDIUM, CESIUM, LITHIUM COMPOUNDS, SODIUM COMPOUNDS, POTASSIUM COMPOUNDS, DISTRIBUTION, MINERALS, IONS

  10. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  11. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  12. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    PubMed

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B

    1993-02-01

    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  13. Study of point defects in alkaline-earth sulfides

    SciTech Connect

    Pandey, R.; Kunz, A.B.; Vail, J.M.

    1988-11-01

    The results of a computer simulation study of point defects including vacancy, interstitial, and F/sup +/ center in alkaline-earth sulfides are presented. The study is based on ICECAP/HADES simulation procedures and uses empirical interionic potentials obtained from the analysis of macroscopic data for these materials. The results predict the dominance of Schottky disorder and suggest that vacancy migration predominates in alkaline-earth sulfides. Furthermore, the calculated F/sup +/ center absorption energy is in good agreement with the experimental data deduced from the optical stimulated studies in these materials.

  14. Tuning NaYF4 Nanoparticles through Alkaline Earth Doping

    PubMed Central

    Chen, Xian; Peng, Dengfeng; Wang, Feng

    2013-01-01

    Phase and size of lanthanide-doped nanoparticles are the most important characteristics that dictate optical properties of these nanoparticles and affect their technological applications. Herein, we present a systematic study to examine the effect of alkaline earth doping on the formation of NaYF4 upconversion nanoparticles. We show that alkaline earth doping has a dual function of tuning particle size of hexagonal phase NaYF4 nanoparticles and stabilizing cubic phase NaYF4 nanoparticles depending on composition and concentration of the dopant ions. The study described here represents a facile and general strategy to tuning the properties of NaYF4 upconversion nanoparticles. PMID:28348353

  15. Rare-earth oxide nanostructures: rules of rare-earth nitrate thermolysis in octadecylamine.

    PubMed

    Wang, Dingsheng; Wang, Zhongying; Zhao, Peng; Zheng, Wen; Peng, Qing; Liu, Liqin; Chen, Xueyuan; Li, Yadong

    2010-04-01

    The decomposed regularity of rare-earth nitrates in octadecylamine (ODA) is discussed. The experimental results show that these nitrates can be divided into four types. For rare-earth nitrates with larger RE(3+) ions (RE=rare earth, La, Pr, Nd, Sm, Eu, Gd), the decomposed products exhibited platelike nanostructures. For those with smaller RE(3+) ions (RE=Y, Dy, Ho, Er, Tm, Yb), the decomposed products exhibited beltlike nanostructures. For terbium nitrate with a middle RE(3+) ion, the decomposed product exhibited a rodlike nanostructure. The corresponding rare-earth oxides, with the same morphologies as their precursors, could be obtained when these decomposed products were calcined. For cerium nitrate, which showed the greatest differences, flowerlike cerium oxide could be obtained directly from decomposition of the nitrate without further calcination. This regularity is explained on the basis of the lanthanide contraction. Owing to their differences in electron configuration, ionic radius, and crystal structure, such a nitrate family therefore shows different thermolysis properties. In addition, the potential application of these as-obtained rare-earth oxides as catalysts and luminescent materials was investigated. The advantages of this method for rare-earth oxides includes simplicity, high yield, low cost, and ease of scale-up, which are of great importance for their industrial applications.

  16. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  17. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  18. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  19. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  20. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  1. Specialties of distributions of alkaline-earth metals in coal

    SciTech Connect

    Fan Jinchuan; Fan Minqiang

    1997-12-31

    Four different ranks of coal have been sampled and separated into different density fractions by Float-Sink. The contents of some trace elements in each density fraction has been analyzed by ICAP. The analyzed data show that the alkaline-earth metals (Be, Sr, and Ba) have their special distributions in coal: Be and Sr may exist in the form of organic matter. Ba often has the highest content in the middle density fraction (1.4--1.5). The relative relationship between ash (or sulfur) and the trace element in a certain type of coal was obtained by using linear regression approach. Results show that there is no significant correlation between the contents of ash or sulfur and those of Be, Sr, and Ba. On the other hand, the linear regression was done among the trace elements of 17 types of coal. The results also show that there is no significant correlation between ash or sulfur and alkaline-earth metals.

  2. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  3. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  4. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    NASA Astrophysics Data System (ADS)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  5. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  6. Haloarchaeal assimilatory nitrate-reducing communities from a saline alkaline soil.

    PubMed

    Alcántara-Hernández, Rocio J; Valenzuela-Encinas, César; Zavala-Díaz de la Serna, Francisco J; Rodriguez-Revilla, Javier; Dendooven, Luc; Marsch, Rodolfo

    2009-09-01

    Assimilatory nitrate reduction (ANR) is a pathway wherein NO(3)(-) is reduced to NH(4)(+), an N species that can be incorporated into the biomass. There is little information about the ANR genes in Archaea and most of the known information has been obtained from cultivable species. In this study, the diversity of the haloarchaeal assimilatory nitrate-reducing community was studied in an extreme saline alkaline soil of the former lake Texcoco (Mexico). Genes coding for the assimilatory nitrate reductase (narB) and the assimilatory nitrite reductase (nirA) were used as functional markers. Primers to amplify and detect partial narB and nirA were designed. The analysis of these amplicons by cloning and sequencing showed that the deduced protein fragments shared >45% identity with other NarB and NirA proteins from Euryarchaeota and <38% identity with other nitrate reductases from Bacteria and Crenarchaeota. Furthermore, these clone sequences were clustered within the class Halobacteria with strong support values in both constructed dendrograms, confirming that desired PCR products were obtained. The metabolic capacity to assimilate nitrate by these haloarchaea seems to be important given that at pH 10 and higher, NH(4)(+) is mostly converted to toxic and volatile NH(3), and NO(3)(-) becomes the preferable N source.

  7. Enhanced Magnetic Trap Loading for Alkaline-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser addressing the 3P1 level. For the 3P1 -->3S1 (688-nm) transition in strontium, the depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  8. Structural diversity of alkaline-earth 2,5-thiophenedicarboxylates

    NASA Astrophysics Data System (ADS)

    Balendra; Ramanan, Arunachalam

    2017-03-01

    Exploration of the structural landscape of the system containing divalent alkaline-earth metal ion (Mg, Ca and Sr) with the rigid 2,5-thiophenedicarboxylic acid (TDC) under varying solvothermal condition (DMF, DMA and DEF) yielded five new crystals: [Mg(TDC) (DEF)2(H2O)1/2] (1), [Ca(TDC) (DMA)] (2), [Ca(TDC) (DMA) (H2O)] (3), [Sr(TDC) (DMA)] (4) and [Sr(TDC) (DMA) (H2O)] (5) and two known solids. Single crystal structures of all the solids are characteristic of extended coordination interaction between metal and carboxylate ions. While the smaller magnesium ion crystallized into a 2D coordination polymer, the larger calcium and strontium compounds resulted into the growth of 3D metal organic frameworks. All the solids show blue emission arising from intra ligand charge transfer.

  9. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  10. Thermal fluids for CSP systems: Alkaline nitrates/nitrites thermodynamics modelling method

    NASA Astrophysics Data System (ADS)

    Tizzoni, A. C.; Sau, S.; Corsaro, N.; Giaconia, A.; D'Ottavi, C.; Licoccia, S.

    2016-05-01

    Molten salt (MS) mixtures are used for the transport (HTF-heat transfer fluid) and storage of heat (HSM-heat storage material) in Concentration Solar Plants (CSP). In general, alkaline and earth-alkaline nitrate/nitrite mixtures are employed. Along with its upper stability temperature, the melting point (liquidus point) of a MS mixture is one of the main parameters which defines its usefulness as a HTF and HSM medium. As a result, we would like to develop a predictive model which will allow us to forecast freezing points for different MS mixture compositions; thus circumventing the need to determine experimentally the phase diagram for each MS mixture. To model ternary/quaternary phase diagram, parameters for the binary subsystems are to be determined, which is the purpose of the concerned work. In a binary system with components A and B, in phase equilibrium conditions (e.g. liquid and solid) the chemical potentials (partial molar Gibbs energy) for each component in each phase are equal. For an ideal solution it is possible to calculate the mixing (A+B) Gibbs energy:ΔG = ΔH - TΔS = RT(xAlnxA + xBlnxB) In case of non-ideal solid/liquid mixtures, such as the nitrates/nitrites compositions investigated in this work, the actual value will differ from the ideal one by an amount defined as the "mixing" (mix) Gibbs free energy. If the resulting mixtures is assumed, as indicated in the previous literature, to follow a "regular solution" model, where all the non-ideality is considered included in the enthalpy of mixing value and considering, for instance, the A component:Δ G ≡0 =(Δ HA-T Δ SA)+(ΔH¯ m i x AL-T ΔS¯ m i x AL)-(ΔH¯ m i x AS-T ΔS¯ m i x AS)where the molar partial amounts can be calculated from the total value by the Gibbs Duhem equation: (ΔH¯m i x AL=ΔHm i x-XB Ld/Δ Hm i x d XB L ) L;(ΔH¯m i x AS=ΔHm i x-XB Sd/Δ Hm i x d XB S ) S and, in general, it is possible to express the mixing enthalpy for solids and liquids as a function of the mol

  11. Improvement of thermoelectric properties of alkaline-earth hexaborides

    SciTech Connect

    Takeda, Masatoshi . E-mail: takeda@mech.nagaokaut.ac.jp; Terui, Manabu; Takahashi, Norihito; Ueda, Noriyoshi

    2006-09-15

    Thermoelectric (TE) and transport properties of alkaline-earth hexaborides were examined to investigate the possibility of improvement in their TE performance. As carrier concentration increased, electrical conductivity increased and the absolute value of the Seebeck coefficient decreased monotonically, while carrier mobility was almost unchanged. These results suggest that the electrical properties of the hexaboride depend largely on carrier concentration. Thermal conductivity of the hexaboride was higher than 10 W/m K even at 1073 K, which is relatively high among TE materials. Alloys of CaB{sub 6} and SrB{sub 6} were prepared in order to reduce lattice thermal conductivity. Whereas the Seebeck coefficient and electrical conductivity of the alloys were intermediate between those of CaB{sub 6} and SrB{sub 6} single phases, the thermal conductivities of the alloys were lower than those of both single phases. The highest TE performance was obtained in the vicinity of Ca{sub 0.5}Sr{sub 0.5}B{sub 6}, indicating that alloying is effective in improving the performance. - Graphical abstract: Thermoelectric figure-of-merit, ZT, for (Ca,Sr)B{sub 6} alloys. The highest ZT value of 0.35 at 1073 K was obtained due to effective reduction of thermal conductivity by alloying.

  12. Effect of alkaline-earth ions on the dynamics of alkali ions in bismuthate glasses

    NASA Astrophysics Data System (ADS)

    Dutta, A.; Ghosh, A.

    2005-12-01

    The effect of alkaline earth ions on the dynamics of Li+ ions in bismuthate glasses has been studied in the temperature range 353-503K and in the frequency range 10Hz-2MHz . The dc conductivity increases and activation energy decreases with the increase of a particular alkaline earth content for the glasses with a fixed alkali content. The increased modification of the network due to the increase in alkaline earth content in the compositions is responsible for the increasing conductivity. Also the compositions with smaller alkaline earth ions were found to exhibit higher conductivity. Although the conductivity increases with the decrease of ionic radii of alkaline earth ions, the activation energy shows a maximum for the Sr ion. The electric modulus and the conductivity formalisms have been employed to study the relaxation dynamics of charge carriers in these glasses. The alkali ions were observed to change their dynamics with the change of the alkaline earth ions. The same anomalous trend for activation energy for the conductivity relaxation frequency and the hopping frequency was also observed for glasses containing SrO. It was also observed that the mobile lithium ion concentrations are independent of nature of alkaline earth ions in these glasses.

  13. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    SciTech Connect

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-15

    The effect of partial substitution of alkaline earth (AE) ions, Sr{sup 2+} and Ca{sup 2+}, for the rare earth (RE) ions, La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, and Sm{sup 3+}, on the physical properties of REVO{sub 4} compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO{sub 4}-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H{sub 2} fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode. - Graphical abstract: Coulometric titration isotherms for ({open_square}) LaVO{sub 4}, ( White-Circle ) PrVO{sub 4}, ( Lozenge ) CeVO{sub 4}, ( Black-Up-Pointing-Triangle ) Ce{sub 0.7}Sr{sub 0.3}VO{sub 3.85}, and ( Black-Square ) Ce{sub 0.7}Ca{sub 0.3}VO{sub 3.85}, at 973 K. Highlights: Black-Right-Pointing-Pointer Infiltration procedures were used to prepare SOFC anodes from various vanadates. Black-Right-Pointing-Pointer Doping of Alkaline Earth to Rare Earth Vanadates showed to improve conductivity and chemical stability. Black-Right-Pointing-Pointer Alkaline Earth Doped Rare Earth Vanadates-YSZ composites showed conductivities as high as 5 S cm{sup -1} at 973 K. Black-Right-Pointing-Pointer As with other ceramic anodes, the addition of a catalyst was required to achieve low anode impedance.

  14. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    NASA Astrophysics Data System (ADS)

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-01

    The effect of partial substitution of alkaline earth (AE) ions, Sr2+ and Ca2+, for the rare earth (RE) ions, La3+, Ce3+, Pr3+, and Sm3+, on the physical properties of REVO4 compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO4-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H2 fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode.

  15. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper.

  16. More arrows in the quiver: new pathways and old problems with heavy alkaline earth metal diphenylmethanides.

    PubMed

    Alexander, Jacob S; Ruhlandt-Senge, Karin

    2004-03-05

    Progress in the field of sigma-bonded alkaline earth organometallics has been handicapped by numerous complications, such as high reactivity, low solubility, and the limited availability of suitable starting materials. Here we present two synthetic methods, hydrocarbon elimination and desilylation, as alternative routes into this chemistry. A novel barium diphenylmethanide was prepared using these routes delineating that both methods provide a powerful, versatile synthetic access route to an extended library of organometallic alkaline earth derivatives.

  17. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  18. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  19. [Broad excitation band alkaline-earth silicate luminescent materials activated by rare earth and its applications].

    PubMed

    Xia, Wei; Lei, Ming-Kai; Luo, Xi-Xian; Xiao, Zhi-Guo

    2008-01-01

    Series of novel broad excitation band phosphors M2 MgSis O7 : Eu, Dy(M = Ca, Sr) were prepared by a high temperature solid-state reaction method. The crystal structure of compound was characterized. And the effects of part substitution of alkaline-earth on crystal structure, photoluminescence spectra and luminescence properties were also investigated. It is found that the excitation band of silicate luminescent materials extend to visible region and they exhibit yellow, green and blue long after-glow luminescence after excited by ultraviolet or visible light. Ca MgSi O7 : Eu, Dy luminescent materials can be excited effectively under the 450-480 nm range and exhibit a strong emission at 536 nm, nicely combining with blue light emitted by InGaN chips to produce white light. This promises the silicate luminescent materials a potential yellow phosphor for white LED.

  20. Dynamics of dipolar defects in rare earth-doped alkaline-earth fluoride crystals

    NASA Astrophysics Data System (ADS)

    Charnock, Forrest Taylor

    Alkaline-earth fluoride crystals such as SrF2 provide an excellent sample material for investigating the physics of point defects in crystal lattices. High quality crystals are easily grown, and they readily accept many dopant ions into the lattice, particularly rare earth ions. Rare earth dopant ions (typically trivalent) occupy substitutional sites in the lattice by replacing a Sr2+ ion. Due to the extra charge of the rare earth ion, charge compensation is often provided by an extra fluoride ion (F--) located in a nearby interstitial position. If located in the nearest-neighbor (nn) interstitial position, it forms a defect with C4n symmetry; if located in the next-nearest-neighbor (nnn) intersitial position, it forms a defect with C3n symmetry. Given sufficient thermal energy, this interstitial F ion can move to adjacent interstitial sites and hence reorient the defect. The rate w at which the ion moves from one interstitial site to another is well described by a simple Arrhenius expression: w=n0e-E/kT , where n0 is the attack frequency of the F-- and E is the activation energy. This motion can profoundly affect both the electronic polarizability of the material and the polarization of light emitted or absorbed by the rare earth ion. This thesis describes the normal mode motion of interstitial ions which may occupy either nn or nnn interstitial sites. Using electron paramagnetic resonance (EPR), I observed the relative populations of nn and nnn defects in SrF2 doped with Gd3+ as a function of temperature. These measurements show that dipolar reorientation of the nnn F occurs through the nn interstitial position. Not all interstitial F-- motion is thermally driven. Fluorescence depolarization measurements of SrF2:Pr3+ indicate that optically stimulating a Pr3+ may induce interstitial motion of a nn F--. Such motion was confirmed by showing that nn defects in SrF2:Pr3+ may be polarized at very low temperatures when the sample is illuminated with resonant light. I

  1. Rare-earth-doped bifunctional alkaline-earth metal fluoride nanocrystals via a facile microwave-assisted process.

    PubMed

    Pang, Min; Liu, Dapeng; Lei, Yongqian; Song, Shuyan; Feng, Jing; Fan, Weiqiang; Zhang, Hongjie

    2011-06-20

    Rare-earth-doped magnetic-optic bifunctional alkaline-earth metal fluoride nanocrystals have been successfully synthesized via a facile microwave-assisted process. The as-prepared nanocrystals were monodisperse and could form stable colloidal solutions in polar solvents, such as water and ethanol. They show bright-green fluorescence emisson. Furthermore, Gd(3+)-doped ones exhibit paramagnetic behavior at room temperature and superparamagnetic behavior at 2 K.

  2. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  3. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  4. IUPAC-NIST Solubility Data Series. 79. Alkali and Alkaline Earth Metal Pseudohalides

    NASA Astrophysics Data System (ADS)

    Hála, Jiri

    2004-03-01

    This volume presents solubility data of azides, cyanides, cyanates, and thiocyanates of alkali metals, alkaline earth metals, and ammonium. Covered are binary and ternary systems in all solvents. No solubility data have been found for some of the compounds of alkali metals, alkaline metals, and ammonium. These include beryllium and magnesium azides, lithium, rubidium cesium, ammonium, and alkaline earth cyanates and cyanides, and beryllium thiocyanate. Likewise, no solubility data seem to exist for selenocyanates of the mentioned metals and ammonium. The literature has been covered up to the middle of 2001, and there was a great effort to have the literature survey as complete as possible. The few documents which remained unavailable to the editor, and could not be included in the volume, are listed in the Appendix. For some compounds it was not possible to show the Chemical Abstracts registry numbers since these have not been assigned. For this reason, the registry number index is incomplete.

  5. Systematic studies of the mass spectrometric properties of alkaline earth metal cationized amino acids and peptides

    NASA Astrophysics Data System (ADS)

    Küjckelmann, Ulrich; Müller, Dietrich; Weber, Carsten

    1997-07-01

    The results of a systematic study of the gas phase interactions of α-amino acids and peptides (4-15 amino acids) with alkaline earth metals, observed with mass spectrometric techniques, are presented. Furthermore, a model for the cationization with calcium at the C-terminal amino acid arginine in rotaviral polypeptides is presented.

  6. Recent developments in the field of organic heterobimetallic compounds of the alkaline-earth metals.

    PubMed

    Westerhausen, Matthias

    2006-10-28

    Heterobimetallic compounds of the alkaline-earth metals show a wide structural variety with strongly differing reactivity patterns. The combination of magnesium and alkali metal amides yields cyclic molecules with an extreme high reactivity which often are considered as "inverse crowns" with the metal atoms as coordination sites for Lewis bases. In other metallates of the alkaline-earth metals an activation of alkyl groups succeeds. In alkaline-earth metal zincates an inverse coordination of the type M(2)[(mu-R)(2)ZnR](2) is observed and the alkyl groups are in bridging positions between zinc and the s-block metals thus forming a very reactive M-C-Zn three-center-two-electron bond. Furthermore, the metals of the carbon group form alkaline-earth metal-silicon, -germanium and -tin bonds or, in the presence of very strong Lewis bases, even solvent-separated ion pairs. For electronegative substituents at tin an inverse coordination mode such as M[(mu-R)(2)SnR](2) is observed.

  7. Homoleptic alkaline earth metal bis(trifluoromethanesulfonyl)imide complex compounds obtained from an ionic liquid.

    PubMed

    Babai, Arash; Mudring, Anja-Verena

    2006-04-17

    The first homoleptic alkaline earth bis(trifluoromethanesulfonyl)imide (Tf2N) complexes [mppyr]2[Ca(Tf2N)4], [mppyr]2[Sr(Tf2N)4], and [mppyr][Ba(Tf2N)3] were crystallized from a solution of the respective alkaline earth bis(trifluoromethanesulfonyl)imide and the ionic liquid [mppyr][Tf2N] (mppyr = 1,1-N-methyl-N-propylpyrrolidinium). In the calcium and strontium compounds, the alkaline earth metal (AE) is coordinated by four bidentately chelating Tf2N ligands to form isolated (distorted) square antiprismatic [AE(Tf2N)4]2- complexes which are separated by N-methyl-N-propylpyrrolidinium cations. In contrast, the barium compound, [mppyr][Ba(Tf2N)3], forms an extended structure. Here the alkaline earth cation is surrounded by six oxygen atoms belonging to three Tf2N- anions which coordinate in a bidentate chelating fashion. Three further oxygen atoms of the same ligands are linking the Ba2+ cations to infinite (infinity)(1)[Ba(Tf2N)3] chains.

  8. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  9. A parallel-plate electrochemical reactor model for the destruction of nitrate and nitrite in alkaline waste solutions

    SciTech Connect

    Coleman, D.H.; White, R.E.; Hobbs, D.T.

    1995-04-01

    The electrochemical treatment of nuclear waste is the subject of much current interest. After radioactive decontamination, the liquid waste from nuclear fuel processing still contains many hazardous substances, among them nitrate and nitrite. A parallel-plate electrochemical reactor model with multiple reactions at both electrodes and anolyte and catholyte recirculation tanks was modeled for the electrochemical destruction of nitrate and nitrite species in an alkaline solution. The model can be used to predict electrochemical reaction current efficiencies and outlet concentrations of species from the reactor, given inlet feed conditions and cell operating conditions. Also, predictions are made for off-gas composition and liquid-phase composition in the recirculation tanks. The results of case studies at different applied potentials are shown here. At lower applied potentials, the model predictions show that the destruction process is more energy efficient, but the time required to destroy a given amount of waste is increased.

  10. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  11. Respiratory and dissimilatory nitrate-reducing communities from an extreme saline alkaline soil of the former lake Texcoco (Mexico).

    PubMed

    Alcántara-Hernández, Rocio J; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc

    2009-01-01

    The diversity of the dissimilatory and respiratory nitrate-reducing communities was studied in two soils of the former lake Texcoco (Mexico). Genes encoding the membrane-bound nitrate reductase (narG) and the periplasmic nitrate reductase (napA) were used as functional markers. To investigate bacterial communities containing napA and narG in saline alkaline soils of the former lake Texcoco, libraries of the two sites were constructed (soil T3 with pH 11 and electrolytic conductivity in saturated extract (EC(SE)) 160 dS m(-1) and soil T1 with pH 8.5 and EC(SE) 0.8 dS m(-1)). Phylogenetic analysis of napA sequences separated the clone families into two main groups: dependent or independent of NapB. Most of napA sequences from site T1 were grouped in the NapB-dependent clade, meanwhile most of the napA sequences from the extreme soil T3 were affiliated to the NapB-independent group. For both sites, partial narG sequences were associated with representatives of the Proteobacteria, Firmicutes and Actinobacteria phyla, but the proportions of the clones were different. Our results support the concept of a specific and complex nitrate-reducing community for each soil of the former lake Texcoco.

  12. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  13. Ab initio study of the alkali and alkaline-earth monohydroxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.

    1986-01-01

    A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.

  14. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    Theoretical dissociation energies are presented for the alkaline-earth fluoride, hydroxide, and oxide positive ions that are considered to be accurate to 0.1-0.2 eV. The r(e) for the positive ions are found to be consistently shorter than the corresponding neutrals by 0.07 + or -0.02 A. The bonding in the ground states is demonstrated to be of predominantly M + 2 X - character. The a 3 Pi and A 1 Pi are found to lie considerably above the X 1 Sigma + ground states of the alkaline-earth fluoride and hydroxide positive ions. The overall agreement of the theoretical ionization potentials with the available experimental appearance potentials is satisfactory; these values should represent the most accurate and consistent set available.

  17. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals.

  18. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    SciTech Connect

    De Visscher, Alex; Vanderdeelen, Jan

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  19. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  20. Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Nørskov, Jens K.; Vojvodic, Aleksandra

    2015-04-01

    We present a systematic theoretical investigation of the surface properties, stability, and reactivity of rocksalt type alkaline-earth metal oxides including MgO, CaO, SrO, and BaO. The accuracy of commonly used exchange-correlation density functionals (LDA, PBE, RPBE, PBEsol, BEEF-vdW, and hybrid HSE) and random-phase approximation (RPA) is evaluated and compared to existing experimental values. Calculated surface energies of the four most stable surface facets under vacuum conditions, the (100) surface, the metal and oxygen terminated octopolar (111), and the (110) surfaces, exhibit a monotonic increase in stability from MgO to BaO. On the MgO(100) surface, adsorption of CO, NO, and CH4 is characterized by physisorption while H2O chemisorbs, which is in agreement with experimental findings. We further use the on-top metal adsorption of CO and NO molecules to map out the surface energetics of each alkaline-earth metal oxide surface. The considered functionals all qualitatively predict similar adsorption energy trends. The ordering between the adsorption energies on different surface facets can be attributed to differences in the local geometrical surface structure and the electronic structure of the metal constituent of the alkaline-earth metal oxide. The striking observation that CO adsorption strength is weaker than NO adsorption on the (100) terraces as the period of the alkaline-earth metal in the oxide increases is analyzed in detail in terms of charge redistribution within the σ and π channels of adsorbates. Finally, we also present oxygen adsorption and oxygen vacancy formation energies in these oxide systems.

  1. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2004-11-01

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  2. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  3. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    DOE PAGES

    Sun, Hui; Wu, Di; Liu, Kefeng; ...

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential (Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A) to –48.02more » ± 1.85 kJ/mol per TO2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.« less

  4. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    SciTech Connect

    Sun, Hui; Wu, Di; Liu, Kefeng; Guo, Xiaofeng; Navrotsky, Alexandra

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential (Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A) to –48.02 ± 1.85 kJ/mol per TO2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.

  5. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  6. The Effect of Alkaline Earth Metal on the Cesium Loading of Ionsiv(R) IE-910 and IE-911

    SciTech Connect

    Fondeur, F.F.

    2001-01-16

    This study investigated the effect of variances in alkaline earth metal concentrations on cesium loading of IONSIV(R) IE-911. The study focused on Savannah River Site (SRS) ''average'' solution with varying amounts of calcium, barium and magnesium.

  7. Nano porous alkaline earth metal silicates as free fatty acid adsorbents from Crude Palm Oil (CPO)

    NASA Astrophysics Data System (ADS)

    Masmur, Indra; Sembiring, Seri Bima; Bangun, Nimpan; Kaban, Jamaran; Putri, Nabila Karina

    2017-01-01

    Free fatty acids(FFA) from Crude Palm Oil (CPO) have been adsorbed by alkaline earth metal silicate (M-silicate : M = Mg, Ca, Sr and Ba) adsorbents in ethanol using batch method. The adsorbents were prepared from the chloride salts of alkaline metals and Na2SiO3. The resulting white solid of the alkaline earth metal silicates were then heated at 800°C for 3 hours to enlarge their porosities. All adsorbents were characterized by SEM-EDX, XRD and BET. The EDX spectrum of SEM-EDX showed the appearance of all elements in the adsorbents, and the XRD spectrum of all adsorbents showed that they have crystobalite structure. The porosity of the adsorbents calculated by BET method showed that the porosities of the adsorbents range from 2.0884 - 2.0969 nm. All the adsorbents were used to adsorb the FFA from CPO containing 4.79%, 7.3%, 10.37% and 13.34% of FFA. The ratio of adsorbent to CPO to be used in adsorption of FFA from CPO were made 1:1, 1:2 and 1:3, with adsorption time of 1 hour. We found that the maximum adsorption of FFA from CPO was given by Ca-Silicate adsorbent which was between 69.86 - 94.78%, while the lowest adsorption was shown by Mg-silicate adsorbent which was 49.32 -74.53%.

  8. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char.

  9. Intermolecular hydroamination of vinylarenes by iminoanilide alkaline-earth catalysts: a computational scrutiny of mechanistic pathways.

    PubMed

    Tobisch, Sven

    2014-07-14

    A thorough computational exploration of the mechanistic intricacies of the intermolecular hydroamination (HA) of vinylarenes by a recently reported class of kinetically stabilised iminoanilide [{N^N}Ae{N(SiMe3)2}⋅(THF)n] alkaline-earth amido compounds (Ae = Ca, Sr, Ba) is presented. Two distinct mechanistic pathways for catalytic HA mediated by alkaline-earth and rare-earth compounds have emerged over the years that account equally well for the specific features of the process. On one hand, a concerted proton-assisted pathway to deliver the amine product in a single step can be invoked and, on the other, a stepwise σ-insertive pathway that comprises a rapid, reversible migratory olefin insertion step linked to a less facile, irreversible Ae-C alkyl bond aminolysis. The results of the study presented herein, which employed a heavily benchmarked and reliable DFT methodology, supports a stepwise σ-insertive pathway that involves fast and reversible migratory C=C bond insertion into the polar Ae-N pyrrolido σ bond. This proceeds with strict 2,1 regioselectivity via a highly polarised four-centre transition state (TS) structure, linked to irreversible intramolecular Ae-C bond aminolysis of the alkaline-earth alkyl intermediate as the energetically favourable mechanism. Turnover-limiting aminolysis is consistent with the significant KIE measured; the DFT-derived effective barrier matches the Eyring parameter empirically determined for the best-performing {N^N}Ba(NR2) catalyst gratifyingly well. It also predicts the observed trend in reactivity (Ca

  10. Theoretical investigation of the structures, stabilities, and NLO responses of calcium-doped pyridazine: alkaline-earth-based alkaline salt electrides.

    PubMed

    Wang, Yin-Feng; Huang, Jiangen; Jia, Li; Zhou, Guangpei

    2014-02-01

    Currently, whether alkaline-earth-doped compounds with electride characteristics are novel candidates for high-performance nonlinear optical (NLO) materials is unknown. In this paper, using quantum chemical computations, we show that: when doping calcium atoms into a family of alkaline-substituted pyridazines, alkaline-earth-based alkaline salt electrides M-H₃C₄N₂⋯Ca (M=H, Li, and K) with distended excess electron clouds are formed. Interestingly, from the triplet to the singlet state, the chemical valence of calcium atom changes from +1 to 0, and the dipole moment direction (μ₀) of the molecule reverses for each M-H₃C₄N₂⋯Ca. Changing pyridazine from without (H₄C₄N₂⋯Ca) to with one alkaline substituent (M-H₃C₄N₂⋯Ca, M=Li and K), the ground state changes from the triplet to the singlet state. The alkaline earth metal doping effect (electride effect) and alkaline salt effect on the static first hyperpolarizabilities (β₀) demonstrates that (1) the β₀ value is increased approximately 1371-fold from 2 (pyridazine, H₄C₄N₂) to 2745au (Ca-doped pyridazine, H₄C₄N₂⋯Ca), (2) the β₀ value is increased approximately 1146-fold from 2 in pyridazine (H₄C₄N₂) to 2294au in an Li-substituted pyridazine (Li-H₃C₄N₂), and (3) the β₀ value is increased 324-(M=Li) and 106-(M=K) fold from 826 (MLi) and 2294au (MK) to 268,679 (M=Li) and 245,878au (M=K), respectively, from the alkalized pyridazine (M-H₃C₄N₂) to the Ca-doped pyridazine (M-H₃C₄N₂⋯Ca). These results may provide a new means for designing high-performance NLO materials.

  11. Nitrate

    Integrated Risk Information System (IRIS)

    Nitrate ; CASRN 14797 - 55 - 8 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  12. Quantum phase transition of alkaline-earth fermionic atoms confined in an optical superlattice

    NASA Astrophysics Data System (ADS)

    Silva-Valencia, J.; Franco, R.; Figueira, M. S.

    2013-03-01

    Using the density matrix renormalization group method, we evaluate the spin and charge gaps of alkaline-earth fermionic atoms in a periodic one-dimensional optical superlattice. The number of delocalized atoms is equal to the lattice size and we consider an antiferromagnetic coupling between delocalized and localized atoms. We found a quantum phase transition from a Kondo insulator spin liquid state without confining potential to a charge-gapped antiferromagnetic state with nonzero potential. For each on-site coupling, there is a critical potential point for which the spin gap vanishes and its value increases linearly with the local interaction.

  13. Single-stage sub-Doppler cooling of alkaline earth atoms.

    PubMed

    Xu, Xinye; Loftus, Thomas H; Dunn, Josh W; Greene, Chris H; Hall, John L; Gallagher, Alan; Ye, Jun

    2003-05-16

    We report the first experimental study of sub-Doppler cooling in alkaline earth atoms (87Sr) enabled by the presence of nuclear spin-originated magnetic degeneracy in the atomic ground state. Sub-Doppler cooling in a sigma(+)-sigma(-) configuration is achieved despite the presence of multiple, closely spaced excited states. This surprising result is confirmed by an expanded multilevel theory of the radiative cooling force. Detailed investigations of system performance have shed new insights into (sigma(+)-sigma(-)) cooling dynamics and will likely play an important role in the future development of neutral atom-based optical frequency standards.

  14. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  15. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOEpatents

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  16. Studies on the interactions between purified bovine caseins and alkaline-earth-metalions

    PubMed Central

    Dickson, I. R.; Perkins, D. J.

    1971-01-01

    1. Alkaline-earth-metal cations at low concentrations form soluble complexes with bovine caseins. The relative order of binding capacities is: Mg2+>Ca2+>Ba2+>Sr2+. 2. The cations interact with both free ionized carboxyl groups of aspartic acid and glutamic acid and with monoester phosphate groups covalently bound to serine and threonine; at low concentrations of the cations interactions are predominantly with the phosphate groups. 3. The order of binding capacities for purified components of the casein complex is: αs1-casein>β-casein>κ-casein. PMID:5166590

  17. Measurements of the mobility of alkaline earth ions in liquid xenon

    NASA Astrophysics Data System (ADS)

    Jeng, S.-C.; Fairbank, W. M., Jr.; Miyajima, M.

    2009-02-01

    The mobility of alkaline earth ions, Mg+, Ca+, Sr+ and Ba+, in liquid xenon is measured for the first time. The mobility of Tl+ is also determined for comparison with a measurement by other researchers. The Atkins cluster model for positive ions in non-polar liquids, based on the electrostriction effect, gives general agreement with the magnitude of the mobility values. This is some evidence that the positive ions form a snowball rather than a bubble structure in liquid xenon. However, the temperature dependence of the mobility does not match well with the Atkins theory, so there are still open theoretical questions on the nature of the environment of alkaline earth ions in liquid xenon. The lower mobility of Mg+ and Ba+ may be explained by a better size match to interstitial and substitutional sites, respectively, in solid Xe. These measurements are motivated by the development of a new technique to search for neutrino masses through 0νββ decay of 136Xe. A key component of one version of the proposed experiment is tagging of 136Ba+ daughter ions in liquid 136Xe by laser-induced fluorescence.

  18. Atomic hydrogen in. gamma. -irradiated hydroxides of alkaline-earth elements

    SciTech Connect

    Spitsyn, V.I.; Yurik, T.K.; Barsova, L.I.

    1982-04-01

    Atomic hydrogen is an important intermediate product formed in the radiolysis of compounds containing X-H bonds. H atoms have been detected in irradiated matrices of H/sub 2/ and inert gases at 4/sup 0/K, in irradiated ice and frozen solutions of acids in irradiated salts and in other systems. Here results are presented from a study of the ESR spectra of H atoms generated in polycrystalline hydroxides of alkaline-earth elements that have been ..gamma..-irradiated at 77/sup 0/K, after preliminary treatment at various temperatures. For the first time stabilization of atomic hydrogen in ..gamma..-irradiated polycrystalline alkaline-earth element hydroxides has been detected. Depending on the degree of dehydroxylation, several types of hydrogen atoms may be stabilized in the hydroxides, these hydrogen atoms having different radiospectroscopic parameters. In the magnesium-calcium-strontium-barium hydroxide series, a regular decrease has been found in the hfi constants for H atoms with the cations in the immediate surroundings. A direct proportionality has been found between the parameters ..delta..A/A/sub 0/ and the polarizability of the cation.

  19. Temperature-induced collapse of alkaline Earth cation-polyacrylate anion complexes.

    PubMed

    Lages, Sebastian; Schweins, Ralf; Huber, Klaus

    2007-09-06

    Polyacrylate anions are used to inhibit CaCO3 precipitation and may be a promising additive to control formation of inorganic nanoparticles. The origin of this applicability lies in specific interactions between the alkaline earth cations and the carboxylate functions along the polyacrylate chains. In the absence of CO32- anions, these interactions eventually cause precipitation of polyelectrolytes. Extended investigation of dilute sodium polyacrylate solutions approaching this precipitation threshold revealed a dramatic shrinking of the PA coil dimensions once the threshold is reached (Eur. Phys. J. E 2001, 5, 117). Recent isothermal calorimetric titration experiments by Antonietti et al. (Macromolecules 2004, 37, 3444) indicated that the driving force of this precipitation is entropic in nature. In the present work, we investigated the impact of temperature on the structural changes of dissolved polyacrylate chains decorated with alkaline earth cations. To this end, large polyacrylate chains were brought close to the precipitation threshold by the addition of distinct amounts of Ca2+ or Sr2+ cations. The resulting structural intermediates were then subjected to temperature variations in the range of 15 degrees C

  20. Tungstate-ferrates of some alkali and alkaline-earth metals

    SciTech Connect

    Gruba, A.I.; Danileiko, L.A.; Moroz, Ya.A.; Zyats, M.N.

    1988-02-01

    Tungstate-ferrates of some alkali and alkaline-earth metals with the ratio Fe:W = 2:11, the iron ions in which are found in two types of coordination, tetrahedral and octahedral, were synthesized. The similarity of the IR spectra of the compounds obtained and known compounds with the anion structure of the Keggin type with the composition M/sub X/(XZW/sub 11/O/sub 40/H/sub m/) x nH/sub 2/O indicates that their heteropolyanions are isostructural. The thermal stability of the compounds studied and the structure of the products of thermolysis depend on the charge and radius of the extrasphere cation. When the ratio of the radii of the extrasphere cation of the alkali or alkaline-earth metal to the radius of the ion of the central 3d element, appearing in the coordination sphere of the heteropolytungstates, exceeds 1.6, the most likely products of thermolysis of heteropolycompounds are the compounds of the pyrochlore family and tungsten bronzes.

  1. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  2. Three-photon process for producing a degenerate gas of metastable alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Barker, D. S.; Pisenti, N. C.; Reschovsky, B. J.; Campbell, G. K.

    2016-05-01

    We present a method for creating a quantum degenerate gas of metastable alkaline-earth-metal atoms. This has yet to be achieved due to inelastic collisions that limit evaporative cooling in the metastable states. Quantum degenerate samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent three-photon process. Numerical integration of the density-matrix evolution for the fine structure of bosonic alkaline-earth-metal atoms shows that transfer efficiencies of ≃90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the three-photon process can be set up such that it imparts no net momentum to the degenerate gas during the excitation, which will allow for studies of metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to successfully realizing our scheme, including the minimization of differential ac Stark shifts between the four states connected by the three-photon transition.

  3. A 3-photon process for producing degenerate gases of metastable alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Barker, Daniel S.; Pisenti, Neal C.; Reschovsky, Benjamin J.; Campbell, Gretchen K.

    2016-05-01

    We present a method for creating quantum degenerate gases of metastable alkaline-earth atoms. A degenerate gas in any of the 3 P metastable states has not previously been obtained due to large inelastic collision rates, which are unfavorable for evaporative cooling. Samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure of bosonic alkaline-earth atoms shows that transfer efficiencies of ~= 90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process does not impart momentum to the degenerate gas during excitation, which allows studies of these metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to the successful realization of our scheme, including the minimization of differential AC Stark shifts between the four states connected by the 3-photon transition.

  4. Theoretical study of the alkaline-earth metal superoxides BeO2 through SrO2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    Three competing bonding mechanisms have been identified for the alkaline-earth metal superoxides: these result in a change in the optimal structure and ground state as the alkaline-earth metal becomes heavier. For example, BeO2 has a linear 3Sigma(-)g ground-state structure, whereas both CaO2 and SrO2 have C(2v)1A1 structures. For MgO2, the theoretical calculations are less definitive, as the 3A2 C(2v) structure is computed to lie only about 3 kcal/mol above the 3Sigma(-)g linear structure. The bond dissociation energies for the alkaline-earth metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional or coupled-cluster singles and doubles level with a perturbational estimate of the triple excitations.

  5. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  6. Structure elucidation of alkaline earth impregnated MCM-41 type mesoporous materials obtained by direct synthesis: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Paz, Gizeuda L.; Silva, Francisco das Chagas M.; Araújo, Maciel M.; Lima, Francisco das Chagas A.; Luz, Geraldo E.

    2014-06-01

    In this work, MCM-41 were synthesized hydrothermally and functionalized with calcium and strontium salts by direct method, using the Si/M = 50 molar ratio, in order to elucidate the way as the alkaline earth is incorporated on MCM-41 molecular sieve. The materials were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, nitrogen adsorption-desorption and theoretical calculations by DFT method. Experimental results and computer simulations showed that the alkaline earths were incorporated on MCM-41 through a complex structure, which negatively influences on basic sites formation.

  7. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    NASA Astrophysics Data System (ADS)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  8. Theoretical study of the alkaline-earth (LiBe)+ ion: structure, spectroscopy and dipole moments

    NASA Astrophysics Data System (ADS)

    Ghanmi, C.; Farjallah, M.; Berriche, H.

    2017-03-01

    We study theoretically the structure and spectroscopic properties of the alkali alkaline-earth (LiBe)+ ion. The potential energy curves and their spectroscopic parameters, permanent and transition dipole moments are determined with a quantum chemistry approach. The (LiBe)+ ion is modelled as two valence electron system moving in the field of Be2+ and Li+ cores, which are described by pseudopotentials. In addition, effective core-polarization potentials are included to correct the energy. The molecular calculations are performed using a standard quantum chemistry approach based on the pseudopotential model, Gaussian basis sets, effective core polarization potentials, and full configuration interaction (CI) calculations. The precision of our spectroscopic parameters are discussed by comparison with currently available theoretical results. A rather good agreement is observed for the ground and first excited states. The permanent dipole moments reveal many abrupt changes, which are localized at particular distances corresponding to the positions of the avoided crossings.

  9. Prolonged QT Syndrome and Seizure Secondary to Alkaline Earth Metal Deficiency: A Case Report.

    PubMed

    McKinney, A; Keegan, B C

    2011-01-01

    Introduction. Alkaline earth metal deficiency is recognized as a cause of both seizure and long QT syndrome. Their deficiency can have significant repercussions on the function of cells, tissues, and organs of the body. An understanding of the role of electrolytes allows an appreciation of the significance of depleted levels on cell function. Case Report. A 65-year-old lady was admitted with symptoms of chest discomfort, vomiting, increased stoma output, and dizziness. Two days following admission she suffered a tonic-clonic seizure. ECG review demonstrated a prolonged QTc interval, raising the possibility of an underlying Torsades de Pointes as the precipitant. This was attributed to electrolyte disturbance arising as a result of multiple aetiologies. Discussion. This paper highlights the multisystem effects of electrolyte disturbance, with emphasis upon its role in precipitating cardiac arrhythmia and neurological symptoms.

  10. Alkaline earth metal cation exchange: effect of mobile counterion and dissolved organic matter.

    PubMed

    Indarawis, Katrina; Boyer, Treavor H

    2012-04-17

    The goal of this research was to provide an improved understanding of the interactions between alkaline earth metals and DOM under conditions that are encountered during drinking water treatment with particular focus on cation exchange. Both magnetically enhanced and nonmagnetic cation exchange resins were converted to Na, Mg, Ca, Sr, and Ba mobile counterion forms as a novel approach to investigate the exchange behavior between the cations and the interactions between the cations and DOM. The results show that cation exchange is a robust process for removal of Ca(2+) and Mg(2+) considering competition with cations on the resin surface and presence of DOM. DOM was actively involved during the cation exchange process through complexation, adsorption, and coprecipitation reactions. In addition to advancing the understanding of ion exchange processes for water treatment, the results of this work are applicable to membrane pretreatment to minimize fouling, treatment of membrane concentrate, and precipitative softening.

  11. Hydration process of alkaline-earth metal atoms in water clusters

    NASA Astrophysics Data System (ADS)

    Okai, Nobuhiro; Ishikawa, Haruki; Fuke, Kiyokazu

    2005-10-01

    Ionization potentials (IPs) of water clusters containing alkaline-earth metal atoms are measured by a photoionization threshold method to examine the hydration process of the metal atoms in clusters. IPs of Mg(H 2O) n and Ca(H 2O) n are found to decrease with increasing n and become constant at 3.18 eV for n ⩾ 9 and n ⩾ 8, respectively. The observed constant IP agrees with an estimated photoelectric threshold (3.2 eV) of bulk ice. From the comparison with the results on the theoretical calculations as well as the IPs for alkali atom-water clusters, the anomalous size dependence of IPs is ascribed to the formation of an ion-pair state.

  12. Linear alkaline earth metal phosphinate coordination polymers: synthesis and structural characterization.

    PubMed

    Rood, Jeffrey A; Huttenstine, Ashley L; Schmidt, Zachery A; White, Michael R; Oliver, Allen G

    2014-06-01

    Reaction of alkaline earth metal salts with diphenylphosphinic acid in dimethylformamide solvent afforded four coordination polymers: [Mg3(O2PPh2)6(DMF)2]·2DMF (I), [Ca(O2PPh2)2(DMF)2] (II), [Sr(O2PPh2)2(DMF)2] (III) and [Ba(O2PPh2)2(DMF)2] (IV) (where DMF is N,N-dimethylformamide). Single-crystal X-ray diffraction revealed that all four compounds produce linear chain structures in the solid state, with the Ca, Sr and Ba forming isostructural crystals. The bulk materials were characterized by FT-IR and (1)H NMR spectroscopy and elemental analyses.

  13. Magnetic crystals and helical liquids in alkaline-earth fermionic gases

    PubMed Central

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  14. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  15. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  17. First hyperpolarizability of cyclooctatetraene modulated by alkali and alkaline earth metals.

    PubMed

    Roy, Ria Sinha; Mondal, Avijit; Nandi, Prasanta K

    2017-03-01

    In the present investigation, the first hyperpolarizability of alkali and alkaline earth metal derivatives of cyclooctatetraene (COT) has been calculated using BHHLYP and CAM-B3LYP functional for 6-311++G(d,p), 6-311++G(3df,3pd), and aug-pc 2 basis sets. Introduction of Na/K atoms at the axial position of COT and Li, Na, K/Be, Mg, Ca metal atoms and cyanide groups at the equatorial sites leads to lager enhancement of first hyperpolarizability. The ring charge density can account for the variation of first hyperpolarizability. The two state model has been invoked to explain the variation of first hyperpolarizability.

  18. Alkaline-earth metal hydrides as novel host lattices for Eu(II) luminescence.

    PubMed

    Kunkel, Nathalie; Kohlmann, Holger; Sayede, Adlane; Springborg, Michael

    2011-07-04

    Luminescence of divalent europium has been investigated for the first time in metal hydrides. A complete solid-solution series was found for the pseudobinary system Eu(x)Sr(1-x)H(2) [a = 637.6(1) pm -12.1(3)x pm, b = 387.0(1)-6.5(2)x pm, c = 732.2(2)-10.1(4)x pm]. Europium-doped alkaline-earth hydrides Eu(x)M(1-x)H(2) (M = Ca, Sr, Ba) with a small europium concentration (x = 0.005) exhibit luminescence with maximum emission wavelengths of 764 nm (M = Ca), 728 nm (M = Sr), and 750 nm (M = Ba); i.e., the emission energy of divalent europium shows an extremely large red shift compared to the emission energies of fluorides or oxides. Theoretical calculations (LDA+U) confirm decreasing band gaps with increasing europium content of the solid solutions.

  19. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1996-12-31

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  20. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor

    PubMed Central

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  1. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    NASA Astrophysics Data System (ADS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  2. Optical and electronic properties of conductive ternary nitrides with rare- or alkaline-earth elements

    NASA Astrophysics Data System (ADS)

    Kassavetis, S.; Hodroj, A.; Metaxa, C.; Logothetidis, S.; Pierson, J. F.; Patsalas, P.

    2016-12-01

    Conductive nitrides, such as TiN, are key engineering materials for electronics, photonics, and plasmonics; one of the essential issues for such applications is the ability of tuning the conduction electron density, the resistivity, and the electron scattering. While enhancing the conduction electron density and blueshifting the intraband absorption towards the UV were easily achieved previously, reducing the conduction electron density and redshifting the intraband absorption into the infrared are still an open issue. The latter is achieved in this work by alloying TiN by rare earth (RE = Sc, Y, La) or alkaline earth (AE = Mg, Ca) atoms in Ti substitutional positions. The produced TixRE1-xN and TixAE1-xN thin film samples were grown by a hybrid arc evaporation/sputtering process, and most of them are stable in the B1 cubic structure. Their optical properties were studied in an extensive spectral range by spectroscopic ellipsometry. The ellipsometric spectra were analyzed and quantified by the Drude-Lorentz model, which provided the conduction electron density, the electron mean free path, and the resistivity. The observed interband transitions are firmly assigned, and the optical and electrical properties of TixRE1-xN and TixAE1-xN are quantitatively correlated with their composition and crystal structure.

  3. Coordination chemistry of the alkaline earth metal ions with Zwitterionic forms of the Schift bases. X-Ray studies and other spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Tajmir-Riahi, H. A.; Lotfipoor, M.

    The non-ionized forms of tetradentate Schiff bases NN'-ethylenebis(salicylideneimine), H 2L and NN'-propane-1,3-diylbis(salicylideneimine), H 2L' react with hydrated alkaline earth halide and nitrate to give complexes of the type: M(H 2L)Cl 2· nH 2O [M = Mg(II), Ca(II), Sr(II); n = 0-4], M(H 2L) 2Cl 2 [M = Ca(II), Sr(II), M(H 2L) nBr 2 [M = Ca(II), Sr(II); n = 2, 3 and Mg 2(H 2L) 3Br 4], M(H 2L) nI 2 [M = Mg(II), Ca(II), Sr(II), Ba(II); n = 2, 3)], M(H 2L) n(NO 3) 2 and M(H 2L') n(NO 1) 2[M = Mg(II), Ca(II); n = 1, 2)]. Because of distinct spectral similarities with structurally known Ca(H 2L')(NO 3) 2 compound, the Schiff bases are coordinated through the negatively charged phenolic oxygen atoms and not the nitrogen atoms of the azomethine groups, which carry the protons transferred from phenolic groups on complexation. Halide and nitrate are coordinated to the central metal ion except in 2:1 nitrato complexes where the presence of both ionic and coordinated nitrate groups are evident and also in 3:1 halide complexes where the presence of non-coordinated halide cannot be excluded. X-Ray powder photographs showed no marked similarities between Ca(H 2L')(NO 3) 2 and Mg(H 2L')(NO 3) 2 while there are some isomorphic features between the same types of halide complexes. Infrared spectra and other structural information revealed the polymeric nature of the complexes. Therefore the coordination numbers exhibited by the alkaline earth metal cations would be 4, 6 or 8 in these series of Schiff base complexes.

  4. Alkaline earth metal fluxes for the growth of single crystal oxides

    NASA Astrophysics Data System (ADS)

    Ramirez, Daniel

    Oxide ceramics are materials with a wide range of properties. Insulators are most common, however semiconductors, strongly correlated electron materials, and even superconductors are all relevant oxide materials. Here we seek to synthesize novel oxide single crystal phases and study their properties using an alkaline earth metal flux technique. The specific flux techniques are new, and we will seek to understand the capabilities of these fluxes as a novel synthesis tool. The use of a barium metal flux to grow single crystal oxides is rather counterintuitive, but is exemplified further with the growth of europium monoxide (Fm3¯m #225, Z = 4). Eu1-xBaxO single crystals (x = 0.01 - 0.25) are grown and studied for their ferromagnetic properties. A new oxide phase Ba2Eu2P2O (P4/mbm #127, Z = 2) has also been synthesized from the same method, and may potentially be studied as a ferromagnetic semiconductor based on preliminary observations. Other examples of single crystal oxide phases grown from barium metal flux includes Ba2TeO (P4/nmm #129, Z = 2), BaLn2O4 (Ln = La - Lu) (Pnma #62, Z = 4), and Ba3Yb2O 5Te (P4/mmm #123 Z = 1). The new crystal phases Ba3Ln2O5Cl 2 (Ln = Sm - Lu, Y) are synthesized using a reactive barium metal flux. Single crystal x-ray diffraction is used to determine their structures with space group (I4/mmm #139, Z = 2) related to the Ruddlesden-Popper structure type. The unit cell dimensions range from a = 4.46(6) A and c = 24.87(6) A for Ba3Gd2O5Cl2 to a = 4.35(6) A and c = 24.57(6) A for Ba3Lu2O 5Cl2 with the dimensions following the expected lanthanide contraction trends. The magnetic properties of these materials are studied and related to their structures. The use of alkaline earth fluxes such as magnesium or calcium based fluxes are also briefly considered for their capabilities to produce novel mixed anion phases. A calcium flux is shown to produce the novel semimetals Ca 4TeOH4 and Ca3Ca1-xEuxTeOH 4 (I4/mmm #139, Z = 2), and highly reducing

  5. Bond ionicity of alkaline-earth oxides studied by low-energy D+ scattering

    NASA Astrophysics Data System (ADS)

    Souda, R.; Yamamoto, K.; Hayami, W.; Aizawa, T.; Ishizawa, Y.

    1994-08-01

    Low-energy D+ scattering is employed to explore the nature of the bonding of polycrystalline alkaline-earth oxides MgO, CaO, SrO, and BaO, with particular emphasis on the investigation of the ionicity of the topmost-layer atoms. Increasing ionicity as one goes to the heavier cations is concluded from the probability of the resonance neutraliztion of the D+ ions, which is consistent with the conventional chemical arguments based on electronegativity scales but is in apparent contradiction to the results of recent ab initio cluster-model calculations. It is also concluded that the metallic Ba layer is formed rather patchily on the BaO surface after the heat treatment up to 1000 °C. This is probably because free Ba atoms, being supplied by the reaction of BaO with the Ta substrate, are precipitated at the BaO surface. Another example is concerned with the interactions of the Ba adatoms with Si(001) and Pt(111) surfaces; Ba is found to have marked covalency with the substrate atoms.

  6. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  7. Crystal and defect chemistry influences on band gap trends in alkaline earth perovskites

    SciTech Connect

    Lee, Soonil; Woodford, William H.; Randall, Clive A.

    2008-05-19

    A number of perovskites with A-site alkaline earth chemistries being Ca, Sr, and Ba, and tetravalent cations including Ce, Zr, and Ti are measured for optical band gap and found to vary systematically with tolerance factor and lattice volume within limits defined by the chemistry of the octahedral site. This paper also focuses on the BaTiO{sub 3} system, considering equilibrated nonstoichiometries, and determines the changes in band gap with respect to Ba/Ti ratios. It was found that the optical band gap changes in the solid solution regime and is invariant in the second phase regions, as would be expected. In the cases of Ba/Ti<1.0, the variation in band gap scales with lattice volume, but in the Ba/Ti>1.0 stoichiometries, there is a distinct Urbach tail and the trend with lattice volume no longer holds. It is inferred that the V{sub Ti}{sup q}prime-2V{sub O} partial Schottky complex controls the band gap trend with Ba-rich nonstoichiometries.

  8. Collective non-equilibrium spin exchange in cold alkaline-earth atomic clocks

    NASA Astrophysics Data System (ADS)

    Acevedo, Oscar Leonardo; Rey, Ana Maria

    2016-05-01

    Alkaline-earth atomic (AEA) clocks have recently been shown to be reliable simulators of two-orbital SU(N) quantum magnetism. In this work, we study the non-equilibrium spin exchange dynamics during the clock interrogation of AEAs confined in a deep one-dimensional optical lattice and prepared in two nuclear levels. The two clock states act as an orbital degree of freedom. Every site in the lattice can be thought as populated by a frozen set of vibrational modes collectively interacting via predominantly p-wave collisions. Due to the exchange coupling, orbital state transfer between atoms with different nuclear states is expected to happen. At the mean field level, we observe that in addition to the expected suppression of population transfer in the presence of a large magnetic field, that makes the single particle levels off-resonance, there is also an interaction induced suppression for initial orbital population imbalance. This suppression resembles the macroscopic self-trapping mechanism seen in bosonic systems. However, by performing exact numerical solutions and also by using the so-called Truncated Wigner Approximation, we show that quantum correlations can significantly modify the mean field suppression. Our predictions should be testable in optical clock experiments. Project supported by NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, AFOSR, and MURI-AFOSR.

  9. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  10. The Characterization of Eu2+-Doped Mixed Alkaline-Earth Iodide Scintillator Crystals

    SciTech Connect

    Neal, John S; Boatner, Lynn A; Ramey, Joanne Oxendine; Wisniewski, D.; Kolopus, James A; Cherepy, Nerine; Payne, Stephen A.

    2011-01-01

    The high-performance inorganic scintillator, SrI2:Eu2+, when activated with divalent europium in the concentration range of 3 to 6%, has shown great promise for use in applications that require high-energy-resolution gamma-ray detection. We have recently grown and tested crystals in which other alkaline-earth ions have been partially substituted for Sr ions. Specifically, europium-doped single crystals have been grown in which up to 30 at % of the strontium ions have been substituted for either by barium, magnesium, or calcium ions. In the case of the strontium iodide scintillator host, a material that is characterized by an orthorhombic crystal structure, there are three other column IIA elements that are obvious choices for investigations whose purpose is to realize potential improvements in the performance of SrI2:Eu2+-based scintillators via the replacement of strontium ions with either Mg2+, Ca2+, or Ba2+. Light yields of up to 81,400 photons/MeV with an associated energy resolution of 3.7% (fwhm for 662 keV gamma-rays) have been observed in the case of a partial substitution of Ba2+ for Sr2+. The measured decay times ranged from 1.1 to 2.0 s, while the peak emission wavelengths ranged from 432 to 438 nm.

  11. Alkaline earth silicate wools - A new generation of high temperature insulation.

    PubMed

    Brown, Robert C; Harrison, Paul T C

    2012-11-01

    Intensive study of the natural asbestiform minerals that cause human diseases, and the consequent understanding of their hazardous characteristics, has enabled the development of manufactured fibres whose physical and/or chemical properties, in particular as they relate to biopersistence, have been adjusted to minimize possible harm to health. A strong driver for the developmentof new high temperature insulation materials wasthe perception of the toxicity of refractory ceramic fibres (RCF)and their classification in the EU as a category 2 carcinogen under Directive 67/548/EEC. Such classification carries with it the requirement for substitution by less hazardous materials. This paper focuses on the development of alkaline earth silicate (AES) wools as a new class of high temperature insulation with the capability of such substitution in a number of applications. These wools have only a low potential to cause harm because they do not persist in lung tissue once deposited, and have produced minimal effects in experimental test systems. AES wools are increasingly being used in a wide range of high temperature applications.

  12. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  13. Heavy water reactions with alkaline-earth metal dications in the gas phase

    NASA Astrophysics Data System (ADS)

    Feil, Stefan; Koyanagi, Greg K.; Bohme, Diethard K.

    2009-02-01

    Room temperature rate coefficients and product distributions are reported for the reactions initiated in D2O with dications of the alkaline-earth metals Mg, Ca, Sr and Ba. The measurements were performed with a selected-ion flow tube (SIFT) tandem mass spectrometer and electrospray ionization (ESI). Mg2+ reacts with water by a fast electron transfer leading to charge separation with a rate coefficient of 1.4 × 10-9 cm3 molecule-1 s-1. Ca2+ reacts with D2O in a first step to form the adduct Ca2+(D2O), with an effective bimolecular rate coefficient of 2.3 × 10-11 cm3 molecule-1 s-1, which then undergoes rapid charge separation by deuteron transfer to form CaOD+ and D3O+ in a second step with k = 7.9 × 10-10 cm3 molecule-1 s-1. The CaOD+ ion reacts further by clustering up to five more D2O molecules. Sr2+ clusters up to eight D2O molecules and Ba2+ up to seven D2O molecules, with the first addition of D2O being rate determining in each case and the last addition being distinctly slower, as might be expected from a transition in the occupation of the added water molecules from an inner to an outer hydration shell.

  14. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    SciTech Connect

    Thiede, Christian Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.

  15. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  16. Spin-Orbit-Coupled Correlated Metal Phase in Kondo Lattices: An Implementation with Alkaline-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Isaev, L.; Schachenmayer, J.; Rey, A. M.

    2016-09-01

    We show that an interplay between quantum effects, strong on-site ferromagnetic exchange interaction, and antiferromagnetic correlations in Kondo lattices can give rise to an exotic spin-orbit coupled metallic state in regimes where classical treatments predict a trivial insulating behavior. This phenomenon can be simulated with ultracold alkaline-earth fermionic atoms subject to a laser-induced magnetic field by observing dynamics of spin-charge excitations in quench experiments.

  17. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    SciTech Connect

    Guo, W.; Ma, H.A.; Jia, X.

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  18. The MCVD synthesis and characterization of water tolerant fiber optic waveguides based on alkaline earth-doped silicas

    NASA Astrophysics Data System (ADS)

    Farley, Kevin F.

    Optical fibers that transmit throughout the entire telecommunications spectrum (1.2--1.7 mum) are presently manufactured by the removal of hydrogen or OH from the host preform glass. Hydrogen-oxygen torches are utilized in the conventional preform manufacturing process, but result in the formation of hydroxyls in germanium-doped silica fiber. The hydroxyl species generate unacceptably high losses for long haul telecommunications systems. This thesis has explored an alternative strategy for reducing OH-related absorption in silica-based glasses. Alkaline earth modifiers have been introduced via the modified chemical vapor deposition (MCVD) process to successfully damp out and dramatically reduce the extrinsic attenuation associated with both water and hydrogen. Specifically, alkaline earth ions were introduced into alumino-silicate glasses to form MgO-Al2O3-SiO2, CaO-Al 2O3-SiO2, and SrO-Al2O3-SiO 2 compositions. The utilization of halide precursors based on the vapor delivery of rare earths was incorporated into the existing MCVD set-up to fabricate these optical preforms. Both the bulk preforms and fibers drawn from them were characterized to determine relevant optical properties, including the attenuation, index profiles and extinction coefficients arising from OH in each host. The data indicate that modification of the silica glass structure through the additions of modifying ions can significantly reduce OH related absorption. For example, the doping of alkaline earth ions decreased the extinction coefficient measured at the 1.39 mum) OH overtone, to values < 0.2 L/(mol*cm). Prompt gamma activation analysis (PGAA) measurements conducted at the National Institute of Standards and Technology (NIST) found OH concentrations in the glasses in the range from 10 to 27.5 ppm. The alkaline earth-doped fibers exhibited lower OH absorption at 1.39 mum) than germanium and aluminum-doped reference fibers. Fibers doped with either magnesium, calcium or strontium displayed up

  19. 5 d-4 f luminescence of Nd3+, Gd3+, Er3+, Tm3+, and Ho3+ ions in crystals of alkaline earth fluorides

    NASA Astrophysics Data System (ADS)

    Radzhabov, E. A.; Prosekina, E. A.

    2011-09-01

    The vacuum ultraviolet emission spectra of alkaline-earth fluoride (CaF2, SrF2, BaF2) crystals with rare earth impurity ions (Nd, Gd, Er, Tm, Ho) have been investigated. The main luminescence bands are described well by the transitions from the lowest excited 5 d state to different 4 f levels of rare earth ions.

  20. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.

    PubMed

    Bellham, Peter; Anker, Mathew D; Hill, Michael S; Kociok-Köhn, Gabriele; Mahon, Mary F

    2016-09-21

    a modified mechanism for group 2-mediated dimethylamine borane dehydrocoupling that is dependent on the intermediacy of key derivatives of the [NMe2·BH3](-) and [NMe2BH2NMe2BH3](-) anions but does not require the formation of high energy alkaline earth hydride intermediates. Although these results are specifically focussed on the applications of alkaline earth species, this mechanistic insight may also be relevant to other redox-inactive main group element-based systems and to our understanding of hydrogen evolution from saline derivatives of ammonia borane.

  1. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  2. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S; Gai, Zheng; Moreira Dos Santos, Antonio F

    2013-01-01

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data.

  3. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    PubMed

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima.

  4. Recent advances in tailoring the aggregation of heavier alkaline earth metal halides, alkoxides and aryloxides from non-aqueous solvents.

    PubMed

    Fromm, Katharina M

    2006-11-21

    This overview on one of the subjects treated in our group deals with the synthesis and study of low-dimensional polymer and molecular solid state structures formed with alkaline earth metal ions in non-aqueous solvents. We have chosen several synthetic approaches in order to obtain such compounds. The first concept deals with the "cutting out" of structural fragments from a solid state structure of a binary compound, which will be explained with reference to BaI2. Depending on the size and concentration of oxygen donor ligands, used as chemical scissors on BaI2, three-, two-, one- and zero-dimensional derived adducts of BaI2 are obtained, comparable to a structural genealogy tree for BaI2. A second part deals with the supramolecular approach for the synthesis of low dimensional polymeric compounds based on alkaline earth metal iodides, obtained by the combination of metal ion coordination with hydrogen bonding between the cationic complexes and their anions. Certain circumstances allow rules to be established for the prediction of the dimensionality of a given compound, contributing to the fundamental problem of structure prediction in crystal engineering. A third section describes a synthetic approach for generating pure alkaline earth metal cage compounds as well as alkali and alkaline earth mixed metal clusters. A first step deals with different molecular solvated alkaline earth metal iodides which are investigated as a function of the ligand size in non-aqueous solvents. These are then reacted with some alkali metal compound in order to partially or totally eliminate alkali iodide and to form the targeted clusters. These unique structures of ligand stabilized metal halide, hydroxide and/or alkoxide and aryloxide aggregates are of interest as potential precursors for oxide materials and as catalysts. Approaches to two synthetic methods of the latter, sol-gel and (MO)CVD (metal-organic chemical vapour deposition), are investigated with some of our compounds. (D

  5. [Effect of bivalent alkaline earth fluorides introduction on thermal stability and spectroscopic properties of Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses].

    PubMed

    Hu, Yue-bo; Zhang, Xin-na; Zhou, Da-li; Jiao, Qing; Wang, Rong-fei; Huang, Jin-feng; Long, Xiao-bo; Qiu, Jian-bei

    2012-01-01

    Transparent Er3+/Tm3+ /Yb3+ co-doped oxyfluorogermanate glasses alone containing MgF2, CaF2, SrF2 or BaF2 and nano-glass-ceramics only containing BaF2 were prepared. The thermal stabilities and the up-conversion emission properties of the samples were investigated. Analyses of absorbance spectra reveal that the UV cutoff band moves slightly to shortwave band with the doping bivalent cation mass increasing. The results show that the emission color can be adjusted by changing the alkaline earth cation species in the glass matrixes, especially as Mg2+ is concerned, and the emission intensity can increase notably by heating the glass containing alkaline-earth fluoride into glass ceramic containing alkaline-earth fluoride nanocrystals or increasing the content of bivalent alkaline earth fluorides.

  6. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident γ-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  7. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  8. Overview of the crystal chemistry of the actinide chalcogenides: incorporation of the alkaline-earth elements.

    PubMed

    Mesbah, Adel; Prakash, Jai; Ibers, James A

    2016-10-18

    This review focuses on the results of exploratory syntheses of alkaline-earth-metal actinide chalcogenides Ak-An-Q (Ak = Ba, Sr; An = Th, U; Q = S, Se, and Te). About thirty new compounds are described. Although the basic building blocks of their structures are usually AnQ6 octahedra and AkQ8 bicapped trigonal prisms, these are combined in diverse ways to afford eleven new structure types. The structures reconfirm the prevailing presence of An(4+) in chalcogenides, although some of the compounds discovered are mixed An(4+)/An(5+) systems, and a few contain only An(5+). The tendency of the chalcogens to form Q-Q bonds is again evident from the presence of S-S single bonds and infinite Te-Te-Te linear chains. The latter possess interatomic distances of lengths greater than that of a Te-Te single bond but less than that of a Te-Te van der Waals interaction. Assignment of formal oxidation states in compounds containing these chains is arbitrary at best. Addition of metal atoms (M) affords quaternary structures, some of which show remarkable flexibility in the positions of the An and M atoms, and in such compounds the nature of the M elements influences directly the dimensionality of the resultant structure. The presence of adventitious oxygen, often from etching of the fused-silica tubes by oxyphilic An elements, results in new quintary compounds that show remarkable structural variations with change of M. The compounds discussed have shown transport and electronic structures that range from metallic-like to semiconducting. We find, with the exception of BaUSe3, when comparisons can be made that the values of the calculated band gaps are reasonably close but usually lower than the experimentally derived values. Thus the method used, in particular the HSE functional, has been generally successful on these 5f actinides. This is an important result because in the absence of suitable crystals, and hence experimental measurements, it still may be possible to offer credible

  9. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  10. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  11. Tris(pyrazolyl)methanides of the alkaline earth metals: influence of the substitution pattern on stability and degradation.

    PubMed

    Müller, Christoph; Koch, Alexander; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2015-01-20

    Trispyrazolylmethanides commonly act as strong tridentate bases toward metal ions. This expected coordination behavior has been observed for tris(3,4,5-trimethylpyrazolyl)methane (1a), which yields the alkaline-earth-metal bis[tris(3,4,5-trimethylpyrazolyl)methanides] of magnesium (1b), calcium (1c), strontium (1d), and barium (1e) via deprotonation of 1a with dibutylmagnesium and [Ae{N(SiMe3)2}2] (Ae = Mg, Ca, Sr, and Ba, respectively). Barium complex 1e degrades during recrystallization that was attempted from aromatic hydrocarbons and ethers. In these scorpionate complexes, the metal ions are embedded in distorted octahedral coordination spheres. Contrarily, tris(3-thienylpyrazolyl)methane (2a) exhibits a strikingly different reactivity. Dibutylmagnesium is unable to deprotonate 2a, whereas [Ae{N(SiMe3)2}2] (Ae = Ca, Sr, and Ba) smoothly metalates 2a. However, the primary alkaline-earth-metal bis[tris(3-thienylpyrazolyl)methanides] of Ca (2c), Sr (2d), and Ba (2e) represent intermediates and degrade under the formation of the alkaline-earth-metal bis(3-thienylpyrazolates) of calcium (3c), strontium (3d), and barium (3e) and the elimination of tetrakis(3-thienylpyrazolyl)ethene (4). To isolate crystalline compounds, 3-thienylpyrazole has been metalated, and the corresponding derivatives [(HPz(Tp))4Mg(Pz(Tp))2] (3b), dinuclear [(tmeda)Ca(Pz(Tp))2]2 (3c), mononuclear [(pmdeta)Sr(Pz(Tp))2] (3d), and [(hmteta)Ba(Pz(Tp))2] (3e) have been structurally characterized. Regardless of the applied stoichiometry, magnesiation of thienylpyrazole 3a with dibutylmagnesium yields [(HPz(Tp))4Mg(Pz(Tp))2] (3b), which is stabilized in the solid state by intramolecular N-H···N···H-N hydrogen bridges. The degradation of [Ae{C(Pz(R))3}2] (R = Ph and Tp) has been studied by quantum chemical methods, the results of which propose an intermediate complex of the nature [{(Pz(R))2C}2Ca{Pz(R)}2]; thereafter, the singlet carbenes ([:C(Pz(R))2]) dimerize in the vicinity of the alkaline

  12. The effect of alkaline earth metal ion dopants on photocatalytic water splitting by NaTaO(3) powder.

    PubMed

    Iwase, Akihide; Kato, Hideki; Kudo, Akihiko

    2009-01-01

    Alkaline earth metal ions (Ca, Sr, and Ba) are doped into a NaTaO(3) photocatalyst, yielding fine particles and surface structures with nanometer-scale "steps." The formation of the surface nanostep structure depends on the amount of doped Sr and Ba. The photocatalytic water splitting over NaTaO(3) is enhanced: NaTaO(3) doped with 0.5 and 1.0 mol % of Sr shows high activities for photocatalytic water splitting without loading of a co-catalyst, and the photocatalytic activity is further improved by loading with a NiO co-catalyst.

  13. Luminescence properties of Eu-activated alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}

    SciTech Connect

    Wang, Jing; Huang, Yanlin; Wang, Xigang; Qin, Lin; Seo, Hyo Jin

    2014-07-01

    Highlights: • A novel yellow-emitting alkaline and alkaline-earth silicate Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was first developed. • Under excitation with UV or near UV light the silicate presents broad emission band centered at 580 nm. - Abstract: Yellow-emitting phosphors of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} was prepared by wet chemistry sol–gel method. X-ray powder diffraction and SEM measurements were applied to characterize the structure and morphology, respectively. The luminescence properties were investigated by the photoluminescence excitation and emission spectra, decay curve (lifetimes), CIE coordinates and the internal quantum efficiencies. The excitation spectra can match well with the emission light of near UV-LED chips (360–400 nm). Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} presents a symmetric emission band from 4f{sup 6}5d{sup 1} ⟶ 4f{sup 7}({sup 8}S{sub 7/2}) transitions of Eu{sup 2+} ions on doping below 3.0 mol%. On increasing Eu-doping levels, the sample contains two kinds of emission centers, i.e., Eu{sup 2+} and Eu{sup 3+} ions, which present the characteristic broad band (5d ⟶ 4f) and narrower (4f ⟶ 4f) luminescence lines, respectively. The energy transfer, the luminescence thermal stability (activation energy ΔE for thermal quenching) and luminescence mechanism of Na{sub 2}Ca{sub 3}Si{sub 6}O{sub 16}:Eu{sup 2+} phosphors were discussed by analyzing the relationship between the luminescence characteristics and the crystal structure.

  14. Synthesis and Characterization of Alkaline-Earth Metal (Ca, Sr, and Ba) Doped Nanodimensional LaMnO3 Rare-Earth Manganites

    NASA Astrophysics Data System (ADS)

    Asma, Khalid; Saadat, Anwar Siddiqi; Affia, Aslam

    2013-07-01

    The substitution of divalent cations of alkaline-earth elements in nanodimensional structures of rare-earth manganites produces advanced materials with potential electrical and magnetic functionalities. A systematic investigation of La0.65A0.35MnO3 (A = Ca, Sr, Ba) materials synthesized with a modified citrate route adopting ethanol dehydration has been undertaken. The structural and morphological analyses are carried out by using x-ray diffraction and scanning electron microscopy, respectively. Resistivity measurements are performed in variation with temperature to study the electrical transport properties which are found to vary with the size of the A-site cationic radius. Room temperature magnetic measurements are carried out to investigate the type of magnetic phase present in materials. The stability of the magnetic phase and coercivity are found to be dependent on the size of nanocrystallites.

  15. Thermodynamic stability of perovskites and related compounds in some alkaline earth-transition metal-oxygen systems

    NASA Astrophysics Data System (ADS)

    Yokokawa, Harumi; Sakai, Natsuko; Kawada, Tatsuya; Dokiya, Masayuki

    1991-09-01

    The thermodynamic properties of some alkaline earth ( A)-transition metal ( M) perovskites and K 2NiF 4 compounds have been collected, analyzed, and utilized to examine their stabilities by constructing the chemical potential diagrams of a log [ {a(A)}/{a(M)}] vs log P(O 2) plot. A thermodynamic analysis was performed on the dissociation reaction of K 2NiF 4 compounds ( A2MO 4) into perovskites ( AMO 3) and alkaline earth oxides ( AO) using empirical correlations between stabilization energy and tolerance factor. It has been found that the softness of calcium ions, which shrink markedly with decreasing coordination number from 12 to 9, makes the calcium K 2NiF 4 compounds (Ca 2MO 4) relatively less stable with increasing radius of the transition metal ions, r( M4+). This destabilization related to the coordination-number-dependent radii implies that when compared with the strontium perovskites, the calcium analogous perovskites may have a smaller number of oxygen vacancies, because the formation of oxygen vacancies should be accompanied with a decrease in coordination number of A-site ions.

  16. Binding and selectivity of phenazino-18-crown-6-ether with alkali, alkaline earth and toxic metal species: A DFT study

    NASA Astrophysics Data System (ADS)

    Islam, Nasarul; Chimni, Swapandeep Singh

    2017-02-01

    The interactions of phenazino-crown ether ligands with alkali, alkaline earth and selected toxic species were investigated using density functional theory modelling by employing B3PW91/6-311G ++ (d, p) level of theory. The complex stability was analysed in terms of binding energies, perturbation energies, position of highest molecular orbital and energy gap values. In general, the complexes formed by P18C6-1a ligand with metal cations were found to be more stable than those with P18C6-1b. Among alkali and alkaline earth metals complexes having highest stability was observed for the complex formed by P18C6-1a with Be2+. Computational calculations of P18C6 ligand with toxic metal ions reveals that the P18C6-Cr6+ metal complexes acquire envelop like geometry, leading to higher binding energy values. Comparing the binding energies of neutral and monocations of Ag and Hg, the former had higher value both in neutral as well as monocation state. Thus, the stability of metal complexes is determined not only by the ligand but also by the type of metal ion. In solvent systems the stability constants of metal complexes were found increasing with decreasing permittivity of the solvent. This reflects the inherited polar character of the protic solvents stabilises the cation, resulting in decrease of effective interaction of ligand with the metal ion.

  17. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  18. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge.

  19. Half metallic ferromagnetism in alkaline-earth metal nitrides XN (X=Ca, Sr and Ba): A first principles study

    NASA Astrophysics Data System (ADS)

    Palanichamy, R. Rajeswara; Priyanga, G. Sudha; Cinthia, A. Jemmy; Murugan, A.; Meenaatci, A. T. Asvini; Iyakutti, K.

    2013-11-01

    The structural, electronic, mechanical and magnetic properties of 3 alkaline-earth metal nitrides (XN: X=Ca, Sr, and Ba) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation code. At ambient pressure all the 3 nitrides are stable in the ferromagnetic state with a cubic NaCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic ferromagnets at normal pressure. A pressure-induced structural phase transition from NaCl (B1) to CsCl (B2) phase is observed in CaN, SrN and BaN. On further increasing the pressure, a half metallic to metallic transition is also observed in these nitrides. Ferromagnetism is quenched in all the 3 nitrides at high pressures.

  20. Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-07-01

    We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.

  1. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    SciTech Connect

    Sobolewski, R.; Gierlowski, P.; Kula, W.; Zarembinski, S.; Lewandowski, S.J.; Berkowski, M.; Pajaczkowska, A. ); Gorshunov, B.P.; Lyudmirsky, D.B.; Sirotinsky, O.I. )

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  2. Cyclotron dynamics of a Kondo singlet in a spin-orbit-coupled alkaline-earth-metal atomic gas

    NASA Astrophysics Data System (ADS)

    Jiang, Bo-Nan; Lv, Hao; Wang, Wen-Li; Du, Juan; Qian, Jun; Wang, Yu-Zhu

    2014-11-01

    We propose a scheme to investigate the interplay between the Kondo-exchange interaction and the quantum spin Hall effect with ultracold fermionic alkaline-earth-metal atoms trapped in two-dimensional optical lattices using ultracold collision and laser-assisted tunneling. In the strong Kondo-coupling regime, although the loop trajectory of the mobile atom disappears, collective dynamics of an atom pair in two clock states can exhibit an unexpected spin-dependent cyclotron orbit in a plaquette, realizing the quantum spin Hall effect of the Kondo singlet. We demonstrate that the collective cyclotron dynamics of the spin-zero Kondo singlet is governed by an effective Harper-Hofstadter model in addition to second-order diagonal tunneling.

  3. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  4. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae = Ca, Sr, Ba, as thermoelectric materials.

    PubMed

    Parker, David; Singh, David J

    2013-10-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2Sn, Sr2Sn and Ba2Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli-roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  5. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  7. Alkaline earth lead and tin compounds Ae2Pb, Ae2Sn, Ae=Ca,Sr,Ba, as thermoelectric materials

    SciTech Connect

    Parker, David S; Singh, David J

    2013-01-01

    We present a detailed theoretical study of three alkaline earth compounds Ca2Pb, Sr2Pb and Ba2Pb, which have undergone little previous study, calculating electronic band structures and Boltzmann transport and bulk moduli using density functional theory. We also study the corresponding tin compounds Ca2 Sn, Sr2 Sn and Ba2 Sn. We find that these are all narrow band gap semiconductors with an electronic structure favorable for thermoelectric performance, with substantial thermopowers for the lead compounds at temperature ranges from 300 to 800 K. For the lead compounds, we further find very low calculated bulk moduli - roughly half of the values for the lead chalcogenides, suggestive of soft phonons and hence low lattice thermal conductivity. All these facts indicate that these materials merit experimental investigation as potential high performance thermoelectrics. We find good potential for thermoelectric performance in the environmentally friendly stannide materials, particularly at high temperature.

  8. Heteroleptic alkyl and amide iminoanilide alkaline earth and divalent rare earth complexes for the catalysis of hydrophosphination and (cyclo)hydroamination reactions.

    PubMed

    Liu, Bo; Roisnel, Thierry; Carpentier, Jean-François; Sarazin, Yann

    2013-09-27

    [{N^N}M(X)(thf)n] alkyl (X=CH(SiMe3)2) and amide (X=N(SiMe3)2) complexes of alkaline earths (M=Ca, Sr, Ba) and divalent rare earths (Yb(II) and Eu(II) ) bearing an iminoanilide ligand ({N^N}(-)) are presented. Remarkably, these complexes proved to be kinetically stable in solution. X-ray diffraction studies allowed us to establish size-structure trends. Except for one case of oxidation with [{N^N}Yb(II){N(SiMe3)2}(thf)], all these complexes are stable under the catalytic conditions and constitute effective precatalysts for the cyclohydroamination of terminal aminoalkenes and the intermolecular hydroamination and intermolecular hydrophosphination of activated alkenes. Metals with equal sizes across alkaline earth and rare earth families display almost identical apparent catalytic activity and selectivity. Hydrocarbyl complexes are much better catalyst precursors than their amido analogues. In the case of cyclohydroamination, the apparent activity decreases with metal size: Ca>Sr>Ba, and the kinetic rate law agrees with R(CHA) =k[precatalyst](1)[aminoalkene](1). The intermolecular hydroamination and hydrophosphination of styrene are anti-Markovnikov regiospecific. In both cases, the apparent activity increases with the ionic radius (Ca

  9. EPR and optical absorption studies of Cu{sup 2+} ions in alkaline earth alumino borate glasses

    SciTech Connect

    Ramesh Kumar, V.; Rao, J.L. . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2005-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in alkaline earth alumino borate glasses doped with different concentrations of CuO have been studied. The EPR spectra of all the glasses exhibit the resonance signals, characteristic of Cu{sup 2+} ions present in axially elongated octahedral sites. The number of spins participating in the resonance has been calculated as a function of temperature for calcium alumino borate (CaAB) glass doped with 0.1 mol% of CuO. From the EPR data, the paramagnetic susceptibility ({chi}) was calculated at different temperatures (T) and from the 1/{chi}-T graph, the Curie temperature of the glass has been evaluated. The optical absorption spectra of all the glasses show a single broad band, which has been assigned to the {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g} transition of the Cu{sup 2+} ions. The variation in the intensity of optical absorption with the ionic radius of the alkaline earth ion has been explained based on the Coulombic forces. By correlating the EPR and optical absorption spectral data, the nature of the in-plane {sigma} bonding between Cu{sup 2+} ion and the ligands is estimated. From the fundamental ultraviolet absorption edges of the glasses, the optical energy gap (E {sub opt}) and the Urbach energy ({delta}E) are evaluated. The variation in E {sub opt} and {delta}E is explained based on the number of defect centers in the glass.

  10. Structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Cinthia, A. Jemmy; Priyanga, G. Sudha; Rajeswarapalanichamy, R.; Iyakutti, K.

    2015-04-01

    The structural, electronic and mechanical properties of alkaline earth metal oxides MO (M=Be, Mg, Ca, Sr, Ba) in the cubic (B1, B2 and B3) phases and in the wurtzite (B4) phase are investigated using density functional theory calculations as implemented in VASP code. The lattice constants, cohesive energy, bulk modulus, band structures and the density of states are computed. The calculated lattice parameters are in good agreement with the experimental and the other available theoretical results. Electronic structure reveals that all the five alkaline earth metal oxides exhibit semiconducting behavior at zero pressure. The estimated band gaps for the stable wurtzite phase of BeO is 7.2 eV and for the stable cubic NaCl phases of MgO, CaO, SrO and BaO are 4.436 eV, 4.166 eV, 4.013 eV, and 2.274 eV respectively. A pressure induced structural phase transition occurs from wurtzite (B4) to NaCl (B1) phase in BeO at 112.1 GPa and from NaCl (B1) to CsCl (B2) phase in MgO at 514.9 GPa, in CaO at 61.3 GPa, in SrO at 42 GPa and in BaO at 14.5 GPa. The elastic constants are computed at zero and elevated pressures for the B4 and B1 phases for BeO and for the B1 and B2 phases in the case of the other oxides in order to investigate their mechanical stability, anisotropy and hardness. The sound velocities and the Debye temperatures are calculated for all the oxides using the computed elastic constants.

  11. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    SciTech Connect

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; Li, Yuwei; Xu, Qiaoling; Ma, Yanming; Zheng, Weitao

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can be stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.

  12. Sign Changes in the Electric Dipole Moment of Excited States in Rubidium-Alkaline Earth Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2015-06-01

    In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347

  13. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE PAGES

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; ...

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can bemore » stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  14. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba

  15. Structural diversity in binuclear complexes of alkaline earth metal ions with 4,6-diacetylresorcinol

    NASA Astrophysics Data System (ADS)

    Shebl, Magdy; Khalil, Saied M. E.; Taha, A.; Mahdi, M. A. N.

    2012-11-01

    A new series of binuclear and mixed-ligand complexes with the general formula: [M 2(LO)yClz]; where M = Mg(II), Ca(II), Sr(II) and Ba(II); H2L = 4,6-diacetylresorcinol, the secondary ligand L' = acetylacetone (acac), 8-hydroxyquinoline (8-HQ) or 2,2'-bipyridyl (Bipy), n = 0-2, m = 1, 2, x = 0, 1, 2, 4, y = 0, 2, 4, 5 and z = 0-2; have been synthesized. They have been characterized by the analytical and spectral methods (IR, 1H NMR and mass) as well as TGA and molar conductivity measurements. The spectroscopic and conductance data suggested that the H2L ligand behaves as a neutral, monobasic or dibasic tetradentate ligand, depending on the basicity of the secondary ligand, through the two phenolic and two carbonyl groups. Binuclear octahedral geometry has been assigned to all of the prepared complexes in various molar ratios 2:2; 2:2:2; 1:2:1 and 1:2:4 (L:M:L'). Molecular orbital calculations were performed for the ligands and their complexes using Hyperchem 7.52 program on the bases of PM3 level and the results were correlated with the experimental data. The ligand and some of its alkaline metal(II) complexes showed antibacterial activity towards some of Gram-positive and Gram-negative bacteria, yeast (Candida albicans) and fungus (Aspergillus fumigatus).

  16. Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media

    NASA Astrophysics Data System (ADS)

    Jamesh, Mohammed Ibrahim

    2016-11-01

    Electrochemical water-splitting is one of the promising ways for producing clean chemical fuel (Hydrogen) while cheap-earth-abundant-bifunctional-electrocatalyst is one of the possible way for improving the overall cost efficiency of water-splitting. This paper reviews the chemical state, hydrogen and oxygen evolution reaction activity in alkaline media, overall water-splitting performance in alkaline media, stability, and possible-factors for improving its efficiency of various kinds of recently reported electrocatalyst such as Ni-P, Co-P, Ni-Co-P, graphene-Co-P, O/N/C-Co/Ni, Ni-S, B-Ni/Co, Ni-Co, Mo, Se, Fe, Mn/Zn/Ti, and metal-free based earth-abundant-bifunctional-electrocatalyst. This paper also reviews and highlights the remarkable water splitting performance of the earth-abundant-bifunctional-electrocatalyst those exhibit better or well comparable with Pt/C//RuO2.

  17. Monitoring of DNA breakage in embryonic stages of the African catfish Clarias gariepinus (Burchell, 1822) after exposure to lead nitrate using alkaline comet assay.

    PubMed

    Osman, Alaa G M; Mekkawy, Imam A; Verreth, Johan; Wuertz, Sven; Kloas, Werner; Kirschbaum, Frank

    2008-12-01

    Increasing lead contamination in Egyptian ecosystems and high lead concentrations in food items have raised concern for human health and stimulated studies on monitoring ecotoxicological impact of lead-caused genotoxicity. In this work, the alkaline comet assay was modified for monitoring DNA strand breakage in sensitive early life stages of the African catfish Clarias gariepinus. Following exposure to 100, 300, and 500 microg/L lead nitrate, DNA strand breakage was quantified in embryos at 30, 48, 96, 144, and 168 h post-fertilization (PFS). For quantitative analysis, four commonly used parameters (tail % DNA, %TDNA; head % DNA, %HDNA; tail length, TL; tail moment, TM) were analyzed in 96 nuclei (in triplicates) at each sampling point. The parameter %TDNA revealed highest resolution and lowest variation. A strong correlation between lead concentration, time of exposure, and DNA strand breakage was observed. Here, genotoxicity detected by comet assay preceded the manifested malformations assessed with conventional histology. Qualitative evaluation was carried out using five categories are as follows: undamaged (%TDNA < or = 10%), low damaged (10% < %TDNA < or = 25%), median damaged (25 < %TDNA < or = 50%), highly damaged (50 < %TDNA < or = 75%), and extremely damaged (%TDNA > 75%) nuclei confirming a dose and time-dependent shift towards increased frequencies of highly and extremely damaged nuclei. A protective capacity provided by a hardened chorion is a an interesting finding in this study as DNA damage in the prehatching stages 30 h-PFS and 48 h-PFS was low in all treatments (qualitative and quantitative analyses). These results clearly show that the comet assay is a sensitive tool for the detection of genotoxicity in vulnerable early life stages of the African catfish and is a method more sensitive than histological parameters for monitoring genotoxic effects.

  18. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    PubMed

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules.

  19. A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements.

    PubMed

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Stack, Elaine M; Omamogho, Jesse O; Glennon, Jeremy D; Paull, Brett

    2013-12-20

    Bare core-shell silica (1.7μm) has been modified with iminodiacetic acid functional groups via standard silane chemistry, forming a new N-hydroxyethyliminodiacetic acid (HEIDA) functionalised core-shell stationary phase. The column was applied in high-performance chelation ion chromatography and evaluated for the retention of alkaline earth, transition and heavy metal cations. The influence of nitric acid eluent concentration, addition of complexing agent dipicolinic acid, eluent pH and column temperature on the column performance was investigated. The efficiencies obtained for transition and heavy metal cations (and resultant separations) were comparable or better than those previously obtained for alternative fully porous silica based chelation stationary phases, and a similarly modified monolithic silica column, ranging from ∼15 to 56μm HETP. Increasing the ionic strength of the eluent with the addition of KNO3 (0.75M) and increasing the column temperature (70°C) facilitated the isocratic separation of a mixture of 14 lanthanides and yttrium in under 12min, with HETP averaging 18μm (7μm for Ce(III)).

  20. Structures and stabilities of alkaline earth metal peroxides XO2 (X=Ca, Be, Mg) studied by a genetic algorithm

    SciTech Connect

    Zhao, Xin; Nguyen, Manh Cuong; Wang, Cai-Zhuang; Ho, Kai-Ming

    2013-09-17

    The structures and stabilities of alkaline earth metal peroxides XO2 (X = Ca, Be, Mg) were studied using an adaptive genetic algorithm (GA) for global structure optimization in combination with first-principles calculations. From the adaptive GA search, we obtained an orthorhombic structure for CaO2 with 12 atoms in the unit cell, which is energetically more favorable than the previously proposed structures. Reaction energy of the decomposition CaO2 → CaO + 1/2O2 determined by density functional theory (DFT) calculation shows that this orthorhombic calcium peroxide structure is thermodynamically stable. The simulated X-ray diffraction (XRD) pattern using our predicted structure is in excellent agreement with experimental data. We also show that crystal phase BeO2 is unlikely to exist under normal conditions. MgO2 has a cubic pyrite structure, but it is not stable against decomposition: MgO2 → MgO + 1/2O2.

  1. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    NASA Technical Reports Server (NTRS)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  2. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides.

    PubMed

    Hereijgers, Bart P C; Weckhuysen, Bert M

    2009-01-01

    A series of alumina-supported gold catalysts was investigated for the CO-free production of hydrogen by partial oxidation of methanol. The addition of alkaline-earth metal oxide promoters resulted in a significant improvement of the catalytic performance. The methanol conversion was ca. 85 % with all studied catalyst materials, however, the selectivity for hydrogen increased from 15 % to 51 % when going from the unpromoted to a BaO-promoted catalyst. The formation of the undesired byproducts CO, methane, and dimethyl ether was considerably reduced as well. The observed trend in catalyst performance follows the trend in increasing basicity of the studied promoter elements, indicating a chemical effect of the promoter material. Superior catalytic performance, in terms of H(2) and CO selectivity, was obtained with a Au/La(2)O(3) catalyst. At 300 degrees C the hydrogen selectivity reached 80 % with only 2 % CO formation, and the catalyst displayed a stable performance over at least 24 h on-stream. Furthermore, the formation of CO was found to be independent of the oxygen concentration in the feed. The commercial lanthanum oxide used in this study had a low specific surface area, which led to the formation of relative large gold particles. Therefore, the catalytic activity could be enhanced by decreasing the gold particle size through deposition on lanthanum oxide supported on high-surface-area alumina.

  3. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui

    2013-01-01

    The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO.

  4. Cardiac ryanodine receptor: Selectivity for alkaline earth metal cations points to the EF-hand nature of luminal binding sites.

    PubMed

    Gaburjakova, Jana; Gaburjakova, Marta

    2016-06-01

    A growing body of evidence suggests that the regulation of cardiac ryanodine receptor (RYR2) by luminal Ca(2+) is mediated by luminal binding sites located on the RYR2 channel itself and/or its auxiliary protein, calsequestrin. The localization and structure of RYR2-resident binding sites are not known because of the lack of a high-resolution structure of RYR2 luminal regions. To obtain the first structural insight, we probed the RYR2 luminal face stripped of calsequestrin by alkaline earth metal divalents (M(2+): Mg(2+), Ca(2+), Sr(2+) or Ba(2+)). We show that the RYR2 response to caffeine at the single-channel level is significantly modified by the nature of luminal M(2+). Moreover, we performed competition experiments by varying the concentration of luminal M(2+) (Mg(2+), Sr(2+) or Ba(2+)) from 8 mM to 53 mM and investigated its ability to compete with 1mM luminal Ca(2+). We demonstrate that all tested M(2+) bind to exactly the same RYR2 luminal binding sites. Their affinities decrease in the order: Ca(2+)>Sr(2+)>Mg(2+)~Ba(2+), showing a strong correlation with the M(2+) affinity of the EF-hand motif. This indicates that the RYR2 luminal binding regions and the EF-hand motif likely share some structural similarities because the structure ties directly to the function.

  5. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    PubMed

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  6. First-Principles Calculation of Solution Energy of Alkaline-Earth Metal Elements to BaTiO3

    NASA Astrophysics Data System (ADS)

    Moriwake, Hiroki; Hirayama, Tsukasa; Ikuhara, Yuichi; Tanaka, Isao

    2007-10-01

    Quantitative analysis of the solution energy of alkaline-earth metal elements to perovskite-type BaTiO3 was carried out by a first-principles calculation combined with thermodynamics theory. The solution energies of neutral solute and a compensated solute with an oxygen vacancy were systematically calculated. They were obtained for two cation sites and four thermodynamical conditions with different chemical potentials of constituent atoms. Both Ca and Sr preferably occupy the Ba site of BaTiO3. On the other hand, Mg occupies the Ti site. This corresponds well to the widely accepted experimental findings regarding site preference. Moreover, under the condition of coexising BaO, CaO and BaTiO3, energy difference between the Ba-site solution and O-vacancy compensated Ti-site solution of Ca ions has been found to be smaller than that of Sr. Under this condition, the O-vacancy compensated Ti-site solution of Ca should be favorable compared with that of Sr. The same number of oxygen vacancies as Ca ions occupying Ti sites can be introduced. This also explains well experimental feature of the Ca-doped BaTiO3-based nonreducible multilayer ceramics capacitor (MLCC) materials regarding solution site of the Ca ion and abundance of O-vacancy.

  7. A Density Functional Theory Study of Codoping Characteristics of Sulfur with Alkaline Earth in Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Qin, Han; Liu, Zheng-Tang

    2016-04-01

    The structural, electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO2 have been investigated using the first-principles density functional theory calculations. Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms. The formation energies under different growth conditions have been calculated, showing that the codoping systems are formed easily under O-rich growth conditions. Electronic band structures and density of states have been obtained. The decreased bandgaps, enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity. Supported by the National Natural Science Foundation of China under Grant Nos. 11347199, 51402244, and 11547311, the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No. 20130184120028, the Fundamental Research Fund for the Central Universities, China under Grant Nos. 2682014CX084, 2682014ZT30, and 2682014ZT31, and the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No. SKLSP201511

  8. Amido-based potassium-alkaline earth metallates--synthesis and structures of heterobimetallic complexes of heavy s-block elements.

    PubMed

    Glock, Carsten; Görls, Helmar; Westerhausen, Matthias

    2011-08-28

    The metathesis reaction of potassium N-isopropylanilide with alkaline earth metal diiodides of calcium, strontium and barium in a molar ratio of 4:1 yields the corresponding alkaline earth metalates of the type [(THF)(n)K(μ-NPhiPr)(2)Ae(μ-NPhiPr)(2)K(THF)(n)] (1: Ae = Ca, n = 2). Stabilization and crystallization of such derivatives succeeds after exchange of the THF ligands by multidentate amino bases such as tetramethylethylenediamine (TMEDA) or pentamethyldiethylenetriamine (PMDETA). The influence of the size and hardness of the alkaline earth metal center on the molecular structures is studied with [(L)K(μ-NPhiPr)(2)Ae(μ-NPhiPr)(2)K(L)] (2: Ae = Ca, L = TMEDA; 3: Ae = Sr, L = TMEDA; 4: Ae = Sr, L = PMDETA; and 5: Ae = Ba, L = PMDETA). The molecular structures are dominated by (attractive and repulsive) electrostatic and steric factors leading to a shortening of the non-bonding AeK distances from calcium to barium.

  9. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors.

  10. Multidimensional (0D to 3D) Alkaline-Earth Metal Diphosphonates: Synthesis, Structural Diversity, and Luminescence Properties.

    PubMed

    Senthil Raja, Duraisamy; Lin, Pin-Chun; Liu, Wei-Ren; Zhan, Jun-Xiang; Fu, Xin-Yi; Lin, Chia-Her

    2015-05-04

    A series of new alkaline-earth metal diphosphonate frameworks were successfully synthesized under solvothermal reaction condition (160 °C, 3 d) using 1-hydroxyethylidene-1,1-diphosphonic acid (CH3C(OH)(H2PO3)2, hedpH4) as a diphosphonate building block and Mg(II), Ca(II), Sr(II), or Ba(II) ions as alkaline-earth metal ion centers in water, dimethylformamide, and/or EtOH media. These diphosphonate frameworks, (H2NMe2)4[Mg(hedpH2)3]·3H2O (1), (H2NMe2)2[Ca(hedpH2)2] (2), (H2NMe2)2[Sr3(hedpH2)4(H2O)2] (3), and [Ba3(hedpH2)3]·H2O (4) exhibited interesting structural topologies (zero-, one-, two-, and three-dimensional (0D, 1D, 2D, and 3D, respectively)), which are mainly depending on the metal ions and the solvents used in the synthesis. The single-crystal analysis of these newly synthesized compounds revealed that 1 was a 0D molecule, 2 has 1D chains, 3 was a 3D molecule, and 4 has 2D layers. All compounds were further characterized using thermogravimetric analysis, solid-state (31)P NMR, powder X-ray diffraction analysis, UV-vis spectra, and infrared spectroscopy. In addition, Eu(III)- and Tb(III)-doped compounds of 1-4, namely, (H2NMe2)4[Ln(x)Mg(1-x)(hedpH2)2(hedpH(2-x))]·3H2O (1Ln), (H2NMe2)2[Ln(x)Ca(1-x)(hedpH2)(hedpH(2-x))] (2Ln), (H2NMe2)2[Ln(x)Sr(3-x)(hedpH2)3(hedpH(2-x))(H2O)2] (3Ln), and [Ln(x)Ba(3-x)(hedpH2)2(hedpH(2-x))]·H2O (4Ln) (where Ln = Eu, Tb), were synthesized, and their photoluminescence properties were studied. The quantum yield of 1Eu-4Eu was measured with reference to commercial red phosphor, Y2O2S:Eu(3+) (YE), and the quantum yield of terbium-doped compounds 1Tb-4Tb was measured with reference to commercial green-emitting phosphor CeMgAl10O17:Tb(3+). Interestingly, the compound 2Eu showed very high quantum yield of 92.2%, which is better than that of the reference commercial red phosphor, YE (90.8%).

  11. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    SciTech Connect

    Christensen, J.J.

    1981-04-15

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used.

  12. Discrete divalent rare-earth cationic ROP catalysts: ligand-dependent redox behavior and discrepancies with alkaline-earth analogues in a ligand-assisted activated monomer mechanism.

    PubMed

    Liu, Bo; Roisnel, Thierry; Maron, Laurent; Carpentier, Jean-François; Sarazin, Yann

    2013-03-18

    The first solvent-free cationic complexes of the divalent rare-earth metals, [{RO}RE(II) ](+) [A](-) (RE(II) =Yb(II) , 1; Eu(II) , 2) and [{LO}RE(II) ](+) [A](-) ([A](-) =[H2 N{B(C6 F5 )3 }2 ](-) ; RE(II) =Yb(II) , 3; Eu(II) , 4), have been prepared by using highly chelating monoanionic aminoether-fluoroalkoxide ({RO}(-) ) and aminoether-phenolate ({LO}(-) ) ligands. Complexes 1 and 2 are structurally related to their alkaline-earth analogues [{RO}AE](+) [A](-) (AE=Ca, 5; Sr, 6). Yet, the two families behave very differently during catalysis of the ring-opening polymerization (ROP) of L-lactide (L-LA) and trimethylene carbonate (TMC) performed under immortal conditions with excess BnOH as an exogenous chain-transfer agent. The ligand was found to strongly influence the behavior of the RE(II) complexes during ROP catalysis. The fluoroalkoxide RE(II) catalysts 1 and 2 are not oxidized under ROP conditions, and compare very favorably with their Ca and Sr congeners 5 and 6 in terms of activity (turnover frequency (TOF) in the range 200-400 molL-LA (molEu  h(-1) )) and control over the parameters during the immortal ROP of L-LA (Mn,theor ≈Mn,SEC , Mw /Mn <1.05). The Eu(II) -phenolate 4 provided one of the most effective ROP cationic systems known to date for L-LA polymerization, exhibiting high activity (TOF up to 1 880 molL-LA ⋅(molEu  h)(-1) ) and good control (Mw /Mn =1.05). By contrast, upon addition of L-LA the Yb(II) -phenolate 3 immediately oxidizes to inactive RE(III) species. Yet, the cyclic carbonate TMC was rapidly polymerized by combinations of 3 (or even 1) and BnOH, revealing excellent activities (TOF=5000-7000 molTMC ⋅(molEu  h)(-1) ) and unusually high control (Mn,theor ≈Mn,SEC , Mw /Mn <1.09); under identical conditions, the calcium derivative 5 was entirely inert toward TMC. Based on experimental and kinetic data, a new ligand-assisted activated monomer ROP mechanism is suggested, in which the so-called ancillary ligand plays a

  13. DEVELOPMENT OF GLASS COMPOSITIONS TO IMMOBILIZE ALKALI, ALKALINE EARTH, LANTHANIDE AND TRANSITION METAL FISSION PRODUCTS FROM NUCLEAR FUEL REPROCESSING

    SciTech Connect

    Marra, J.; Billings, A.

    2009-06-24

    The Advanced Fuel Cycle Initiative (AFCI) waste management strategy revolves around specific treatment of individual or groups of separated waste streams. A goal for the separations processes is to efficiently manage the waste to be dispositioned as high level radioactive waste. The Advanced Fuel Cycle Initiative (AFCI) baseline technology for immobilization of the lanthanide (Ln) and transition metal fission product (TM) wastes is vitrification into a borosilicate glass. A current interest is to evaluate the feasibility of vitrifying combined waste streams to most cost effectively immobilize the wastes resulting from aqueous fuel reprocessing. Studies showed that high waste loadings are achievable for the Ln only (Option 1) stream. Waste loadings in excess of 60 wt % (on a calcined oxide basis) were demonstrated via a lanthanide borosilicate (LaBS) glass. The resulting glasses had excellent relative durability as determined by the Product Consistency Test (PCT). For a combined Ln and TM waste stream glass (Option 2), noble metal solubility was found to limit waste loading. However, the measured PCT normalized elemental releases for this glass were at least an order of magnitude below that of Environmental Assessment (EA) glass. Current efforts to evaluate the feasibility of vitrifying combined Ln, TM, alkali (Cs is the primary radionuclide of concern) and alkaline earth (Sr is the primary radionuclide of concern) wastes (Option 3) have shown that these approaches are feasible. However, waste loading limitations with respect to heat load (Cs/Sr loading), molybdenum solubility and/or noble metal solubility will likely be realized and must be considered in determining the cost effectiveness of these approaches.

  14. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    SciTech Connect

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-15

    Two novel coordination polymers, namely, [Ca(NCP){sub 2}]{sub ∞} (I) and [Sr(NCP){sub 2}]{sub ∞} (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP{sup −}){sub 4} (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π–π interactions between the pyridine rings belonging to phenanthroline of NCP{sup −} which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability. - Graphical abstract: One-dimensional nanotubular channels with the cross dimension of 37.1959(20)×23.6141(11)Å{sup 2} in the three-dimensional honeycomb-shaped coordination network of II are observed. The topological analysis of II indicates that there exists a typical diamond framework possessing large adamantanoid cages, which containing four cyclohexane-shaped patterns in chair conformations. - Highlights: • Two isomorphous and isostructural coordination polymers based on flexible ligand and two alkaline-earth metal salts have been synthesized and characterized. • Structural analysis indicates that I and II are assembled into 3D porous honeycomb-shaped metal-organic frameworks. • Both I and II display stronger fluorescence emissions and higher thermal stability.

  15. The synthesis and crystal structures of the first rare-earth alkaline-earth selenite chlorides MNd 10(SeO 3) 12Cl 8 ( M=Ca and Sr)

    NASA Astrophysics Data System (ADS)

    Berdonosov, P. S.; Olenev, A. V.; Dolgikh, V. A.; Lightfoot, P.

    2007-11-01

    Two new alkaline-earth Nd selenite chlorides MNd 10(SeO 3) 12Cl 8 ( M=Ca, Sr) were obtained using crystal growth from alkaline-earth chloride melts in quartz tubes. These new compounds crystallize in the orthorhombic system in space group C cca (#68). The compounds were studied by energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction. It was shown that both compounds adopt the same structure type, constructed by complex [M 11(SeO 3) 12] 8+ slabs separated by chloride anion layers perpendicular to the longest cell parameter. The SeO 3 groups show a pyramidal shape and may be described as SeO 3E tetrahedra. Such SeO 3 groups decorate the Nd-O skeletons forming the [M 11(SeO 3) 12] 8+ slabs.

  16. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    SciTech Connect

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-15

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB{sub 6}, SrB{sub 6}, BaB{sub 6} and the ternary hexaborides Ca{sub x}Sr{sub 1−x}B{sub 6}, Ca{sub x}Ba{sub 1−x}B{sub 6}, Sr{sub x}Ba{sub 1−x}B{sub 6} (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB{sub 6} (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials.

  17. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere.

  18. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  19. Electronic structure, optical properties and bonding in alkaline earth halo-fluoride scintillators: BaClF, BaBrF and BaIF

    SciTech Connect

    Yedukondalu, N.; Babu, K. Ramesh; Bheemalingam, Ch.; Singh, David J; Vaitheeswaran, G.; Kanchana, V.

    2011-01-01

    We report first-principles studies of the structural, electronic, and optical properties of the alkaline-earth halofluorides, BaXF (X = Cl, Br, and I), including pressure dependence of structural properties. The band structures show clear separation of the halogen p derived valence bands into higher binding energy F and lower binding energy X derived manifolds reflecting the very high electronegativity of F relative to the other halogens. Implications of this for bonding and other properties are discussed. We find an anisotropic behavior of the structural parameters especially of BaIF under pressure. The optical properties on the other hand are almost isotropic, in spite of the anisotropic crystal structures.

  20. Identifying the presence of a disulfide linkage in peptides by the selective elimination of hydrogen disulfide from collisionally activated alkali and alkaline earth metal complexes.

    PubMed

    Kim, Hugh I; Beauchamp, J L

    2008-01-30

    We report a new method for identifying disulfide linkages in peptides using mass spectrometry. This is accomplished by collisional activation of singly charged cationic alkali and alkaline earth metal complexes, which results in the highly selective elimination of hydrogen disulfide (H2S2). Complexes of peptides possessing disulfide bonds with sodium and alkaline earth metal are generated using electrospray ionization (ESI). Isolation followed by collision induced dissociation (CID) of singly charged peptide complexes results in selective elimination of H2S2 to leave newly formed dehydroalanine residues in the peptide. Further activation of the product yields sequence information in the region previously short circuited by the disulfide bond. For example, singly charged magnesium and calcium ion bound complexes of [Lys8]-vasopressin exhibit selective elimination of H2S2 via low-energy CID. Further isolation of the product followed by CID yields major b- and z-type fragments revealing the peptide sequence in the region between the newly formed dehydroalanine residues. Numerous model peptides provide mechanistic details for the selective elimination of H2S2. The process is initiated starting with a metal stabilized enolate anion at Cys, followed by cleavage of the S-C bond. An examination of the peptic digest of insulin provides an example of the application of the selective elimination of H2S2 for the identification of peptides with disulfide linkages. The energetics and mechanisms of H2S2 elimination from model compounds are investigated using density functional theory (DFT) calculations.

  1. Indirect ultraviolet detection of alkaline earth metal ions using an imidazolium ionic liquid as an ultraviolet absorption reagent in ion chromatography.

    PubMed

    Liu, Yong-Qiang; Yu, Hong

    2017-02-20

    A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg(2+) , Ca(2+) , and Sr(2+) was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV-absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg(2+) , Ca(2+) , and Sr(2+) were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg(2+) , Ca(2+) , and Sr(2+) within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S/N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded.

  2. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  3. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  4. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    NASA Astrophysics Data System (ADS)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  5. Alkaline earth imidazolate coordination polymers by solvent free melt synthesis as potential host lattices for rare earth photoluminescence: (x)(∞)[AE(Im)2(ImH)(2-3)], Mg, Ca, Sr, Ba, x = 1-2.

    PubMed

    Zurawski, Alexander; Rybak, J-Christoph; Meyer, Larissa V; Matthes, Philipp R; Stepanenko, Vladimir; Dannenbauer, Nicole; Würthner, Frank; Müller-Buschbaum, Klaus

    2012-04-14

    The series of alkaline earth elements magnesium, calcium, strontium and barium yields single crystalline imidazolate coordination polymers by reactions of the metals with a melt of 1H-imidazole: (1)(∞)[Mg(Im)(2)(ImH)(3)] (1), (2)(∞)[AE(Im)(2)(ImH)(2)], AE = Ca (2), Sr (3), and (1)(∞)[Ba(Im)(2)(ImH)(2)] (4). No additional solvents were used for the reactions. Co-doping experiments by addition of the rare earth elements cerium, europium and terbium were carried out. They indicate (2)(∞)[Sr(Im)(2)(ImH)(2)] as a possible host lattice for cerium(III) photoluminescence showing a blue emission and thus a novel blue emitting hybrid material phosphor 3:Ce(3+). Co-doping with europium and terbium is also possible but resulted in formation of (3)(∞)[Sr(Im)(2)]:Ln, Ln = Eu and Tb (5), with both exhibiting green emission of either Eu(2+) or Tb(3+). The other alkaline earth elements do not show acceptance of the rare earth ions investigated and a different structural chemistry. For magnesium and barium one-dimensional strand structures are observed whereas calcium and strontium give two-dimensional network structures. Combined with an increase of the ionic radii of AE(2+) the coordinative demand is also increasing from Mg(2+) to Ba(2+), reflected by four different crystal structures for the four elements Mg, Ca, Sr, Ba in 1-4. Different linkages of the imidazolate ligands result in a change from complete σ-N coordination in 1 to additional η(5)-π coordination in 4. The success of co-doping with different lanthanide ions is based on a match in the chemical behaviour and cationic radii. The use of strontium for host lattices with imidazole is a rare example in coordination chemistry of co-doping with small amounts of luminescence centers and successfully reduces the amount of high price rare earth elements in hybrid materials while maintaining the properties. All compounds are examples of pure N-coordinated coordination polymers of the alkaline earth metals and were

  6. Dispersion coefficients for the interactions of the alkali-metal and alkaline-earth-metal ions and inert-gas atoms with a graphene layer

    NASA Astrophysics Data System (ADS)

    Kaur, Kiranpreet; Arora, Bindiya; Sahoo, B. K.

    2015-09-01

    Largely motivated by a number of applications, the van der Waals dispersion coefficients C3 of the alkali-metal ions Li+,Na+,K+, and Rb+, the alkaline-earth-metal ions Ca+,Sr+,Ba+, and Ra+, and the inert-gas atoms He, Ne, Ar, and Kr with a graphene layer are determined precisely within the framework of the Dirac model. For these calculations, we evaluate the dynamic polarizabilities of the above atomic systems very accurately by evaluating the transition matrix elements employing relativistic many-body methods and using the experimental values of the excitation energies. The dispersion coefficients are given as functions of the separation distance of an atomic system from the graphene layer and the ambiance temperature during the interactions. For easy extraction of these coefficients, we give a logistic fit to the functional forms of the dispersion coefficients in terms of the separation distances at room temperature.

  7. Low pressure ion chromatography with a low cost paired emitter-detector diode based detector for the determination of alkaline earth metals in water samples.

    PubMed

    Barron, Leon; Nesterenko, Pavel N; Diamond, Dermot; O'Toole, Martina; Lau, King Tong; Paull, Brett

    2006-09-01

    The use of a low pressure ion chromatograph based upon short (25 mm x 4.6 mm) surfactant coated monolithic columns and a low cost paired emitter-detector diode (PEDD) based detector, for the determination of alkaline earth metals in aqueous matrices is presented. The system was applied to the separation of magnesium, calcium, strontium and barium in less than 7min using a 0.15M KCl mobile phase at pH 3, with post-column reaction detection at 570 nm using o-cresolphthalein complexone. A comparison of the performance of the PEDD detector with a standard laboratory absorbance detector is shown, with limits of detection for magnesium and calcium using the low cost PEDD detector equal to 0.16 and 0.23 mg L(-1), respectively. Finally, the developed system was used for the determination of calcium and magnesium in a commercial spring water sample.

  8. Alkaline earth metal-based metal-organic framework: hydrothermal synthesis, X-ray structure and heterogeneously catalyzed Claisen-Schmidt reaction.

    PubMed

    Saha, Debraj; Maity, Tanmoy; Koner, Subratanath

    2014-09-14

    Two alkaline earth metal-based carboxylate systems, [Mg(HL)(H2O)2]n (1) and [Ca(H2L)2]n (2) (H3L = chelidamic acid) have been hydrothermally synthesized, and characterized by single-crystal X-ray diffraction, IR, elemental analysis, and thermo-gravimetric analysis. Compound 1 has a 2D structure incorporating two water molecules. The dehydrated species, 1a, generated from 1 by removal of the coordinated water, has been characterized by thermo-gravimetric analysis, IR, elemental analysis and variable temperature powder X-ray diffraction. Both 1 and its dehydrated species 1a catalyze the Claisen-Schmidt reaction under heterogeneous conditions, but 1a is a more effective catalyst under environmentally friendly conditions. The catalyst can readily be recovered and reused in successive cycles without detectable loss of activity. Compound 2 has a 3D structure and is thermally stable up to 540 °C, but is inactive catalytically.

  9. Calculation of thermodynamic potentials with the inclusion of fractional occupation numbers and investigation of FCC-BCC structural phase transitions in alkaline-earth metals

    NASA Astrophysics Data System (ADS)

    Pozhivatenko, V. V.

    2013-10-01

    The smearing near the Fermi level has been taken into account in the calculations of the thermodynamic characteristics of metals in order to improve the convergence of the performed calculations and to increase the quality of the obtained results. The choice of the smearing parameter usually has not been explained, although the results of the calculations differ significantly for different values of this parameter. Possible schemes for calculating the thermodynamic potentials with the inclusion of the smearing parameter and additional parameters of the volume and energy shifts have been considered. The influence of these parameters on the calculations of the thermodynamic properties of alkaline-earth metals under pressure and on the description of the structural phase transition has been analyzed.

  10. The coordination complex structures and hydrogen bonding in the three-dimensional alkaline earth metal salts (Mg, Ca, Sr and Ba) of (4-aminophenyl)arsonic acid.

    PubMed

    Smith, Graham; Wermuth, Urs D

    2017-01-01

    (4-Aminophenyl)arsonic acid (p-arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4-aminophenyl)arsonic acid (p-arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4-aminophenyl)arsonate] tetrahydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena-poly[[[diaquacalcium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ(2)O:O']-[diaquacalcium]-bis[μ2-hydrogen (4-aminophenyl)arsonato-κ(2)O:O

  11. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  12. Determination of rare earth elements, uranium and thorium in geological samples by ICP-MS, using an automatic fusion machine as an alkaline digestion tool.

    NASA Astrophysics Data System (ADS)

    Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia

    2014-05-01

    At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v

  13. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    SciTech Connect

    Xia Zhengqiang; Chen Sanping; Wei Qing; Qiao Chengfang

    2011-07-15

    Two new energetic compounds, [M(BTE)(H{sub 2}O){sub 5}]{sub n} (M=Sr(1), Ba(2)) [H{sub 2}BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs linked up by two independent binding modes of H{sub 2}BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face {pi}-{pi} stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper. - Graphical abstract: Two novel 2D isomorphous alkaline earth metal complexes were assembled by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two independent binding modes of H{sub 2}BTE ligands, and the catalytic performances toward thermal decomposition of ammonium perchlorate and photoluminescent properties of them were investigated. Highlights: > Two novel alkaline earth energetic coordination polymers have been prepared.{yields} Both structures are layered based on 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two distinct H{sub 2}BTE coordination modes.{yields} The dehydrated products of the compounds possess good thermostability and significant catalytic effects on thermal decomposition of AP.

  14. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Fourth progress report, 1 November 1981-31 July 1982

    SciTech Connect

    Christensen, J J; Izatt, R M

    1982-07-31

    The H/sub 2/O-CHCl/sub 3/-H/sub 2/O liquid membrane system was characterized with respect to the effect on cation (K/sup +/) transport rate of salt concentration and anion type. A bulk liquid membrane cell was used. A mathematical model for cation flux is being developed for several cations, several macrocycles, and mixtures of two or three cations. Eu/sup 3 +/ was not transported by 18-crown-6, but its reduced from Eu/sup 2 +/ was. Cation transport properties of calixarenes are also being investigated. Emulsion membrane systems were studied as a way of increasing the cation transport. Pb/sup 2 +/ was found to be transported by dicyclohexano-18-crown-6 through the liquid membrane. Transport rates of metal cation nitrates were measured in a water-toluene-water emulsion membrane system. 14 figures, 7 tables. (DLC)

  15. Rapid hydrolysis of model phosphate diesters by alkaline-earth cations in aqueous DMSO: speciation and kinetics.

    PubMed

    Taran, Olga; Medrano, Felipe; Yatsimirsky, Anatoly K

    2008-12-14

    Kinetics of the cleavage of two phosphate diesters, bis(4-nitrophenyl) phosphate and 2-hydroxypropyl 4-nitrophenyl phosphate and a triester, 4-nitrophenyl diphenyl phosphate, in the presence of Mg(II), Ca(II) and Sr(II) were studied in 90% vol. DMSO at 37 degrees C. The alkaline hydrolysis of the triester was inhibited by all cations, but with both phosphodiesters strong catalytic effects were observed. Potentiometric titrations of metal perchlorates by Bu4N(OH) revealed formation of M2(OH)3+, M(OH)+, M(OH)2 and M2(OH)5- species. Rate constants for phosphodiester cleavage by individual species were obtained from analysis of rate-concentration profiles. Observed first-order rate constants in the presence of 1-2 mM Mg(II) or Ca(II) in neutral and weakly basic solutions were 10(8)-10(11) times higher than those for background hydrolysis at the same pH while in water additions of up to 50 mM metal produced <100-fold accelerations. Possible structures of DMSO solvated catalyst-substrate complexes were modeled by DFT calculations with Mg(II). The increased catalytic activity in 90% DMSO is attributed to stronger association of hydroxide ions and anionic phosphodiesters with metal ions and to preferable solvation of cations by DMSO, which creates favorable for reaction anhydrous microenvironment in the coordination sphere of the catalyst.

  16. Lack of marked cyto- and genotoxicity of cristobalite in devitrified (heated) alkaline earth silicate wools in short-term assays with cultured primary rat alveolar macrophages.

    PubMed

    Ziemann, Christina; Harrison, Paul T C; Bellmann, Bernd; Brown, Robert C; Zoitos, Bruce K; Class, Philippe

    2014-02-01

    Alkaline earth silicate (AES) wools are low-biopersistence high-temperature insulation wools. Following prolonged periods at high temperatures they may devitrify, producing crystalline silica (CS) polymorphs, including cristobalite, classified as carcinogenic to humans. Here we investigated the cytotoxic and genotoxic significance of cristobalite present in heated AES wools. Primary rat alveolar macrophages were incubated in vitro for 2 h with 200 µg/cm² unheated/heated calcium magnesium silicate wools (CMS1, CMS2, CMS3; heat-treated for 1 week at, or 4 weeks 150 °C below, their respective classification temperatures) or magnesium silicate wool (MS; heated for 24 h at 1260 °C). Types and quantities of CS formed, and fiber size distribution and shape were determined by X-ray diffraction and electron microscopy. Lactate dehydrogenase release and alkaline and hOGG1-modified comet assays were used, ± aluminum lactate (known to quench CS effects), for cytotoxicity/genotoxicity screening. Cristobalite content of wools increased with heating temperature and duration, paralleled by decreases in fiber length and changes in fiber shape. No marked cytotoxicity, and nearly no (CMS) or only slight (MS) DNA-strand break induction was observed, compared to the CS-negative control Al₂O₃, whereas DQ12 as CS-positive control was highly active. Some samples induced slight oxidative DNA damage, but no biological endpoint significantly correlated with free CS, quartz, or cristobalite. In conclusion, heating of AES wools mediates changes in CS content and fiber length/shape. While changes in fiber morphology can impact biological activity, cristobalite content appears minor or of no relevance to the intrinsic toxicity of heated AES wools in short-term assays with rat alveolar macrophages.

  17. Dissolution stoichiometry and adsorption of alkali and alkaline earth elements to the acid-reacted wollastonite surface at 25°C

    NASA Astrophysics Data System (ADS)

    Xie, Zhixin; Walther, John V.

    1994-06-01

    The Ca 2+/H + exchange reaction on the wollastonite surface was investigated at 25°C with both short-term (<2.5 h) and long-term (>48 h) dissolution studies. In acidic solutions, the dissolution of wollastonite is nonstoichiometric with a greater release of Ca than Si relative to the wollastonite stoichiometry. Both short-term and long-term Ca 2+/H + exchange reaction stoichiometries are 0.5. Rapid desorption of Ca 2+ from the surface of untreated wollastonite caused a rise of the suspension pH to about 10 in a couple of minutes. Therefore, potentiometric titrations were performed with an acidreacted wollastonite where most surface detachable Ca 2+ had been removed. Addition of alkali and alkaline earth metal chloride solutions to the acid-reacted wollastonite suspension results in a pH decrease with K +> Na + > Ba 2+ > Mg 2+ > Ca 2+ in equal molal solutions. This suggests that the cations in these solutions are adsorbed to the wollastonite surface. Surface protonation properties of the acid-reacted wollastonite are found to be similar to those of microporous silica but with the point of zero salt effect (pzse) of 4.5-5.5 rather than the 3.0 of microporous silica. The surface protonation-deprotonation as a function of pH is modeled with a one-site double layer model which includes Na adsorption from the background electrolyte to reasonable accuracy. The adsorption of CrO 42-, MoO 42-, Ca 2+, Mg 2+, Ba 2+, and Na + from aqueous solutions to the acidreacted wollastonite/water interface was determined as a function of the pH and ionic strength of the solution. CrO 42- and MoO 42- were not adsorbed to the wollastonite surface at pH above 3. The extent of cation adsorption increases with increasing pH and decreases with increasing ionic strength. Ca 2+ adsorption depends on both the surface area of wollastonite and total amount of Ca 2+ in the suspension. For alkaline earth metals at the same concentration, the adsorption sequence is Ba 2+> Ca 2+> Mg 2+. At pH 8.5, the

  18. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.

    PubMed

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-03-14

    The long-range non-additive three-body dispersion interaction coefficients Z(111), Z(112), Z(113), and Z(122) are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z(111) arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z(112), Z(113), and Z(122) arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  19. CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua; Sorescu, Dan C.

    2010-08-01

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO2 absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)2 (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO2 capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)2 systems were found to be better candidates for CO2 sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H2O, MgCO3 can be regenerated into Mg(OH)2 at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO2 pressure but also on the H2O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO2 sorbents.

  20. Heating temperature dependence of Cr(III) oxidation in the presence of alkali and alkaline earth salts and subsequent Cr(VI) leaching behavior.

    PubMed

    Verbinnen, Bram; Billen, Pieter; Van Coninckxloo, Michiel; Vandecasteele, Carlo

    2013-06-04

    In this paper, the temperature dependence of Cr(III) oxidation in high temperature processes and the subsequent Cr(VI) leaching was studied using synthetic mixtures. It was experimentally shown that in the presence of alkali and alkaline earth salts, oxidation of Cr(III) takes place, consistent with thermodynamic calculations. Heating of synthetic mixtures of Cr2O3 and Na, K, or Ca salts led to elevated leaching of Cr(VI); in the presence of Na, more than 80% of the initial Cr(III) amount was converted to Cr(VI) at 600-800 °C. Kinetic experiments allowed explanation of the increase in Cr(VI) leaching for increasing temperatures up to 600-800 °C. After reaching a maximum in Cr(VI) leaching at temperatures around 600-800 °C, the leaching decreased again, which could be explained by the formation of a glassy phase that prevents leaching of the formed Cr(VI). By way of illustration, Cr(VI) formation and leaching was evaluated for a case study, the fabrication of ceramic material from contaminated sludge. Based on the proposed reaction mechanisms, countermeasures to prevent Cr oxidation (addition of NH4H2PO4, heating under inert atmosphere) were proposed and successfully tested for synthetic mixtures and for the case study.

  1. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    PubMed

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  2. Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1-xMbxF2 (M: Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2016-10-01

    The capability of mechanochemical synthesis for the formation of solid solutions of alkaline earth metal fluorides Ma1-xMbxF2 (M: Ca, Sr, Ba) was tested by fluorination of metal acetates and metal hydroxides with ammonium fluoride directly at milling. Evidence was found for a mutual substitution of cations on their lattice positions in Ca1-xSrxF2 and Ba1-xSrxF2 samples. For the Ba/Ca-system this synthesis route is only partially successful. X-ray diffraction and 19F MAS NMR spectroscopy were used to characterize all samples concerning their crystal structure and local fluorine coordination. Calculations of 19F chemical shifts with the superposition model along with probability calculations for the intensity of the individual 19F lines, performed in dependence on the molar composition of the samples, perfectly agree with the experimental findings. The fluoride ion conductivity of as-prepared samples, determined by temperature dependent DC conductivity measurements, is significantly higher than those of crystalline binary fluorides. Moreover, a higher F- ion conductivity is observed for samples with higher mixing grade in the Ca/Sr-and the Ba/Sr-systems.

  3. Ca12InC13-x and Ba12InC18H4: alkaline-earth indium allenylides synthesized in AE/Li flux (AE = Ca, Ba).

    PubMed

    Blankenship, Trevor V; Dickman, Matthew J; van de Burgt, Lambertus J; Latturner, Susan E

    2015-02-02

    Two new complex main-group metal carbides were synthesized from reactions of indium, carbon, and a metal hydride in metal flux mixtures of an alkaline earth (AE = Ca, Ba) and lithium. Ca(12)InC(13-x) and Ba(12)InC(18)H(4) both crystallize in cubic space group Im3̅ [a = 9.6055(8) and 11.1447(7) Å, respectively]. Their related structures are both built on a body-centered-cubic array of icosahedral clusters comprised of an indium atom and 12 surrounding alkaline-earth cations; these clusters are connected by bridging monatomic anions (either H(-) or C(4-)) and allenylide anions, C(3)(4-). The allenylide anions were characterized by Raman spectroscopy and hydrolysis studies. Density of states and crystal orbital Hamilton population calculations confirm that both compounds are metallic.

  4. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    SciTech Connect

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  5. Fullerene-C60 and crown ether doped on C60 sensors for high sensitive detection of alkali and alkaline earth cations

    NASA Astrophysics Data System (ADS)

    Zaghmarzi, Fatemeh Alipour; Zahedi, Mansour; Mola, Adeleh; Abedini, Saboora; Arshadi, Sattar; Ahmadzadeh, Saeed; Etminan, Nazanin; Younesi, Omran; Rahmanifar, Elham; Yoosefian, Mehdi

    2017-03-01

    Fullerenes are effective acceptor components with high electron affinity for charge transfer. The significant influences of chemical adsorption of the cations on the electrical sensitivity of pristine C60 and 15-(C2H4O)5/C60 nanocages could be the basis of new generation of electronic sensor design. The density functional theory calculation for alkali and alkaline earth cations detection by pristine C60 and 15-(C2H4O)5/C60 nanocages are considered at B3LYP level of theory with 6-31 G(d) basis set. The quantum theory of atoms in molecules analysis have been performed to understand the nature of intermolecular interactions between the cations and nanocages. Also, the natural bond orbital analysis have been performed to assess the intermolecular interactions in detail. Furthermore, the frontier molecular orbital, energy gap, work function, electronegativity, number of transferred electron (∆N), dipole moment as well as the related chemical hardness and softness are investigated and calculated in this study. The results show that the adsorption of cations (M=Na+, K+, Mg2+ and Ca2+) are exothermic and the binding energy in pristine C60 nanocage and 15-(C2H4O)5/C60 increases with respect to the cations charge. The results also denote a decrease in the energy gap and an increase in the electrical conductivity upon the adsorption process. In order to validate the obtained results, the density of state calculations are employed and presented in the end as well.

  6. Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-02-07

    We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O)n]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O)n-1 + H2O) and the two hydrolysis channels resulting to the loss of hydronium ([MOH(H2O)n-2]+ + H3O+) and Zundel ([MOH(H2O)n-3]+ + H3O+(H2O)) cations. The Potential Energy Curves (PECs) corresponding to those three channels were constructed at the Møller-Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O)n]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.

  7. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices—CCSD(T) calculations and atomic site occupancies

    SciTech Connect

    Davis, Barry M.; McCaffrey, John G.

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y{sup 1}P←a{sup 1}S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm{sup −1}). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr{sub 2} while this transition is quenched in Ba{sub 2}. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba{sub 2} indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  8. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  9. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)) Derived from Molecular Precursors and Doped with Eu(3+) Ions.

    PubMed

    Drąg-Jarząbek, Anna; John, Łukasz; Petrus, Rafał; Kosińska-Klähn, Magdalena; Sobota, Piotr

    2016-03-24

    The effect of alkaline earth metal alkoxides on the protonation of zirconocene dichloride was investigated. This approach enabled the design of compounds with preset molecular structures for generating high-purity binary metal oxide perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)). Single-source molecular precursors [Ba4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2(η(2) -HOR)2 (HOR)2 Cl4], [Sr4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2 (HOR)4 Cl4], [Ca4 Zr2 (μ6-O)(μ3 ,η(2)-OR)8 (OR)2 Cl4], and [Ca6 Zr2 (μ2 ,η(2)-OR)12 (μ-Cl)2 (η(2) -HOR)4 Cl6 ]⋅8 CH2 Cl2 were prepared via elimination of the cyclopentadienyl ring from Cp2 ZrCl2 as CpH in the presence of M(OR)2 and alcohol ROH (ROH=CH3OCH2 CH2OH) as a source of protons. The resulting complexes were characterized by elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction. The compounds were then thermally decomposed to MCl2 /MZrO3 mixtures. Leaching of MCl2 from the raw powder with deionized water produced highly pure perovskite-like oxide particles of 40-80 nm in size. Luminescence studies on Eu(3+)-doped MZrO3 revealed that the perovskites are attractive host lattices for potential applications in display technology.

  10. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  11. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    PubMed

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-07

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively.

  12. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  13. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  14. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  15. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-03-01

    For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba

  16. Chemical composition of modern and fossil hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-11-01

    This study demonstrates that alkaline earth elements in enamel of hippopotamids, in particular Ba and Sr, are tracers for water provenance and hydrochemistry in terrestrial settings. The studied specimens are permanent premolar and molar teeth found in modern and fossil lacustrine sediments of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). The variations are partially induced during post-mortem alteration and during amelogenesis, but the major contribution originates ultimately from the variable water chemistry in the habitats of the hippopotamids which is controlled by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of MgO, Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.9. These elements are well correlated in single specimens, thus suggesting that their distribution is determined by a common, single process, which can be described by closed system Rayleigh crystallization of bioapatite in vivo. Enamel from most hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores. However, Ba/Sr ranges from 0.1 to 3 and varies on spatial and temporal scales. Thus, Sr concentrations and Ba/Sr in enamel differentiate between habitats having basaltic mantle rocks or Archean crustal rocks as the ultimate sources of Sr and Ba. This provenance signal is modulated by climate change. In Miocene to Pleistocene enamel from the Lake Albert region, Ba/Sr decreases systematically with time from 2 to 0.5. This trend can be correlated with changes in climate from humid to arid, in vegetation from C3 to C4 biomass as well as with increasing evaporation of the lake water

  17. Nitrate tolerance.

    PubMed

    Parker, J O

    1987-11-16

    The organic nitrates are the most widely used agents in the management of patients with angina pectoris. When initially administered by the oral route, the nitrates produce profound changes in systemic hemodynamics and significant and prolonged improvement in exercise duration. It has been shown that during short periods of regular oral nitrate administration, the hemodynamic, antiischemic and antianginal effects of the nitrates are greatly reduced. Thus, when initially administered, oral isosorbide dinitrate prolongs exercise duration for a period of several hours, but during sustained 4-times-daily therapy, exercise tolerance is improved for only 2 hours after administration. Studies with transdermal preparations of isosorbide dinitrate and nitroglycerin also show improvement during short-term administration for up to 8 hours, but after several days of once-daily therapy, the effects of these agents are similar to placebo. It is apparent that nitrate tolerance is a clinically relevant problem. Although tolerance develops rapidly during nitrate therapy, it is reversed promptly during nitrate-free periods. Oral nitrates maintain their antianginal effects when given 2 or 3 times daily with provision of a nitrate-free period. Studies are currently underway to investigate the effects of intermittent administration schedules with transdermal nitrate preparations.

  18. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  19. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  20. Nitrate Storage and Dissimilatory Nitrate Reduction by Eukaryotic Microbes

    PubMed Central

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils; Stief, Peter

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described. A first compilation of intracellular nitrate inventories in various marine sediments is presented, indicating that intracellular nitrate pools vastly exceed porewater nitrate pools. The relative contribution by foraminifers to total sedimentary denitrification is estimated for different marine settings, suggesting that eukaryotes may rival prokaryotes in terms of dissimilatory nitrate reduction. Finally, this review article sketches some evolutionary perspectives of eukaryotic nitrate metabolism and identifies open questions that need to be addressed in future investigations. PMID:26734001

  1. First-principles study of fission product (Xe, Cs, Sr) incorporation and segregation in alkaline earth metal oxides, HfO2, and MgO-HfO2 interface

    SciTech Connect

    Liu, Xiang-yang; Uberuaga, Blas P; Sickafus, Kurt E

    2008-01-01

    In order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.g. solution chemistry, the fission products can be separated from the fissile material. We examine a surrogate dispersion fuel composition, in which hafnia (HfO{sub 2}) is a surrogate for the fissile core and alkaline earth metal oxides are used as the inert matrix. The questions of fission product incorporation in these oxides and possible segregation behavior at interfaces are considered. Density functional theory based calculations for fission product elements (Xe, Sr, and Cs) in these oxides are carried out. We find smaller incorporation energy in hafnia than in MgO for Cs and Sr, and Xe if variation of charge state is allowed. We also find that this trend is reversed or reduced for alkaline earth metal oxides with large cation sizes. Model interfacial calculations show a strong tendency of segregation from bulk MgO to MgO-HfO{sub 2} interfaces.

  2. Influences of alkaline earth metal substitution on the crystal structure and physical properties of magnetic RuSr1.9A0.1GdCu2O8 (A = Ca, Sr, and Ba) superconductors.

    PubMed

    Hur, Su Gil; Park, Dae Hoon; Hwang, Seong-Ju; Kim, Seung Joo; Lee, J H; Lee, Sang Young

    2005-11-24

    We have investigated the effect of alkaline earth metal substitution on the crystal structure and physical properties of magnetic superconductors RuSr(1.9)A(0.1)GdCu(2)O(8) (A = Ca, Sr, and Ba) in order to probe an interaction between the magnetic coupling of the RuO(2) layer and the superconductivity of the CuO(2) layer. X-ray diffraction and X-ray absorption spectroscopic analyses demonstrate that the isovalent substitution of Sr ions with Ca or Ba ions makes it possible to tune the interlayer distance between the CuO(2) and the RuO(2) layers. From the measurements of electrical resistance and magnetic susceptibility, it was found that, in contrast to negligible change of magnetization, both of the alkaline earth metal substitutions lead to a notable depression of zero-resistance temperature T(c) (DeltaT(c) approximately 17-19 K). On the basis of the absence of a systematic correlation between the T(c) and the interlayer distance/magnetization, we have concluded that the internal magnetic field of the RuO(2) layer has insignificant influence on the superconducting property of the CuO(2) layer in the ruthenocuprate.

  3. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  4. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  5. Counterion influence on the vibrational wavenumbers in ternary and quaternary metal hydride salts, A2MH6 (A = alkali metal, alkaline earth, and lanthanides; M = Ir, Fe, Ru, Os, Pt, Mn).

    PubMed

    Gilson, Denis F R; Moyer, Ralph O

    2012-02-06

    The wavenumbers of the ν(3) metal-hydrogen stretching mode (T(1u)) in the IR spectra of both ternary and quaternary hexahydrido salts of transition metals from groups 7 to 10 ([Mn(I)H(6)](5-), [Fe(II)H(6)](4-), [Ru(II)H(6)](4-), [Os(II)H(6)](4-), [Ir(III)H(6)](3-), and [Pt(IV)H(6)](2-)) depend linearly upon the ionization energies of the counterions (alkali metal, alkaline earth, and lanthanide) with a separate line for each metal. This relationship provides quantitative support for the charge-transfer mechanism for explaining the stabilities of these compounds.

  6. Effect of alkaline earth oxides on the physical and spectroscopic properties of Dy3+- doped Li2O-B2O3 glasses for white emitting material application

    NASA Astrophysics Data System (ADS)

    Shamshad, L.; Rooh, G.; Kirdsiri, K.; Srisittipokakun, N.; Damdee, B.; Kim, H. J.; Kaewkhao, J.

    2017-02-01

    Li2O-MO-B2O3:0.5Dy2O3 glasses mixed with four different alkaline earth modifier oxides MgO, CaO, SrO and BaO were synthesized by melt quench technique. Their physical properties like density, molar volume and refractive index were measured at room temperature and the effect of alkaline earth modifier oxides were studied. Also, optical absorption and photoluminescence spectra of these glasses have been acquired at room temperature. The Judd-Ofelt theory was effectively used to characterize these spectra and spectral intensities (ƒcal), Judd-Ofelt intensity parameters (Ω2, Ω4 and Ω6) and certain radiative properties have been determined. Radiative life-times (τR), branching ratios (βcal), and emission cross-sections (σp) and optical gain parameters (σp × τR) were calculated from the Judd-Ofelt intensity parameters and the variation in these parameters with the variation of glass matrix are discussed. Yellow/Blue (Y/B) ratio and chromacity color coordinates (x,y) are calculated from the emission spectra which indicates the white light generation from all the investigated samples. The correlated color temperature (CCT) for the studied glasses is found to be 4418 K. The fluorescence decay time (τexp) of the 4F9/2 level of Dy3+ has been measured from the decay profiles and compared with calculated lifetimes (τcal). Among all the studied glass matrices, the glass containing BaO exhibits high value of branching ratio, large emission cross-section and high optical gain parameter for 6F9/2 → 6H13 at 575 nm. The results indicates the suitability of all the studied glasses for laser action and white light generation.

  7. Insensitive Ammonium Nitrate.

    DTIC Science & Technology

    is reduced by replacing the ammonium nitrate with a solid solution of potassium nitrate in form III ammonium nitrate wherein the potassium nitrate...constitutes from more than zero to less than 50 weight percent of the solid solution . (Author)

  8. Evaluation of nitrate and nitrite destruction/separation technologies

    SciTech Connect

    Hobbs, D.T.

    1997-08-29

    This report describes and evaluates four types of nitrate and nitrite destruction and separation technologies that could be used to treat the aqueous, alkaline, nitrate-bearing mixed waste that is generated by the In-Tank Precipitation (ITP) process at the Savannah River Site (SRS). The technologies considered in this report include thermal, hydrothermal, chemical, and electrochemical technologies.

  9. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  10. Kinetic study of the α-tocopherol-regeneration reaction of ubiquinol-10 in methanol and acetonitrile solutions: notable effect of the alkali and alkaline earth metal salts on the reaction rates.

    PubMed

    Mukai, Kazuo; Oi, Masanori; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-03-01

    A kinetic study of regeneration reaction of α-tocopherol (α-TocH) by ubiquinol-10 has been performed in the presence of four kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), NaI, and Mg(ClO(4))(2)) in methanol and acetonitrile solutions, using double-mixing stopped-flow spectrophotometry. The second-order rate constants (k(r)'s) for the reaction of α-tocopheroxyl (α-Toc•) radical with ubiquinol-10 increased and decreased notably with increasing concentrations of metal salts in methanol and acetonitrile, respectively. The k(r) values increased in the order of no metal salt < NaClO(4) ~ NaI < LiClO(4) < Mg(ClO(4))(2) at the same concentration of metal salts in methanol. On the other hand, in acetonitrile, the k(r) values decreased in the order of no metal salt > NaClO(4) ~ NaI > LiClO(4) > Mg(ClO(4))(2) at the same concentration of metal salts. The metal salts having a smaller ionic radius of cation and a larger charge of cation gave a larger k(r) value in methanol, and a smaller k(r) value in acetonitrile. The effect of anion was almost negligible in both the solvents. Notable effects of metal cations on the UV-vis absorption spectrum of α-Toc• radical were observed in aprotic acetonitrile solution, suggesting complex formation between α-Toc• and metal cations. On the other hand, effects of metal cations were negligible in protic methanol, suggesting that the complex formation between α-Toc• and metal cations is hindered by the hydrogen bond between α-Toc• and methanol molecules. The difference between the reaction mechanisms in methanol and acetonitrile solutions was discussed on the basis of the results obtained. High concentrations of alkali and alkaline earth metal salts coexist with α-TocH and ubiquinol-10 in plasma, blood, and many tissues, suggesting the contribution of the metal salts to the above regeneration reaction in biological systems.

  11. Synthesis, crystal and band structures, and optical properties of a new lanthanide-alkaline earth tellurium(IV) oxide: La{sub 2}Ba(Te{sub 3}O{sub 8})(TeO{sub 3}){sub 2}

    SciTech Connect

    Jiang Hailong; Kong Fang; Mao Jianggao

    2007-05-15

    A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La{sub 2}Ba(Te{sub 3}O{sub 8})(TeO{sub 3}){sub 2}, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) A, {beta}=107.646(8){sup o}, V=1451.7(3) A{sup 3} and Z=4. La{sub 2}Ba(Te{sub 3}O{sub 8})(TeO{sub 3}){sub 2} features a 3D network structure in which the cationic [La{sub 2}Ba(TeO{sub 3}){sub 2}]{sup 4+} layers are cross-linked by Te{sub 3}O{sub 8} {sup 4-} anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La{sub 2}Ba(Te{sub 3}O{sub 8})(TeO{sub 3}){sub 2} is a wide band-gap semiconductor. - Graphical abstract: A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La{sub 2}Ba(Te{sub 3}O{sub 8})(TeO{sub 3}){sub 2}, has been prepared by the solid-state reaction and structurally characterized. The structure of La{sub 2}Ba(Te{sub 3}O{sub 8})(TeO{sub 3}){sub 2} is 3D network in which the cationic [La{sub 2}Ba(TeO{sub 3}){sub 2}]{sup 4+} layers are cross-linked by Te{sub 3}O{sub 8} {sup 4-} anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La{sub 2}Ba(Te{sub 3}O{sub 8})(TeO{sub 3}){sub 2} is a wide band-gap semiconductor.

  12. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-06

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field.

  13. Hydrothermal synthesis and crystal structure of two new hydrated alkaline earth metal borates Sr3B6O11(OH)2 and Ba3B6O11(OH)2.

    PubMed

    Heyward, Carla; McMillen, Colin; Kolis, Joseph

    2012-04-02

    Two new hydrated borates Sr(3)B(6)O(11)(OH)(2) (1) and Ba(3)B(6)O(11)(OH)(2) (2) were hydrothermally synthesized. Their structures were determined by single-crystal X-ray diffraction and further characterized by IR, powder XRD, and DSC/TGA. Compound 1 crystallizes in the triclinic space group P-1 with unit cell parameters of a = 6.6275(13) Å, b = 6.6706(13) Å, c = 11.393(2) Å, α = 91.06(3)°, β = 94.50(3)°, and γ = 93.12(3)°, while compound 2 crystallizes in the noncentrosymmetric monoclinic space group Pc with a = 6.958(14) Å, b = 7.024(14) Å, c = 11.346(2) Å, and β = 90.10(3)°. In spite of the differences in symmetry and packing of the borate chains, both structures consist of the same fundamental building block (FBB) of a [B(6)O(11)(OH)(2)](-6) unit and three unique alkaline earth metal atoms.

  14. Spin-Spin Interactions in the Oxides A(3)M'MO(6) (M = Rh, Ir; A = Ca, Sr; M' = Alkaline Earth, Zn, Cd, Na) of the K(4)CdCl(6) Structure Type Examined by Electronic Structure Calculations.

    PubMed

    Lee, K.-S.; Koo, H.-J.; Whangbo, M.-H.

    1999-05-03

    The oxides A(3)M'MO(6) (M = Rh, Ir; A = Ca, Sr; M' = alkaline earth, Zn, Cd) of the K(4)CdCl(6) structure type consist of isolated (MO(6))(8)(-) octahedral anions and exhibit an antiferromagnetic ordering at low temperatures. The spin-spin interactions in these oxides, Ca(3)NaMO(6) (M = Ir, Ru), and Sr(3)NaRuO(6) were examined by calculating how strongly the t(2g)-block levels of adjacent (MO(6))((6+)(n)()())(-) (n = 1, 2) anions interact in the presence and absence of the intervening cations A(2+) and M' (n)()(+) (n = 1, 2). Our calculations show that the spin-spin interactions in these oxides are three-dimensional, and the superexchange interactions occur mainly through the short intrachain and interchain M-O.O-M linkages. When the M(n)()(+) cation is very small compared with the A(2+) cation, the intrachain interaction is substantially stronger than the interchain interaction. The opposite is found when the sizes of the M(n)()(+) and A(2+) cations become similar.

  15. Binding to Redox-Inactive Alkali and Alkaline Earth Metal Ions Strongly Deactivates the C-H Bonds of Tertiary Amides toward Hydrogen Atom Transfer to Reactive Oxygen Centered Radicals.

    PubMed

    Salamone, Michela; Carboni, Giulia; Mangiacapra, Livia; Bietti, Massimo

    2015-09-18

    The effect of alkali and alkaline earth metal ions on the reactions of the cumyloxyl radical (CumO(•)) with N,N-dimethylformamide (DMF) and N,N-dimethylacetamide (DMA) was studied by laser flash photolysis. In acetonitrile, a >2 order of magnitude decrease in the rate constant for hydrogen atom transfer (HAT) from the C-H bonds of these substrates (kH) was measured after addition of Li(+). This behavior was explained in terms of a strong interaction between Li(+) and the oxygen atom of both DMF and DMA that increases the extent of positive charge on the amide, leading to C-H bond deactivation toward HAT to the electrophilic radical CumO(•). Similar effects were observed after addition of Ca(2+), which was shown to strongly bind up to four equivalents of the amide substrates. With Mg(2+), weak C-H deactivation was observed for the first two substrate equivalents followed by stronger deactivation for two additional equivalents. No C-H deactivation was observed in DMSO after addition of Li(+) and Mg(2+). These results point toward the important role played by metal ion Lewis acidity and solvent Lewis basicity, indicating that C-H deactivation can be modulated by varying the nature of the metal cation and solvent and allowing for careful control over the HAT reactivity of amide substrates.

  16. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  17. Vibronic transitions in the alkali-metal (Li, Na, K, Rb) - alkaline-earth-metal (Ca, Sr) series: A systematic analysis of de-excitation mechanisms based on the graphical mapping of Frank-Condon integrals

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.

    2017-02-01

    Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.

  18. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  19. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  20. Electrochemical Studies of Nitrate-Induced Pitting in Carbon Steel

    SciTech Connect

    Zapp, P.E.

    1998-12-07

    The phenomenon of pitting in carbon steel exposed to alkaline solutions of nitrate and chloride was studied with the cyclic potentiodynamic polarization technique. Open-circuit and pitting potentials were measured on specimens of ASTM A537 carbon steel in pH 9.73 salt solutions at 40 degrees Celsius, with and without the inhibiting nitrite ion present. Nitrate is not so aggressive a pitting agent as is chloride. Both nitrate and chloride did induce passive breakdown and pitting in nitrite-free solutions, but the carbon steel retained passivity in solutions with 0.11-M nitrite even at a nitrate concentration of 2.2 M.

  1. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  2. Alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr3Be3B3O9F4 with large nonlinear optical properties in the deep-ultraviolet region

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Huang, Hongwei; Kamarudin, H.; Auluck, S.

    2015-02-01

    The linear optical response and second harmonic generation (SHG) in alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr3Be3B3O9F4 are investigated by means of density functional theory. Calculations are performed using four types of exchange correlations: Ceperley-Alder local density approximation, Perdew Burke and Ernzerhof general gradient approximation, Engel-Vosko generalized gradient approximation, and the recently modified Becke-Johnson potential (mBJ). The mBJ approach brings the calculated band gap (7.20 eV) in excellent agreement with the experimental one (7.28 eV). The calculated values of the uniaxial anisotropy δɛ=-0.076 and the birefringence Δn (0 ) =0.052 indicate considerable anisotropy in the linear optical properties, which makes it favorable for the second harmonic generation. The dominant component of the second harmonic generation is χ111(2)(ω) . The value of |χ111(2)(ω) | is about 1.2 pm/V at λ = 1064 nm in agreement with previous calculations. To analyze the origin of the high SHG of NaSr3Be3B3O9F4 single crystals, we have correlated the features of |χ111(2)(ω) | spectra with the features of ɛ2(ω) spectra as a function of ω/2 and ω. From the calculated dominant component |χ111(2)(ω) | , we find that the microscopic first hyperpolarizability, β111 , the vector components along the dipole moment direction is 0.5 × 10-30 esu at static limit and 0.6 × 10-30 esu at λ = 1064 nm.

  3. The influence of different alkaline earth oxides on the structural and optical properties of undoped, Ce-doped, Sm-doped, and Sm/Ce co-doped lithium alumino-phosphate glasses

    NASA Astrophysics Data System (ADS)

    Othman, H. A.; Arzumanyan, G. M.; Möncke, D.

    2016-12-01

    Undoped, singly Sm doped, Ce doped, and Sm/Ce co-doped lithium alumino-phosphate glasses with different alkaline earth modifiers were prepared by melt quenching. The structure of the prepared glasses was investigated by FT-IR and Raman, as well as by optical spectroscopy. The effect of the optical basicity of the host glass matrix on the added active dopants was studied, as was the effect doping had on the phosphate structural units. The optical edge shifts toward higher wavelengths with an increase in the optical basicity due to the increased polarizability of the glass matrix, but also with increasing CeO2 concentration as a result of Ce3+/Ce4+ inter valence charge transfer (IV-CT) absorption. The optical band gap for direct and indirect allowed transitions was calculated for the undoped glasses. The glass sample containing Mg2+ modifier ions is found to have the highest value (4.16 eV) for the optical band gap while Ba2+ has the lowest value (3.61 eV). The change in the optical band gap arises from the structural changes and the overall polarizability (optical basicity). Refractive index, molar refractivity Rm and molar polarizability αm values increase with increasing optical basicity of the glasses. The characteristic absorption peaks of Sm3+ were also investigated. For Sm/Ce co-doped glasses, especially at high concentration of CeO2, the absorption of Ce3+ hinders the high energy absorption of Sm3+ and this effect becomes more obvious with increasing optical basicity.

  4. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  5. Alkaline earth stannates: The next silicon?

    SciTech Connect

    Ismail-Beigi, Sohrab Ahn, Charles H.; Walker, Frederick J.; Cheong, Sang-Wook; Rabe, Karin M.

    2015-06-01

    Semiconductor materials are being used in an increasingly diverse array of applications, with new device concepts being proposed each year for solar cells, flat-panel displays, sensors, memory, and spin transport. This rapid progress of invention outpaces the development of new semiconductor materials with the required properties and performance. In many applications, high carrier mobility at room temperature is required in addition to specific functional properties critical to the device concept. We review recent developments on high mobility stannate perovskite oxide materials and devices.

  6. Electrical Resistivity of Alkaline Earth Elements.

    DTIC Science & Technology

    1976-12-01

    and Alloys ," Volume 12 of Thermophysical Properties of Matter - The TPRC Data Series, Plenum Press, New York, 1440 pp., 1975. (T80643) 2. Matthiessen, A...1964. (E17556) 48. Seth, R. S. and Woods, S. B., "Electrical Resistivity and Deviations from Matthiessen’s Rule in Dilute Alloys of Aluminum , Cadmium...Resistance of Dilute Magnesium and Aluminum Alloys at Low Temperature," Can. J. of Phys. 38(3), 376-84, 1960. (E14737) 57. Schofield, F. H., "The

  7. PARAMAGNETIC PROPERTIES OF THE ALKALINE EARTH FLUORIDES.

    DTIC Science & Technology

    constants for Mn(2+) in CaF2 and SrF2 were measured over the temperature range 77 to 850K. In both cases the magnitude of the hyperfine coupling constant...decreases with increasing temperature; and the temperature dependance is stronger for SrF2 . The results have been interpreted using the Simanek-Orbach theory of a phonon-induced hyperfine field. (Author)

  8. Absorption Coefficient of Alkaline Earth Halides.

    DTIC Science & Technology

    1980-04-01

    levels . As a natural consequence, the magnitude of the absorption coefficient is the key parameter in selecting laser window materials. Over the past...of as can be achieved through improved crystal growing techniques and surface polishing. 2.5. Urbach’s Rule A central question for the development of...high absorption levels , inaccuracies progressively increasing with decreasing absorption level , a natural consequence of decreasing in instrumental

  9. Particulate Pyrite Autotrophic Denitrification (PPAD) for Remediation of Nitrate-contaminated Groundwater

    NASA Astrophysics Data System (ADS)

    Tong, S.; Rodriguez-Gonzalez, L. C.; Henderson, M.; Feng, C.; Ergas, S. J.

    2015-12-01

    The rapid movement of human civilization towards urbanization, industrialization, and increased agricultural activities has introduced a large amount of nitrate into groundwater. Nitrate is a toxic substance discharged from groundwater to rivers and leads to decreased dissolved oxygen and eutrophication. For this experiment, an electron donor is needed to convert nitrate into non-toxic nitrogen gas. Pyrite is one of the most abundant minerals in the earth's crust making it an ideal candidate as an electron donor. The overall goal of this research was to investigate the potential for pyrite to be utilized as an electron donor for autotrophic denitrification of nitrate-contaminated groundwater. Batch studies of particulate pyrite autotrophic denitrification (PPAD) of synthetic groundwater (100 mg NO3--N L-1) were set up with varying biomass concentration, pyrite dose, and pyrite particle size. Reactors were seeded with mixed liquor volatile suspended solids (VSS) from a biological nitrogen removal wastewater treatment facility. PPAD using small pyrite particles (<0.45mm) resulted in a favorable nitrate removal. The nitrate removal rate increased from 0.26 to 0.34 mg L-1h-1 and then to 0.86 mg L-1h-1, approaching that of the sulfur oxidizing denitrification (SOD) rate of 1.19 mg L-1h-1. Based on Box-Behnken design (BBD) and response surface methodology (RSM), the optimal amount of biomass concentration, pyrite dose, and pyrite particle size were 1,250 mg VSS L-1, 125 g L-1, and 0.815-1.015 mm, respectively. PPAD exhibited substantial nitrate removal rate, lower sulfate accumulation (5.46 mg SO42-/mg NO3--N) and lower alkalinity consumption (1.70 mg CaCO3/mg NO3--N) when compared to SOD (7.54 mg SO42-/mg NO3--N, 4.57 mg CaCO3/mg NO3--N based on stoichiometric calculation). This research revealed that the PPAD process is a promising technique for nitrate-contaminated groundwater treatment and promoted the utilization of pyrite in the field of environmental remediation.

  10. Effects of structure of nitrator on nitration reaction

    SciTech Connect

    Shiying, Yin; Benli, Yin

    1995-12-01

    It is well-known that nitration of dinitrotoluene (DNT) proceeds quite slowly. Unsatisfactory structure of nitrator could cause an incomplete nitration in the nitrator, and nitration continues in the separator. This, in turn, increases the temperature difference between nitrator and separator. It was found that the nitration degree of DNT in nitrator could be estimated by this temperature difference. We investigated the relationship between the nitrator`s structure and the above temperature difference, and based on the research results obtained we could make nitration complete in nitrator, improve the quality of trinitrotoluene (TNT), lower the consumption of raw materials, especially sulfuric acid, and increase the safety of production.

  11. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  12. New alkaline earth-zirconium oxalates M2Zr(C 2O 4) 4· nH 2O ( M=Ba, Sr, Ca) synthesis, crystal structure and thermal behavior

    NASA Astrophysics Data System (ADS)

    Chapelet-Arab, B.; Nowogrocki, G.; Abraham, F.; Grandjean, S.

    2004-11-01

    Three new alkaline earth-zirconium oxalates M2Zr(C 2O 4) 4· nH 2O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M 2+ and Zr 4+ ions through silica gel containing oxalic acid. Ba 2Zr(C 2O 4) 4·7H 2O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), c=9.178(2) Å, β=122.248(4) °, V=2214.2(8) Å, Z=4, R=0.0427; Sr 2Zr(C 2O 4) 4·11H 2O, tetragonal, space group I41/acd, a=16.139(4), c=18.247(6) Å, V=4753(2) Å,Z=8, R=0.0403; Ca 2Zr(C 2O 4) 4·5H 2O, orthorhombic, space group Pna2 1, a=8.4181(5), b=15.8885(8), c=15.8885(8) Å, V=2125(2) Å, Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO 6(H 2O) x ( x=2 or 3) polyhedra connected to ZrO 8 polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO 8 polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M2+ cations (Sr 2+, Ca 2+), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba 2+ cation, the second framework is formed and is closely related to that of Pb 2Zr(C 2O 4) 4· nH 2O. The decomposition at 800°C into strontium carbonate, barium carbonate or calcium oxide and MZrO 3 ( M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.

  13. New alkaline earth-zirconium oxalates M{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.nH{sub 2}O (M=Ba, Sr, Ca) synthesis, crystal structure and thermal behavior

    SciTech Connect

    Chapelet-Arab, B.; Abraham, F. . E-mail: francis.abraham@ensc-lille.fr; Grandjean, S.

    2004-11-01

    Three new alkaline earth-zirconium oxalates M{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.nH{sub 2}O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M{sup 2+} and Zr{sup 4+} ions through silica gel containing oxalic acid. Ba{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.7H{sub 2}O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), c=9.178(2)A, {beta}=122.248(4){sup o}, V=2214.2(8)A3, Z=4, R=0.0427; Sr{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.11H{sub 2}O, tetragonal, space group I41/acd, a=16.139(4), c=18.247(6)A, V=4753(2)A3, Z=8, R=0.0403; Ca{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.5H{sub 2}O, orthorhombic, space group Pna2{sub 1}, a=8.4181(5), b=15.8885(8), c=15.8885(8)A, V=2125(2)A3, Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO{sub 6}(H{sub 2}O){sub x} (x=2 or 3) polyhedra connected to ZrO{sub 8} polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO{sub 8} polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M{sup 2+} cations (Sr{sup 2+}, Ca{sup 2+}), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba{sup 2+} cation, the second framework is formed and is closely related to that of Pb{sub 2}Zr(C{sub 2}O{sub 4}){sub 4}.nH{sub 2}O. The decomposition at 800{sup o}C into strontium carbonate, barium carbonate or calcium oxide and MZrO{sub 3} (M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.

  14. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  15. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  16. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate and potassium nitrate. 181.33 Section 181.33 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions...

  17. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  18. 21 CFR 181.33 - Sodium nitrate and potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate and potassium nitrate. 181.33...-Sanctioned Food Ingredients § 181.33 Sodium nitrate and potassium nitrate. Sodium nitrate and potassium nitrate are subject to prior sanctions issued by the U.S. Department of Agriculture for use as sources...

  19. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  20. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  1. Nitrate removal with lateral flow sulphur autotrophic denitrification reactor.

    PubMed

    Lv, Xiaomei; Shao, Mingfei; Li, Ji; Xie, Chuanbo

    2014-01-01

    An innovative lateral flow sulphur autotrophic denitrification (LFSAD) reactor was developed in this study; the treatment performance was evaluated and compared with traditional sulphur/limestone autotrophic denitrification (SLAD) reactor. Results showed that nitrite accumulation in the LFSAD reactor was less than 1.0 mg/L during the whole operation. Denitrification rate increased with the increased initial alkalinity and was approaching saturation when initial alkalinity exceeded 2.5 times the theoretical value. Higher influent nitrate concentration could facilitate nitrate removal capacity. In addition, denitrification efficiency could be promoted under an appropriate reflux ratio, and the highest nitrate removal percentage was achieved under reflux ratio of 200%, increased by 23.8% than that without reflux. Running resistance was only about 1/9 of that in SLAD reactor with equal amount of nitrate removed, which was the prominent excellence of the new reactor. In short, this study indicated that the developed reactor was feasible for nitrate removal from waters with lower concentrations, including contaminated surface water, groundwater or secondary effluent of municipal wastewater treatment with fairly low running resistance. The innovation in reactor design in this study may bring forth new ideas of reactor development of sulphur autotrophic denitrification for nitrate-contaminated water treatment.

  2. Cylodextrin Polymer Nitrate

    NASA Technical Reports Server (NTRS)

    Kosowski, Bernard; Ruebner, Anja; Statton, Gary; Robitelle, Danielle; Meyers, Curtis

    2000-01-01

    The development of the use of cyclodextrin nitrates as possible components of insensitive, high-energy energetics is outlined over a time period of 12 years. Four different types of cyclodextrin polymers were synthesized, nitrated, and evaluated regarding their potential use for the military and aerospace community. The synthesis of these novel cyclodextrin polymers and different nitration techniques are shown and the potential of these new materials is discussed.

  3. Electrocatalytic reduction of nitrate in water with a palladium-modified copper electrode.

    PubMed

    Wang, Ying; Qu, Jiuhui

    2006-07-01

    A highly active electrocatalytic electrode for nitrate reduction was prepared by the electro-deposition of palladium onto a copper electrode. The capacity of nitrate reduction by a palladium-modified copper electrode has been studied using cyclic voltammetry (CV). The existence of a reduction peak at -0.605 V versus saturated calomel electrode in 0.1-M sodium nitrate + 0.1-M perchloric acid solution (pH = 0.86) can be found in the CV measurement. The influence of solution properties, such as pH, nitrate concentration, and other anions in solution, on nitrate reduction was determined in detail. Results showed that nitrate reduction was suppressed in alkaline solution, while it was beneficial to nitrate reduction in acid or neutral solution. At low nitrate concentrations (0.01 to 0.5 M), nitrate reduction current increased with increasing nitrate concentration, but was hindered by sulfate. At high nitrate concentrations (1 to 5 M), no significant difference on nitrate reduction was observed. Compared with other different electrodes prepared in our work (copper, titanium, and palladium-modified titanium electrodes), the palladium-modified copper electrode showed the highest electrocatalytic capacity and stability in the nitrate-reduction process.

  4. Thermochemical nitrate destruction

    DOEpatents

    Cox, John L.; Hallen, Richard T.; Lilga, Michael A.

    1992-01-01

    A method is disclosed for denitrification of nitrates and nitrates present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200.degree. C. to about 600.degree. C., and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  5. Staining proteins in gels with silver nitrate.

    PubMed

    Simpson, Richard J

    2007-07-01

    INTRODUCTIONSilver staining is one of the commonly used procedures for visualizing proteins in acrylamide gels. All silver staining methods rely on the reduction of ionic to metallic silver to provide metallic silver images; the selective reduction at gel sites occupied by proteins compared to nonprotein sites is dependent on differences in the oxidation-reduction potentials at these sites. There are two broad methodologies for silver staining. One approach (nondiamine silver nitrate stains) uses silver nitrate as the silvering agent and formaldehyde in alkaline carbonate solution as the developing agent, whereas the other approach (diamine or ammoniacal stains) uses ammoniacal silver as the silvering agent and formaldehyde in dilute citric acid as the developing agent. Although protocols using ammoniacal silver are arguably more sensitive and give darker hues than those based on silver nitrate, they are more prone to negative staining, resulting in hollow or "doughnut" spots, give unacceptable backgrounds with tricine-based gel systems, and are not very robust because of their reliance on the ammonia-silver ratio. Additionally, ammoniacal silver staining is more sensitive for basic proteins but less so for very acidic proteins. This protocol describes a silver nitrate staining approach. Its sensitivity is in the low-nanogram range, which is 50-100 times more sensitive than classical Coomassie Blue staining, ~10 times better than colloidal Coomassie Blue staining, and at least twice as sensitive as the zinc/imidazole negative staining method.

  6. Nitrate Leaching Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Nitrate Leaching Index is a rapid assessment tool that evaluates nitrate (NO3) leaching potential based on basic soil and climate information. It is the basis for many nutrient management planning efforts, but it has considerable limitations because of : 1) an oversimplification of the processes...

  7. Exclusion of Nitrate from Frozen Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Marrocco, H. A.; Michelsen, R. R.

    2013-12-01

    Reactions occurring at the surface of ice, sea ice, and snow in Earth's cryosphere have an impact on the composition of the overlying atmosphere. In order to elucidate reaction mechanisms and model their contributions to atmospheric processes, the morphology of frozen aqueous surfaces and amounts of reactants contained therein must be determined. To this end, the exclusion of nitrate ions to the surface of frozen aqueous solutions has been studied by attenuated total reflection infrared spectroscopy (ATR-IR). In this technique the near-surface region of the frozen films are interrogated to a depth of a few hundred nanometers from the film-crystal interface. Aqueous solutions (0.001 to 0.01 M) of sodium nitrate (NaNO3), magnesium nitrate (Mg(NO3)2), and nitric acid (HNO3) were quickly frozen on the germanium ATR crystal and observed at a constant temperature of about -18°C. In addition to ice and the solutes, liquid water in varying amounts was observed in the spectra. The amount of nitrate in the surface liquid is three to four orders of magnitude higher than in the unfrozen solution. While all the nitrate salts exhibit exclusion to the unfrozen surface, the dynamics are different for different counter-ions. Results are compared to freezing point depression data and the predictions of equilibrium thermodynamics.

  8. The Chilean nitrate deposits.

    USGS Publications Warehouse

    Ericksen, G.E.

    1983-01-01

    The nitrate deposits in the arid Atacama desert of northern Chile consist of saline-cemented surficial material, apparently formed in and near a playa lake that formerly covered the area. Many features of their distribution and chemical composition are unique. The author believes the principal sources of the saline constituents were the volcanic rocks of late Tertiary and Quaternary age in the Andes and that the nitrate is of organic origin. Possible sources of the nitrate, iodate, perchlorate and chromate are discussed. -J.J.Robertson

  9. Thermochemical nitrate destruction

    DOEpatents

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  10. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  11. Bioactivation of organic nitrates and the mechanism of nitrate tolerance.

    PubMed

    Klemenska, Emila; Beresewicz, Andrzej

    2009-01-01

    Organic nitrates, such as nitroglycerin, are commonly used in the therapy of cardiovascular disease. Long-term therapy with these drugs, however, results in the rapid development of nitrate tolerance, limiting their hemodynamic and anti-ischemic efficacy. In addition, nitrate tolerance is associated with the expression of potentially deleterious modifications such as increased oxidative stress, endothelial dysfunction, and sympathetic activation. In this review we discuss current concepts regarding the mechanisms of organic nitrate bioactivation, nitrate tolerance, and nitrate-mediated oxidative stress and endothelial dysfunction. We also examine how hydralazine may prevent nitrate tolerance and related endothelial dysfunction.

  12. Reactivity of Metal Nitrates.

    DTIC Science & Technology

    1982-07-20

    amines, where nitration would not be a competing process. Acetanilide . Despite the complexity encountered with aniline, the corresponding amide... acetanilide , though having an N-hydrogen atom, was nitrated without tar formation, although this was not accomplished efficiently. After reaction for 24 h... acetanilide , in the absence of a N-hydrogen atom. However, the reverse proved to be the case, for after one day at room temperature nearly 60% of starting

  13. Thermochemical nitrate reduction

    SciTech Connect

    Cox, J.L.; Lilga, M.A.; Hallen, R.T.

    1992-09-01

    A series of preliminary experiments was conducted directed at thermochemically converting nitrate to nitrogen and water. Nitrates are a major constituent of the waste stored in the underground tanks on the Hanford Site, and the characteristics and effects of nitrate compounds on stabilization techniques must be considered before permanent disposal operations begin. For the thermochemical reduction experiments, six reducing agents (ammonia, formate, urea, glucose, methane, and hydrogen) were mixed separately with {approximately}3 wt% NO{sub 3}{sup {minus}} solutions in a buffered aqueous solution at high pH (13); ammonia and formate were also mixed at low pH (4). Reactions were conducted in an aqueous solution in a batch reactor at temperatures of 200{degrees}C to 350{degrees}C and pressures of 600 to 2800 psig. Both gas and liquid samples were analyzed. The specific components analyzed were nitrate, nitrite, nitrous oxide, nitrogen, and ammonia. Results of experimental runs showed the following order of nitrate reduction of the six reducing agents in basic solution: formate > glucose > urea > hydrogen > ammonia {approx} methane. Airnmonia was more effective under acidic conditions than basic conditions. Formate was also effective under acidic conditions. A more thorough, fundamental study appears warranted to provide additional data on the mechanism of nitrate reduction. Furthermore, an expanded data base and engineering feasibility study could be used to evaluate conversion conditions for promising reducing agents in more detail and identify new reducing agents with improved performance characteristics.

  14. Nitrogen isotope evidence for alkaline lakes on late Archean continents

    NASA Astrophysics Data System (ADS)

    Stüeken, E. E.; Buick, R.; Schauer, A. J.

    2015-02-01

    Nitrogen isotope ratios in ancient sedimentary rocks are generally interpreted as a proxy for metabolic nitrogen pathways and the redox state of the water column. Fractionation processes occurring under anoxic, alkaline conditions during the dissociation of NH4+ to H+ and volatile NH3 are frequently overlooked, although this mechanism imparts large isotopic fractionations. Here we propose that NH3 volatilization is largely responsible for δ15N values of up to + 50 ‰ at high C/N ratios in the late Archean Tumbiana Formation. This sequence of sedimentary rocks represents a system of lakes that formed on subaerial flood basalts and were partly filled by basaltic volcanic ash. Aqueous alteration of volcanic glass followed by evaporative concentration of ions should have led to the development of high alkalinity with a pH of 9 or higher, as in modern analogues. In this sedimentologically unusual setting, nitrogen isotope ratios thus provide indirect evidence for the oldest alkaline lake system in the rock record. These very heavy lacustrine δ15N values contrast markedly with those of Archean marine sedimentary rocks, making a Precambrian "soda ocean" unlikely. Today, alkaline lakes are among the most productive ecosystems on Earth. Some nutrients, in particular molybdenum, are more soluble at high pH, and certain prebiotic reactions would likely have been favored under alkaline conditions in similar settings earlier in Earth's history. Hence alkaline lakes in the Archean could have been significant for the origin and early evolution of life.

  15. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  16. The sulphate-reduction alkalinity pump tested

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Petrishcheva, Elena

    2016-04-01

    Carbonate precipitation has been suggested to be induced by alkalinity increase during sulphate reduction under anoxic conditions. This mechanism may explain the formation of carbonate deposits in shallow marine environments, either within a redox stratified sediment inhabited by phototrophic microbial mats or in shallow water within the photic zone where sulphidic water is upwelling onto the shelf. The alkalinity pump may work as long as the sulphide is not reoxidized to sulphate, a process that would acidify the surrounding. The alkalinity effect of sulphate reduction was recently tested by Aloisi (2008) for microbial mats using a model approach. He found that sulphate reduction does not significantly increase or even decrease carbonate saturation and is unlikely to have played a significant role through Earth history. The model considers many environmental factors, including the effect of carbonate precipitation itself on the carbonate equilbrium and on the alkalinity. We used a modified version of Aloisi's (2008) model to simulate the saturation states of aragonite, calcite and dolomite without the effects of carbonate precipitation. This is necessary to evaluate the effect of microbial metabolisms exclusively on carbonate saturation, since carbonate precipitation is only the consequence, but not the cause of oversaturation. First results show that the saturation state is increased in the zone of phototrophic CO2 uptake. In contrast, the saturation state is strongly decreased in the zone where dissolved oxygen overlaps with dissolved sulphide. Aerobic sulphide oxidation consumes most of the HS- and dissipates most of the alkalinity produced in the sulphate reduction zone below. Hence, our results are consistent with the findings of Aloisi (2008), and they even more clearly show that sulphate reduction does not induce carbonate precipitation nor contributes to carbonate precipitation in combination with phototrophic CO2 uptake. The alkalinity effect of sulphate

  17. Bioremediation of nitrated organics

    SciTech Connect

    Stafford, D.A.; Lappin-Scott, H.; Jass, J.

    1994-12-31

    In the manufacture of nitrated aromatic and heterocyclic compounds intermediates are produced as well as the final products, e.g. TNT (trinitrotoluene), and RDX (cyclotri-methylene trinitramine). The red water produced is a dilute effluent containing TNT and other nitrated intermediates. Many of the intermediates are also to be found in contaminated land areas as well as the primary manufacturing products as contaminants in ground adjacent to production and storage areas. Two intermediates included as by-products are p-nitrophenol and resorcinol; both are hydroxylated aromatics and one (the former) is also nitrated. If these rings can be hydroxylated and oxidized by pure or mixed microbial cultures then the notion of using microbes for the detoxification of a wide range of nitrated aromatics and heterocyclics is possible. It is proposed in the study to accelerate this degradative process in the first instance for p-nitrophenol and resorcinol, and secondly for TNT and RDX. The use of microbes to degrade nitroaromatic compounds such as nitrobenzenes, and mono-nitro phenols, have been described. In order to determine how aromatic degrading bacteria can also degrade substituted and nitrated aromatics several pure and mixed cultures have been utilized to demonstrate enzyme adaptation.

  18. Alkaline regenerative fuel cell systems for energy storage

    SciTech Connect

    Schubert, F.H.; Reid, M.A.; Martin, R.E.

    1981-01-01

    This paper presents the results of a preliminary design study of a Regenerative Fuel Cell Energy Storage system for application to future low-earth orbit space missions. This high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. 11 refs.

  19. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  20. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  1. Carbon cycling and snowball Earth.

    PubMed

    Goddéris, Yves; Donnadieu, Yannick

    2008-12-18

    The possibility that Earth witnessed episodes of global glaciation during the latest Precambrian challenges our understanding of the physical processes controlling the Earth's climate. Peltier et al. suggest that a 'hard snowball Earth' state may have been prevented owing to the release of CO(2) from the oxidation of dissolved organic carbon (DOC) in the ocean as the temperature decreased. Here we show that the model of Peltier et al. is not self-consistent as it implies large fluctuations of the ocean alkalinity content without providing any processes to account for it. Our findings suggest that the hard snowball Earth hypothesis is still valid.

  2. Nitrate Leaching Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3) leaching is a significant nitrogen (N) loss process for agriculture that must be managed to minimize NO3 enrichment of groundwater and surface waters. Managing NO3 leaching should involve the application of basic principles of understanding the site’s hydrologic cycle, avoiding excess ...

  3. Nitrates and Nitrites TNC Presentation

    EPA Pesticide Factsheets

    The Nitrates and Nitrites Presentation gives an overview of nitrates and nitrites in drinking water, why it is important to monitor them and what to do in cases where the results exceed the maximum contaminant level (MCL).

  4. TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANN)

    Atmospheric Science Data Center

    2017-03-01

    ... TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANN) Project Title:  TES Discipline:  Tropospheric ... Earth Science Atmosphere Air Quality Atmospheric Chemistry/Nitrogen Compounds Order Data:  Earthdata Search:   ...

  5. TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANNS)

    Atmospheric Science Data Center

    2017-03-01

    ... TES/Aura L2 Peroxyacyl Nitrate Nadir (TL2PANNS) Project Title:  TES Discipline:  Tropospheric ... Earth Science Atmosphere Air Quality Atmospheric Chemistry/Nitrogen Compounds Order Data:  Earthdata Search:   ...

  6. Advanced technology for extended endurance alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Sheibley, D. W.; Martin, R. A.

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  7. Advanced technology for extended endurance alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Martin, R. A.

    1987-01-01

    Advanced components have been developed for alkaline fuel cells with a view to the satisfaction of NASA Space Station design requirements for extended endurance. The components include a platinum-on-carbon catalyst anode, a potassium titanate-bonded electrolyte matrix, a lightweight graphite electrolyte reservoir plate, a gold-plated nickel-perforated foil electrode substrate, a polyphenylene sulfide cell edge frame material, and a nonmagnesium cooler concept. When incorporated into the alkaline fuel cell unit, these components are expected to yield regenerative operation in a low earth orbit Space Station with a design life greater than 5 years.

  8. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126...) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.28 Ammonium...

  9. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126...) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.28 Ammonium...

  10. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126...) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.28 Ammonium...

  11. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126...) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.28 Ammonium...

  12. 33 CFR 126.28 - Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Ammonium nitrate, ammonium nitrate fertilizers, fertilizer mixtures, or nitro carbo nitrate; general provisions. 126.28 Section 126...) WATERFRONT FACILITIES HANDLING OF DANGEROUS CARGO AT WATERFRONT FACILITIES § 126.28 Ammonium...

  13. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  14. Ammonium nitrate explosive systems

    DOEpatents

    Stinecipher, Mary M.; Coburn, Michael D.

    1981-01-01

    Novel explosives which comprise mixtures of ammonium nitrate and an ammonium salt of a nitroazole in desired ratios are disclosed. A preferred nitroazole is 3,5-dinitro-1,2,4-triazole. The explosive and physical properties of these explosives may readily be varied by the addition of other explosives and oxidizers. Certain of these mixtures have been found to act as ideal explosives.

  15. Mesozoic mafic alkaline magmatism of southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian

    2004-11-01

    More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17 27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the

  16. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  17. Assimilation of nitrate by yeasts.

    PubMed

    Siverio, José M

    2002-08-01

    Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.

  18. Intracomplex {pi}-{pi} stacking interaction between adjacent phenanthroline molecules in complexes with rare-earth nitrates: Crystal and molecular structures of bis(1,10-Phenanthroline)trinitratoytterbium and bis(1,10-Phenanthroline)trinitratolanthanum

    SciTech Connect

    Sadikov, G. G. Antsyshkina, A. S.; Rodnikova, M. N.; Solonina, I. A.

    2009-01-15

    Crystals of the compounds Yb(NO{sub 3}){sub 3}(Phen){sub 2} and La(NO{sub 3}){sub 3}(Phen){sub 2} (Phen = 1,10-phenanthroline) are investigated using X-ray diffraction. It is established that there exist two different crystalline modifications: the main modification (phase 1) is characteristic of all members of the isostructural series, and the second modification (phase 2) is observed only for the Eu, Er, and Yb elements. It is assumed that the stability and universality of main phase 1 are associated with the occurrence of the nonbonded {pi}-{pi} stacking interactions between the adjacent phenanthroline ligands in the complexes. The indication of the interactions is a distortion of the planar shape of the Phen molecule (the folding of the metallocycle along the N-N line with a folding angle of 11{sup o}-13{sup o} and its 'boomerang' distortion). The assumption regarding the {pi}-{pi} stacking interaction is very consistent with the shape of the ellipsoids of atomic thermal vibrations, as well as with the data obtained from thermography and IR spectroscopy. An analysis of the structures of a number of rare-earth compounds has demonstrated that the intracomplex {pi}-{pi} stacking interactions directly contribute to the formation of supramolecular associates in the crystals, such as molecular dimers, supramolecules, chain and layered ensembles, and framework systems.

  19. The effects of nitrate on the stress corrosion cracking of sensitized stainless steel in high temperature water

    SciTech Connect

    Andresen, P.L.

    1995-12-31

    The effects of nitrate additions as HNO{sub 3} and NaNO{sub 3} on the stress corrosion crack growth rate of 1TCT specimens of sensitized type 304 stainless steel were studied in 270 and 288 C water using the reversing dc potential drop technique. Most studies were limited to 100 ppb nitrate, although concentrations as high as 10 ppm were also used. No significant effect on crack growth rate was observed at {<=}100 ppb, although large increases were observed at 10 ppm. Some earlier studies had shown an increase in crack growth rate at {<=} 100 ppb nitrate, although they were probably influenced by variations in the corrosion potential. In contrast to some other species, nitrate is efficiently reduced in the crack to ammonia, a species that causes alkalinization, not acidification. The increase in crack growth rate at very high nitrate levels is consistent with data obtained in NAOH, and shows that elevated crack growth rates are possible in sufficiently alkaline solutions. In aerated water, the reduction of nitrate occurs only when nitrate migrates into the crack, since in high temperature water the crack is deaerated and at low potential. NWIE not evaluated, materials such as nonsensitized or irradiated stainless steel, nickel alloys, and carbon and low alloy steels should exhibit a similar insensitivity to nitrate.

  20. Tubulin nitration in human gliomas.

    PubMed

    Fiore, Gabriella; Di Cristo, Carlo; Monti, Gianluca; Amoresano, Angela; Columbano, Laura; Pucci, Pietro; Cioffi, Fernando A; Di Cosmo, Anna; Palumbo, Anna; d'Ischia, Marco

    2006-02-06

    Immunohistochemical and biochemical investigations showed that significant protein nitration occurs in human gliomas, especially in grade IV glioblastomas at the level of astrocytes and oligodendrocytes and neurones. Enhanced alpha-tubulin immunoreactivity was co-present in the same elements in the glioblastomas. Proteomic methodologies were employed to identify a nitrated protein band at 55 kDa as alpha-tubulin. Peptide mass fingerprinting procedures demonstrated that tubulin is nitrated at Tyr224 in grade IV tumour samples but is unmodified in grade I samples and in non-cancerous brain tissue. These results provide the first characterisation of endogenously nitrated tubulin from human tumour samples.

  1. Early Earth

    NASA Astrophysics Data System (ADS)

    Brown, M.

    2015-05-01

    Earth has continents, subduction and mobile lid plate tectonics, but details of the early evolution are poorly understood. Here I summarize the Hadean-Archean record, review evidence for a hotter Earth and consider geodynamic models for early Earth.

  2. The Alkaline Dissolution Rate of Calcite.

    PubMed

    Colombani, Jean

    2016-07-07

    Due to the widespread presence of calcium carbonate on Earth, several geochemical systems, among which is the global CO2 cycle, are controlled to a large extent by the dissolution and precipitation of this mineral. For this reason, the dissolution of calcite has been thoroughly investigated for decades. Despite this intense activity, a consensual value of the dissolution rate of calcite has not been found yet. We show here that the inconsistency between the reported values stems mainly from the variability of the chemical and hydrodynamic conditions of measurement. The spreading of the values, when compared in identical conditions, is much less than expected and is interpreted in terms of sample surface topography. This analysis leads us to propose benchmark values of the alkaline dissolution rate of calcite compatible with all the published values, and a method to use them in various chemical and hydrodynamic contexts.

  3. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  4. Agriculture causes nitrate fertilization of remote alpine lakes

    PubMed Central

    Hundey, E. J.; Russell, S. D.; Longstaffe, F. J.; Moser, K. A.

    2016-01-01

    Humans have altered Earth's nitrogen cycle so dramatically that reactive nitrogen (Nr) has doubled. This has increased Nr in aquatic ecosystems, which can lead to reduced water quality and ecosystem health. Apportioning sources of Nr to specific ecosystems, however, continues to be challenging, despite this knowledge being critical for mitigation and protection of water resources. Here we use Δ17O, δ18O and δ15N from Uinta Mountain (Utah, USA) snow, inflow and lake nitrate in combination with a Bayesian-based stable isotope mixing model, to show that at least 70% of nitrates in aquatic systems are anthropogenic and arrive via the atmosphere. Moreover, agricultural activities, specifically nitrate- and ammonium-based fertilizer use, are contributing most (∼60%) Nr, and data from other North American alpine lakes suggest this is a widespread phenomenon. Our findings offer a pathway towards more effective mitigation, but point to challenges in balancing food production with protection of important water resources. PMID:26853267

  5. Agriculture causes nitrate fertilization of remote alpine lakes

    NASA Astrophysics Data System (ADS)

    Hundey, E. J.; Russell, S. D.; Longstaffe, F. J.; Moser, K. A.

    2016-02-01

    Humans have altered Earth's nitrogen cycle so dramatically that reactive nitrogen (Nr) has doubled. This has increased Nr in aquatic ecosystems, which can lead to reduced water quality and ecosystem health. Apportioning sources of Nr to specific ecosystems, however, continues to be challenging, despite this knowledge being critical for mitigation and protection of water resources. Here we use Δ17O, δ18O and δ15N from Uinta Mountain (Utah, USA) snow, inflow and lake nitrate in combination with a Bayesian-based stable isotope mixing model, to show that at least 70% of nitrates in aquatic systems are anthropogenic and arrive via the atmosphere. Moreover, agricultural activities, specifically nitrate- and ammonium-based fertilizer use, are contributing most (~60%) Nr, and data from other North American alpine lakes suggest this is a widespread phenomenon. Our findings offer a pathway towards more effective mitigation, but point to challenges in balancing food production with protection of important water resources.

  6. Some History of Nitrates

    NASA Astrophysics Data System (ADS)

    Barnum, Dennis W.

    2003-12-01

    The history of saltpeter is an interesting combination of chemistry, world trade, technology, politics, and warfare. Originally it was obtained from the dirt floors of stables, sheep pens, pigeon houses, caverns, and even peasants' cottages; any place manure and refuse accumulated in soil under dry conditions. When these sources became inadequate to meet demand it was manufactured on saltpeter plantations, located in dry climates, where piles of dirt, limestone, and manure were allowed to stand for three to five years while soil microbes oxidized the nitrogen to nitrate—an example of early bioengineering. Extensive deposits of sodium nitrate were mined in the Atacama Desert in northern Chile from 1830 until the mid 1920s when the mines were displaced by the Haber Ostwald process.

  7. Nitrate reductase from Rhodopseudomonas sphaeroides.

    PubMed Central

    Kerber, N L; Cardenas, J

    1982-01-01

    The facultative phototroph Rhodopseudomonas sphaeroides DSM158 was incapable of either assimilating or dissimilating nitrate, although the organism could reduce it enzymatically to nitrite either anaerobically in the light or aerobically in the dark. Reduction of nitrate was mediated by a nitrate reductase bound to chromatophores that could be easily solubilized and functioned with chemically reduced viologens or photochemically reduced flavins as electron donors. The enzyme was solubilized, and some of its kinetic and molecular parameters were determined. It seemed to be nonadaptive, ammonia did not repress its synthesis, and its activity underwent a rapid decline when the cells entered the stationary growth phase. Studies with inhibitors and with metal antagonists indicated that molybdenum and possibly iron participate in the enzymatic reduction of nitrate. The conjectural significance of this nitrate reductase in phototrophic bacteria is discussed. PMID:6978883

  8. TREATMENT OF AMMONIUM NITRATE SOLUTIONS

    DOEpatents

    Boyer, T.W.; MacHutchin, J.G.; Yaffe, L.

    1958-06-10

    The treatment of waste solutions obtained in the processing of neutron- irradiated uranium containing fission products and ammonium nitrate is described. The object of this process is to provide a method whereby the ammonium nitrate is destroyed and removed from the solution so as to permit subsequent concentration of the solution.. In accordance with the process the residual nitrate solutions are treated with an excess of alkyl acid anhydride, such as acetic anhydride. Preferably, the residual nitrate solution is added to an excess of the acetic anhydride at such a rate that external heat is not required. The result of this operation is that the ammonium nitrate and acetic anhydride react to form N/sub 2/ O and acetic acid.

  9. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  10. Synthesis and Characterization of Alkaline-Earth Indium Sulfides

    DTIC Science & Technology

    1990-06-01

    CaS and In2S3 in an evacuated silica ampule, has the normal spinel structure (a = 10.77 ).1 This report is surprising, since the large Ca 2 + ion would...Ca3.1In6.6S13, 4 has been synthesized as yellow whiskers by iodine transport of a mixture of CaS and In2S3 . An X-ray single-crystal structure determination 5...mixture of CaS (Cerac 99.99%) and In2S3 (prepared from In(NO3)3 and H2S at 750’C) was pre-reacted in a graphite crucible in an evacuated silica

  11. Dissolution of alkaline earth sulfates in the presence of montmorillonite

    USGS Publications Warehouse

    Eberl, D.D.; Landa, E.R.

    1985-01-01

    In a study of the effect of montmorillonite on the dissolution of BaSO4 (barite), SrSO4 (celestite), and 226Ra from U mill tailings, it was found that: (1) More of these substances dissolve in an aqueous system that contains montmorillonite than dissolve in a similar system without clay, due to the ion exchange properties of the clay; (2) Na-montmorillonite is more effective in aiding dissolution than is Ca-montmorillonite; (3) the amount of Ra that moves from mill tailings to an exchanger increases as solution sulfate activity decreases. Leaching experiments suggest that 226Ra from H2SO4-circuit U mill tailings from Edgemont, South Dakota, is not present as pure Ra sulfate or as an impurity in anhydrite or gypsum; it is less soluble, and probably occurs as a trace constituent in barite.

  12. Aluminum/alkaline earth metal composites and method for producing

    DOEpatents

    Russell, Alan M; Anderson, Iver E; Kim, Hyong J; Freichs, Andrew E

    2014-02-11

    A composite is provided having an electrically conducting Al matrix and elongated filaments comprising Ca and/or Sr and/or Ba disposed in the matrix and extending along a longitudinal axis of the composite. The filaments initially comprise Ca and/or Sr and/or Ba metal or allow and then may be reacted with the Al matrix to form a strengthening intermetallic compound comprising Al and Ca and/or Sr and/or Ba. The composite is useful as a long-distance, high voltage power transmission conductor.

  13. Atomistic simulation of defects in alkaline-earth fluorohalide crystals

    NASA Astrophysics Data System (ADS)

    Baetzold, Roger C.

    1987-12-01

    Defect properties of BaFBr, BaFCl, and SrFCl were calculated using the atomistic simulation technique. Two-body potentials were developed starting from potentials in related crystals or calculated by the electron-gas method and then fit to minimize strain in the equilibrium structure. Agreement of calculated elastic, dielectric, and cohesive properties with available experimental and theoretical data was reasonable. Generally, Frenkel energies for the larger-size halogen ion were less than for the fluorine ion and less than the Schottky energy for the metal, fluoride, and other halide ions set. A Schottky energy for vacancies of the metal ion and two of the larger-size halide ions was small. Energies of formation of Vk and H centers were computed with the aid of thermodynamic cycles. The most stable Vk center forms on the halide ion site where the Madelung potential is most favorable for holes. H centers occupy off-center sites in these low-symmetry materials. Stable geometries are discussed.

  14. Soft-mode transitions of alkaline-earth 122 pnictides

    NASA Astrophysics Data System (ADS)

    Widom, Michael; Quader, Khandker

    A -122 pnictides (A=Ca, Sr, Ba) exhibit three pressure-driven transitions: a first order enthalpic transition at PH from the striped AFM orthorhombic (OR) to a tetragonal (T) or a collapsed tetragonal (cT) phase; a transition at PM >PH from the metastable AFM OR to a T or cT phase; a Lifshitz transition at PL that causes T to collapse to a cT phase. Transitions at PH and PL were previously examined through total energy and band structure calculations. Here we address the transition at PM, beyond which the metastable AFM OR state ceases to exist. We show this transition occurs through a loss of elastic stability caused by softening of a shear mode associated with stretching along the c-axis. Simultaneously, magnetism and orthorhombicity approach limiting values with an approximately square-root singularity. Together these suggest a strong magneto-elastic coupling that may be relevant to a further understanding of the A-122-pnictides under pressure. This work was supported in part by the DOE under Grant DE-SC0014506.

  15. Synthesis and acid digestion of biomorphic ceramics: determination of alkaline and alkaline earth ions.

    PubMed

    Bosch Ojeda, Catalina; Sánchez Rojas, Fuensanta; Cano Pavón, José Manuel

    2007-09-01

    Ceramic and glass are some of the more recent engineering materials and those that are most resistant to environmental conditions. They belong to advanced materials in that they are being developed for the aerospace and electronics industries. In the last decade, a new class of ceramic materials has been the focus of particular attention. The materials were produced with natural, renewable resources (wood or wood-based products). In this work, we have synthesised a new biomorphic ceramic material from oak wood and Si infiltration. After the material characterization, we have optimized the dissolution of the sample by acid attack in an oven under microwave irradiation. Experimental designs were used as a multivariate strategy for the evaluation of the effects of varying several variables at the same time. The optimization was performed in two steps using factorial design for preliminary evaluation and a Draper-Lin design for determination of the critical experimental conditions. Five variables (time, power, volume of HNO3, volume H2SO4 and volume of HF) were considered as factors and as a response the concentration of different metal ions in the optimization process. Interactions between analytical factors and their optimal levels were investigated using a Draper-Lin design.

  16. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  17. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  18. Nitrate concentrations under irrigated agriculture

    USGS Publications Warehouse

    Zaporozec, A.

    1983-01-01

    In recent years, considerable interest has been expressed in the nitrate content of water supplies. The most notable toxic effect of nitrate is infant methemoglobinemia. The risk of this disease increases significantly at nitrate-nitrogen levels exceeding 10 mg/l. For this reason, this concentration has been established as a limit for drinking water in many countries. In natural waters, nitrate is a minor ionic constituent and seldom accounts for more than a few percent of the total anions. However, nitrate in a significant concentration may occur in the vicinity of some point sources such as septic tanks, manure pits, and waste-disposal sites. Non-point sources contributing to groundwater pollution are numerous and a majority of them are related to agricultural activities. The largest single anthropogenic input of nitrate into the groundwater is fertilizer. Even though it has not been proven that nitrogen fertilizers are responsible for much of nitrate pollution, they are generally recognized as the main threat to groundwater quality, especially when inefficiently applied to irrigated fields on sandy soils. The biggest challenge facing today's agriculture is to maintain the balance between the enhancement of crop productivity and the risk of groundwater pollution. ?? 1982 Springer-Verlag New York Inc.

  19. CO2 enrichment inhibits shoot nitrate assimilation in C3 but not C4 plants and slows growth under nitrate in C3 plants.

    PubMed

    Bloom, Arnold J; Asensio, Jose Salvador Rubaio; Randall, Lesley; Rachmilevitch, Shimon; Cousins, Asaph B; Carlisle, Eli A

    2012-02-01

    The CO2 concentration in Earth's atmosphere may double during this century. Plant responses to such an increase depend strongly on their nitrogen status, but the reasons have been uncertain. Here, we assessed shoot nitrate assimilation into amino acids via the shift in shoot CO2 and O2 fluxes when plants received nitrate instead of ammonium as a nitrogen source (deltaAQ). Shoot nitrate assimilation became negligible with increasing CO2 in a taxonomically diverse group of eight C3 plant species, was relatively insensitive to CO2 in three C4 species, and showed an intermediate sensitivity in two C3-C4 intermediate species. We then examined the influence of CO2 level and ammonium vs. nitrate nutrition on growth, assessed in terms of changes in fresh mass, of several C3 species and a Crassulacean acid metabolism (CAM) species. Elevated CO2 (720 micromol CO2/mol of all gases present) stimulated growth or had no effect in the five C3 species tested when they received ammonium as a nitrogen source but inhibited growth or had no effect if they received nitrate. Under nitrate, two C3 species grew faster at sub-ambient (approximately 310 micromol/mol) than elevated CO2. A CAM species grew faster at ambient than elevated or sub-ambient CO2 under either ammonium or nitrate nutrition. This study establishes that CO2 enrichment inhibits shoot nitrate assimilation in a wide variety of C3 plants and that this phenomenon can have a profound effect on their growth. This indicates that shoot nitrate assimilation provides an important contribution to the nitrate assimilation of an entire C3 plant. Thus, rising CO2 and its effects on shoot nitrate assimilation may influence the distribution of C3 plant species.

  20. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  1. Preparation and utilization of wheat straw anionic sorbent for the removal of nitrate from aqueous solution.

    PubMed

    Wang, Yu; Gao, Bao-yu; Yue, Wen-wen; Yue, Qin-yan

    2007-01-01

    In order to reduce the impact of eutrophication caused by agricultural residues (i.e., excess nitrate) in aqueous solution, economic and effective anionic sorbents are required. In this article, we prepared anionic sorbent using wheat straw. Its structural characteristics and adsorption properties for nitrate removal from aqueous solution were investigated. The results indicate that the yield of the prepared anionic sorbent, the total exchange capacity, and the maximum adsorption capacity were 350%, 2.57 mEq/g, and 2.08 mmol/g, respectively. The Freundlich isotherm mode is more suitable than the Langmuir mode and the adsorption process accords with the first order reaction kinetic rate equation. When multiple anions (SO4(2-), H2PO4(-), NO3(-), and NO2(-)) were present, the isotherm mode of prepared anionic sorbent for nitrate was consistent with Freundlich mode; however, the capacity of nitrate adsorption was reduced by 50%. In alkaline solutions, about 90% of adsorbed nitrate ions could be desorbed from prepared anionic sorbent. The results of this study confirmed that the wheat straw anionic sorbent can be used as an excellent nitrate sorbent that removes nitrate from aqueous solutions.

  2. [Role of genistein in enzymatic albumin hydrolysis in the presence of nitrates (III) and (V)].

    PubMed

    Tokarz, Andrzej; Pokorska-Lis, Grazyna; Popiel, Elzbieta

    2008-01-01

    Polyphenols and nitrates are essential ingredients of human diet. Harm caused by nitrates is well know and studied. Positive role of polyphenols is investigated. The aim of the study was to analyze interactions between nitrates (III) and (V) and genistein in systems of enzymatic protein (albumin) hydrolysis. In vitro model of enzymatic acidic-alkaline albumine hydrolysis in the presence of nitrates, polyphenols and vitamin C in different concentrations was used. Content of nitrates was measured in dialysation fluid spectrophotometrically according to Griess' method. The study revealed inhibiting influence of genistein on nitrares(III) concentration in external compartment. The influence depended on polyphenol dose (for nitrates (III) between 11.21% and 7.27%, for nitrates (V) between 95.64% and 79.64% of dialysis). When genistein was introduced in too high concentrations--over 2,4 mg/system--it did not improve the effect, but inhibited it. The influence of genistein was synergic with resveratrol and vitamin C.

  3. Assessment of the potential for ammonium nitrate formation and reaction in Tank 241-SY-101

    SciTech Connect

    Pederson, L.R.; Bryan, S.A.

    1994-08-01

    Two principal scenarios by which ammonium nitrate may be formed were considered: (a) precipitation of ammonium nitrate in the waste, and (b) ammonium nitrate formation via the gas phase reaction of ammonia and nitrogen dioxide. The first of these can be dismissed because ammonium ions, which are necessary for ammonium nitrate precipitation, can exist only in negligibly small concentrations in strongly alkaline solutions. Gas phase reactions between ammonia, nitrogen dioxide, and water vapor in the gas phase represent the most likely means by which ammonium nitrate aerosols could be formed in Tank 241-SY-101. Predicted ammonium nitrate formation rates are largely controlled by the concentration of nitrogen dioxide. This gas has not been detected among those gases vented from the wastes using Fourier Transform Infrared Spectrometry (FTIR) or mass spectrometry. While detection limits for nitrogen dioxide have not been established experimentally, the maximum concentration of nitrogen dioxide in the gas phase in Tank 241-SY-101 was estimated at 0.1 ppm based on calculations using the HITRAN data base and on FTIR spectra of gases vented from the wastes. At 50 C and with 100 ppm ammonia also present, less than one gram of ammonium nitrate per year is estimated to be formed in the tank. To date, ammonium nitrate has not been detected on HEPA filters in the ventilation system, so any quantity that has been formed in the tank must be quite small, in good agreement with rate calculations. The potential for runaway exothermic reactions involving ammonium nitrate in Tank 241-SY-101 is minimal. Dilution by non-reacting waste components, particularly water, would prevent hazardous exothermic reactions from occurring within the waste slurry, even if ammonium nitrate were present. 41 refs.

  4. Summary technical report on the electrochemical treatment of alkaline nuclear wastes

    SciTech Connect

    Hobbs, D.T.

    1994-07-30

    This report summarizes the laboratory studies investigating the electrolytic treatment of alkaline solutions carried out under the direction of the Savannah River Technology Center from 1985-1992. Electrolytic treatment has been demonstrated at the laboratory scale to be feasible for the destruction of nitrate and nitrite and the removal of radioactive species such as {sup 99}Tc and {sup 106}Ru from Savannah River Site (SRS) decontaminated salt solution and other alkaline wastes. The reaction rate and current efficiency for the removal of these species are dependent on cell configuration, electrode material, nature of electrode surface, waste composition, current density, and temperature. Nitrogen, ammonia, and nitrous oxide have been identified as the nitrogen-containing reaction products from the electrochemical reduction of nitrate and nitrite under alkaline conditions. The reaction mechanism for the reduction is very complex. Voltammetric studies indicated that the electrode reactions involve surface phenomena and are not necessarily mass transfer controlled. In an undivided cell, results suggest an electrocatalytic role for oxygen via the generation of the superoxide anion. In general, more efficient reduction of nitrite and nitrate occurs at cathode materials with higher overpotentials for hydrogen evolution. Nitrate and nitrite destruction has also been demonstrated in engineering-scale flow reactors. In flow reactors, the nitrate/nitrite destruction efficiency is improved with an increase in the current density, temperature, and when the cell is operated in a divided cell configuration. Nafion{reg_sign} cation exchange membranes have exhibited good stability and consistent performance as separators in the divided-cell tests. The membranes were also shown to be unaffected by radiation at doses approximating four years of cell operation in treating decontaminated salt solution.

  5. Observation of nitrate coatings on atmospheric mineral dust particles

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Shao, L. Y.

    2009-03-01

    Nitrate compounds have received much attention because of their ability to alter the hygroscopic properties and cloud condensation nuclei (CCN) activity of mineral dust particles in the atmosphere. However, very little is known about specific characteristics of ambient nitrate-coated mineral particles on an individual particle scale. In this study, sample collection was conducted during brown haze and dust episodes between 24 May and 21 June 2007 in Beijing, northern China. Sizes, morphologies, and compositions of 332 mineral dust particles together with their coatings were analyzed using transmission electron microscopy (TEM) coupled with energy-dispersive X-ray (EDX) microanalyses. Structures of some mineral particles were verified using selected-area electron diffraction (SAED). TEM observation indicates that approximately 90% of the collected mineral particles are covered by visible coatings in haze samples whereas only 5% are coated in the dust sample. 92% of the analyzed mineral particles are covered with Ca-, Mg-, and Na-rich coatings, and 8% are associated with K- and S-rich coatings. The majority of coatings contain Ca, Mg, O, and N with minor amounts of S and Cl, suggesting that they are possibly nitrates mixed with small amounts of sulfates and chlorides. These nitrate coatings are strongly correlated with the presence of alkaline mineral components (e.g., calcite and dolomite). CaSO4 particles with diameters from 10 to 500 nm were also detected in the coatings including Ca(NO3)2 and Mg(NO3)2. Our results indicate that mineral particles in brown haze episodes were involved in atmospheric heterogeneous reactions with two or more acidic gases (e.g., SO2, NO2, HCl, and HNO3). Mineral particles that acquire hygroscopic nitrate coatings tend to be more spherical and larger, enhancing their light scattering and CCN activity, both of which have cooling effects on the climate.

  6. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  7. The "silver-nitrate-oma".

    PubMed

    McBride, T J; Rand, B; Dhillon, S S

    2012-01-01

    This case report demonstrates and emphasises the unusual radiographic appearance of silver nitrate treatment in a 30-year-old patient, who subsequently underwent excision biopsy of a presumed potentially malignant lesion.

  8. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.; Kramer, C. M.; Bradshaw, R. W.; Nissen, D. A.; Goods, S. H.; Mar, R. W.; Munford, J. W.; Karnowsky, M. M.; Biefeld, R. N.; Norem, N. J.

    1981-03-01

    Of the fluids proposed for heat transfer and energy storage, molten nitrate salts offer significant economic advantages. The nitrate salt of most interest is a binary mixture of NaNO3 and KNO3. Although nitrate/nitrite mixtures were used for decades as heat transfer and heat treatment fluids the use was at temperatures of about 4500 C and lower. In solar thermal power systems the salts will experience a temperature range of 350 to 6000 C. Because central receiver applications place more rigorous demands and higher temperatures on nitrate salts a comprehensive experimental program was developed to examine what effects, if any, the new demands and temperatures have on the salts. The experiments include corrosion testing, environmental cracking of containment materials, and determinations of physical properties and decomposition mechanisms.

  9. Alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} with large nonlinear optical properties in the deep-ultraviolet region

    SciTech Connect

    Reshak, A. H.; Huang, Hongwei; Kamarudin, H.; Auluck, S.

    2015-02-28

    The linear optical response and second harmonic generation (SHG) in alkali-metal/alkaline-earth-metal fluorine beryllium borate NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} are investigated by means of density functional theory. Calculations are performed using four types of exchange correlations: Ceperley-Alder local density approximation, Perdew Burke and Ernzerhof general gradient approximation, Engel-Vosko generalized gradient approximation, and the recently modified Becke-Johnson potential (mBJ). The mBJ approach brings the calculated band gap (7.20 eV) in excellent agreement with the experimental one (7.28 eV). The calculated values of the uniaxial anisotropy δε=−0.076 and the birefringence Δn(0)=0.052 indicate considerable anisotropy in the linear optical properties, which makes it favorable for the second harmonic generation. The dominant component of the second harmonic generation is χ{sub 111}{sup (2)}(ω). The value of |χ{sub 111}{sup (2)}(ω)| is about 1.2 pm/V at λ = 1064 nm in agreement with previous calculations. To analyze the origin of the high SHG of NaSr{sub 3}Be{sub 3}B{sub 3}O{sub 9}F{sub 4} single crystals, we have correlated the features of |χ{sub 111}{sup (2)}(ω)| spectra with the features of ε{sub 2}(ω) spectra as a function of ω/2 and ω. From the calculated dominant component |χ{sub 111}{sup (2)}(ω)|, we find that the microscopic first hyperpolarizability, β{sub 111}, the vector components along the dipole moment direction is 0.5 × 10{sup −30} esu at static limit and 0.6 × 10{sup −30} esu at λ = 1064 nm.

  10. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  11. Vasodilator Therapy: Nitrates and Nicorandil.

    PubMed

    Tarkin, Jason M; Kaski, Juan Carlos

    2016-08-01

    Nitrates have been used to treat symptoms of chronic stable angina for over 135 years. These drugs are known to activate nitric oxide (NO)-cyclic guanosine-3',-5'-monophasphate (cGMP) signaling pathways underlying vascular smooth muscle cell relaxation, albeit many questions relating to how nitrates work at the cellular level remain unanswered. Physiologically, the anti-angina effects of nitrates are mostly due to peripheral venous dilatation leading to reduction in preload and therefore left ventricular wall stress, and, to a lesser extent, epicardial coronary artery dilatation and lowering of systemic blood pressure. By counteracting ischemic mechanisms, short-acting nitrates offer rapid relief following an angina attack. Long-acting nitrates, used commonly for angina prophylaxis are recommended second-line, after beta-blockers and calcium channel antagonists. Nicorandil is a balanced vasodilator that acts as both NO donor and arterial K(+) ATP channel opener. Nicorandil might also exhibit cardioprotective properties via mitochondrial ischemic preconditioning. While nitrates and nicorandil are effective pharmacological agents for prevention of angina symptoms, when prescribing these drugs it is important to consider that unwanted and poorly tolerated hemodynamic side-effects such as headache and orthostatic hypotension can often occur owing to systemic vasodilatation. It is also necessary to ensure that a dosing regime is followed that avoids nitrate tolerance, which not only results in loss of drug efficacy, but might also cause endothelial dysfunction and increase long-term cardiovascular risk. Here we provide an update on the pharmacological management of chronic stable angina using nitrates and nicorandil.

  12. Earth Resources

    ERIC Educational Resources Information Center

    Brewer, Tom

    1970-01-01

    Reviews some of the more concerted, large-scale efforts in the earth resources areas" in order to help the computer community obtain insights into the activities it can jointly particpate in withthe earth resources community." (Author)

  13. Nitrate transport and signalling.

    PubMed

    Miller, Anthony J; Fan, Xiaorong; Orsel, Mathilde; Smith, Susan J; Wells, Darren M

    2007-01-01

    Physiological measurements of nitrate (NO(3)(-)) uptake by roots have defined two systems of high and low affinity uptake. In Arabidopsis, genes encoding both of these two uptake systems have been identified. Most is known about the high affinity transport system (HATS) and its regulation and yet measurements of soil NO(3)(-) show that it is more often available in the low affinity range above 1 mM concentration. Several different regulatory mechanisms have been identified for AtNRT2.1, one of the membrane transporters encoding HATS; these include feedback regulation of expression, a second component protein requirement for membrane targeting and phosphorylation, possibly leading to degradation of the protein. These various changes in the protein may be important for a second function in sensing NO(3)(-) availability at the surface of the root. Another transporter protein, AtNRT1.1 also has a role in NO(3)(-) sensing that, like AtNRT2.1, is independent of their transport function. From the range of concentrations present in the soil it is proposed that the NO(3)(-)-inducible part of HATS functions chiefly as a sensor for root NO(3)(-) availability. Two other key NO(3)(-) transport steps for efficient nitrogen use by crops, efflux across membranes and vacuolar storage and remobilization, are discussed. Genes encoding vacuolar transporters have been isolated and these are important for manipulating storage pools in crops, but the efflux system is yet to be identified. Consideration is given to how well our molecular and physiological knowledge can be integrated as well to some key questions and opportunities for the future.

  14. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  15. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  16. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  17. 46 CFR 148.205 - Ammonium nitrate and ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ammonium nitrate and ammonium nitrate fertilizers. 148... Materials § 148.205 Ammonium nitrate and ammonium nitrate fertilizers. (a) This section applies to the stowage and transportation in bulk of ammonium nitrate and the following fertilizers composed of...

  18. EXTRACTION OF URANYL NITRATE FROM AQUEOUS SOLUTIONS

    DOEpatents

    Furman, N.H.; Mundy, R.J.

    1957-12-10

    An improvement in the process is described for extracting aqueous uranyl nitrate solutions with an organic solvent such as ether. It has been found that the organic phase will extract a larger quantity of uranyl nitrate if the aqueous phase contains in addition to the uranyl nitrate, a quantity of some other soluble nitrate to act as a salting out agent. Mentioned as suitable are the nitrates of lithium, calcium, zinc, bivalent copper, and trivalent iron.

  19. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  20. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  1. Nitrates in SNCs: Implications for the nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Grady, Monica M.; Wright, I. P.; Franchi, I. A.; Pillinger, C. T.

    1993-01-01

    Nitrogen is the second most abundant constituent of the Martian atmosphere, after CO2, present at a level of ca. 2.7 percent. Several authors have hypothesized that earlier in the planet's history, nitrogen was more abundant, but has been removed by processes such as exospheric loss from the atmosphere. However, an alternative sink for atmospheric nitrogen is the regolith; model calculations have predicted that, via the formation of NOx, HNO2 and HNO3 in the lower layers of the Martian atmosphere, the regolith might trap nitrite and nitrate anions, leading to the build-up of involatile nitrates. Integrated over 4.5 x 10(exp 9) yr, such a mechanism would contribute the equivalent of a layer of nitrates up to 0.3 cm thick distributed across the Martian surface. Features in thermal emission spectra of the surface of Mars have been interpreted tentatively as emanating from various anions (carbonates, bicarbonates, sulphates, etc.), and the presence of nitrates has also been addressed as a possibility. The identification of carbonates in SCN meteorites has allowed inferences to be drawn concerning the composition and evolution of the Martian atmosphere in terms of its carbon isotope systematics; if nitrites, nitrates, or other nitrogen-bearing salts could be isolated from SNC's, similar conclusions might be possible for an analogous nitrogen cycle. Nitrates are unstable, being readily soluble in water, and decomposed at temperatures between 50 C and 600 C, depending on composition. Any nitrates present in SNC's might be removed during ejection from the planet's surface, passage to Earth, or during the sample's terrestrial history, by weathering etc. The same might have been said for carbonates, but pockets of shock-produced glass (lithology C) from within the EET A79001 shergottite and bulk samples of other SNC contain this mineral, which did apparently survive. Nitrates occurring within the glassy melt pockets of lithology C in EET A79001 might likewise be protected

  2. Recycling of chemicals from alkaline waste generated during preparation of UO 3 microspheres by sol-gel process

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Vittal Rao, T. V.; Mukerjee, S. K.; Vaidya, V. N.

    2006-05-01

    Internal gelation process, one of the sol-gel processes for nuclear fuel fabrication, offers many advantages over conventional powder pellet route. However, one of the limitation of the process is generation of large volume of alkaline liquid waste containing hexamethylenetetramine, urea, ammonium nitrate, ammonium hydroxide etc. Presence of ammonium nitrate with hexamethylenetetramine and urea presents a fire hazard which prevents direct disposal of the waste as well as its recycle by evaporation. The paper describes the studies carried out to suitably process the waste. Nitrate was removed from the waste by passing through Dowex 1 × 4 anion exchange resin in OH - form. 1.0 M NaOH was used to regenerate the resin. The nitrate-free waste was further treated to recover and recycle hexamethylenetetramine, urea and ammonium hydroxide for preparation of UO 3 microspheres. The quality of the microspheres obtained was satisfactory. An optimized flow sheet for processing of the waste solution has been suggested.

  3. Nitrate transport is independent of NADH and NAD(P)H nitrate reductases in barley seedlings

    NASA Technical Reports Server (NTRS)

    Warner, R. L.; Huffaker, R. C.

    1989-01-01

    Barley (Hordeum vulgare L.) has NADH-specific and NAD(P)H-bispecific nitrate reductase isozymes. Four isogenic lines with different nitrate reductase isozyme combinations were used to determine the role of NADH and NAD(P)H nitrate reductases on nitrate transport and assimilation in barley seedlings. Both nitrate reductase isozymes were induced by nitrate and were required for maximum nitrate assimilation in barley seedlings. Genotypes lacking the NADH isozyme (Az12) or the NAD(P)H isozyme (Az70) assimilated 65 or 85%, respectively, as much nitrate as the wild type. Nitrate assimilation by genotype (Az12;Az70) which is deficient in both nitrate reductases, was only 13% of the wild type indicating that the NADH and NAD(P)H nitrate reductase isozymes are responsible for most of the nitrate reduction in barley seedlings. For all genotypes, nitrate assimilation rates in the dark were about 55% of the rates in light. Hypotheses that nitrate reductase has direct or indirect roles in nitrate uptake were not supported by this study. Induction of nitrate transporters and the kinetics of net nitrate uptake were the same for all four genotypes indicating that neither nitrate reductase isozyme has a direct role in nitrate uptake in barley seedlings.

  4. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  5. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  6. Solubility of plutonium and uranium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.; Fleischman, S.D.

    1993-02-12

    The solubility of plutonium and uranium in alkaline salt solutions, which will be processed in the In-Tank Precipitation (ITP) process, was investigated to screen for significant factors and interactions among the factors comprising the salt solutions. The factors included in the study were hydroxide, nitrate, nitrite, aluminate, sulfate, carbonate, and temperature. Over the range of factor concentrations studied, the level of hydroxide in the solution is not sufficient alone to predict the resulting concentration of plutonium and uranium in the solution. Other constituents of the salt solution play an important role in determining the amount of plutonium and uranium in solution. Statistical models predicting the plutonium and uranium concentrations over the range of salt solutions investigated are provided.

  7. Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals.

    PubMed

    Liou, Ya Hsuan; Lin, Chin Jung; Weng, Shih Chi; Ou, Hsin Hung; Lo, Shang Lien

    2009-04-01

    In the case of the reduction of nitrate in groundwater, the problem is how to convert nitrate [N(+V)] selectively to nontoxic dinitrogen [N(O)] and not to completely reduced ammonia [N(-III)]. Unfortunately, near 100% of the total nitrogen in nitrate is reductively converted to ammonia using naked zerovalent iron (ZVI) thus far reported. In this study, deposition of noble metals (Pt, Pd, and Au) and Cu on iron surface to offer favorable pathways for nitrate reduction was fabricated using either the complete mixing orthe successive method with spontaneous redox reactions. The prepared samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy/energy disperse X-ray spectroscopy, and electrochemical analysis. The formation of N2 from the reduction of nitrate was confirmed by residual gas analyzer coupled to a high vacuum system. Based on the experimental results, the ZVI deposited Pd and Cu closely is suggested to promote the abstraction of oxygen from NOx by adsorbed atomic hydrogen on the Cu surface, and enhance N2 formation on the Pd surface. An optimum N2 selectivity of approximately 30% obtained in the alkaline solution containing nitrate using 0.3 wt.% Pd-0.5 wt% Cu/Fe is evident. For groundwater treatment, iron deposited Pd and Cu could facilitate the development of a process requiring neither a massive addition of chemicals nor complex equipment.

  8. Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment.

    PubMed

    Xu, Yaxian; Chen, Nan; Feng, Chuanping; Hao, Chunbo; Peng, Tong

    2016-12-01

    Eggshell is considered to be a waste and a significant quantity of eggshell waste is generated from food processing, baking and hatching industries. In this study, the effect of different sulfur/eggshell (w/w) ratios and temperatures was investigated to evaluate the feasibility of the sulfur-based autotrophic denitrification with eggshell (SADE) process for nitrate removal. The results showed eggshell can maintain a neutral condition in a range of pH 7.05-7.74 in the SADE process, and remove 97% of nitrate in synthetic groundwater. Compared with oyster shell and limestone, eggshell was found to be a desirable alkaline material for sulfur-based autotrophic denitrification (SAD) with no nitrite accumulation and insignificant sulfate production. Denitrification reaction was found to follow the first-order kinetic models (R(2) > .9) having nitrate removal rate constants of 0.85 and 0.93 d(-1) for raw eggshell and boiled eggshell, respectively. Sulfur/eggshell ratio of 2:3 provided the best efficiency on nitrate removal. Nitrate was removed completely by the SADE process at a low temperature of 15°C. Eggshell could be used for the SAD process due to its good effect for nitrate removal from groundwater.

  9. Reduction of nitrate in Shewanella

    SciTech Connect

    Gao, Haichun; Yang, Zamin Koo; Barua, Sumitra; Reed, SB; Nealson, Kenneth H.; Fredrikson, JK; Tiedje, James; Zhou, Jizhong

    2009-01-01

    In the genome of Shewanella oneidensis, a napDAGHB gene cluster encoding periplasmic nitrate reductase (NapA) and accessory proteins and an nrfA gene encoding periplasmic nitrite reductase (NrfA) have been identified. These two systems seem to be atypical because the genome lacks genes encoding cytoplasmic membrane electron transport proteins, NapC for NAP and NrfBCD/NrfH for NRF, respectively. Here, we present evidence that reduction of nitrate to ammonium in S. oneidensis is carried out by these atypical systems in a two-step manner. Transcriptional and mutational analyses suggest that CymA, a cytoplasmic membrane electron transport protein, is likely to be the functional replacement of both NapC and NrfH in S. oneidensis. Surprisingly, a strain devoid of napB encoding the small subunit of nitrate reductase exhibited the maximum cell density sooner than the wild type. Further characterization of this strain showed that nitrite was not detected as a free intermediate in its culture and NapB provides a fitness gain for S. oneidensis to compete for nitrate in the environments. On the basis results from mutational analyses of napA, napB, nrfA and napBnrfA in-frame deletion mutants, we propose that NapB is able to favor nitrate reduction by routing electrons to NapA exclusively.

  10. Discover Earth

    NASA Technical Reports Server (NTRS)

    Steele, Colleen

    1998-01-01

    Discover Earth is a NASA-sponsored project for teachers of grades 5-12, designed to: (1) enhance understanding of the Earth as an integrated system; (2) enhance the interdisciplinary approach to science instruction; and (3) provide classroom materials that focus on those goals. Discover Earth is conducted by the Institute for Global Environmental Strategies in collaboration with Dr. Eric Barron, Director, Earth System Science Center, The Pennsylvania State University; and Dr. Robert Hudson, Chair, the Department of Meteorology, University of Maryland at College Park. The enclosed materials: (1) represent only part of the Discover Earth materials; (2) were developed by classroom teachers who are participating in the Discover Earth project; (3) utilize an investigative approach and on-line data; and (4) can be effectively adjusted to classrooms with greater/without technology access. The Discover Earth classroom materials focus on the Earth system and key issues of global climate change including topics such as the greenhouse effect, clouds and Earth's radiation balance, surface hydrology and land cover, and volcanoes and climate change. All the materials developed to date are available on line at (http://www.strategies.org) You are encouraged to submit comments and recommendations about these materials to the Discover Earth project manager, contact information is listed below. You are welcome to duplicate all these materials.

  11. Nitrate Trends in Minnesota Rivers

    USGS Publications Warehouse

    Wall, Dave; Christopherson, Dave; Lorenz, Dave; Martin, Gary

    2013-01-01

    The objective of this study was to assess long-term trends (30 to 35 years) of flow-adjusted concentrations of nitrite+nitrate-N (hereinafter referred to as nitrate) in a way that would allow us to discern changing trends. Recognizing that these trends are commonly different from one river to another river and from one part of the state to another, our objective was to examine as many river monitoring sites across the state as possible for which sufficient long term streamflow and concentration data were available.

  12. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed.

  13. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

  14. Nitrate transport and signalling in Arabidopsis.

    PubMed

    Krapp, Anne; David, Laure C; Chardin, Camille; Girin, Thomas; Marmagne, Anne; Leprince, Anne-Sophie; Chaillou, Sylvain; Ferrario-Méry, Sylvie; Meyer, Christian; Daniel-Vedele, Françoise

    2014-03-01

    Plants have developed adaptive responses allowing them to cope with nitrogen (N) fluctuation in the soil and maintain growth despite changes in external N availability. Nitrate is the most important N form in temperate soils. Nitrate uptake by roots and its transport at the whole-plant level involves a large panoply of transporters and impacts plant performance. Four families of nitrate-transporting proteins have been identified so far: nitrate transporter 1/peptide transporter family (NPF), nitrate transporter 2 family (NRT2), the chloride channel family (CLC), and slow anion channel-associated homologues (SLAC/SLAH). Nitrate transporters are also involved in the sensing of nitrate. It is now well established that plants are able to sense external nitrate availability, and hence that nitrate also acts as a signal molecule that regulates many aspects of plant intake, metabolism, and gene expression. This review will focus on a global picture of the nitrate transporters so far identified and the recent advances in the molecular knowledge of the so-called primary nitrate response, the rapid regulation of gene expression in response to nitrate. The recent discovery of the NIN-like proteins as master regulators for nitrate signalling has led to a new understanding of the regulation cascade.

  15. Short-term effects of a high nitrate diet on nitrate metabolism in healthy individuals.

    PubMed

    Bondonno, Catherine P; Liu, Alex H; Croft, Kevin D; Ward, Natalie C; Puddey, Ian B; Woodman, Richard J; Hodgson, Jonathan M

    2015-03-12

    Dietary nitrate, through the enterosalivary nitrate-nitrite-NO pathway, can improve blood pressure and arterial stiffness. How long systemic nitrate and nitrite remain elevated following cessation of high nitrate intake is unknown. In 19 healthy men and women, the time for salivary and plasma nitrate and nitrite to return to baseline after 7 days increased nitrate intake from green leafy vegetables was determined. Salivary and plasma nitrate and nitrite was measured at baseline [D0], end of high nitrate diet [D7], day 9 [+2D], day 14 [+7D] and day 21 [+14D]. Urinary nitrite and nitrate was assessed at D7 and +14D. Increased dietary nitrate for 7 days resulted in a more than fourfold increase in saliva and plasma nitrate and nitrite (p < 0.001) measured at [D7]. At [+2D] plasma nitrite and nitrate had returned to baseline while saliva nitrate and nitrite were more than 1.5 times higher than at baseline levels. By [+7D] all metabolites had returned to baseline levels. The pattern of response was similar between men and women. Urinary nitrate and nitrate was sevenfold higher at D7 compared to +14D. These results suggest that daily ingestion of nitrate may be required to maintain the physiological changes associated with high nitrate intake.

  16. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Yang, Jin-Hui; Sun, Jin-Feng; Zhang, Ji-Heng; Wu, Fu-Yuan

    2016-03-01

    A combined study of zircon U-Pb ages, mineral chemistry, whole-rock elements and Sr-Nd-Hf isotopes was carried out for the Saima alkaline complex in the northeastern China, in order to investigate the source and petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks. The Saima alkaline complex consists of nepheline syenites, quartz-bearing syenites and alkaline volcanic rocks (i.e., phonolite and trachyte), with minor mafic dikes and carbonatitic veins. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS) zircon U-Pb dating gives consistent ages of 230-224 Ma for these rocks, suggesting that they are coeval. All alkaline rocks in the Saima complex are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs) with significant negative Nb, Ta and Ti anomalies. Geochemical data and Sr-Nd-Hf isotopic compositions indicate that the various alkaline rocks were all derived from partial melting of an ancient, re-enriched lithospheric mantle in the garnet stability field, but experienced variable siliceous- or carbonate-rich crustal contamination. Based on petrographic evidence, mineral compositions, and whole-rock geochemical data, two distinct magmatic evolutionary trends are proposed to explain the coeval emplacement of the various rock types within the Saima alkaline complex. The silica-undersaturated rocks (nepheline syenites and phonolites) result from alkali feldspar + apatite + titanite crystal fractionation of an alkaline mafic parental melt combined with assimilation of marine carbonate host rocks. In contrast, the generation of silica-saturated rocks (quartz-bearing syenites and trachytes) may be attributed to subsequent and continued clinopyroxene + apatite + biotite crystal fractionation coupled with assimilation of siliceous sediments.

  17. Carbon dioxide enrichment inhibits nitrate assimilation in wheat and Arabidopsis.

    PubMed

    Bloom, Arnold J; Burger, Martin; Rubio Asensio, Jose Salvador; Cousins, Asaph B

    2010-05-14

    The concentration of carbon dioxide in Earth's atmosphere may double by the end of the 21st century. The response of higher plants to a carbon dioxide doubling often includes a decline in their nitrogen status, but the reasons for this decline have been uncertain. We used five independent methods with wheat and Arabidopsis to show that atmospheric carbon dioxide enrichment inhibited the assimilation of nitrate into organic nitrogen compounds. This inhibition may be largely responsible for carbon dioxide acclimation, the decrease in photosynthesis and growth of plants conducting C(3) carbon fixation after long exposures (days to years) to carbon dioxide enrichment. These results suggest that the relative availability of soil ammonium and nitrate to most plants will become increasingly important in determining their productivity as well as their quality as food.

  18. Rainbow Earth.

    ERIC Educational Resources Information Center

    Arizona State Dept. of Library and Archives, Phoenix.

    The environment is a great concern in the 1990s, and everyone needs to work at maintaining our planet. The 1992 Arizona State Library Reading Program, "Rainbow Earth," provides children with many techniques they can use to help the Earth. This reading program guide provides information on the following: goals, objectives, and evaluation;…

  19. Earth tides

    SciTech Connect

    Harrison, J.C.

    1984-01-01

    Nineteen papers on gravity, tilt, and strain tides are compiled into this volume. Detailed chapters cover the calculation of the tidal forces and of the Earth's response to them, as well as actual observations of earth tides. Partial Contents: On Earth tides. The tidal forces: Tidal Forces. New Computations of the Tide-Generating Potential. Corrected Tables of Tidal Harmonics. The Theory of Tidal Deformations. Body Tides on an Elliptical, Rotating, Elastic and Oceanless Earth, Deformation of the Earth by Surface Loads. Gravimetric Tidal Loading Computed from Integrated Green's Functions. Tidal Friction in the Solid Earth. Loading Tides Versus Body Tides. Lunar Tidal Acceleration from Earth Satellite Orbit Analysis. Observations: gravity. Tidal Gravity in Britain: Tidal Loading and the Spatial Distribution of the Marine Tide. Tidal Loading along a Profile Europe-East Africa-South Asia-Australia and the Pacific Ocean. Detailed Gravity-Tide Spectrum between One and Four Cycles per Day. Observations: tilt and strain. Cavity and Topographic Effects in Tilt and Strain Measurement. Observations of Local Elastic Effects on Earth Tide Tilts and Strains.

  20. Dietary nitrate and cardiovascular health

    USGS Publications Warehouse

    Ahluwalia, A.; Gladwin, M.T.; Harman, Jane L.; Ward, M.H.; Nolan, Bernard T.

    2014-01-01

    The National Heart, Lung, and Blood Institute convened this workshop to discuss the results of recent research on the effects of inorganic nitrate and nitrite on the cardiovascular system, possible long term effects of these compounds in the diet and drinking water, and future research needs including population-wide effects examined through epidemiological studies.

  1. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification

    USGS Publications Warehouse

    Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.

    2014-01-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate + sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen–Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate + sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  2. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification.

    PubMed

    Stets, E G; Kelly, V J; Crawford, C G

    2014-08-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  3. Biological denitrification of high concentration nitrate waste

    DOEpatents

    Francis, Chester W.; Brinkley, Frank S.

    1977-01-01

    Biological denitrification of nitrate solutions at concentrations of greater than one kilogram nitrate per cubic meter is accomplished anaerobically in an upflow column having as a packing material a support for denitrifying bacteria.

  4. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  5. METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS

    DOEpatents

    Baker, R.D.; Hayward, B.R.

    1963-01-01

    >This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)

  6. A Novel Chemical Nitrate Destruction Process

    SciTech Connect

    Dziewinski, J.; Marczak, S.

    1999-03-01

    Nitrates represent one of the most significant pollutant discharged to the Baltic Sea by the Sliiamae hydrometallurgical plant. This article contains a brief overview of the existing nitrate destruction technologies followed by the description of a new process developed by the authors. The new chemical process for nitrate destruction is cost effective and simple to operate. It converts the nitrate to nitrogen gas which goes to the atmosphere.

  7. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  8. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  9. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  10. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  11. 49 CFR 176.410 - Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Division 1.5 materials, ammonium nitrate and ammonium nitrate mixtures. 176.410 Section 176.410 Transportation Other Regulations Relating to... nitrate and ammonium nitrate mixtures. (a) This section prescribes requirements to be observed...

  12. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  13. Modeling nitrate removal in a denitrification bed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Denitrification beds are being promoted to reduce nitrate concentrations in agricultural drainage water to alleviate the adverse environmental effects associated with nitrate pollution in surface water. In this system, water flows through a trench filled with a carbon media where nitrate is transfor...

  14. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  15. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  16. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  17. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Sodium nitrate. 172.170 Section 172.170 Food and... PERMITTED FOR DIRECT ADDITION TO FOOD FOR HUMAN CONSUMPTION Food Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified foods in accordance with...

  18. 21 CFR 172.170 - Sodium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium nitrate. 172.170 Section 172.170 Food and... Preservatives § 172.170 Sodium nitrate. The food additive sodium nitrate may be safely used in or on specified... follows: (1) As a preservative and color fixative, with or without sodium nitrite, in smoked,...

  19. Nitration of Naphthol: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Mowery, Dwight F.

    1982-01-01

    Products of nitrations, upon distillation or steam distillation, may produce dermatitis in some students. A procedure for nitration of beta-naphthol producing a relatively non-volatile product not purified by steam distillation is described. Nitration of alpha-naphthol by the same procedure yields Martius Yellow dye which dyes wool yellow or…

  20. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  1. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  2. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely used as a...

  3. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  4. 76 FR 70366 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-14

    ... SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate Security Program AGENCY... ``Ammonium Nitrate Security Program,'' which was published in the Federal Register on August 3, 2011. The... 62311). Under the proposed Ammonium Nitrate Security Program, the DHS will regulate the sale...

  5. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  6. 76 FR 62311 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-07

    ...; ] DEPARTMENT OF HOMELAND SECURITY Office of the Secretary 6 CFR Part 31 RIN 1601-AA52 Ammonium Nitrate Security...), entitled ``Ammonium Nitrate Security Program,'' which was published in the Federal Register on August 3... of ammonium nitrate pursuant to section 563 of the Fiscal Year 2008 Department of Homeland...

  7. 76 FR 11273 - Ammonium Nitrate From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... COMMISSION Ammonium Nitrate From Russia AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the suspended investigation on ammonium nitrate from Russia... investigation on ammonium nitrate from Russia would be likely to lead to continuation or recurrence of...

  8. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... nitrate. The food additive potassium nitrate may be safely used as a curing agent in the processing of...

  9. 21 CFR 172.160 - Potassium nitrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Potassium nitrate. 172.160 Section 172.160 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... Food Preservatives § 172.160 Potassium nitrate. The food additive potassium nitrate may be safely...

  10. 76 FR 47238 - Ammonium Nitrate From Russia

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    ... COMMISSION Ammonium Nitrate From Russia Determination On the basis of the record \\1\\ developed in the subject... order on ammonium nitrate from Russia would be likely to lead to continuation or recurrence of material... Commission are contained in USITC Publication 4249 (August 2011), entitled Ammonium Nitrate from...

  11. Latest Mesozoic-Early Cenozoic Continental Extension and Related Alkaline Magmatism in Central Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioglu, Y. K.

    2009-04-01

    The Central Anatolian crystalline complex (CACC) in Turkey includes a suite of latest Mesozoic-early Cenozoic plutonic rocks intruding the metamorphic and ophiolitic basement rocks. The intrusive rocks consist of three groups of granitoid, syenitoid, and gabbroids plutons. The granitoid units occur around the periphery of the CACC as large plutonic bodies, whereas the syenitoid assemblages crop out in the inner part of the CACC as small plutons. All the felsic plutons are crosscut by the gabbroid rocks in the region. The alkaline rocks of the CACC change in composition from nordmarkite through pulaskite to lusitanite, and are made of silica-saturated and silica-undersaturated magmas. The silica under-saturated alkaline rocks have gradual contacts with the silica-saturated alkaline rocks and constitute the main component of the alkaline rocks in the CACC. Nepheline, pseudoleucite, cancrinite, nosean, melanite and arfvedsonite are the main typical mineral compositions of the silica-undersaturated alkaline rocks. The leucite- and pseudoleucite-bearing rocks have porphyritic textures intruding the other main subunits of the alkaline rocks at high topographic elevations in the region. They are mostly composed of foid syenite, monzosyenite, monzodiorite and include rare amount of monzogabbro and foidolite. Each subunit has a transitional contact with the others and is crosscut by alkali feldspar foid syenite veins. Felsic dykes intrude the alkaline rock units and fluorite-bearing hydrothermal veins, which manifest themselves as alteration zones. The alkaline rocks have an abundance of xenolithic enclaves but lack any magma mixing-mingling produced enclaves. Normalized elemental patterns of the analyzed alkaline rocks show a slight enrichment in large ion lithophile elements (LILE) and light rare earth elements relatively to high field strength elements (HFSE) and heavy rare earth elements (HREE). The less fluid mobile, LILE and LREE concentration in the alkaline rocks

  12. Stability of the Caustic-Side Solvent Extraction (CSSX) Process Solvent: Effect of High Nitrite on Solvent Nitration

    SciTech Connect

    Bonnesen, P.V.

    2002-06-26

    The purpose of this investigation was to determine whether nitrated organic compounds could be formed during operation of the Caustic-Side Solvent Extraction (CSSX) process, and whether such compounds would present a safety concern. The CSSX process was developed to remove cesium from alkaline high-level salt waste stored at the US Department of Energy Savannah River Site (SRS). The solvent is composed of the cesium extractant calix[4]arene-bis-(4-tert-octylbenzo-crown-6) (BOBCalixC6), a fluorinated alcohol phase modifier, tri-n-octylamine (TOA), and an isoparaffinic diluent (Iospar{reg_sign}). During the CSSX process, the solvent is expected to be exposed to high concentrations of nitrate and nitrite dissolved in the alkaline waste feed. The solvent will also be exposed to dilute (50 mM) nitric acid solutions containing low concentrations of nitrite during scrubbing, followed by stripping with 1 mM nitric acid. The solvent is expected to last for one year of plant operation, and the temperatures the solvent may experience during the process could range from as low as 15 C to as high as 35 C. Excursions from standard process conditions could result in the solvent experiencing higher temperatures, as well as concentrations of nitrate, nitrite, and most importantly nitric acid, that exceed normal operating conditions. Accordingly, conditions may exist where nitration reactions involving the solvent components, possibly leading to other chemical reactions stemming from nitration reactions, could occur. To model such nitration reactions, the solvent was exposed to the types of nitrate- and nitrite-containing solutions that might be expected to be encountered during the process (even under off-normal conditions), as a function of time, temperature, and concentration of nitrate, nitrite, and nitric acid. The experiments conducted as part of this report were designed to examine the more specific effect that high nitrite concentrations could have on forming nitrated

  13. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  14. Improvements in analysis of atmospheric peroxyacetyl nitrate (PAN)

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Müller, Josef; Klein, Werner

    Common analytical techniques for PAN determination were modified in order to obtain a sensitive and automatic analysis system. PAN was synthesized by nitration of peracetic acid in hexane, The PAN/hexane solution was purified by water extraction. The quantification was performed determining acetate or nitrite by ion chromatography following alkaline hydrolysis. The validity was checked by liquid i.r. speetroscopy. NMR studies revealed a singulet signal at 2.27 ppm. The precision and sensitivity of the gas Chromatographic analyses were improved by the use of wide bore capillary columns coated with Carbowax 400. The developed system enables automatic and continuous PAN measurements at a 10 min sampling sequence and with a detection limit of 50 ppt.

  15. Decomposition and Stability Studies of TAGN (Triaminoguanidium Nitrate)

    DTIC Science & Technology

    1988-12-01

    and atomic absorption spectroscopy . TAGN (Triaminoquanidinium Nitrate), DAGN (Diaminoquanidinium Nitrate), Thermal analysis, Mass Spectroscopy, RDX (Trinitrotriazacyclohexane), Decomposition chemistry.

  16. Martian alkaline basites chemically resemble basic rocks of the Lovozero alkaline massif, Kola peninsula

    NASA Astrophysics Data System (ADS)

    Kochemasov, G.

    The comparative wave planetology [1, 5] successfully overcomes the most principal martian test having now analyses of alkaline rocks from Columbia Hills [2, 3, 4]. This kind of rocks was predicted earlier on basis of the wave paradigm having stated that "the higher planetary relief range - the higher density difference between lithologies composing hypsometrically (tectonically) contrasting blocks [5]. This paradigm declares that "celestial bodies are dichotomic"(Theorem 1), "celestial bodies are sectoral" (Theorem 2), "celestial bodies are granular"(Theorem 3), "angular momenta of different level blocks tend to be equal" (Theorem 4)[1, 5]. Mars is a typical terrestrial planet but the farthest from Sun and thus with the smallest tide effects. Nevertheless it has the highest relief range and seems to be most distorted (ellipsoid in shape) and broken by deep fissures. The wave approach explains this by a warping action of standing waves of 4 ortho- and diagonal directions - they are the longest and highest in the martian case. These interfering warping waves caused by the elliptic keplerian orbits implying periodically changing accelerations and inertia-gravity forces produce inevitable tectonic dichotomy (the fundamental wave 1 long 2πR), sectoring (wave 2, πR, and other overtones), granulation. A granule size depends on an orbital frequency: the higher frequency the smaller granule. The Earth's granule, as a scale, is πR/4 (see it in NASA's PIA04159), Venus ` πR/6, Mercury's πR/16, Mars' πR/2 (the sizes are strictly tied to orb. fr.). Along with the granule sizes increase relief ranges ( Mercury ˜5 km, Venus 14, Earth 20, Mars ˜30) and compositional (density) difference between lowland and highland lithologies [5]. The lowland compositions become Fericher and denser: enstatite (Mercury), Mg-basalt (Venus), tholeiite (Earth), Fe-basalt (Mars). The highland compositions get less dense, lighter: anorthosite, alkaline basalt, andesite and conditional "albitite

  17. Competitive incorporation of perrhenate and nitrate into sodalite.

    PubMed

    Dickson, Johnbull O; Harsh, James B; Flury, Markus; Lukens, Wayne W; Pierce, Eric M

    2014-11-04

    Nuclear waste storage tanks at the Hanford site in southeastern Washington have released highly alkaline solutions, containing radioactive and other contaminants, into subsurface sediments. When this waste reacts with subsurface sediments, feldspathoid minerals (sodalite, cancrinite) can form, sequestering pertechnetate (99TcO4-) and other ions. This study investigates the potential for incorporation of perrhenate (ReO4-), a chemical surrogate for 99TcO4-, into mixed perrhenate/nitrate (ReO4-/NO3-) sodalite. Mixed-anion sodalites were hydrothermally synthesized in the laboratory from zeolite A in sodium hydroxide, nitrate, and perrhenate solutions at 90 °C for 24 h. The resulting solids were characterized by bulk chemical analysis, X-ray diffraction, scanning electron microscopy, and X-ray absorption near edge structure spectroscopy (XANES) to determine the products' chemical composition, structure, morphology, and Re oxidation state. The XANES data indicated that nearly all rhenium (Re) was incorporated as Re(VII)O4-. The nonlinear increase of the unit cell parameter with ReO4-/NO3- ratios suggests formation of two separate sodalite phases in lieu of a mixed-anion sodalite. The results reveal that the sodalite cage is highly selective toward NO3- over ReO4-. Calculated enthalpy and Gibbs free energy of formation at 298 K for NO3- and ReO4-sodalite suggest that NO3- incorporation into the cage is favored over the incorporation of the larger ReO4-, due to the smaller ionic radius of NO3-. Based on these results, it is expected that NO3-, which is present at significantly higher concentrations in alkaline waste solutions than 99TcO4-, will be strongly preferred for incorporation into the sodalite cage.

  18. Electrochemical removal of nitrate using ZVI packed bed bipolar electrolytic cell.

    PubMed

    Jeong, Joo-Young; Kim, Han-Ki; Kim, Jung-Hwan; Park, Joo-Yang

    2012-09-01

    The present study investigates the performance of the zero valent iron (ZVI, Fe(0)) packed bed bipolar electrolytic cell for nitrate removal. The packing mixture consists of ZVI as electronically conducting material and silica sand as non-conducting material between main cathode and anode electrodes. In the continuous column experiments for the simulated groundwater (initial nitrate and electrical conductivity of about 30 mg L(-1) as N and 300 μS cm(-1), respectively), above 99% of nitrate was removed at the applied potential of 600 V with the main anode placed on the bottom of reactor. The influx nitrate was converted to ammonia (20% to maximum 60%) and nitrite (always less than 0.5 mg L(-1) as N in the effluent). The optimum packing ratio (v/v) of silica sand to ZVI was found to be 1:1-2:1. Magnetite was observed on the surface of the used ZVI as corrosion product. The reduction at the lower part of the reactor in acidic condition and adsorption at the upper part of the reactor in alkaline condition are the major mechanism of nitrate removal.

  19. Continuous flow nitration in miniaturized devices

    PubMed Central

    2014-01-01

    Summary This review highlights the state of the art in the field of continuous flow nitration with miniaturized devices. Although nitration has been one of the oldest and most important unit reactions, the advent of miniaturized devices has paved the way for new opportunities to reconsider the conventional approach for exothermic and selectivity sensitive nitration reactions. Four different approaches to flow nitration with microreactors are presented herein and discussed in view of their advantages, limitations and applicability of the information towards scale-up. Selected recent patents that disclose scale-up methodologies for continuous flow nitration are also briefly reviewed. PMID:24605161

  20. Nitrated fatty acids: synthesis and measurement.

    PubMed

    Woodcock, Steven R; Bonacci, Gustavo; Gelhaus, Stacy L; Schopfer, Francisco J

    2013-06-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia/reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis and sample extraction from complex biological matrices and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by liquid chromatography-mass spectrometry. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed.

  1. Nitrated fatty acids: Synthesis and measurement

    PubMed Central

    Woodcock, Steven R.; Bonacci, Gustavo; Gelhaus, Stacy L.; Schopfer, Francisco J.

    2012-01-01

    Nitrated fatty acids are the product of nitrogen dioxide reaction with unsaturated fatty acids. The discovery of peroxynitrite and peroxidase-induced nitration of biomolecules led to the initial reports of endogenous nitrated fatty acids. These species increase during ischemia reperfusion, but concentrations are often at or near the limits of detection. Here, we describe multiple methods for nitrated fatty acid synthesis, sample extraction from complex biological matrices, and a rigorous method of qualitative and quantitative detection of nitrated fatty acids by LC-MS. In addition, optimized instrument conditions and caveats regarding data interpretation are discussed. PMID:23200809

  2. Discover Earth

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Discover Earth is a NASA-funded project for teachers of grades 5-12 who want to expand their knowledge of the Earth system, and prepare to become master teachers who promote Earth system science in their own schools, counties, and throughout their state. Participants from the following states are invited to apply: Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont, and Washington, DC. Teachers selected for the project participate in a two-week summer workshop conducted at the University of Maryland, College Park; develop classroom-ready materials during the workshop for broad dissemination; conduct a minimum of two peer training activities during the coming school year; and participate in other enrichment/education opportunities as available and desired. Discover Earth is a team effort that utilizes expertise from a range of contributors, and balances science content with hands-on classroom applications.

  3. Earth Rotation

    NASA Technical Reports Server (NTRS)

    Dickey, Jean O.

    1995-01-01

    The study of the Earth's rotation in space (encompassing Universal Time (UT1), length of day, polar motion, and the phenomena of precession and nutation) addresses the complex nature of Earth orientation changes, the mechanisms of excitation of these changes and their geophysical implications in a broad variety of areas. In the absence of internal sources of energy or interactions with astronomical objects, the Earth would move as a rigid body with its various parts (the crust, mantle, inner and outer cores, atmosphere and oceans) rotating together at a constant fixed rate. In reality, the world is considerably more complicated, as is schematically illustrated. The rotation rate of the Earth's crust is not constant, but exhibits complicated fluctuations in speed amounting to several parts in 10(exp 8) [corresponding to a variation of several milliseconds (ms) in the Length Of the Day (LOD) and about one part in 10(exp 6) in the orientation of the rotation axis relative to the solid Earth's axis of figure (polar motion). These changes occur over a broad spectrum of time scales, ranging from hours to centuries and longer, reflecting the fact that they are produced by a wide variety of geophysical and astronomical processes. Geodetic observations of Earth rotation changes thus provide insights into the geophysical processes illustrated, which are often difficult to obtain by other means. In addition, these measurements are required for engineering purposes. Theoretical studies of Earth rotation variations are based on the application of Euler's dynamical equations to the problem of finding the response of slightly deformable solid Earth to variety of surface and internal stresses.

  4. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  5. Molten nitrate salt technology development

    NASA Astrophysics Data System (ADS)

    Carling, R. W.

    1981-04-01

    This paper presents an overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program. The experimental programs are concentrating on molten nitrate salts which have been proposed as heat transfer and energy storage medium. The salt composition of greatest interest is drawsalt, nominally a 50-50 molar mixture of NaNO3 and KNO3 with a melting point of 220 C. Several technical uncertainties have been identified that must be resolved before nitrate based solar plants can be commercialized. Research programs at Sandia National Laboratories, universities, and industrial suppliers have been implemented to resolve these technical uncertainties. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications such as the repowering/industrial retrofit and cogeneration program are presented.

  6. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, M.; Yoo, C. S.

    2014-05-01

    Ammonium Nitrate (AN) has often subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood -resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 17 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400 °C.

  7. Digital Earth

    NASA Astrophysics Data System (ADS)

    de La Beaujardiere, J.

    2001-05-01

    Digital Earth (DE) seeks to make geospatial information broadly and easily available. Vast amounts of natural and cultural information are gathered about the Earth, but it is often difficult to find needed data, to share knowledge across disciplines, and to combine information from several sources. DE defines a framework for interoperability by selecting relevant open standards from the information technology community. These standards specify the technical means by which publishers can provide or sell their data, and by which client applications can find and access data in an automated fashion. The standardized DE framework enables many types of clients--from web browsers to museum kiosks to research-grade virtual environments--to use a common geospatial information infrastructure. Digital Earth can benefit Earth system education in general, and DLESE in particular, in several ways. First, educators, students and creators of instructional material will benefit from standardized access to georeferenced data. Secondly, educational lesson plans that focus on a region or aspect of the Earth can themselves be considered geospatial information resources that could be cataloged and retrieved through DE. Finally, general public knowledge about our planet will by increased by Digital Earth.

  8. Pollution of drinking water with nitrate

    SciTech Connect

    Cabel, B.; Kozicki, R.; Lahl, U.; Podbielshi, A.; Stachel, B.; Struss, S.

    1982-01-01

    The main sources of nitrate in man are food and drinking water. The legislature in West Germany intends to lower the permitted level of nitrate in drinking water from the present 90 mg/l to 50 mg/l in 1982. The European Community has issued a directive that recommends a level of only 25 mg/l, and for babies 10 mg/l nitrate should not be exceeded. At present, nitrate cannot be removed from raw water at an acceptable cost. The problem of high nitrate content is mainly one of drinking water generation from ground water. Several analyses indicate rising concentrations of nitrate in ground water in different regions of West Germany, especially in the last few years. The following sources of nitrate-contamination of ground water aquifers in West are discussed: natural sources; over-manuring of agricultural areas with natural organic fertilizers; over-manuring of agricultural areas with synthetic fertilizers.

  9. Nitrate Utilization by the Diatom Skeletonema costatum

    PubMed Central

    Serra, Juan L.; Llama, Maria J.; Cadenas, Eduardo

    1978-01-01

    Nitrate uptake has been studied in nitrogen-deficient cells of the marine diatom Skeletonema costatum. When these cells are incubated in the presence of nitrate, this ion is quickly taken up from the medium, and nitrite is excreted by the cells. Nitrite is excreted following classical saturation kinetics, its rate being independent of nitrate concentration in the incubation medium for nitrate concentration values higher than 3 micromolar. Nitrate uptake shows mixed-transfer kinetics, which can be attributed to the simultaneous contributions of mediated and diffusion transfer. Cycloheximide and p-hydroxymercuribenzoate inhibit the carrier-mediated contribution to nitrate uptake, without affecting the diffusion component. When cells are preincubated with nitrate, the net nitrogen uptake is increased. PMID:16660652

  10. A low-temperature process for the denitration of Hanford single-shell tank, nitrate-based waste utilizing the nitrate to ammonia and ceramic (NAC) process

    SciTech Connect

    Mattus, A.J.; Lee, D.D.; Dillow, T.A.; Farr, L.L.; Loghry, S.L.; Pitt, W.W.; Gibson, M.R.

    1994-12-01

    Bench-top feasibility studies with Hanford single-shell tank (SST) simulants, using a new, low-temperature (50 to 60C) process for converting nitrate to ammonia and ceramic (NAC), have conclusively shown that between 85 to 99% of the nitrate can be readily converted. In this process, aluminum powders or shot can be used to convert alkaline, nitrate-based supernate to ammonia and an aluminum oxide-sodium aluminate-based solid which might function as its own waste form. The process may actually be able to utilize already contaminated aluminum scrap metal from various DOE sites to effect the conversion. The final, nearly nitrate-free ceramic-like product can be pressed and sintered like other ceramics. Based upon the starting volumes of 6.2 and 3.1 M sodium nitrate solution, volume reductions of 50 to 55% were obtained for the waste form produced, compared to an expected 35 to 50% volume increase if the Hanford supernate were grouted. Engineering data extracted from bench-top studies indicate that the process will be very economical to operate, and data were used to cost a batch, 1,200-kg NO{sub 3}/h plant for working off Hanford SST waste over 20 years. Their total process cost analysis presented in the appendix, indicates that between $2.01 to 2.66 per kilogram of nitrate converted will be required. Additionally, data on the fate of select radioelements present in solution are presented in this report as well as kinetic, operational, and control data for a number of experiments. Additionally, if the ceramic product functions as its own waste form, it too will offer other cost savings associated with having a smaller volume of waste form as well as eliminating other process steps such as grouting.

  11. High performance ammonium nitrate propellant

    NASA Technical Reports Server (NTRS)

    Anderson, F. A. (Inventor)

    1979-01-01

    A high performance propellant having greatly reduced hydrogen chloride emission is presented. It is comprised of: (1) a minor amount of hydrocarbon binder (10-15%), (2) at least 85% solids including ammonium nitrate as the primary oxidizer (about 40% to 70%), (3) a significant amount (5-25%) powdered metal fuel, such as aluminum, (4) a small amount (5-25%) of ammonium perchlorate as a supplementary oxidizer, and (5) optionally a small amount (0-20%) of a nitramine.

  12. Molten nitrate salt materials studies

    NASA Astrophysics Data System (ADS)

    Carling, R. M.

    1981-03-01

    An overview of the experimental programs underway in support of the Thermal Energy Storage for Solar Thermal Applications (TESSTA) program is presented. The experimental programs are concentrating on molten nitrate salts which were proposed as heat transfer and energy storage medium. The experimental programs involve corrosion, decomposition, physical properties, and environmental cracking. Summaries of each project and how they impact central receiver applications are presented.

  13. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  14. Constructing and Screening a Metagenomic Library of a Cold and Alkaline Extreme Environment.

    PubMed

    Glaring, Mikkel A; Vester, Jan K; Stougaard, Peter

    2017-01-01

    Natural cold or alkaline environments are common on Earth. A rare combination of these two extremes is found in the permanently cold (less than 6 °C) and alkaline (pH above 10) ikaite columns in the Ikka Fjord in Southern Greenland. Bioprospecting efforts have established the ikaite columns as a source of bacteria and enzymes adapted to these conditions. They have also highlighted the limitations of cultivation-based methods in this extreme environment and metagenomic approaches may provide access to novel extremophilic enzymes from the uncultured majority of bacteria. Here, we describe the construction and screening of a metagenomic library of the prokaryotic community inhabiting the ikaite columns.

  15. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  16. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  17. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  18. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  19. 49 CFR 176.415 - Permit requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... nitrates, and certain ammonium nitrate fertilizers. 176.415 Section 176.415 Transportation Other... requirements for Division 1.5, ammonium nitrates, and certain ammonium nitrate fertilizers. (a) Except as... Captain of the Port (COTP). (1) Ammonium nitrate UN1942, ammonium nitrate fertilizers containing more...

  20. Catalyzed reduction of nitrate in aqueous solutions

    SciTech Connect

    Haas, P.A.

    1994-08-01

    Sodium nitrate and other nitrate salts in wastes is a major source of difficulty for permanent disposal. Reduction of nitrate using aluminum metal has been demonstrated, but NH{sub 3}, hydrazine, or organic compounds containing oxygen would be advantageous for reduction of nitrate in sodium nitrate solutions. Objective of this seed money study was to determine minimum conditions for reduction. Proposed procedure was batchwise heating of aqueous solutions in closed vessels with monitoring of temperatures and pressures. A simple, convenient apparatus and procedure were demonstrated for observing formation of gaseous products and collecting samples for analyses. The test conditions were 250{degree}C and 1000 psi max. Any useful reduction of sodium nitrate to sodium hydroxide as the primary product was not found. The nitrate present at pHs < 4 as HNO{sub 3} or NH{sub 4}NO{sub 3} is easily decomposed, and the effect of nitromethane at these low pHs was confirmed. When acetic acid or formic acid was added, 21 to 56% of the nitrate in sodium nitrate solutions was reduced by methanol or formaldehyde. With hydrazine and acetic acid, 73 % of the nitrate was decomposed to convert NaNO{sub 3} to sodium acetate. With hydrazine and formic acid, 36% of the nitrate was decomposed. If these products are more acceptable for final disposal than sodium nitrate, the reagents are cheap and the conversion conditions would be practical for easy use. Ammonium acetate or formate salts did not significantly reduce nitrate in sodium nitrate solutions.

  1. Regenerative fuel cell energy storage system for a low Earth orbit space station

    SciTech Connect

    Martin, R.E.; Garow, J.; Michaels, K.B.

    1984-08-01

    Results of a study to define the characteristics of a regenerative fuel cell energy storage system for a large space station operating in low earth orbit (LEO) are presented. The regenerative fuel cell system employs an alkaline electrolyte fuel cell with the option of employing either an alkaline or a solid polymer electrolyte electrolyzer.

  2. Earth: Earth Science and Health

    NASA Technical Reports Server (NTRS)

    Maynard, Nancy G.

    2001-01-01

    A major new NASA initiative on environmental change and health has been established to promote the application of Earth science remote sensing data, information, observations, and technologies to issues of human health. NASA's Earth Sciences suite of Earth observing instruments are now providing improved observations science, data, and advanced technologies about the Earth's land, atmosphere, and oceans. These new space-based resources are being combined with other agency and university resources, data integration and fusion technologies, geographic information systems (GIS), and the spectrum of tools available from the public health community, making it possible to better understand how the environment and climate are linked to specific diseases, to improve outbreak prediction, and to minimize disease risk. This presentation is an overview of NASA's tools, capabilities, and research advances in this initiative.

  3. Nitrates and bone turnover (NABT) - trial to select the best nitrate preparation: study protocol for a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Organic nitrates uncouple bone turnover, improve bone mineral density, and improve trabecular and cortical components of bone. These changes in turnover, strength and geometry may translate into an important reduction in fractures. However, before proceeding with a large fracture trial, there is a need to identify the nitrate formulation that has both the greatest efficacy (with regards to bone turnover markers) and gives the fewest headaches. Ascertaining which nitrate formulation this may be is the purpose of the current study. Methods and design This will be an open-label randomized, controlled trial conducted at Women’s College Hospital comparing five formulations of nitrates for their effects on bone turnover markers and headache. We will recruit postmenopausal women age 50 years or older with no contraindications to nitroglycerin. Our trial will consist of a run-in phase and a treatment phase. We will enroll 420 women in the run-in phase, each to receive all of the 5 potential treatments in random order for 2 days, each with a 2-day washout period between treatments. Those who tolerate all formulations will enter the 12-week treatment phase and be randomly assigned to one of five groups: 0.3 mg sublingual nitroglycerin tablet, 0.6 mg of the sublingual tablet, a 20 mg tablet of isosorbide mononitrate, a 160 mg nitroglycerin transdermal patch (used for 8 h), and 15 mg of nitroglycerin ointment as used in a previous trial by our group. We will continue enrolment until we have randomized 210 women or 35 women per group. Concentrations of bone formation (bone-specific alkaline phosphatase and procollagen type I N-terminal propeptide) and bone resorption (C-telopeptides of collagen crosslinks and N-terminal crosslinks of collagen) agents will be measured in samples taken at study entry (the start of the run in phase) and 12 weeks. Subjects will record the frequency and severity of headaches daily during the run-in phase and then monthly after that. We

  4. Ion Recognition Approach to Volume Reduction of Alkaline Tank Waste by Separation of Sodium Salts

    SciTech Connect

    Levitskaia, Tatiana G.; Lumetta, Gregg J.; Moyer, Bruce A.; Bonnesen, Peter V.

    2006-06-01

    The purpose of this research involving collaboration between Oak Ridge National Laboratory (ORNL) and Pacific Northwest National Laboratory (PNNL) is to explore new approaches to the separation of sodium hydroxide, sodium nitrate, and other sodium salts from high-level alkaline tank waste. The principal potential benefit is a major reduction in disposed waste volume, obviating the building of expensive new waste tanks and reducing the costs of low-activity waste immobilization. Principles of ion recognition are being researched toward discovery of liquid extraction systems that selectively separate sodium hydroxide and sodium nitrate from other waste components. The successful concept of pseudohydroxide extraction using fluorinated alcohols and phenols is being developed at ORNL and PNNL toward a greater understanding of the controlling equilibria, role of solvation, and of synergistic effects involving crown ethers. Studies at PNNL are directed toward new solvent formulation for the practical sodium pseudohydroxide extraction systems.

  5. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  6. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  7. Effect of nitrate on microbial perchlorate reduction

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Coates, J. D.

    2007-12-01

    Over the last decade perchlorate has been recognized as an important emerging water contaminant that poses a significant public health threat. Because of its chemical stability, low ionic charge density, and significant water solubility microbial remediation has been identified as the most feasible method for its in situ attenuation. Our previous studies have demonstrated that dissimilatory perchlorate reducing bacteria (DPRB) capable of the respiratory reduction of perchlorate into innocuous chloride are ubiquitous in soil and sedimentary environments. As part of their metabolism these organisms reduce perchlorate to chlorite which is subsequently dismutated into chloride and molecular oxygen. These initial steps are mediated by the perchlorate reductase and chlorite dismutase enzymes respectively. Previously we found that the activity of these organisms is dependent on the presence of molybdenum and is inhibited by the presence of oxygen and to different extents nitrate. However, to date, there is little understanding of the mechanisms involved in the regulation of perchlorate reduction by oxygen and nitrate. As a continuation of our studies into the factors that control DPRB activity we investigated these regulatory mechanisms in more detail as a model organism, Dechloromonas aromatica strain RCB, transitions from aerobic metabolism through nitrate reduction to perchlorate reduction. In series of growth transition studies where both nitrate and perchlorate were present, preference for nitrate to perchlorate was observed regardless of the nitrate to perchlorate ratio. Even when the organism was pre-grown anaerobically in perchlorate, nitrate was reduced prior to perchlorate. Using non-growth washed cell suspension, perchlorate- grown D. aromatica was capable of reducing both perchlorate and nitrate concomitantly suggesting the preferentially utilization of nitrate was not a result of enzyme functionality. To elucidate the mechanism for preferential utilization of

  8. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, Jean-Francois; Peeters, Jozef; Stavrakou, Trisevgeni

    2014-05-01

    We show that photolysis is, by far, the major atmospheric sink of isoprene-derived carbonyl nitrates. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications, as carbonyl nitrates constitute an important component of the total organic nitrate pool over vegetated areas: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  9. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly

  10. Nitrates

    MedlinePlus

    ... or interactions with other medicines and vitamin or herbal supplements. This information should not be used as medical ... your doctor about every medicine and vitamin or herbal supplement that you are taking, so he or she ...

  11. Digital Earth - A sustainable Earth

    NASA Astrophysics Data System (ADS)

    Mahavir

    2014-02-01

    All life, particularly human, cannot be sustainable, unless complimented with shelter, poverty reduction, provision of basic infrastructure and services, equal opportunities and social justice. Yet, in the context of cities, it is believed that they can accommodate more and more people, endlessly, regardless to their carrying capacity and increasing ecological footprint. The 'inclusion', for bringing more and more people in the purview of development is often limited to social and economic inclusion rather than spatial and ecological inclusion. Economic investment decisions are also not always supported with spatial planning decisions. Most planning for a sustainable Earth, be at a level of rural settlement, city, region, national or Global, fail on the capacity and capability fronts. In India, for example, out of some 8,000 towns and cities, Master Plans exist for only about 1,800. A chapter on sustainability or environment is neither statutorily compulsory nor a norm for these Master Plans. Geospatial technologies including Remote Sensing, GIS, Indian National Spatial Data Infrastructure (NSDI), Indian National Urban Information Systems (NUIS), Indian Environmental Information System (ENVIS), and Indian National GIS (NGIS), etc. have potential to map, analyse, visualize and take sustainable developmental decisions based on participatory social, economic and social inclusion. Sustainable Earth, at all scales, is a logical and natural outcome of a digitally mapped, conceived and planned Earth. Digital Earth, in fact, itself offers a platform to dovetail the ecological, social and economic considerations in transforming it into a sustainable Earth.

  12. Think Earth.

    ERIC Educational Resources Information Center

    Niedermeyer, Fred; Ice, Kay

    1992-01-01

    Describes a series of environmental education instructional units for grades K-6 developed by the Think Earth Consortium that cover topics such as conservation, pollution control, and waste reduction. Provides testimony from one sixth-grade teacher that field tested the second-grade unit. (MDH)

  13. Rare earths

    USGS Publications Warehouse

    Gambogi, J.

    2013-01-01

    Global mine production of rare earths was estimated to have declined slightly in 2012 relative to 2011 (Fig. 1). Production in China was estimated to have decreased to 95 from 105 kt (104,700 from 115,700 st) in 2011, while new mine production in the United States and Australia increased.

  14. Groundwater nitrate contamination: factors and indicators.

    PubMed

    Wick, Katharina; Heumesser, Christine; Schmid, Erwin

    2012-11-30

    Identifying significant determinants of groundwater nitrate contamination is critical in order to define sensible agri-environmental indicators that support the design, enforcement, and monitoring of regulatory policies. We use data from approximately 1200 Austrian municipalities to provide a detailed statistical analysis of (1) the factors influencing groundwater nitrate contamination and (2) the predictive capacity of the Gross Nitrogen Balance, one of the most commonly used agri-environmental indicators. We find that the percentage of cropland in a given region correlates positively with nitrate concentration in groundwater. Additionally, environmental characteristics such as temperature and precipitation are important co-factors. Higher average temperatures result in lower nitrate contamination of groundwater, possibly due to increased evapotranspiration. Higher average precipitation dilutes nitrates in the soil, further reducing groundwater nitrate concentration. Finally, we assess whether the Gross Nitrogen Balance is a valid predictor of groundwater nitrate contamination. Our regression analysis reveals that the Gross Nitrogen Balance is a statistically significant predictor for nitrate contamination. We also show that its predictive power can be improved if we account for average regional precipitation. The Gross Nitrogen Balance predicts nitrate contamination in groundwater more precisely in regions with higher average precipitation.

  15. Trend Analyses of Nitrate in Danish Groundwater

    NASA Astrophysics Data System (ADS)

    Hansen, B.; Thorling, L.; Dalgaard, T.; Erlandsen, M.

    2012-04-01

    This presentation assesses the long-term development in the oxic groundwater nitrate concentration and nitrogen (N) loss due to intensive farming in Denmark. Firstly, up to 20-year time-series from the national groundwater monitoring network enable a statistically systematic analysis of distribution, trends and trend reversals in the groundwater nitrate concentration. Secondly, knowledge about the N surplus in Danish agriculture since 1950 is used as an indicator of the potential loss of N. Thirdly, groundwater recharge CFC (Chlorofluorocarbon) age determination allows linking of the first two dataset. The development in the nitrate concentration of oxic groundwater clearly mirrors the development in the national agricultural N surplus, and a corresponding trend reversal is found in groundwater. Regulation and technical improvements in the intensive farming in Denmark have succeeded in decreasing the N surplus by 40% since the mid 1980s while at the same time maintaining crop yields and increasing the animal production of especially pigs. Trend analyses prove that the youngest (0-15 years old) oxic groundwater shows more pronounced significant downward nitrate trends (44%) than the oldest (25-50 years old) oxic groundwater (9%). This amounts to clear evidence of the effect of reduced nitrate leaching on groundwater nitrate concentrations in Denmark. Are the Danish groundwater monitoring strategy obtimal for detection of nitrate trends? Will the nitrate concentrations in Danish groundwater continue to decrease or are the Danish nitrate concentration levels now appropriate according to the Water Framework Directive?

  16. Measurement of isoprene nitrates by GCMS

    NASA Astrophysics Data System (ADS)

    Mills, Graham P.; Hiatt-Gipson, Glyn D.; Bew, Sean P.; Reeves, Claire E.

    2016-09-01

    According to atmospheric chemistry models, isoprene nitrates play an important role in determining the ozone production efficiency of isoprene; however this is very poorly constrained through observations as isoprene nitrates have not been widely measured. Measurements have been severely restricted largely due to a limited ability to measure individual isoprene nitrate isomers. An instrument based on gas chromatography/mass spectrometry (GCMS) and the associated calibration methods are described for the speciated measurements of individual isoprene nitrate isomers. Five of the primary isoprene nitrates which formed in the presence of NOx by reaction of isoprene with the hydroxyl radical (OH) in the Master Chemical Mechanism are identified using known isomers on two column phases and are fully separated on the Rtx-200 column. Three primary isoprene nitrates from the reaction of isoprene with the nitrate radical (NO3) are identified after synthesis from the already identified analogous hydroxy nitrate. A Tenax adsorbent-based trapping system allows the analysis of the majority of the known hydroxy and carbonyl primary isoprene nitrates, although not the (1,2)-IN isomer, under field-like levels of humidity and showed no impact from typical ambient concentrations of NOx and ozone.

  17. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2013-11-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections, and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as the likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photorates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methylvinylketone nitrates strongly supports our assumptions of large cross section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  18. Fast photolysis of carbonyl nitrates from isoprene

    NASA Astrophysics Data System (ADS)

    Müller, J.-F.; Peeters, J.; Stavrakou, T.

    2014-03-01

    Photolysis is shown to be a major sink for isoprene-derived carbonyl nitrates, which constitute an important component of the total organic nitrate pool over vegetated areas. Empirical evidence from published laboratory studies on the absorption cross sections and photolysis rates of α-nitrooxy ketones suggests that the presence of the nitrate group (i) greatly enhances the absorption cross sections and (ii) facilitates dissociation to a point that the photolysis quantum yield is close to unity, with O-NO2 dissociation as a likely major channel. On this basis, we provide new recommendations for estimating the cross sections and photolysis rates of carbonyl nitrates. The newly estimated photo rates are validated using a chemical box model against measured temporal profiles of carbonyl nitrates in an isoprene oxidation experiment by Paulot et al. (2009). The comparisons for ethanal nitrate and for the sum of methacrolein- and methyl vinyl ketone nitrates strongly supports our assumptions of large cross-section enhancements and a near-unit quantum yield for these compounds. These findings have significant atmospheric implications: the photorates of key carbonyl nitrates from isoprene are estimated to be typically between ~ 3 and 20 times higher than their sink due to reaction with OH in relevant atmospheric conditions. Moreover, since the reaction is expected to release NO2, photolysis is especially effective in depleting the total organic nitrate pool.

  19. NOx in the Atmosphere of Early Earth as Electron Acceptors for Life

    NASA Astrophysics Data System (ADS)

    Wong, M. L.; Charnay, B.; Gao, P.; Yung, Y. L.; Russell, M. J.

    2015-12-01

    We quantify the amount of NOx produced in the Hadean atmosphere and available in the Hadean ocean for the emergence of life. Atmospherically generated nitrate (NO3-) and nitrite (NO2-) are the most attractive high-potential electron acceptors for driving the highly endergonic reactions at the entry points to autotrophic metabolic pathways at submarine alkaline hydrothermal vents (Ducluzeau, 2008; Russell, 2014). The Hadean atmosphere, dominated by CO2 and N2, will produce nitric oxide (NO) when shocked by lightning and impacts (Ducluzeau, 2008; Nna Mvondo, 2001). Photochemical reactions involving NO and H2O vapor will then produce acids such as HNO3 and HNO2 that rain into the ocean and dissociate into NO3- and NO2-. Previous work suggests that 1018 g of NOx can be produced in a million years or so, satisfying the need for micromolar concentrations of NO3- and NO2- in the ocean (Ducluzeau, 2008). But because this number is controversial, we present new calculations based on a novel combination of early-Earth GCM and photochemical modeling, calculating the sources and sinks for fixed nitrogen. Finally, it is notable that lightning has been detected on Venus and Mars along with evidence of atmospheric NO; in the distant past, could NOx have been created and available for the emergence of life on numerous wet, rocky worlds?

  20. Earth meandering

    NASA Astrophysics Data System (ADS)

    Asadiyan, H.; Zamani, A.

    2009-04-01

    In this paper we try to put away current Global Tectonic Model to look the tectonic evolution of the earth from new point of view. Our new dynamic model is based on study of river meandering (RM) which infer new concept as Earth meandering(EM). In a universal gravitational field if we consider a clockwise spiral galaxy model rotate above Ninety East Ridge (geotectonic axis GA), this system with applying torsion field (likes geomagnetic field) in side direction from Rocky Mt. (west geotectonic pole WGP) to Tibetan plateau TP (east geotectonic pole EGP),it seems that pulled mass from WGP and pushed it in EGP due to it's rolling dynamics. According to this idea we see in topographic map that North America and Green land like a tongue pulled from Pacific mouth toward TP. Actually this system rolled or meander the earth over itself fractaly from small scale to big scale and what we see in the river meandering and Earth meandering are two faces of one coin. River transport water and sediments from high elevation to lower elevation and also in EM, mass transport from high altitude-Rocky Mt. to lower altitude Himalaya Mt. along 'S' shape geodetic line-optimum path which connect points from high altitude to lower altitude as kind of Euler Elastica(EE). These curves are responsible for mass spreading (source) and mass concentration (sink). In this regard, tiltness of earth spin axis plays an important role, 'S' are part of sigmoidal shape which formed due to intersection of Earth rolling with the Earth glob and actual feature of transform fault and river meandering. Longitudinal profile in mature rivers as a part of 'S' curve also is a kind of EE. 'S' which bound the whole earth is named S-1(S order 1) and cube corresponding to this which represent Earth fracturing in global scale named C-1(cube order 1 or side vergence cube SVC), C-1 is a biggest cycle of spiral polygon, so it is not completely closed and it has separation about diameter of C-7. Inside SVC we introduce cone

  1. Phase Diagram of Ammonium Nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-06-01

    Ammonium Nitrate (AN) has often been subjected to uses in improvised explosive devices, due to its wide availability as a fertilizer and its capability of becoming explosive with slight additions of organic and inorganic compounds. Yet, the origin of enhanced energetic properties of impure AN (or AN mixtures) is neither chemically unique nor well understood - resulting in rather catastrophic disasters in the past1 and thereby a significant burden on safety, in using ammonium nitrates even today. To remedy this situation, we have carried out an extensive study to investigate the phase stability of AN, in different chemical environments, at high pressure and temperature, using diamond anvil cells and micro-Raman spectroscopy. The present results confirm the recently proposed phase IV-to-IV' transition above 15 GPa2 and provide new constraints for the melting and phase diagram of AN to 40 GPa and 673 K. The present study has been supported by the U.S. DHS under Award Number 2008-ST-061-ED0001.

  2. Arabidopsis Nitrate Transporter NRT1.9 Is Important in Phloem Nitrate Transport[W][OA

    PubMed Central

    Wang, Ya-Yun; Tsay, Yi-Fang

    2011-01-01

    This study of the Arabidopsis thaliana nitrate transporter NRT1.9 reveals an important function for a NRT1 family member in phloem nitrate transport. Functional analysis in Xenopus laevis oocytes showed that NRT1.9 is a low-affinity nitrate transporter. Green fluorescent protein and β-glucuronidase reporter analyses indicated that NRT1.9 is a plasma membrane transporter expressed in the companion cells of root phloem. In nrt1.9 mutants, nitrate content in root phloem exudates was decreased, and downward nitrate transport was reduced, suggesting that NRT1.9 may facilitate loading of nitrate into the root phloem and enhance downward nitrate transport in roots. Under high nitrate conditions, the nrt1.9 mutant showed enhanced root-to-shoot nitrate transport and plant growth. We conclude that phloem nitrate transport is facilitated by expression of NRT1.9 in root companion cells. In addition, enhanced root-to-shoot xylem transport of nitrate in nrt1.9 mutants points to a negative correlation between xylem and phloem nitrate transport. PMID:21571952

  3. Challenges with nitrate therapy and nitrate tolerance: prevalence, prevention, and clinical relevance.

    PubMed

    Thadani, Udho

    2014-08-01

    Nitrate therapy has been an effective treatment for ischemic heart disease for over 100 years. The anti-ischemic and exercise-promoting benefits of sublingually administered nitrates are well established. Nitroglycerin is indicated for the relief of an established attack of angina and for prophylactic use, but its effects are short lived. In an effort to increase the duration of beneficial effects, long-acting orally administered and topical applications of nitrates have been developed; however, following their continued or frequent daily use, patients soon develop tolerance to these long-acting nitrate preparations. Once tolerance develops, patients begin losing the protective effects of the long-acting nitrate therapy. By providing a nitrate-free interval, or declining nitrate levels at night, one can overcome or reduce the development of tolerance, but cannot provide 24-h anti-anginal and anti-ischemic protection. In addition, patients may be vulnerable to occurrence of rebound angina and myocardial ischemia during periods of absent nitrate levels at night and early hours of the morning, and worsening of exercise capacity prior to the morning dose of the medication. This has been a concern with nitroglycerin patches but not with oral formulations of isosorbide-5 mononitrates, and has not been adequately studied with isosorbide dinitrate. This paper describes problems associated with nitrate tolerance, reviews mechanisms by which nitrate tolerance and loss of efficacy develop, and presents strategies to avoid nitrate tolerance and maintain efficacy when using long-acting nitrate formulations.

  4. REDUCTION OF NITRATE THROUGH THE USE OF NITRATE REDUCTASE FOR THE SMARTCHEM AUTOANALYZER

    EPA Science Inventory

    The standard method for the determination of nitrate in drinking water, USEPA Method 353.2 “Determination of Nitrate-Nitrite by Automated Colorimetry,” employs cadmium as the reductant for the conversion of nitrate to nitrite. The nitrite is then analyzed colorimetrically by way ...

  5. Safety in the Chemical Laboratory: Nitric Acid, Nitrates, and Nitro Compounds.

    ERIC Educational Resources Information Center

    Bretherick, Leslie

    1989-01-01

    Discussed are the potential hazards associated with nitric acid, inorganic and organic nitrate salts, alkyl nitrates, acyl nitrates, aliphatic nitro compounds, aromatic nitro compounds, and nitration reactions. (CW)

  6. Regulation of nitrate assimilation in cyanobacteria.

    PubMed

    Ohashi, Yoshitake; Shi, Wei; Takatani, Nobuyuki; Aichi, Makiko; Maeda, Shin-ichi; Watanabe, Satoru; Yoshikawa, Hirofumi; Omata, Tatsuo

    2011-02-01

    Nitrate assimilation by cyanobacteria is inhibited by the presence of ammonium in the growth medium. Both nitrate uptake and transcription of the nitrate assimilatory genes are regulated. The major intracellular signal for the regulation is, however, not ammonium or glutamine, but 2-oxoglutarate (2-OG), whose concentration changes according to the change in cellular C/N balance. When nitrogen is limiting growth, accumulation of 2-OG activates the transcription factor NtcA to induce transcription of the nitrate assimilation genes. Ammonium inhibits transcription by quickly depleting the 2-OG pool through its metabolism via the glutamine synthetase/glutamate synthase cycle. The P(II) protein inhibits the ABC-type nitrate transporter, and also nitrate reductase in some strains, by an unknown mechanism(s) when the cellular 2-OG level is low. Upon nitrogen limitation, 2-OG binds to P(II) to prevent the protein from inhibiting nitrate assimilation. A pathway-specific transcriptional regulator NtcB activates the nitrate assimilation genes in response to nitrite, either added to the medium or generated intracellularly by nitrate reduction. It plays an important role in selective activation of the nitrate assimilation pathway during growth under a limited supply of nitrate. P(II) was recently shown to regulate the activity of NtcA negatively by binding to PipX, a small coactivator protein of NtcA. On the basis of accumulating genome information from a variety of cyanobacteria and the molecular genetic data obtained from the representative strains, common features and group- or species-specific characteristics of the response of cyanobacteria to nitrogen is summarized and discussed in terms of ecophysiological significance.

  7. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  8. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  9. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  10. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-23

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  11. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2016-09-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  12. Real-time materials evolution visualized within intact cycling alkaline batteries

    SciTech Connect

    Gallaway, JW; Erdonmez, CK; Zhong, Z; Croft, M; Sviridov, LA; Sholklapper, TZ; Turney, DE; Banerjee, S; Steingart, DA

    2014-01-01

    The scientific community has focused on the problem of inexpensive, safe, and sustainable large-scale electrical energy storage, which is needed for a number of emerging societal reasons such as stabilizing intermittent renewables-based generation like solar and wind power. The materials used for large-scale storage will need to be low cost, earth-abundant, and safe at the desired scale. The Zn-MnO2 "alkaline" battery chemistry is associated with one-time use, despite being rechargeable. This is due to material irreversibilities that can be triggered in either the anode or cathode. However, as Zn and MnO2 have high energy density and low cost, they are economically attractive even at limited depth of discharge. As received, a standard bobbin-type alkaline cell costs roughly $20 per kW h. The U. S. Department of Energy ARPA-E $100 per kW h cost target for grid storage is thus close to the cost of alkaline consumer primary cells if re-engineered and/or cycled at 5-20% nominal capacity. Herein we use a deeply-penetrating in situ technique to observe ZnO precipitation near the separator in an alkaline cell anode cycled at 5% DOD, which is consistent with cell failures observed at high cycle life. Alkaline cells designed to avoid such causes of cell failure could serve as a low-cost baseload for large-scale storage.

  13. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  14. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  15. Alkaline regenerative fuel cell systems for energy storage

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Reid, M. A.; Martin, R. E.

    1981-01-01

    A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.

  16. Nitrate Reduction Functional Genes and Nitrate Reduction Potentials Persist in Deeper Estuarine Sediments. Why?

    PubMed Central

    Papaspyrou, Sokratis; Smith, Cindy J.; Dong, Liang F.; Whitby, Corinne; Dumbrell, Alex J.; Nedwell, David B.

    2014-01-01

    Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are processes occurring simultaneously under oxygen-limited or anaerobic conditions, where both compete for nitrate and organic carbon. Despite their ecological importance, there has been little investigation of how denitrification and DNRA potentials and related functional genes vary vertically with sediment depth. Nitrate reduction potentials measured in sediment depth profiles along the Colne estuary were in the upper range of nitrate reduction rates reported from other sediments and showed the existence of strong decreasing trends both with increasing depth and along the estuary. Denitrification potential decreased along the estuary, decreasing more rapidly with depth towards the estuary mouth. In contrast, DNRA potential increased along the estuary. Significant decreases in copy numbers of 16S rRNA and nitrate reducing genes were observed along the estuary and from surface to deeper sediments. Both metabolic potentials and functional genes persisted at sediment depths where porewater nitrate was absent. Transport of nitrate by bioturbation, based on macrofauna distributions, could only account for the upper 10 cm depth of sediment. A several fold higher combined freeze-lysable KCl-extractable nitrate pool compared to porewater nitrate was detected. We hypothesised that his could be attributed to intracellular nitrate pools from nitrate accumulating microorganisms like Thioploca or Beggiatoa. However, pyrosequencing analysis did not detect any such organisms, leaving other bacteria, microbenthic algae, or foraminiferans which have also been shown to accumulate nitrate, as possible candidates. The importance and bioavailability of a KCl-extractable nitrate sediment pool remains to be tested. The significant variation in the vertical pattern and abundance of the various nitrate reducing genes phylotypes reasonably suggests differences in their activity throughout the sediment column. This

  17. Integrated biological and physiochemical treatment process for nitrate and fluoride removal.

    PubMed

    Mekonen, A; Kumar, P; Kumar, A

    2001-09-01

    The feasibility of an integrated biological and physiochemical water treatment process for nitrate and fluoride removal has been evaluated. It consisted of two sequencing batch reactors (SBRs) in series. Performance of the process in the treatment of 24 synthetic water samples having nitrate concentrations of 40, 80, 120, 160, 200, and 250 mg/l (as N) and fluoride concentrations of 6, 10, 15, and 20 mg/l at different combinations was studied. Denitrification followed by defluoridation proved to be the best sequence of treatment. In all cases nitrate could be reduced to an acceptable level of less than 10 mg/l (as N) at 3, 5, and 7 h hydraulic retention times (HRTs) depending on its initial concentration. Fluoride concentrations up to 15 mg/l associated with nitrate concentrations up to 80 mg/l (as N) could be reduced acceptable 1.5 mg/l by alum-PAC slurry using alum doses up 850 mg/l [as Al2(SO4)3 x 16H2O] along with 100 mg/l of powdered activated carbon (PAC). Additional alkalinity produced during denitrification was used up during defluoridation for maintenance of pH avoiding the need for lime addition. On the other hand, residual organics, turbidity, and sulfide present in the denitrified water are removed by alum and PAC at the defluoridation stage along with fluoride, eliminating the need for an additional post-treatment step. At higher nitrate concentrations (> or = 120 mg/l as N), the alkalinity produced at the denitrification stage was in the range of 715-1175 mg/l as CaCO3. This excessive alkalinity inhibited reduction of fluoride to the level of 1.5 mg/l at the defluoridation stage, using alum doses up to 900 mg/l along with 100 mg/l of PAC. In all cases a fluoride concentration of 20 mg/l in water could not be reduced to the acceptable level of 1.5 mg/l.

  18. Dietary Nitrate, Nitric Oxide, and Cardiovascular Health.

    PubMed

    Bondonno, Catherine P; Croft, Kevin D; Hodgson, Jonathan M

    2016-09-09

    Emerging evidence strongly suggests that dietary nitrate, derived in the diet primarily from vegetables, could contribute to cardiovascular health via effects on nitric oxide (NO) status. NO plays an essential role in cardiovascular health. It is produced via the classical L-arginine-NO-synthase pathway and the recently discovered enterosalivary nitrate-nitrite-NO pathway. The discovery of this alternate pathway has highlighted dietary nitrate as a candidate for the cardioprotective effect of a diet rich in fruit and vegetables. Clinical trials with dietary nitrate have observed improvements in blood pressure, endothelial function, ischemia-reperfusion injury, arterial stiffness, platelet function, and exercise performance with a concomitant augmentation of markers of NO status. While these results are indicative of cardiovascular benefits with dietary nitrate intake, there is still a lingering concern about nitrate in relation to methemoglobinemia, cancer, and cardiovascular disease. It is the purpose of this review to present an overview of NO and its critical role in cardiovascular health; to detail the observed vascular benefits of dietary nitrate intake through effects on NO status as well as to discuss the controversy surrounding the possible toxic effects of nitrate.

  19. COMPARTMENTAL MODEL OF NITRATE RETENTION IN STREAMS

    EPA Science Inventory

    A compartmental modeling approach is presented to route nitrate retention along a cascade of stream reach sections. A process transfer function is used for transient storage equations with first order reaction terms to represent nitrate uptake in the free stream, and denitrifica...

  20. Intravesical silver nitrate for refractory hemorrhagic cystitis

    PubMed Central

    Montgomery, Brian D.; Boorjian, Stephen A.; Ziegelmann, Matthew J.; Joyce, Daniel D.; Linder, Brian J.

    2016-01-01

    Objective Hemorrhagic cystitis is a challenging clinical entity with limited evidence available to guide treatment. The use of intravesical silver nitrate has been reported, though supporting literature is sparse. Here, we sought to assess outcomes of patients treated with intravesical silver nitrate for refractory hemorrhagic cystitis. Material and methods We identified nine patients with refractory hemorrhagic cystitis treated at our institution with intravesical silver nitrate between 2000–2015. All patients had failed previous continuous bladder irrigation with normal saline and clot evacuation. Treatment success was defined as requiring no additional therapy beyond normal saline irrigation after silver nitrate instillation prior to hospital discharge. Results Median patient age was 80 years (IQR 73, 82). Radiation was the most common etiology for hemorrhagic cystitis 89% (8/9). Two patients underwent high dose (0.1%–0.4%) silver nitrate under anesthesia, while the remaining seven were treated with doses from 0.01% to 0.1% via continuous bladder irrigation for a median of 3 days (range 2–4). All nine patients (100%) had persistent hematuria despite intravesical silver nitrate therapy, requiring additional interventions and red blood cell transfusion during the hospitalization. There were no identified complications related to intravesical silver nitrate instillation. Conclusion Although well tolerated, we found that intravesical silver nitrate was ineffective for bleeding control, suggesting a limited role for this agent in the management of patients with hemorrhagic cystitis. PMID:27635296

  1. NITRATE CONTAMINATION OF GROUND WATER (GW-761)

    EPA Science Inventory

    The occurrence of nitrate and related compounds in ground water is discussed from the perspectives of its natural as well as anthropogenic origins. A brief explanation of the nitrogen cycle touches on the production as well as utilization of ammonia, nitrite, nitrate, and nitrog...

  2. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R

    2014-11-18

    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere.

  3. The contributions of nitrate uptake and efflux to isotope fractionation during algal nitrate assimilation

    NASA Astrophysics Data System (ADS)

    Karsh, K. L.; Trull, T. W.; Sigman, D. M.; Thompson, P. A.; Granger, J.

    2014-05-01

    In order to strengthen environmental application of nitrate N and O isotopes, we measured the N and O isotopic fractionation associated with cellular nitrate uptake and efflux in the nitrate-assimilating marine diatom Thalassiosira weissflogii. We isolated nitrate uptake and efflux from nitrate reduction by growing the cells in the presence of tungsten, which substitutes for molybdenum in assimilatory nitrate reductase, yielding an inactive enzyme. After growth on ammonium and then N starvation, cells were exposed to nitrate. Numerical models fit to the evolution of intracellular nitrate concentration and N and O isotopic composition yielded distinct N isotope effects (15ɛ) for nitrate uptake and nitrate efflux (2.0 ± 0.3‰ and 1.2 ± 0.4‰, respectively). The O isotope effects (18ɛ) for nitrate uptake and nitrate efflux were indistinguishable (2.8 ± 0.6‰), yielding a ratio of O to N isotopic fractionation for uptake of 1.4 ± 0.4 and for efflux of 2.3 ± 0.9. The 15ɛ for nitrate uptake can account for at most 40% of the organism-level N isotope effect (15ɛorg) measured in laboratory studies of T. weissflogii and in the open ocean (typically 5‰ or greater). This observation supports previous evidence that most isotope fractionation during nitrate assimilation is due to intracellular nitrate reduction, with nitrate efflux allowing the signal to be communicated to the environment. An O to N fractionation ratio (18ɛorg:15ɛorg) of ˜1 has been measured for nitrate assimilation in algal cultures and linked to the N and O isotope effects of nitrate reductase. Our results suggest that the ratios of O to N fractionation for both nitrate uptake and efflux may be distinct from a ratio of 1, to a degree that could cause the net 18ɛorg:15ɛorg to rise appreciably above 1 when 15ɛorg is low (e.g., yielding a ratio of 1.1 when 15ɛorg is 5‰). However, field and culture studies have consistently measured nearly equivalent fractionation of N and O isotopes in

  4. Amphibian Nitrate Stress as an Additional Terrestrial Threat from Astrophysical Ionizing Radiation Events?

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.; Honeyman, Michelle D.

    2008-08-01

    Various astrophysical events have been suggested as sources of ionizing radiation that, by way of destruction of the ozone layer and the subsequent increase in UVB and deposition of nitrate, could pose a threat to life on Earth. We have investigated whether the nitrate deposition that follows an ionizing event is sufficient to cause an additional stress beyond that of the heightened UVB previously considered. Our results show that, subsequent to the most intense ionization event likely to have occurred in the last billion years, the increase in nitrate concentration in bodies of water would not be sufficient to cause serious additional stress on amphibian populations and may actually provide some benefit by acting as fertilizer.

  5. Bacterial Nitration of 4-Chlorobiphenyl

    PubMed Central

    Sylvestre, Michel; Massé, Robert; Messier, François; Fauteux, Johanne; Bisaillon, Jean-Guy; Beaudet, Réjean

    1982-01-01

    In the course of a study dealing with the biodegradation of 4-chlorobiphenyl by strain B-206, we noticed that the gram-negative bacterium accumulated different metabolic intermediates depending on the nitrogen source of the medium. Hence, in the presence of nitrate, strain B-206 produced four compounds which were identified as 2- and 4-hydroxy-4′-chlorobiphenyl and 2- and 4-hydroxy-mononitro-4′-chlorobiphenyl. The accumulation of these compounds in the culture medium indicated the presence of a monooxygenase in strain B-206 leading to the production of arene oxide intermediates. The possible transformation of 4-chlorobiphenyl to an arene oxide by this bacterial strain is a matter of concern because of the high reactivity of these arene oxides with biological material. PMID:16346111

  6. Global distribution of peroxyacetyl nitrate

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L. J.; Viezee, W.

    1986-01-01

    Peroxyacetyl nitrate (PAN) atmospheric concentration samples were collected hourly from an ocean vessel 50 mi off the continental coast traveling from Seattle to Chile in 1984. Air concentration data for PAN and light hydrocarbons (LHC) were also taken by aircraft in the same period over Wyoming and Colorado and over the eastern Pacific. The PAN concentrations were higher and more variable in the Northern Hemisphere than in the Southern Hemisphere, increased with altitude, and were higher in the winter than in summer. The summer PAN concentrations were higher in the continental troposphere than in the marine troposphere. The results show that photochemical models of the atmosphere which do not account for the reaction between nonmethane hydrocarbons and PAN will probably overestimate the abundances of NO(x) and HNO3. The collection of further PAN concentration data is recommended as a means to characterizing the moderating role of PAN in the photochemistry of the troposphere.

  7. PREPARATION OF DIBASIC ALUMINUM NITRATE

    DOEpatents

    Gresky, A.T.; Nurmi, E.O.; Foster, D.L.; Wischow, R.P.; Savolainen, J.E.

    1960-04-01

    A method is given for the preparation and recovery of basic aluminum nltrates having an OH: Al ratio of at least two, comprising two steps. First, metallic aluminum is dissolved in aqueous Al(NO/sub 3/)/sub 3/, in the presence of a small quantity of elemental or ionic mercury, to increase its Al: NO/sub 3/ ratio into the range 1 to 1.2. The resulting aqueous solution is then added to an excess of a special organic solvent, typically a mixture of five parts methanol and six parts diethyl ether, whereupon the basic aluminum nitrate, e.g. Al/sub 6/(OH)/sub 13/-(NO/sub 3/)/sub 5/, recoverably precipitates.

  8. Phase diagram of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-01

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO-AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N2, N2O, and H2O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV' transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  9. Use of nitrates in ischemic heart disease.

    PubMed

    Giuseppe, Cocco; Paul, Jerie; Hans-Ulrich, Iselin

    2015-01-01

    Short-acting nitrates are beneficial in acute myocardial ischemia. However, many unresolved questions remain about the use of long-acting nitrates in stable ischemic heart disease. The use of long-acting nitrates is weakened by the development of endothelial dysfunction and tolerance. Also, we currently ignore whether lower doses of transdermal nitroglycerin would be better than those presently used. Multivariate analysis data from large nonrandomized studies suggested that long-acting nitrates increase the incidence of acute coronary syndromes, while data from another multivariate study indicate that they have positive effects. Because of methodological differences and open questions, the two studies cannot be compared. A study in Japanese patients with vasospastic angina has shown that, when compared with calcium antagonists, long-acting nitrates do not improve long-term prognosis and that the risk for cardiac adverse events increases with the combined therapy. We have many unanswered questions.

  10. Dietary nitrates, nitrites, and cardiovascular disease.

    PubMed

    Hord, Norman G

    2011-12-01

    Dietary nitrate (NO(3)), nitrite (NO(2)), and arginine can serve as sources for production of NO(x) (a diverse group of metabolites including nitric oxide, nitrosothiols, and nitroalkenes) via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, and nitric oxide synthase enzymes, respectively. NO(x) are responsible for the hypotensive, antiplatelet, and cytoprotective effects of dietary nitrates and nitrites. Current regulatory limits on nitrate intakes, based on concerns regarding potential risk of carcinogenicity and methemoglobinemia, are exceeded by normal daily intakes of single foods, such as soya milk and spinach, as well as by some recommended dietary patterns such as the Dietary Approaches to Stop Hypertension diet. This review includes a call for regulatory bodies to consider all available data on the beneficial physiologic roles of nitrate and nitrite in order to derive rational bases for dietary recommendations.

  11. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  12. Efficient syntheses of climate relevant isoprene nitrates and (1R,5S)-(-)-myrtenol nitrate.

    PubMed

    Bew, Sean P; Hiatt-Gipson, Glyn D; Mills, Graham P; Reeves, Claire E

    2016-01-01

    Here we report the chemoselective synthesis of several important, climate relevant isoprene nitrates using silver nitrate to mediate a 'halide for nitrate' substitution. Employing readily available starting materials, reagents and Horner-Wadsworth-Emmons chemistry the synthesis of easily separable, synthetically versatile 'key building blocks' (E)- and (Z)-3-methyl-4-chlorobut-2-en-1-ol as well as (E)- and (Z)-1-((2-methyl-4-bromobut-2-enyloxy)methyl)-4-methoxybenzene has been achieved using cheap, 'off the shelf' materials. Exploiting their reactivity we have studied their ability to undergo an 'allylic halide for allylic nitrate' substitution reaction which we demonstrate generates (E)- and (Z)-3-methyl-4-hydroxybut-2-enyl nitrate, and (E)- and (Z)-2-methyl-4-hydroxybut-2-enyl nitrates ('isoprene nitrates') in 66-80% overall yields. Using NOESY experiments the elucidation of the carbon-carbon double bond configuration within the purified isoprene nitrates has been established. Further exemplifying our 'halide for nitrate' substitution chemistry we outline the straightforward transformation of (1R,2S)-(-)-myrtenol bromide into the previously unknown monoterpene nitrate (1R,2S)-(-)-myrtenol nitrate.

  13. 70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. INTERIOR VIEW OF AMMONIUM NITRATE HOUSE, LOOKING AT AMMONIUM NITRATE IN STORAGE. APRIL 18, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  14. Electrochemical detection of nitrate in PM2.5 with a copper-modified carbon fiber micro-disk electrode.

    PubMed

    Yu, Liangyun; Zhang, Qi; Xu, Qin; Jin, Dangqin; Jin, Gendi; Li, Kexin; Hu, Xiaoya

    2015-10-01

    The accurate measurement of nitrate in PM2.5 is essential for a complete understanding of the effects of aerosols on human health, the impact of aerosols on the radiative balance of the earth and the role of aerosols in visibility problems. In this paper, we present a novel, quick, easy, cheap and eco-friendly electroanalytical procedure for the determination of nitrate in PM2.5 samples using a carbon-fiber micro-disk electrode (CFMDE) coupled with square-wave voltammetry (SWV). Under optimal experimental conditions the nitrate SWV response increases linearly with nitrate concentration over a range of 0.003-2.0 mmol L(-1), and the detection limit is 1.10 μmol L(-1) (S/N=3). Nitrate contents in daily PM2.5 of Yangzhou in China were detected successfully by employing this novel method, and the results were compared well with those obtained by using ion chromatography. Then, we detected nitrate in two-hour PM2.5 filter samples via the standard addition method, and the concentrations were applied in an analysis of the daily change of nitrate contained in PM2.5 of Yangzhou. The research in this work indicates that the electrochemical method opens a new opportunity for fast, portable, and sensitive analysis of components in PM2.5.

  15. Enhanced alkaline hydrolysis and biodegradability studies of nitrocellulose-bearing missile propellant

    NASA Technical Reports Server (NTRS)

    Sidhoum, Mohammed; Christodoulatos, Christos; Su, Tsan-Liang; Redis, Mercurios

    1995-01-01

    Large amounts of energetic materials which have been accumulated over the years in various manufacturing and military installations must be disposed of in an environmentally sound manner. Historically, the method of choice for destruction of obsolete or aging energetic materials has been open burning or open detonation (OB/OD). This destruction approach has become undesirable due to air pollution problems. Therefore, there is a need for new technologies which will effectively and economically deal with the disposal of energetic materials. Along those lines, we have investigated a chemical/biological process for the safe destruction and disposal of a double base solid rocket propellant (AHH), which was used in several 8 inch projectile systems. The solid propellant is made of nitrocellulose and nitroglycerin as energetic components, two lead salts which act as ballistic modifiers, triacetin as a plasticizer and 2-Nitrodiphenylamine (2-NDPA) as a stabilizer. A process train is being developed to convert the organic components of the propellant to biodegradable products and remove the lead from the process stream. The solid propellant is first hydrolyzed through an enhanced alkaline hydrolysis process step. Following lead removal and neutralization, the digested liquor rich in nitrates and nitrites is found to be easily biodegradable. The digestion rate of the intact ground propellant as well as the release of nitrite and nitrate groups were substantially increased when ultrasound were supplied to the alkaline reaction medium compared to the conventional alkaline hydrolysis. The effects of reaction time, temperature, sodium hydroxide concentration and other relevant parameters on the digestion efficiency and biodegradability have been studied. The present work indicates that the AHH propellant can be disposed of safely with a combination of physiochemical and biological processes.

  16. Modeling nitrate removal in a denitrification bed.

    PubMed

    Ghane, Ehsan; Fausey, Norman R; Brown, Larry C

    2015-03-15

    Denitrification beds are promoted to reduce nitrate load in agricultural subsurface drainage water to alleviate the adverse environmental effects associated with nitrate pollution of surface water. In this system, drainage water flows through a trench filled with a carbon media where nitrate is transformed into nitrogen gas under anaerobic conditions. The main objectives of this study were to model a denitrification bed treating drainage water and evaluate its adverse greenhouse gas emissions. Field experiments were conducted at an existing denitrification bed. Evaluations showed very low greenhouse gas emissions (mean N2O emission of 0.12 μg N m(-2) min(-1)) from the denitrification bed surface. Field experiments indicated that nitrate removal rate was described by Michaelis-Menten kinetics with the Michaelis-Menten constant of 7.2 mg N L(-1). We developed a novel denitrification bed model based on the governing equations for water flow and nitrate removal kinetics. The model evaluation statistics showed satisfactory prediction of bed outflow nitrate concentration during subsurface drainage flow. The model can be used to design denitrification beds with efficient nitrate removal which in turn leads to enhanced drainage water quality.

  17. CARBON-BASED REACTIVE BARRIER FOR NITRATE ...

    EPA Pesticide Factsheets

    Nitrate (NO3-) is a common ground water contaminant related to agricultural activity, waste water disposal, leachate from landfills, septic systems, and industrial processes. This study reports on the performance of a carbon-based permeable reactive barrier (PRB) that was constructed for in-situ bioremediation of a ground water nitrate plume caused by leakage from a swine CAFO (concentrated animal feeding operation) lagoon. The swine CAFO, located in Logan County, Oklahoma, was in operation from 1992-1999. The overall site remediation strategy includes an ammonia recovery trench to intercept ammonia-contaminated ground water and a hay straw PRB which is used to intercept a nitrate plume caused by nitrification of sorbed ammonia. The PRB extends approximately 260 m to intercept the nitrate plume. The depth of the trench averages 6 m and corresponds to the thickness of the surficial saturated zone; the width of the trench is 1.2 m. Detailed quarterly monitoring of the PRB began in March, 2004, about 1 year after construction activities ended. Nitrate concentrations hydraulically upgradient of the PRB have ranged from 23 to 77 mg/L N, from 0 to 3.2 mg/L N in the PRB, and from 0 to 65 mg/L N hydraulically downgradient of the PRB. Nitrate concentrations have generally decreased in downgradient locations with successive monitoring events. Mass balance considerations indicate that nitrate attenuation is dominantly from denitrification but with some component of

  18. Photodegradation of Paracetamol in Nitrate Solution

    NASA Astrophysics Data System (ADS)

    Meng, Cui; Qu, Ruijuan; Liang, Jinyan; Yang, Xi

    2010-11-01

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  19. Groundwater Head Control of Catchment Nitrate Export

    NASA Astrophysics Data System (ADS)

    Musolff, A.; Schmidt, C.; Rode, M.; Fleckenstein, J. H.

    2014-12-01

    Elevated nutrient fluxes from agricultural catchments affect downstream water resources. A method to assess nutrient fluxes is the evaluation of the export regime. The export regime classifies the relation between concentration and discharge and integrates mobilization as well as retention processes. Solutes can be exported chemostatically (variance of concentration << variance of discharge) or chemodynamically (variance of concentration ≥ variance of discharge). Starting point of this study is the evaluation of export regimes of nitrate in a series of neighboring sub-catchments of the Central German River Bode catchment. We found an accretion pattern of nitrate with increasing concentration when discharge is increasing and thus a chemodynamic export regime. Here we follow a nested approach and have a closer look at the controls of nitrate export in the small (1.4 km2) headwater catchment of the Sauerbach stream. The Sauerbach catchment is dominated by agricultural land use and is characterized by tile drains. We hypothesize that discharge as well as nitrate export is controlled by the groundwater head variability over time. To that end we follow a joint data analysis of discharge, groundwater heads and nitrate concentrations in groundwater, tile drains and surface water. At the gauging station the nitrate export is chemodynamic exhibiting the typical accretion pattern also found at the larger scale. Our data analysis shows that nitrate export regime is in two ways controlled by the depth to groundwater and the groundwater head variability: Discharge increases with increasing groundwater heads due to the activation of tile drains. On the other hand, depth to groundwater and passage through the unsaturated zone is the major control of aquifer nitrate concentration. At wells with larger depth to groundwater nitrate concentrations are significantly lower than at more shallow wells indicating retention processes in the unsaturated zone. Therefore the concentration in

  20. Photodegradation of Paracetamol in Nitrate Solution

    SciTech Connect

    Meng Cui; Qu Ruijuan; Liang Jinyan; Yang Xi

    2010-11-24

    The photodegradation of paracetamol in nitrate solution under simulated solar irradiation has been investigated. The degradation rates were compared by varying environmental parameters including concentrations of nitrate ion, humic substance and pH values. The quantifications of paracetamol were conducted by HPLC method. The results demonstrate that the photodegradation of paracetamol followed first-order kinetics. The photoproducts and intermediates of paracetamol in the presence of nitrate ions were identified by extensive GC-MS method. The photodegradation pathways involving. OH radicals as reactive species were proposed.

  1. Sulfur Earth

    NASA Astrophysics Data System (ADS)

    de Jong, B. H.

    2007-12-01

    Variations in surface tension affect the buoyancy of objects floating in a liquid. Thus an object floating in water will sink deeper in the presence of dishwater fluid. This is a very minor but measurable effect. It causes for instance ducks to drown in aqueous solutions with added surfactant. The surface tension of liquid iron is very strongly affected by the presence of sulfur which acts as a surfactant in this system varying between 1.9 and 0.4 N/m at 10 mass percent Sulfur (Lee & Morita (2002), This last value is inferred to be the maximum value for Sulfur inferred to be present in the liquid outer core. Venting of Sulfur from the liquid core manifests itself on the Earth surface by the 105 to 106 ton of sulfur vented into the atmosphere annually (Wedepohl, 1984). Inspection of surface Sulfur emission indicates that venting is non-homogeneously distributed over the Earth's surface. The implication of such large variation in surface tension in the liquid outer core are that at locally low Sulfur concentration, the liquid outer core does not wet the predominantly MgSiO3 matrix with which it is in contact. However at a local high in Sulfur, the liquid outer core wets this matrix which in the fluid state has a surface tension of 0.4 N/m (Bansal & Doremus, 1986), couples with it, and causes it to sink. This differential and diapiric movement is transmitted through the essentially brittle mantle (1024 Pa.s, Lambeck & Johnson, 1998; the maximum value for ice being about 1030 Pa.s at 0 K, in all likely hood representing an upper bound of viscosity for all materials) and manifests itself on the surface by the roughly 20 km differentiation, about 0.1 % of the total mantle thickness, between topographical heights and lows with concomitant lateral movement in the crust and upper mantle resulting in thin skin tectonics. The brittle nature of the medium though which this movement is transmitted suggests that the extremes in topography of the D" layer are similar in range to

  2. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  3. Transition from alkaline to calc-alkaline volcanism during evolution of the Paleoproterozoic Francevillian basin of eastern Gabon (Western Central Africa)

    NASA Astrophysics Data System (ADS)

    Thiéblemont, Denis; Bouton, Pascal; Préat, Alain; Goujou, Jean-Christian; Tegyey, Monique; Weber, Francis; Ebang Obiang, Michel; Joron, Jean Louis; Treuil, Michel

    2014-11-01

    We report new geochemical data for the volcanic and subvolcanic rocks associated with the evolution of the Francevillian basin of eastern Gabon during Paleoproterozoic times (c. 2.1-2 Ga). Filling of this basin has proceeded through four main sedimentary or volcano-sedimentary episodes, namely FA, FB, FC and FD. Volcanism started during the FB episode being present only in the northern part of the basin (Okondja sub-basin). This volcanism is ultramafic to trachytic in composition and displays a rather constant alkaline geochemical signature. This signature is typical of a within-plate environment, consistent with the rift-setting generally postulated for the Francevillian basin during the FB period. Following FB, the FC unit is 10-20 m-thick silicic horizon (jasper) attesting for a massive input of silica in the basin. Following FC, the FD unit is a c. 200-400 m-thick volcano-sedimentary sequence including felsic tuffs and epiclastic rocks. The geochemical signatures of these rocks are totally distinct from those of the FB alkaline lavas. High Th/Ta and La/Ta ratios attest for a calc-alkaline signature and slight fractionation between heavy rare-earth suggests melting at a rather low pressure. Such characteristics are comparable to those of felsic lavas associated with the Taupo zone of New Zealand, a modern ensialic back-arc basin. Following FD, the FE detrital unit is defined only in the Okondja region, probably associated with a late-stage collapse of the northern part of the basin. It is suggested that the alkaline to calc-alkaline volcanic transition reflects the evolution of the Francevillian basin from a diverging to a converging setting, in response to the onset of converging movements in the Eburnean Belt of Central Africa.

  4. Asymmetric Earth

    NASA Astrophysics Data System (ADS)

    Doglioni, Carlo; Carminati, Eugenio; Crespi, Mattia; Cuffaro, Marco; Ismail-Zadeh, Alik; Levshin, Anatoli; Panza, Giuliano F.; Riguzzi, Federica

    2010-05-01

    The net rotation, or so-called W-ward drift of the lithosphere, implies a decoupling of the plates relative to the underlying asthenosphere, and a relative "E-ward" mantle flow. This polarized flow can account for a number of asymmetries. When comparing the W-directed versus the E- to NE-directed subduction zones, as a general observation, they have the subduction hinge diverging versus converging relative to the upper plate; low versus high topography and structural elevation respectively; deep versus shallow trenches and foreland basins; shallow versus deep decollement; low versus high basement involvement; high versus low heat flow and gravity anomaly; shallow versus deep asthenosphere; etc. The western limbs of rift zones show S-waves faster in the lithosphere and slower in the asthenosphere with respect to the eastern limb. The asymmetry can be recognized when moving along the "tectonic equator", which describes the fastest flow of plates relative to the mantle, and it undulates relative to the geographic equator. In our reconstructions, the best fit for the tectonic equator has a pole of rotation at latitude -56.4° and longitude 136.7°, with an angular velocity of 1.2036°/Ma. Shear-wave splitting alignments tend to parallel the tectonic flow, apart along the subduction zones where they become orthogonal, as a flow encountering an obstacle. The tectonic equator lies close to the revolution plane of the Moon about the Earth. All these data and interpretations point for an asymmetric Earth, whose nature appears to be related to the rotation and its tidal despinning, combined with the thermal cooling of the planet. However, this model has been questioned on the basis of the high viscosity so far inferred in the asthenosphere. Preliminary modelling shows that the tidal oscillation can generate gravitational wave propagation in the lithosphere, and the wave velocity can increase with the decrease of the asthenospheric viscosity.

  5. Global distribution of peroxyacetyl nitrate.

    PubMed

    Singh, H B; Salas, L J; Viezee, W

    Nitrogen oxides (NOx) have a central role in the chemistry of the atmosphere, especially in key processes relating to ozone, hydroxyl-radical (OH) and acid formation. High reactivity of NOx (lifetime of 0.5-2 days) precludes hemispheric-scale transport and it has been proposed that non-methane hydrocarbons present in the troposphere can transform NOx into its organic forms principally as peroxyacetyl nitrate (PAN). PAN is highly stable in the colder regions of the middle and upper troposphere and can provide a mechanism for NOx storage and transport. Once transported, PAN and its homologues can easily release free NOx in warmer atmospheric conditions. PAN is probably ubiquitous and its concentrations could exceed those of NOx in clean tropospheric conditions. Here we present the first view of the global distribution of PAN based on extensive shipboard and aircraft measurements. PAN is more abundant in the Northern than in the Southern Hemisphere and in the continental than in the marine troposphere. In contrast to its behaviour in polluted atmospheres, PAN mixing ratios in winter greatly exceed those in summer. These measurements provide a basis for assessing the significance of PAN as a reservoir of NOx and for extending and validating reactive nitrogen chemistry theory in the troposphere.

  6. Phase diagram of ammonium nitrate

    SciTech Connect

    Dunuwille, Mihindra; Yoo, Choong-Shik

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  7. Multi proxy approach for the formation of calcium carbonates in alkaline man-made environments

    NASA Astrophysics Data System (ADS)

    Rinder, T.; Dietzel, M.; Leis, A.

    2009-04-01

    The formation of calcium carbonates, e.g. in drainage systems of tunnels, may be induced by degassing of CO2-rich groundwater which enters the building. However, the dissolution of portlandite (Ca(OH)2) from cements or the shotcrete of the tunnel wall bears an additional and immense potential for the formation of carbonates from alkaline solutions. Variations in trace element incorporation and distribution of the stable isotopes of carbon and oxygen in the precipitated calcium carbonates may represent powerful tools to identify individual mechanisms for carbonate formation. As portlandite dissolves, highly alkaline solutions are obtained. In this case, precipitation of calcium carbonate can be related to the absorption of CO2 from the atmosphere. Isotopic analyses of the calcite show that fixation of CO2 from the Earth's atmosphere leads to significantly lighter ^13Ccalcite values (down to -25 o/oo, VPDB) as expected for the fixation of groundwater carbonate (typical ^13Ccalcite values between -10 and -16o/oo, VPDB). The evolution of Sr/Ca ratios in the alkaline drainage solutions and in the corresponding calcium carbonate precipitation provides insight into the dissolution process at the concrete with respect to the amount of primarily dissolved portlandite from the cement. Moreover, an inverse relationship between Mg/Ca and Sr/Ca ratios is observed due to the liberation of aqueous strontium by the dissolution of portlandite and the formation of brucite (Mg(OH)2) at alkaline conditions. Less incorporation of magnesium in the calcite structure is a strong indicator for carbonate precipitation from highly alkaline environments. Applications of such multi proxy approaches are discussed with case studies. Main tasks are the reconstruction of the environmental conditions during primary CaCO3 formation and monitoring of ongoing precipitation of calcium carbonates and cement-water interaction in alkaline man-made environments.

  8. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  9. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  10. Improved Performance of the Alkaline-Side CSEX Process for Cesium Extraction from Alkaline High-Level Waste Obtained by Characterization of the Effect of Surfactant Impurities

    SciTech Connect

    Delmau, L.H.

    1999-11-04

    identify the harmful impurities as undecyl- and dodecylsulfonate. Subsequent tests with purchased sodium dodecylsulfonate confirmed that this surfactant could produce decreased stripping performance of the magnitude equivalent to that observed when using the simulant associated with the worse performance. With the identification of the impurity now settled, it is clear that poor stripping arises from ion-pair species in the solvent comprised of the cesium-extractant complex cation and the alkylsulfonate anion. Because the Gibbs energy of transfer of this anion and the complexation of the cesium cation by the extractant are both so favorable, the stripping of the cesium, nitrate from the solvent is correspondingly unfavorable. Thus, once the cesium associated with nitrate ion in the solvent has been stripped, further stripping of the remaining cesium in the solvent becomes inefficient. A simple remedy is the addition of a lipophilic amine such as trioctylamine to the solvent. This well-known amine extractant, once proposed for reprocessing, remains neutral and essentially inert during extraction of the alkaline waste but converts to the trioctylammonium nitrate salt on scrubbing and stripping. This lipophilic salt remains in the organic phase and allows the final traces of cesium in the solvent to be stripped by supplying the alkylsulfonate impurity in the solvent with equivalent cationic charges. Further results regarding this and other improvements to the solvent system will be described elsewhere.

  11. Qualitative Determination of Nitrate with Triphenylbenzylphosphonium Chloride.

    ERIC Educational Resources Information Center

    Berry, Donna A.; Cole, Jerry J.

    1984-01-01

    Discusses two procedures for the identification of nitrate, the standard test ("Brown Ring" test) and a new procedure using triphenylbenzylphosphonium chloride (TPBPC). Effectiveness of both procedures is compared, with the TPBPC test proving to be more sensitive and accurate. (JM)

  12. 76 FR 46907 - Ammonium Nitrate Security Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... used in agricultural operations indicated that ammonium nitrate is the best choice for nitrogen... contains not less than 33 percent nitrogen by weight.'' See 6 U.S.C. 488(1)(A). DHS proposes to use...

  13. Electrophilic nitration of alkanes with nitronium hexafluorophosphate

    PubMed Central

    Olah, George A.; Ramaiah, Pichika; Prakash, G. K. Surya

    1997-01-01

    Nitration of alkanes such as methane, ethane, propane, n-butane, isobutane, neopentane, and cyclohexane was carried out with nitronium hexafluorophosphate in methylene chloride or nitroethane solution. Nitration of methane, albeit in poor yield, required protolytic activation of the nitronium ion. The results indicate direct electrophilic insertion of NO2+ into C 000000000000 000000000000 000000000000 000000000000 111111111111 000000000000 000000000000 000000000000 000000000000 H and CC σ-bonds. PMID:11038587

  14. Is beetroot juice more effective than sodium nitrate? The effects of equimolar nitrate dosages of nitrate-rich beetroot juice and sodium nitrate on oxygen consumption during exercise.

    PubMed

    Flueck, Joelle Leonie; Bogdanova, Anna; Mettler, Samuel; Perret, Claudio

    2016-04-01

    Dietary nitrate has been reported to lower oxygen consumption in moderate- and severe-intensity exercise. To date, it is unproven that sodium nitrate (NaNO3(-); NIT) and nitrate-rich beetroot juice (BR) have the same effects on oxygen consumption, blood pressure, and plasma nitrate and nitrite concentrations or not. The aim of this study was to compare the effects of different dosages of NIT and BR on oxygen consumption in male athletes. Twelve healthy, well-trained men (median [minimum; maximum]; peak oxygen consumption: 59.4 mL·min(-1)·kg(-1) [40.5; 67.0]) performed 7 trials on different days, ingesting different nitrate dosages and placebo (PLC). Dosages were 3, 6, and 12 mmol nitrate as concentrated BR or NIT dissolved in plain water. Plasma nitrate and nitrite concentrations were measured before, 3 h after ingestion, and postexercise. Participants cycled for 5 min at moderate intensity and further 8 min at severe intensity. End-exercise oxygen consumption at moderate intensity was not significantly different between the 7 trials (p = 0.08). At severe-intensity exercise, end-exercise oxygen consumption was ~4% lower in the 6-mmol BR trial compared with the 6-mmol NIT (p = 0.003) trial as well as compared with PLC (p = 0.010). Plasma nitrite and nitrate concentrations were significantly increased after the ingestion of BR and NIT with the highest concentrations in the 12-mmol trials. Plasma nitrite concentration between NIT and BR did not significantly differ in the 6-mmol (p = 0.27) and in the 12-mmol (p = 0.75) trials. In conclusion, BR might reduce oxygen consumption to a greater extent compared with NIT.

  15. Protein Nitration in Placenta – Functional Significance

    PubMed Central

    Webster, RP; Roberts, VHJ; Myatt, L

    2009-01-01

    Crucial roles of the placenta are disrupted in early and mid-trimester pregnancy loss, preeclampsia, eclampsia and intrauterine growth restriction. The pathophysiology of these disorders includes a relative hypoxia of the placenta, ischemia/reperfusion injury, an inflammatory response and oxidative stress. Reactive oxygen species including nitric oxide (NO), carbon monoxide and superoxide have been shown to participate in trophoblast invasion, regulation of placental vascular reactivity and other events. Superoxide, which regulates expression of redox sensitive genes, has been implicated in up-regulation of transcription factors, antioxidant production, angiogenesis, proliferation and matrix remodeling. When superoxide and nitric oxide are present in abundance, their interaction yields peroxynitrite a potent pro-oxidant, but also alters levels of nitric oxide, which in turn affect physiological functions. The peroxynitrite anion is extremely unstable thus evidence of its formation in vivo has been indirect via the occurrence of nitrated moieties including nitrated lipids and nitrotyrosine residues in proteins. Formation of 3-nitrotyrosine (protein nitration) is a “molecular fingerprint” of peroxynitrite formation. Protein nitration has been widely reported in a number of pathological states associated with inflammation but is reported to occur in normal physiology and is thought of as a prevalent, functionally relevant post-translational modification of proteins. Nitration of proteins can give either no effect, a gain or a loss of function. Nitration of a range of placental proteins is found in normal pregnancy but increased in pathologic pregnancies. Evidence is presented for nitration of placental signal transduction enzymes and transporters. The targets and extent of nitration of enzymes, receptors, transporters and structural proteins may markedly influence placental cellular function in both physiologic and pathologic settings. PMID:18851882

  16. Preformed Nitrate in the Glacial North Atlantic

    NASA Astrophysics Data System (ADS)

    Homola, K.; Spivack, A. J.; D'Hondt, S.; Estes, E. R.; Insua, T. L.; McKinley, C. C.; Murray, R. W.; Pockalny, R. A.; Robinson, R. S.; Sauvage, J.

    2015-12-01

    Atmospheric CO2 abundances are highly correlated with global temperature variations over the past 800,000 years. Consequently, understanding the feedbacks between climate and CO2 is important for predictions of future climate. Leading hypotheses to explain this feedback invoke changes in ocean biology, circulation, chemistry, and/or gas exchange rates to trap CO2 in the deep ocean, thereby reducing the greenhouse effect of CO2 in the atmosphere. To test these hypotheses, we use sediment pore water profiles of dissolved nitrate and oxygen to reconstruct paleo-preformed nitrate concentrations at two deep-water sites in the western North Atlantic (23°N 57°W, 5557 m water depth; 30°N 58°W, 5367 m water depth). Preformed nitrate increases down-core to 22.7 μM (25.6 m core depth) at the northern site, and to 28.5 μM (27.8 m core depth) at the southern site. The large preformed nitrate gradient between these sites reveals a paleo-boundary between a southern water source high in preformed nitrate and a northern water source with lower concentrations, similar to today's ocean. However, the boundary between these water masses occurs north of where their modern counterparts meet, indicating that Antarctic Bottom Water (AABW) extended farther north during the Last Glacial Maximum (LGM). In addition, the southern source had a higher preformed nitrate concentration than today's AABW (25 μM), contradicting hypotheses that nutrient utilization was more efficient in the Southern Ocean deep-water formation regions during the LGM. Comparison to our previous Pacific data reveals that the average preformed nitrate concentration of the deep ocean was slightly higher during the LGM than today. This result implies that the CO2-climate feedback was not principally due to more efficient nitrate utilization.

  17. Synthesis of a new energetic nitrate ester

    SciTech Connect

    Chavez, David E

    2008-01-01

    Nitrate esters have been known as useful energetic materials since the discovery of nitroglycerin by Ascanio Sobrero in 1846. The development of methods to increase the safety and utility of nitroglycerin by Alfred Nobel led to the revolutionary improvement in the utility of nitroglycerin in explosive applications in the form of dynamite. Since then, many nitrate esters have been prepared and incorporated into military applications such as double-based propellants, detonators and as energetic plasticizers. Nitrate esters have also been shown to have vasodilatory effects in humans and thus have been studied and used for treatments of ailments such as angina. The mechanism of the biological response towards nitrate esters has been elucidated recently. Interestingly, many of the nitrate esters used for military purposes are liquids (ethylene glycol dinitrate, propylene glycol dinitrate, etc). Pentaerythritol tetranitrate (PETN) is one of the only solid nitrate esters, besides nitrocellulose, that is used in any application. Unfortunately, PETN melting point is above 100 {sup o}C, and thus must be pressed as a solid for detonator applications. A more practical material would be a melt-castable explosive, for potential simplification of manufacturing processes. Herein we describe the synthesis of a new energetic nitrate ester (1) that is a solid at ambient temperatures, has a melting point of 85-86 {sup o}C and has the highest density of any known nitrate ester composed only of carbon, hydrogen, nitrogen and oxygen. We also describe the chemical, thermal and sensitivity properties of 1 as well as some preliminary explosive performance data.

  18. New insights into bioactivation of organic nitrates, nitrate tolerance and cross-tolerance.

    PubMed

    Daiber, A; Wenzel, P; Oelze, M; Münzel, T

    2008-01-01

    Organic nitrates still represent a group of very effective anti-ischemic drugs used for the treatment of patients with stable angina, acute myocardial infarction and chronic congestive heart failure. Long-term therapy with organic nitrates, however, results in a rapid development of nitrate tolerance blunting their hemodynamic and antiischemic efficacy. Recent studies revealed that mitochondrial reactive oxygen species (ROS) formation and a subsequent oxidative inactivation of nitrate reductase, the mitochondrial aldehyde dehydrogenase (ALDH-2), play an important role for the development of nitrate and crosstolerance. The present review focuses firstly on the role of ALDH-2 for organic nitrate bioactivation and secondly on the role of oxidative stress in the development of tolerance and cross-tolerance (endothelial dysfunction) in response to various organic nitrates. Finally, we would like to draw the reader's attention to the protective properties of the organic nitrate pentaerithrityl tetranitrate (PETN), which, in contrast to all other organic nitrates, is able to upregulate enzymes with a strong antioxidative capacity thereby preventing tolerance and the development of endothelial dysfunction.

  19. Organic nitrates and nitrate tolerance--state of the art and future developments.

    PubMed

    Daiber, Andreas; Münzel, Thomas; Gori, Tommaso

    2010-01-01

    The hemodynamic and antiischemic effects of nitroglycerin (GTN) are lost upon chronic administration due to the rapid development of nitrate tolerance. The mechanism of this phenomenon has puzzled several generations of scientists, but recent findings have led to novel hypotheses. The formation of reactive oxygen and nitrogen species in the mitochondria and the subsequent inhibition of the nitrate-bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) appear to play a central role, at least for GTN, that is, bioactivated by ALDH-2. Importantly, these findings provide the opportunity to reconcile the two "traditional" hypotheses of nitrate tolerance, that is, the one postulating a decreased bioactivation and the concurrent one suggesting a role of oxidative stress. Furthermore, recent animal and human experimental studies suggest that the organic nitrates are not a homogeneous group but demonstrate a broad diversity with regard to induction of vascular dysfunction, oxidative stress, and other side effects. In the past, attempts to avoid nitrate-induced side effects have focused on administration schedules that would allow a "nitrate-free interval"; in the future, the role of co-therapies with antioxidant compounds and of activation of endogeneous protective pathways such as the heme oxygenase 1 (HO-1) will need to be explored. However, the development of new nitrates, for example, tolerance-free aminoalkyl nitrates or combination of nitrate groups with established cardiovascular drugs like ACE inhibitors or AT(1)-receptor blockers (hybrid molecules) may be of great clinical interest.

  20. Nitrate reduction in Haloferax alexandrinus: the case of assimilatory nitrate reductase.

    PubMed

    Kilic, Volkan; Kilic, Gözde Aydoğan; Kutlu, Hatice Mehtap; Martínez-Espinosa, Rosa María

    2017-03-21

    Haloferax alexandrinus Strain TM JCM 10717(T) = IFO 16590(T) is an extreme halophilic archaeon able to produce significant amounts of canthaxanthin. Its genome sequence has been analysed in this work using bioinformatics tools available at Expasy in order to look for genes encoding nitrate reductase-like proteins: respiratory nitrate reductase (Nar) and/or assimilatory nitrate reductase (Nas). The ability of the cells to reduce nitrate under aerobic conditions was tested. The enzyme in charge of nitrate reduction under aerobic conditions (Nas) has been purified and characterised. It is a monomeric enzyme (72 ± 1.8 kDa) that requires high salt concentration for stability and activity. The optimum pH value for activity was 9.5. Effectiveness of different substrates, electron donors, cofactors and inhibitors was also reported. High nitrite concentrations were detected within the culture media during aerobic/microaerobic cells growth. The main conclusion from the results is that this haloarchaeon reduces nitrate aerobically thanks to Nas and may induce denitrification under anaerobic/microaerobic conditions using nitrate as electron acceptor. The study sheds light on the role played by haloarchaea in the biogeochemical cycle of nitrogen, paying special attention to nitrate reduction processes. Besides, it provides useful information for future attempts on microecological and biotechnological implications of haloarchaeal nitrate reductases.