Science.gov

Sample records for alkaline earth oxide

  1. Thermoelectric Properties of Barium Plumbate Doped by Alkaline Earth Oxides

    NASA Astrophysics Data System (ADS)

    Eufrasio, Andreza; Bhatta, Rudra; Pegg, Ian; Dutta, Biprodas

    Ceramic oxides are now being considered as a new class of thermoelectric materials because of their high stability at elevated temperatures. Such materials are especially suitable for use as prospective thermoelectric power generators because high temperatures are encountered in such operations. The present investigation uses barium plumbate (BaPbO3) as the starting material, the thermoelectric properties of which have been altered by judicious cation substitutions. BaPbO3 is known to exhibit metallic properties which may turn semiconducting as a result of compositional changes without precipitating a separate phase and/or altering the basic perovskite crystal structure. Perovskite structures are noted for their large interstitial spaces which can accommodate a large variety of ``impurity'' ions. As BaPbO3 has high electrical conductivity, σ = 2.43x105Ω-1 m-1 at room temperature, its thermopower, S, is relatively low, 23 μV/K, as expected. With a thermal conductivity, k, of 4.83Wm-1K-1, the figure of merit (ZT =S2 σ Tk-1) of BaPbO3 is only 0.01 at T = 300K. The objective of this investigation is to study the variation of thermoelectric properties of BaPbO3 as Ba and Pb ions are systematically substituted by alkaline earth ions.

  2. Process for preparing higher oxides of the alkali and alkaline earth metals

    NASA Technical Reports Server (NTRS)

    Sadhukhan, P.; Bell, A. (Inventor)

    1978-01-01

    High purity inorganic higher oxides of the alkali and alkaline earth metals are prepared by subjecting the hydroxide of the alkali and alkaline earth metal to a radio frequency discharge sustained in oxygen. The process is particulary adaptable to the production of high purity potassium superoxide by subjecting potassium hydroxide to glow discharge sustained in oxygen under the pressure of about 0.75 to 1.00 torr.

  3. Promotion by tetrachloromethane of the oxidative coupling of methane on silica-supported alkaline earth oxides

    SciTech Connect

    Ahmed, S.; Moffat, J.B. )

    1990-02-01

    The introduction of a small quantity of tetrachloromethane (TEM) into the feed stream has been shown to remarkably enhance the oxidative coupling of methane over alkaline earth oxides supported on silica. That this enhancement, in terms of both selectivity and yield to C{sub 2} hydrocarbons, occurs over a wide range of catalyst loading, feed composition, reaction temperature, and contact time has been illustrated using BaO/SiO{sub 2} as the catalyst. It has been demonstrated that over this catalyst, the coupling and nonselective oxidation processes occur predominantly independently of each other. The high ratio of C{sub 2}H{sub 4}/C{sub 2}H{sub 6} observed in the products is accounted for by the rapid homogeneous oxidative dehydrogenation of C{sub 2}H{sub 6}, a process which is evidently further enhanced by the presence of TCM. It is suggested that TCM promotes the coupling reaction by facilitating the hydrogen abstraction step from methane. Continuous cofeeding of the additive is required to maintain high selectivity and yield of C{sub 2} hydrocarbons in the products.

  4. Cation effects in the oxidative coupling of methane on silica-supported binary alkali and alkaline earths

    SciTech Connect

    Voyatzis, R.; Moffat, J.B. )

    1993-07-01

    The oxidative coupling of methane has been investigated with a series of silica-supported binary oxide catalysts containing alkali or alkaline earths or combinations of the former and latter. The conversion of methane and the stability of the silica-supported binary alkali metal oxides were found to increase with decreasing cation mobility, while the selectivities and conversions observed with the binary alkaline earths increase with cation size. The selectivities and conversions of binary alkali/alkaline earths appear to depend upon the size of the alkali and alkaline earth cations, respectively. With small quantities of TCM (CCl[sub 4]) added continuously to the feedstream, catalysts containing small alkali and large alkaline earth cations produced the largest selectivities and conversions. 23 refs., 14 figs., 2 tabs.

  5. Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Nørskov, Jens K.; Vojvodic, Aleksandra

    2015-04-01

    We present a systematic theoretical investigation of the surface properties, stability, and reactivity of rocksalt type alkaline-earth metal oxides including MgO, CaO, SrO, and BaO. The accuracy of commonly used exchange-correlation density functionals (LDA, PBE, RPBE, PBEsol, BEEF-vdW, and hybrid HSE) and random-phase approximation (RPA) is evaluated and compared to existing experimental values. Calculated surface energies of the four most stable surface facets under vacuum conditions, the (100) surface, the metal and oxygen terminated octopolar (111), and the (110) surfaces, exhibit a monotonic increase in stability from MgO to BaO. On the MgO(100) surface, adsorption of CO, NO, and CH4 is characterized by physisorption while H2O chemisorbs, which is in agreement with experimental findings. We further use the on-top metal adsorption of CO and NO molecules to map out the surface energetics of each alkaline-earth metal oxide surface. The considered functionals all qualitatively predict similar adsorption energy trends. The ordering between the adsorption energies on different surface facets can be attributed to differences in the local geometrical surface structure and the electronic structure of the metal constituent of the alkaline-earth metal oxide. The striking observation that CO adsorption strength is weaker than NO adsorption on the (100) terraces as the period of the alkaline-earth metal in the oxide increases is analyzed in detail in terms of charge redistribution within the σ and π channels of adsorbates. Finally, we also present oxygen adsorption and oxygen vacancy formation energies in these oxide systems.

  6. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  7. Ab initio calculations on the positive ions of the alkaline-earth oxides, fluorides, and hydroxides

    NASA Technical Reports Server (NTRS)

    Partridge, H.; Langhoff, S. R.; Bauschlicher, C. W., Jr.

    1986-01-01

    Theoretical dissociation energies are presented for the alkaline-earth fluoride, hydroxide, and oxide positive ions that are considered to be accurate to 0.1-0.2 eV. The r(e) for the positive ions are found to be consistently shorter than the corresponding neutrals by 0.07 + or -0.02 A. The bonding in the ground states is demonstrated to be of predominantly M + 2 X - character. The a 3 Pi and A 1 Pi are found to lie considerably above the X 1 Sigma + ground states of the alkaline-earth fluoride and hydroxide positive ions. The overall agreement of the theoretical ionization potentials with the available experimental appearance potentials is satisfactory; these values should represent the most accurate and consistent set available.

  8. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  9. Theoretical study of the diatomic alkali and alkaline-earth oxides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Theoretical dissociation energies for the ground states of the alkali and alkaline earth oxides are presented that are believed to be accurate to 0.1 eV. The 2 Pi - 2 Sigma + separations for the alkali oxides are found to be more sensitive to basis set than to electron correlation. Predicted 2 Pi ground states for LiO and NaO and 2 Sigma + ground states for RbO and CsO are found to be in agreement with previous theoretical and experimental work. For KO, a 2 Sigma + state is found at both the numerical Hartree-Fock (NHF) level and at the singles plus doubles configuration interaction level using a Slater basis set that is within 0.02 eV of the NHF limit. It is found that an accurate balanced treatment of the two states requires correlating the electrons on both the metal and oxide ion.

  10. Process for depositing epitaxial alkaline earth oxide onto a substrate and structures prepared with the process

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    1996-01-01

    A process and structure involving a silicon substrate utilize molecular beam epitaxy (MBE) and/or electron beam evaporation methods and an ultra-high vacuum facility to grow a layup of epitaxial alkaline earth oxide films upon the substrate surface. By selecting metal constituents for the oxides and in the appropriate proportions so that the lattice parameter of each oxide grown closely approximates that of the substrate or base layer upon which oxide is grown, lattice strain at the film/film or film/substrate interface of adjacent films is appreciably reduced or relieved. Moreover, by selecting constituents for the oxides so that the lattice parameters of the materials of adjacent oxide films either increase or decrease in size from one parameter to another parameter, a graded layup of films can be grown (with reduced strain levels therebetween) so that the outer film has a lattice parameter which closely approximates that of, and thus accomodates the epitaxial growth of, a pervoskite chosen to be grown upon the outer film.

  11. Mixed alkali effect on the spectroscopic properties of alkali-alkaline earth oxide borate glasses

    NASA Astrophysics Data System (ADS)

    Srinivas, G.; Ramesh, B.; Shareefuddin, Md.; Chary, M. N.; Sayanna, R.

    2016-05-01

    The mixed alkali and alkaline earth oxide borate glass with the composition xK2O - (25-x) Li2O-12.5BaO-12.5MgO-50B2O3 (x = 0, 5, 10, 15, 20 and 25mol %) and doped with 1mol% CuO were prepared by the melt quenching technique. From the optical absorption spectra the optical band gap, electronic polarizability(α02-), interaction parameter (A), theoretical and experimental optical basicity (Λ) values were evaluated. From the Electron Paramagnetic Resonance (EPR) spectral data the number of spins (N) and susceptibility (χ) were evaluated. The values of (α02-), and (Λ) increases with increasing of K2O content and electronic polarizability and interaction parameter show opposite behaviuor which may be due to the creation of non-bridging oxygens and expansion of borate network. The reciprocal of susceptibility (1/χ) and spin concentration (N) as a function of K2O content, varied nonlinearly which may be due to creation of non-bridging oxygens in the present glass system. This may be attributed to mixed alkali effect (MAE).

  12. Optical properties of alkaline-earth metal oxides from first principles

    NASA Astrophysics Data System (ADS)

    Dadsetani, M.; Beiranvand, R.

    2009-12-01

    This study reports the results of an ab initio electronic and optical calculation of alkaline-earth metal oxides (MgO, CaO, SrO and BaO) in the NaCl crystal structure using the full potential linearized augmented plane wave (FP-LAPW) method within the density functional theory. The exchange-correlation potential is treated by the generalized gradient approximation within the Perdew et al scheme. Moreover, the Engel-Vosko GGA formalism is applied so as to optimize the corresponding potential for band structure calculations. The real and imaginary parts of the dielectric function ɛ( ω), the optical absorption coefficient I( ω), the reflectivity R( ω) and the energy loss function are calculated by random phase approximation (RPA). The calculated results show a qualitative agreement with the available experimental results in the sense that we can recognize some peaks qualitatively, those due to single particle transitions. Furthermore the interband transitions responsible for the structures in the spectra are specified. It is shown that the oxygen 2 p states and metal d states play the major role in optical transitions as initial and final states respectively. The effect of the spin-orbit coupling on the optical properties is also investigated and found to be quite small, especially in the low energy region. The dielectric constants are calculated and compared with the available theoretical and experimental results.

  13. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui

    2013-01-01

    The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO.

  14. Selective oxidation of methanol to hydrogen over gold catalysts promoted by alkaline-earth-metal and lanthanum oxides.

    PubMed

    Hereijgers, Bart P C; Weckhuysen, Bert M

    2009-01-01

    A series of alumina-supported gold catalysts was investigated for the CO-free production of hydrogen by partial oxidation of methanol. The addition of alkaline-earth metal oxide promoters resulted in a significant improvement of the catalytic performance. The methanol conversion was ca. 85 % with all studied catalyst materials, however, the selectivity for hydrogen increased from 15 % to 51 % when going from the unpromoted to a BaO-promoted catalyst. The formation of the undesired byproducts CO, methane, and dimethyl ether was considerably reduced as well. The observed trend in catalyst performance follows the trend in increasing basicity of the studied promoter elements, indicating a chemical effect of the promoter material. Superior catalytic performance, in terms of H(2) and CO selectivity, was obtained with a Au/La(2)O(3) catalyst. At 300 degrees C the hydrogen selectivity reached 80 % with only 2 % CO formation, and the catalyst displayed a stable performance over at least 24 h on-stream. Furthermore, the formation of CO was found to be independent of the oxygen concentration in the feed. The commercial lanthanum oxide used in this study had a low specific surface area, which led to the formation of relative large gold particles. Therefore, the catalytic activity could be enhanced by decreasing the gold particle size through deposition on lanthanum oxide supported on high-surface-area alumina.

  15. Photoelastic response of alkaline earth aluminosilicate glasses.

    PubMed

    Smedskjaer, Morten M; Saxton, Scott A; Ellison, Adam J; Mauro, John C

    2012-02-01

    Understanding the structural origins of the photoelastic response in oxide glasses is important for discovering new families of zero-stress optic glasses and for developing a predictive physical model. In this Letter, we have investigated the composition dependence of the stress optic coefficient C of 32 sodium aluminosilicate glasses with different types of alkaline earth oxides (MgO, CaO, SrO, and BaO). We find that most of the composition dependence of the stress optic response can be captured by a linear regression model and that the individual contributions from the alkaline earths to C depend on the alkaline earth-oxygen bond metallicity. High bond metallicity is required to allow bonds to be distorted along both the bonding direction and perpendicular to it. These findings are valuable for understanding the photoelastic response of oxide glasses.

  16. Preheated ignition and work function studies on alkaline earth metal oxides coated tungsten electrodes of fluorescent lamps

    NASA Astrophysics Data System (ADS)

    Langer, Reinhard; Dar, Farrukh; Hilscher, Achim; Horn, Siegfried; Tidecks, Reinhard

    2015-03-01

    This paper describes measurements on the alkaline earth (Ba, Sr, Ca) oxide layers utilized as emitting material in fluorescent lamp electrodes. In a first approach we compared the emission capabilities of the different materials (BaO, SrO and CaO coatings on tungsten filaments) by their ability to facilitate the start of a lamp. In a second investigation the work function was measured quantitatively by means of a Kelvin probe. Basically, the results of both measurements coincide. The impact of sample geometry on measurement results of a Kelvin probe applied for work function measurements of lamp electrodes are discussed in detail.

  17. Design of ternary alkaline-earth metal Sn(II) oxides with potential good p-type conductivity

    DOE PAGES

    Du, Mao -Hua; Singh, David J.; Zhang, Lijun; Li, Yuwei; Xu, Qiaoling; Ma, Yanming; Zheng, Weitao

    2016-04-19

    Oxides with good p-type conductivity have been long sought after to achieve high performance all-oxide optoelectronic devices. Divalent Sn(II) based oxides are promising candidates because of their rather dispersive upper valence bands caused by the Sn-5s/O-2p anti-bonding hybridization. There are so far few known Sn(II) oxides being p-type conductive suitable for device applications. Here, we present via first-principles global optimization structure searches a material design study for a hitherto unexplored Sn(II)-based system, ternary alkaline-earth metal Sn(II) oxides in the stoichiometry of MSn2O3 (M = Mg, Ca, Sr, Ba). We identify two stable compounds of SrSn2O3 and BaSn2O3, which can bemore » stabilized by Sn-rich conditions in phase stability diagrams. Their structures follow the Zintl behaviour and consist of basic structural motifs of SnO3 tetrahedra. Unexpectedly they show distinct electronic properties with band gaps ranging from 1.90 (BaSn2O3) to 3.15 (SrSn2O3) eV, and hole effective masses ranging from 0.87 (BaSn2O3) to above 6.0 (SrSn2O3) m0. Further exploration of metastable phases indicates a wide tunability of electronic properties controlled by the details of the bonding between the basic structural motifs. Lastly, this suggests further exploration of alkaline-earth metal Sn(II) oxides for potential applications requiring good p-type conductivity such as transparent conductors and photovoltaic absorbers.« less

  18. Oxidation behavior of Cr(III) during thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides.

    PubMed

    Mao, Linqiang; Gao, Bingying; Deng, Ning; Liu, Lu; Cui, Hao

    2016-02-01

    The oxidation behavior of Cr(III) during the thermal treatment of chromium hydroxide in the presence of alkali and alkaline earth metal chlorides (NaCl, KCl, MgCl2, and CaCl2) was investigated. The amounts of Cr(III) oxidized at various temperatures and heating times were determined, and the Cr-containing species in the residues were characterized. During the transformation of chromium hydroxide to Cr2O3 at 300 °C approximately 5% of the Cr(III) was oxidized to form intermediate compounds containing Cr(VI) (i.e., CrO3), but these intermediates were reduced to Cr2O3 when the temperature was above 400 °C. Alkali and alkaline earth metals significantly promoted the oxidation of Cr(III) during the thermal drying process. Two pathways were involved in the influences the alkali and alkaline earth metals had on the formation of Cr(VI). In pathway I, the alkali and alkaline earth metals were found to act as electron transfer agents and to interfere with the dehydration process, causing more intermediate Cr(VI)-containing compounds (which were identified as being CrO3 and Cr5O12) to be formed. The reduction of intermediate compounds to Cr2O3 was also found to be hindered in pathway I. In pathway II, the alkali and alkaline earth metals were found to contribute to the oxidation of Cr(III) to form chromates. The results showed that the presence of alkali and alkaline earth metals significantly increases the degree to which Cr(III) is oxidized during the thermal drying of chromium-containing sludge.

  19. Frontier Orbital Engineering of Metal-Organic Frameworks with Extended Inorganic Connectivity: Porous Alkaline-Earth Oxides.

    PubMed

    Hendon, Christopher H; Walsh, Aron; Dincă, Mircea

    2016-08-01

    The development of conductive metal-organic frameworks is challenging owing to poor electronic communication between metal clusters and the organic ligands that bridge them. One route to overcoming this bottleneck is to extend the inorganic dimensionality, while using the organic components to provide chemical functionality. Using density functional theory methods, we demonstrate how the properties of the alkaline-earth oxides SrO and BaO are transformed upon formation of porous solids with organic oxygen sources (acetate and trifluoroacetate). The electron affinity is significantly enhanced in the hybrid materials, while the ionization potential can be tuned over a large range with the polarity of the organic moiety. Furthermore, because of their high-vacuum fraction, these materials have dielectric properties suitable for low-κ applications.

  20. X-ray Diffraction Studies of the Structure and Thermochemistry of Alkaline-Earth Oxide-Coated Thermionic Cathodes

    NASA Technical Reports Server (NTRS)

    Karikari, E. K.; Bassey, E.; Wintucky, Edwin G.

    1998-01-01

    NASA LeRC has a broad, active cathode technology development program in which both experimental and theoretical studies are being employed to further development of thermionic cathodes for use as electron sources in vacuum devices for communications and other space applications. One important type of thermionic cathode under development is the alkaline-earth oxide-coated (BaO, SrO, CaO) cathode. Significant improvements in the emission characteristics of this cathode have been obtained through modification of the chemical composition and morphology of the oxide coating, with the best result thus far coming from the addition of In2O3 and Sc2O3. Whereas the In2O3 produces a finer, more uniform particle structure, the exact chemical state and role of the Sc2O3 in the emission enhancement is unknown. The purpose of this cooperative agreement is to combine the studies of the surface chemistry and electron emission at NASA LeRC of chemically modified oxide coatings with a study of the thermochemistry and crystal structure using X-ray diffraction equipment and expertise at Clark Atlanta University (CAU). The study at CAU is intended to provide the description and understanding of the structure and thermochemistry needed for further improvement and optimization of the modified coatings. A description of the experimental procedure, preliminary X-ray diffraction test results, together with the design of an ultrahigh vacuum chamber necessary for high temperature thermochemistry studies will be presented.

  1. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  2. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  3. NOx uptake on alkaline earth oxides (BaO, MgO, CaO and SrO) supported on γ-Al2O3

    SciTech Connect

    Verrier, Christelle LM; Kwak, Ja Hun; Kim, Do Heui; Peden, Charles HF; Szanyi, Janos

    2008-07-15

    NOx uptake experiments were performed on a series of alkaline earth oxide (AEO) (MgO, CaO, SrO, BaO) on γ-alumina materials. Temperature Programmed Desorption (TPD) conducted on He flow revealed the presence of two kinds of nitrate species: i.e. bulk and surface nitrates. The ratio of these two types of nitrate species strongly depends on the nature of the alkaline earth oxide. The amount of bulk nitrate species increases with the basicity of the alkaline earth oxide. This conclusion was supported by the results of infrared and 15N solid state NMR studies of NO2 adsorption. Due to the low melting point of the precursor used for the preparation of MgO/Al2O3 material (Mg(NO3)2), a significant amount of Mg was lost during sample activation (high temperature annealing) resulting in a material with properties were very similar to that of the γ-Al2O3 support. The effect of water on the NOx species formed in the exposure of the AEO-s to NO2 was also investigated. In agreement with our previous findings for the BaO/γ-Al2O3 system, an increase of the bulk nitrate species and the simultaneous decrease of the surface nitrate phase were observed for all of these materials.

  4. Ab Initio Quantum Mechanical Study of the Structure and Stability of the Alkaline Earth Metal Oxides and Peroxides

    NASA Astrophysics Data System (ADS)

    Königstein, Markus; Catlow, C. Richard A.

    1998-10-01

    We report a detailed computationally study of the stability of the alkaline earth metal peroxidesMO2(M=Ba, Sr, Ca, Mg, Be) with respect to decomposition into the corresponding oxidesMOand molecular oxygen using Hartree-Fock and density functional theory (DFT) techniques. A comparison between calculated and experimental binding energies indicates that the DFT method is most suitable for a correct description of the peroxide bond. The DFT reaction energies for the peroxide decompositionMO2→MO+{1}/{2}O2show that only BaO2and SrO2are thermodynamically stable compounds, while CaO2(in the calcium carbide structure), MgO2, and BeO2(in the pyrite structure) are energetically unstable with reaction energies of -24.7, -26.8, and -128.7kJ/mol, respectively, and are therefore unlikely to exist as pure compounds. The published calcium carbide structure for CaO2is probably incorrect, at least for pure calcium peroxide, since apart from the thermodynamical instability the compound is more stable in the pyrite structure by 25.5 kJ/mol. Our analysis suggests that the water and/or hydrogen peroxide content of experimentally prepared MgO2samples is necessary for the stabilization of the structure, while BeO2is clearly unstable under ambient conditions. We studied also the effect of the zero point energies and the entropies on the decomposition free energies and, for this purpose, performed atomistic lattice simulations based on interatomic potentials, which we derived from ourab initiodata; the results indicate a negligible effect of the zero point energies, while the entropy terms favor the decomposition reaction by ca. 20 kJ/mol at 298.15 K.

  5. Enhancement of oxygen surface exchange kinetics of SrTiO(3) by alkaline earth metal oxides.

    PubMed

    Argirusis, Christos; Wagner, Stefan; Menesklou, Wolfgang; Warnke, Carsten; Damjanovic, Tanja; Borchardt, Günter; Ivers-Tiffée, Ellen

    2005-10-21

    The oxygen incorporation reaction in undoped SrTiO(3) was investigated by electrical measurements (pressure modulation technique) in the temperature range from 650-920 degrees C and by means of tracer exchange experiments in the temperature range from 458-600 degrees C. The surface of the undoped SrTiO(3) single crystals was modified by alkaline earth metal compounds leading to a tremendous enhancement of the effective surface exchange rate for oxygen incorporation as compared to the uncoated surface.

  6. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  7. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  8. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  9. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  10. CO2 capture properties of alkaline earth metal oxides and hydroxides: A combined density functional theory and lattice phonon dynamics study

    NASA Astrophysics Data System (ADS)

    Duan, Yuhua; Sorescu, Dan C.

    2010-08-01

    By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO2 absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)2 (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO2 capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)2 systems were found to be better candidates for CO2 sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H2O, MgCO3 can be regenerated into Mg(OH)2 at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO2 pressure but also on the H2O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO2 sorbents.

  11. Theoretical study of the alkali and alkaline-earth monosulfides

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1988-01-01

    Ab initio calculations have been used to obtain accurate spectroscopic constants for the X2Pi and A2Sigma(+) states of the alkali sulfides and the X1Sigma(+), a3Pi, and A1Pi states of the alkaline-earth sulfides. In contrast to the alkali oxides, the alkali sulfides are found to have X2Pi ground states, due to the larger electrostatic interaction. Dissociation energies of 3.27 eV for BeS, 2.32 eV for MgS, 3.29 eV for CaS, and 3.41 eV for SrS have been obtained for the X1Sigma(+) states of the alkaline-earth sulfides, in good agreement with experimental results. Core correlation is shown to increase the Te values for the a3Pi and A1Pi states of MgS, CaS, and SrS.

  12. The synthesis of higher oxides of alkali and alkaline earth metals in an electric discharge: Theoretical and experimental studies

    NASA Technical Reports Server (NTRS)

    Bell, A. T.; Sadhukhan, P.

    1974-01-01

    Potassium hydroxide was subjected to the products of an electrical discharge sustained in oxygen and produced both potassium peroxide and superoxide. The conversion to higher oxides was shown to strongly depend upon the particle size of KOH, the position of KOH in the discharge zone, and the operating conditions of the discharge. Similar experiments were performed with hydroxides of lithium and calcium which do not form superoxides, but are converted to peroxides. The yields of peroxides were shown to strongly depend upon the operating conditions of the discharge. The absence of superoxides and the presence of peroxides of lithium and calcium was explained from the consideration of relative thermodynamic stability of the oxides of lithium and calcium. Thermogravimetric analysis was shown to provide a more accurate means for determining the amount of KO2 than previous methods.

  13. Computer modeling of the local structure, mixing properties, and stability of solid solutions of alkaline-earth metal oxides

    SciTech Connect

    Urusov, V. S. Petrova, T. G. Eremin, N. N.

    2008-11-15

    A technique for the computer modeling of disordered binary oxide solid solutions MO-M'O in a wide composition range has been developed. The method of atomistic pair potentials was used for 4 x 4 x 4 supercells. The parameters of the potentials are optimized using the structural and elastic properties of pure components MgO, CaO, SrO, and BaO. The temperature dependences of the heat capacity and entropy are calculated for pure components. The excess mixing properties (enthalpy, volume, bulk modulus, vibrational entropy) are found for different compositions of Mg{sub x}Ca{sub (1-x)}O, Ca{sub x}Sr{sub (1-x)}O, and Sr{sub x}Ba{sub (1-x)}O solid solutions. Temperature and composition dependences of the excess Gibbs energy were constructed, which made it possible to approximately estimate the critical decomposition temperatures and limits of component miscibility. Statistical analysis of lattice distortions in the first and second coordination spheres reveals a detailed picture of the solid-solution local structure.

  14. Computer modeling of the local structure, mixing properties, and stability of solid solutions of alkaline-earth metal oxides

    NASA Astrophysics Data System (ADS)

    Urusov, V. S.; Petrova, T. G.; Eremin, N. N.

    2008-11-01

    A technique for the computer modeling of disordered binary oxide solid solutions MO- M'O in a wide composition range has been developed. The method of atomistic pair potentials was used for 4 × 4 × 4 supercells. The parameters of the potentials are optimized using the structural and elastic properties of pure components MgO, CaO, SrO, and BaO. The temperature dependences of the heat capacity and entropy are calculated for pure components. The excess mixing properties (enthalpy, volume, bulk modulus, vibrational entropy) are found for different compositions of Mg x Ca(1 - x)O, Ca x Sr(1 - x)O, and Sr x Ba(1 - x)O solid solutions. Temperature and composition dependences of the excess Gibbs energy were constructed, which made it possible to approximately estimate the critical decomposition temperatures and limits of component miscibility. Statistical analysis of lattice distortions in the first and second coordination spheres reveals a detailed picture of the solid-solution local structure.

  15. Selective trans-membrane transport of alkali and alkaline earth cations through graphene oxide membranes based on cation-π interactions.

    PubMed

    Sun, Pengzhan; Zheng, Feng; Zhu, Miao; Song, Zhigong; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Little, Reginald B; Xu, Zhiping; Zhu, Hongwei

    2014-01-28

    Graphene and graphene oxide (G-O) have been demonstrated to be excellent filters for various gases and liquids, showing potential applications in areas such as molecular sieving and water desalination. In this paper, the selective trans-membrane transport properties of alkali and alkaline earth cations through a membrane composed of stacked and overlapped G-O sheets ("G-O membrane") are investigated. The thermodynamics of the ion transport process reveal that the competition between the generated thermal motions and the interactions of cations with the G-O sheets results in the different penetration behaviors to temperature variations for the considered cations (K(+), Mg(2+), Ca(2+), and Ba(2+)). The interactions between the studied metal atoms and graphene are quantified by first-principles calculations based on the plane-wave-basis-set density functional theory (DFT) approach. The mechanism of the selective ion trans-membrane transportation is discussed further and found to be consistent with the concept of cation-π interactions involved in biological systems. The balance between cation-π interactions of the cations considered with the sp(2) clusters of G-O membranes and the desolvation effect of the ions is responsible for the selectivity of G-O membranes toward the penetration of different ions. These results help us better understand the ion transport process through G-O membranes, from which the possibility of modeling the ion transport behavior of cellular membrane using G-O can be discussed further. The selectivity toward different ions also makes G-O membrane a promising candidate in areas of membrane separations.

  16. Characterization of Surface and Bulk Nitrates of γ-Al2O3-Supported Alkaline Earth Oxides using Density Functional Theory

    SciTech Connect

    Mei, Donghai; Ge, Qingfeng; Kwak, Ja Hun; Kim, Do Heui; Verrier, Christelle M.; Szanyi, Janos; Peden, Charles HF

    2009-05-14

    “Surface" and "bulk" nitrates formed on a series of alkaline earth oxides (AEOs), AE(NO3)2, were investigated using first-principles density functional theory calculations. The formation of these surface and bulk nitrates was modeled by the adsorption of NO2+NO3 pairs on gamma-Al2O3-supported monomeric AEOs (MgO, CaO, SrO, and BaO) and on the extended AEO(001) surfaces, respectively. The calculated vibrational frequencies of the surface and bulk nitrates based on our proposed models are in good agreement with experimental measurements of AEO/gamma-Al2O3 materials after prolonged NO2 exposure. This indicates that experimentally observed "surface" nitrates are most likely formed with isolated two dimensional (including monomeric) AEO clusters on the gamma-Al2O3 substrate, while the "bulk" nitrates are formed on exposed (including (001)) surfaces (and likely in the bulk as well) of large three dimensional AEO particles supported on the gamma-Al2O3 substrate. Also in line with the experiments, our calculations show that the low and high frequency components of the vibrations for both surface and bulk nitrates are systematically red shifted with the increasing basicity and cationic size of the AEOs. The adsorption strengths of NO2+NO3 pairs are nearly the same for the series of alumina-supported monomeric AEOs, while the adsorption strengths of NO2+NO3 pairs on the AEO surfaces increase in the order of MgO < CaO < SrO ~ BaO. Compared to the NO2+NO3 pair that only interacts with monomeric AEOs, the stability of NO2+NO3 pairs that interact with both the monomeric AEO and the gamma-Al2O3 substrate is enhanced by about 0.5 eV. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  17. First-principles study of fission product (Xe, Cs, Sr) incorporation and segregation in alkaline earth metal oxides, HfO2, and MgO-HfO2 interface

    SciTech Connect

    Liu, Xiang-yang; Uberuaga, Blas P; Sickafus, Kurt E

    2008-01-01

    In order to close the nuclear fuel cycle, advanced concepts for separating out fission products are necessary. One approach is to use a dispersion fuel form in which a fissile core is surrounded by an inert matrix that captures and immobilizes the fission products from the core. If this inert matrix can be easily separated from the fuel, via e.g. solution chemistry, the fission products can be separated from the fissile material. We examine a surrogate dispersion fuel composition, in which hafnia (HfO{sub 2}) is a surrogate for the fissile core and alkaline earth metal oxides are used as the inert matrix. The questions of fission product incorporation in these oxides and possible segregation behavior at interfaces are considered. Density functional theory based calculations for fission product elements (Xe, Sr, and Cs) in these oxides are carried out. We find smaller incorporation energy in hafnia than in MgO for Cs and Sr, and Xe if variation of charge state is allowed. We also find that this trend is reversed or reduced for alkaline earth metal oxides with large cation sizes. Model interfacial calculations show a strong tendency of segregation from bulk MgO to MgO-HfO{sub 2} interfaces.

  18. Catalytic evaluation of promoted CeO2-ZrO2 by transition, alkali, and alkaline-earth metal oxides for diesel soot oxidation.

    PubMed

    Alinezhadchamazketi, Ali; Khodadadi, Abas Ali; Mortazavi, Yadollah; Nemati, Ahmad

    2013-12-01

    Series of mixed metal oxides were synthesized by gel-combustion method and their catalytic activities for soot oxidation were investigated. The catalysts were M-Ce-Zr (M = Mn, Cu, Fe, K, Ba, Sr), and xK-20Mn-Ce-Zr (x = 0, 5, 10, 20), they were characterized by XRD, SEM, TPR and BET surface area techniques. The results of soot temperature programmed oxidation (TPO) in an O2 oxidizing atmosphere indicate that K-Ce-Zr has the highest catalytic activity for soot oxidation under loose contact condition, due to enhancement of the soot and catalyst contacts. On the other hand, under a tight contact condition, Mn-Ce-Zr and Cu-Ce-Zr nano-composites have high activities for soot oxidation and lower the soot TPO peak temperatures by about 280 and 270 degrees C, respectively, as compared to non-catalytic soot oxidation. Furthermore, the addition of up to 10 wt.% potassium oxides into Mn-Ce-Zr increases its catalytic activity and further reduces the soot TPO peak temperature by about 40 degrees C under loose contact condition.

  19. Alkaline earths as main group reagents in molecular catalysis.

    PubMed

    Hill, Michael S; Liptrot, David J; Weetman, Catherine

    2016-02-21

    The past decade has witnessed some remarkable advances in our appreciation of the structural and reaction chemistry of the heavier alkaline earth (Ae = Mg, Ca, Sr, Ba) elements. Derived from complexes of these metals in their immutable +2 oxidation state, a broad and widely applicable catalytic chemistry has also emerged, driven by considerations of cost and inherent low toxicity. The considerable adjustments incurred to ionic radius and resultant cation charge density also provide reactivity with significant mechanistic and kinetic variability as group 2 is descended. In an attempt to place these advances in the broader context of contemporary main group element chemistry, this review focusses on the developing state of the art in both multiple bond heterofunctionalisation and cross coupling catalysis. We review specific advances in alkene and alkyne hydroamination and hydrophosphination catalysis and related extensions of this reactivity that allow the synthesis of a wide variety of acyclic and heterocyclic small molecules. The use of heavier alkaline earth hydride derivatives as pre-catalysts and intermediates in multiple bond hydrogenation, hydrosilylation and hydroboration is also described along with the emergence of these and related reagents in a variety of dehydrocoupling processes that allow that facile catalytic construction of Si-C, Si-N and B-N bonds. PMID:26797470

  20. Mixed alkaline earth effect in the compressibility of aluminosilicate glasses.

    PubMed

    Smedskjaer, Morten M; Rzoska, Sylwester J; Bockowski, Michal; Mauro, John C

    2014-02-01

    The mixed modifier effect (MME) in oxide glasses manifests itself as a non-additive variation in certain properties when one modifier oxide species is substituted by another one at constant total modifier content. However, the structural and topological origins of the MME are still under debate. This study provides new insights into the MME by investigating the effect of isostatic compression on density and hardness of mixed MgO/CaO sodium aluminosilicate glasses. This is done using a specially designed setup allowing isostatic compression of bulk glass samples up to 1 GPa at elevated temperature. A mixed alkaline earth effect is found in the compressibility and relative change of hardness, viz., a local maximum of density as a function of Mg/Ca ratio appears following compression, whereas a local minimum of hardness in the uncompressed glasses nearly disappears after compression. Moreover, the densification of these glasses is found to occur at temperatures much below the glass transition temperature, indicating that a non-viscous mechanism is at play. This is further supported by the fact that density relaxes in a stretched exponential manner upon subsequent annealing at ambient pressure with an exponent of ∼0.62. This is close to the Phillips value of 3/5 for relaxation in three dimensions when both short- and long-range interactions are activated.

  1. Physical and electrochemical properties of alkaline earth doped, rare earth vanadates

    SciTech Connect

    Adijanto, Lawrence; Balaji Padmanabhan, Venu; Holmes, Kevin J.; Gorte, Raymond J.; Vohs, John M.

    2012-06-15

    The effect of partial substitution of alkaline earth (AE) ions, Sr{sup 2+} and Ca{sup 2+}, for the rare earth (RE) ions, La{sup 3+}, Ce{sup 3+}, Pr{sup 3+}, and Sm{sup 3+}, on the physical properties of REVO{sub 4} compounds were investigated. The use of the Pechini method to synthesize the vanadates allowed for high levels of AE substitution to be obtained. Coulometric titration was used to measure redox isotherms for these materials and showed that the addition of the AE ions increased both reducibility and electronic conductivity under typical solid oxide fuel cell (SOFC) anode conditions, through the formation of compounds with mixed vanadium valence. In spite of their high electronic conductivity, REVO{sub 4}-yttira stabilized zirconia (YSZ) composite anodes exhibited only modest performance when used in SOFCs operating with H{sub 2} fuel at 973 K due to their low catalytic activity. High performance was obtained, however, after the addition of a small amount of catalytically active Pd to the anode. - Graphical abstract: Coulometric titration isotherms for ({open_square}) LaVO{sub 4}, ( White-Circle ) PrVO{sub 4}, ( Lozenge ) CeVO{sub 4}, ( Black-Up-Pointing-Triangle ) Ce{sub 0.7}Sr{sub 0.3}VO{sub 3.85}, and ( Black-Square ) Ce{sub 0.7}Ca{sub 0.3}VO{sub 3.85}, at 973 K. Highlights: Black-Right-Pointing-Pointer Infiltration procedures were used to prepare SOFC anodes from various vanadates. Black-Right-Pointing-Pointer Doping of Alkaline Earth to Rare Earth Vanadates showed to improve conductivity and chemical stability. Black-Right-Pointing-Pointer Alkaline Earth Doped Rare Earth Vanadates-YSZ composites showed conductivities as high as 5 S cm{sup -1} at 973 K. Black-Right-Pointing-Pointer As with other ceramic anodes, the addition of a catalyst was required to achieve low anode impedance.

  2. Alkaline earth stannates: The next silicon?

    SciTech Connect

    Ismail-Beigi, Sohrab Ahn, Charles H.; Walker, Frederick J.; Cheong, Sang-Wook; Rabe, Karin M.

    2015-06-01

    Semiconductor materials are being used in an increasingly diverse array of applications, with new device concepts being proposed each year for solar cells, flat-panel displays, sensors, memory, and spin transport. This rapid progress of invention outpaces the development of new semiconductor materials with the required properties and performance. In many applications, high carrier mobility at room temperature is required in addition to specific functional properties critical to the device concept. We review recent developments on high mobility stannate perovskite oxide materials and devices.

  3. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    DOE PAGES

    Sun, Hui; Wu, Di; Liu, Kefeng; Guo, Xiaofeng; Navrotsky, Alexandra

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential (Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A) to –48.02more » ± 1.85 kJ/mol per TO2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.« less

  4. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  5. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  6. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  7. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  8. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  9. Controlled charge exchange between alkaline earth metals and their ions

    NASA Astrophysics Data System (ADS)

    Gacesa, Marko; Côté, Robin

    2015-05-01

    We theoretically investigate the prospects of realizing controlled charge exchange via magnetic Feshbach resonances in cold and ultracold collisions of atoms and ions. In particular, we focus on near-resonant charge exchange in heteroisotopic combinations of alkaline earth metals, such as 9Be++10 Be<-->9 Be+10Be+ , which exhibit favorable electronic and hyperfine structure. The quantum scattering calculations are performed for a range of initial states and experimentally attainable magnetic fields in standard coupled-channel Feshbach projection formalism, where higher-order corrections such as the mass-polarization term are explicitely included. In addition, we predict a number of magnetic Feshbach resonances for different heteronuclear isotopic combinations of the listed and related alkaline earth elements. Our results imply that near-resonant charge-exchange could be used to realize atom-ion quantum gates, as well as controlled charge transfer in optically trapped cold quantum gases. This work is partially supported by ARO.

  10. Thermal design of high temperature alkaline-earth vapor cells

    NASA Astrophysics Data System (ADS)

    Armstrong, Jordan L.; Lemke, Nathan D.; Martin, Kyle W.; Erickson, Christopher J.

    2016-03-01

    Europium doped calcium fluoride is a machinable and alkaline-earth resistant crystal that is suitable for constructing a calcium or strontium vapor cell. However, its heat capacity, emissivity, and high coefficient of thermal expansion make it challenging to achieve optically dense calcium vapors for laser spectroscopy on narrow linewidth transitions. We discuss a low size, weight and power heating package that is under development at the Air Force Research Laboratory.

  11. Steady-state superradiance with alkaline-earth-metal atoms

    SciTech Connect

    Meiser, D.; Holland, M. J.

    2010-03-15

    Alkaline-earth-metal-like atoms with ultranarrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in conventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements.

  12. Ab Initio Thermochemistry and Elastic Properties of Alkaline Earth Hydrides

    NASA Astrophysics Data System (ADS)

    Hector, Louis, Jr.; Herbst, Jan; Wolf, Walter; Saxe, Paul

    2006-03-01

    In addition to comprising a scientifically interesting class of materials, the binary alkaline earth hydrides are important components of hydrogen sorption/desorption reactions. Of critical importance for predicting the thermodynamic stability of hydrides is the enthalpy of hydride formation, δH, which links the temperature and pressure of hydrogen sorption via the van't Hoff relation. We compare LDA and GGA predictions of the heats of formation and elastic properties of alkaline earth metals and their binary hydrides BeH2, MgH2, CaH2, SrH2, and BaH2 using a plane wave density functional method. Phonon calculations using the direct method enabled prediction of the zero point energies of each material and the 0K and 298K heats of formation. We also computed the 0K and 298K cohesive energies for the alkaline earth metals. Born effective charge tensors were computed via the Berry phase method and enabled prediction of the phonon dispersion curves with LO/TO zone center splittings. It was found that the LO/TO splittings have no effect on the computed zero point energies and heats of formation. The elastic constants were computed with a least squares fitting method using a set of sequentially-applied strains to improve the accuracy of each calculation. Comparison of results from the least squares methodology with prior results using the Hartree-Fock method suggest that the former is substantially more accurate for predicting hydride elastic properties.

  13. Dynamical simulations of superionicity in alkaline-earth halides

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.; Hardy, J. R.; Cao, H. Z.

    1996-04-01

    Superionicity in alkaline-earth halides CaF 2, SrF 2 and BaF 2 has been studied by molecular dynamical simulations using Gordon-Kim potentials. These dynamical simulations employ a novel technique to monitor the motion of ions which clearly demonstrates the nature of the superionic phases in these crystals. While in the superionic phase, the Ca 2+, Ba 2+, and Sr 2+ ions maintain ideal lattice positions, the F - ions flow between them in a correlated linear manner closely related to that proposed previously by Boyer.

  14. Quantum computing with alkaline-Earth-metal atoms.

    PubMed

    Daley, Andrew J; Boyd, Martin M; Ye, Jun; Zoller, Peter

    2008-10-24

    We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the 1S0 and 3P0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3P2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.

  15. Novel alkaline earth silicate sealing glass for SOFC, Part I: the effect of nickel oxide on the thermal and mechanical properties

    SciTech Connect

    Chou, Y. S.; Stevenson, Jeffry W.; Gow, Robert N.

    2007-06-01

    This is a two-part study of a novel Sr-Ca-Ni-Y-B silicate sealing glass for solid oxide fuel cells (SOFC). In this paper (Part I), the effect of NiO on glass forming, thermal, and mechanical properties was studied with two different approaches: glass making and composite glass. In the following paper (Part II), sealing and interfacial microstructure of candidate composite glass with 10v percent NiO will be addressed. In Part I, higher NiO content in the glass resulted in precipitation during the glass making process, and the sintered powder compacts of these glasses showed extensive macro- and micro-cracks. Coefficient of thermal expansion (CTE) showed large decrease for glass with higher NiO contents. On the other hand, glass-based composites showed no fracture even with NiO content as high as 15 percent. The CTE of the composite glass, which increased with increasing NiO content (consistent with the rule of mixtures prediction), could be adjusted to match the CTE of SOFC components. Phase characterization by XRD identified phases of YBO3 and NiO in the glass, which were likely responsible for the poor mechanical and thermal properties for the glass making approach.

  16. Proposal for Laser Cooling of Alkaline Earth Monoalkoxide Free Radicals

    NASA Astrophysics Data System (ADS)

    Baum, Louis; Kozyryev, Ivan; Matsuda, Kyle; Doyle, John M.

    2016-05-01

    Cold samples of polyatomic molecules will open new avenues in physics, chemistry, and quantum science. Non-diagonal Franck-Condon factors, technically challenging wavelengths, and the lack of strong electronic transitions inhibit direct laser cooling of nonlinear molecules. We identify a scheme for optical cycling in certain molecules with six or more atoms. Replacing hydrogen in alcohols with an alkaline earth metal (M) leads to alkaline earth monoalkoxide free radicals (MOR), which have favorable properties for laser cooling. M-O bond is very ionic, so the metal orbitals are slightly affected by the nature of R on the ligand. Diagonal Franck-Condon factors, laser accessible transitions, and a small hyperfine structure make MOR molecules suitable for laser cooling. We explore a scheme for optical cycling on the A - X transition of SrOCH3 . Molecules lost to dark vibrational states will be repumped on the B - X transition. Extension to larger species is possible through expansion of the R group since transitions involve the promotion of the metal-centered nonbonding valence electron. We will detail our estimations of the Franck-Condon factors, simulations of the cooling process and describe progress towards the Doppler cooling of MOR polyatomics.

  17. Recent advances in Rydberg physics using alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Dunning, F. B.; Killian, T. C.; Yoshida, S.; Burgdörfer, J.

    2016-06-01

    In this brief review, the opportunities that the alkaline-earth elements offer for studying new aspects of Rydberg physics are discussed. For example, the bosonic alkaline-earth isotopes have zero nuclear spin which eliminates many of the complexities present in alkali Rydberg atoms, permitting simpler and more direct comparison between theory and experiment. The presence of two valence electrons allows the production of singlet and triplet Rydberg states that can exhibit a variety of attractive or repulsive interactions. The availability of weak intercombination lines is advantageous for laser cooling and for applications such as Rydberg dressing. Excitation of one electron to a Rydberg state leaves behind an optically active core ion allowing, for high-L states, the optical imaging of Rydberg atoms and their (spatial) manipulation using light scattering. The second valence electron offers the possibility of engineering long-lived doubly excited states such as planetary atoms. Recent advances in both theory and experiment are highlighted together with a number of possible directions for the future.

  18. Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses

    NASA Astrophysics Data System (ADS)

    Sastry, S. Sreehari; Rao, B. Rupa Venkateswara

    2014-02-01

    In this paper spectroscopic investigation of Cu2+ doped alkaline earth lead zinc phosphate glasses was done through the spectroscopic techniques like X-ray diffraction, Ultra Violet (UV) absorption Spectroscopy, Electron Paramagnetic Resonance (EPR - X band), Fourier Transform Infra Red (FTIR) and Raman Spectroscopy. Alkaline earth lead zinc phosphate glasses containing 0.1% copper oxide (CuO) were prepared by the melt quenching technique. Spectroscopic studies indicated that there is a greater possibility for the copper ions to exist in Cu2+ state in these glasses. The optical absorption spectra indicated that the absorption peak of Cu2+ is a function of composition. The maxima absorption peak was reported at 862 nm for strontium lead zinc phosphate glass. Bonding parameters were calculated for the optical and EPR data. All these spectral results indicated clearly that there are certain structural changes in the present glass system with different alkaline earth contents. The IR and Raman spectra noticed the breaking of the P-O-P bonds and creating more number of new P-O-Cu bonds.

  19. Alkaline Earth Core Level Photoemission Spectroscopy of High-Temperature Superconductors

    NASA Technical Reports Server (NTRS)

    Vasquez, R.

    1993-01-01

    This paper examines photoemission measurements of the alkaline Earth core levels of high-temperature superconductors and related materials, models that seek to explain the large negative shifts observed relative to the corresponding alkaline Earth metals, and the effect of lattice site disorder on the core level spectra and the presence or absence of intrinsic surface peaks.

  20. Improvement of thermoelectric properties of alkaline-earth hexaborides

    SciTech Connect

    Takeda, Masatoshi . E-mail: takeda@mech.nagaokaut.ac.jp; Terui, Manabu; Takahashi, Norihito; Ueda, Noriyoshi

    2006-09-15

    Thermoelectric (TE) and transport properties of alkaline-earth hexaborides were examined to investigate the possibility of improvement in their TE performance. As carrier concentration increased, electrical conductivity increased and the absolute value of the Seebeck coefficient decreased monotonically, while carrier mobility was almost unchanged. These results suggest that the electrical properties of the hexaboride depend largely on carrier concentration. Thermal conductivity of the hexaboride was higher than 10 W/m K even at 1073 K, which is relatively high among TE materials. Alloys of CaB{sub 6} and SrB{sub 6} were prepared in order to reduce lattice thermal conductivity. Whereas the Seebeck coefficient and electrical conductivity of the alloys were intermediate between those of CaB{sub 6} and SrB{sub 6} single phases, the thermal conductivities of the alloys were lower than those of both single phases. The highest TE performance was obtained in the vicinity of Ca{sub 0.5}Sr{sub 0.5}B{sub 6}, indicating that alloying is effective in improving the performance. - Graphical abstract: Thermoelectric figure-of-merit, ZT, for (Ca,Sr)B{sub 6} alloys. The highest ZT value of 0.35 at 1073 K was obtained due to effective reduction of thermal conductivity by alloying.

  1. Modulation of cardiac ryanodine receptor channels by alkaline earth cations.

    PubMed

    Diaz-Sylvester, Paula L; Porta, Maura; Copello, Julio A

    2011-01-01

    Cardiac ryanodine receptor (RyR2) function is modulated by Ca(2+) and Mg(2+). To better characterize Ca(2+) and Mg(2+) binding sites involved in RyR2 regulation, the effects of cytosolic and luminal earth alkaline divalent cations (M(2+): Mg(2+), Ca(2+), Sr(2+), Ba(2+)) were studied on RyR2 from pig ventricle reconstituted in bilayers. RyR2 were activated by M(2+) binding to high affinity activating sites at the cytosolic channel surface, specific for Ca(2+) or Sr(2+). This activation was interfered by Mg(2+) and Ba(2+) acting at low affinity M(2+)-unspecific binding sites. When testing the effects of luminal M(2+) as current carriers, all M(2+) increased maximal RyR2 open probability (compared to Cs(+)), suggesting the existence of low affinity activating M(2+)-unspecific sites at the luminal surface. Responses to M(2+) vary from channel to channel (heterogeneity). However, with luminal Ba(2+)or Mg(2+), RyR2 were less sensitive to cytosolic Ca(2+) and caffeine-mediated activation, openings were shorter and voltage-dependence was more marked (compared to RyR2 with luminal Ca(2+)or Sr(2+)). Kinetics of RyR2 with mixtures of luminal Ba(2+)/Ca(2+) and additive action of luminal plus cytosolic Ba(2+) or Mg(2+) suggest luminal M(2+) differentially act on luminal sites rather than accessing cytosolic sites through the pore. This suggests the presence of additional luminal activating Ca(2+)/Sr(2+)-specific sites, which stabilize high P(o) mode (less voltage-dependent) and increase RyR2 sensitivity to cytosolic Ca(2+) activation. In summary, RyR2 luminal and cytosolic surfaces have at least two sets of M(2+) binding sites (specific for Ca(2+) and unspecific for Ca(2+)/Mg(2+)) that dynamically modulate channel activity and gating status, depending on SR voltage. PMID:22039534

  2. Oxidants and oxidation in the Earth's atmosphere

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The 1994 BOC Priestley Conference was held at Bucknell University in Lewisburg, Pennsylvania, from June 24 through June 27, 1994. This conference, managed by the American Chemical Society (ACS), was a joint celebration with the Royal Society of Chemistry (RSC) commemorating Joseph Priestley's arrival in the U.S. and his discovery of oxygen. The basic theme of the conference was 'Oxidants and Oxidation in the Earth's Atmosphere,' with a keynote lecture on the history of ozone. A distinguished group of U.S. and international atmospheric chemists addressed the issues dominating current research and policy agendas. Topics crucial to the atmospheric chemistry of global change and local and regional air pollution were discussed. The program for the conference included four technical sessions on the following topics: (1) Oxidative Fate of Atmospheric Pollutants; (2) Photochemical Smog and Ozone; (3) Stratospheric Ozone; and (4) Global Tropospheric Ozone.

  3. Release characteristics of alkali and alkaline earth metallic species during biomass pyrolysis and steam gasification process.

    PubMed

    Long, Jiang; Song, Hu; Jun, Xiang; Sheng, Su; Lun-Shi, Sun; Kai, Xu; Yao, Yao

    2012-07-01

    Investigating the release characteristics of alkali and alkaline earth metallic species (AAEMs) is of potential interest because of AAEM's possible useful service as catalysts in biomass thermal conversion. In this study, three kinds of typical Chinese biomass were selected to pyrolyse and their chars were subsequently steam gasified in a designed quartz fixed-bed reactor to investigate the release characteristics of alkali and alkaline earth metallic species (AAEMs). The results indicate that 53-76% of alkali metal and 27-40% of alkaline earth metal release in pyrolysis process, as well as 12-34% of alkali metal and 12-16% of alkaline earth metal evaporate in char gasification process, and temperature is not the only factor to impact AAEMs emission. The releasing characteristics of AAEMs during pyrolysis and char gasification process of three kinds of biomass were discussed in this paper. PMID:22525260

  4. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  5. Structure and ionic diffusion of alkaline-earth ions in mixed cation glasses

    SciTech Connect

    Konstantinou, Konstantinos; Sushko, Petr; Duffy, Dorothy M.

    2015-08-15

    A series of mixed cation silicate glasses of the composition A2O – 2MO – 4SiO2, with A=Li,Na,K and M=Ca,Sr,Ba has been investigated by means of molecular dynamics simulations in order to understand the effect of the nature of the cations on the mobility of the alkaline-earth ions within the glass network. The size of the alkaline-earth cation was found to affect the inter-atomic distances, the coordination number distributions and the bond angle distributions , whereas the medium-range order was almost unaffected by the type of the cation. All the alkaline-earth cations contribute to lower vibrational frequencies but it is observed that that there is a shift to smaller frequencies and the vibrational density of states distribution gets narrower as the size of the alkaline-earth increases. The results from our modeling for the ionic diffusion of the alkaline-earth cations are in a qualitative agreement with the experimental observations in that there is a distinct correlation between the activation energy for diffusion of alkaline earth-ions and the cation radii ratio. An asymmetrical linear behavior in the diffusion activation energy with increasing size difference is observed. The results can be described on the basis of a theoretical model that relates the diffusion activation energy to the electrostatic interactions of the cations with the oxygens and the elastic deformation of the silicate network.

  6. The pressure induced B1-B2 phase transition of alkaline halides and alkaline earth chalcogenides. A first principles investigation

    SciTech Connect

    Potzel, Oliver; Taubmann, Gerhard

    2011-05-15

    In this work, we considered the pressure induced B1-B2 phase transition of AB compounds. The DFT calculations were carried out for 11 alkaline halides, 11 alkaline earth chalcogenides and the lanthanide pnictide CeP. For both the B1 and the B2 structures of each compound, the energy was calculated as a function of the cell volume. The transition pressure, the bulk moduli and their pressure derivatives were obtained from the corresponding equations of state. The transition path of the Buerger mechanism was described using roots of the transition matrix. We correlated the computed enthalpies of activation to some structure defining properties of the compounds. A fair correlation to Pearsons hardness of the ions was observed. -- Graphical abstract: Pressure induced transition from the B1 structure (left) via the transition state (middle) to the B2 structure (right). Display Omitted highlights: > Pressure induced phase transitions in AB compounds were considered. > Alkaline halides and alkaline earth chalcogenides were treated. > DFT calculations with periodic boundary conditions were applied. > The transition path was described by roots of the transition matrix. > The enthalpy of activation was calculated for numerous compounds.

  7. Attaching an alkali metal atom to an alkaline earth metal oxide (BeO, MgO, or CaO) yields a triatomic metal oxide with reduced ionization potential and redirected polarity.

    PubMed

    Nowiak, Grzegorz; Skurski, Piotr; Anusiewicz, Iwona

    2016-04-01

    The existence of a series of neutral triatomic metal oxides MON and their corresponding cations MON (+) (M = Be, Mg, Ca; N = Li, Na, K) was postulated and verified theoretically using ab initio methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(3df) level of theory. The calculations revealed that the vertical ionization potentials (IPs) of the MON radicals (calculated using the outer-valence Green's function technique (OVGF) with the 6-311+G(3df) basis set) were ca. 2-3 eV smaller than the IPs of the corresponding MO and NO systems or that of the isolated M atom. Population analysis of the neutral triatomic MON molecules and their corresponding MO counterparts indicated that the attachment of an alkali metal atom to any oxide MO (BeO, MgO, CaO) reverses its polarity, which manifests itself as the redirection of the dipole moment vector. PMID:26994021

  8. The effects of alkaline and alkaline earth metal salts on the performance of a polymer actuator based on single-wal led carbon nanotube-ionic liquid gel

    NASA Astrophysics Data System (ADS)

    Terasawa, Naohiro; Takeuchi, Ichiroh; Mukai, Ken; Asaka, Kinji

    We investigated an effect for alkaline metal salts or an alkaline earth metal salt on electrochemical and electromechanical properties of an actuator using a single-walled carbon nanotube (SWCNT)-ionic liquid (IL) gel electrode, and much better performance of the actuator containing the metal salt/IL. The actuator containing the alkaline metal salt /IL or alkaline earth metal salt/IL performed much better than that containing only the IL. It is considered that the higher ionic conductivity of the gel electrolyte layer containing the alkaline metal salt /IL or alkaline earth metal salt/IL produces the quick response actuator, and that the large capacitance gives the large generated strain.

  9. Voltammetric studies on the palladium oxides in alkaline media

    SciTech Connect

    Moo Cheol Jeong; In Hyeong Yeo . Dept. of Chemistry); Chong Hong Pyun . Solid State Chemistry Lab.)

    1993-07-01

    The formation and stripping of palladium oxides on a palladium electrode in a 0.1M LiOH solution was studied by cyclic voltammetry. Cyclic polarization methods were used to form palladium oxides on the surface of the palladium electrode. Three different types of palladium oxides were found to be formed in alkaline solutions. A higher oxidation state of palladium oxide (PdO[sub 3]) can be formed (induced) on the surface of the electrode even at low anodic potential limit, 0.6 V (vs. SCE). Strong evidence that PdO[sub 3] can only be formed in a specific potential range is presented. From the voltammograms obtained after a long cyclic polarization time, the peak in the range of [minus]0.47 to [minus]0.60 V could be attributed to the reduction of dehydrated PdO.

  10. Chemical trend of pressure-induced metallization in alkaline earth hydrides

    SciTech Connect

    Zhang, Sijia; Chen, Xiao-Jia; Zhang, Rui-Qin; Lin, Hai-Qing

    2010-09-02

    The pressure-induced metallization of alkaline earth hydrides was systematically investigated using ab initio methods. While BeH{sub 2} and MgH{sub 2} present different semimetallic phases, CaH{sub 2}, SrH{sub 2}, and BaH{sub 2} share the same metallic phase (P6/mmm). The metallization pressure shows an attractive decrease with each increment of metal radius, and this trend is well correlated with both the electronegativity of alkaline earth metals and the band gap of alkaline earth hydrides at ambient pressure. Our results are consistent with current experimental data, and the obtained trend has significant implications for designing and engineering metallic hydrides for energy applications.

  11. Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Rey, Ana Maria

    2010-03-01

    Recently, substantial experimental efforts have been directed at cooling, trapping, and manipulating alkaline-earth metal atoms, and many of the capabilities previously demonstrated with alkali atoms are starting to be reproduced with alkaline-earth atoms. In this talk I will describe our proposal to exploit the decoupling between the nuclear spins and the electronic degrees of freedom present in the 1S0 and 3P0 states of alkaline-earth atoms to implement atomic analogs of Hamiltonians which rely on the interplay between charge, spin and orbital degrees of freedom. As an example, I will discuss the implementation of the Kondo lattice model used in condensed matter to describe heavy fermion materials. The decoupling between nuclear and spin degrees of freedom also leads to an enlargement of the spin rotation symmetry from SU(2) to SU(N), with N as large as 10. I will show that this enlarged symmetry can have striking physical consequences, such as the disappearance of magnetic ordering and the formation of spin liquid phases. [4pt] [1] Two-orbital SU(N) magnetism with ultracold alkaline-earth atoms, A. V. Gorshkov et.al. arXiv:0905.2610 (to appear in Nature Physics). [0pt] [2] Mott Insulators of Ultracold Fermionic Alkaline Earth Atoms: Underconstrained Magnetism and Chiral Spin Liquid, M. Hermele, V. Gurarie, A, M. Rey , Phys. Rev. Lett. 103, 135301 (2009). [0pt] [3] Probing the Kondo Lattice Model with Alkaline Earth Atoms, M. Foss-Feig, M. Hermele, A.M. Rey, arXiv:0912.4762

  12. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  13. Mott insulators of ultracold fermionic alkaline Earth atoms: underconstrained magnetism and chiral spin liquid.

    PubMed

    Hermele, Michael; Gurarie, Victor; Rey, Ana Maria

    2009-09-25

    We study Mott insulators of fermionic alkaline earth atoms, described by Heisenberg spin models with enhanced SU(N) symmetry. In dramatic contrast to SU(2) magnetism, more than two spins are required to form a singlet. On the square lattice, the classical ground state is highly degenerate and magnetic order is thus unlikely. In a large-N limit, we find a chiral spin liquid ground state with topological order and Abelian fractional statistics. We discuss its experimental detection. Chiral spin liquids with non-Abelian anyons may also be realizable with alkaline earth atoms.

  14. Depolarizing collisions with hydrogen: Neutral and singly ionized alkaline earths

    SciTech Connect

    Manso Sainz, Rafael; Ramos, Andrés Asensio; Bueno, Javier Trujillo; Aguado, Alfredo

    2014-06-20

    Depolarizing collisions are elastic or quasielastic collisions that equalize the populations and destroy the coherence between the magnetic sublevels of atomic levels. In astrophysical plasmas, the main depolarizing collider is neutral hydrogen. We consider depolarizing rates on the lowest levels of neutral and singly ionized alkali earths Mg I, Sr I, Ba I, Mg II, Ca II, and Ba II, due to collisions with H°. We compute ab initio potential curves of the atom-H° system and solve the quantum mechanical dynamics. From the scattering amplitudes, we calculate the depolarizing rates for Maxwellian distributions of colliders at temperatures T ≤ 10,000 K. A comparative analysis of our results and previous calculations in the literature is completed. We discuss the effect of these rates on the formation of scattering polarization patterns of resonant lines of alkali earths in the solar atmosphere, and their effect on Hanle effect diagnostics of solar magnetic fields.

  15. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    NASA Astrophysics Data System (ADS)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO-LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ~1.11-1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface.

  16. Coordination Chemistry of Alkali and Alkaline-Earth Cations with Macrocyclic Ligands.

    ERIC Educational Resources Information Center

    Dietrich, Bernard

    1985-01-01

    Discusses: (l) alkali and alkaline-earth cations in biology (considering naturally occurring lonophores, their X-ray structures, and physiochemical studies); (2) synthetic complexing agents for groups IA and IIA; and (3) ion transport across membranes (examining neutral macrobicyclic ligands as metal cation carriers, transport by anionic carriers,…

  17. Phosphate glass electrode with good selectivity for alkaline-earth cations

    USGS Publications Warehouse

    Truesdell, A.H.; Pommer, A.M.

    1963-01-01

    A phosphate glass has been found to have a significant electrode specificity toward alkaline-earth ions. The order of selectivity is 2H + > Ba++ > Sr++ > Ca++ > 2K+ > 2Na+ > Mg++. Exchange properties are discussed in relation to possible structure. Its use to determine activity of Ca++ in natural systems containing Mg++ is suggested.

  18. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  19. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  20. Control of physicochemical properties and catalytic activity of tris(2,2'-bipyridine)iron(II) encapsulated within the zeolite Y cavity by alkaline earth metal cations.

    PubMed

    Martis, Martin; Mori, Kohsuke; Yamashita, Hiromi

    2014-01-21

    A series of materials containing the tris(2,2'-bipyridine)iron(ii) (Fe(bpy)3(2+)) complex inside zeolite Y cavities with alkaline earth metals (Mg(2+), Ca(2+), Sr(2+), Ba(2+)) as charge compensating cations have been synthesized via a "ship in the bottle" method. The influence of the alkaline earth metal cations on the physicochemical properties and catalytic activity was investigated. The successful formation of the Fe(bpy)3(2+) complex was verified by XRD, diffuse-reflectance UV-vis spectroscopy, and Fe K-edge XAFS measurements. The BET surface area and the Fe content decreased in the presence of the larger alkaline earth metal, but the intensity of the MLCT adsorption band of Fe(bpy)3(2+) increased with the heavier cation. The electron density of the Fe atoms decreased, and the average interatomic bond distance Fe-N/O and the coordination number increased with the heavier alkaline earth metal cation. The encapsulation of Fe(bpy)3(2+) resulted in the creation of a photocatalytic system able to oxidize styrene to benzaldehyde and styrene oxide under visible light irradiation (λ > 430 nm) in the presence of molecular oxygen.

  1. Ab initio study of the alkali and alkaline-earth monohydroxides

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.

    1986-01-01

    A systematic study of the structures and dissociation energies of all the alkali and alkaline-earth monohydroxides is conducted. A theoretical model for determining accurate dissociation energies of ionic molecules is discussed. The obtained theoretical structures and dissociation energies of the alkali and alkaline-earth monohydroxides, respectively, are compared with experimental data. It is found that the theoretical studies of the bending potentials of BeOH, MgOH, and CaOH reveal the different admixture of covalent character in these systems. The BeOH molecule with the largest degree of covalent character is found to be bent (theta equals 147 deg). The MgOH is also linear. The theoretical dissociation energies for the alkali and akaline-earth hydroxides are thought to be accurate to 0.1 eV.

  2. Optical Properties of Alkaline Earth Ions Doped Bismuth Borate Glasses

    SciTech Connect

    Kundu, Virender; Dhiman, R. L.; Maan, A. S.; Goyal, D. R.

    2011-07-15

    The optical properties of glasses with composition xLi{sub 2}O(30-x)Bi{sub 2}O{sub 3}-70B{sub 2}O{sub 3}; x = 0, 5, 10, 15 and 20 mol %, prepared by normal melt quench technique were investigated by means of UV-VIS measurement. It was observed that the optical band gap of the present glass system decreases with increasing Li{sub 2}O content up to 15 mol%, and with further increase in lithium oxide content i.e. x>15 mol% the optical band gap increases. It was also observed that the present glass system behaves as an indirect band gap semiconductor.

  3. Effective alkaline metal-catalyzed oxidative delignification of hybrid poplar

    DOE PAGES

    Bhalla, Aditya; Bansal, Namita; Stoklosa, Ryan J.; Fountain, Mackenzie; Ralph, John; Hodge, David B.; Hegg, Eric L.

    2016-02-09

    Background: Strategies to improve copper-catalyzed alkaline hydrogen peroxide (Cu-AHP) pretreatment of hybrid poplar were investigated. These improvements included a combination of increasing hydrolysis yields, while simultaneously decreasing process inputs through (i) more efficient utilization of H2O2 and (ii) the addition of an alkaline extraction step prior to the metal-catalyzed AHP pretreatment. We hypothesized that utilizing this improved process could substantially lower the chemical inputs needed during pretreatment. Results: Hybrid poplar was pretreated utilizing a modified process in which an alkaline extraction step was incorporated prior to the Cu-AHP treatment step and H2O2 was added batch-wise over the course of 10more » h. Our results revealed that the alkaline pre-extraction step improved both lignin and xylan solubilization, which ultimately led to improved glucose (86 %) and xylose (95 %) yields following enzymatic hydrolysis. An increase in the lignin solubilization was also observed with fed-batch H2O2 addition relative to batch-only addition, which again resulted in increased glucose and xylose yields (77 and 93 % versus 63 and 74 %, respectively). Importantly, combining these strategies led to significantly improved sugar yields (96 % glucose and 94 % xylose) following enzymatic hydrolysis. In addition, we found that we could substantially lower the chemical inputs (enzyme, H2O2, and catalyst), while still maintaining high product yields utilizing the improved Cu-AHP process. This pretreatment also provided a relatively pure lignin stream consisting of ≥90 % Klason lignin and only 3 % xylan and 2 % ash following precipitation. Two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR and size-exclusion chromatography demonstrated that the solubilized lignin was high molecular weight (Mw ≈ 22,000 Da) and only slightly oxidized relative to lignin from untreated poplar. In conclusion: This study demonstrated that the fed

  4. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  5. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  6. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  7. A Database of Alkaline-Earth-Coordinated Peptide Cross Sections: Insight into General Aspects of Structure

    NASA Astrophysics Data System (ADS)

    Dilger, Jonathan M.; Valentine, Stephen J.; Glover, Matthew S.; Clemmer, David E.

    2013-05-01

    A database of 1470 collision cross sections (666 doubly- and 804 triply-charged) of alkaline-earth-coordinated tryptic peptide ions [where the cation (M2+) correspond to Mg2+, Ca2+, or Ba2+] is presented. The utility of such an extensive set of measurements is illustrated by extraction of general properties of M2+-coordinated peptide structures. Specifically, we derive sets of intrinsic size parameters (ISPs) for individual amino acid residues for M2+-coordinated peptides. Comparison of these parameters with existing ISPs for protonated peptides suggests that M2+ binding occurs primarily through interactions with specific polar aliphatic residues (Asp, Ser, and Thr) and the peptide backbone. A comparison of binding interactions for these alkaline-earth metals with interactions reported previously for alkali metals is provided. Finally, we describe a new analysis in which ISPs are used as probes for assessing peptide structure based on amino acid composition.

  8. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals.

  9. Solvation structures and dynamics of alkaline earth metal halides in supercritical water: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Keshri, Sonanki; Mandal, Ratnamala; Tembe, B. L.

    2016-09-01

    Constrained molecular dynamics simulations of alkaline earth metal halides have been carried out to investigate their structural and dynamical properties in supercritical water. Potentials of mean force (PMFs) for all the alkaline earth metal halides in supercritical water have been computed. Contact ion pairs (CIPs) are found to be more stable than all other configurations of the ion pairs except for MgI2 where solvent shared ion pair (SShIP) is more stable than the CIP. There is hardly any difference in the PMFs between the M2+ (M = Mg, Ca, Sr, Ba) and the X- (X = F, Cl, Br, I) ions whether the second X- ion is present in the first coordination shell of the M2+ ion or not. The solvent molecules in the solvation shells diffuse at a much slower rate compared to the bulk. Orientational distribution functions of solvent molecules are sharper for smaller ions.

  10. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  11. IUPAC-NIST Solubility Data Series. 95. Alkaline Earth Carbonates in Aqueous Systems. Part 2. Ca

    SciTech Connect

    De Visscher, Alex; Vanderdeelen, Jan

    2012-06-15

    The alkaline earth carbonates are an important class of minerals. This article is part of a volume in the IUPAC-NIST Solubility Data Series that compiles and critically evaluates solubility data of the alkaline earth carbonates in water and in simple aqueous electrolyte solutions. Part 1 outlined the procedure adopted in this volume, and presented the beryllium and magnesium carbonates. Part 2, the current paper, compiles and critically evaluates the solubility data of calcium carbonate. The chemical forms included are the anhydrous CaCO{sub 3} types calcite, aragonite, and vaterite, the monohydrate monohydrocalcite (CaCO{sub 3}{center_dot} H{sub 2}O), the hexahydrate ikaite (CaCO{sub 3}{center_dot}6H{sub 2}O), and an amorphous form. The data were analyzed with two model variants, and thermodynamic data of each form consistent with each of the models and with the CODATA key values for thermodynamics are presented.

  12. Improved alkaline earth-oxyhalide electrochemical cell for low-temperature use

    SciTech Connect

    Binder, M.; Walker, C.W.

    1988-05-20

    This invention relates in general to an alkaline earth-oxyhalide electrochemical cell and in particular, to an improved alkaline earth oxyhalide electrochemical cell for low temperature use. A typical cell includes a calcium anode, 1M Ca(AlCl/sub 4/)/sub 2/ thionyl chloride/75% Shawinigan - 25% acetone washed Black Pearls 2000 carbon black cathode. The improvement to this cell involves the addition of 10 vol. % bromine to the electrolyte. During discharge at about -30 C, cathode potential is raised by about 0.5 volt providing a cell voltage well above the 2.0 volt minimum which is a standard military specification. Without bromine, cell capacity is about one minute. With the addition of bromine, load voltage is initially 2.5 volts, then slowly decreases to 2.0 volts over about twelve minutes.

  13. Properties of the triplet metastable states of the alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2004-11-01

    The static and dynamic properties of the alkaline-earth-metal atoms in their metastable state are computed in a configuration interaction approach with a semiempirical model potential for the core. Among the properties determined are the scalar and tensor polarizabilities, the quadrupole moment, some of the oscillator strengths, and the dispersion coefficients of the van der Waals interaction. A simple method for including the effect of the core on the dispersion parameters is described.

  14. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  15. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  16. Probing the Kondo lattice model with alkaline-earth-metal atoms

    SciTech Connect

    Foss-Feig, Michael; Hermele, Michael; Rey, Ana Maria

    2010-05-15

    We study transport properties of alkaline-earth-metal atoms governed by the Kondo lattice Hamiltonian plus a harmonic confining potential, and suggest simple dynamical probes of several different regimes of the phase diagram that can be implemented with current experimental techniques. In particular, we show how Kondo physics at strong coupling, at low density, and in the heavy fermion phase is manifest in the dipole oscillations of the conduction band upon displacement of the trap center.

  17. Creation of trapped electrons and holes in alkaline-earth fluoride crystals doped by rare-earth ions

    NASA Astrophysics Data System (ADS)

    Radzhabov, E.

    2002-06-01

    Defects in Ce 3+- and Eu 2+-doped alkaline-earth fluorides, created by vacuum ultraviolet (VUV) photons with energy lower than that of the band gap, were investigated by various methods: thermostimulated luminescence, photostimulated luminescence and optical absorption. The CaF 2:Eu 2+ thermoluminescence curves in the range of 60-330 K due to various types of trapped holes were the same after VUV illumination as after X-ray irradiation. Thermoluminescence curves of Ce 3+-doped alkaline-earth fluorides created by VUV illumination or X-ray irradiation were generally similar. However, Vk thermoluminescence peaks were absent in VUV-illuminated CaF 2:Ce 3+ and SrF 2:Ce 3+ crystals. Creation of Ce 2+ characteristic bands was observed in photostimulated luminescence spectra as well as in optical absorption spectra of vacuum ultraviolet-illuminated or X-ray-irradiated Ce 3+-doped crystals. The proposed mechanism of creation of trapped hole and trapped electron defects by vacuum ultraviolet illumination involves charge transfer-type transitions, in which the electron transfers from valence band to an impurity level, lying in the band gap. Comparison of all involved energies of transitions in the crystals investigated shows that the sum of all transition energies is less than that of the band gap by 1-3 eV. This energy difference can be considered as the energy of lattice relaxation around created Ce 2+ or Eu + ions.

  18. Theoretical investigation of the structures, stabilities, and NLO responses of calcium-doped pyridazine: alkaline-earth-based alkaline salt electrides.

    PubMed

    Wang, Yin-Feng; Huang, Jiangen; Jia, Li; Zhou, Guangpei

    2014-02-01

    Currently, whether alkaline-earth-doped compounds with electride characteristics are novel candidates for high-performance nonlinear optical (NLO) materials is unknown. In this paper, using quantum chemical computations, we show that: when doping calcium atoms into a family of alkaline-substituted pyridazines, alkaline-earth-based alkaline salt electrides M-H₃C₄N₂⋯Ca (M=H, Li, and K) with distended excess electron clouds are formed. Interestingly, from the triplet to the singlet state, the chemical valence of calcium atom changes from +1 to 0, and the dipole moment direction (μ₀) of the molecule reverses for each M-H₃C₄N₂⋯Ca. Changing pyridazine from without (H₄C₄N₂⋯Ca) to with one alkaline substituent (M-H₃C₄N₂⋯Ca, M=Li and K), the ground state changes from the triplet to the singlet state. The alkaline earth metal doping effect (electride effect) and alkaline salt effect on the static first hyperpolarizabilities (β₀) demonstrates that (1) the β₀ value is increased approximately 1371-fold from 2 (pyridazine, H₄C₄N₂) to 2745au (Ca-doped pyridazine, H₄C₄N₂⋯Ca), (2) the β₀ value is increased approximately 1146-fold from 2 in pyridazine (H₄C₄N₂) to 2294au in an Li-substituted pyridazine (Li-H₃C₄N₂), and (3) the β₀ value is increased 324-(M=Li) and 106-(M=K) fold from 826 (MLi) and 2294au (MK) to 268,679 (M=Li) and 245,878au (M=K), respectively, from the alkalized pyridazine (M-H₃C₄N₂) to the Ca-doped pyridazine (M-H₃C₄N₂⋯Ca). These results may provide a new means for designing high-performance NLO materials.

  19. N-type carbon nanotube by alkaline-earth metal Sr doping

    NASA Astrophysics Data System (ADS)

    Kim, Byung Hoon; Park, Tae Hoi; Baek, Seung Jae; Lee, Dong Su; Park, Seung Joo; Kim, Jun Sung; Park, Yung Woo

    2008-05-01

    Alkaline-earth metal, Sr, was doped on multiwalled carbon nanotubes (MWNTs) by vapor phase reaction method. The tunneling electron microscopy, energy dispersive x ray, and Raman spectroscopy were studied for verifying the Sr doping on MWNT. The temperature-dependent resistivity [ρ(T)] and thermoelectric power [S(T)] were also performed for both pristine MWNT and Sr-doped MWNT (Sr-MWNT). ρ(T ) of Sr-MWNT did not significantly change compared to pristine MWNT. However, S(T ) of Sr-MWNT considerably changes, i.e., it shows n-type behavior in contrast to pristine MWNT.

  20. The potential of trees to record aluminum mobilization and changes in alkaline earth availability

    SciTech Connect

    Bondietti, E.A.; Baes, C.F. III; McLaughlin, S.B.

    1988-01-01

    The mobilization of exchangeable soil cations by atmospheric depositions of mineral acid anions and the distribution of polyvalent cations in the xylem are described to provide the basis for interpreting both radial concentration and concentration ratio patterns of polyvalent cations in annual growth rings of trees. There is strong circumstantial evidence that increases in Al:Ca ratios in annual rings are related to aluminum mobilization, and that changes in the availability of alkaline earth elements and radial growth rated may also be related to cation mobilization. Suggestions for further research are presented.

  1. Liquefaction process for solid carbonaceous materials containing alkaline earth metal humates

    DOEpatents

    Epperly, William R.; Deane, Barry C.; Brunson, Roy J.

    1982-01-01

    An improved liquefaction process wherein wall scale and particulate agglomeration during the liquefaction of solid carbonaceous materials containing alkaline earth metal humates is reduced and/or eliminated by subjecting the solid carbonaceous materials to controlled cyclic cavitation during liquefaction. It is important that the solid carbonaceous material be slurried in a suitable solvent or diluent during liquefaction. The cyclic cavitation may be imparted via pressure cycling, cyclic agitation and the like. When pressure cycling or the like is employed an amplitude equivalent to at least 25 psia is required to effectively remove scale from the liquefaction vessel walls.

  2. Isotope fractionation in surface ionization ion source of alkaline-earth iodides

    SciTech Connect

    Suzuki, T.; Kanzaki, C.; Nomura, M.; Fujii, Y.

    2012-02-15

    The relationship between the isotope fractionation of alkaline-earth elements in the surface ionization ion source and the evaporation filament current, i.e., filament temperature, was studied. It was confirmed that the isotope fractionation depends on the evaporation filament temperature; the isotope fractionation in the case of higher temperature of filament becomes larger. The ionization and evaporation process in the surface ionization ion source was discussed, and it was concluded that the isotope fractionation is suppressed by setting at the lower temperature of evaporation filament because the dissociations are inhibited on the evaporation filament.

  3. Theoretical dissociation energies for the alkali and alkaline-earth monofluorides and monochlorides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.

    1986-01-01

    Spectroscopic parameters are accurately determined for the alkali and alkaline-earth monofluorides and monochlorides by means of ab initio self-consistent field and correlated wave function calculations. Numerical Hartree-Fock calculations are performed on selected systems to ensure that the extended Slater basis sets employed are near the Hartree-Fock limit. Since the bonding is predominantly electrostatic in origin, a strong correlation exists between the dissociation energy (to ions) and the spectroscopic parameter r(e). By dissociating to the ionic limits, most of the differential correlation effects can be embedded in the accurate experimental electron affinities and ionization potentials.

  4. Biogenesis and Early Life on Earth and Europa: Favored by an Alkaline Ocean?

    NASA Astrophysics Data System (ADS)

    Kempe, Stephan; Kazmierczak, Jozef

    2002-03-01

    Recent discoveries about Europa - the probable existence of a sizeable ocean below its ice crust; the detection of hydrated sodium carbonates, among other salts; and the calculation of a net loss of sodium from the subsurface - suggest the existence of an alkaline ocean. Alkaline oceans (nicknamed "soda oceans" in analogy to terrestrial soda lakes) have been hypothesized also for early Earth and Mars on the basis of mass balance considerations involving total amounts of acids available for weathering and the composition of the early crust. Such an environment could be favorable to biogenesis since it may have provided for very low Ca2+ concentrations mandatory for the biochemical function of proteins. A rapid loss of CO2 from Europa's atmosphere may have led to freezing oceans. Alkaline brine bubbles embedded in ice in freezing and impact-thawing oceans could have provided a suitable environment for protocell formation and the large number of trials needed for biogenesis. Understanding these processes could be central to assessing the probability of life on Europa.

  5. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  6. Health Effects of Alkaline Diet and Water, Reduction of Digestive-tract Bacterial Load, and Earthing.

    PubMed

    Mousa, Haider Abdul-Lateef

    2016-04-01

    In the article, the author discusses the issue of chronic, low-grade acidosis that is thought to be brought about primarily by 2 factors: (1) advancing age, with a consequent decline in renal function; and (2) diet. An acid-forming diet can induce low-grade metabolic acidosis, which causes very small decreases in blood pH and plasma bicarbonate (HCO3-) that remain within the range considered to be normal. However, if the duration of the acidosis is prolonged or chronically present, even a low degree of acidosis can become significant. This article reviews supporting evidence in the literature that has shown that consumption of abundant alkaline-forming foods can result in improvement in bone mineral density (BMD) and muscle mass, protection from chronic illnesses, reduced tumor-cell invasion and metastasis, and effective excretion of toxins from the body. In addition, a large number of studies showing the benefits of alkaline water (mineral water) have revealed that people consuming water with a high level of total dissolved solids (TDS) (ie, with a high mineral content) have shown a lower incidence of coronary heart disease (CHD), cardiovascular disease (CVD), and cancer and lower total mortality rates. Consumption of alkaline water also may prevent osteoporosis and protect pancreatic beta cells with its antioxidant effects. In addition, this article discusses the literature that shows that reducing digestive-tract bacterial load can play an important role in increasing blood alkalinity toward the normal upper limit. That change occurs through good oral hygiene, flossing of teeth, perfect chewing of food, and bowel evacuation as soon as possible. Finally, the author reviews the literature that shows that earthing (ie, the direct contact of the human body with the earth) can supply a current of plentiful electrons. Earthing has been shown to reduce acute and chronic inflammation, blood glucose in patients with diabetes, red blood cell (RBC) aggregation, and blood

  7. Long-range interacting many-body systems with alkaline-earth-metal atoms.

    PubMed

    Olmos, B; Yu, D; Singh, Y; Schreck, F; Bongs, K; Lesanovsky, I

    2013-04-01

    Alkaline-earth-metal atoms can exhibit long-range dipolar interactions, which are generated via the coherent exchange of photons on the (3)P(0) - (3)D(1) transition of the triplet manifold. In the case of bosonic strontium, which we discuss here, this transition has a wavelength of 2.6 μm and a dipole moment of 4.03 D, and there exists a magic wavelength permitting the creation of optical lattices that are identical for the states (3)P(0) and (3)D(1). This interaction enables the realization and study of mixtures of hard-core lattice bosons featuring long-range hopping, with tunable disorder and anisotropy. We derive the many-body master equation, investigate the dynamics of excitation transport, and analyze spectroscopic signatures stemming from coherent long-range interactions and collective dissipation. Our results show that lattice gases of alkaline-earth-metal atoms permit the creation of long-lived collective atomic states and constitute a simple and versatile platform for the exploration of many-body systems with long-range interactions. As such, they represent an alternative to current related efforts employing Rydberg gases, atoms with large magnetic moment, or polar molecules.

  8. The influence of alkali and alkaline earths on the working range for bioactive glasses.

    PubMed

    Brink, M

    1997-07-01

    Viscosity-temperature dependence has been investigated for glasses in a system where bioactive compositions are found. A glass is called bioactive when living bone can bond to it. In this work, high-temperature microscopy was used to determine viscosity-temperature behaviour for 40 glasses in the system Na2O-K2O-MgO-CaO-B2O3-P2O5-SiO2. The silica content in the glasses was 39-70 wt% % All glasses containing < 54 mol % SiO2 devitrified during the viscosity measurements. Generally, glasses that devitrified contained more alkali but less alkaline earths than glasses with a large working range. A working range is the temperature interval at which forming of a glass can take place. This temperature interval can, for bioactive glasses, be enlarged by decreasing the amount of alkali, especially Na2O, in the glass and by increasing the amount of alkaline earths, especially MgO. Optionally, B2O3 and P2O5 can be added to the glass. An enlarged working range is a prerequisite for an expanded medical use of bioactive glasses as e.g., sintered and blown products, and fibers. PMID:9212395

  9. A 3-photon process for producing degenerate gases of metastable alkaline-earth atoms

    NASA Astrophysics Data System (ADS)

    Barker, Daniel S.; Pisenti, Neal C.; Reschovsky, Benjamin J.; Campbell, Gretchen K.

    2016-05-01

    We present a method for creating quantum degenerate gases of metastable alkaline-earth atoms. A degenerate gas in any of the 3 P metastable states has not previously been obtained due to large inelastic collision rates, which are unfavorable for evaporative cooling. Samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent 3-photon process. Numerical integration of the density matrix evolution for the fine structure of bosonic alkaline-earth atoms shows that transfer efficiencies of ~= 90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the 3-photon process does not impart momentum to the degenerate gas during excitation, which allows studies of these metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to the successful realization of our scheme, including the minimization of differential AC Stark shifts between the four states connected by the 3-photon transition.

  10. Three-photon process for producing a degenerate gas of metastable alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Barker, D. S.; Pisenti, N. C.; Reschovsky, B. J.; Campbell, G. K.

    2016-05-01

    We present a method for creating a quantum degenerate gas of metastable alkaline-earth-metal atoms. This has yet to be achieved due to inelastic collisions that limit evaporative cooling in the metastable states. Quantum degenerate samples prepared in the 1S0 ground state can be rapidly transferred to either the 3P2 or 3P0 state via a coherent three-photon process. Numerical integration of the density-matrix evolution for the fine structure of bosonic alkaline-earth-metal atoms shows that transfer efficiencies of ≃90 % can be achieved with experimentally feasible laser parameters in both Sr and Yb. Importantly, the three-photon process can be set up such that it imparts no net momentum to the degenerate gas during the excitation, which will allow for studies of metastable samples outside the Lamb-Dicke regime. We discuss several experimental challenges to successfully realizing our scheme, including the minimization of differential ac Stark shifts between the four states connected by the three-photon transition.

  11. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  12. Porphyrin-Alkaline Earth MOFs with the Highest Adsorption Capacity for Methylene Blue.

    PubMed

    Hou, Yuxia; Sun, Junshan; Zhang, Daopeng; Qi, Dongdong; Jiang, Jianzhuang

    2016-04-25

    A series of four porphyrin-alkaline earth metal- organic frameworks [Mg(HDCPP)2 (DMF)2 ]n ⋅(H2 O)7 n (1), [Ca(HDCPP)2 (H2 O)2 ]n (DMF)1.5 n (2), [Sr(DCPP)(H2 O)(DMA)]n (3), and [Ba(DCPP)(H2 O)(DMA)]n (4) was isolated for the first time from solvothermal reaction between metal-free 5,15-di(4- carboxyphenyl)porphyrin (H2 DCPP) and alkaline earth ions. Single-crystal X-ray diffraction analysis reveals the 2D and 3D supramolecular network with periodic nanosized porosity for 1/2 and 3/4, respectively. The whole series of MOFs, in particular, compounds 1 and 2 with intrinsic low molecular formula weight, exhibit superior adsorption performance for methylene blue (MB) with excellent capture capacity as represented by the thus far highest adsorption amount of 952 mg g(-1) for 2 and good selectivity, opening a new way for the potential application of the main group metal-based MOFs. PMID:27002679

  13. Topological nodal-line semimetals in alkaline-earth stannides, germanides, and silicides

    NASA Astrophysics Data System (ADS)

    Huang, Huaqing; Liu, Jianpeng; Vanderbilt, David; Duan, Wenhui

    2016-05-01

    Based on first-principles calculations and an effective Hamiltonian analysis, we systematically investigate the electronic and topological properties of alkaline-earth compounds A X2 (A =Ca , Sr, Ba; X =Si , Ge, Sn). Taking BaSn2 as an example, we find that when spin-orbit coupling is ignored, these materials are three-dimensional topological nodal-line semimetals characterized by a snakelike nodal loop in three-dimensional momentum space. Drumheadlike surface states emerge either inside or outside the loop circle on the (001) surface depending on surface termination, while complicated double-drumhead-like surface states appear on the (010) surface. When spin-orbit coupling is included, the nodal line is gapped and the system becomes a topological insulator with Z2 topological invariants (1;001). Since spin-orbit coupling effects are weak in light elements, the nodal-line semimetal phase is expected to be achievable in some alkaline-earth germanides and silicides.

  14. Characterization and Oxidation of Chromium(III) by Sodium Hypochlorite in Alkaline Solutions

    SciTech Connect

    Jiang, Huijian; Rao, Linfeng; Zhang, Zhicheng; Rai, Dhanpat

    2006-07-01

    Chromium exists in nuclear waste sludges and is a problematic element in the vitrification process of high-level nuclear wastes. It is therefore necessary to treat the waste sludges to remove chromium prior to vitrification, by caustic leaching or oxidation of Cr(III) to Cr(VI). The objective of this study is to investigate the effect of oligomerization of Cr(III) on its oxidation by hypochlorite in alkaline solutions. Monomeric, dimeric and trimeric Cr(III) species in solution were separated by ion exchange. The kinetics of the oxidation of the separated species by hypochlorite in alkaline solutions was studied by UV/Vis absorption spectroscopy, and compared with the oxidation by hydrogen peroxide previously studied. Results indicate that hypochlorite can oxidize Cr(III) to Cr(VI) in alkaline solutions, but the rate of oxidation by hypochlorite is slower than that by hydrogen peroxide at the same alkalinity and concentrations of oxidants. The rate of oxidation of Cr(III) by both oxidants decreases as the concentration of sodium hydroxide is increased, but the oxidation by hypochlorite seems less affected by the degree of oligomerization of Cr(III) than that by peroxide. Compared with the oxidation by hydrogen peroxide where the major reaction pathway has an inverse order with respect to CNaOH, the oxidation by hypochlorite has a significant reaction pathway independent of [OH?].

  15. Characterization of a rare earth oxide obtained from xenotime mineral

    SciTech Connect

    Vernilli, Fernando . E-mail: fernando.vernilli@demar.faenquil.br; Camargo Vernilli, Daniela; Ferreira, Bento; Silva, Gilbert

    2007-01-15

    This paper reports on the characterization of a rare earth oxide obtained by hydrometallurgy of the mineral xenotime, an yttrium phosphate containing other rare earths, and comparison with mixtures of rare earth oxides prepared in different ways. The results indicated that hydrometallurgy from xenotime yielded a solid solution of the rare earth oxides. However, when the pure rare earth oxides were simply mixed physically then heat-treated at 1000 deg. C, a similar solid solution was not obtained. On the other hand, when the mixtures were prepared using a co-precipitation process, subsequent heat treatment did produce oxide solid solutions similar to that produced by hydrometallurgy of xenotime.

  16. Theoretical study of the alkaline-earth metal superoxides BeO2 through SrO2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Sodupe, Mariona; Langhoff, Stephen R.

    1992-01-01

    Three competing bonding mechanisms have been identified for the alkaline-earth metal superoxides: these result in a change in the optimal structure and ground state as the alkaline-earth metal becomes heavier. For example, BeO2 has a linear 3Sigma(-)g ground-state structure, whereas both CaO2 and SrO2 have C(2v)1A1 structures. For MgO2, the theoretical calculations are less definitive, as the 3A2 C(2v) structure is computed to lie only about 3 kcal/mol above the 3Sigma(-)g linear structure. The bond dissociation energies for the alkaline-earth metal superoxides have been computed using extensive Gaussian basis sets and treating electron correlation at the modified coupled-pair functional or coupled-cluster singles and doubles level with a perturbational estimate of the triple excitations.

  17. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals

    PubMed Central

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-01-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: [3]Li+, [3]Na+, [4]K+, [4]Rb+, [6]Cs+, [3]Be2+, [4]Mg2+, [6]Ca2+, [6]Sr2+ and [6]Ba2+, but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of [6]Na+, the ratio U eq(Na)/U eq(bonded anions) is partially correlated with 〈[6]Na+—O2−〉 (R 2 = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li+ in [4]- and [6]-coordination, Na+ in [4]- and [6

  18. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  19. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals.

    PubMed

    Gagné, Olivier Charles; Hawthorne, Frank Christopher

    2016-08-01

    Bond-length distributions have been examined for 55 configurations of alkali-metal ions and 29 configurations of alkaline-earth-metal ions bonded to oxygen, for 4859 coordination polyhedra and 38 594 bond distances (alkali metals), and for 3038 coordination polyhedra and 24 487 bond distances (alkaline-earth metals). Bond lengths generally show a positively skewed Gaussian distribution that originates from the variation in Born repulsion and Coulomb attraction as a function of interatomic distance. The skewness and kurtosis of these distributions generally decrease with increasing coordination number of the central cation, a result of decreasing Born repulsion with increasing coordination number. We confirm the following minimum coordination numbers: ([3])Li(+), ([3])Na(+), ([4])K(+), ([4])Rb(+), ([6])Cs(+), ([3])Be(2+), ([4])Mg(2+), ([6])Ca(2+), ([6])Sr(2+) and ([6])Ba(2+), but note that some reported examples are the result of extensive dynamic and/or positional short-range disorder and are not ordered arrangements. Some distributions of bond lengths are distinctly multi-modal. This is commonly due to the occurrence of large numbers of structure refinements of a particular structure type in which a particular cation is always present, leading to an over-representation of a specific range of bond lengths. Outliers in the distributions of mean bond lengths are often associated with anomalous values of atomic displacement of the constituent cations and/or anions. For a sample of ([6])Na(+), the ratio Ueq(Na)/Ueq(bonded anions) is partially correlated with 〈([6])Na(+)-O(2-)〉 (R(2) = 0.57), suggesting that the mean bond length is correlated with vibrational/displacement characteristics of the constituent ions for a fixed coordination number. Mean bond lengths also show a weak correlation with bond-length distortion from the mean value in general, although some coordination numbers show the widest variation in mean bond length for zero distortion, e.g. Li(+) in

  20. Metal based synthetic routes to heavy alkaline earth aryloxo complexes involving ligands of moderate steric bulk.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Guino-o, Marites; Ruhlandt-Senge, Karin

    2009-07-01

    Treatment of an alkaline earth metal (Ca, Sr, Ba) with 2,4,6-trimethylphenol (HOmes) at elevated temperatures in the presence of mercury under solvent-free conditions, followed by extraction of the reaction mixture with 1,2-dimethoxyethane (dme), afforded dinuclear alkaline earth aryloxo complexes [Ae2(Omes)4(dme)4] (Ae = Ca 1, Sr 3, Ba 6). Extraction of the Ca metal and HOmes reaction mixture with thf afforded [Ca3(Omes)6(thf)] 2. In contrast, redox transmetallation ligand exchange reactions between an alkaline earth metal, diphenylmercury and HOmes in dme yielded solely 1 for Ca metal, a mixture of 3 and the methoxide bridged cage [Sr5(Omes)5(OMe)5(dme)4] x 2dme 4 for Sr metal, and solely [Ba5(Omes)5(OMe)5(dme)4] x dme 7 for Ba metal. The methoxide ligands originate from the C-O activation of the dme solvent. Treatment of liquid ammonia activated Sr or Ba metal with HOmes in thf afforded the linear species [Ae3(Omes)6(thf)6] (Ae = Sr 5, Ba 8), and 8 was also obtained from barium metal and HOmes in refluxing thf. The structures of 1 and 3, determined by X-ray crystallography, consist of two six coordinate Ae metal atoms, to each of which is bound a terminal aryloxide ligand, two bridging aryloxide ligands, and chelating and unidentate dme ligands. The structures of 4 and 7 contain five Ae metal atoms arranged on the vertices of a distorted square based pyramid. The Ae atoms are linked by four mu3-OMe ligands and a mu4-OMe ligand. Four bridging aryloxide ligands and four chelating dme ligands complete the coordination spheres of the four seven coordinate Ae atoms at the base of the pyramid, and a terminal aryloxide ligand is bound to the five coordinate apical Ae atom. The structures of 5 and 8 consist of a trinuclear linear array of Ae metal atoms, and contain solely bridging aryloxide ligands. Three thf ligands are bound to each terminal Ae atom, giving all Ae atoms a coordination number of six. PMID:19662279

  1. A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse.

    PubMed

    Kallioinen, Anne; Hakola, Maija; Riekkola, Tiina; Repo, Timo; Leskelä, Markku; von Weymarn, Niklas; Siika-aho, Matti

    2013-07-01

    Alkaline oxidation pretreatment was developed for spruce, birch and sugar cane bagasse. The reaction was carried out in alkaline water solution under 10 bar oxygen pressure and at mild reaction temperature of 120-140°C. Most of the lignin was solubilised by the alkaline oxidation pretreatment and an easily hydrolysable carbohydrate fraction was obtained. After 72 h hydrolysis with a 10 FPU/g enzyme dosage, glucose yields of 80%, 91%, and 97%, for spruce, birch and bagasse, respectively, were achieved. The enzyme dosage could be decreased to 4 FPU/g without a major effect in terms of the hydrolysis performance. Compared to steam explosion alkaline oxidation was found to be significantly better in the conditions tested, especially for the pretreatment of spruce. In hydrolysis and fermentation at 12% d.m. consistency an ethanol yield of 80% could be obtained with both bagasse and spruce in 1-3 days.

  2. A novel alkaline oxidation pretreatment for spruce, birch and sugar cane bagasse.

    PubMed

    Kallioinen, Anne; Hakola, Maija; Riekkola, Tiina; Repo, Timo; Leskelä, Markku; von Weymarn, Niklas; Siika-aho, Matti

    2013-07-01

    Alkaline oxidation pretreatment was developed for spruce, birch and sugar cane bagasse. The reaction was carried out in alkaline water solution under 10 bar oxygen pressure and at mild reaction temperature of 120-140°C. Most of the lignin was solubilised by the alkaline oxidation pretreatment and an easily hydrolysable carbohydrate fraction was obtained. After 72 h hydrolysis with a 10 FPU/g enzyme dosage, glucose yields of 80%, 91%, and 97%, for spruce, birch and bagasse, respectively, were achieved. The enzyme dosage could be decreased to 4 FPU/g without a major effect in terms of the hydrolysis performance. Compared to steam explosion alkaline oxidation was found to be significantly better in the conditions tested, especially for the pretreatment of spruce. In hydrolysis and fermentation at 12% d.m. consistency an ethanol yield of 80% could be obtained with both bagasse and spruce in 1-3 days. PMID:23711947

  3. Lifshitz and other transitions in alkaline-earth 122 pnictides under pressure

    NASA Astrophysics Data System (ADS)

    Quader, Khandker; Widom, Michael

    2014-10-01

    We carry out T =0 first-principles total energy calculations in the entire set of alkaline 122-pnictides (A Fe2As2 ; A = alkaline-earth element Ca, Sr, Ba, Ra) as a function of hydrostatic pressure. We find multiple distinct transitions to occur, namely an enthalpic transition in which the zero-pressure striped antiferromagnetic orthorhombic (OR-AFM) phase becomes thermodynamically less stable than a competing tetragonal (T) phase, a magnetic transition in which the OR-AFM phase loses its magnetism and orthorhombicity, and a lattice parameter anomaly in which the tetragonal c-axis collapses and a collapsed tetragonal (cT) phase becomes stable. Our results for energy band dispersions and spectra, lattice parameters, enthalpies, magnetism, and elastic constants over a wide range of hydrostatic pressure provide a coherent understanding of these experimentally observed transitions. In particular, the T-cT transition and anomalies in lattice parameters and elastic properties, observed at finite temperatures, are interpreted as arising from proximity to T =0 Lifshitz transitions, wherein pressure causes nontrivial changes in the Fermi surface topology in these materials.

  4. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    NASA Astrophysics Data System (ADS)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  5. Realizing SU(N) magnets in thermal alkaline-earth gases

    NASA Astrophysics Data System (ADS)

    Beverland, Michael; Gorshkov, Alexey; Rey, Ana Maria; Alagic, Gorjan

    2014-03-01

    We show that thermal fermionic alkaline-earth atoms in flat-bottom traps allow one to implement a spin model displaying two symmetries: the symmetry that swaps atoms occupying different vibrational levels of the trap and the SU(N) symmetry associated with N nuclear spin states. The high symmetry allows us to analytically calculate the full spectrum, the eigenstates, and the dynamics. Armed with such a solid understanding, we show how this system can be used to generate entangled states usable for Heisenberg limited metrology (e.g. clocks), to make measurements useful for quantum information processing, and to understand spin diffusion in SU(N) systems. The best news is that this highly symmetric spin model should be readily realizable even when the vibrational levels are occupied according to a high-temperature thermal or a non-thermal distribution.

  6. Evolution of plasmonic and hybrid photoionization properties of alkaline earth metallofullerenes with the increasing fullerene size

    NASA Astrophysics Data System (ADS)

    Patel, Aakash; Chakraborty, Himadri

    2013-05-01

    A theoretical study of the photoionization of endohedral fullerenes with a selection of fullerene molecules of increasing size and with confined alkaline earth atoms like Be and Mg is carried out. The fullerene ion cores, comprised of C4+ ions, are smudged into a continuous jellium charge distribution, while the delocalized cloud of carbon valence electrons plus the electrons of the encaged atom are treated in the Kohn-Sham local density approximation (LDA). Only the spherical geometry is considered. The photoionization spectra are calculated by the time-dependent LDA that includes essential electron correlations. A systematic evolution of the mixing of valence atomic levels with states of fullerene single-electron bands is found along the sequence. This hybridization as a function of the fullerene size is seen to primarily define the properties of the subshell-differential ionization spectra both in the low energy plasmonic as well as the high energy oscillatory regions. Supported by NSF and DOE.

  7. Magnetic crystals and helical liquids in alkaline-earth fermionic gases

    PubMed Central

    Barbarino, Simone; Taddia, Luca; Rossini, Davide; Mazza, Leonardo; Fazio, Rosario

    2015-01-01

    The joint action of a magnetic field and of interactions is crucial for the appearance of exotic quantum phenomena, such as the quantum Hall effect. Owing to their rich nuclear structure, equivalent to an additional synthetic dimension, one-dimensional alkaline-earth(-like) fermionic gases with synthetic gauge potential and atomic contact repulsion may display similar related properties. Here we show the existence and the features of a hierarchy of fractional insulating and conducting states by means of analytical and numerical methods. We demonstrate that the gapped states are characterized by density and magnetic order emerging solely for gases with effective nuclear spin larger than 1/2, whereas the gapless phases can support helical modes. We finally argue that these states are related to an unconventional fractional quantum Hall effect in the thin-torus limit and that their properties can be studied in state-of-the-art laboratories. PMID:26350624

  8. Properties of metastable alkaline-earth-metal atoms calculated using an accurate effective core potential

    SciTech Connect

    Santra, Robin; Christ, Kevin V.; Greene, Chris H.

    2004-04-01

    The first three electronically excited states in the alkaline-earth-metal atoms magnesium, calcium, and strontium comprise the (nsnp){sup 3}P{sub J}{sup o}(J=0,1,2) fine-structure manifold. All three states are metastable and are of interest for optical atomic clocks as well as for cold-collision physics. An efficient technique--based on a physically motivated potential that models the presence of the ionic core--is employed to solve the Schroedinger equation for the two-electron valence shell. In this way, radiative lifetimes, laser-induced clock shifts, and long-range interaction parameters are calculated for metastable Mg, Ca, and Sr.

  9. High-temperature properties of fermionic alkaline-earth-metal atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Hazzard, Kaden R. A.; Gurarie, Victor; Hermele, Michael; Rey, Ana Maria

    2012-04-01

    We calculate experimentally relevant properties of trapped fermionic alkaline-earth-metal atoms in an optical lattice, modeled by the SU(N) Hubbard model. We employ a high-temperature expansion that is accurate when the temperature is larger than the tunneling rate, similar to current regimes in ultracold atom experiments. In addition to exploring the Mott insulator-metal crossover, we calculate final temperatures achieved by the standard experimental protocol of adiabatically ramping from a noninteracting gas, as a function of initial gas temperature. Of particular experimental interest, we find that increasing N for fixed particle numbers and initial temperatures gives substantially colder Mott insulators after the adiabatic ramping, up to more than a factor of 5 for relevant parameters. This cooling happens for all N, fixing the initial entropy, or for all N≲20 (the exact value depends on dimensionality), at fixed, experimentally relevant initial temperatures.

  10. Magnesiacyclopentadienes as alkaline-earth metallacyclopentadienes: facile synthesis, structural characterization, and synthetic application.

    PubMed

    Wei, Junnian; Liu, Liang; Zhan, Ming; Xu, Ling; Zhang, Wen-Xiong; Xi, Zhenfeng

    2014-05-26

    Metallacyclopentadienes have attracted much attention as building blocks for synthetic chemistry as well as key intermediates in many metal-mediated or metal-catalyzed reactions. However, metallacyclopentadienes of the alkaline-earth metals have not been reported, to say nothing of their structures, reaction chemistry, and synthetic applications. In this work, the first series of magnesiacyclopentadienes, spiro-dilithio magnesiacyclopentadienes, and dimagnesiabutadiene were synthesized from 1,4-dilithio 1,3-butadienes. Single-crystal X-ray structural analysis of these magnesiacycles revealed unique structural characteristics and bonding modes. Their reaction chemistry and synthetic application were preliminarily studied and efficient access to amino cyclopentadienes was established through their reaction with thioformamides. Experimental and DFT calculations demonstrated that these magnesiacyclopentadienes could be regarded as bis(Grignard) reagents wherein the two Mg-C(sp(2)) bonds have a synergetic effect when reacting with substrates. PMID:24711256

  11. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  12. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOEpatents

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  13. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  14. Excitonic effects in the optical properties of alkaline earth chalcogenides from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Nejatipour, Hajar; Dadsetani, Mehrdad

    2015-08-01

    This paper studies excitonic effects in the optical properties of alkaline earth chalcogenides (AECs) by solving the equation of motion of the two-particle Green function, the Bethe-Salpeter equation (BSE). On the basis of quasi-particle states obtained by the GW approximation, (BSE + GW), the solution of BSE improves agreement with experiments. In these compounds, the main excitonic structures were reproduced appropriately. In the optical absorption spectra of AECs, the main excitonic structures originate in the direct transitions at X and Γ symmetry points, as confirmed by the experiments. In addition to real and imaginary parts of the dielectric functions, excitonic effects were studied in the electron energy loss functions of AECs. Moreover, the G0W0 approximation was used in order to determine the energy band gaps of AECs. This showed that except for MgO and BaO, the other AECs under study have indirect band gaps from Γ to X.

  15. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems.

  16. Alkaline earth metal cation exchange: effect of mobile counterion and dissolved organic matter.

    PubMed

    Indarawis, Katrina; Boyer, Treavor H

    2012-04-17

    The goal of this research was to provide an improved understanding of the interactions between alkaline earth metals and DOM under conditions that are encountered during drinking water treatment with particular focus on cation exchange. Both magnetically enhanced and nonmagnetic cation exchange resins were converted to Na, Mg, Ca, Sr, and Ba mobile counterion forms as a novel approach to investigate the exchange behavior between the cations and the interactions between the cations and DOM. The results show that cation exchange is a robust process for removal of Ca(2+) and Mg(2+) considering competition with cations on the resin surface and presence of DOM. DOM was actively involved during the cation exchange process through complexation, adsorption, and coprecipitation reactions. In addition to advancing the understanding of ion exchange processes for water treatment, the results of this work are applicable to membrane pretreatment to minimize fouling, treatment of membrane concentrate, and precipitative softening.

  17. Relationship between microstructure and efficiency of lithium silicate scintillating glasses: The effect of alkaline earths

    SciTech Connect

    Bliss, M.; Craig, R.A.; Sunberg, D.S.; Weber, M.J.

    1996-12-31

    Lithium silicate glasses containing Ce{sup 3+} are known to be scintillators. Glasses in this family in which the Li is enriched ({sup 6}Li) are used as neutron detectors. The addition of Mg to this glass is known to increase the scintillation efficiency. We have found that substituting other alkaline earths results in a monotonic decrease of the scintillation efficiency with increasing atomic number. The total variation in scintillation efficiency from Mg to Ba is nearly a factor of 3. Prior experiments with this glass family show small differences in Raman and fluorescence spectra; evidence from thermoluminescence experiments indicates that the scintillation efficiency is most strongly correlated with structural effects in the neighborhood of the Ce{sup 3+} activator ion. The results of low-temperature studies of fluorescence and thermoluminescence of these glasses will be reported.

  18. Laser-Induced Kondo Effect in Ultracold Alkaline-Earth Fermions.

    PubMed

    Nakagawa, Masaya; Kawakami, Norio

    2015-10-16

    We demonstrate that laser excitations can coherently induce a novel Kondo effect in ultracold atoms in optical lattices. Using a model of alkaline-earth fermions with two orbitals, it is shown that the optically coupled two internal states are dynamically entangled to form the Kondo-singlet state, overcoming the heating effect due to the irradiation. Furthermore, a lack of SU(N) symmetry in the optical coupling provides a peculiar feature in the Kondo effect, which results in spin-selective renormalization of effective masses. We also discuss the effects of interorbital exchange interactions, and reveal that they induce novel crossover or reentrant behavior of the Kondo effect owing to control of the coupling anisotropy. The laser-induced Kondo effect is highly controllable by tuning the laser strength and the frequency, and thus offers a versatile platform to study the Kondo physics using ultracold atoms.

  19. Quantum Degenerate Mixtures of Alkali and Alkaline-Earth-Like Atoms

    SciTech Connect

    Hara, Hideaki; Takasu, Yosuke; Yamaoka, Yoshifumi; Doyle, John M.; Takahashi, Yoshiro

    2011-05-20

    We realize simultaneous quantum degeneracy in mixtures consisting of the alkali and alkaline-earth-like atoms Li and Yb. This is accomplished within an optical trap by sympathetic cooling of the fermionic isotope {sup 6}Li with evaporatively cooled bosonic {sup 174}Yb and, separately, fermionic {sup 173}Yb. Using cross-thermalization studies, we also measure the elastic s-wave scattering lengths of both Li-Yb combinations, |a{sub {sup 6}Li-{sup 174}Yb}|=1.0{+-}0.2 nm and |a{sub {sup 6}Li-{sup 173}Yb}|=0.9{+-}0.2 nm. The equality of these lengths is found to be consistent with mass-scaling analysis. The quantum degenerate mixtures of Li and Yb, as realized here, can be the basis for creation of ultracold molecules with electron spin degrees of freedom, studies of novel Efimov trimers, and impurity probes of superfluid systems.

  20. Theoretical study of the dipole moments of selected alkaline-earth halides

    NASA Technical Reports Server (NTRS)

    Langhoff, S. R.; Bauschlicher, C. W., Jr.; Partridge, H.; Ahlrichs, R.

    1986-01-01

    Ab initio calculations at the self-consistent-field (SCF), singles-plus-doubles configuration-interaction (SDCI), and coupled-pair functional (CPF) level, are reported for the dipole moments and dipole derivatives of the X2Sigma(+) ground states of BeF, BeCl, MgF, MgCl, CaF, CaCl, and SrF. For comparison, analogous calculations are performed for the X1Sigma(+) state of KCl. The CPF results are found to be in remarkably better agreement with experiment than are the SCF and SDCI results. Apparently higher excitations are required to properly describe the radial extent along the bond axis of the remaining valence electron on the alkaline-earth metal.

  1. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor.

    PubMed

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  2. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene

    NASA Astrophysics Data System (ADS)

    Sahin, H.; Peeters, F. M.

    2013-02-01

    The adsorption characteristics of alkali, alkaline-earth, and transition metal adatoms on silicene, a graphene-like monolayer structure of silicon are analyzed by means of first-principles calculations. In contrast to graphene, interaction between the metal atoms and the silicene surface is quite strong due to its highly reactive buckled hexagonal structure. In addition to structural properties, we also calculate the electronic band dispersion, net magnetic moment, charge transfer, work function, and dipole moment of the metal adsorbed silicene sheets. Alkali metals, Li, Na, and K, adsorb to hollow sites without any lattice distortion. As a consequence of the significant charge transfer from alkalis to silicene, metalization of silicene takes place. Trends directly related to atomic size, adsorption height, work function, and dipole moment of the silicene/alkali adatom system are also revealed. We found that the adsorption of alkaline-earth metals on silicene is entirely different from their adsorption on graphene. The adsorption of Be, Mg, and Ca turns silicene into a narrow gap semiconductor. Adsorption characteristics of eight transition metals Ti, V, Cr, Mn, Fe, Co, Mo, and W are also investigated. As a result of their partially occupied d orbital, transition metals show diverse structural, electronic, and magnetic properties. Upon the adsorption of transition metals, depending on the adatom type and atomic radius, the system can exhibit metal, half-metal, and semiconducting behavior. For all metal adsorbates, the direction of the charge transfer is from adsorbate to silicene, because of its high surface reactivity. Our results indicate that the reactive crystal structure of silicene provides a rich playground for functionalization at nanoscale.

  3. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    NASA Astrophysics Data System (ADS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  4. Effect of Composition and Impurities on the Phosphorescence of Green-Emitting Alkaline Earth Aluminate Phosphor

    PubMed Central

    Kim, Doory; Kim, Han-Eol; Kim, Chang-Hong

    2016-01-01

    Recent improvements to SrAl2O4:Eu2+, Dy3+ phosphors have enabled the use of luminescent hosts with a stable crystal structure and high physical and chemical stability, thus overcoming the bottleneck in the applicability of ZnS:Cu phosphors. However, enhancement of afterglow lifetime and brightness in SrAl2O4:Eu2+, Dy3+ phosphors remains a challenging task. Here, we have improved the afterglow characteristics in terms of persistence time and brightness by a systematic investigation of the composition of Eu-doped alkaline earth aluminate SrAl2O4:Eu2+, Dy3+ crystals. We found that a Dy3+/Eu2+ ratio of ~2.4 and ~0.935 mol Eu2+ (per mol of SrAl2O4) gave the brightest and longest emissions (11% and 9% increase for each). Doping with Si4+ also resulted in a slight increase in brightness up to ~15%. Doping with alkali metal or alkaline earth metal significantly enhanced the phosphorescence intensity. In particular, doping with 0.005 mol Li+ (per mol of SrAl2O4) alone boosted the phosphorescence intensity to 239% of the initial value, as compared to that observed for the non-doped crystal, while doping with 0.01 mol Mg2+ and 0.005 mol Li+ (per 1 mol SrAl2O4) boosted the phosphorescence intensity up to 313% of the initial value. The results of this investigation are expected to act as a guideline for the synthesis of bright and long persistent phosphors, and facilitate the development of persistent phosphors with afterglow characteristics superior to those of conventional phosphors. PMID:26731086

  5. Hydrophobicity of rare-earth oxide ceramics.

    PubMed

    Azimi, Gisele; Dhiman, Rajeev; Kwon, Hyuk-Min; Paxson, Adam T; Varanasi, Kripa K

    2013-04-01

    Hydrophobic materials that are robust to harsh environments are needed in a broad range of applications. Although durable materials such as metals and ceramics, which are generally hydrophilic, can be rendered hydrophobic by polymeric modifiers, these deteriorate in harsh environments. Here we show that a class of ceramics comprising the entire lanthanide oxide series, ranging from ceria to lutecia, is intrinsically hydrophobic. We attribute their hydrophobicity to their unique electronic structure, which inhibits hydrogen bonding with interfacial water molecules. We also show with surface-energy measurements that polar interactions are minimized at these surfaces and with Fourier transform infrared/grazing-angle attenuated total reflection that interfacial water molecules are oriented in the hydrophobic hydration structure. Moreover, we demonstrate that these ceramic materials promote dropwise condensation, repel impinging water droplets, and sustain hydrophobicity even after exposure to harsh environments. Rare-earth oxide ceramics should find widespread applicability as robust hydrophobic surfaces.

  6. Hydrophobicity of rare-earth oxide ceramics

    NASA Astrophysics Data System (ADS)

    Azimi, Gisele; Dhiman, Rajeev; Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.

    2013-04-01

    Hydrophobic materials that are robust to harsh environments are needed in a broad range of applications. Although durable materials such as metals and ceramics, which are generally hydrophilic, can be rendered hydrophobic by polymeric modifiers, these deteriorate in harsh environments. Here we show that a class of ceramics comprising the entire lanthanide oxide series, ranging from ceria to lutecia, is intrinsically hydrophobic. We attribute their hydrophobicity to their unique electronic structure, which inhibits hydrogen bonding with interfacial water molecules. We also show with surface-energy measurements that polar interactions are minimized at these surfaces and with Fourier transform infrared/grazing-angle attenuated total reflection that interfacial water molecules are oriented in the hydrophobic hydration structure. Moreover, we demonstrate that these ceramic materials promote dropwise condensation, repel impinging water droplets, and sustain hydrophobicity even after exposure to harsh environments. Rare-earth oxide ceramics should find widespread applicability as robust hydrophobic surfaces.

  7. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.

    1998-12-29

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.

  8. Rare earth doped zinc oxide varistors

    DOEpatents

    McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw

    1998-01-01

    A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.

  9. In situ generated highly active copper oxide catalysts for the oxygen evolution reaction at low overpotential in alkaline solutions.

    PubMed

    Liu, Xiang; Cui, Shengsheng; Qian, Manman; Sun, Zijun; Du, Pingwu

    2016-04-25

    Developing efficient water oxidation catalysts made up of earth-abundant elements has attracted much attention as a step toward for future clean energy production. Herein we report a simple one-step method to generate a low cost copper oxide catalyst film in situ from a copper(ii) ethylenediamine complex. The resulting catalyst has excellent activity toward the oxygen evolution reaction in alkaline solutions. A catalytic current density of 1.0 mA cm(-2) and 10 mA cm(-2) for the catalyst film requires the overpotentials of only ∼370 mV and ∼475 mV in 1.0 M KOH, respectively. This catalytic performance shows that the new catalyst is one of the best Cu-based heterogeneous OER catalysts to date. PMID:27020763

  10. Structural, elastic, electronic and optical properties of layered alkaline-earth halofluoride scintillators

    NASA Astrophysics Data System (ADS)

    Kanchana, V.; Yedukondalu, N.; Vaitheeswaran, G.

    2013-09-01

    A systematic investigation of structural properties at ambient as well as at high pressure has been carried out for layered scintillators CaClF, CaBrF, SrClF, SrBrF and SrIF based on density functional theory. Semi-empirical dispersion correction scheme has been used to account for the van der Waals interactions and the obtained results are in good agreement with experimental data. The pressure-dependent structural and elastic properties reveal that the c-axis is more compressible than the a-axis (C ? ? ) in all these materials due to weakly bonded layers stacked along the c-axis. In addition, the electronic structure and optical properties of these materials are calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) potential. Among the five investigated compounds which are structurally anisotropic, a weak optical anisotropy is found in CaClF and SrClF and strong optical anisotropy in CaBrF, SrBrF and SrIF. The present study suggests that unlike alkaline-earth dihalides which are fast scintillators, these materials can act as storage phosphors and the possible reason is speculated from the band structure calculations.

  11. Valence photoionization of small alkaline earth atoms endohedrally confined in C60

    NASA Astrophysics Data System (ADS)

    Javani, M. H.; McCreary, M. R.; Patel, A. B.; Madjet, M. E.; Chakraborty, H. S.; Manson, S. T.

    2012-07-01

    A theoretical study of photoionization from the outermost orbitals of Be, Mg and Ca atoms endohedrally confined in C60 is reported. The fullerene ion core, comprised of sixty C4+, is smudged into a continuous jellium charge distribution, while the delocalized cloud of carbon valence electrons plus the encaged atom are treated in the time-dependent local density approximation (TDLDA). Systematic evolution of the mixing of outer atomic level with states of the C60 valence band is found along the sequence. This is found to influence the plasmonic enhancement of atomic photoionization at low energies and the geometry-revealing confinement oscillations at high energies in significantly different ways: (a) the extent of enhancement is mainly determined by the strength of atomic ionization, giving the strongest enhancement for Be even though Ca suffers the largest mixing. But (b) strongest collateral oscillations are uncovered for Ca, since, relative to Be and Mg, the mixing causes the highest photoelectron production at confining boundaries of Ca. The study paints the first comparative picture of the atomic valence photospectra for alkaline earth metallofullerenes in a dynamical many-electron framework.

  12. Collective non-equilibrium spin exchange in cold alkaline-earth atomic clocks

    NASA Astrophysics Data System (ADS)

    Acevedo, Oscar Leonardo; Rey, Ana Maria

    2016-05-01

    Alkaline-earth atomic (AEA) clocks have recently been shown to be reliable simulators of two-orbital SU(N) quantum magnetism. In this work, we study the non-equilibrium spin exchange dynamics during the clock interrogation of AEAs confined in a deep one-dimensional optical lattice and prepared in two nuclear levels. The two clock states act as an orbital degree of freedom. Every site in the lattice can be thought as populated by a frozen set of vibrational modes collectively interacting via predominantly p-wave collisions. Due to the exchange coupling, orbital state transfer between atoms with different nuclear states is expected to happen. At the mean field level, we observe that in addition to the expected suppression of population transfer in the presence of a large magnetic field, that makes the single particle levels off-resonance, there is also an interaction induced suppression for initial orbital population imbalance. This suppression resembles the macroscopic self-trapping mechanism seen in bosonic systems. However, by performing exact numerical solutions and also by using the so-called Truncated Wigner Approximation, we show that quantum correlations can significantly modify the mean field suppression. Our predictions should be testable in optical clock experiments. Project supported by NSF-PHY-1521080, JILA-NSF-PFC-1125844, ARO, AFOSR, and MURI-AFOSR.

  13. CP(N - 1) quantum field theories with alkaline-earth atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Laflamme, C.; Evans, W.; Dalmonte, M.; Gerber, U.; Mejía-Díaz, H.; Bietenholz, W.; Wiese, U.-J.; Zoller, P.

    2016-07-01

    We propose a cold atom implementation to attain the continuum limit of (1 + 1) -d CP(N - 1) quantum field theories. These theories share important features with (3 + 1) -d QCD, such as asymptotic freedom and θ-vacua. Moreover, their continuum limit can be accessed via the mechanism of dimensional reduction. In our scheme, the CP(N - 1) degrees of freedom emerge at low energies from a ladder system of SU(N) quantum spins, where the N spin states are embodied by the nuclear Zeeman states of alkaline-earth atoms, trapped in an optical lattice. Based on Monte Carlo results, we establish that the continuum limit can be demonstrated by an atomic quantum simulation by employing the feature of asymptotic freedom. We discuss a protocol for the adiabatic preparation of the ground state of the system, the real-time evolution of a false θ-vacuum state after a quench, and we propose experiments to unravel the phase diagram at non-zero density.

  14. Superconducting critical fields of alkali and alkaline-earth intercalates of MoS2

    NASA Technical Reports Server (NTRS)

    Woollam, J. A.; Somoano, R. B.

    1976-01-01

    Results are reported for measurements of the critical-field anisotropy and temperature dependence of group-VIB semiconductor MoS2 intercalated with the alkali and alkaline-earth metals Na, K, Rb, Cs, and Sr. The temperature dependences are compared with present theories on the relation between critical field and transition temperature in the clean and dirty limits over the reduced-temperature range from 1 to 0.1. The critical-field anisotropy data are compared with predictions based on coupled-layers and thin-film ('independent-layers') models. It is found that the critical-field boundaries are steep in all cases, that the fields are greater than theoretical predictions at low temperatures, and that an unusual positive curvature in the temperature dependence appears which may be related to the high anisotropy of the layer structure. The results show that materials with the largest ionic intercalate atom diameters and hexagonal structures (K, Rb, and Cs compounds) have the highest critical temperatures, critical fields, and critical-boundary slopes; the critical fields of these materials are observed to exceed the paramagnetic limiting fields.

  15. Structural investigation of Eu{sup 2+} emissions from alkaline earth zirconium phosphate

    SciTech Connect

    Hirayama, Masaaki; Sonoyama, Noriyuki; Yamada, Atsuo; Kanno, Ryoji

    2009-04-15

    Eu{sup 2+} doped A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) phosphors with the NASICON structure were synthesized by a co-precipitation method. Their photoluminescent and structural properties were investigated by photoluminescent spectroscopy and powder X-ray Rietveld analysis, which determined two sites for Eu{sup 2+} ions in the host structure, 3a and 3b. The Eu-O bond lengths were increased by changing alkaline earth ions from Ca to Ba, causing Eu{sup 2+} emission bands to shift from blue-green to blue. A correlation was observed between the peak wavelength positions and the Eu-O bond length. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect, and a schematic diagram of Eu{sup 2+} emissions is proposed for the Eu{sup 2+} doped NASICON phosphor. - Graphical abstract: Eu{sup 2+} doped NASICON structured A{sub 0.5}Zr{sub 2}(PO{sub 4}){sub 3} (A=Ca, Sr, Ba) showed the blue and blue-green colored emissions attributed to 4f{sup 6}5d{sup 1}-4f{sup 7} transitions. The photoluminescent properties are discussed in terms of crystal field strength and nephelauxetic effect using powder X-ray Rietveld analysis.

  16. Theoretical Investigation of the M+-RG2 (m = Alkaline Earth Metal; RG = Rare Gas) Complexes

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Plowright, Richard J.; Graneek, Jack; Wright, Timothy G.; Breckenridge, W. H.

    2012-06-01

    Metal cation rare gas complexes provide an expectedly simple system with which to investigate intermolecular interactions. Despite this, we have previously found the M+-RG (M = alkaline earth metal) complexes to very complicated systems, with the complexes of the heavier rare gases displaying surprisingly large degrees of chemical character. Here we extend these studies by examining the nature of these interactions with increasing degrees of solvation through investigating the M+-RG_2 complexes using high level {ab initio} techniques. Intriguing trends in the geometries and dissociation energies of these complexes have been observed and are rationalized. A. M. Gardner, C. D. Withers, J. B. Graneek, T. G. Wright, L. A. Viehland and W. H. Breckenridge, J. Phys. Chem. A, 2000, 114, 7631. A. M. Gardner, C. D. Withers, T. G. Wright, K. I. Kaplan, C. Y. N. Chapman, L. A. Viehland, E. P. F. Lee and W. H. Breckenridge, J. Chem. Phys., 2010, 132, 054302. M. F. McGuirk, L. A. Viehland, E. P. F. Lee, W. H. Breckenridge, C. D. Withers, A. M. Gardner, R. J. Plowright and T. G. Wright, J. Chem. Phys., 2009, 130, 194305.

  17. Alkaline earth silicate wools - A new generation of high temperature insulation.

    PubMed

    Brown, Robert C; Harrison, Paul T C

    2012-11-01

    Intensive study of the natural asbestiform minerals that cause human diseases, and the consequent understanding of their hazardous characteristics, has enabled the development of manufactured fibres whose physical and/or chemical properties, in particular as they relate to biopersistence, have been adjusted to minimize possible harm to health. A strong driver for the developmentof new high temperature insulation materials wasthe perception of the toxicity of refractory ceramic fibres (RCF)and their classification in the EU as a category 2 carcinogen under Directive 67/548/EEC. Such classification carries with it the requirement for substitution by less hazardous materials. This paper focuses on the development of alkaline earth silicate (AES) wools as a new class of high temperature insulation with the capability of such substitution in a number of applications. These wools have only a low potential to cause harm because they do not persist in lung tissue once deposited, and have produced minimal effects in experimental test systems. AES wools are increasingly being used in a wide range of high temperature applications.

  18. The Characterization of Eu2+-Doped Mixed Alkaline-Earth Iodide Scintillator Crystals

    SciTech Connect

    Neal, John S; Boatner, Lynn A; Ramey, Joanne Oxendine; Wisniewski, D.; Kolopus, James A; Cherepy, Nerine; Payne, Stephen A.

    2011-01-01

    The high-performance inorganic scintillator, SrI2:Eu2+, when activated with divalent europium in the concentration range of 3 to 6%, has shown great promise for use in applications that require high-energy-resolution gamma-ray detection. We have recently grown and tested crystals in which other alkaline-earth ions have been partially substituted for Sr ions. Specifically, europium-doped single crystals have been grown in which up to 30 at % of the strontium ions have been substituted for either by barium, magnesium, or calcium ions. In the case of the strontium iodide scintillator host, a material that is characterized by an orthorhombic crystal structure, there are three other column IIA elements that are obvious choices for investigations whose purpose is to realize potential improvements in the performance of SrI2:Eu2+-based scintillators via the replacement of strontium ions with either Mg2+, Ca2+, or Ba2+. Light yields of up to 81,400 photons/MeV with an associated energy resolution of 3.7% (fwhm for 662 keV gamma-rays) have been observed in the case of a partial substitution of Ba2+ for Sr2+. The measured decay times ranged from 1.1 to 2.0 s, while the peak emission wavelengths ranged from 432 to 438 nm.

  19. Removal of toxic and alkali/alkaline earth metals during co-thermal treatment of two types of MSWI fly ashes in China.

    PubMed

    Yu, Jie; Qiao, Yu; Jin, Limei; Ma, Chuan; Paterson, Nigel; Sun, Lushi

    2015-12-01

    This study aims to vaporize heavy metals and alkali/alkaline earth metals from two different types of fly ashes by thermal treatment method. Fly ash from a fluidized bed incinerator (HK fly ash) was mixed with one from a grate incinerator (HS fly ash) in various proportions and thermally treated under different temperatures. The melting of HS fly ash was avoided when treated with HK fly ash. Alkali/alkaline earth metals in HS fly ash served as Cl-donors to promote the vaporization of heavy metals during thermal treatment. With temperature increasing from 800 to 900°C, significant amounts of Cl, Na and K were vaporized. Up to 1000°C in air, less than 3% of Cl and Na and less than 5% of K were retained in ash. Under all conditions, Cd can be vaporized effectively. The vaporization of Pb was mildly improved when treated with HS fly ash, while the effect became less pronounced above 900°C. Alkali/alkaline earth metals can promote Cu vaporization by forming copper chlorides. Comparatively, Zn vaporization was low and only slightly improved by HS fly ash. The low vaporization of Zn could be caused by the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4. Under all conditions, less than 20% of Cr was vaporized. In a reductive atmosphere, the vaporization of Cd and Pb were as high as that in oxidative atmosphere. However, the vaporization of Zn was accelerated and that of Cu was hindered because the formation of Zn2SiO4, ZnFe2O4 and ZnAl2O4 and copper chloride was depressed in reductive atmosphere. PMID:26303652

  20. Oxidative Alkaline leaching of Americium from simulated high-level nuclear waste sludges

    SciTech Connect

    Reed, Wendy A.; Garnov, Alexander Yu.; Rao, Linfeng; Nash, Kenneth L.; Bond, Andrew H.

    2004-01-23

    Oxidative alkaline leaching has been proposed to pre-treat the high-level nuclear waste sludges to remove some of the problematic (e.g., Cr) and/or non-radioactive (e.g., Na, Al) constituents before vitrification. It is critical to understand the behavior of actinides, americium and plutonium in particular, in oxidative alkaline leaching. We have studied the leaching behavior of americium from four different sludge simulants (BiPO{sub 4}, BiPO{sub 4 modified}, Redox, PUREX) using potassium permanganate and potassium persulfate in alkaline solutions. Up to 60% of americium sorbed onto the simulants is leached from the sludges by alkaline persulfate and permanganate. The percentage of americium leached increases with [NaOH] (between 1.0 and 5.0 M). The initial rate of americium leaching by potassium persulfate increases in the order BiPO{sub 4} sludge < Redox sludge < PUREX sludge. The data are most consistent with oxidation of Am{sup 3+} in the sludge to either AmO{sub 2}{sup +} or AmO{sub 2}{sup 2+} in solution. Though neither of these species is expected to exhibit long-term stability in solution, the potential for mobilization of americium from sludge samples would have to be accommodated in the design of any oxidative leaching process for real sludge samples.

  1. The Nature of Surface Oxides on Corrosion-Resistant Nickel Alloy Covered by Alkaline Water

    PubMed Central

    2010-01-01

    A nickel alloy with high chrome and molybdenum content was found to form a highly resistive and passive oxide layer. The donor density and mobility of ions in the oxide layer has been determined as a function of the electrical potential when alkaline water layers are on the alloy surface in order to account for the relative inertness of the nickel alloy in corrosive environments. PMID:20672134

  2. The contents of alkali and alkaline earth metals in soils of the southern Cis-Ural region

    NASA Astrophysics Data System (ADS)

    Asylbaev, I. G.; Khabirov, I. K.

    2016-01-01

    The contents and distribution patterns of alkali and alkaline earth metals in soils and rocks of the southern Cis-Ural region were studied. A database on the contents of these metals was developed, the soils were classified with respect to their provision with these metals, and corresponding schematic maps showing their distribution in soils of the region were compiled. It was found that the contents of these metals decrease from east to west (from the Yuryuzan-Aisk Piedmont Plain to the Ufa Plateau and to the Belebeevsk Upland), and their distribution patterns change. Among alkali metals, the highest accumulation in the soils is typical of potassium, sodium, and cesium; among alkaline earth metals, of strontium and barium.

  3. Optimizing the performance of bandpass photon detectors for inverse photoemission: Transmission of alkaline earth fluoride window crystals

    SciTech Connect

    Thiede, Christian Schmidt, Anke B.; Donath, Markus

    2015-08-15

    Bandpass photon detectors are widely used in inverse photoemission in the isochromat mode at energies in the vacuum-ultraviolet spectral range. The energy bandpass of gas-filled counters is usually formed by the ionization threshold of the counting gas as high-pass filter and the transmission cutoff of an alkaline earth fluoride window as low-pass filter. The transmission characteristics of the window have, therefore, a crucial impact on the detector performance. We present transmission measurements in the vacuum-ultraviolet spectral range for alkaline earth fluoride window crystals in the vicinity of the transmission cutoff as a function of crystal purity, surface finish, surface contamination, temperature, and thickness. Our findings reveal that the transmission characteristics of the window crystal and, thus, the detector performance depend critically on these window parameters.

  4. The etching process of boron nitride by alkali and alkaline earth fluorides under high pressure and high temperature

    SciTech Connect

    Guo, W.; Ma, H.A.; Jia, X.

    2014-03-01

    Graphical abstract: - Highlights: • Appropriate etch processes of hBN and cBN under HPHT are proposed. • The degree of the crystallization of hBN was decreased. • A special cBN growth mechanism with a triangular unit is proposed. • Plate-shape cBN crystals with large ratio of length to thickness were obtained. • A strategy provides useful guidance for controlling the cBN morphology. - Abstract: Some new etching processes of hexagonal boron nitride (hBN) and cubic boron nitride (cBN) under high pressure and high temperature in the presence of alkali and alkaline earth fluorides have been discussed. It is found that hBN is etched distinctly by alkali and alkaline earth fluorides and the morphology of hBN is significantly changed from plate-shape to spherical-shape. Based on the “graphitization index” values of hBN, the degree of the crystallization of hBN under high pressure and high temperature decreases in the sequence of LiF > CaF{sub 2} > MgF{sub 2}. This facilitates the formation of high-quality cBN single crystals. Different etch steps, pits, and islands are observed on cBN surface, showing the strong etching by alkali and alkaline earth fluorides and the tendency of layer-by-layer growth. A special layer growth mechanism of cBN with a triangular unit has been found. Furthermore, the morphologies of cBN crystals are apparently affected by a preferential surface etching of LiF, CaF{sub 2} and MgF{sub 2}. Respectively, the plate-shape and tetrahedral cBN crystals can be obtained in the presence of different alkali and alkaline earth fluorides.

  5. The MCVD synthesis and characterization of water tolerant fiber optic waveguides based on alkaline earth-doped silicas

    NASA Astrophysics Data System (ADS)

    Farley, Kevin F.

    Optical fibers that transmit throughout the entire telecommunications spectrum (1.2--1.7 mum) are presently manufactured by the removal of hydrogen or OH from the host preform glass. Hydrogen-oxygen torches are utilized in the conventional preform manufacturing process, but result in the formation of hydroxyls in germanium-doped silica fiber. The hydroxyl species generate unacceptably high losses for long haul telecommunications systems. This thesis has explored an alternative strategy for reducing OH-related absorption in silica-based glasses. Alkaline earth modifiers have been introduced via the modified chemical vapor deposition (MCVD) process to successfully damp out and dramatically reduce the extrinsic attenuation associated with both water and hydrogen. Specifically, alkaline earth ions were introduced into alumino-silicate glasses to form MgO-Al2O3-SiO2, CaO-Al 2O3-SiO2, and SrO-Al2O3-SiO 2 compositions. The utilization of halide precursors based on the vapor delivery of rare earths was incorporated into the existing MCVD set-up to fabricate these optical preforms. Both the bulk preforms and fibers drawn from them were characterized to determine relevant optical properties, including the attenuation, index profiles and extinction coefficients arising from OH in each host. The data indicate that modification of the silica glass structure through the additions of modifying ions can significantly reduce OH related absorption. For example, the doping of alkaline earth ions decreased the extinction coefficient measured at the 1.39 mum) OH overtone, to values < 0.2 L/(mol*cm). Prompt gamma activation analysis (PGAA) measurements conducted at the National Institute of Standards and Technology (NIST) found OH concentrations in the glasses in the range from 10 to 27.5 ppm. The alkaline earth-doped fibers exhibited lower OH absorption at 1.39 mum) than germanium and aluminum-doped reference fibers. Fibers doped with either magnesium, calcium or strontium displayed up

  6. Nickel hydroxide deposited indium tin oxide electrodes as electrocatalysts for direct oxidation of carbohydrates in alkaline medium

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Farzana, S.; Berchmans, Sheela

    In this work, the direct electrochemical oxidation of carbohydrates using nickel hydroxide modified indium tin oxide (ITO) electrodes in alkaline medium is demonstrated; suggesting the feasibility of using carbohydrates as a novel fuel in alkaline fuel cells applications. The chosen monosaccharides are namely glucose and fructose; disaccharides such as sucrose and lactose; and sugar acid like ascorbic acid for this study. ITO electrodes are chemically modified using a hexagonal lyotropic liquid crystalline phase template electrodeposition of nickel. Structural morphology, growth, orientation and electrochemical behaviour of Ni deposits are characterized using SEM, XRD, XPS and cyclic voltammetry (CV), respectively. Further electrochemical potential cycling process in alkaline medium is employed to convert these Ni deposits into corresponding nickel hydroxide modified electrodes. These electrodes are used as novel platform to perform the electrocatalytic oxidation of various carbohydrates in alkaline medium. It was found that bare and Ni coated ITO electrodes are inactive towards carbohydrates oxidation. The heterogeneous rate constant values are determined and calculated to be two orders of magnitude higher in the case of template method when compared to non-template technique. The observed effect is attributed to the synergistic effect of higher surface area of these deposits and catalytic ability of Ni(II)/Ni(III) redox couple.

  7. The significance of secondary interactions during alkaline earth-promoted dehydrogenation of dialkylamine-boranes.

    PubMed

    Bellham, Peter; Anker, Mathew D; Hill, Michael S; Kociok-Köhn, Gabriele; Mahon, Mary F

    2016-09-21

    a modified mechanism for group 2-mediated dimethylamine borane dehydrocoupling that is dependent on the intermediacy of key derivatives of the [NMe2·BH3](-) and [NMe2BH2NMe2BH3](-) anions but does not require the formation of high energy alkaline earth hydride intermediates. Although these results are specifically focussed on the applications of alkaline earth species, this mechanistic insight may also be relevant to other redox-inactive main group element-based systems and to our understanding of hydrogen evolution from saline derivatives of ammonia borane. PMID:27529536

  8. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S; Gai, Zheng; Moreira Dos Santos, Antonio F

    2013-01-01

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO4 center dot H2O (1) and BaCu2Ge3O9 center dot H2O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2(1)/c with a=5.1320(2) angstrom, b=16.1637(5) angstrom, c=5.4818(2) angstrom, beta=102.609(2)degrees, V=443.76(3) angstrom(3) and Z=4. This copper germanate contains layers of composition [CuGeO4](infinity)(2-) comprising CuO4 square planes and GeO4 tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) angstrom, b=10.8606(9) angstrom, c=13.5409(8) angstrom, V=817.56(9) angstrom(3) and Z=4. This structure contains GeO6 and CuO6 octahedra as well as GeO4 tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the chi T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data.

  9. Density Measurement of Molten Alkaline-Earth Fluorides Using Archimedean Dual-Sinker Method

    NASA Astrophysics Data System (ADS)

    Takeda, Osamu; Yanagase, Kei-ichi; Anbo, Yusuke; Aono, Masahiro; Hoshino, Yosuke; Sato, Yuzuru

    2015-11-01

    The densities of molten alkaline-earth fluorides ({MgF}2, {CaF}2, {SrF}2, and {BaF}2) were measured over the temperature range from 1526 K to 1873 K at ambient pressure using an Archimedean dual-sinker densitometer designed and set up by the authors. The volume difference between two sinkers was precisely determined by considering the wetting conditions between tungsten sinkers and water; appropriate experimental techniques were developed. The wetting condition became unstable when the sinkers were being moved for immersion in water, because the sinkers were moved in a direction that increased the contact angle. The wetting condition became stable when the sinkers were pulled up from the water, because the sinkers were moved in a direction that decreased the contact angle. The force exerted by the surface tension was efficiently canceled, and the volume difference became constant when the sinkers were pulled up. In this study, the total uncertainty was about 0.3 % at a maximum. The densities measured at high temperatures showed good linearity, with small scatter, over a wide temperature range. The densities and molar volumes increased in the following order: {MgF}2, {CaF}2, {SrF}2, and {BaF}2. The thermal-expansion coefficients showed anomalous behavior. The large thermal-expansion coefficient of {MgF}2 is attributed to a decrease in the cohesive force as a result of a partial loss of the coulombic force, because of the high charge density.

  10. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    SciTech Connect

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping

    2014-02-15

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba{sub 2}O{sub 11}N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2.

  11. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    PubMed

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima. PMID:25744028

  12. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    PubMed

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima.

  13. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  14. Desulphurization of coal via low temperature atmospheric alkaline oxidation.

    PubMed

    Liu, Kaicheng; Yang, Ji; Jia, Jinping; Wang, Yaling

    2008-03-01

    Different from other options which usually required strict conditions, a method combining atmospheric oxidization and chemical cleaning with alkali solutions was employed to desulphur coals at temperature around 90 degrees C. The data show that 66% organic sulphur, 44% sulphide sulphur, and 15% pyrite sulphur were lost when the coal was treated in 0.25M NaOH at 90 degrees C, while the solution being aerated at the flow rate of 0.136m3h(-1). The rate increased to 73% for organic sulphur, 83% for sulphide sulphur and 84% for pyrite sulphur when the previous coal was further treated in acidic solution containing HCl at pH 1 for another hour. The mechanism of desulphurization was explored using inductively coupled plasma mass spectrometry, X-ray photoelectron spectroscopy and infrared. It was found out that the bond of -CS was broken by atmospheric oxygen in basic environment, leading to the lost of organic sulphur in coal. Scanning electron microscope data show that the physical structure of the coal was not adversely affected by the treatment and thermogravimetric analysis results prove that the pyrolysis behavior remained unchanged, indicating that the burning process of the coal would not be adversely affected. Unlike other oxidizing methods, this technique does not lower the heating value of the coal which was manifested by relevant data.

  15. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Oh, Sang-Eun

    2013-01-01

    The environmental risk assessment of toxic chemicals in stream water requires the use of a low cost standardized toxicity bioassay. Here, a biosensor for detection of toxic chemicals in stream water was studied using sulfur oxidizing bacteria (SOB) in continuous mode. The biosensor depends on the ability of SOB to oxidize sulfur particles under aerobic conditions to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The biosensor is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that the SOB biosensor can detect Cr(6+)at a low concentration (50 ppb) which is lower than many whole-cell biosensors. The effect of organic material in real stream water on SOB activity was studied. Due to the presence of mixotrophic SOB, we found that the presence of organic matter increases SOB activity which decreases the biosensor start up period. Low alkalinity (22 mg L(-1) CaCO(3)) increased effluent EC and decreased effluent pH which is optimal for biosensor operation. While at high alkalinity (820 mg L(-1) CaCO(3), the activity of SOB little decreased. We found that system can detect 50 ppb of Cr(6+) at low alkalinity (22 mg L(-1) CaCO(3)) in few hours while, complete inhibition was observed after 35 h of operation at high alkalinity (820 mg L(-1) CaCO(3)). PMID:22840537

  16. Triazenide complexes of the heavier alkaline earths: synthesis, characterization, and suitability for hydroamination catalysis.

    PubMed

    Barrett, Anthony G M; Crimmin, Mark R; Hill, Michael S; Hitchcock, Peter B; Kociok-Köhn, Gabriele; Procopiou, Panayiotis A

    2008-08-18

    A series of triazenide complexes of the heavier alkaline earths, Ca, Sr and Ba, have been synthesized by either protonolysis or salt metathesis routes. Although complexes of the form [{Ar 2N 3}M{N(SiMe 3) 2}(THF) n ] (M = Ca, n = 2; M = Sr, n = 3; Ar = 2,6-diisopropylphenyl) and [{Ar 2N 3}Ca(I)(THF) 2] 2 could be isolated and characterized by X-ray crystallography, solution studies revealed the propensity of these species to undergo Schlenk-like redistribution with the formation of [{Ar 2N 3} 2M(THF) n ] (M = Ca, n = 1; M = Sr, n = 2). The latter compounds have been synthesized independently. In the case of the large barium dication, attempts to synthesize the heaviest analogue of the series, [{Ar 2N 3} 2Ba(THF) n ], failed and led instead to the isolation of the potassium barate complex [K{Ar 2N 3}Ba{N(SiMe 3) 2} 2(THF) 4]. Single crystal X-ray diffraction studies demonstrated that, although in all the aforementioned cases the triazenide ligand binds to the electrophilic group 2 metal centers via symmetrical kappa (2)- N, N-chelates, in the latter compound an unprecedented bridging mode is observed in which the triazenide ligand coordinates through both terminal and internal nitrogen centers. A series of density-functional theory computational experiments have been undertaken to assist in our understanding of this phenomenon. In further experiments, the calcium and strontium amide derivatives [{Ar 2N 3}M{N(SiMe 3) 2}(THF) n ] (M = Ca, n = 2; M = Sr, n = 3) proved to be catalytically active for the intramolecular hydroamination of 1-amino-2,2-diphenylpent-4-ene to form 2-methyl-4,4-diphenylpyrrolidine, with the calcium species demonstrating a higher turnover number than the strontium analogue ( 2a, TOF = 500 h (-1); 2b, TOF = 75 h (-1)). In these instances, because of ambiguities in the structural charcterization of the precatalyst in solution, such quantification holds little value and detailed catalytic studies have not been conducted. PMID:18620384

  17. Eocene seasonality and seawater alkaline earth reconstruction using shallow-dwelling large benthic foraminifera

    NASA Astrophysics Data System (ADS)

    Evans, David; Müller, Wolfgang; Oron, Shai; Renema, Willem

    2013-11-01

    Intra-test variability in Mg/Ca and other (trace) elements within large benthic foraminifera (LBF) of the family Nummulitidae have been investigated using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICPMS). These foraminifera have a longevity and size facilitating seasonal proxy retrieval and a depth distribution similar to 'surface-dwelling' planktic foraminifera. Coupled with their abundance in climatically important periods such as the Paleogene, this means that this family of foraminifera are an important but under-utilised source of palaeoclimatic information. We have calibrated the relationship between Mg/Ca and temperature in modern Operculina ammonoides and observe a ˜2% increase in Mg/Ca °C-1. O. ammonoides is the nearest living relative of the abundant Eocene genus Nummulites, enabling us to reconstruct mid-Eocene tropical sea surface temperature seasonality by applying our calibration to fossil Nummulites djokdjokartae from Java. Our results indicate a 5-6 °C annual temperature range, implying greater than modern seasonality in the mid-Eocene (Bartonian). This is consistent with seasonal surface ocean cooling facilitated by enhanced Eocene tropical cyclone-induced upper ocean mixing, as suggested by recent modelling results. Analyses of fossil N. djokdjokartae and Operculina sp. from the same stratigraphic interval demonstrate that environmental controls on proxy distribution coefficients are the same for these two genera, within error. Using previously published test-seawater alkaline earth metal distribution coefficients derived from an LBF of the same family (Raitzsch et al., 2010) and inorganic calcite, with appropriate correction systematics for secular Mg/Casw variation (Evans and Müller, 2012), we use our fossil data to produce a more accurate foraminifera-based Mg/Casw reconstruction and an estimate of seawater Sr/Ca. We demonstrate that mid-Eocene Mg/Casw was ≲2 molmol, which is in contrast to the model most

  18. Alkaline-Earth-Catalysed Cross-Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism.

    PubMed

    Bellini, Clément; Dorcet, Vincent; Carpentier, Jean-François; Tobisch, Sven; Sarazin, Yann

    2016-03-18

    Alkaline-earth (Ae=Ca, Sr, Ba) complexes are shown to catalyse the chemoselective cross-dehydrocoupling (CDC) of amines and hydrosilanes. Key trends were delineated in the benchmark couplings of Ph3 SiH with pyrrolidine or tBuNH2 . Ae{E(SiMe3)2}2 ⋅(THF)x (E=N, CH; x=2-3) are more efficient than {N^N}Ae{E(SiMe3)2}⋅(THF)n (E=N, CH; n=1-2) complexes (where {N^N}(-) ={ArN(o-C6H4)C(H)=NAr}(-) with Ar=2,6-iPr2 -C6H3) bearing an iminoanilide ligand, and alkyl precatalysts are better than amido analogues. Turnover frequencies (TOFs) increase in the order Ca30 products) includes diamines and di(hydrosilane)s. Kinetic analysis of the Ba-promoted CDC of pyrrolidine and Ph3SiH shows that 1) the kinetic law is rate=k[Ba](1) [amine](0) [hydrosilane](1), 2) electron-withdrawing p-substituents on the arylhydrosilane improve the reaction rate and 3) a maximal kinetic isotopic effect (kSiH/kSiD =4.7) is seen for Ph3SiX (X=H, D). DFT calculations identified the prevailing mechanism; instead of an inaccessible σ-bond-breaking metathesis pathway, the CDC appears to follow a stepwise reaction path with N-Si bond-forming nucleophilic attack of the catalytically competent Ba pyrrolide onto the incoming silane, followed by rate limiting hydrogen-atom transfer to barium. The participation of a Ba silyl species is prevented energetically. The reactivity trend Ca

  19. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang Zhiguo; Gao Fei; Kerisit, Sebastien; Xie Yulong; Campbell, Luke W.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF{sub 2} and BaF{sub 2}. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF{sub 2}, BaF{sub 2}, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs{sup +} relative to Na{sup +}, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  20. Monte Carlo simulations of electron thermalization in alkali iodide and alkaline-earth fluoride scintillators

    SciTech Connect

    Wang, Zhiguo; Xie, YuLong; Campbell, Luke W.; Gao, Fei; Kerisit, Sebastien N.

    2012-07-01

    A Monte Carlo model of electron thermalization in inorganic scintillators, which was developed and applied to CsI in a previous publication [Wang et al., J. Appl. Phys. 110, 064903 (2011)], is extended to another material of the alkali halide class, NaI, and to two materials from the alkaline-earth halide class, CaF2 and BaF2. This model includes electron scattering with both longitudinal optical (LO) and acoustic phonons as well as the effects of internal electric fields. For the four pure materials, a significant fraction of the electrons recombine with self-trapped holes and the thermalization distance distributions of the electrons that do not recombine peak between approximately 25 and 50 {per_thousand}nm and extend up to a few hundreds of nanometers. The thermalization time distributions of CaF2, BaF2, NaI, and CsI extend to approximately 0.5, 1, 2, and 7 ps, respectively. The simulations show that the LO phonon energy is a key factor that affects the electron thermalization process. Indeed, the higher the LO phonon energy is, the shorter the thermalization time and distance are. The thermalization time and distance distributions show no dependence on the incident {gamma}-ray energy. The four materials also show different extents of electron-hole pair recombination due mostly to differences in their electron mean free paths (MFPs), LO phonon energies, initial densities of electron-hole pairs, and static dielectric constants. The effect of thallium doping is also investigated for CsI and NaI as these materials are often doped with activators. Comparison between CsI and NaI shows that both the larger size of Cs+ relative to Na+, i.e., the greater atomic density of NaI, and the longer electron mean free path in NaI compared to CsI contribute to an increased probability for electron trapping at Tl sites in NaI versus CsI.

  1. Alkaline-Earth-Catalysed Cross-Dehydrocoupling of Amines and Hydrosilanes: Reactivity Trends, Scope and Mechanism.

    PubMed

    Bellini, Clément; Dorcet, Vincent; Carpentier, Jean-François; Tobisch, Sven; Sarazin, Yann

    2016-03-18

    Alkaline-earth (Ae=Ca, Sr, Ba) complexes are shown to catalyse the chemoselective cross-dehydrocoupling (CDC) of amines and hydrosilanes. Key trends were delineated in the benchmark couplings of Ph3 SiH with pyrrolidine or tBuNH2 . Ae{E(SiMe3)2}2 ⋅(THF)x (E=N, CH; x=2-3) are more efficient than {N^N}Ae{E(SiMe3)2}⋅(THF)n (E=N, CH; n=1-2) complexes (where {N^N}(-) ={ArN(o-C6H4)C(H)=NAr}(-) with Ar=2,6-iPr2 -C6H3) bearing an iminoanilide ligand, and alkyl precatalysts are better than amido analogues. Turnover frequencies (TOFs) increase in the order Ca30 products) includes diamines and di(hydrosilane)s. Kinetic analysis of the Ba-promoted CDC of pyrrolidine and Ph3SiH shows that 1) the kinetic law is rate=k[Ba](1) [amine](0) [hydrosilane](1), 2) electron-withdrawing p-substituents on the arylhydrosilane improve the reaction rate and 3) a maximal kinetic isotopic effect (kSiH/kSiD =4.7) is seen for Ph3SiX (X=H, D). DFT calculations identified the prevailing mechanism; instead of an inaccessible σ-bond-breaking metathesis pathway, the CDC appears to follow a stepwise reaction path with N-Si bond-forming nucleophilic attack of the catalytically competent Ba pyrrolide onto the incoming silane, followed by rate limiting hydrogen-atom transfer to barium. The participation of a Ba silyl species is prevented energetically. The reactivity trend Ca

  2. Influence of doping with alkaline earth metals on the optical properties of thermochromic VO2

    NASA Astrophysics Data System (ADS)

    Dietrich, Marc K.; Kramm, Benedikt G.; Becker, Martin; Meyer, Bruno K.; Polity, Angelika; Klar, Peter J.

    2015-05-01

    Thin films of doped VO2 were deposited, analyzed, and optimized with regard to their solar energy transmittance (Tsol) and visible/luminous light transmittance (Tlum) which are important parameters in the context of smart window applications in buildings. The doping with alkaline earth metals (AEM) like Mg, Ca, Sr, or Ba increased both Tsol and Tlum due to a bandgap widening and an associated absorption edge blue-shift. Thereby, the brown-yellowish color impression of pure VO2 thin films, which is one major hindrance limiting the usage of VO2 as thermochromic window coating, was overcome. Transparent thin films with excellent switching behavior were prepared by sputtering. Highly doped V1-xMexO2 (Me = Ca, Sr, Ba) kept its excellent thermochromic switching behavior up to x(Me) = Me/(Me + V) = 10 at. % doping level, while the optical bandgap energy was increased from 1.64 eV for undoped VO2 to 2.38 eV for x(Mg) = 7.7 at. %, 1.85 eV for x(Ca) = 7.4 at. %, 1.84 eV for x(Sr) = 6.4 at. % and 1.70 eV for x(Ba) = 6.8 at. %, as well as the absorption edge is blue shifted by increasing AEM contents. Also, the critical temperature ϑc, at which the semiconductor-to-metal transition (SMT) occurs, was decreased by AEM doping, which amounted to about -0.5 K/at. % for all AEM on average. The critical temperature was determined by transmittance-temperature hysteresis measurements. Furthermore, Tsol and Tlum were calculated and were found to be significantly enhanced by AEM doping. Tlum increased from 32.0% in undoped VO2 to 43.4% in VO2 doped with 6.4 at. % Sr. Similar improvements were found for other AEM. The modulation of the solar energy transmittance ΔTsol, which is the difference of the Tsol values in the low and high temperature phase, was almost constant or even slightly increased when the doping level was increased up to about 10 at. % Ca, Sr, or Ba.

  3. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  4. Anodically Electrodeposited Iridium Oxide Films (AEIROF) from Alkaline Solutions for Electrochromic Display Devices

    NASA Astrophysics Data System (ADS)

    Yamanaka, Kazusuke

    1989-04-01

    Anodically electrodeposited iridium oxide films from alkaline solutions were investigated for application to electrochromic devices. Micro-crystalline (diameter: 15Å) films obtained by the electrolysis of aqueous alkaline solutions containing iridium chloride, oxalic acid and potassium carbonate showed good electrochromic reaction reversibility. The coloration efficiency of the films was about one third that of typical evaporated tungsten oxide films, and the response rate measured by the amount of injected charge was about double. The cycle lives of the cells, composed of electrodeposited films, 1M H3PO4-NaOH (pH{=}3˜ 5), and an activated carbon cloth, were more than 8× 106 with a 0.6 V, 1 Hz continuous square wave.

  5. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    PubMed

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries. PMID:26851168

  6. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    PubMed

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  7. Occurrence and activity of iron and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1980-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (1) acidic pyrite-rich waste coal, (2) oxidation halo material, and (3) alkaline, which was the most widespread type. Bacterial numbers, sulfur oxidation, and /sup 14/CO/sub 2/ uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH indicating that bacterial pyrite oxidation occurred in localized areas where groundwaters contacted either replaced spoils or coal which contained either pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching which occur in the area.

  8. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils

    SciTech Connect

    Olson, G.J.; McFeters, G.A.; Temple, K.L.

    1981-01-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron-and sulphur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal; (b) oxidation halo material; and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulphur oxidation and /SUP/1/SUP/4CO/SUB/2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulphur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils of coal that contained pyrite or other metal sulphides. Bacterial activity may contribute to trace metal and sulphate leaching in the area. (27 refs.)

  9. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  10. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    USGS Publications Warehouse

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  11. Reactive oxygen species accelerate degradation of anion exchange membranes based on polyphenylene oxide in alkaline environments.

    PubMed

    Parrondo, Javier; Wang, Zhongyang; Jung, Min-Suk J; Ramani, Vijay

    2016-07-20

    Anion exchange membranes (AEM) based on polyphenylene oxide (PPO) suffered quaternary-ammonium-cation-site degradation in alkaline environments. Surprisingly, the degradation rate was considerably faster in the presence of molecular oxygen. We postulated that the AEM cation-site catalyzes the reduction of dioxygen by hydroxide ions to yield the superoxide anion radical and the highly reactive hydroxyl free radical. We substantiated our hypothesis by using a phosphorous-containing spin trap (5-diisopropoxy-phosphoryl-5-methyl-1-pyrroline-N-oxide) to detect the adducts for both free radicals in situ using (31)P-NMR spectroscopy. PMID:27381009

  12. Recent progress in electrochemical oxidation of saccharides at gold and copper electrodes in alkaline solutions.

    PubMed

    Torto, Nelson

    2009-09-01

    This article reviews the progress made in the past 10 years, on electrochemical oxidation of saccharides in alkaline media for gold and copper electrodes. The mechanism and processes associated with the electrochemical oxidation of saccharides at native and surface coated electrodes continues to be of great interest. Despite the effort and various mechanisms proposed, still the need for an electrochemically active material that understands the complexity associated with saccharides continues to increase as their detection poses a challenge for bioanalytical chemistry and liquid chromatography.

  13. Tris(pyrazolyl)methanides of the alkaline earth metals: influence of the substitution pattern on stability and degradation.

    PubMed

    Müller, Christoph; Koch, Alexander; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2015-01-20

    Trispyrazolylmethanides commonly act as strong tridentate bases toward metal ions. This expected coordination behavior has been observed for tris(3,4,5-trimethylpyrazolyl)methane (1a), which yields the alkaline-earth-metal bis[tris(3,4,5-trimethylpyrazolyl)methanides] of magnesium (1b), calcium (1c), strontium (1d), and barium (1e) via deprotonation of 1a with dibutylmagnesium and [Ae{N(SiMe3)2}2] (Ae = Mg, Ca, Sr, and Ba, respectively). Barium complex 1e degrades during recrystallization that was attempted from aromatic hydrocarbons and ethers. In these scorpionate complexes, the metal ions are embedded in distorted octahedral coordination spheres. Contrarily, tris(3-thienylpyrazolyl)methane (2a) exhibits a strikingly different reactivity. Dibutylmagnesium is unable to deprotonate 2a, whereas [Ae{N(SiMe3)2}2] (Ae = Ca, Sr, and Ba) smoothly metalates 2a. However, the primary alkaline-earth-metal bis[tris(3-thienylpyrazolyl)methanides] of Ca (2c), Sr (2d), and Ba (2e) represent intermediates and degrade under the formation of the alkaline-earth-metal bis(3-thienylpyrazolates) of calcium (3c), strontium (3d), and barium (3e) and the elimination of tetrakis(3-thienylpyrazolyl)ethene (4). To isolate crystalline compounds, 3-thienylpyrazole has been metalated, and the corresponding derivatives [(HPz(Tp))4Mg(Pz(Tp))2] (3b), dinuclear [(tmeda)Ca(Pz(Tp))2]2 (3c), mononuclear [(pmdeta)Sr(Pz(Tp))2] (3d), and [(hmteta)Ba(Pz(Tp))2] (3e) have been structurally characterized. Regardless of the applied stoichiometry, magnesiation of thienylpyrazole 3a with dibutylmagnesium yields [(HPz(Tp))4Mg(Pz(Tp))2] (3b), which is stabilized in the solid state by intramolecular N-H···N···H-N hydrogen bridges. The degradation of [Ae{C(Pz(R))3}2] (R = Ph and Tp) has been studied by quantum chemical methods, the results of which propose an intermediate complex of the nature [{(Pz(R))2C}2Ca{Pz(R)}2]; thereafter, the singlet carbenes ([:C(Pz(R))2]) dimerize in the vicinity of the alkaline

  14. Preparation of decarboxylic-functionalized weak cation exchanger and application for simultaneous separation of alkali, alkaline earth and transition metals.

    PubMed

    Peng, Yahui; Gan, Yihui; He, Chengxia; Yang, Bingcheng; Guo, Zhimou; Liang, Xinmiao

    2016-06-01

    A novel weak cation exchanger (WCX) with dicarboxyl groups functionalized has been developed by clicking mercaptosuccinic acid onto silica gel. The simple synthesis starts with modification of silica gel with triethoxyvinylsilane, followed by efficient coupling vinyl-bonded silica with mercaptosuccinic acid via a "thiol-ene" click reaction. The obtained WCX demonstrated good separation and high selectivity towards common metals. Simultaneous separation of 10 alkali, alkaline earth and transition metals was achieved within 12min. Ion exchange and complex mechanism dominates the separation process. Its utility was demonstrated for determination of metals in tap water. PMID:27130093

  15. Electrochemical oxidation of hydrazine and its derivatives on the surface of metal electrodes in alkaline media

    NASA Astrophysics Data System (ADS)

    Asazawa, Koichiro; Yamada, Koji; Tanaka, Hirohisa; Taniguchi, Masatoshi; Oguro, Keisuke

    Electrochemical oxidation of hydrazine and its derivatives on the surface of various metal electrodes in alkaline media was investigated. A comparison of various polycrystalline metal electrodes (Ni, Co, Fe, Cu, Ag, Au, and Pt) showed that Co and Ni electrodes have a lower onset potential for hydrazine oxidation than the Pt electrode. The onset oxidation potential of APA (aminopolyacrylamide), a hydrazine derivative (-0.127 V vs. reversible hydrogen electrode, RHE), was similar to that of hydrazine hydrate (-0.178 V vs. RHE) in the case of the Co electrode. APA oxidation was possible because of hydrazine desorption that was caused by APA hydrolysis. The hydrolysis reaction was brought about by a heat treatment. This result suggests that the hydrazine hydrolysis reaction of hydrazine derivatives makes it possible to store hydrazine hydrate safely.

  16. Novel alkaline earth copper germanates with ferro and antiferromagnetic S=1/2 chains

    SciTech Connect

    Brandao, Paula; Reis, Mario S.; Santos, Antonio M. dos

    2013-02-15

    Two new alkaline earth copper(II) germanates were hydrothermally synthesized: CaCuGeO{sub 4}{center_dot}H{sub 2}O (1) and BaCu{sub 2}Ge{sub 3}O{sub 9}{center_dot}H{sub 2}O (2), and their structures determined by single crystal X-ray diffraction. Compound (1) crystallizes in space group P2{sub 1}/c with a=5.1320(2) Angstrom-Sign , b=16.1637(5) Angstrom-Sign , c=5.4818(2) Angstrom-Sign , {beta}=102.609(2) Degree-Sign , V=443.76(3) Angstrom-Sign {sup 3} and Z=4. This copper germanate contains layers of composition [CuGeO{sub 4}]{sub {infinity}}{sup 2-} comprising CuO{sub 4} square planes and GeO{sub 4} tetrahedra with calcium and water molecules in the inter-layer space. Compound (2) crystallizes in the Cmcm space group with a=5.5593(3) Angstrom-Sign , b=10.8606(9) Angstrom-Sign , c=13.5409(8) Angstrom-Sign , V=817.56(9) Angstrom-Sign {sup 3} and Z=4. This structure contains GeO{sub 6} and CuO{sub 6} octahedra as well as GeO{sub 4} tetrahedra, forming a three-dimensional network of interconnecting six-membered ring channels. The magnetic susceptibility for both samples can be interpreted as S=1/2 chains, in agreement with the copper topology observed in the crystal structure. The susceptibility of (1) exhibits a Bonner-Fisher type behavior, resulting from antiferromagnetic intra-chain interactions without three-dimensional ordering down to 5 K-the lowest measured temperature. This observation, together with the absence of super-exchange paths between the copper chains, make this system particularly promising for the study of low dimensional magnetism. The magnetic properties of (2) show a very weak ferromagnetic near-neighbor interaction along the chain. In this compound a peak the {chi}T plot seems to indicate the onset of interchain antiferromagentic correlations. However, no ordering temperature is detected in the susceptibility data. - Graphical abstract: Copper chains present in CaCuGeO{sub 4}{center_dot}H{sub 2}O and BaCu{sub 2}Ge{sub 3}O{sub 9}{center

  17. Ultra-high performance supercritical fluid chromatography of lignin-derived phenols from alkaline cupric oxide oxidation.

    PubMed

    Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta

    2016-08-01

    Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. PMID:27452148

  18. Three interesting coordination compounds based on metalloligand and alkaline-earth ions: Syntheses, structures, thermal behaviors and magnetic property

    NASA Astrophysics Data System (ADS)

    Zhou, Qiang; Qian, Jun; Zhang, Chi

    2016-09-01

    Based on metalloligand LCu ([Cu(2,4-pydca)2]2-, 2,4-pydca2- = pyridine-2,4-dicarboxylate) and alkaline-earth ions (Ca2+, Sr2+, and Ba2+), three interesting coordination compounds, [Ca(H2O)7][LCu·H2O]·H2O (1), {Sr[LCu·H2O]·4H2O}n (2), and {Ba[LCu·H2O]·8H2O}n (3), have been synthesized and well-characterized by elemental analysis, infrared spectroscopy, thermogravimetric and single-crystal X-ray diffraction analysis. X-ray crystallographic studies reveal that 1 features a discrete 0D coordination compound, while 2 and 3 exhibit the 2D network and 1D chain structures, respectively. Compound 2 is constructed from {LCu}2 dimers connected with {Sr2} units, which is fabricated by two Sr2+ ions bridged via two μ2-O bridges, while compound 3 is formed by 1D {Ba}n chain linked with metalloligands LCu and exhibits an interesting sandwich like chain structure. It is noted that the coordination numbers of alkaline-earth ions are in positive correlation with their radiuses. Moreover, the magnetic property of compound 2 has been studied.

  19. Photoluminescence characteristics of rare earth-doped nanoporous aluminum oxide

    NASA Astrophysics Data System (ADS)

    de Azevedo, W. M.; de Carvalho, D. D.; de Vasconcelos, E. A.; da Silva, E. F.

    2004-07-01

    In this work we present photoluminescence characterization of rare earth ion-doped nanoporous aluminum oxide synthesized by the anodization process in diverse solvents. We find that the luminescence of doped aluminum oxide strongly depends on the synthesis medium. When synthesized in an inorganic acid only rare earth fluorescence is present, whereas nanoporous aluminum oxide synthesized in organic solvent presents two strong unexpected luminescence emission lines, one at 429 nm and the other at 491 nm, with quite long decay time when excited with long wavelength ultraviolet light. The results suggest that light simulation of primary colors and chromaticity control of the emitted light can be done by the a combination of different rare earth ions present in the sample.

  20. Anodic oxidation of ethylenediaminetetraacetic acid on platinum electrode in alkaline medium

    SciTech Connect

    Pakalapati, S.N.R.; Popov, B.N.; White, R.E.

    1996-05-01

    Ethylenediaminetetraacetic acid (EDTA) forms strong metal complexes and is often used to remove scale from heat-transfer equipment and to decontaminate equipment exposed to radioactive material. However, the resultant waste in the form of EDTA-metal complex is hard to treat due to the high stability of such complexes. The anodic oxidation of ethylenediaminetetraacetic acid (EDTA) was studied in alkaline medium on a smooth platinum electrode. Bulk electrolysis indicated that stable organic intermediates (formaldehyde and glyoxal) are formed during the oxidation of EDTA and that complete oxidation to CO{sub 2} can be achieved. The proposed pathway suggests that the acetate groups in EDTA are initially oxidized, generating formaldehyde and ethylenediamine. The rest potential of EDTA (0.066 to 0.164 V vs. Hg/HgO) was observed to be higher than for other organic species. In alkaline medium, very little EDTA oxidation was found to occur on bare platinum. Limiting-current behavior due to PtO formation was observed immediately positive of the rest potential. Tafel behavior (Tafel slope 120 mV/dec) was observed in the potential region positive of the cessation of the bulk of oxide film formation and negative of the onset of O{sub 2} evolution. The reaction order of EDTA was determined to be {approximately}0.5, and that of OH{sup {minus}} was close to zero. The reaction mechanism consistent with the experimental data involves Temkin-type adsorption and a first-electron-transfer rate-determining step.

  1. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    PubMed

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances. PMID:26247625

  2. Bifunctional Perovskite Oxide Catalysts for Oxygen Reduction and Evolution in Alkaline Media.

    PubMed

    Gupta, Shiva; Kellogg, William; Xu, Hui; Liu, Xien; Cho, Jaephil; Wu, Gang

    2016-01-01

    Oxygen electrocatalysis, namely of the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), governs the performance of numerous electrochemical energy systems such as reversible fuel cells, metal-air batteries, and water electrolyzers. However, the sluggish kinetics of these two reactions and their dependency on expensive noble metal catalysts (e.g, Pt or Ir) prohibit the sustainable commercialization of these highly innovative and in-demand technologies. Bifunctional perovskite oxides have emerged as a new class of highly efficient non-precious metal catalysts (NPMC) for oxygen electrocatalysis in alkaline media. In this review, we discuss the state-of-the-art understanding of bifunctional properties of perovskites with regards to their OER/ORR activity in alkaline media and review the associated reaction mechanisms on the oxides surface and the related activity descriptors developed in the recent literature. We also summarize the present strategies to modify their electronic structure and to further improve their performance for the ORR/OER through highlighting the new concepts relating to the role of surface redox chemistry and oxygen deficiency of perovskite oxides for the ORR/OER activity. In addition, we provide a brief account of recently developed advanced perovskite-nanocarbon hybrid bifunctional catalysts with much improved performances.

  3. Evolution of the Oxidation State of the Earth's Mantle

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, E.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3(+) at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. In our previous experiments on shergottite compositions, variable fO2, T, and P less than 4 GPa, Fe3(+)/sigma Fe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3(+)/sigma Fe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3(+). Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Preliminary multi-anvil experiments with Knippa basalt as the starting composition were conducted at 5-7 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal to Fe3(+)/2(+). Experiments are underway to produce glassy samples that can be measured by EELS and XANES, and are conducted at higher pressures.

  4. Preparation and properties of electrically conducting ceramics based on indium oxide-rare earth oxides-hafnium oxides

    SciTech Connect

    Marchant, D.D.; Bates, J.L.

    1983-09-01

    Electrically conducting refractory oxides based on adding indium oxide to rare earth-stabilized hafnium oxide are being studied for use in magnetohydrodynamic (MHD) generators, fuel cells, and thermoelectric generators. The use of indium oxide generally increases the electrical conductivity. The results of measurements of the electrical conductivity and data on corrosion resistance in molten salts are presented.

  5. Mechanistic study of nickel based catalysts for oxygen evolution and methanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Chen, Dayi; Minteer, Shelley D.

    2015-06-01

    Nickel based catalysts have been studied as catalysts for either organic compound (especially methanol) oxidation or oxygen evolution reactions in alkaline medium for decades, but methanol oxidation and oxygen evolution reactions occur at a similar potential range and pH with nickel based catalysts. In contrast to previous studies, we studied these two reactions simultaneously under various pH and methanol concentrations with electrodes containing a series of NiOOH surface concentrations. We found that nickel based catalysts are more suitable to be used as oxygen evolution catalysts than methanol oxidation catalysts based on the observation that: The rate-determining step of methanol oxidation involves NiOOH, OH- and methanol while high methanol to OH- ratio could poison the NiOOH sites. Since NiOOH is involved in the rate-determining step, methanol oxidation suffers from high overpotential and oxygen evolution is favored over methanol oxidation in the presence of an equivalent amount (0.1 M) of alkali and methanol.

  6. Interaction of Pu(IV,VI) hydroxides/oxides with metal hydroxides/oxides in alkaline media

    SciTech Connect

    Fedoseev, A.M.; Krot, N.N.; Budantseva, N.A.; Bessonov, A.A.; Nikonov, M.V.; Grigoriev, M.S.; Garnov, A.Y.; Perminov, V.P.; Astafurova, L.N.

    1998-08-01

    The primary goal of this investigation was to obtain data on the possibility, extent, and characteristics of interaction of Pu(IV) and (VI) with hydroxides and oxides of d-elements and other metals [Al(III), LA(III), and U(VI)] in alkaline media. Such information is important in fundamental understanding of plutonium disposition and behavior in Hanford Site radioactive tank waste sludge. These results supply essential data for determining criticality safety and in understanding transuranic waste behavior in storage, retrieval, and treatment of Hanford Site tank waste.

  7. X-ray-absorption spectroscopic investigation of alkali and alkaline earth catalysts in coal gasification. Final report, January 1987-September 1989

    SciTech Connect

    Huggins, F.E.; Shah, N.; Huffman, G.P.

    1990-04-01

    The structures of alkali and alkaline-earth metal catalyst species in lignite and polymer chars and during pyrolysis pretreatment and char gasification have been investigated using ambient and newly-developed, in situ XAFS spectroscopic techniques. The XAFS data, which were obtained at the Stanford Synchrotron Radiation Laboratory, were supplemented by char characterization and reactivity measurements made at the Pennsylvania State University. The findings of the investigation are as follows: (i) the catalytic species, as introduced to the char or lignite, is an atomically-dispersed, metal-ion-oxygen-anion complex, and remains a metal-oxygen complex throughout pyrolysis and gasification; (ii) the catalyst species transforms to a bulk oxide species during pyrolysis pretreatment; (iii) during gasification, the catalyst species rapidly transforms to bulk alkali carbonate in the case of the alkali-metal species and slowly to calcium oxide in the case of the calcium species; (iv) higher catalyst loadings results in an increased number of catalytic sites, rather than any structural variation of the catalyst site due to concentration effects; and (v) reaction of alkali with aluminosilicates (from clays) or silica is the major catalyst poisoning reaction, unless the coal is demineralized in which case the alkali may react with residual halide from HCl or HF used to clean the coal. Such poisoning reactions were not demonstrated for calcium-oxygen species.

  8. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Reduced graphene oxide sheets (rGO) were prepared by hydrothermal treatment of aqueous dispersions of graphite oxide (GtO) applied for short (4 h) and prolonged reaction times (19-24 h). The effect of process duration as well as the alkaline conditions (pH ∼10) by addition of K2CO3 on the quality characteristics of the produced rGO materials was investigated. Both reduction and exfoliation occurred during this process as it was evidenced by FTIR and XRD data. SEM, TEM and HRTEM microscopy displayed highly exfoliated rGO materials. XPS verified that the re-establishment of the conjugated graphene network is more extensive for prolonged times of hydrothermal processing in accordance to Raman spectroscopy measurements. The sample produced under alkaline conditions bore fewer defects and almost 5 times higher BET surface area (∼181 m2/g) than the sample with no pH adjustment (∼34 m2/g) for the same hydrothermal reaction time (19 h), attributed to the developed microporosity. The specific capacitance of this material estimated by electrochemical impedance using three-electrode cell and KCl aqueous solution as an electrolyte was ∼400-500 F/g. When EDLC capacitors were fabricated from rGO materials the electrochemical testing in organic electrolyte i.e. TEABF4 in PC, revealed that the shortest hydrothermal reaction time (4 h) was more efficient resulting in capacitance around 60 F/g.

  9. Formation of iron oxides in a highly alkaline medium in the presence of palladium ions

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2009-04-01

    The effect of the presence of palladium ions in a highly alkaline precipitation system on the formation of iron oxides was investigated using X-ray powder diffraction (XRPD), Mössbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Acicular α-FeOOH particles precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. The initial addition of palladium ions to that precipitation system had a significant effect on the formation of iron oxide phases and their properties. In the presence of palladium ions, the initially formed α-FeOOH has been transformed to α-Fe 2O 3 crystals in the form of hexagonal bipyramids via a dissolution-reprecipitation mechanism with a simultaneous formation of metallic palladium nanoparticles. These palladium nanoparticles acted as a catalyst for the reductive dissolution of α-Fe 2O 3 particles and the formation of Fe 3O 4 crystals in the form of octahedrons. Increase in the initial concentration of palladium ions in the precipitation system accelerated the transformation process α-FeOOH → α-Fe 2O 3 → Fe 3O 4 and influenced changes in the shape of α-Fe 2O 3 and Fe 3O 4 particles.

  10. Dispersion coefficients for H and He interactions with alkali-metal and alkaline-earth-metal atoms

    SciTech Connect

    Mitroy, J.; Bromley, M.W.J.

    2003-12-01

    The van der Waals coefficients C{sub 6}, C{sub 8}, and C{sub 10} for H and He interactions with the alkali-metal (Li, Na, K, and Rb) and alkaline-earth-metal (Be, Mg, Ca, and Sr) atoms are determined from oscillator strength sum rules. The oscillator strengths were computed using a combination of ab initio and semiempirical methods. The dispersion parameters generally agree with close to exact variational calculations for Li-H and Li-He at the 0.1% level of accuracy. For larger systems, there is agreement with relativistic many-body perturbation theory estimates of C{sub 6} at the 1% level. These validations for selected systems attest to the reliability of the present dispersion parameters. About half the present parameters lie within the recommended bounds of the Standard and Certain compilation [J. Chem. Phys. 83, 3002 (1985)].

  11. Adsorption of alkali and alkaline-earth metal atoms on the reconstructed graphene-like BN single sheet

    NASA Astrophysics Data System (ADS)

    Hao, Jun-Hua; Wang, Zheng-Jia; Wang, Yu-Fang; Yin, Yu-Hua; Jiang, Run; Jin, Qing-Hua

    2015-12-01

    A graphene-like BN single sheet with absorbed alkali and alkaline-earth metal atoms have been investigated by using a first-principles method within the framework of density functional theory (DFT). The electronic structure of BN sheet with adsorbed metal atoms is mainly determined by the metal electronic state which is near to the Fermi level owing to the wide band gap of pure BN sheet. So, we calculated the adsorption energy, charge transfer and work function after the metal adsorbed on BN sheet. We found that the interaction between the metal atoms and BN surface was very strong, and the stable adsorption site for all the adsorbed atoms concluded was high-coordination surface site (H-center) rather than the surface dangling bond sites from the perspective of simple bond-counting arguments. Our results indicate that the interaction of BN sheet with metal atoms could help in the development of metallic nanoscale devices.

  12. Two-band superfluidity and intrinsic Josephson effect in alkaline-earth-metal Fermi gases across an orbital Feshbach resonance

    NASA Astrophysics Data System (ADS)

    Iskin, M.

    2016-07-01

    We first show that the many-body Hamiltonian governing the physical properties of an alkaline-earth 173Yb Fermi gas across the recently realized orbital Feshbach resonance is exactly analogous to that of two-band s -wave superconductors with contact interactions; i.e., even though the free-particle bands have a tunable energy offset in between and are coupled by a Josephson-type attractive interband pair scattering, the intraband interactions have exactly the same strength. We then introduce two intraband order parameters within the BCS mean-field approximation and investigate the competition between their in-phase and out-of-phase (i.e., the so-called π -phase) solutions in the entire BCS-BEC evolution at zero temperature.

  13. Cyclotron dynamics of a Kondo singlet in a spin-orbit-coupled alkaline-earth-metal atomic gas

    NASA Astrophysics Data System (ADS)

    Jiang, Bo-Nan; Lv, Hao; Wang, Wen-Li; Du, Juan; Qian, Jun; Wang, Yu-Zhu

    2014-11-01

    We propose a scheme to investigate the interplay between the Kondo-exchange interaction and the quantum spin Hall effect with ultracold fermionic alkaline-earth-metal atoms trapped in two-dimensional optical lattices using ultracold collision and laser-assisted tunneling. In the strong Kondo-coupling regime, although the loop trajectory of the mobile atom disappears, collective dynamics of an atom pair in two clock states can exhibit an unexpected spin-dependent cyclotron orbit in a plaquette, realizing the quantum spin Hall effect of the Kondo singlet. We demonstrate that the collective cyclotron dynamics of the spin-zero Kondo singlet is governed by an effective Harper-Hofstadter model in addition to second-order diagonal tunneling.

  14. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    SciTech Connect

    Sobolewski, R.; Gierlowski, P.; Kula, W.; Zarembinski, S.; Lewandowski, S.J.; Berkowski, M.; Pajaczkowska, A. ); Gorshunov, B.P.; Lyudmirsky, D.B.; Sirotinsky, O.I. )

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  15. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOEpatents

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  16. Physical and optical absorption studies of Fe3+ - ions doped lithium borate glasses containing certain alkaline earths

    NASA Astrophysics Data System (ADS)

    Bhogi, Ashok; Kumar, R. Vijaya; Kistaiah, P.

    2016-05-01

    Iron ion doped lithium borate glasses with the composition 15RO-25Li2O-59B2O3-1Fe2O3 (where R= Ca, Sr and Ba) have been prepared by the conventional melt quenching technique and characterized to investigate the physical and optical properties using XRD, density, molar volume and UV-Visible spectroscopy. The optical absorption spectra exhibit a band at around 460 nm which is assigned to 6A1g(S) → 4Eg (G) of Fe3+ ions with distorted octahedral symmetry. From ultraviolet absorption edges, the optical band gap and Urbach energies have been evaluated. The effect of alkaline earths on these properties is discussed.

  17. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  18. Theoretical study of support effect of Au catalyst for glucose oxidation of alkaline fuel cell anode

    NASA Astrophysics Data System (ADS)

    Ishimoto, Takayoshi; Hamatake, Yumi; Kazuno, Hiroki; Kishida, Takayuki; Koyama, Michihisa

    2015-01-01

    We theoretically analyzed the glucose oxidation reaction mechanism and reaction activity of Au catalyst supported by carbon (graphite(0 0 0 1), (1 0 1 bar 0), and (1 1 2 bar 0)) and oxide (ZrO2(1 1 1) and SnO2(1 1 0)) in alkaline solution environment by using density functional theory method. We observed large stabilization of Au catalyst on support materials due to the electron transfer in the case of graphite(1 1 2 bar 0) and SnO2(1 1 0) systems. The catalytic activity for glucose oxidation reaction over Au supported by graphite(1 0 1 bar 0) and (1 1 2 bar 0) is calculated to be low in comparison with those of unsupported system. We found that SnO2(1 1 0) supported Au catalyst shows high activity toward the glucose oxidation. One of the main factors for the observed high catalytic activity is charge transfer from Au catalyst to support materials. When the atomic charge of Au catalyst becomes positive by the support effect, the activity of glucose oxidation reaction on Au catalyst is improved.

  19. Sign Changes in the Electric Dipole Moment of Excited States in Rubidium-Alkaline Earth Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Pototschnig, Johann V.; Lackner, Florian; Hauser, Andreas W.; Ernst, Wolfgang E.

    2015-06-01

    In a recent series of combined experimental and theoretical studies we investigated the ground state and several excited states of the Rb-alkaline earth molecules RbSr and RbCa. The group of alkali-alkaline earth (AK-AKE) molecules has drawn attention for applications in ultracold molecular physics and the measurement of fundamental constants due to their large permanent electric and magnetic dipole moments in the ground state. These properties should allow for an easy manipulation of the molecules and simulations of spin models in optical lattices. In our studies we found that the permanent electric dipole moment points in different directions for certain electronically excited states, and changes the sign in some cases as a function of bond length. We summarize our results, give possible causes for the measured trends in terms of molecular orbital theory and extrapolate the tendencies to other combinations of AK and AKE - elements. F. Lackner, G. Krois, T. Buchsteiner, J. V. Pototschnig, and W. E. Ernst, Phys. Rev. Lett., 2014, 113, 153001; G. Krois, F. Lackner, J. V. Pototschnig, T. Buchsteiner, and W. E. Ernst, Phys. Chem. Chem. Phys., 2014, 16, 22373; J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Chem. Phys., 2014, 141, 234309 J. V. Pototschnig, G. Krois, F. Lackner, and W. E. Ernst, J. Mol. Spectrosc., in Press (2015), doi:10.1016/j.jms.2015.01.006 M. Kajita, G. Gopakumar, M. Abe, and M. Hada, J. Mol. Spectrosc., 2014, 300, 99-107 A. Micheli, G. K. Brennen, and P. Zoller, Nature Physics, 2006, 2, 341-347

  20. EPR and optical absorption studies of Cu{sup 2+} ions in alkaline earth alumino borate glasses

    SciTech Connect

    Ramesh Kumar, V.; Rao, J.L. . E-mail: jlrao46@yahoo.co.in; Gopal, N.O.

    2005-08-11

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in alkaline earth alumino borate glasses doped with different concentrations of CuO have been studied. The EPR spectra of all the glasses exhibit the resonance signals, characteristic of Cu{sup 2+} ions present in axially elongated octahedral sites. The number of spins participating in the resonance has been calculated as a function of temperature for calcium alumino borate (CaAB) glass doped with 0.1 mol% of CuO. From the EPR data, the paramagnetic susceptibility ({chi}) was calculated at different temperatures (T) and from the 1/{chi}-T graph, the Curie temperature of the glass has been evaluated. The optical absorption spectra of all the glasses show a single broad band, which has been assigned to the {sup 2}B{sub 1g} {yields} {sup 2}B{sub 2g} transition of the Cu{sup 2+} ions. The variation in the intensity of optical absorption with the ionic radius of the alkaline earth ion has been explained based on the Coulombic forces. By correlating the EPR and optical absorption spectral data, the nature of the in-plane {sigma} bonding between Cu{sup 2+} ion and the ligands is estimated. From the fundamental ultraviolet absorption edges of the glasses, the optical energy gap (E {sub opt}) and the Urbach energy ({delta}E) are evaluated. The variation in E {sub opt} and {delta}E is explained based on the number of defect centers in the glass.

  1. Oxidants and oxidation in the Earth`s atmosphere. Final technical report, 1 June 1994-30 May 1995

    SciTech Connect

    1995-02-01

    The 1994 BOC Priestley Conference was held at Bucknell University in Lewisburg, Pennsylvania, from June 24 through June 27, 1994. This conference, managed by the American Chemical Society (ACS), was a joint celebration with the Royal Society of Chemistry (RSC) commemorating Joseph Priestley`s arrival in the U.S. and his discovery of oxygen. The basic theme of the conference was `Oxidants and Oxidation in the Earth`s Atmosphere,` with a keynote lecture on the history of ozone. A distinguished group of U.S. and international atmospheric chemists addressed the issues dominating current research and policy agendas. Topics crucial to the atmospheric chemistry of global change and local and regional air pollution were discussed. The program for the conference included four technical sessions on the following topics: (1) Oxidative Fate of Atmospheric Pollutants; (2) Photochemical Smog and Ozone; (3) Stratospheric Ozone; and (4) Global Tropospheric Ozone.

  2. Theoretical Studies of the Spin Hamiltonian Parameters and Local Distortions for Cu2+ in Alkaline Earth Lead Zinc Phosphate Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Bo-Kun; Wu, Shao-Yi; Yuan, Zi-Yi; Liu, Zi-Xuan; Jiang, Shi-Xin; Liu, Zheng; Yao, Zi-Jian; Teng, Bao-Hua; Wu, Ming-He

    2016-08-01

    The spin Hamiltonian parameters and local structures are theoretically studied for Cu2+-doped alkaline earth lead zinc phosphate (RPPZ, R=Mg, Ca, Sr, and Ba) glasses based on the high-order perturbation calculations for a tetragonally elongated octahedral 3d9 cluster. The relative elongation ratios are found to be ρ≈3.2%, 4.4%, 4.6%, and 3.3% for R=Mg, Ca, Sr, and Ba, respectively, because of the Jahn-Teller effect. The whole decreasing crystal-field strength Dq and orbital reduction factor k from Mg to Sr are ascribed to the weakening electrostatic coulombic interactions and the increasing probability of productivity of nonbridge oxygen (and hence increasing Cu2+-O2- electron cloud admixtures) under PbO addition, respectively, with increasing alkali earth ionic radius. The anomalies (the largest Dq and the next highest k among the systems) for R=Ba are attributed to the cross linkage of this large cation in the network. The overall increasing order (Mg≤Ba

  3. Synthesis of a new family of ionophores based on aluminum-dipyrrin complexes (ALDIPYs) and their strong recognition of alkaline earth ions.

    PubMed

    Saikawa, Makoto; Daicho, Manami; Nakamura, Takashi; Uchida, Junji; Yamamura, Masaki; Nabeshima, Tatsuya

    2016-03-14

    Mononuclear and dinuclear aluminum-dipyrrin complexes (ALDIPYs) were synthesized as a new family of ionophores. They exhibited colorimetric and fluorometric responses to alkaline earth ions in an aqueous mixed solvent. The strong recognition was achieved via multipoint interactions with the oxygen atoms appropriately incorporated into the ligand framework. PMID:26935409

  4. Direct interactions between Z-DNA and alkaline earth cations, discovered in the presence of high concentrations of MgCl2 and CaCl2.

    PubMed

    Chatake, Toshiyuki; Sunami, Tomoko

    2013-07-01

    In this study, crystals of Z-DNA hexamer d(CGCGCG) complexed with MgCl2 and CaCl2 were obtained in the presence of high concentrations of alkaline earth salts (500mM) using a temperature control technique, and their crystal structures were determined at 1.3Å resolution. Mg(2+) and Ca(2+) cations in these structures tend to interact directly with phosphate groups of Z-DNA duplexes; however, they tend to form water-mediated interactions with Z-DNA in the presence of lower concentrations of alkaline earth salts. In these crystals, a DNA duplex was laid along its c-axis and interacted with its 6 neighboring DNA duplexes through coordination bonds of PO…(Mg(2+) or Ca(2+))…OP. A symmetrical hexagonal Z-DNA duplex assembly model may explain DNA condensation caused by alkaline earth salts. These structures offer insights into the functions of alkaline earth cations essential to the structures and assembly of Z-DNA duplexes.

  5. Modification of human placental alkaline phosphatase by periodate-oxidized 1,N6-ethenoadenosine monophosphate.

    PubMed Central

    Chang, G G; Shiao, M S; Lee, K R; Wu, J J

    1990-01-01

    Oxidation of 1,N6-ethenoadenosine monophosphate (epsilon AMP) with periodate cleaved the cis-diol of the ribose ring and resulted in the formation of a dialdehyde derivative (epsilon AMP-dial). At room temperature epsilon AMP-dial was unstable and underwent beta-elimination to give 4',5'-anhydro-1,N6-ethenoadenosine dialdehyde acetal (A epsilon Ado-dial). These nucleotide analogues were found to inactivate human placental alkaline phosphatase in a time- and concentration-dependent manner. epsilon AMP-dial was shown to be an affinity label for the enzyme on the basis of the following criteria. (a) Kinetics of the enzyme activity loss over a wide range of epsilon AMP-dial concentration showed a saturating phenomenon. Removal of the phosphate group made the reagent (A epsilon Ado-dial) become a general chemical modifying reagent. (b) The artificial substrate p-nitrophenyl phosphate gave substantial protection of the enzyme against inactivation. (c) epsilon AMP-dial was a substrate and a partial mixed-type inhibitor for the enzyme. Results of the inhibition and protection studies indicated that the reagent and substrate could combine with the enzyme simultaneously. Besides the phosphate-binding domain, an induced hydrophobic region is proposed for the substrate-binding site for human placental alkaline phosphatase. PMID:2176472

  6. Alkaline deoxygenated graphene oxide as adsorbent for cadmium ions removal from aqueous solutions.

    PubMed

    Liu, Jun; Du, Hongyan; Yuan, Shaowei; He, Wanxia; Yan, Pengju; Liu, Zhanhong

    2015-01-01

    Alkaline deoxygenated graphene oxide (aGO) was prepared through alkaline hydrothermal treatment and used as adsorbent to remove Cd(II) ions from aqueous solutions for the first time. The characterization results of transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectra indicate that aGO was successfully synthesized. The batch adsorption experiments showed that the adsorption kinetics could be described by the pseudo-second-order kinetic model, and the isotherms equilibrium data were well fitted with the Langmuir model. The maximum adsorption capacity of Cd(II) on aGO was 156 mg/g at pH 5 and T=293 K. The adsorption thermodynamic parameters indicated that the adsorption process was a spontaneous and endothermic reaction. The mainly adsorption mechanism speculated from FT-IR results may be attributed to the electrostatic attraction between Cd2+ and negatively charged groups (-CO-) of aGO and cation-π interaction between Cd2+ and the graphene planes. The findings of this study demonstrate the potential utility of the nanomaterial aGO as an effective adsorbent for Cd(II) removal from aqueous solutions. PMID:26038925

  7. Oxidation of L-phenylalanine by diperiodatoargentate(III) in aqueous alkaline medium. A Mechanistic approach

    NASA Astrophysics Data System (ADS)

    Lamani, S. D.; Veeresh, T. M.; Nandibewoor, S. T.

    2009-12-01

    The kinetics of oxidation of L-phenylalanine (L-Phe) by diperiodatoargentate(III) (DPA) in alkaline medium at a constant ionic strength of 0.25 mol/dm-3 has been studied spectrophotometrically. The reaction between DPA and L-phenylalanine in alkaline medium exhibits 1: 1 stoichiometry (L-phenylalanine: DPA). The reaction shows first order in [DPA] and has less than unit order dependence each in both [L-Phe] and [Alkali] and retarding effect of [IO{4/-}] under the reaction conditions. The active species of DPA is understood to be as monoperiodatoargentate(III) (MPA). The reaction is shown to proceed via a MPA-L-Phe complex, which decomposes in a rate-determining step to give intermediates followed by a fast step to give the products. The products were identified by spot and spectroscopic studies. The reaction constants involved in the different steps of the mechanisms were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed. The thermodynamic quantities were also determined for the reaction.

  8. Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Alesker, Maria; Page, Miles; Shviro, Meital; Paska, Yair; Gershinsky, Gregory; Dekel, Dario R.; Zitoun, David

    2016-02-01

    Investigation of the hydrogen oxidation reaction (HOR) in alkaline media has been pursued in the past few years side by side with the development of alkaline membrane fuel cells (AMFCs), also called anion exchange membrane fuel cells (AEM-FCs). In this communication, we present the synthesis, electrochemistry and AMFC test of a platinum-free HOR catalyst. The anode catalyst is prepared by growing palladium nanoparticles onto nanoparticles of an oxophilic metal (nickel), resulting in nano-dispersed, interconnected crystalline phases of Ni and Pd. When used in the anode of a hydrogen/air AMFC, such Pd/Ni catalyst exhibits high HOR activity, resulting in record high performance for a platinum-free AMFC (0.4 A cm-2 at 0.6 V vs RHE). The enhancement of HOR catalytic activity vs. that observed at Pd (or Ni) alone is revealed directly in rotating disc electrode tests of this Pd/Ni catalyst that shows a significant negative shift (200 mV) of the onset potential for the HOR current vs. the case of Pd.

  9. Wild soybean roots depend on specific transcription factors and oxidation reduction related genesin response to alkaline stress.

    PubMed

    DuanMu, Huizi; Wang, Yang; Bai, Xi; Cheng, Shufei; Deyholos, Michael K; Wong, Gane Ka-Shu; Li, Dan; Zhu, Dan; Li, Ran; Yu, Yang; Cao, Lei; Chen, Chao; Zhu, Yanming

    2015-11-01

    Soil alkalinity is an important environmental problem limiting agricultural productivity. Wild soybean (Glycine soja) shows strong alkaline stress tolerance, so it is an ideal plant candidate for studying the molecular mechanisms of alkaline tolerance and identifying alkaline stress-responsive genes. However, limited information is available about G. soja responses to alkaline stress on a genomic scale. Therefore, in the present study, we used RNA sequencing to compare transcript profiles of G. soja root responses to sodium bicarbonate (NaHCO3) at six time points, and a total of 68,138,478 pairs of clean reads were obtained using the Illumina GAIIX. Expression patterns of 46,404 G. soja genes were profiled in all six samples based on RNA-seq data using Cufflinks software. Then, t12 transcription factors from MYB, WRKY, NAC, bZIP, C2H2, HB, and TIFY families and 12 oxidation reduction related genes were chosen and verified to be induced in response to alkaline stress by using quantitative real-time polymerase chain reaction (qRT-PCR). The GO functional annotation analysis showed that besides "transcriptional regulation" and "oxidation reduction," these genes were involved in a variety of processes, such as "binding" and "response to stress." This is the first comprehensive transcriptome profiling analysis of wild soybean root under alkaline stress by RNA sequencing. Our results highlight changes in the gene expression patterns and identify a set of genes induced by NaHCO3 stress. These findings provide a base for the global analyses of G. soja alkaline stress tolerance mechanisms.

  10. Core Formation and the Oxidation State of the Earth

    NASA Astrophysics Data System (ADS)

    Wood, B. J.; Wade, J.; Walter, M. J.

    2005-12-01

    We have investigated the effects of temperature, pressure and metal composition on the metal-silicate partitioning of V, Cr, Ni, Co, Mn, Nb, W, Ga, P and Si in order to refine the `deep magma ocean' model of core formation. Interactions in the liquid metal were accounted for by using metallurgical data while temperature effects were calculated using free energy data for liquid metals and liquid oxides. This approach enabled us to separate pressure effects from those of the other two variables. Mantle concentrations of the refractory elements can be well-matched by single-stage core segregation at 3750K and a pressure of 40 GPa. The calculated temperature is, however, 800 degrees above the peridotite liquidus at 40 GPa, and is therefore physically implausible. The base of the magma ocean, at which metal would pond during accretion must be saturated in crystals and should, therefore lie close to the liquidus. We find that dynamic accretion models, in which pressure increased as the earth grew, do not improve the match to the peridotite liquidus so long as the oxygen fugacity is fixed by the current Fe content of the mantle. If, however, we force temperature to lie on the peridotite liquidus as the earth grew, the mantle concentrations of refractory elements can be matched provided oxygen fugacity increased during accretion. To illustrate this we use accretionary models in which, as the earth grew, the base of the magma ocean was at half the mantle depth and applied gradual or step-changes in oxygen fugacity. If we apply a 2 log unit increase in oxygen fugacity, the siderophile element contents of the mantle are matched, the Si content of the core is about 5 weight per cent and the average core segregation temperature is 2800K, within the experimental range. Oxidation during accretion is an important component of heterogeneous accretion models, but the mechanisms proposed are generally untestable. Here we propose that an increase in oxidation state is a natural

  11. Synthesis of nanocrystalline rare earth oxides by glycothermal method

    SciTech Connect

    Hosokawa, Saburo; Iwamoto, Shinji; Inoue, Masashi

    2008-11-03

    The reaction of yttrium acetate hydrate in 1,2-propanediol at 300 deg. C yielded a product containing acetate groups and glycol moieties. From this product, Y{sub 2}O{sub 3} was directly crystallized at 400 deg. C without the formation of a carbonate oxide phase. The thus-obtained Y{sub 2}O{sub 3} samples had a small crystallite size (2.2 nm) and significantly large surface area (280 m{sup 2}/g). Other nanocrystalline rare earth (Gd-Yb) oxides were also obtained by this method.

  12. Activation of X-H and X-D bonds (X = O, N, C) by alkaline-earth metal monoxide cations: experiment and theory.

    PubMed

    Bozović, Andrea; Bohme, Diethard K

    2009-07-28

    Experimental investigations are reported for reactions of MO (+) (M = Ca, Sr, and Ba) with elemental hydrides water, ammonia and methane proceeding in the gas phase at 295 +/- 3 K in helium buffer gas at a pressure of 0.35 +/- 0.01 Torr. Measurements were taken with an inductively-coupled plasma/selected-ion flow tube (ICP/SIFT) tandem mass spectrometer and a novel electrospray ion source/ion selection quadrupole/selected-ion flow tube/triple quadrupole (ESI/qQ/SIFT/QqQ) mass spectrometer. All three alkaline-earth metal oxide ions exclusively abstract a H-atom from the three hydrides with rate coefficients > 1 x 10(-11) cm(3) molecule(-1) s(-1). Formation of metal hydroxide ion was followed by sequential addition of water or ammonia, but not methane. Density functional calculations have provided potential energy surfaces for the X-H bond activations leading to H-atom abstraction as well as those for O-atom transfer and H(2)O elimination (with ammonia and methane). A comparison of experimental and theoretical isotope effects points toward a mechanism involving the direct atom transfer from XH and XD to O in MO (+)via a three-centered transition structure. PMID:19588017

  13. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  14. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte.

    PubMed

    Zhuang, Zhongbin; Giles, Stephen A; Zheng, Jie; Jenness, Glen R; Caratzoulas, Stavros; Vlachos, Dionisios G; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  15. Synthesis and electrocatalytic activity of Au/Pt bimetallic nanodendrites for ethanol oxidation in alkaline medium.

    PubMed

    Han, Xinyi; Wang, Dawei; Liu, Dong; Huang, Jianshe; You, Tianyan

    2012-02-01

    Gold/Platinum (Au/Pt) bimetallic nanodendrites were successfully synthesized through seeded growth method using preformed Au nanodendrites as seeds and ascorbic acid as reductant. Cyclic voltammograms (CVs) of a series of Au/Pt nanodendrites modified electrodes in 1M KOH solution containing 1M ethanol showed that the electrocatalyst with a molar ratio (Au:Pt) of 3 exhibited the highest peak current density and the lowest onset potential. The peak current density of ethanol electro-oxidation on the Au(3)Pt(1) nanodendrites modified glassy carbon electrode (Au(3)Pt(1) electrode) is about 16, 12.5, and 4.5 times higher than those on the polycrystalline Pt electrode, polycrystalline Au electrode, and Au nanodendrites modified glassy carbon electrode (Au dendrites electrode), respectively. The oxidation peak potential of ethanol electro-oxidation on the Au(3)Pt(1) electrode is about 299 and 276 mV lower than those on the polycrystalline Au electrode and Au dendrites electrode, respectively. These results demonstrated that the Au/Pt bimetallic nanodendrites may find potential application in alkaline direct ethanol fuel cells (ADEFCs).

  16. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  17. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  18. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.

  19. Oxidation of silicon nitride sintered with rare-earth oxide additions

    NASA Technical Reports Server (NTRS)

    Mieskowski, D. M.; Sanders, W. A.

    1985-01-01

    The effects of rare-earth oxide additions on the oxidation of sintered Si3N4 were examined. Insignificant oxidation occurred at 700 and 1000 C, with no evidence of phase instability. At 1370 C, the oxidation rate was lowest for Y2O3 and increased for additions of La2O3, Sm2O3, and CeO2, in that order. Data obtained from X-ray diffraction, electron microprobe analysis, and scanning electron microscopy indicate that oxidation occurs via diffusion of cationic species from Si3N4 grain boundaries.

  20. Alkaline-Earth-Metal-Induced Liberation of Rare Allotropes of Elemental Silicon and Germanium from N-Heterocyclic Metallylenes.

    PubMed

    Blom, Burgert; Said, Amro; Szilvási, Tibor; Menezes, Prashanth W; Tan, Gengwen; Baumgartner, Judith; Driess, Matthias

    2015-09-01

    The synthesis and striking reactivity of the unprecedented N-heterocyclic silylene and germylene ("metallylene") alkaline-earth metal (Ae) complexes of the type [(η(5)-C5Me5)2Ae←:E(N(t)BuCH)2] (3, 4, and 7-9; Ae = Ca, E = Ge 3; Ae = Sr, E = Ge 4; Ae = Sr, E = Si 7; Ae = Ba, E = Si 8; Ae = Ba, E = Ge 9) are reported. All complexes have been characterized by spectroscopic means, and their bonding situations investigated by density functional theory (DFT) methods. Single-crystal X-ray diffraction analyses of examples revealed relatively long Si-Ae and Ge-Ae distances, respectively, indicative of weak E:→Ae (E = Si, Ge) dative bonds, further supported by the calculated Wiberg bond indices , which are rather low in all cases (∼0.5). Unexpectedly, the complexes undergo facile transformation to 1,4-diazabuta-1,3-diene Ae metal complexes of the type [(η(5)-C5Me5)2Ae(κ(2)-{N(t)Bu═CHCH═N(t)Bu})] (Ae = Sr 10, Ae = Ba 11) or in the case of calcium to the dinuclear complex [(η(5)-C5Me5)2Ca←:N((t)Bu)═CHCH═((t)Bu)N:→Ca(η(5)-C5Me5)2] (12) under concomitant liberation of elemental silicon and germanium. The formation of elemental silicon and germanium is proven by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray spectroscopy. Notably, the decomposition of the Si(II)→Ba complex 8 produces allo-silicon, a rare allotropic form of elemental silicon. Similarly, the analogous Ge(II)→Ba complex 9, upon decomposition, forms tetragonal germanium, a dense and rare allotrope of elemental germanium. The energetics of this unprecedented alkaline-earth-metal-induced liberation of elemental silicon and germanium was additionally studied by DFT methods, revealing that the transformations are pronouncedly exergonic and considerably larger for the N-heterocyclic germylene complexes than those of the corresponding silicon analogues.

  1. Alkaline-Earth-Metal-Induced Liberation of Rare Allotropes of Elemental Silicon and Germanium from N-Heterocyclic Metallylenes.

    PubMed

    Blom, Burgert; Said, Amro; Szilvási, Tibor; Menezes, Prashanth W; Tan, Gengwen; Baumgartner, Judith; Driess, Matthias

    2015-09-01

    The synthesis and striking reactivity of the unprecedented N-heterocyclic silylene and germylene ("metallylene") alkaline-earth metal (Ae) complexes of the type [(η(5)-C5Me5)2Ae←:E(N(t)BuCH)2] (3, 4, and 7-9; Ae = Ca, E = Ge 3; Ae = Sr, E = Ge 4; Ae = Sr, E = Si 7; Ae = Ba, E = Si 8; Ae = Ba, E = Ge 9) are reported. All complexes have been characterized by spectroscopic means, and their bonding situations investigated by density functional theory (DFT) methods. Single-crystal X-ray diffraction analyses of examples revealed relatively long Si-Ae and Ge-Ae distances, respectively, indicative of weak E:→Ae (E = Si, Ge) dative bonds, further supported by the calculated Wiberg bond indices , which are rather low in all cases (∼0.5). Unexpectedly, the complexes undergo facile transformation to 1,4-diazabuta-1,3-diene Ae metal complexes of the type [(η(5)-C5Me5)2Ae(κ(2)-{N(t)Bu═CHCH═N(t)Bu})] (Ae = Sr 10, Ae = Ba 11) or in the case of calcium to the dinuclear complex [(η(5)-C5Me5)2Ca←:N((t)Bu)═CHCH═((t)Bu)N:→Ca(η(5)-C5Me5)2] (12) under concomitant liberation of elemental silicon and germanium. The formation of elemental silicon and germanium is proven by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, selected area electron diffraction, and energy dispersive X-ray spectroscopy. Notably, the decomposition of the Si(II)→Ba complex 8 produces allo-silicon, a rare allotropic form of elemental silicon. Similarly, the analogous Ge(II)→Ba complex 9, upon decomposition, forms tetragonal germanium, a dense and rare allotrope of elemental germanium. The energetics of this unprecedented alkaline-earth-metal-induced liberation of elemental silicon and germanium was additionally studied by DFT methods, revealing that the transformations are pronouncedly exergonic and considerably larger for the N-heterocyclic germylene complexes than those of the corresponding silicon analogues. PMID:26305163

  2. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    PubMed

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules. PMID:24967575

  3. Halogen-abstraction reactions from chloromethane and bromomethane molecules by alkaline-earth monocations.

    PubMed

    Redondo, Pilar; Largo, Antonio; Rayón, Víctor Manuel; Molpeceres, Germán; Sordo, José Ángel; Barrientos, Carmen

    2014-08-14

    The reactions, in the gas phase, between alkali-earth monocations (Mg(+), Ca(+), Sr(+), Ba(+)) and CH3X (X = Cl, Br) have been theoretically studied. The stationary points on the potential energy surfaces were characterized at the Density Functional Theory level on the framework of the mPW1K functional with the QZVPP Ahlrichs's basis sets. A complementary kinetics study has also been performed using conventional/variational microcanonical transition state theory. In the reactions of Mg(+) with either chloro- or bromomethane the transition structure lies in energy clearly above the reactants rendering thermal activation of CH3Cl or CH3Br extremely improbable. The remaining reactions are exothermic and barrierless processes; thus carbon-halogen bonds in chloro- or bromomethane can be activated by calcium, strontium or barium monocations to obtain the metal halogen cation and the methyl radical. The Mulliken population analysis for the stationary points of the potential energy surfaces supports a "harpoon"-like mechanism for the halogen-atom abstraction processes. An analysis of the bonding situation for the stationary points on the potential energy surface has also been performed in the framework of the quantum theory of atoms in molecules.

  4. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    PubMed

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected. PMID:24638260

  5. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    PubMed

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.

  6. Kinetics of oxidation of odorous sulfur compounds in aqueous alkaline solution with H2O2.

    PubMed

    Feliers, C; Patria, L; Morvan, J; Laplanche, A

    2001-10-01

    Sulfur species oxidation is a crucial issue wastewater treatment. The production of sulfur compounds like H2S,CH3SH, C2H5SH, disulfides and dimethyle sulfide generates odorous nuisances for the neighborhood. The oxidation of these species by H2O2 in alkaline solution has been investigated. The results showed that thiols CH3SH and C2H5SH react with H202 only in their dissociated form RS- with rate constants respectively k = 8.81 +/- 0.48 M-1s-1 and 8.37 +/- 0.63 M-1.s-1. Mercaptans oxidation produces 100 % of dimethyldisulfide or diethyldisulfide. The oxidation of disulfides shows a difference of reactivity between H2O2 and HO2- towards sulfur species. Increasing the pH accelerates significantly the reactions in the case of CH3SSCH3. The oxidation rate can be described as: r = k[RSSR][H2O2][RSSR][H2O2] + k[RSSR][HO2-] [RSSR][HO2-] with k[RSSR][H2O2] = 1.2 x 10(-4) +/- 0.2 x 10(-4) M-1s-1 and k[RSSR][HO2-] = 3.4 x 10(-4) +/- 0.6 x 10(-4) M-1.s-1 for CH3SSCH3. Dimethyl sulfide presents a reactivity different from disulfides. The oxidation rate can also be described as: r = k[CH3SCH3][H2O21][CH3SCH3][H2O2] + k[CH3SCH3][HO-] [CH3SCH3][HO2-], however, oxidation rate decreases with pH increase. k[CH3SCH3][H2O2] = 12.8 x 10(-3) +/- 0.96 x 10(-3) M-1.s-1 and k[CH3SCH3][HO2-] = 4 x 10(-3) +/- 0.3 x 10(-3) M-1.s-1.

  7. Alkaline Earth Metal Zirconate Perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)) Derived from Molecular Precursors and Doped with Eu(3+) Ions.

    PubMed

    Drąg-Jarząbek, Anna; John, Łukasz; Petrus, Rafał; Kosińska-Klähn, Magdalena; Sobota, Piotr

    2016-03-24

    The effect of alkaline earth metal alkoxides on the protonation of zirconocene dichloride was investigated. This approach enabled the design of compounds with preset molecular structures for generating high-purity binary metal oxide perovskites MZrO3 (M=Ba(2+), Sr(2+), Ca(2+)). Single-source molecular precursors [Ba4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2(η(2) -HOR)2 (HOR)2 Cl4], [Sr4 Zr2 (μ6 -O)(μ3 ,η(2)-OR)8 (OR)2 (HOR)4 Cl4], [Ca4 Zr2 (μ6-O)(μ3 ,η(2)-OR)8 (OR)2 Cl4], and [Ca6 Zr2 (μ2 ,η(2)-OR)12 (μ-Cl)2 (η(2) -HOR)4 Cl6 ]⋅8 CH2 Cl2 were prepared via elimination of the cyclopentadienyl ring from Cp2 ZrCl2 as CpH in the presence of M(OR)2 and alcohol ROH (ROH=CH3OCH2 CH2OH) as a source of protons. The resulting complexes were characterized by elemental analysis, IR and NMR spectroscopy, and single-crystal X-ray diffraction. The compounds were then thermally decomposed to MCl2 /MZrO3 mixtures. Leaching of MCl2 from the raw powder with deionized water produced highly pure perovskite-like oxide particles of 40-80 nm in size. Luminescence studies on Eu(3+)-doped MZrO3 revealed that the perovskites are attractive host lattices for potential applications in display technology. PMID:26891039

  8. A new N-hydroxyethyliminodiacetic acid modified core-shell silica phase for chelation ion chromatography of alkaline earth, transition and rare earth elements.

    PubMed

    McGillicuddy, Nicola; Nesterenko, Ekaterina P; Nesterenko, Pavel N; Stack, Elaine M; Omamogho, Jesse O; Glennon, Jeremy D; Paull, Brett

    2013-12-20

    Bare core-shell silica (1.7μm) has been modified with iminodiacetic acid functional groups via standard silane chemistry, forming a new N-hydroxyethyliminodiacetic acid (HEIDA) functionalised core-shell stationary phase. The column was applied in high-performance chelation ion chromatography and evaluated for the retention of alkaline earth, transition and heavy metal cations. The influence of nitric acid eluent concentration, addition of complexing agent dipicolinic acid, eluent pH and column temperature on the column performance was investigated. The efficiencies obtained for transition and heavy metal cations (and resultant separations) were comparable or better than those previously obtained for alternative fully porous silica based chelation stationary phases, and a similarly modified monolithic silica column, ranging from ∼15 to 56μm HETP. Increasing the ionic strength of the eluent with the addition of KNO3 (0.75M) and increasing the column temperature (70°C) facilitated the isocratic separation of a mixture of 14 lanthanides and yttrium in under 12min, with HETP averaging 18μm (7μm for Ce(III)).

  9. Sulfur species leached from pyrite during oxidative desulfurization of coal in alkaline solutions

    SciTech Connect

    Stephenson, M.D.; Wheelock, T.D.; Markuszewski, R.

    1983-01-01

    The results indicate that thiosulfate, sulfite, and sulfate are the principal soluble sulfur species produced when coal-derived pyrite leached with a hot alkaline solution containing dissolved oxygen. The distribution of soluble sulfur species in the leachate was found to depend on leaching temperature, oxygen partial pressure, leachant composition, and time of contact. At lower temperatures and oxygen partial pressures and with a short time of contact between the leaching solution and pyrite, the leachate sulfur species were dominated by thiosulfate. However, the leachate also contained significant amounts of sulfite and sulfate. When the temperature, oxygen partial pressure, or time of contact were increased, the proportions of thiosulfate and sulfite decreased and the proportion of sulfate increased. It was observed also that reacted pyrite particles catalyzed the oxidation of thiosulfate to sulfite and sulfate. Consequently when pyrite was oxidized in a stirred reactor for 1 h at elevated temperature and oxygen partial pressure, most of the dissolved sulfur appeared as sulfate and very little as thiosulfate or sulfite. 10 references, 4 figures, 1 table.

  10. Alkaline deoxygenated graphene oxide for supercapacitor applications: An effective green alternative for chemically reduced graphene

    NASA Astrophysics Data System (ADS)

    Perera, Sanjaya D.; Mariano, Ruperto G.; Nijem, Nour; Chabal, Yves; Ferraris, John P.; Balkus, Kenneth J.

    2012-10-01

    Graphene is a promising electrode material for energy storage applications. The most successful method for preparing graphene from graphite involves the oxidation of graphite to graphene oxide (GO) and reduction back to graphene. Even though different chemical and thermal methods have been developed to reduce GO to graphene, the use of less toxic materials to generate graphene still remains a challenge. In this study we developed a facile one-pot synthesis of deoxygenated graphene (hGO) via alkaline hydrothermal process, which exhibits similar properties to the graphene obtained via hydrazine reduction (i.e. the same degree of deoxygenation found in hydrazine reduced GO). Moreover, the hGO formed freestanding, binder-free paper electrodes for supercapacitors. Coin cell type (CR2032) symmetric supercapacitors were assembled using the hGO electrodes. Electrochemical characterization of hGO was carried out using lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and ethylmethylimidazolium bis-(trifluoromethanesulfonyl)imide (EMITFSI) electrolytes. The results for the hGO electrodes were compared with the hydrazine reduced GO (rGO) electrode. The hGO electrode exhibits a energy density of 20 W h kg-1 and 50 W h kg-1 in LiTFSI and EMITFSI respectively, while delivering a maximum power density of 11 kW kg-1 and 14.7 kW kg-1 in LiTFSI and EMITFSI, respectively.

  11. Palladium and Tin Alloyed Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium

    SciTech Connect

    Su D.; Du W.; Mackenzie K.E.; Milano D.F.; Deskins N.A.; Teng X.

    2012-02-01

    In this paper, we present a study of a series of carbon-supported Pd-Sn binary alloyed catalysts prepared through a modified Polyol method as anode electrocatalysts for direct ethanol fuel cell reactions in an alkaline medium. Transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy were used to characterize the Pd-Sn/C catalysts, where homogeneous Pd-Sn alloys were determined to be present with the surface Sn being partially oxidized. Among various Pd-Sn catalysts, Pd{sub 86}Sn{sub 14}/C catalysts showed much enhanced current densities in cyclic voltammetric and chronoamperometric measurements, compared to commercial Pd/C (Johnson Matthey). The overall rate law of ethanol oxidation reaction for both Pd{sub 86}Sn{sub 14}/C and commercial Pd/C were also determined, which clearly showed that Pd{sub 86}Sn{sub 14}/C was more favorable in high ethanol concentration and/or high pH environment. Density functional theory calculations also confirmed Pd-Sn alloy structures would result in lower reaction energies for the dehydrogenation of ethanol, compared to the pure Pd crystal.

  12. Influence of alkaline earth metals on molecular structure of 3-nitrobenzoic acid in comparison with alkali metals effect

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Regulska, E.; Lewandowski, W.

    2011-11-01

    The influence of beryllium, magnesium, calcium, strontium and barium cations on the electronic system of 3-nitrobenzoic acid was studied in comparison with studied earlier alkali metal ions [1]. The vibrational FT-IR (in KBr and ATR techniques) and 1H and 13C NMR spectra were recorded for 3-nitrobenzoic acid and its salts. Characteristic shifts in IR and NMR spectra along 3-nitrobenzoates of divalent metal series Mg → Ba were compared with series of univalent metal Li → Cs salts. Good correlations between the wavenumbers of the vibrational bands in the IR spectra for 3-nitrobenzoates and ionic potential, electronegativity, inverse of atomic mass, atomic radius and ionization energy of metals were found for alkaline earth metals as well as for alkali metals. The density functional (DFT) hybrid method B3LYP with two basis sets: 6-311++G** and LANL2DZ were used to calculate optimized geometrical structures of studied compounds. The theoretical wavenumbers and intensities of IR spectra as well as chemical shifts in NMR spectra were obtained. Geometric aromaticity indices, atomic charges, dipole moments and energies were also calculated. The calculated parameters were compared to experimental characteristic of studied compounds.

  13. Effect of alkaline earth metals on the liquid-phase hydrogenation of hydroquinone over Ru-based catalysts

    NASA Astrophysics Data System (ADS)

    Li, Hongwei; Ji, Dong; Li, Yu; Liang, Yalan; Li, Gui Xian

    2015-12-01

    A series of Ru-based catalysts modified by alkaline earth metals were prepared by the impregnation-precipitation method and characterized using transmission electron microscopy, X-ray diffraction, ICP optical emission spectroscopy, Infrared Spectroscopy of adsorbed pyridine analysis and surface area analysis. The performance of the catalysts was measured via liquid-phase hydroquinone hydrogenation reaction. Results show that the Ru-Sr/NaY catalyst has the best activity and selectivity among those Ru-based catalysts. The conversion of hydroquinone and the selectivity to 1,4-cyclohexanediol reached up to 99.6% and 89.6% at optimum reaction condition (700 r/min, 423 K and 5 MPa pressure of H2 in 3 h). This may be attributed to the fact that the right amount of Strontium is beneficial to the good dispersion of the ruthenium nanoclusters on the surface of NaY and modify the acidic properties of the catalyst. Moreover, IR of adsorbed pyridine analysis suggested the proper ratio of L/B acid of the catalysts played an important role in the performance of the hydroquinone hydrogenation reaction.

  14. Thermoelectric properties of pnictogen-substituted skutterudites with alkaline-earth fillers using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bang, Semi; Wee, Daehyun; Li, An; Fornari, Marco; Kozinsky, Boris

    2016-05-01

    First-principles calculations have been performed to investigate electronic band structures, vibrational characters, and related transport properties of pnictogen-substituted skutterudites filled with alkaline-earth elements ( MxCo4A6B6 , where M = Ca, Sr, or Ba, A = Ge or Sn, B = Se or Te, and x = 0.5 or 1). Electronic transport properties related to thermoelectricity, including the Seebeck coefficient and the electrical conductivity, are computed by using the Boltzmann transport formalism within the constant-relaxation-time approximation. The results are compared against the corresponding properties of the unfilled pnictogen-substituted ternary skutterudites ( CoA1.5B1.5 ) to identify the effects of filling to estimate the potential for thermoelectric applications. The changes in the ionic character of the interatomic bonding between the Group 14 (A) and Group 16 (B) elements, which was suspected to be a major scattering source in unfilled pnictogen-substituted ternary skutterudites, are probed by analyzing the projected density of states, the charge densities, and the Born effective charges, in an attempt to identify a potential path for improvement of the thermoelectric performance. Our computational results suggest that the analyzed performance of the filled pnictogen-substituted skutterudites should exhibit no significant improvement over that of the corresponding unfilled pnictogen-substituted ternary skutterudites, unless significant reduction in thermal conductivity is achieved by the rattling motion of the filler atoms.

  15. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char. PMID:23880130

  16. Electronic structures and second hyperpolarizabilities of alkaline earth metal complexes end-capped with NA2 (A = H, Li, Na).

    PubMed

    Banerjee, Paramita; Nandi, Prasanta K

    2016-05-14

    The ground state structures and NLO properties of a number of alkaline earth metal complexes end-capped with NA2 groups (A = H, Li, Na) are calculated by employing the CAM-B3LYP, wB97XD and B2PLYP functionals along with MP2 and CCSD(T) for 6-311++G(d,p), 6-311++G(3df,3pd), aug-cc-pVTZ, aug-pc-2 and Hypol basis sets. The complexes are found to be significantly stable. The magnitude of second hyperpolarizability enhances appreciably with increase in the number of magnesium and calcium atoms in the chain, which has been indicated by the power law dependence γ = a + bn(c) with c values ranging from 2.4-4.3 for Mg and 2.4-3.7 for Ca complexes, respectively. The largest second-hyperpolarizability (10(9) au) is obtained for the complex Ca7(NNa2)2 at the CAM-B3LYP level. The two state model has been used to explain the variation of hyperpolarizabilities. PMID:27088138

  17. Dissolution of glass wool, rock wool and alkaline earth silicate wool: morphological and chemical changes in fibers.

    PubMed

    Campopiano, Antonella; Cannizzaro, Annapaola; Angelosanto, Federica; Astolfi, Maria Luisa; Ramires, Deborah; Olori, Angelo; Canepari, Silvia; Iavicoli, Sergio

    2014-10-01

    The behavior of alkaline earth silicate (AES) wool and of other biosoluble wools in saline solution simulating physiological fluids was compared with that of a traditional wool belonging to synthetic vitreous fibers. Morphological and size changes of fibers were studied by scanning electron microscopy (SEM). The elements extracted from fibers were analyzed by inductively coupled plasma atomic emission spectrometry. SEM analysis showed a larger reduction of length-weighted geometric mean fiber diameter at 4.5 pH than at 7.4 pH. At the 7.4 pH, AES wool showed a higher dissolution rate and a dissolution time less than a few days. Their dissolution was highly non-congruent with rapid leaching of calcium. Unlike rock wool, glass wool dissolved more rapidly at physiological pH than at acid pH. Dissolution of AES and biosoluble rock wool is accompanied by a noticeable change in morphology while by no change for glass wool. Biosoluble rock wool developed a leached surface with porous honeycomb structure. SEM analysis showed the dissolution for glass wool is mainly due to breakage transverse of fiber at pH 7.4. AES dissolution constant (Kdis) was the highest at pH 7.4, while at pH 4.5 only biosoluble rockwool 1 showed a higher Kdis.

  18. A Density Functional Theory Study of Codoping Characteristics of Sulfur with Alkaline Earth in Delafossite CuAlO2

    NASA Astrophysics Data System (ADS)

    Liu, Qi-Jun; Qin, Han; Liu, Zheng-Tang

    2016-04-01

    The structural, electronic properties and formation energies of sulfur and alkaline earth codoped delafossite CuAlO2 have been investigated using the first-principles density functional theory calculations. Our results reveal that the volume of codoping systems increases with the increasing atomic radius of metal atoms. The formation energies under different growth conditions have been calculated, showing that the codoping systems are formed easily under O-rich growth conditions. Electronic band structures and density of states have been obtained. The decreased bandgaps, enhanced covalence and appearance of electron acceptors after codoping are all good for p-type conductivity. Supported by the National Natural Science Foundation of China under Grant Nos. 11347199, 51402244, and 11547311, the Specialized Research Fund for Doctoral Program of Higher Education of China under Grant No. 20130184120028, the Fundamental Research Fund for the Central Universities, China under Grant Nos. 2682014CX084, 2682014ZT30, and 2682014ZT31, and the fund of the State Key Laboratory of Solidification Processing in NWPU under Grant No. SKLSP201511

  19. A preorganized metalloreceptor for alkaline earth ions showing calcium versus magnesium selectivity in water: biological activity of selected metal complexes.

    PubMed

    Amatori, Stefano; Ambrosi, Gianluca; Fanelli, Mirco; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Rossi, Patrizia

    2014-08-25

    The N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages.

  20. CO2 gasification reactivity of biomass char: catalytic influence of alkali, alkaline earth and transition metal salts.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-09-01

    This study investigates the influence of alkali (Na, K), alkaline earth (Ca, Mg) and transition (Fe) metal nitrates on CO2 gasification reactivity of pistachio nut shell (PNS) char. The preliminary gasification experiments were performed in thermogravimetric analyzer (TGA) and the results showed considerable improvement in carbon conversion; Na-char>Ca-char>Fe-char>K-char>Mg-char>raw char. Based on TGA studies, NaNO3 (with loadings of 3-7 wt%) was selected as the superior catalyst for further gasification studies in bench-scale reactor; the highest reactivity was devoted to 5 wt% Na loaded char. The data acquired for gasification rate of catalyzed char were fitted with several kinetic models, among which, random pore model was adopted as the best model. Based on obtained gasification rate constant and using the Arrhenius plot, activation energy of 5 wt% Na loaded char was calculated as 151.46 kJ/mol which was 53 kJ/mol lower than that of un-catalyzed char.

  1. International strategic minerals inventory summary report; rare-earth oxides

    USGS Publications Warehouse

    Jackson, W.D.; Christiansen, Grey

    1993-01-01

    Bastnaesite, monazite, and xenotime are currently the most important rare-earth minerals. Bastnaesite occurs as a primary mineral in carbonatites. Monazite and xenotime also can be found in primary deposits but are recovered principally from heavy-mineral placers that are mined for titanium or tin. Each of these minerals has a different composition of the 15 rare-earth elements. World resources of economically exploitable rare-earth oxides (REO) are estimated at 93.4 million metric tons in place, composed of 93 percent in primary deposits and 7 percent in placers. The average mineral composition is 83 percent bastnaesite, 13 percent monazite, and 4 percent of 10 other minerals. Annual global production is about 67,000 metric tons of which 41 percent is from placers and 59 percent is from primary deposits; mining methods consist of open pits (94 percent) and dredging (6 percent). This output could be doubled if the operations that do not currently recover rare earths would do so. Resources are more than sufficient to meet the demand for the predictable future. About 52 percent of the world's REO resources are located in China. Ranking of other countries is as follows: Namibia (22 percent), the United States (15 percent), Australia (6 percent), and India (3 percent); the remainder is in several other countries. Conversely, 38 percent of the production is in China, 33 percent in the United States, 12 percent in Australia, and 5 percent each in Malaysia and India. Several other countries, including Brazil, Canada, South Africa, Sri Lanka, and Thailand, make up the remainder. Markets for rare earths are mainly in the metallurgical, magnet, ceramic, electronic, chemical, and optical industries. Rare earths improve the physical and rolling properties of iron and steel and add corrosion resistance and strength to structural members at high temperatures. Samarium and neodymium are used in lightweight, powerful magnets for electric motors. Cerium and yttrium increase the

  2. The effects of alkaline earth metal ions and halogen ions on the chromium oxide activities in alkaline earth metal oxide-halide-Cr2O3 system fluxes

    NASA Astrophysics Data System (ADS)

    Li, Lian-Fu; Jiang, Mao-Fa; Wang, Wen-Zhong; Chen, Zhao-Ping

    2000-06-01

    The solid electrolyte cell — Mo|Cr + Cr2O3‖ZrO2(MgO)‖{Cu-Cr}alloy + (Cr2O3)fluxes|Mo+ is used at 1673 K to determine Cr2O3 activities in MO-MX 2-Cr2O3 (M = Ca2+, Ba2-, X = F- or Cl-) ternary fluxes, which are in equilibrium with the copper-chromium binary alloy. The ternary isothermal phase diagrams of CaO-CaF2-Cr2O3 and BaO-BaCl2-Cr2O3 system fluxes are inferred on the basis of the experimental results and binary phase diagrams. The results indicate that Cr2O3 activities in all fluxes always decrease with the increase of the X MO /X MX2 ratio. Partial replacement of BaO in BaO-BaF2-Cr2O3 fluxes by CaO is acceptable for economy and efficiency considerations. At the same time, partial substitution of BaO for CaO in CaO-CaF2-Cr2O3 fluxes is advantageous for phosphorus removal and chromium retention as a result of the increased Cr2O3 activities, increased basicities, and widening of the liquid zones. Compared to those in BaO-BaF2-Cr2O3 fluxes, Cr2O3 activities in CaO-CaF2-Cr2O3 fluxes approximately follow the same curve as the former, although the position and the width of the liquid zones are considerably different, and activities in BaO-BaCl2-Cr2O3 fluxes are higher at the lower Cr2O3 content, or vice versa. The activity coefficients of Cr2O3 in the fluxes decrease with the increase of the X MO /X MX 2 ratios.

  3. A divalent rare earth oxide semiconductor: Yttrium monoxide

    NASA Astrophysics Data System (ADS)

    Kaminaga, Kenichi; Sei, Ryosuke; Hayashi, Kouichi; Happo, Naohisa; Tajiri, Hiroo; Oka, Daichi; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2016-03-01

    Rare earth oxides are usually widegap insulators like Y2O3 with closed shell trivalent rare earth ions. In this study, solid phase rock salt structure yttrium monoxide, YO, with unusual valence of Y2+ (4d1) was synthesized in a form of epitaxial thin film by pulsed laser deposition method. YO has been recognized as gaseous phase in previous studies. In contrast with Y2O3, YO was dark-brown colored and narrow gap semiconductor. The tunable electrical conductivity ranging from 10-1 to 103 Ω-1 cm-1 was attributed to the presence of oxygen vacancies serving as electron donor. Weak antilocalization behavior observed in magnetoresistance indicated significant role of spin-orbit coupling as a manifestation of 4d electron carrier.

  4. Enrichment of Thermophilic Ammonia-Oxidizing Archaea from an Alkaline Hot Spring in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Huang, Z.; Jiang, H.; Wiegel, J.; Li, W.; Dong, H.

    2010-12-01

    One of the major advances in the nitrogen cycle is the recent discovery of ammonia oxidation by archaea. While culture-independent studies have revealed occurrence of ammonia-oxidizing archaea (AOA) in nearly every surface niche on earth, most of these microorganisms have resisted isolation and so far only a few species have been identified. The Great Basin contains numerous hot springs, which are characterized by moderately high temperature (40-65 degree C) and circumneutral or alkaline pH. Unique thermophilic archaea have been identified based on molecular DNA and lipid biomarkers; some of which may be ammonia oxidizers. This study aims to isolate some of these archaea from a California hot spring that has pH around 9.0 and temperature around 42 degree C. Mat material was collected from the spring and transported on ice to the laboratory. A synthetic medium (SCM-5) was inoculated with the mat material and the culture was incubated under varying temperature (35-65 degree C) and pH (7.0-10.0) conditions using antibiotics to suppress bacterial growth. Growth of the culture was monitored by microscopy, decrease in ammonium and increase in nitrite, and increases in Crenarchaeota and AOA abundances over time. Clone libraries were constructed to compare archaeal community structures before and after the enrichment experiment. Temperature and pH profiles indicated that the culture grew optimally at pH 9.0 and temperature 45 degree C, which are consistent with the geochemical conditions of the natural environment. Phylogenetic analysis showed that the final OTU was distantly related to all known hyperthermophilic archaea. Analysis of the amoA genes showed two OTUs in the final culture; one of them was closely related to Candidatus Nitrososphaera gargensis. However, the enrichment culture always contained bacteria and attempts to separate them from archaea have failed. This highlights the difficulty in bringing AOA into pure culture and suggests that some of the AOA may

  5. Recovery of manganese oxides from spent alkaline and zinc–carbon batteries. An application as catalysts for VOCs elimination

    SciTech Connect

    Gallegos, María V.; Falco, Lorena R.; Peluso, Miguel A.; Sambeth, Jorge E.; Thomas, Horacio J.

    2013-06-15

    Highlights: • Manganese oxides were synthesized using spent batteries as raw materials. • Spent alkaline and zinc–carbon size AA batteries were used. • A biohydrometallurgical process was employed to bio-lixiviate batteries. • Manganese oxides were active in the oxidation of VOCs (ethanol and heptane). - Abstract: Manganese, in the form of oxide, was recovered from spent alkaline and zinc–carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO{sub 4} solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnO{sub x} synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn{sub 2}O{sub 3} in the EMO and the CMO samples, together with some Mn{sup 4+} cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn{sub 3}O{sub 4}. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200 °C, while heptane requires more than 400 °C. The CMO has the highest oxide selectivity to CO{sub 2}. The results show that manganese oxides obtained using spent alkaline and zinc–carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  6. Carbon nanotube/raspberry hollow Pd nanosphere hybrids for methanol, ethanol, and formic acid electro-oxidation in alkaline media.

    PubMed

    Liu, Zhelin; Zhao, Bo; Guo, Cunlan; Sun, Yujing; Shi, Yan; Yang, Haibin; Li, Zhuang

    2010-11-01

    In this paper, raspberry hollow Pd nanospheres (HPNs)-decorated carbon nanotube (CNT) was developed for electro-oxidation of methanol, ethanol, and formic acid in alkaline media. The electrocatalyst was fabricated simply by attaching HPNs onto the surface of CNT which had been functionalized by polymer wrapping. The as-prepared HPN-CNTs (CHPNs) were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). The increasing interest and intensive research on fuel cell inspire us to investigate the electrocatalytic properties of the prepared nanostructures. Besides that, previous reports about alkaline other than acidic media could supply a more active environment guide us to examine the electrocatalytic properties in alkaline electrolyte. It is found that this novel hybrid electrocatalyst exhibits excellent electrocatalytic properties and can be further applied in fuel cells, catalysts, and sensors.

  7. Energetics of Rare Earth Doped Uranium Oxide Solid Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Lei

    The physical and chemical properties of UO2 nuclear fuels are affected as fission products accumulate during irradiation. The lanthanides, a main group of fission products, form extensive solid solutions with uranium oxide in the fluorite structure. Thermodynamic studies of such solid solutions had been performed to obtain partial molar free energies of oxygen as a function of dopant concentration and temperature; however, direct measurement of formation enthalpies was hampered by the refractory nature of these oxides. In this work, high temperature oxide melt solution calorimetry was utilized to study the thermochemistry of various rare earth doped uranium oxide LnxU 1-xO2-0.5x+y (Ln = La, Y, Nd) over a wide range of dopant concentrations and oxygen contents. The sintered solid solutions were carefully characterized to determine their phase purity, chemical composition, and uranium oxidation state, with most of the materials in the oxygen excess regime. The enthalpies of formation of LnxU1-xO2-0.5x+y were calculated from the calorimetric data. The oxidation enthalpies of these solid solutions are similar to that of UO2. The formation enthalpies from constituent oxides (LnO1.5, UO2, and UO3) become increasingly negative with addition of dopant cations and appear relatively independent of the uranium oxidation state (oxygen content) when the type and concentration of the dopants are the same. This is valid in the oxygen excess regime; thus an estimation of formation enthalpies of LnxU1-xO2 materials can be made. The formation enthalpies from elements of hyperstoichiometric LnxU1-xO 2-0.5x+y materials obtained from calorimetric measurements are in good agreement with those calculated from free energy data. A direct comparison between the formation enthalpies from calorimetric study and computational research using density functional theory was also performed. The experimental and computational energies of LnxU 1-xO2 (Ln = La, Y, Nd) generally agree within 10 k

  8. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    SciTech Connect

    Mohd Fadzil, Syazwani Binti; Hrma, Pavel R.; Schweiger, Michael J.; Riley, Brian J.

    2015-06-30

    Pyroprocessing is a reprocessing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  9. Liquidus temperature and chemical durability of selected glasses to immobilize rare earth oxides waste

    NASA Astrophysics Data System (ADS)

    Mohd Fadzil, Syazwani; Hrma, Pavel; Schweiger, Michael J.; Riley, Brian J.

    2015-10-01

    Pyroprocessing is are processing method for managing and reusing used nuclear fuel (UNF) by dissolving it in an electrorefiner with a molten alkali or alkaline earth chloride salt mixture while avoiding wet reprocessing. Pyroprocessing UNF with a LiCl-KCl eutectic salt releases the fission products from the fuel and generates a variety of metallic and salt-based species, including rare earth (RE) chlorides. If the RE-chlorides are converted to oxides, borosilicate glass is a prime candidate for their immobilization because of its durability and ability to dissolve almost any RE waste component into the glass matrix at high loadings. Crystallization that occurs in waste glasses as the waste loading increases may complicate glass processing and affect the product quality. This work compares three types of borosilicate glasses in terms of liquidus temperature (TL): the International Simple Glass designed by the International Working Group, sodium borosilicate glass developed by Korea Hydro and Nuclear Power, and the lanthanide aluminoborosilicate (LABS) glass established in the United States. The LABS glass allows the highest waste loadings (over 50 mass% RE2O3) while possessing an acceptable chemical durability.

  10. Single-Phase Rare-Earth Oxide/Aluminum Oxide Glasses

    NASA Technical Reports Server (NTRS)

    Weber, J. K. Richard; Abadie, John G.; Hixson, April D.; Nordine, Paul C.

    2006-01-01

    Glasses that comprise rare-earth oxides and aluminum oxide plus, optionally, lesser amounts of other oxides, have been invented. The other oxide(s) can include SiO2, B2O3, GeO2, and/or any of a variety of glass-forming oxides that have been used heretofore in making a variety of common and specialty glasses. The glasses of the invention can be manufactured in bulk single-phase forms to ensure near uniformity in optical and mechanical characteristics, as needed for such devices as optical amplifiers, lasers, and optical waveguides (including optical fibers). These glasses can also be formulated to have high indices of refraction, as needed in some of such devices.

  11. Sulfur-oxidizing autotrophic and mixotrophic denitrification processes for drinking water treatment: elimination of excess sulfate production and alkalinity requirement.

    PubMed

    Sahinkaya, Erkan; Dursun, Nesrin

    2012-09-01

    This study evaluated the elimination of alkalinity need and excess sulfate generation of sulfur-based autotrophic denitrification process by stimulating simultaneous autotrophic and heterotrophic (mixotrophic) denitrification process in a column bioreactor by methanol supplementation. Also, denitrification performances of sulfur-based autotrophic and mixotrophic processes were compared. In autotrophic process, acidity produced by denitrifying sulfur-oxidizing bacteria was neutralized by the external NaHCO(3) supplementation. After stimulating mixotrophic denitrification process, the alkalinity need of the autotrophic process was satisfied by the alkalinity produced by heterotrophic denitrifiers. Decreasing and lastly eliminating the external alkalinity supplementation did not adversely affect the process performance. Complete denitrification of 75 mg L(-1) NO(3)-N under mixotrophic conditions at 4 h hydraulic retention time was achieved without external alkalinity supplementation and with effluent sulfate concentration lower than the drinking water guideline value of 250 mg L(-1). The denitrification rate of mixotrophic process (0.45 g NO(3)-N L(-1) d(-1)) was higher than that of autotrophic one (0.3 g NO(3)-N L(-1) d(-1)). Batch studies showed that the sulfur-based autotrophic nitrate reduction rate increased with increasing initial nitrate concentration and transient accumulation of nitrite was observed.

  12. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  13. Monitoring of photoluminescence decay by alkali and alkaline earth metal cations using a photoluminescent bolaamphiphile self-assembly as an optical probe.

    PubMed

    Kim, Sunhyung; Kwak, Jinyoung; Lee, Sang-Yup

    2014-05-01

    Photoluminescence (PL) decay induced by the displacement of an ionic fluorescence component, Tb(3+), with alkali and alkaline earth metal cations was investigated using photoluminescent spherical self-assemblies as optical probes. The photoluminescent spherical self-assembly was prepared by the self-organization of a tyrosine-containing bolaamphiphile molecule with a photosensitizer and Tb(3+) ion. The lanthanide ion, Tb(3+), electrically bound to the carboxyl group of the bolaamphiphile molecule, was displaced by alkali and alkaline earth metal cations that had stronger electrophilicity. The PL of the self-assembly decayed remarkably due to the substitution of lanthanide ions with alkali and alkaline earth metal cations. The PL decay showed a positive correlation with cation concentration and was sensitive to the cation valency. Generally, the PL decay was enhanced by the electrophilicity of the cations. However, Ca(2+) showed greater PL decay than Mg(2+) because Ca(2+) could create various complexes with the carboxyl groups of the bolaamphiphile molecule. Microscopic and spectroscopic investigations were conducted to study the photon energy transfer and displacement of Tb(3+) by the cation exchange. This study demonstrated that the PL decay by the displacement of the ionic fluorescent compound was applied to the detection of various cations in aqueous media and is applicable to the development of future optical sensors.

  14. Separation of alkali, alkaline earth and rare earth cations by liquid membranes containing macrocyclic carriers. Third progress report, September 1, 1980-April 1, 1981

    SciTech Connect

    Christensen, J.J.

    1981-04-15

    The overall objective of this project is to study the use of liquid membrane systems employing macrocyclic ligand carriers in making separations among metal cations. During the third year of the project, work continued in the development of a mathematical model to describe cation transport. The model was originally developed to describe the relationship between cation transport rate (J/sub M/) and the cation-macrocycle stability constant (K). The model was tested by determining the rates of transport of alkali and alkaline earth cations through chloroform membranes containing carrier ligands where the stability constants for their reaction with cations in methanol were known. From the results, it is clear that the model correctly describes the dependence of J/sub M/ on log K. The model also correctly describes the effect of cation concentration and carrier concentration on cation transport rates, as detailed in the previous progress report. During the third year of the project, the transport model was expanded so as to apply to competitive transport of cations from mixtures of two cations in the source aqueous phase. Data were collected under these conditions and the ability of the model to predict the flux of each cation was tested. Representative data of this type are presented along with corresponding data which were obtained when each cation was transported by the same carrier from a source phase containing only that cation. Comparison of transport rates determined under the two experimental conditions indicates that the relationship between the two sets of data is complex. To date, a few of these data involving transport from binary cation mixtures have been tested against the transport model. It was found that the model correctly predicts the cation fluxes from cation mixtures. These preliminary results indicate that the transport model can successfully predict separation factors when cation mixtures are used.

  15. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    SciTech Connect

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; Unocic, Raymond R.; Zawodzinski, Thomas A.; Papandrew, Alexander B.

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPt for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.

  16. Platinum and Palladium Overlayers Dramatically Enhance the Activity of Ruthenium Nanotubes for Alkaline Hydrogen Oxidation

    DOE PAGES

    St. John, Samuel; Atkinson, Robert W.; Unocic, Kinga A.; Unocic, Raymond R.; Zawodzinski, Thomas A.; Papandrew, Alexander B.

    2015-10-18

    Templated vapor synthesis and thermal annealing were used to synthesize unsupported metallic Ru nanotubes with Pt or Pd overlayers. By controlling the elemental composition and thickness of these overlayers, we obtain nanostructures with very high alkaline hydrogen oxidation activity. For nanotubes with a nominal atomic composition of Ru0.90Pt0.10 display a surface-specific activity (2.4 mA/cm2) that is 35 times greater than that of pure Ru nanotubes at a 50 mV overpotential and 2.5 times greater than that of pure Pt nanotubes (0.98 mA/cm2). The surface-segregated structure also confers dramatically increased Pt utilization efficiency. We find a platinum-mass-specific activity of 1240 A/gPtmore » for the optimized nanotube versus 280 A/gPt for carbon-supported Pt nanoparticles and 109 A/gPt for monometallic Pt nanotubes. Here, we attribute the enhancement of both area- and platinum-mass-specific activity to the atomic-scale homeomorphism of the nanotube form factor with adlayer-modified polycrystals. Subsurface ligand and bifunctional effects previously observed on segregated, adlayer-modified polycrystals are translated to nanoscale catalysts.« less

  17. Cation radii induced structural variation in fluorescent alkaline earth networks constructed from tautomers of a nucleobase analogue.

    PubMed

    Deng, Zhao-Peng; Kang, Wei; Zhu, Zhi-Biao; Huo, Li-Hua; Zhao, Hui; Gao, Shan

    2012-07-21

    Nucleobase tautomers and their metal complexes have attracted considerable attention due to their fascinating architectures along with wide applications. In this paper, 4,6-dihydroxypyrimidine (H(2)DHP), an analogue of uracil and thymine, was employed to react with the vital elements of alkaline earth metals in an aqueous solution and lead to the formation of four novel complexes, [Mg(HDHP)(2) (H(2)O)(4)] (1), [Ca(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (2), [Sr(HDHP)(2)(H(2)O)(3)](n)·nH(2)O (3), and [Ba(HDHP)(2)(H(2)O)(2)](n)·nH(2)O (4), which have been characterized by elemental analysis, IR, TG, UV-Vis, PL, powder and single-crystal X-ray diffraction and progressively evolve from zero-dimensional (0D) mononuclear, one-dimensional (1D) zig-zag double chain, two-dimensional (2D) double layer, to a three-dimensional (3D) porous network along with the increase of cation radii. This tendency in dimensionality follows salient crystal engineering principles and can be explained by considering factors such as hard-soft acid-base principles and cation radii. The deprotonated H(2)DHP ligand exhibits four new coordination modes, namely, O-monodentate (complex 1), N,O-chelating (complexes 2 and 3), O,O-bridging (complexes 2 and 3), and κ(1)O:κ(2)O-bridging mode (complex 4). Interestingly, the structural investigation indicates that the HDHP(-) monoanion shows three unusual types of tautomers, which are essential for the diagnosis of disease and investigation of medicine. Furthermore, the four complexes exhibit strong blue emission compared to free H(2)DHP ligand at room temperature and may be potential candidates for blue fluorescent biological materials used in organisms.

  18. Ab initio study of permanent electric dipole moment and radiative lifetimes of alkaline-earth-metal--Li molecules

    SciTech Connect

    Gopakumar, Geetha; Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2011-12-15

    We calculate permanent electric dipole moments (PDMs), as well as spontaneous and black body lifetimes, of alkaline-earth-metal-Li (AEM-Li) ultracold polar molecules to study anisotropic long-range dipole-dipole interactions in a single quantum state. We obtain potential energy curves for the {sup 2} {Sigma} ground state of MgLi, CaLi, SrLi, and BaLi molecules at the coupled cluster singles and doubles with partial triples [CCSD(T)] level of electron correlation. Calculated spectroscopic constants for the isotopes: {sup 24}Mg{sup 7}Li, {sup 40}Ca{sup 7}Li, {sup 88}Sr{sup 7}Li, and {sup 138}Ba{sup 7}Li, show good agreement with available theoretical and experimental results. We obtain PDM curves using finite field perturbation theory at the CCSD(T) level. We find that AEM-Li molecules have moderate values of PDM at the equilibrium bond distance (MgLi: 0.90 D, CaLi: 1.15 D, SrLi: 0.33 D, and BaLi: -0.42 D) and hence might be suitable candidates for the proposed study in a single quantum state. Radiative lifetime calculations of the {nu} = 0 state ({sup 24}Mg{sup 6}Li: 22 s, {sup 40}Ca{sup 6}Li: 39 s, {sup 88}Sr{sup 6}Li: 380 s, and {sup 138}Ba{sup 6}Li: 988 s) are found to be longer than the typical time scale associated with ultracold experiments with these molecules. The uncertainty in the lifetime calculations are estimated to be less than 10%.

  19. Promoting alkali and alkaline-earth metals on MgO for enhancing CO2 capture by first-principles calculations.

    PubMed

    Kim, Kiwoong; Han, Jeong Woo; Lee, Kwang Soon; Lee, Won Bo

    2014-12-01

    Developing next-generation solid sorbents to improve the economy of pre- and post-combustion carbon capture processes has been challenging for many researchers. Magnesium oxide (MgO) is a promising sorbent because of its moderate sorption-desorption temperature and low heat of sorption. However, its low sorption capacity and thermal instability need to be improved. Various metal-promoted MgO sorbents have been experimentally developed to enhance the CO2 sorption capacities. Nevertheless, rigorous computational studies to screen an optimal metal promoter have been limited to date. We conducted first-principles calculations to select metal promoters of MgO sorbents. Five alkali (Li-, Na-, K-, Rb-, and Cs-) and 4 alkaline earth metals (Be-, Ca-, Sr-, and Ba-) were chosen as a set of promoters. Compared with the CO2 adsorption energy on pure MgO, the adsorption energy on the metal-promoted MgO sorbents is higher, except for the Na-promoter, which indicates that metal promotion on MgO is an efficient approach to enhance the sorption capacities. Based on the stabilized binding of promoters on the MgO surface and the regenerability of sorbents, Li, Ca, and Sr were identified as adequate promoters among the 9 metals on the basis of PW91/GGA augmented with DFT+D2. The adsorption energies of CO2 on metal-promoted MgO sorbents for Li, Ca, and Sr atoms are -1.13, -1.68, and -1.48 eV, respectively. PMID:25319405

  20. Oil oxidation in corn flour from grains processed with alkaline cooking by use of peroxide value, UV and FTIR.

    PubMed

    Yahuaca-Juárez, B; Martínez-Flores, H E; Huerta-Ruelas, J A; Pless, R C; Vázquez-Landaverde, P A; Tello Santillán, R

    2013-03-01

    The objective of this work was to evaluate the effect of alkaline cooking on the oxidative stability of oil in corn flour. A central composite design was used to study the combined effect of lime concentration (%) and steep time (h) on peroxide value (PV); specific extinction coefficients at 232 and 270 nm (K232 and K270); and FTIR absorbance at 3009 cm(-1), 3444 cm(-1), and 3530 cm(-1) in oils from corn flour obtained by alkaline cooking. The results indicate that lime concentration and steep time affected the PV, K232, and K270. A decrease of 2.56 % was observed in the IR absorption bands, corresponding to the polyunsaturated fatty acids. The FTIR spectra also showed absorption bands related to the secondary oil oxidation products.

  1. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  2. The formation of crystals in glasses containing rare earth oxides

    NASA Astrophysics Data System (ADS)

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-01

    Korean spent nuclear fuel will reach the capacity of the available temporary storage by 2016. Pyroprocessing and direct disposal seems to be an alternative way to manage and reuse spent nuclear fuel while avoiding the wet reprocessing technology. Pyroprocessing produces several wastes streams, including metals, salts, and rare earths, which must be converted into stabilized form. A suitable form for rare earth immobilization is borosilicate glass. The borosilicate glass form exhibits excellent durability, allows a high waste loading, and is easy to process. In this work, we combined the rare earths waste of composition (in wt%) 39.2Nd2O3-22.7CeO2-11.7La2O3-10.9PrO2-1.3Eu2O3-1.3Gd2O3-8.1Sm2O3-4.8Y2O3 with a baseline glass of composition 60.2SiO2-16.0B2O3-12.6Na2O-3.8Al2O3-5.7CaO-1.7ZrO2. Crystallization in waste glasses occurs as the waste loading increases. It may produce complicate glass processing and affect the product quality. To study crystal formation, we initially made glasses containing 5%, 10% and 15% of La2O3 and then glasses with 5%, 10% and 15% of the complete rare earth mix. Samples were heat-treated for 24 hours at temperatures 800°C to 1150°C in 50°C increments. Quenched samples were analyzed using an optical microscope, scanning electron microscope with energy dispersive spectroscopy, and x-ray diffraction. Stillwellite (LaBSiO5) and oxyapatite (Ca2La8Si6O26) were found in glasses containing La2O3, while oxyapatite (Ca2La8Si6O26 and NaNd9Si6O26) precipitated in glasses with additions of mixed rare earths. The liquidus temperature (TL) of the glasses containing 5%, 10% and 15% La2O3 were 800°C, 959°C and 986°C, respectively; while TL was 825°C, 1059°C and 1267°C for glasses with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients TB2O3, TSiO2, TCaO, and TRE2O3 were also evaluated using a recently published study.

  3. Stoichiometric C6-oxidation of hyaluronic acid by oxoammonium salt TEMPO⁺Cl⁻ in an aqueous alkaline medium.

    PubMed

    Ponedel'kina, Irina Yu; Khaibrakhmanova, Elvira A; Tyumkina, Tatyana V; Romadova, Irina V; Odinokov, Victor N

    2015-10-01

    This paper reports the selective oxidation of hyaluronic acid (HA) by stoichiometric quantity of 2,2,6,6-tetramethylpiperidine-1-oxoammonium chloride (TEMPO(+)) in aqueous alkaline medium. High efficiency of the HA oxidation and quantitative yield of carboxy-HA per starting TEMPO(+), as well as unusual behavior of the oxidation system generating an oxygen upon alkali-induced oxoammonium chloride decomposition are demonstrated. The scheme for HA oxidation involving both TEMPO(+) and oxygen produced upon the TEMPO(+)Cl(-) decomposition and/or air oxygen is proposed. For comparison, the data on stoichiometric oxidation of such substrates as dermatan sulfate, water-soluble potato starch, methyl 2-acetamido-2-deoxy-β-d-glucopyranoside and ethanol are presented.

  4. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    PubMed

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs.

  5. Recovery of manganese oxides from spent alkaline and zinc-carbon batteries. An application as catalysts for VOCs elimination.

    PubMed

    Gallegos, María V; Falco, Lorena R; Peluso, Miguel A; Sambeth, Jorge E; Thomas, Horacio J

    2013-06-01

    Manganese, in the form of oxide, was recovered from spent alkaline and zinc-carbon batteries employing a biohydrometallurgy process, using a pilot plant consisting in: an air-lift bioreactor (containing an acid-reducing medium produced by an Acidithiobacillus thiooxidans bacteria immobilized on elemental sulfur); a leaching reactor (were battery powder is mixed with the acid-reducing medium) and a recovery reactor. Two different manganese oxides were recovered from the leachate liquor: one of them by electrolysis (EMO) and the other by a chemical precipitation with KMnO4 solution (CMO). The non-leached solid residue was also studied (RMO). The solids were compared with a MnOx synthesized in our laboratory. The characterization by XRD, FTIR and XPS reveal the presence of Mn2O3 in the EMO and the CMO samples, together with some Mn(4+) cations. In the solid not extracted by acidic leaching (RMO) the main phase detected was Mn3O4. The catalytic performance of the oxides was studied in the complete oxidation of ethanol and heptane. Complete conversion of ethanol occurs at 200°C, while heptane requires more than 400°C. The CMO has the highest oxide selectivity to CO2. The results show that manganese oxides obtained using spent alkaline and zinc-carbon batteries as raw materials, have an interesting performance as catalysts for elimination of VOCs. PMID:23562448

  6. Electrocatalytic Activity of Transition Metal Oxide-Carbon Composites for Oxygen Reduction in Alkaline Batteries and Fuel Cells

    SciTech Connect

    Malkhandi, S; Trinh, P; Manohar, AK; Jayachandrababu, KC; Kindler, A; Prakash, GKS; Narayanan, SR

    2013-06-07

    Conductive transition metal oxides (perovskites, spinels and pyrochlores) are attractive as catalysts for the air electrode in alkaline rechargeable metal-air batteries and fuel cells. We have found that conductive carbon materials when added to transition metal oxides such as calcium-doped lanthanum cobalt oxide, nickel cobalt oxide and calcium-doped lanthanum manganese cobalt oxide increase the electrocatalytic activity of the oxide for oxygen reduction by a factor of five to ten. We have studied rotating ring-disk electrodes coated with (a) various mass ratios of carbon and transition metal oxide, (b) different types of carbon additives and (c) different types of transition metal oxides. Our experiments and analysis establish that in such composite catalysts, carbon is the primary electro- catalyst for the two-electron electro-reduction of oxygen to hydroperoxide while the transition metal oxide decomposes the hydroperoxide to generate additional oxygen that enhances the observed current resulting in an apparent four-electron process. These findings are significant in that they change the way we interpret previous reports in the scientific literature on the electrocatalytic activity of various transition metal oxide- carbon composites for oxygen reduction, especially where carbon is assumed to be an additive that just enhances the electronic conductivity of the oxide catalyst. (C) 2013 The Electrochemical Society. All rights reserved.

  7. Substrate inhibition: Oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline medium

    NASA Astrophysics Data System (ADS)

    Lakshman Kumar, Y.; Venkata Nadh, R.; Radhakrishnamurti, P. S.

    2014-05-01

    In the oxidation of D-sorbitol and D-mannitol by potassium periodate in alkaline media, substrate inhibition was observed with both substrates, i.e., a decrease in the rate of the reaction was observed with an increase in the concentration of substrate. The substrate inhibition was attributed to the formation of stable complex between the substrate and periodate. The reactions were found to be first order in case of periodate and a positive fractional order with hydroxide ions. Arrhenius parameters were calculated for the oxidation of sorbitol and mannitol by potassium periodate in alkali media.

  8. In Vivo Alkaline Comet Assay and Enzyme-modified Alkaline Comet Assay for Measuring DNA Strand Breaks and Oxidative DNA Damage in Rat Liver.

    PubMed

    Ding, Wei; Bishop, Michelle E; Lyn-Cook, Lascelles E; Davis, Kelly J; Manjanatha, Mugimane G

    2016-05-04

    Unrepaired DNA damage can lead to genetic instability, which in turn may enhance cancer development. Therefore, identifying potential DNA damaging agents is important for protecting public health. The in vivo alkaline comet assay, which detects DNA damage as strand breaks, is especially relevant for assessing the genotoxic hazards of xenobiotics, as its responses reflect the in vivo absorption, tissue distribution, metabolism and excretion (ADME) of chemicals, as well as DNA repair process. Compared to other in vivo DNA damage assays, the assay is rapid, sensitive, visual and inexpensive, and, by converting oxidative DNA damage into strand breaks using specific repair enzymes, the assay can measure oxidative DNA damage in an efficient and relatively artifact-free manner. Measurement of DNA damage with the comet assay can be performed using both acute and subchronic toxicology study designs, and by integrating the comet assay with other toxicological assessments, the assay addresses animal welfare requirements by making maximum use of animal resources. Another major advantage of the assays is that they only require a small amount of cells, and the cells do not have to be derived from proliferating cell populations. The assays also can be performed with a variety of human samples obtained from clinically or occupationally exposed individuals.

  9. Zinc(II) oxide stability in alkaline sodium phosphate solutions at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Opalka, E.P.

    1993-04-01

    Zinc oxide (ZnO) is shown to transform into either of two phosphate-containing compounds in relatively dilute alkaline sodium phosphate solutions at elevated temperatures via ZnO(s) + Na{sup +} + H{sub 2}PO{sub 4}{sup {minus}} {r_reversible} NaZnPO{sub 4}(s) + H{sub 2}O or 2 ZnO(s) + H{sub 3}PO{sub 4}(aq) {r_reversible} Zn{sub 2}(OH)PO{sub 4}(s) + H{sub 2}O. X-ray diffraction analyses indicate that NaZnPO{sub 4} possesses an orthorhombic unit cell having lattice parameters a = 8.710 {+-} 0.013, b = 15.175 {+-} 0.010, and c = 8.027 {+-} 0.004 {angstrom}. The thermodynamic equilibria for these reactions were defined in the system ZnO-Na{sub 2}O-P{sub 2}O{sub 5}-H{sub 2}O for Na/P molar ratios between 2.1 and 3. Based on observed reaction threshold values for sodium phosphate concentration and temperature, the standard entropy (S{degrees}) and free energy of formation ({Delta}G{sub f}{degrees}) for NaZnPO{sub 4} were calculated to be 169.0 J/mol-K and {minus}1510.6 kJ/mol, respectively; similar values for Zn{sub 2}(OH)PO{sub 4} (tarbuttite) were 235.9 J/mol-K and {minus}1604.6 kJ/mol. Additions of sodium sulfite and sulfate did not alter the above reactions.

  10. Zinc(II) oxide stability in alkaline sodium phosphate solutions at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Opalka, E.P. )

    1994-04-01

    Zinc oxide (ZnO) is shown to transform into either of two phosphate-containing compounds in relatively dilute alkaline sodium phosphate solutions at elevated temperatures via ZnO(s) + Na[sup +] + H[sub 2]PO[sub 4]- [l reversible] NaZnPO[sub 4](s) + H[sub 2]O or 2ZnO(s) + H[sub 3]PO[sub 4](aq) [l reversible] Zn[sub 2](OH)PO[sub 4](s) + H[sub 2]O. X-ray diffraction analyses indicate that NaZnPO[sub 4] possesses an orthorhombic unit cell having lattice parameters a = 8.710 [+-] 0.013, b = 15.175 [+-] 0.010, c = 8.027 [+-] 0.004 [angstrom]. The thermodynamic equilibria for these reactions were defined in the system ZnO-Na[sub 2]O-P[sub 2]O[sub 5]-H[sub 2]O for Na/P molar ratios between 2.1 and 3. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard entropy (S[degrees]) and free energy of formation ([delta]G[sub f][degrees]) for NaZnPO[sub 4] were calculated to be 169.0 J/(mol K) and -1510.6 kJ/mol, respectively; similar values for Zn[sub 2](OH)PO[sub 4] (tarbuttite) were 235.9 J/(mol K) and -1604.6 kJ/mol. Additions of sodium sulfite and sulfate did not alter the above reactions. 26 refs., 5 figs., 7 tabs.

  11. Properties of alkali-metal atoms and alkaline-earth-metal ions for an accurate estimate of their long-range interactions

    NASA Astrophysics Data System (ADS)

    Kaur, Jasmeet; Nandy, D. K.; Arora, Bindiya; Sahoo, B. K.

    2015-01-01

    Accurate knowledge of interaction potentials among the alkali-metal atoms and alkaline-earth ions is very useful in the studies of cold atom physics. Here we carry out theoretical studies of the long-range interactions among the Li, Na, K, and Rb alkali-metal atoms with the Ca+, Ba+, Sr+, and Ra+ alkaline-earth ions systematically, which are largely motivated by their importance in a number of applications. These interactions are expressed as a power series in the inverse of the internuclear separation R . Both the dispersion and induction components of these interactions are determined accurately from the algebraic coefficients corresponding to each power combination in the series. Ultimately, these coefficients are expressed in terms of the electric multipole polarizabilities of the above-mentioned systems, which are calculated using the matrix elements obtained from a relativistic coupled-cluster method and core contributions to these quantities from the random-phase approximation. We also compare our estimated polarizabilities with the other available theoretical and experimental results to verify accuracies in our calculations. In addition, we also evaluate the lifetimes of the first two low-lying states of the ions using the above matrix elements. Graphical representations of the dispersion coefficients versus R are given among all the alkaline ions with Rb.

  12. Oxidation of the Earth from the Inside Out

    NASA Astrophysics Data System (ADS)

    Tregloan-Reed, J. J.; Freund, F. T.

    2014-12-01

    MgO crystals grown under most reducing conditions from the melt in a carbon arc fusion furnace contain peroxy defects, normally a hallmark of highly oxidizing conditions [Freund and Wengeler (1982), J. Phys. Chem. Solids, 43, 129-145]. The peroxy defects are introduced into the MgO matrix by a redox conversion (RC) of OH- pairs, OH- x HO- <=> O22- + H2, where x stands for an Mg2+ vacancy. The RC occurs in a temperature window, below 500°C, where all major diffusional processes are frozen and the system has left the realm of thermodynamic equilibrium. This RC is not limited to MgO, however, but can be shown to take place in igneous rocks, the minerals of which also acquire peroxy concentrations during cooling. In the case of silicates the peroxy defects are of the form O3Si-OO-SiO3 [Freund (1987), Phys. Chem. Minerals, 15, 1-18]. We used a Y-doped ZrO2 amperometric O2 sensor (Rapidox 3000 Cambridge SensoTec) to record the O2 evolution from crushed MgO and granite from Barre VT, USA, during heating at 10ºC/min (see Fig.1). The granite powder was heated in a stream of 20 ml/min pure N2, united after the heating zone with a parallel stream of N2 + 100 ppm O2, needed to keep the 700ºC hot ZrO2 sensor operational. Between 250-550ºC the O2 partial pressure decreases, due to the fact that, in this temperature interval, granite releases reduced gases, in particular H2, which "burn" part of the premixed 100 ppm O2 inside the ZrO2 sensor. Upon further heating O2 evolves from the granite powder, consistent with the disproportionation of peroxy defects: O3Si-OO-SiO3 => O3Si-O-SiO3 + ½ O2.Evidence for peroxy defects in rocks exposed at the Earth surface has far-reaching consequences for the Earth's evolution. During weathering, peroxy defects hydrolyze, O3Si-OO-SiO3 + 2 H2O => O3Si-OH HO-SiO3 + H2O2, with H2O2 decomposing to H2O + ½ O2. Hence, weathering is a process by which oxygen is delivered to the Earth's surface environment. On the young Earth, where most surface

  13. The influence of alkaline earth metal equilibria on the rheological, melting and textural properties of Cheddar cheese.

    PubMed

    Cooke, Darren R; McSweeney, Paul L H

    2013-11-01

    The total calcium content of cheese, along with changes in the equilibrium between soluble and casein (CN)-bound calcium during ripening can have a major impact on its rheological, functional and textural properties; however, little is known about the effect of other alkaline earth metals. NaCl was partially substituted with MgCl2 or SrCl2 (8·7 and 11·4 g/kg curd, respectively) at the salting stage of cheesemaking to study their effects on cheese. Three cheeses were produced: Mg supplemented (+Mg), Sr supplemented (+Sr) and a control Cheddar cheese. Ca, Mg and Sr contents of cheese and expressible serum obtained therefrom were determined by atomic absorption spectroscopy. Addition of Mg2+ or Sr2+ had no effect on % moisture, protein, fat and extent of proteolysis. A proportion of the added Mg2+ and Sr2+ became CN-bound. The level of CN-bound Mg was higher in the +Mg cheese than the control throughout ripening. The level of CN-bound Ca and Mg decreased during ripening in all cheeses, as did % CN-bound Sr in the +Sr cheese. The presence of Sr2+ increased % CN-bound Ca and Mg at a number of ripening times. Adding Mg2+ had no effect on % CN-bound Ca. The +Sr cheese exhibited a higher G' at 70 °C and a lower LTmax than the control and +Mg cheeses throughout ripening. The +Sr cheese had significantly lower meltability compared with the control and +Mg cheeses after 2 months of ripening. Hardness values of the +Sr cheese were higher at week 2 than the +Mg and control cheeses. Addition of Mg2+ did not influence the physical properties of cheese. Supplementing cheese with Sr appeared to have effects analogous to those previously reported for increasing Ca content. Sr2+ may form and/or modify nanocluster crosslinks causing an increase in the strength of the para-casein matrix. PMID:24124804

  14. The influence of alkaline earth metal equilibria on the rheological, melting and textural properties of Cheddar cheese.

    PubMed

    Cooke, Darren R; McSweeney, Paul L H

    2013-11-01

    The total calcium content of cheese, along with changes in the equilibrium between soluble and casein (CN)-bound calcium during ripening can have a major impact on its rheological, functional and textural properties; however, little is known about the effect of other alkaline earth metals. NaCl was partially substituted with MgCl2 or SrCl2 (8·7 and 11·4 g/kg curd, respectively) at the salting stage of cheesemaking to study their effects on cheese. Three cheeses were produced: Mg supplemented (+Mg), Sr supplemented (+Sr) and a control Cheddar cheese. Ca, Mg and Sr contents of cheese and expressible serum obtained therefrom were determined by atomic absorption spectroscopy. Addition of Mg2+ or Sr2+ had no effect on % moisture, protein, fat and extent of proteolysis. A proportion of the added Mg2+ and Sr2+ became CN-bound. The level of CN-bound Mg was higher in the +Mg cheese than the control throughout ripening. The level of CN-bound Ca and Mg decreased during ripening in all cheeses, as did % CN-bound Sr in the +Sr cheese. The presence of Sr2+ increased % CN-bound Ca and Mg at a number of ripening times. Adding Mg2+ had no effect on % CN-bound Ca. The +Sr cheese exhibited a higher G' at 70 °C and a lower LTmax than the control and +Mg cheeses throughout ripening. The +Sr cheese had significantly lower meltability compared with the control and +Mg cheeses after 2 months of ripening. Hardness values of the +Sr cheese were higher at week 2 than the +Mg and control cheeses. Addition of Mg2+ did not influence the physical properties of cheese. Supplementing cheese with Sr appeared to have effects analogous to those previously reported for increasing Ca content. Sr2+ may form and/or modify nanocluster crosslinks causing an increase in the strength of the para-casein matrix.

  15. Structure and Abundance of Nitrous Oxide Complexes in Earth's Atmosphere.

    PubMed

    Salmon, Steven R; de Lange, Katrina M; Lane, Joseph R

    2016-04-01

    We have investigated the lowest energy structures and binding energies of a series of atmospherically relevant nitrous oxide (N2O) complexes using explicitly correlated coupled cluster theory. Specifically, we have considered complexes with nitrogen (N2-N2O), oxygen (O2-N2O), argon (Ar-N2O), and water (H2O-N2O). We have calculated rotational constants and harmonic vibrational frequencies for the complexes and the constituent monomers. Statistical mechanics was used to determine the thermodynamic parameters for complex formation as a function of temperature and pressure. These results, in combination with relevant atmospheric data, were used to estimate the abundance of N2O complexes in Earth's atmosphere as a function of altitude. We find that the abundance of N2O complexes in Earth's atmosphere is small but non-negligible, and we suggest that N2O complexes may contribute to absorption of terrestrial radiation and be relevant for understanding the atmospheric fate of N2O.

  16. Monolithic integration of rare-earth oxides and semiconductors for on-silicon technology

    SciTech Connect

    Dargis, Rytis Clark, Andrew; Erdem Arkun, Fevzi; Grinys, Tomas; Tomasiunas, Rolandas; O'Hara, Andy; Demkov, Alexander A.

    2014-07-01

    Several concepts of integration of the epitaxial rare-earth oxides into the emerging advanced semiconductor on silicon technology are presented. Germanium grows epitaxially on gadolinium oxide despite lattice mismatch of more than 4%. Additionally, polymorphism of some of the rare-earth oxides allows engineering of their crystal structure from hexagonal to cubic and formation of buffer layers that can be used for growth of germanium on a lattice matched oxide layer. Molecular beam epitaxy and metal organic chemical vapor deposition of gallium nitride on the rare-earth oxide buffer layers on silicon is discussed.

  17. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films.

    PubMed

    Figueroa, A I; van der Laan, G; Harrison, S E; Cibin, G; Hesjedal, T

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi(3+) in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  18. Oxidation Effects in Rare Earth Doped Topological Insulator Thin Films

    PubMed Central

    Figueroa, A. I.; van der Laan, G.; Harrison, S. E.; Cibin, G.; Hesjedal, T.

    2016-01-01

    The breaking of time-reversal symmetry (TRS) in topological insulators is a prerequisite for unlocking their exotic properties and for observing the quantum anomalous Hall effect (QAHE). The incorporation of dopants which exhibit magnetic long-range order is the most promising approach for TRS-breaking. REBiTe3, wherein 50% of the Bi is substitutionally replaced by a RE atom (RE = Gd, Dy, and Ho), is a predicted QAHE system. Despite the low solubility of REs in bulk crystals of a few %, highly doped thin films have been demonstrated, which are free of secondary phases and of high crystalline quality. Here we study the effects of exposure to atmosphere of rare earth-doped Bi2(Se, Te)3 thin films using x-ray absorption spectroscopy. We demonstrate that these RE dopants are all trivalent and effectively substitute for Bi3+ in the Bi2(Se, Te)3 matrix. We find an unexpected high degree of sample oxidation for the most highly doped samples, which is not restricted to the surface of the films. In the low-doping limit, the RE-doped films mostly show surface oxidation, which can be prevented by surface passivation, encapsulation, or in-situ cleaving to recover the topological surface state. PMID:26956771

  19. High-pressure densified solid solutions of alkaline earth hexaborides (Ca/Sr, Ca/Ba, Sr/Ba) and their high-temperature thermoelectric properties

    SciTech Connect

    Gürsoy, M.; Takeda, M.; Albert, B.

    2015-01-15

    Solid solutions of alkaline earth hexaborides were synthesized and densified by spark plasma sintering at 100 MPa. The high-temperature thermoelectric properties (Seebeck coefficients, electrical and thermal diffusivities, heat capacities) were measured between room temperature and 1073 K. CaB{sub 6}, SrB{sub 6}, BaB{sub 6} and the ternary hexaborides Ca{sub x}Sr{sub 1−x}B{sub 6}, Ca{sub x}Ba{sub 1−x}B{sub 6}, Sr{sub x}Ba{sub 1−x}B{sub 6} (x = 0.25, 0.5, 0.75) are n-type conducting compounds over the whole compositional and thermal ranges. The values of the figure of merit ZT for CaB{sub 6} (ca. 0.3 at 1073 K) were found to be significantly increased compared to earlier investigations which is attributed to the densification process. - Highlights: • Solid solutions of alkaline earth hexaborides were synthesized. • High-temperature thermoelectric properties of mixed calcium borides are excellent. • Spark plasma source densification results in high ZT values. • Borides are rare-earth free and refractory materials.

  20. The formation of crystals in glasses containing rare earth oxides

    SciTech Connect

    Fadzil, Syazwani Mohd; Hrma, Pavel; Crum, Jarrod; Siong, Khoo Kok; Ngatiman, Mohammad Fadzlee; Said, Riduan Mt

    2014-02-12

    with 5%, 10% and 15% addition of mixed rare earth oxides. The component coefficients T{sub B2O3}, T{sub SiO2}, T{sub CaO}, and T{sub RE2O3} were also evaluated using a recently published study.

  1. Identifying calcium sources at an acid deposition-impacted spruce forest: A strontium isotope, alkaline earth element multi-tracer approach

    USGS Publications Warehouse

    Bullen, T.D.; Bailey, S.W.

    2005-01-01

    Depletion of calcium from forest soils has important implications for forest productivity and health. Ca is available to fine feeder roots from a number of soil organic and mineral sources, but identifying the primary source or changes of sources in response to environmental change is problematic. We used strontium isotope and alkaline earth element concentration ratios of trees and soils to discern the record of Ca sources for red spruce at a base-poor, acid deposition-impacted watershed. We measured 87Sr/86Sr and chemical compositions of cross-sectional stemwood cores of red spruce, other spruce tissues and sequential extracts of co-located soil samples. 87Sr/86Sr and Sr/Ba ratios together provide a tracer of alkaline earth element sources that distinguishes the plant-available fraction of the shallow organic soils from those of deeper organic and mineral soils. Ca/Sr ratios proved less diagnostic, due to within-tree processes that fractionate these elements from each other. Over the growth period from 1870 to 1960, 87Sr/86Sr and Sr/Ba ratios of stemwood samples became progressively more variable and on average trended toward values that considered together are characteristic of the uppermost forest floor. In detail the stemwood chemistry revealed an episode of simultaneous enhanced uptake of all alkaline earth elements during the growth period from 1930 to 1960, coincident with reported local and regional increases in atmospheric inputs of inorganic acidity. We attribute the temporal trends in stemwood chemistry to progressive shallowing of the effective depth of alkaline earth element uptake by fine roots over this growth period, due to preferential concentration of fine roots in the upper forest floor coupled with reduced nutrient uptake by roots in the lower organic and upper mineral soils in response to acid-induced aluminum toxicity. Although both increased atmospheric deposition and selective weathering of Ca-rich minerals such as apatite provide possible

  2. Electronic structure, optical properties and bonding in alkaline earth halo-fluoride scintillators: BaClF, BaBrF and BaIF

    SciTech Connect

    Yedukondalu, N.; Babu, K. Ramesh; Bheemalingam, Ch.; Singh, David J; Vaitheeswaran, G.; Kanchana, V.

    2011-01-01

    We report first-principles studies of the structural, electronic, and optical properties of the alkaline-earth halofluorides, BaXF (X = Cl, Br, and I), including pressure dependence of structural properties. The band structures show clear separation of the halogen p derived valence bands into higher binding energy F and lower binding energy X derived manifolds reflecting the very high electronegativity of F relative to the other halogens. Implications of this for bonding and other properties are discussed. We find an anisotropic behavior of the structural parameters especially of BaIF under pressure. The optical properties on the other hand are almost isotropic, in spite of the anisotropic crystal structures.

  3. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    PubMed

    Milani, Narges; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G; Stacey, Samuel P; McLaughlin, Mike J

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF) mapping and absorption fine structure spectroscopy (μ-XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same

  4. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil.

    PubMed

    Milani, Narges; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G; Stacey, Samuel P; McLaughlin, Mike J

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ-XRF) mapping and absorption fine structure spectroscopy (μ-XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the same

  5. Fate of Zinc Oxide Nanoparticles Coated onto Macronutrient Fertilizers in an Alkaline Calcareous Soil

    PubMed Central

    Milani, Narges; Hettiarachchi, Ganga M.; Kirby, Jason K.; Beak, Douglas G.; Stacey, Samuel P.; McLaughlin, Mike J.

    2015-01-01

    Zinc oxide (ZnO) nanoparticles may provide a more soluble and plant available source of Zn in Zn fertilizers due to their greater reactivity compared to equivalent micron- or millimetre-sized (bulk) particles. However, the effect of soil on solubility, spatial distribution and speciation of ZnO nanoparticles has not yet been investigated. In this study, we examined the diffusion and solid phase speciation of Zn in an alkaline calcareous soil following application of nanoparticulate and bulk ZnO coated fertilizer products (monoammonium phosphate (MAP) and urea) using laboratory-based x-ray techniques and synchrotron-based μ-x-ray fluorescence (μ–XRF) mapping and absorption fine structure spectroscopy (μ–XAFS). Mapping of the soil-fertilizer reaction zones revealed that most of the applied Zn for all treatments remained on the coated fertilizer granule or close to the point of application after five weeks of incubation in soil. Zinc precipitated mainly as scholzite (CaZn2(PO4)2.2H2O) and zinc ammonium phosphate (Zn(NH4)PO4) species at the surface of MAP granules. These reactions reduced dissolution and diffusion of Zn from the MAP granules. Although Zn remained as zincite (ZnO) at the surface of urea granules, limited diffusion of Zn from ZnO-coated urea granules was also observed for both bulk and nanoparticulate ZnO treatments. This might be due to either the high pH of urea granules, which reduced solubility of Zn, or aggregation (due to high ionic strength) of released ZnO nanoparticles around the granule/point of application. The relative proportion of Zn(OH)2 and ZnCO3 species increased for all Zn treatments with increasing distance from coated MAP and urea granules in the calcareous soil. When coated on macronutrient fertilizers, Zn from ZnO nanoparticles (without surface modifiers) was not more mobile or diffusible compared to bulk forms of ZnO. The results also suggest that risk associated with the presence of ZnO NPs in calcareous soils would be the

  6. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  7. Electrocatalytic activity and operational stability of electrodeposited Pd-Co films towards ethanol oxidation in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Tsui, Lok-kun; Zafferoni, Claudio; Lavacchi, Alessandro; Innocenti, Massimo; Vizza, Francesco; Zangari, Giovanni

    2015-10-01

    Direct alkaline ethanol fuel cells (DEFCs) are usually run with Pd anodic catalysts, but their performance can be improved by utilizing alloys of Pd and Co. The oxyphilic Co serves to supply ample -OH to the ethanol oxidation reaction, accelerating the rate limiting step at low overpotential under alkaline conditions. Pd-Co films with compositions between 20 and 80 at% Co can be prepared by electrodeposition from a NH3 complexing electrolyte. Cyclic voltammetry studies show that the ethanol oxidation peak exhibits increasing current density with increasing Co content, reaching a maximum at 77% Co. In contrast, potentiostatic measurements under conditions closer to fuel cell operating conditions show that a 50 at% Co alloy has the highest performance. Importantly, the Co-Pd film is also found to undergo phase and morphological transformations during ethanol oxidation, resulting in a change from a compact film to high surface area flake-like structures containing Co3O4 and CoOOH; such a transformation instead is not observed when operating at a constant potential of 0.7 VRHE.

  8. Chemical composition of modern and fossil Hippopotamid teeth and implications for paleoenvironmental reconstructions and enamel formation - Part 2: Alkaline earth elements as tracers of watershed hydrochemistry and provenance

    NASA Astrophysics Data System (ADS)

    Brügmann, G.; Krause, J.; Brachert, T. C.; Stoll, B.; Weis, U.; Kullmer, O.; Ssemmanda, I.; Mertz, D. F.

    2012-03-01

    For reconstructing environmental change in terrestrial realms the geochemistry of fossil bioapatite in bones and teeth is among the most promising applications. This study demonstrates that alkaline earth elements in enamel of Hippopotamids, in particular Ba and Sr are tracers for water provenance and hydrochemistry. The studied specimens are molar teeth from Hippopotamids found in modern and fossil lacustrine settings of the Western Branch of the East African Rift system (Lake Kikorongo, Lake Albert, and Lake Malawi) and from modern fluvial environments of the Nile River. Concentrations in enamel vary by ca. two orders of magnitude for Ba (120-9336 μg g-1) as well as for Sr (9-2150 μg g-1). Concentration variations in enamel are partly induced during post-mortem alteration and during amelogenesis, but the major contribution originates from the variable water chemistry in the habitats of the Hippopotamids which is dominated by the lithologies and weathering processes in the watershed areas. Amelogenesis causes a distinct distribution of Ba and Sr in modern and fossil enamel, in that element concentrations increase along profiles from the outer rim towards the enamel-dentin junction by a factor of 1.3-1.5. These elements are well correlated with MgO and Na2O in single specimens, thus suggesting that their distribution is determined by a common, single process. Presuming that the shape of the tooth is established at the end of the secretion process and apatite composition is in equilibrium with the enamel fluid, the maturation process can be modeled by closed system Rayleigh crystallization. Enamel from many Hippopotamid specimens has Sr/Ca and Ba/Ca which are typical for herbivores, but the compositions extend well into the levels of plants and carnivores. Within enamel from single specimens these element ratios covary and provide a specific fingerprint of the Hippopotamid habitat. All specimens together, however, define subparallel trends with different Ba

  9. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  10. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  11. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    PubMed

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-01

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application.

  12. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    NASA Astrophysics Data System (ADS)

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A., III

    2016-04-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  13. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals

    PubMed Central

    Liu, Yuanyue; Merinov, Boris V.; Goddard, William A.

    2016-01-01

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion–substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems. PMID:27001855

  14. Effect of metal cation replacement on the electronic structure of metalorganic halide perovskites: Replacement of lead with alkaline-earth metals

    NASA Astrophysics Data System (ADS)

    Pazoki, Meysam; Jacobsson, T. Jesper; Hagfeldt, Anders; Boschloo, Gerrit; Edvinsson, Tomas

    2016-04-01

    Organic and inorganic lead halogen perovskites, and in particular, C H3N H3Pb I3 , have during the last years emerged as a class of highly efficient solar cell materials. Herein we introduce metalorganic halogen perovskite materials for energy-relevant applications based on alkaline-earth metals. Based on the classical notion of Goldschmidt's rules and quantum mechanical considerations, the three alkaline-earth metals, Ca, Sr, and Ba, are shown to be able to exchange lead in the perovskite structure. The three alkaline-earth perovskites, C H3N H3Ca I3,C H3N H3Sr I3 , and C H3N H3Ba I3 , as well as the reference compound, C H3N H3Pb I3 , are in this paper investigated with density functional theory (DFT) calculations, which predict these compounds to exist as stable perovskite materials, and their electronic properties are explored. A detailed analysis of the projected molecular orbital density of states and electronic band structure from DFT calculations were used for interpretation of the band-gap variations in these materials and for estimation of the effective masses of the electrons and holes. Neglecting spin-orbit effects, the band gap of MACa I3,MASr I3 , and MABa I3 were estimated to be 2.95, 3.6, and 3.3 eV, respectively, showing the relative change expected for metal cation exchange. The shifts in the conduction band (CB) edges for the alkaline-earth perovskites were quantified using scalar relativistic DFT calculations and tight-binding analysis, and were compared to the situation in the more extensively studied lead halide perovskite, C H3N H3Pb I3 , where the change in the work function of the metal is the single most important factor in tuning the CB edge and band gap. The results show that alkaline-earth-based organometallic perovskites will not work as an efficient light absorber in photovoltaic applications but instead could be applicable as charge-selective contact materials. The rather high CB edge and the wide band gap together with the large

  15. ALT1, a Snf2 family chromatin remodeling ATPase, negatively regulates alkaline tolerance through enhanced defense against oxidative stress in rice.

    PubMed

    Guo, Mingxin; Wang, Ruci; Wang, Juan; Hua, Kai; Wang, Yueming; Liu, Xiaoqiang; Yao, Shanguo

    2014-01-01

    Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress. PMID:25473841

  16. Effect of stabilizers on the synthesis of palladium-nickel nanoparticles supported on carbon for ethanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Yang, Huijuan; Wang, Hui; Li, Hao; Ji, Shan; Davids, Moegamat Wafeeq; Wang, Rongfang

    2014-08-01

    PdNi/C electrocatalysts for ethanol oxidation in alkaline medium are fabricated using four stabilizers, i.e., glycine (G), ethylene diamine tetraacetic acid (EDTA), sodium citrate (SC), and sodium dodecyl sulfate (SDS) with the same reducing process and reaction parameters. X-ray diffraction characterization shows PdNi nanoparticles for all PdNi/C electrocatalysts possess face-centered cubic structure with different alloying degree. TEM results show that PdNi/C-G and PdNi/C-SC have uniform dispersion with ellipse morphology, while particle agglomeration occurs on PdNi/C-EDTA and PdNi/C-SDS. Electrocatalytic activities of these PdNi/C electrocatalysts for ethanol oxidation are measured by cyclic voltammetry and chronoamperometry techniques. The electrocatalytic activities of PdNi/C change with the different lattice contraction. PdNi/C-SC electrocatalyst exhibits the best activity among the four electrocatalysts, which is ascribed to an appropriate lattice contraction.

  17. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  18. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins. PMID:15982915

  19. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.

  20. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  1. Determination of rare earth elements, uranium and thorium in geological samples by ICP-MS, using an automatic fusion machine as an alkaline digestion tool.

    NASA Astrophysics Data System (ADS)

    Granda, Luis; Rivera, Maria; Velasquez, Colon; Barona, Diego; Carpintero, Natalia

    2014-05-01

    At the present time, rare earth elements deposits have became in strategic resources for extraction of raw materials in order to manufacture high tech devices (computers, LCD, cell phones, batteries for hybrid vehicles, fiber optics and wind turbines) (1).The appropriate analytical determination of the REE ( rare earth elements) in sediment and rock samples , is important to find potential deposits and to recognize geological environments for identifying possible alterations and mineral occurrences. The alkaline fusion, which aim is to move the entire sample from solid to liquid state by forming water soluble complexes of boron and lithium, as a previous procedure for the determination of these elements, usually takes a lot of time due to the complexity of the analysis phase and by the addition of other reagents (Tm and HF ) (2) to compensate the lack of strict temperature control. The objective of this work is to develop an efficient alternative to alkaline digestion using an electrical fusion machine, which allows to create temperature programs with advanced process control and supports up to 5 samples simultaneously, which generates a reproducibility of the method and results during the melting step. Additionally, this new method permits the processing of a larger number of samples in a shorter time. The samples analyzed in this method were weighed into porcelain crucibles and subjected to calcination for 4 hours at 950 ° C in order to determine the Lost on Ignition (LOI ) , that serves to adjust the analytical results and to preserve the shelf life of the platinum ware. Subsequently, a fraction of the calcined sample was weighed into platinum crucibles and mixed with ultra-pure lithium metaborate ( flux ) 1:4 . The crucible was then placed in the fusion machine, which was programmed to take the sample from room temperature to 950 ° C in five minutes, make a small ramp to 970 ° C maintain that temperature for five minutes and download the melt in a 10 % v / v

  2. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  3. Order of Activity of Nitrogen, Iron Oxide, and FeNx Complexes towards Oxygen Reduction in Alkaline Medium.

    PubMed

    Zhu, Yansong; Zhang, Bingsen; Wang, Da-Wei; Su, Dang Sheng

    2015-12-01

    In alkaline medium, it seems that both metal-free and iron-containing carbon-based catalysts, such as nitrogen-doped nanocarbon materials, FeOx -doped carbon, and Fe/N/C catalysts, are active for the oxygen reduction reaction (ORR). However, the order of activity of these different active compositions has not been clearly determined. Herein, we synthesized nitrogen-doped carbon black (NCB), Fe3 O4 /CB, Fe3 O4 /NCB, and FeN4 /CB. Through the systematic study of the ORR catalytic activity of these four catalysts in alkaline solution, we confirmed the difference in the catalytic activity and catalytic mechanism for nitrogen, iron oxides, and Fe-N complexes, respectively. In metal-free NCB, nitrogen can improve the ORR catalytic activity with a four-electron pathway. Fe3 O4 /CB catalyst did not exhibit improved activity over that of NCB owing to the poor conductivity and spinel structure of Fe3 O4 . However, FeN4 coordination compounds as the active sites showed excellent ORR catalytic activity.

  4. Sodic alkaline stress mitigation by interaction of nitric oxide and polyamines involves antioxidants and physiological strategies in Solanum lycopersicum.

    PubMed

    Gong, Biao; Li, Xiu; Bloszies, Sean; Wen, Dan; Sun, Shasha; Wei, Min; Li, Yan; Yang, Fengjuan; Shi, Qinghua; Wang, Xiufeng

    2014-06-01

    Nitric oxide (NO) and polyamines (PAs) are two kinds of important signal in mediating plant tolerance to abiotic stress. In this study, we observed that both NO and PAs decreased alkaline stress in tomato plants, which may be a result of their role in regulating nutrient balance and reactive oxygen species (ROS), thereby protecting the photosynthetic system from damage. Further investigation indicated that NO and PAs induced accumulation of each other. Furthermore, the function of PAs could be removed by a NO scavenger, cPTIO. On the other hand, application of MGBG, a PA synthesis inhibitor, did little to abolish the function of NO. To further elucidate the mechanism by which NO and PAs alleviate alkaline stress, the expression of several genes associated with abiotic stress was analyzed by qRT-PCR. NO and PAs significantly upregulated ion transporters such as the plasma membrane Na(+)/H(+) antiporter (SlSOS1), vacuolar Na(+)/H(+) exchanger (SlNHX1 and SlNHX2), and Na(+) transporter and signal components including ROS, MAPK, and Ca(2+) signal pathways, as well as several transcription factors. All of these play important roles in plant adaptation to stress conditions.

  5. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature.

  6. Production of zinc and manganese oxide particles by pyrolysis of alkaline and Zn-C battery waste.

    PubMed

    Ebin, Burçak; Petranikova, Martina; Steenari, Britt-Marie; Ekberg, Christian

    2016-05-01

    Production of zinc and manganese oxide particles from alkaline and zinc-carbon battery black mass was studied by a pyrolysis process at 850-950°C with various residence times under 1L/minN2(g) flow rate conditions without using any additive. The particular and chemical properties of the battery waste were characterized to investigate the possible reactions and effects on the properties of the reaction products. The thermodynamics of the pyrolysis process were studied using the HSC Chemistry 5.11 software. The carbothermic reduction reaction of battery black mass takes place and makes it possible to produce fine zinc particles by a rapid condensation, after the evaporation of zinc from a pyrolysis batch. The amount of zinc that can be separated from the black mass is increased by both pyrolysis temperature and residence time. Zinc recovery of 97% was achieved at 950°C and 1h residence time using the proposed alkaline battery recycling process. The pyrolysis residue is mainly MnO powder with a low amount of zinc, iron and potassium impurities and has an average particle size of 2.9μm. The obtained zinc particles have an average particle size of about 860nm and consist of hexagonal crystals around 110nm in size. The morphology of the zinc particles changes from a hexagonal shape to s spherical morphology by elevating the pyrolysis temperature. PMID:26547409

  7. Spectroscopic and electron microscopic investigation of iron oxides formed in a highly alkaline medium in the presence of rhodium ions

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2010-07-01

    The effect of the presence of rhodium ions on the formation of iron oxides in a highly alkaline precipitation system was investigated using X-ray powder diffraction (XRD), 57Fe Mössbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Acicular α-FeOOH particles precipitated in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. Characterization of α-FeOOH samples formed in the presence of rhodium ions showed a somewhat smaller mean crystallite size, increased unit-cell dimensions, a reduced average hyperfine magnetic field and a slight shift in the position of IR absorption bands in comparison with the reference α-FeOOH sample. By additional heating of the precipitation system, α-FeOOH precipitated in the presence of rhodium ions transformed to α-Fe 2O 3 crystals in the form of hexagonal bipyramids via a dissolution-recrystallization process. Metallic rhodium nanoparticles were formed simultaneously by the reduction of Rh 3+ ions in the presence of the products of TMAH thermal decomposition (trimethylamine and methanol). These rhodium nanoparticles acted as a catalyst for the reductive dissolution of α-Fe 2O 3 particles and the formation of Fe 3O 4 crystals in the form of octahedrons.

  8. STABILIZED RARE EARTH OXIDES FOR A CONTROL ROD AND METHOD OF PREPARATION

    DOEpatents

    McNees, R.A.; Potter, R.A.

    1964-01-14

    A method is given for preparing mixed oxides of the formula MR/sub x/O/ sub 12/ wherein M is tungsten or molybdenum and R is a rare earth in the group consisting of samarium, europium, dysprosium, and gadolinium and x is 4 to 5. Oxides of this formula, and particularly the europiumcontaining species, are useful as control rod material for water-cooled nuclear reactors owing to their stability, favorable nuclear properties, and resistance to hydration. These oxides may be utilized as a dispersion in a stainlesssteel matrix. Preparation of these oxides is effected by blending tungsten oxide or molybdenum oxide with a rare earth oxide, compressing the mixture, and firing at an elevated temperature in an oxygen-containing atmosphere. (AEC)

  9. Syntheses and characterization of energetic compounds constructed from alkaline earth metal cations (Sr and Ba) and 1,2-bis(tetrazol-5-yl)ethane

    SciTech Connect

    Xia Zhengqiang; Chen Sanping; Wei Qing; Qiao Chengfang

    2011-07-15

    Two new energetic compounds, [M(BTE)(H{sub 2}O){sub 5}]{sub n} (M=Sr(1), Ba(2)) [H{sub 2}BTE=1,2-bis(tetrazol-5-yl)ethane], have been hydrothermally synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that they are isomorphous and exhibit 2D (4,4) net framework, generated by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs linked up by two independent binding modes of H{sub 2}BTE, and the resulting 2D structure is interconnected by hydrogen-bond and strong face to face {pi}-{pi} stacking interactions between two tetrazole rings to lead to a 3D supramolecular architecture. DSC measurements show that they have significant catalytic effects on thermal decomposition of ammonium perchlorate. Moreover, the photoluminescence properties, thermogravimetric analyses, and flame colors of the as-prepared compounds are also investigated in this paper. - Graphical abstract: Two novel 2D isomorphous alkaline earth metal complexes were assembled by 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two independent binding modes of H{sub 2}BTE ligands, and the catalytic performances toward thermal decomposition of ammonium perchlorate and photoluminescent properties of them were investigated. Highlights: > Two novel alkaline earth energetic coordination polymers have been prepared.{yields} Both structures are layered based on 4-connected Sr{sub 2}(H{sub 2}O){sub 10}/Ba{sub 2}(H{sub 2}O){sub 10} SBUs and two distinct H{sub 2}BTE coordination modes.{yields} The dehydrated products of the compounds possess good thermostability and significant catalytic effects on thermal decomposition of AP.

  10. Carbon supported Pd-Ni-P nanoalloy as an efficient catalyst for ethanol electro-oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Fei-Fei; Yang, Yao-Yue; Cai, Wen-Bin

    2013-12-01

    Carbon-supported well-dispersed Pd-Ni-P ternary catalyst targeted for ethanol oxidation reaction (EOR) in alkaline media is synthesized in a simple aqueous bath containing Pd(II) and Ni(II) salts with sodium hypophosphite as the reducing agent and the source for P and sodium citrate as the complexing agent. XRD analysis on the as-prepared Pd-Ni-P/C reveals that Ni shrinks while P expands the Pd lattice structure, and XPS measurement suggests different electronic effects of the two alloying elements on Pd. Cyclic voltammetry and chronoamperometry indicate that the Pd-Ni-P/C presents a remarkably higher electrocatalytic activity than the state-of-the-art Pd/C, Pd-P/C and Pd-Ni/C catalysts. This may be ascribed to the unique electronic, geometric and bifunctional effects involved in this ternary nanoalloy.

  11. A comparative physicochemical, morphological and magnetic study of silane-functionalized superparamagnetic iron oxide nanoparticles prepared by alkaline coprecipitation.

    PubMed

    Mireles, Laura-Karina; Sacher, Edward; Yahia, L'Hocine; Laurent, Sophie; Stanicki, Dimitri

    2016-06-01

    The characterization of synthetic superparamagnetic iron oxide nanoparticle (SPION) surfaces prior to functionalization is an essential step in the prediction of their successful functionalization, and in uncovering issues that may influence their selection as magnetically targeted drug delivery vehicles (prodrugs). Here, three differently functionalized magnetite (Fe3O4) SPIONs are considered. All were identically prepared by the alkaline coprecipitation of Fe(2+) and Fe(3+) salts. We use X-ray photoelectron spectroscopy, electron microscopy, time-of-flight SIMS, FTIR spectroscopy and magnetic measurements to characterize their chemical, morphological and magnetic properties, in order to aid in determining how their surfaces differ from those prepared by Fe(CO)5 decomposition, which we have already studied, and in assessing their potential use as drug delivery carriers.

  12. The influence of platinum(IV) ions on the formation of iron oxides in a highly alkaline medium

    NASA Astrophysics Data System (ADS)

    Krehula, Stjepko; Musić, Svetozar

    2011-05-01

    The effect of the presence of platinum(IV) ions, in the form of Pt(OH)62- at a high pH, on the formation of iron oxides in a highly alkaline precipitation system was investigated using X-ray powder diffraction (XRD), 57Fe Mössbauer and FT-IR spectroscopies, field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). Monodispersed lath-like α-FeOOH (goethite) particles precipitated by hydrothermal treatment in a highly alkaline medium with the addition of tetramethylammonium hydroxide (TMAH) were used as reference material. In the presence of 1 or 5 mol% of platinum ions in the precipitation system the lath-like α-FeOOH particles were formed as a single phase after a short hydrothermal treatment (2 h). No significant change in the size and shape of these particles in comparison to the reference sample was observed. After 6 h of autoclaving the formation of platinum nanoparticles at the surface of α-FeOOH particles via reduction by TMAH and/or its decomposition products became visible. These nanoparticles acted as a catalyst for the reduction of Fe(III) ions into Fe(II) and gradual transformation of α-FeOOH into a mixed Fe(II)-Fe(III) oxide (Fe 3O 4, magnetite) by the dissolution-recrystallization mechanism. The presence of a higher concentration of platinum ions accelerates the process of α-FeOOH → Fe 3O 4 transformation with the appearance of α-Fe 2O 3 (hematite) particles as an intermediate product.

  13. Ultrasmall PdmMn1-mOx binary alloyed nanoparticles on graphene catalysts for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Ahmed, Mohammad Shamsuddin; Park, Dongchul; Jeon, Seungwon

    2016-03-01

    A rare combination of graphene (G)-supported palladium and manganese in mixed-oxides binary alloyed catalysts (BACs) have been synthesized with the addition of Pd and Mn metals in various ratios (G/PdmMn1-mOx) through a facile wet-chemical method and employed as an efficient anode catalyst for ethanol oxidation reaction (EOR) in alkaline fuel cells. The as prepared G/PdmMn1-mOx BACs have been characterized by several instrumental techniques; the transmission electron microscopy images show that the ultrafine alloyed nanoparticles (NPs) are excellently monodispersed onto the G. The Pd and Mn in G/PdmMn1-mOx BACs have been alloyed homogeneously, and Mn presents in mixed-oxidized form that resulted by X-ray diffraction. The electrochemical performances, kinetics and stability of these catalysts toward EOR have been evaluated using cyclic voltammetry in 1 M KOH electrolyte. Among all G/PdmMn1-mOx BACs, the G/Pd0.5Mn0.5Ox catalyst has shown much superior mass activity and incredible stability than that of pure Pd catalysts (G/Pd1Mn0Ox, Pd/C and Pt/C). The well dispersion, ultrafine size of NPs and higher degree of alloying are the key factor for enhanced and stable EOR electrocatalysis on G/Pd0.5Mn0.5Ox.

  14. Novel alkaline-reduced cuprous oxide/graphene nanocomposites for non-enzymatic amperometric glucose sensor application.

    PubMed

    Yazid, Siti Nur Akmar Mohd; Isa, Illyas Md; Hashim, Norhayati

    2016-11-01

    This paper presents the fabrication of a highly sensitive and selective glucose sensor based on cuprous oxide/graphene nanocomposites-modified glassy carbon electrode (Cu2O/graphene/GCE). The Cu2O/graphene nanocomposites were synthesized based on a simple and straightforward chemical reduction process in alkaline aqueous solution using sodium carbonate as reductant. The size and shape of Cu2O nanoparticles on graphene sheets can be controlled by changing the amount of graphene oxide added during reaction. The electrochemical properties of Cu2O/graphene/GCE in 0.1M phosphate buffer solution were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It was found that the pH, concentration of supporting electrolyte, and scan rate had very crucial effect on the sensitivity of prepared sensor towards glucose oxidation. At an applied potential of +0.50V, the Cu2O/graphene/GCE presented a high sensitivity of 1330.05μAmM(-1)cm(-2) and fast response (within 3s). The amperometric non-enzymatic glucose sensor developed had a linear relationship from 0.01mM to 3.0mM glucose and detection limit of 0.36μM. In the presence of ascorbic acid, uric acid, dopamine, chloride and citrate ion and other carbohydrates, the interferences were negligible. The proposed sensor was successfully applied for the determination of glucose concentration in real human blood samples. PMID:27524043

  15. Multi-laminated copper nanoparticles deposited on conductive substrates for electrocatalytic oxidation of methanol in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Xia, Lun-Peng; Guo, Peng; Wang, Yan; Ding, Shi-Qi; He, Jian-Bo

    2014-09-01

    A simple electrodeposition approach to grow multi-laminated copper particles on two conductive substrates is presented. Morphological and structural characterization was performed using SEM and XRD. The copper crystallites are preferentially oriented with {111} planes parallel to the substrate surfaces, providing an optimum interface for methanol oxidation. There are a large number of edges, corners, and atomic steps around individual multi-laminated nanostructured particles. The excellent electrocatalytic activity of the particles to methanol oxidation in alkaline solutions is demonstrated by cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry. The presence of the conductive poly(2-amino-5-mercapto-1,3,4-thiadiazole) interlayer between the Cu particles and the carbon paste substrate results in larger specific surface areas of the particles and smaller charge-transfer resistances of methanol oxidation reaction in the lower potential range. Such an anisotropic laminated structure of non-noble metal nanomaterials deserves further investigation for finding a suitable alternative to noble metal-based anodic catalysts in fuel cells.

  16. Evaluation of metal oxide and carbonate nanoparticle stability in soybean oil: Implications for controlled release of alkalinity during subsurface remediation

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Leach, O. I.; Sebik, J.; Muller, K.

    2011-12-01

    Traditional methods for adjusting groundwater pH rely on injection of aqueous solutes and therefore, amendment distribution is reliant upon aqueous phase flow and transport. This reliance can limit mixing and sustention of amendments within the treatment zone. Oil-in-water emulsions offer an alternative for amendment delivery - one that has potential to enhance control of the distribution and release of buffering agents within the subsurface. Focus here is placed on using metal oxide and carbonate nanoparticles to release alkalinity from soybean oil, a common dispersed phase within emulsions designed to support remediation activities. Batch reactor systems were employed to examine the influence of dispersed phase composition on particle stability and solubility. The stability of uncoated MgO and CaCO3 particles in unmodified soybean oil was explored in a series of sedimentation studies conducted at solid loadings of 0.05, 0.1, and 0.2% mass. Three nominal sizes of MgO particles were examined (20, 50, and 100 nm) and one CaCO3 particle size (60 nm). Results from sedimentation studies conducted over four hours suggest that the viscosity of the soybean oil imparts a kinetic stability, for all sizes of the uncoated MgO and CaCO3 nanoparticles, which is sufficient time for particle encapsulation within oil-in-water emulsions. Based upon these results, the sedimentation of the 50 nm and 100 nm MgO, and 60 nm CaCO3 particles was assessed over longer durations (≥72 hr). Results from these stability tests suggest that the 50 nm and 100 nm MgO particles have greater kinetic stability than the 60 nm CaCO3. Batch studies were also used to assess the influence of n-butanol, a co-solvent hypothesized to aid in controlling the rate of alkalinity release, on phase behavior and metal (Mg2+ and Ca2+) solubility. Phase behavior studies suggest that n-butanol has a limited region of miscibility within the soybean oil-water system. Use of n-butanol and water within this region of

  17. Selective Production of Formic Acid by Hydrothermal Alkaline Oxidation of Carbohydrates

    NASA Astrophysics Data System (ADS)

    Yun, J.; Li, G.; Enomoto, H.; Jin, F.

    2007-03-01

    Formic acid is a familiar product in hydrothermal oxidation of carbohydrates and is an important organic compound. In this study, the production of formic acid from the hydrothermal oxidation of glucose with and without the addition of alkali was investigated with temperature varying from 250 to 300°C, reaction time varying from 30 s to 240 s, and oxygen supply varying from 60 % to 140 %. Results showed that the highest yield of formic acid was only about 24 % in hydrothermal oxidation of glucose without the addition of alkali. It is very interest that the oxidation of glucose with the addition of alkali showed a high selective and effective for the production of formic acid. An excellent formic acid yield of about 74 % was achieved, which occurred at 250°C for 60 s with 120 % oxygen supply and the KOH concentration of 1.25 M.

  18. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: Insight from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bo, Xu; Huan-Sheng, Lu; Bo, Liu; Gang, Liu; Mu-Sheng, Wu; Chuying, Ouyang

    2016-06-01

    The adsorption and diffusion behaviors of alkali and alkaline-earth metal atoms on silicane and silicene are both investigated by using a first-principles method within the frame of density functional theory. Silicane is staler against the metal adatoms than silicene. Hydrogenation makes the adsorption energies of various metal atoms considered in our calculations on silicane significantly lower than those on silicene. Similar diffusion energy barriers of alkali metal atoms on silicane and silicene could be observed. However, the diffusion energy barriers of alkali-earth metal atoms on silicane are essentially lower than those on silicene due to the small structural distortion and weak interaction between metal atoms and silicane substrate. Combining the adsorption energy with the diffusion energy barriers, it is found that the clustering would occur when depositing metal atoms on perfect hydrogenated silicene with relative high coverage. In order to avoid forming a metal cluster, we need to remove the hydrogen atoms from the silicane substrate to achieve the defective silicane. Our results are helpful for understanding the interaction between metal atoms and silicene-based two-dimensional materials. Project supported by the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20152ACB21014, 20151BAB202006, and 20142BAB212002) and the Fund from the Jiangxi Provincial Educational Committee, China (Grant No. GJJ14254). Bo Xu is also supported by the Oversea Returned Project from the Ministry of Education, China.

  19. Rapid hydrolysis of model phosphate diesters by alkaline-earth cations in aqueous DMSO: speciation and kinetics.

    PubMed

    Taran, Olga; Medrano, Felipe; Yatsimirsky, Anatoly K

    2008-12-14

    Kinetics of the cleavage of two phosphate diesters, bis(4-nitrophenyl) phosphate and 2-hydroxypropyl 4-nitrophenyl phosphate and a triester, 4-nitrophenyl diphenyl phosphate, in the presence of Mg(II), Ca(II) and Sr(II) were studied in 90% vol. DMSO at 37 degrees C. The alkaline hydrolysis of the triester was inhibited by all cations, but with both phosphodiesters strong catalytic effects were observed. Potentiometric titrations of metal perchlorates by Bu4N(OH) revealed formation of M2(OH)3+, M(OH)+, M(OH)2 and M2(OH)5- species. Rate constants for phosphodiester cleavage by individual species were obtained from analysis of rate-concentration profiles. Observed first-order rate constants in the presence of 1-2 mM Mg(II) or Ca(II) in neutral and weakly basic solutions were 10(8)-10(11) times higher than those for background hydrolysis at the same pH while in water additions of up to 50 mM metal produced <100-fold accelerations. Possible structures of DMSO solvated catalyst-substrate complexes were modeled by DFT calculations with Mg(II). The increased catalytic activity in 90% DMSO is attributed to stronger association of hydroxide ions and anionic phosphodiesters with metal ions and to preferable solvation of cations by DMSO, which creates favorable for reaction anhydrous microenvironment in the coordination sphere of the catalyst.

  20. Carbon cycling and snowball Earth.

    PubMed

    Goddéris, Yves; Donnadieu, Yannick

    2008-12-18

    The possibility that Earth witnessed episodes of global glaciation during the latest Precambrian challenges our understanding of the physical processes controlling the Earth's climate. Peltier et al. suggest that a 'hard snowball Earth' state may have been prevented owing to the release of CO(2) from the oxidation of dissolved organic carbon (DOC) in the ocean as the temperature decreased. Here we show that the model of Peltier et al. is not self-consistent as it implies large fluctuations of the ocean alkalinity content without providing any processes to account for it. Our findings suggest that the hard snowball Earth hypothesis is still valid. PMID:19092867

  1. Ethanol oxidation on Pt single-crystal electrodes: surface-structure effects in alkaline medium.

    PubMed

    Busó-Rogero, Carlos; Herrero, Enrique; Feliu, Juan M

    2014-07-21

    Ethanol oxidation in 0.1 M NaOH on single-crystal electrodes has been studied using electrochemical and FTIR techniques. The results show that the activity order is the opposite of that found in acidic solutions. The Pt(111) electrode displays the highest currents and also the highest onset potential of all the electrodes. The onset potential for the oxidation of ethanol is linked to the adsorption of OH on the electrode surface. However, small (or even negligible) amounts of CO(ads) and carbonate are detected by FTIR, which implies that cleavage of the C-C bond is not favored in this medium. The activity of the electrodes diminishes quickly upon cycling. The diminution of the activity is proportional to the measured currents and is linked to the formation and polymerization of acetaldehyde, which adsorbs onto the electrode surface and prevents further oxidation. PMID:24782218

  2. Oxides doped with rare-earth ions as a recording medium with multiple rewriting

    NASA Astrophysics Data System (ADS)

    Zimenko, Vladislav I.; Petrov, Viacheslav V.; Kravets, Vasyliy G.; Motuz, Vasily V.; Prygun, Alexander V.; Yanchuk, N. E.

    1997-02-01

    The optical memory on materials having the properties of electron trapping is a new direction at development of information storage and rewrite. Currently are pursued investigations directed on creation of a new type recording medium with the opportunity of information rewrite by optical methods as well as a medium for heteroassociative memory in optical neural systems. Primarily as such medium are used alkaline-earth metal sulphides activated by two rare-earth elements. When creating the memory on materials with electron trapping on the basis of alkaline-earth sulphides there arises a number of difficulties: (1) these materials are chemically unstable, especially they are subject to the action of water vapors; (2) films prepared by electron-beam evaporation technique have a polycrystalline structure with grain sizes in the order of 20 nm what has an essential influence on the signal-to-noise ratio at information reading. The main objective which is pursued by us consists in investigating the optical properties of new synthesized materials having the electron trapping properties which are characterized by chemical stability and are easy manufacture at preparation of amorphous structures. We have also recommended to use CaO (MgO) doped with Eu, Sm. It has known, that the optical stimulated luminescence (OSL) obtains in CaO. But OSL appears in the special prepared structures with defects. For this aim there are some methods: thermochemical reduction or radiation processing by electron beam. Besides that the OSL obtains only by nitrogen temperature (77 K).

  3. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    PubMed Central

    2013-01-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO. PMID:24059434

  4. Earth

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1984-01-01

    The following aspects of the planet Earth are discussed: plate tectonics, the interior of the planet, the formation of the Earth, and the evolution of the atmosphere and hydrosphere. The Earth's crust, mantle, and core are examined along with the bulk composition of the planet.

  5. Phase Stability of Chromium(III) Oxide Hydroxide in Alkaline Sodium Phosphate Solutions

    SciTech Connect

    S.E. Ziemniak; E.P. Opalka

    2003-07-08

    Grimaldiite ({alpha}-CrOOH) is shown to transform to a sodium-chromium(III)-hydroxyphosphate compound (SCHP) in alkaline sodium phosphate solutions at elevated temperatures via CrOOH(s) + 4Na{sup +} + 2HPO{sub 4}{sup 2-} = Na{sub 4}Cr(OH)(PO{sub 4}){sub 2}(s) + H{sub 2}O. X-ray diffraction analyses indicate that SCHP possesses an orthorhombic lattice having the same space group symmetry (Ibam, No.72) as sodium ferric hydroxyphosphate. A structurally-consistent designation for SCHP is Na{sub 3}Cr(PO{sub 4}){sub 2} {center_dot} NaOH; the molar volume of SCHP is estimated to be 1552 cm{sup 3}. The thermodynamic equilibrium for the above reaction was defined in the system Na{sub 2}O-P{sub 2}O{sub 5}-Cr{sub 2}O{sub 3}-H{sub 2}O for Na/P molar ratios between 2.0 and 2.4. On the basis of observed reaction threshold values for sodium phosphate concentration and temperature, the standard molar entropy (S{sup o}), heat capacity (C{sub p}{sup o}) and free energy of formation ({Delta}G{sub f}{sup o}) for SCHP were calculated to be 690 J/(mol-K), 622 J/(mol-K) and -3509.97 kJ/mol, respectively.

  6. Three-dimensional nanoporous gold-cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium

    NASA Astrophysics Data System (ADS)

    Li, Zhihao; He, Yanghua; Ke, Xi; Gan, Lin; Zhao, Jie; Cui, Guofeng; Wu, Gang

    2015-10-01

    Using a simple hydrothermal method combined with a post-annealing treatment, cobalt oxide (Co3O4) nanosheet arrays are grown on three-dimensional (3D) nanoporous gold (NPG) film supported on Ni foam substrates, in which NPG is fabricated by chemically dealloying electrodeposited Au-Sn alloy films. The morphology and structure of the Co3O4@NPG/Ni foam hybrids are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical activity of the Co3O4@NPG/Ni foam electrode toward hydrogen peroxide electroreduction in alkaline medium is studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA). The results demonstrate that the Co3O4@NPG/Ni foam electrode possesses exceptionally high catalytic activity and excellent stability for the peroxide electroreduction, resulting mainly from the unique electrode architecture. The combined 3D hierarchical porous structures of NPG/Ni foam with the open and porous structures of Co3O4 nanosheet arrays facilitate the mass transport and charge transfer. Therefore, the metal oxides supported on 3D hierarchical porous NPG/Ni foam framework may hold great promise to be effective electrodes for electrocatalytic reduction of peroxide and other electrochemical reactions.

  7. Late Precambrian alkaline plutons in southwest India: Geochronologic and rare-earth element constraints on Pan-African magmatism

    NASA Astrophysics Data System (ADS)

    Santosh, M.; Iyer, S. S.; Vasconcellos, M. B. A.; Enzweiler, J.

    1989-12-01

    The Precambrian granulite facies terrain of southwestern India is intruded by a suite of alkali granite and syenite plutons. RbSr whole-rock isotope data for the Angadimogar syenite (AM) and the Peralimala alkali granite (PM), belonging to this suite, define isochron ages of 638 ± 28 and 750 ± 40 Ma, respectively, with initial {87Sr}/{86Sr} ratios of 0.7032 ± 0.0008 and 0.7031 ± 0.0008, respectively. These age data, together with data from previous studies, demonstrate long-lived magmatic activity in the time span from the late Proterozoic to the early Palaeozoic, broadly contemporaneous with Pan-African events in other fragments of the Gondwana supercontinent. REE patterns are reported for four plutons of this Pan-African alkali granite-syenite suite: Chengannoor (CR), Vellingiri (VL) and the two dated intrusions (AM and PM). CR and AM are characterised by high total REE, strongly LREE-enriched patterns with no Eu anomaly, associated with low Sr, Rb, U and Th. K 2O, {K2O }/{Na2O }, {K2O }/{MgO} and the agpaitic index are lower for these plutons as compared to the other two. The PM and VL intrusions have lower total REE and less strongly fractionated REE patterns, associated with high K 2O, {K2O }/{Na2O } and {K2O }/{MgO} ratios, high Sr and Rb levels, but low U and Th. The geochemical patterns in these rocks compare them well with A-type granites and their tectonic relations assign affinities to magmatism of within-plate type. The alkaline magmatism manifests an extensional phase associated with the pre-rift tectonics of the Indian continent within the Gondwana assemblage. A petrogenetic model is development for these plutons, involving decompression-induced melting of deep crustal source materials characterised by low initial {87Sr}/{86Sr} and high {K}/{Rb} ratios.

  8. The Influence of Fe Substitution in Lanthanum Calcium Cobalt Oxide on the Oxygen Evolution Reaction in Alkaline Media

    DOE PAGES

    Abreu-Sepulveda, Maria A.; Dhital, Chetan; Huq, Ashfia; Li, Ling; Bridges, Craig A.; Paranthaman, M. Parans; Narayanan, S. R.; Quesnel, David J.; Tryk, Donald A.; Manivannan, A.

    2016-07-30

    The effect due to systematic substitution of cobalt by iron in La0.6Ca0.4Co1-xFexO3 towards the oxygen evolution reaction(OER) in alkaline media has been investigated. We synthesized these compounds by a facile glycine-nitrate synthesis and the phase formation was confirmed by X-ray diffraction and Neutron Diffraction elemental analysis. The apparent OER activity was evaluated by quasi steady state current measurements in alkaline media using a traditional three-electrode cell. X-ray photoelectron spectroscopy shows iron substitution causes an increase in the surface concentration of various cobalt oxidation states. Tafel slope in the vicinity of 60 mV/decade and electrochemical reaction order towards OH- near unitymore » were achieved for the unsubstituted La0.6Ca0.4CoO3. Moreover, a decrease in the Tafel slope to 49 mV/decade was observed when iron is substituted in high amounts in the perovskite structure. The area specific current density showed dependence on the Fe fraction, however the relationship of specific current density with Fe fraction is not linear. High Fe substitutions, La0.6Ca0.4Co0.2Fe0.8O3 and La0.6Ca0.4Co0.1Fe0.9O3 showed higher area specific activity towards OER than La0.6Ca0.4CoO3 or La0.6Ca0.4FeO3. Finally, we believe iron inclusion in the cobalt sites of the perovskite helps decrease the electron transfer barrier and facilitates the formation of cobalt-hydroxide at the surface. Possible OER mechanisms based on the observed kinetic parameters will be discussed.« less

  9. The oxidizing capacity of the earth's atmosphere - Probable past and future changes

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    1992-01-01

    A number of critical atmospheric chemical problems depend on the earth's oxidizing capacity, which is essentially the global burden of oxidants in the lower atmosphere. There is limited direct evidence for changes in the earth's oxidizing capacity since recent preindustrial times when, because of industrial and poulation growth, increasing amounts of O3 precursor trace gases (carbon monoxide, nitrogen oxides, and hydrocarbons) have been released into the atmosphere. The concentrations of O3 and possibly H2O2 have increased over large regions. Models predict that tropospheric O3 will increase about 0.3-1.0 percent per year over the next 50 years with both positive and negative trends possible for OH and H2O2. Models and the observational network for oxidants are improving, but validation of global models is still at an early stage.

  10. Preparation of nickel nanowire arrays electrode for urea electro-oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Guo, Fen; Ye, Ke; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-03-01

    Fully metallic nickel nanowire arrays (NWAs) electrode is prepared by electrodepositing nickel within the pores and over-plating on the surface of polycarbonate template (PCT) with subsequent dissolution of the template in dichloromethane. The as-prepared electrode is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Urea electro-oxidation reaction in KOH solution on the nickel NWAs electrode is investigated by cyclic voltammetry (CV), chronoamperometry (CA) and electrochemical impedance spectroscopy (EIS) tests. The results show that the nickel NWAs electrode achieves an onset oxidation potential of 0.25 V (vs. Ag/AgCl) and a peak current density of 160 mA cm-2 in 5 mol L-1 KOH and 0.33 mol L-1 urea accompanied with considerable stability.

  11. Investigation of the Alkaline Electrochemical Interface and Development of Composite Metal/Metal-Oxides for Hydrogen and Oxygen Electrodes

    NASA Astrophysics Data System (ADS)

    Bates, Michael

    Understanding the fundamentals of electrochemical interfaces will undoubtedly reveal a path forward towards a society based on clean and renewable energy. In particular, it has been proposed that hydrogen can play a major role as an energy carrier of the future. To fully utilize the clean energy potential of a hydrogen economy, it is vital to produce hydrogen via water electrolysis, thus avoiding co-production of CO2 inherent to reformate hydrogen. While significant research efforts elsewhere are focused on photo-chemical hydrogen production from water, the inherent low efficiency of this method would require a massive land-use footprint to achieve sufficient hydrogen production rates to integrate hydrogen into energy markets. Thus, this research has primarily focused on the water splitting reactions on base-metal catalysts in the alkaline environment. Development of high-performance base-metal catalysts will help move alkaline water electrolysis to the forefront of hydrogen production methods, and when paired with solar and wind energy production, represents a clean and renewable energy economy. In addition to the water electrolysis reactions, research was conducted to understand the de-activation of reversible hydrogen electrodes in the corrosive environment of the hydrogen-bromine redox flow battery. Redox flow batteries represent a promising energy storage option to overcome the intermittency challenge of wind and solar energy production methods. Optimization of modular and scalable energy storage technology will allow higher penetration of renewable wind and solar energy into the grid. In Chapter 1, an overview of renewable energy production methods and energy storage options is presented. In addition, the fundamentals of electrochemical analysis and physical characterization of the catalysts are discussed. Chapter 2 reports the development of a Ni-Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline

  12. Solubility of uranium (IV) oxide in alkaline aqueous solutions to 300/sup 0/C

    SciTech Connect

    Tremaine, P.R.; Chen, J.D.; Wallace, G.J.; Boivin, W.A.

    1981-03-01

    The solubility of carefully characterized UO/sub 2/ in pOH 1.5 and pOH 2.5 aqueous solutions has been determined from 25 to 300/sup 0/C using a flow apparatus. Data were analyzed in terms of reversible reaction, UO/sub 2/ + 2H/sub 2/O + OH/sup -/ ..-->.. U(OH)/sub 5//sup -/, where log K = -5.86 + 32/T. The extreme sensitivity of both the UO/sub 2/ surface and aqueous U(IV) to oxidation is discussed.

  13. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    PubMed

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect.

  14. Water oxidation using earth-abundant transition metal catalysts: opportunities and challenges.

    PubMed

    Kärkäs, Markus D; Åkermark, Björn

    2016-10-01

    Catalysts for the oxidation of H2O are an integral component of solar energy to fuel conversion technologies. Although catalysts based on scarce and precious metals have been recognized as efficient catalysts for H2O oxidation, catalysts composed of inexpensive and earth-abundant element(s) are essential for realizing economically viable energy conversion technologies. This Perspective summarizes recent advances in the field of designing homogeneous water oxidation catalysts (WOCs) based on Mn, Fe, Co and Cu. It reviews the state of the art catalysts, provides insight into their catalytic mechanisms and discusses future challenges in designing bioinspired catalysts based on earth-abundant metals for the oxidation of H2O.

  15. Characterization of solid reaction products from wet oxidation of pyrite in coal using alkaline solutions

    SciTech Connect

    Greer, R.T.; Markuszewski, R.; Wheelock, T.D.

    1980-01-01

    Oxidation of pyrite alone and pyrite embedded in coal by leaching with hot solutions of sodium carbonate containing dissolved oxygen under pressure produces hematite, the major solid reaction product. The hematite is deposited as a concentric rim surrounding the core of unreacted pyrite. The thickness of the rim is greater for products obtained after longer leaching time or under conditions of higher oxygen partial pressure. The product is identified as hematite by X-ray diffraction analysis. Data from scanning electron microscopy, and energy-dispersive X-ray analysis show that under these conditions of desulfurization, phase transformations occur (from pyrite to hematite). In addition, great differences in porosity of the two zones (core and rim) are observed. The nature and extent of these transformations are discussed in terms of the desulfurization potential of pyrite in coal. (10 refs.)

  16. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  17. Probing the role of encapsulated alkaline earth metal atoms in endohedral metallofullerenes M@C76 (M = Ca, Sr, and Ba) by first-principles calculations.

    PubMed

    Yang, Tao; Zhao, Xiang; Xu, Qian; Zheng, Hong; Wang, Wei-Wei; Li, Sheng-Tao

    2012-05-01

    By means of density functional theory and statistical mechanics, we investigate the geometric and electronic structures, thermodynamic stability and infrared (IR) vibrational frequencies of alkaline earth metal endohedral fullerenes, M@C(76) (M = Ca, Sr, and Ba). The results reveal that M@C(1)(17,459)-C(76) possesses the lowest energy followed by M@C(2v)(19,138)-C(76) with a very small energy difference. Both the structures have a pair of adjacent pentagons and are related by a single Stone-Wales transformation. Equilibrium statistical thermodynamic analyses based on Gibbs energy treatments suggest that M@C(1)(17,459)-C(76) has a prominent thermodynamic stability at higher temperatures, in contrast with M@C(2v)(19,138)-C(76) whose thermodynamic stability is affected by the encapsulated metal atom. The encapsulated metallic atoms as well as cage structures significantly influence the electronic properties of endohedral fullerenes such as electron affinities and ionization potentials. On the other hand, the singlet-triplet splitting energy ΔE(S-T) depends on the cage structures. In addition, IR spectra and chemical shifts of these compounds have been computed to assist further experimental characterization.

  18. Valence photoionization of small alkaline earth atoms endohedrally confined in C60: From the many-electron collectivity to single-electron interferences

    NASA Astrophysics Data System (ADS)

    Javani, Mohammad; McCreary, Meghan; Patel, Aakash; Madjet, Mohamed; Chakraborty, Himadri; Manson, Steve

    2012-06-01

    Results of a theoretical study of the photoionization from outermost orbitals of Be, Mg and Ca atoms endohedrally confined in C60 are presented. The fullerene ion-core of sixty C^4+ ions is smudged into a continuous jellium distribution while the delocalized cloud of carbon valence electrons, plus the encaged atom, are treated in the time-dependent local density approximation (TDLDA) [1]. Systematic evolution of the mixing of outer atomic level with the C60 band is detected along the sequence. This is found to influence the plasmon-driven enhancement at low energies and the geometry-revealing confinement oscillations from multi-path interferences at high energies in significantly different ways. The study paints the first comparative picture of the atomic valence photospectra for alkaline earth metallofullerenes in a dynamical many-electron framework [2].[4pt] [1] M.E. Madjet et al., Phys. Rev. A 81, 013202 (2010)[0pt] [2] M.H. Javani et al., to be published.

  19. Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash.

    PubMed

    Keown, Daniel M; Favas, George; Hayashi, Jun-ichiro; Li, Chun-Zhu

    2005-09-01

    Sugar cane bagasse and cane trash were pyrolysed in a novel quartz fluidised-bed/fixed-bed reactor. Quantification of the Na, K, Mg and Ca in chars revealed that pyrolysis temperature, heating rate, valence and biomass type were important factors influencing the volatilisation of these alkali and alkaline earth metallic (AAEM) species. Pyrolysis at a slow heating rate (approximately 10 K min(-1)) led to minimal (often <20%) volatilisation of AAEM species from these biomass samples. Fast heating rates (>1000 K s(-1)), encouraging volatile-char interactions with the current reactor configuration, resulted in the volatilisation of around 80% of Na, K, Mg and Ca from bagasse during pyrolysis at 900 degrees C. Similar behaviour was observed for monovalent Na and K with cane trash, but the volatilisation of Mg and Ca from cane trash was always restricted. The difference in Cl content between bagasse and cane trash was not sufficient to fully explain the difference in the volatilisation of Mg and Ca.

  20. [High current microsecond pulsed hollow cathode lamp excited ionic fluorescence spectrometry of alkaline earth elements in inductively coupled plasma with a Fassel-torch].

    PubMed

    Zhang, Shao-Yu; Gong, Zhen-Bin; Huang, Ben-Li

    2006-02-01

    High current microsecond pulsed hollow cathode lamp (HCMP-HCL) excited ionic fluorescence spectrometry (IFS) of alkaline earth elements in inductively coupled plasma (ICP) with a Fassel-torch has been investigated. In wide condition ranges only IFS was observed, whilst atomic fluorescence spectrometry (AFS) was not detectable. More intense ionic fluorescence signal was observed at lower observation heights and at lower incident RF powers. Without introduction of any reduction organic gases into the ICP, the limit of detection (LOD, 3sigma) of Ba was improved by 50-fold over that of a conventional pulsed (CP) HCL with the Baird sleeve-extended torch. For Ca and Sr, the LODs by HCMP-HCL-ICP-IFS and CP-HCL-ICP-AFS show no significant difference. Relative standard deviations were 0.6%-1.4% (0.1-0.2 microg x mL(-1), n = 10) for 5 ionic fluorescence lines. Preliminary studies showed that the intensity of ionic fluorescence could be depressed in the presence of K, Al and P.

  1. Mechanochemical synthesis, structure, and properties of solid solutions of alkaline earth metal fluorides: Ma1-xMbxF2 (M: Ca, Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Heise, M.; Scholz, G.; Düvel, A.; Heitjans, P.; Kemnitz, E.

    2016-10-01

    The capability of mechanochemical synthesis for the formation of solid solutions of alkaline earth metal fluorides Ma1-xMbxF2 (M: Ca, Sr, Ba) was tested by fluorination of metal acetates and metal hydroxides with ammonium fluoride directly at milling. Evidence was found for a mutual substitution of cations on their lattice positions in Ca1-xSrxF2 and Ba1-xSrxF2 samples. For the Ba/Ca-system this synthesis route is only partially successful. X-ray diffraction and 19F MAS NMR spectroscopy were used to characterize all samples concerning their crystal structure and local fluorine coordination. Calculations of 19F chemical shifts with the superposition model along with probability calculations for the intensity of the individual 19F lines, performed in dependence on the molar composition of the samples, perfectly agree with the experimental findings. The fluoride ion conductivity of as-prepared samples, determined by temperature dependent DC conductivity measurements, is significantly higher than those of crystalline binary fluorides. Moreover, a higher F- ion conductivity is observed for samples with higher mixing grade in the Ca/Sr-and the Ba/Sr-systems.

  2. Dipole polarizability of alkali-metal (Na, K, Rb)–alkaline-earth-metal (Ca, Sr) polar molecules: Prospects for alignment

    SciTech Connect

    Gopakumar, Geetha Abe, Minori; Hada, Masahiko; Kajita, Masatoshi

    2014-06-14

    Electronic open-shell ground-state properties of selected alkali-metal–alkaline-earth-metal polar molecules are investigated. We determine potential energy curves of the {sup 2}Σ{sup +} ground state at the coupled-cluster singles and doubles with partial triples (CCSD(T)) level of electron correlation. Calculated spectroscopic constants for the isotopes ({sup 23}Na, {sup 39}K, {sup 85}Rb)–({sup 40}Ca, {sup 88}Sr) are compared with available theoretical and experimental results. The variation of the permanent dipole moment (PDM), average dipole polarizability, and polarizability anisotropy with internuclear distance is determined using finite-field perturbation theory at the CCSD(T) level. Owing to moderate PDM (KCa: 1.67 D, RbCa: 1.75 D, KSr: 1.27 D, RbSr: 1.41 D) and large polarizability anisotropy (KCa: 566 a.u., RbCa: 604 a.u., KSr: 574 a.u., RbSr: 615 a.u.), KCa, RbCa, KSr, and RbSr are potential candidates for alignment and orientation in combined intense laser and external static electric fields.

  3. The long-range non-additive three-body dispersion interactions for the rare gases, alkali, and alkaline-earth atoms.

    PubMed

    Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun; Babb, James F; Mitroy, J

    2012-03-14

    The long-range non-additive three-body dispersion interaction coefficients Z(111), Z(112), Z(113), and Z(122) are computed for many atomic combinations using standard expressions. The atoms considered include hydrogen, the rare gases, the alkali atoms (up to Rb), and the alkaline-earth atoms (up to Sr). The term Z(111) arising from three mutual dipole interactions is known as the Axilrod-Teller-Muto coefficient or the DDD (dipole-dipole-dipole) coefficient. Similarly, the terms Z(112), Z(113), and Z(122) arise from the mutual combinations of dipole (1), quadrupole (2), and octupole (3) interactions between atoms and they are sometimes known, respectively, as dipole-dipole-quadrupole, dipole-dipole-octupole, and dipole-quadrupole-quadrupole coefficients. Results for the four Z coefficients are given for the homonuclear trimers, for the trimers involving two like-rare-gas atoms, and for the trimers with all combinations of the H, He, and Li atoms. An exhaustive compilation of all coefficients between all possible atomic combinations is presented as supplementary data.

  4. Thermal stability of the anionic sigma complexes of 2,4,6-trinitroanisole with the methylates of the alkaline-earth metals

    SciTech Connect

    Glaz, A.I.; Soldatova, T.A.; Golopolosova, T.V.; Gitis, S.S.

    1987-09-10

    The study of the stability of the 1,1-dimethoxy-2,4,6-trinitrocyclohexadienates of the alkali metals when they are heated in air showed that their temperature of decomposition and the heat effect of the process are dependent on the nature of the cation. Our study centered on the thermal decomposition of the products resulting from the addition of the methylates of calcium, strontium, and barium to 2,4,6-trinitroanisole. For a quantitative assessment of the process we used the combined methods of differential-thermal analysis and differential thermogravimetry. The anionic sigma-complexes of 2,4,6-trinitroanisole with the methylates of the alkaline-earth metals decompose on heating into the corresponding picrates; at the same time, when one passes from the calcium slat to the strontium and barium salts the decomposition temperature and the heat effect of the process show a drop which is linked to the structure both of the complexes and of the picrates forming therefrom.

  5. Ni/Pd-Decorated Carbon NFs as an Efficient Electrocatalyst for Methanol Oxidation in Alkaline Medium

    NASA Astrophysics Data System (ADS)

    Mohamed, Ibrahim M. A.; Khalil, Khalil Abdelrazek; Mousa, Hamouda M.; Barakat, Nasser A. M.

    2016-09-01

    In this study, Ni/Pd-decorated carbon nanofibers (NFs) were fabricated as an electrocatalyst for methanol oxidation. These NFs were synthesized based on carbonization of poly(vinyl alcohol), which has high carbon content compared to many polymers used to prepare carbon NFs. Typically, calcination of an electrospun mat composed of nickel acetate, palladium acetate, and poly(vinyl alcohol) can produce Ni/Pd-doped carbon NFs. The introduced NFs were characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution transmission electron microscopy, line TEM energy dispersive x-ray spectrometry, field emission scanning electron microscopy, and x-ray powder diffraction. These physicochemical characterizations are acceptable tools to investigate the crystallinity and chemistry of the fabricated Ni/Pd-carbon NFs. Accordingly, the prepared NFs were tested to enhance the economic and catalytic behavior of methanol electrooxidation. Experimentally, the obtained onset potential was small compared to many reported materials; 0.32 V (versus Ag/AgCl as a reference electrode). At the same time, the current density changed from 5.08 mA/cm2 in free methanol at 0.6 V to 12.68 mA/cm2 in 0.1 mol/L methanol, which can be attributed to the MeOH oxidation. Compared to nanoparticles, the NFs have a distinct effect on the electrocatalytic performance of material due to the effect of the one-dimensional structure, which facilitates the electron transfer. Overall, the presented work opens a new way for non-precious one-dimensional nanostructured catalysts for direct methanol fuel cell technology.

  6. Diamonds, Eclogites, and the Oxidation State of the Earth's Mantle.

    PubMed

    Luth, R W

    1993-07-01

    The reaction dolomite + 2 coesite --><-- diopside + 2 diamond + 2O(2) defines the coexistence of diamond and carbonate in mantle eclogites. The oxygen fugacity of this reaction is approximately 1 log unit higher at a given temperature and pressure than the oxygen fugacities of the analogous reactions that govern the stability of diamond in peridotite. This difference allows diamond-bearing eclogite to coexist with peridotite containing carbonate or carbonate + diamond. This potential coexistence of diamond-bearing eclogite and carbonate-bearing peridotite can explain the presence of carbon-free peridotite interlayered with garnet pyroxenites that contain graphitized diamond in the Moroccan Beni Bousera massif at the Earth's surface and the preferential preservation of diamond-bearing eclogitic relative to peridotitic xenoliths in the Roberts Victor kimberlite. PMID:17750546

  7. Diamonds, Eclogites, and the Oxidation State of the Earth's Mantle.

    PubMed

    Luth, R W

    1993-07-01

    The reaction dolomite + 2 coesite --><-- diopside + 2 diamond + 2O(2) defines the coexistence of diamond and carbonate in mantle eclogites. The oxygen fugacity of this reaction is approximately 1 log unit higher at a given temperature and pressure than the oxygen fugacities of the analogous reactions that govern the stability of diamond in peridotite. This difference allows diamond-bearing eclogite to coexist with peridotite containing carbonate or carbonate + diamond. This potential coexistence of diamond-bearing eclogite and carbonate-bearing peridotite can explain the presence of carbon-free peridotite interlayered with garnet pyroxenites that contain graphitized diamond in the Moroccan Beni Bousera massif at the Earth's surface and the preferential preservation of diamond-bearing eclogitic relative to peridotitic xenoliths in the Roberts Victor kimberlite.

  8. Enhanced Catalytic Activities of NiPt Truncated Octahedral Nanoparticles toward Ethylene Glycol Oxidation and Oxygen Reduction in Alkaline Electrolyte.

    PubMed

    Xia, Tianyu; Liu, Jialong; Wang, Shouguo; Wang, Chao; Sun, Young; Gu, Lin; Wang, Rongming

    2016-05-01

    The high cost and poor durability of Pt nanoparticles (NPs) are great limits for the proton exchange membrane fuel cells (PEMFCs) from being scaled-up for commercial applications. Pt-based bimetallic NPs together with a uniform distribution can effectively reduce the usage of expensive Pt while increasing poison resistance of intermediates. In this work, a simple one-pot method was used to successfully synthesize ultrafine (about 7.5 nm) uniform NiPt truncated octahedral nanoparticles (TONPs) in dimethylformamid (DMF) without any seeds or templates. The as-prepared NiPt TONPs with Pt-rich surfaces exhibit greatly improved catalytic activities together with good tolerance and better stability for ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) in comparison with NiPt NPs and commercial Pt/C catalysts in alkaline electrolyte. For example, the value of mass and specific activities for EGOR are 23.2 and 17.6 times higher comparing with those of commercial Pt/C, respectively. Our results demonstrate that the dramatic enhancement is mainly attributed to Pt-rich surface, larger specific surface area, together with coupling between Ni and Pt atoms. This developed method provides a promising pathway for simple preparation of highly efficient electrocatalysts for PEMFCs in the near future. PMID:27093304

  9. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13. PMID:27388643

  10. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13.

  11. [Simultaneous determination of europium and copper in rare earth oxide by use AAS-PLS method].

    PubMed

    Zhong, M; Qiu, X; Mo, C; Zheng, Y

    1999-02-01

    Partial least squares regression was used to compensate for spectral "overlap" interference of Eu 324. 753 nm with Cu 324.754 nm in atomic absorption spectrometry. We could only use the copper element hollow-cathode lamp to simultaneous determine Eu and Cu in synthetic samples and rare earth oxide, and obtained satisfactory results.

  12. Ruthenium(III) catalyzed oxidation of sulfanilic acid by diperiodatocuprate(III) in aqueous alkaline medium. A kinetic and mechanistic approach

    NASA Astrophysics Data System (ADS)

    Munavalli, D. S.; Patil, R. K.; Chimatadar, S. A.; Nandibewoor, S. T.

    2009-12-01

    The kinetics of ruthenium(III) catalyzed oxidation of sulfanilic acid by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of (0.50 mol dm-3) has been studied spectrophoto-metrically. The reaction between sulfanilic acid and DPC in alkaline medium exhibits 1: 4 stoichiometry (sulfanilic acid: DPC). The reaction is first order with respect to [DPC] and [RuIII] and has less than unit order both in [sulfanilic acid] and [alkali]. The active species of catalyst and oxidant have been identified. Intervention of free radicals was observed in the reaction. The main products were identified by spot test and IR. Probable mechanism is proposed and discussed. The reaction constants involved in the different steps of the mechanism are calculated. The activation parameters with respect to the slow step of the mechanism are computed and discussed. Thermodynamic quantities are also determined.

  13. Structural silicon nitride materials containing rare earth oxides

    DOEpatents

    Andersson, Clarence A.

    1980-01-01

    A ceramic composition suitable for use as a high-temperature structural material, particularly for use in apparatus exposed to oxidizing atmospheres at temperatures of 400 to 1600.degree. C., is found within the triangular area ABCA of the Si.sub.3 N.sub.4 --SiO.sub.2 --M.sub.2 O.sub.3 ternary diagram depicted in FIG. 1. M is selected from the group of Yb, Dy, Er, Sc, and alloys having Yb, Y, Er, or Dy as one component and Sc, Al, Cr, Ti, (Mg +Zr) or (Ni+Zr) as a second component, said alloy having an effective ionic radius less than 0.89 A.

  14. Structure reactivity and thermodynamic analysis on the oxidation of ampicillin drug by copper(III) complex in aqueous alkaline medium (stopped-flow technique)

    NASA Astrophysics Data System (ADS)

    Shetti, Nagaraj P.; Hegde, Rajesh N.; Nandibewoor, Sharanappa T.

    2009-07-01

    Oxidation of penicillin derivative, ampicillin (AMP) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.01-mol dm -3 was studied spectrophotometrically. The reaction between DPC and ampicillin in alkaline medium exhibits 1:4 stoichiometry (ampicillin:DPC). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the protonated form of DPC as the reactive oxidant species has been proposed. The oxidation reaction in alkaline medium has been shown to proceed via a DPC-AMP complex, which decomposes slowly in a rate determining step to yield phenyl glycine (PG) and free radical species of 6-aminopenicillanic acid (6-APA), followed by other fast steps to give the products. The two major products were characterized by IR, NMR, LC-MS and Spot test. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.

  15. Oxides for sustainable photovoltaics with earth-abundant materials

    NASA Astrophysics Data System (ADS)

    Wagner, Alexander; Stahl, Mathieu; Ehrhardt, Nikolai; Fahl, Andreas; Ledig, Johannes; Waag, Andreas; Bakin, Andrey

    2014-03-01

    Energy conversion technologies are aiming to extremely high power capacities per year. Nontoxicity and abundance of the materials are the key requirements to a sustainable photovoltaic technology. Oxides are among the key materials to reach these goals. We investigate the influence of thin buffer layers on the performance of an ZnO:Al/buffer/Cu2O solar cells. Introduction of a thin ZnO or Al2O3 buffer layer, grown by thermal ALD, between ZnO:Al and Cu2O resulted in 45% increase of the solar cell efficiency. VPE growth of Cu2O employing elemental copper and pure oxygen as precursor materials is presented. The growth is performed on MgO substrates with the (001) orientation. On- and off- oriented substrates have been employed and the growth results are compared. XRD investigations show the growth of the (110) oriented Cu2O for all temperatures, whereas at a high substrate temperature additional (001) Cu2O growth occurs. An increase of the oxygen partial pressure leads to a more pronounced 2D growth mode, whereby pores between the islands still remain. The implementation of off-axis substrates with 3.5° and 5° does not lead to an improvement of the layer quality. The (110) orientation remains predominant, the grain size decreases and the FWHM of the (220) peak increases. From the AFM images it is concluded, that the (110) surface grows with a tilt angle to the substrate surface.

  16. Oxidative study of gabapentin by alkaline hexacyanoferrate(III) in room temperature in presence of catalytic amount of Ru(III) a mechanistic approach

    NASA Astrophysics Data System (ADS)

    Jose, Timy P.; Angadi, Mahantesh A.; Salunke, Manjalee S.; Tuwar, Suresh M.

    2008-12-01

    The kinetics of oxidation of gabapentin by hexacyanoferrate(III) in aqueous alkaline medium at a constant ionic strength of 0.5 mol dm -3 was studied spectrophotometrically. The reaction is of first order in [HCF(III)] and of less than unit order in [alkali]. The reaction rate is independent upon [gabapentin]. Effects of added products, ionic strength and dielectric constant of the reaction medium have been investigated. Oxidative product of gabapentin was identified. A suitable mechanism has been proposed. The reaction constants involved in the different steps of mechanism are calculated. The activation parameters of the mechanism are computed and discussed .

  17. An oxidant and organic solvent tolerant alkaline lipase by P. aeruginosa mutant: Downstream processing and biochemical characterization

    PubMed Central

    Bisht, Deepali; Yadav, Santosh Kumar; Darmwal, Nandan Singh

    2013-01-01

    An extracellular alkaline lipase from Pseudomonas aeruginosa mutant has been purified to homogeneity using acetone precipitation followed by anion exchange and gel filtration chromatography and resulted in 27-fold purification with 19.6% final recovery. SDS-PAGE study suggested that the purified lipase has an apparent molecular mass of 67 kDa. The optimum temperature and pH for the purified lipase were 45°C and 8.0, respectively. The enzyme showed considerable stability in pH range of 7.0–11.0 and temperature range 35–55 °C. The metal ions Ca2+, Mg2+ and Na+ tend to increase the enzyme activity, whereas, Fe2+ and Mn2+ ions resulted in discreet decrease in the activity. Divalent cations Ca+2 and Mg+2 seemed to protect the enzyme against thermal denaturation at high temperatures and in presence of Ca+2 (5 mM) the optimum temperature shifted from 45°C to 55°C. The purified lipase displayed significant stability in the presence of several hydrophilic and hydrophobic organic solvents (25%, v/v) up to 168 h. The pure enzyme preparation exhibited significant stability and compatibility with oxidizing agents and commercial detergents as it retained 40–70% of its original activities. The values of Km and Vmax for p-nitrophenyl palmitate (p-NPP) under optimal conditions were determined to be 2.0 mg.mL−1 and 5000 μg.mL−1.min−1, respectively. PMID:24688527

  18. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications. PMID:26827218

  19. Absorption spectroscopy of heavy alkaline earth metals Ba and Sr in rare gas matrices--CCSD(T) calculations and atomic site occupancies.

    PubMed

    Davis, Barry M; McCaffrey, John G

    2016-01-28

    Isolation of the heavier alkaline earth metals Ba and Sr in the solid rare gases (RGs) Ar, Kr, and Xe is analysed with absorption spectroscopy and interpreted partly with the assistance of ab initio calculations of the diatomic M ⋅ RG ground state interaction potentials. The y(1)P ← a(1)S resonance transitions in the visible spectral region are used to compare the isolation conditions of these two metal atom systems and calcium. Complex absorption bands were recorded in all three metal atom systems even after extensive sample annealing. Coupled cluster calculations conducted on the ground states of the nine M ⋅ RG diatomics (M = Ca, Sr, and Ba; RG = Ar, Kr, and Xe) at the coupled cluster single, double, and non-iterative triple level of theory revealed long bond lengths (>5 Å) and shallow bound regions (<130 cm(-1)). All of the M ⋅ RG diatomics have bond lengths considerably longer than those of the rare gas dimers, with the consequence that isolation of these metal atoms in a single substitutional site of the solid rare gas is unlikely, with the possible exception of Ca/Xe. The luminescence of metal dimer bands has been recorded for Ba and Sr revealing very different behaviours. Resonance fluorescence with a lifetime of 15 ns is observed for the lowest energy transition of Sr2 while this transition is quenched in Ba2. This behaviour is consistent with the absence of vibrational structure on the dimer absorption band in Ba2 indicating lifetime broadening arising from efficient relaxation to low-lying molecular states. More extensive 2D excitation-emission data recorded for the complex site structures present on the absorption bands of the atomic Ba and Sr systems will be presented in future publications.

  20. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms

    SciTech Connect

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-15

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular (l = vertical bar m vertical bar = n–1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ∼ n–1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau–Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li(nlm) atom with given principal n, orbital l = n–1, and magnetic m quantum numbers at thermal collisions with the Ca(4s{sup 2}) and Sr(5s{sup 2}) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l (l ≪ n)

  1. Multi-phase glass-ceramics as a waste form for combined fission products: alkalis, alkaline earths, lanthanides, and transition metals

    SciTech Connect

    Crum, Jarrod V.; Turo, Laura A.; Riley, Brian J.; Tang, Ming; Kossoy, Anna

    2012-04-01

    In this study, multi-phase silicate-based glass-ceramics were investigated as an alternate waste form for immobilizing non-fissionable products from used nuclear fuel. Currently, borosilicate glass is the waste form selected for immobilization of this waste stream, however, the low thermal stability and solubility of MoO{sub 3} in borosilicate glass translates into a maximum waste loading in the range of 15-20 mass%. Glass-ceramics provide the opportunity to target durable crystalline phases, e.g., powellite, oxyapatite, celsian, and pollucite, that will incorporate MoO{sub 3} as well as other waste components such as lanthanides, alkalis, and alkaline earths at levels 2X the solubility limits of a single-phase glass. In addition a glass-ceramic could provide higher thermal stability, depending upon the properties of the crystalline and amorphous phases. Glass-ceramics were successfully synthesized at waste loadings of 42, 45, and 50 mass% with the following glass additives: B{sub 2}O{sub 3}, Al{sub 2}O{sub 3}, CaO and SiO{sub 2} by slow cooling form from a glass melt. Glass-ceramics were characterized in terms of phase assemblage, morphology, and thermal stability. The targeted phases: powellite and oxyapatite were observed in all of the compositions along with a lanthanide borosilicate, and cerianite. Results of this initial investigation of glass-ceramics show promise as a potential waste form to replace single-phase borosilicate glass.

  2. Simultaneous determination of inorganic and organic anions, alkali, alkaline earth and transition metal cations by capillary electrophoresis with contactless conductometric detection.

    PubMed

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil

    2002-11-01

    Simultaneous separation of up to 22 inorganic and organic anions, alkali, alkaline earth and transition metal cations was achieved in less than 3 min in the capillary electrophoresis system with contactless conductometric detector. The sample was injected from both capillary ends (dual opposite end injection) and anionic and cationic species were detected in the center of the separation capillary. The parameters of the separation electrolyte, such as pH, concentration of the electrolyte, concentration of complexing agents and concentration of 18-crown-6 were studied. Best results were achieved with electrolytes consisting of 8 mM L-histidine, 2.8 mM 2-hydroxyisobutyric acid, 0.32 mM 18-crown-6 at pH 4.25 or 9 mM L-histidine, 4.6 mM lactic acid, 0.38 mM 18-crown-6 at pH 4.25. Other electrolytes containing complexing agents such as malic or tartaric acid at various concentrations could also be used. The detection limits achieved for most cations and anions were 7.5 - 62 micro gL(-1) except for Ba2+ (90 micro gL(-1)), Cd 2+, Cr 3+ and F- (125 micro gL(-1)), and fumarate (250 micro gL(-1)). The repeatability of migration times and peak areas was better than 0.4% and 5.9%, respectively. The developed method was applied for analysis of real samples, such as tap, rain, drainage and surface water samples, plant exudates, plant extracts and ore leachates.

  3. Unimolecular and hydrolysis channels for the detachment of water from microsolvated alkaline earth dication (Mg2+, Ca2+, Sr2+, Ba2+) clusters

    SciTech Connect

    Miliordos, Evangelos; Xantheas, Sotiris S.

    2014-02-07

    We examine theoretically the three channels that are associated with the detachment of a single water molecule from the aqueous clusters of the alkaline earth dications, [M(H2O)n]2+, M = Mg, Ca, Sr, Ba, n ≤ 6. These are the unimolecular water loss (M2+(H2O)n-1 + H2O) and the two hydrolysis channels resulting to the loss of hydronium ([MOH(H2O)n-2]+ + H3O+) and Zundel ([MOH(H2O)n-3]+ + H3O+(H2O)) cations. The Potential Energy Curves (PECs) corresponding to those three channels were constructed at the Møller-Plesset second order perturbation (MP2) level of theory with basis sets of double- and triple-ζ quality. We furthermore investigated the water and hydronium loss channels from the mono-hydroxide water clusters with up to four water molecules, [MOH(H2O)n]+, 1 ≤ n ≤ 4. Our results indicate the preference of the hydronium loss and possibly the Zundel cation loss channels for the smallest size clusters, whereas the unimolecular water loss channel is preferred for the larger ones as well as the mono-hydroxide clusters. Although the charge separation (hydronium and Zundel cation loss) channels produce more stable products when compared to the ones for the unimolecular water loss, they also require the surmounting of high energy barriers, a fact that makes the experimental observation of fragments related to these hydrolysis channels difficult.

  4. Interaction of Rydberg atoms in circular states with the alkaline-earth Ca(4 s 2) and Sr(5 s 2) atoms

    NASA Astrophysics Data System (ADS)

    Mironchuk, E. S.; Narits, A. A.; Lebedev, V. S.

    2015-11-01

    The resonant mechanism of interaction of alkaline-earth atoms having a low electron affinity to Rydberg atoms in circular ( l = | m| = n-1) and near-circular states has been studied. To describe the dynamics of resonant processes accompanied by nonadiabatic transitions between ionic and Rydberg covalent terms of a quasimolecule, an approach based on the integration of coupled equations for the probability amplitudes has been developed taking into account the possibility of the decay of an anion in the Coulomb field of the positive ionic core of a highly excited atom. The approach involves the specific features of the problem associated with the structure of the wavefunction of a Rydberg electron in states with high orbital angular momenta l ~ n-1. This approach provides a much more accurate description of the dynamics of electronic transitions at collisions between atoms than that within the modified semiclassical Landau-Zener model. In addition, this approach makes it possible to effectively take into account many channels of the problem. The cross sections for resonant quenching of Rydberg states of the Li( nlm) atom with given principal n, orbital l = n-1, and magnetic m quantum numbers at thermal collisions with the Ca(4 s 2) and Sr(5 s 2) atoms have been calculated. The dependences of the results on n, m, and angle α between the relative velocity of the atoms and the normal to the plane of the orbit of the Rydberg electron have been obtained. The influence of orientational effects on the efficiency of the collisional destruction of circular and near-circular states has been studied. The results indicate a higher stability of such states to their perturbations by neutral particles as compared to usually studied nl states with low values of l ( l ≪ n).

  5. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Righter, K.; Keller, L.; Christoffersen, R.; Rahman, Z.

    2015-01-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion, transitioned from reduced to oxidized, or from oxidized to reduced. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P is less than 4 GPa, Fe3+/TotFe decreased slightly with increasing P, similar to terrestrial basalt. For oxidizing experiments less than 7GPa, Fe3+/TotFe decreased as well, but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after, but both resulted in a finer grained polyphase texture. Experiments are currently underway to test different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and this technique will be

  6. METHOD OF MAKING ALLOYS OF SECOND RARE EARTH SERIES METALS

    DOEpatents

    Baker, R.D.; Hayward, B.R.

    1963-01-01

    >This invention relates to a process for alloying the second rare earth series metals with Mo, Nb, or Zr. A halide of the rare earth metal is mixed with about 1 to 20 at.% of an oxide of Mo, Nb, or Zr. Iodine and an alkali or alkaline earth metal are added, and the resulting mixture is heated in an inert atmosphere to 350 deg C. (AEC)

  7. High-temperature desulfurization of gasifier effluents with rare earth and rare earth/transition metal oxides

    SciTech Connect

    Dooley, Kerry M.; Kalakota, Vikram; Adusumilli, Sumana

    2011-02-11

    We have improved the application of mixed rare-earth oxides (REOs) as hot gas desulfurization adsorbents by impregnating them on stable high surface area supports and by the inclusion of certain transition metal oxides. We report comparative desulfurization experiments at high temperature (900 K) using a synthetic biomass gasifier effluent containing 0.1 vol % H2S, along with H2, CO2, and water. More complex REO sorbents outperform the simpler CeO2/La2O3 mixtures, in some cases significantly. Supporting REOs on Al2O3 (~20 wt % REO) or ZrO2 actually increased the sulfur capacities found after several cycles on a total weight basis. Another major increase in sulfur capacity took place when MnOx or FeOx is incorporated. Apparently most of the Mn or Fe is dispersed on or near the surface of the mixed REOs because the capacities with REOs greatly exceeded those of Al2O3-supported MnOx or FeOx alone at these conditions. In contrast, incorporating Cu has little effect on sulfur adsorption capacities. Both the REO and transition metal/REO adsorbents could be regenerated completely using air for at least five repetitive cycles.

  8. Bolide impacts and the oxidation state of carbon in the earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, James F.

    1990-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean.

  9. Catalyst and semiconductor studies involving oxidized rare earth intermetallic compounds. [Visible radiation

    SciTech Connect

    Shamsi, A.

    1981-01-01

    The intermetallic compounds (LaNi/sub 5/, CeNi/sub 5/, Ce/sub 2/Ni/sub 17/, TbNi/sub 5/, ZrNi/sub 5/, LaCo/sub 5/ ThCo/sub 5/ and CeCo/sub 5/) were oxidized with nitric oxide (NO), synthesis gas (SG) and oxygen (O/sub 2/). Most of these intermetallic compounds react readily with the oxidizers and were transformed into a mixture of transition metal and rare earth oxide for ThO/sub 2/) during the oxidation processes. Samples were also prepared by a freeze-drying method. The catalytic activity of these materials for synthesis gas conversion was measured with a single pass microreactor operating at 1 atm total pressure, and the major products were CH/sub 4/, CO/sub 2/, C/sub 2/H/sub 4/, C/sub 2/H/sub 6/ and H/sub 2/O. The product distribution indicated that the formation of methane is favored for most of the catalysts. CeCo/sub 5/ and LaCo/sub 5/ oxidized with O/sub 2/ were found to have higher olefin to paraffin ratio than the other catalysts. Carbon deposition occurs on the oxidized Co compound and ZrNi/sub 5/ during the catalytic reaction. The preparation of polycrystalline rare earth iron oxide electrodes by heating the rare earth (R) iron compounds (RFe/sub 2/, RFe/sub 3/, R/sub 2/Fe/sub 17/ and R/sub 6/Fe/sub 23/) in air in the flame of a Fisher burner is reported. Iron oxide and titanium oxide are also prepared by heating Fe and Ti metal in air for comparison. The current-voltage (I-V) properties of these materials are measured in aqueous solution of 1 M NaOH. The flatband potentials (V/sub fb/) are determined with respect to a fixed potential (SCE) extrapolating to zero current in I-V curves. Photoelectrolysis of water occurs at these electrodes, resulting in the evolution of oxygen (O/sub 2/) from the RFeO/sub x/ electrodes and hydrogen from the Pt electrode. Most of these electrodes are found to be stable under experimental conditions and anodic photocurrents are generated by light energy greater than the band gap energy (E/sub g/).

  10. Surprisingly Different Reaction Behavior of Alkali and Alkaline Earth Metal Bis(trimethylsilyl)amides toward Bulky N-(2-Pyridylethyl)-N'-(2,6-diisopropylphenyl)pivalamidine.

    PubMed

    Kalden, Diana; Oberheide, Ansgar; Loh, Claas; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2016-07-25

    N-(2,6-Diisopropylphenyl)-N'-(2-pyridylethyl)pivalamidine (Dipp-N=C(tBu)-N(H)-C2 H4 -Py) (1), reacts with metalation reagents of lithium, magnesium, calcium, and strontium to give the corresponding pivalamidinates [(tmeda)Li{Dipp-N=C(tBu)-N-C2 H4 -Py}] (6), [Mg{Dipp-N=C(tBu)-N-C2 H4 -Py}2 ] (3), and heteroleptic [{(Me3 Si)2 N}Ae{Dipp-N=C(tBu)-N-C2 H4 -Py}], with Ae being Ca (2 a) and Sr (2 b). In contrast to this straightforward deprotonation of the amidine units, the reaction of 1 with the bis(trimethylsilyl)amides of sodium or potassium unexpectedly leads to a β-metalation and an immediate deamidation reaction yielding [(thf)2 Na{Dipp-N=C(tBu)-N(H)}] (4 a) or [(thf)2 K{Dipp-N=C(tBu)-N(H)}] (4 b), respectively, as well as 2-vinylpyridine in both cases. The lithium derivative shows a similar reaction behavior to the alkaline earth metal congeners, underlining the diagonal relationship in the periodic table. Protonation of 4 a or the metathesis reaction of 4 b with CaI2 in tetrahydrofuran yields N-(2,6-diisopropylphenyl)pivalamidine (Dipp-N=C(tBu)-NH2 ) (5), or [(thf)4 Ca{Dipp-N=C(tBu)-N(H)}2 ] (7), respectively. The reaction of AN(SiMe3 )2 (A=Na, K) with less bulky formamidine Dipp-N=C(H)-N(H)-C2 H4 -Py (8) leads to deprotonation of the amidine functionality, and [(thf)Na{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 a) or [(thf)K{Dipp-N=C(H)-N-C2 H4 -Py}]2 (9 b), respectively, are isolated as dinuclear complexes. From these experiments it is obvious, that β-metalation/deamidation of N-(2-pyridylethyl)amidines requires bases with soft metal ions and also steric pressure. The isomeric forms of all compounds are verified by single-crystal X-ray structure analysis and are maintained in solution. PMID:27355970

  11. Isotopic evidence for internal oxidation of the Earth's mantle during accretion

    NASA Astrophysics Data System (ADS)

    Williams, Helen M.; Wood, Bernard J.; Wade, Jon; Frost, Daniel J.; Tuff, James

    2012-03-01

    The Earth's mantle is currently oxidised and out of chemical equilibrium with the core. The reasons for this and for the relatively oxidised state of Earth's mantle relative to the mantles of other terrestrial planets are unclear. It has been proposed that the oxidised nature and high ferric iron (Fe3 +) content of Earth's mantle was produced internally by disproportionation of ferrous iron (Fe2 +) into Fe3 + and metallic iron by perovskite crystallisation during accretion. Here we show that there is substantial Fe isotope fractionation between experimentally equilibrated metal and Fe3 +-bearing perovskite (≥ 0.45‰/amu), which can account for the heavy Fe isotope compositions of terrestrial basalts relative to equivalent samples derived from Mars and Vesta as the latter bodies are too small to stabilise significant perovskite. Mass balance calculations indicate that all of the mantle's Fe3 + could readily have been generated from a single disproportionation event, consistent with dissolution of perovskite in the lower mantle during a process such as the Moon-forming giant impact. The similar Fe isotope compositions of primitive terrestrial and low-titanium lunar basalts is consistent with models of equilibration between the mantles of the Earth and Moon in the aftermath of the giant impact and suggests that the heavy Fe isotope composition of the Earth's mantle was established prior to, or during the giant impact. The oxidation state and ferric iron content of the Earth's mantle was therefore plausibly set by the end of accretion, and may be decoupled from later volatile additions and the rise of oxygen in the Earth's atmosphere at 2.45 Ga.

  12. FeS anchored reduced graphene oxide nanosheets as advanced anode material with superior high-rate performance for alkaline secondary batteries

    NASA Astrophysics Data System (ADS)

    Shangguan, Enbo; Guo, Litan; Li, Fei; Wang, Qin; Li, Jing; Li, Quanmin; Chang, Zhaorong; Yuan, Xiao-Zi

    2016-09-01

    A new nanocomposite formulation of the iron-based anode for alkaline secondary batteries is proposed. For the first time, FeS nanoparticles anchored on reduced graphene oxide (RGO) nanosheets are synthesized via a facile, environmentally friendly direct-precipitation approach. In this nanocomposite, FeS nanoparticles are anchored uniformly and tightly on the surface of RGO nanosheets. As an alkaline battery anode, the FeS@RGO electrode delivers a superior high-rate charge/discharge capability and outstanding cycling stability, even at a condition without any conductive additives and a high electrode loading of ∼40 mg cm-2. At high charge/discharge rates of 5C, 10C and 20C (6000 mA g-1), the FeS@RGO electrode presents a specific capacity of ∼288, 258 and 220 mAh g-1, respectively. Moreover, the FeS@RGO electrode exhibits an admirable long cycling stability with a superior capacity retention of 87.6% for 300 cycles at a charge/discharge rate of 2C. The excellent electrochemical properties of the FeS@RGO electrode can be stemmed from the high specific surface area, peculiar electric conductivity and robust sheet-anchored structure of the FeS@RGO nanocomposite. By virtue of its superior fast charge/discharge properties, the FeS@RGO nanocomposite is suitable as an advanced anode material for high-performance alkaline secondary batteries.

  13. Generic process for preparing a crystalline oxide upon a group IV semiconductor substrate

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.; Chisholm, Matthew F.

    2000-01-01

    A process for growing a crystalline oxide epitaxially upon the surface of a Group IV semiconductor, as well as a structure constructed by the process, is described. The semiconductor can be germanium or silicon, and the crystalline oxide can generally be represented by the formula (AO).sub.n (A'BO.sub.3).sub.m in which "n" and "m" are non-negative integer repeats of planes of the alkaline earth oxides or the alkaline earth-containing perovskite oxides. With atomic level control of interfacial thermodynamics in a multicomponent semiconductor/oxide system, a highly perfect interface between a semiconductor and a crystalline oxide can be obtained.

  14. Chemical equilibria of rare earth oxides in glow-discharge mass spectrometry

    SciTech Connect

    Mei, Y.

    1992-01-01

    This research centers around method development and fundamental exploration of the rare earth elements (REE) in glow discharge mass spectrometry (GDMS). The capability of GDMS to analyze directly solids materials eliminates the sample dissolution and preconcentration steps required by many other methods. The simplicity of sample preparation and instrumental operation makes GDMS a promising analytical technique for the field of earth science. Initial studies were dedicated to improving the detection sensitivity of GDMS in analyzing the REE. This was accomplished by eliminating water contamination, a factor that was found to prevent the conversion of the rare earth oxidized to their atomic form in the glow discharge plasma. Methods experimented for water elimination included the uses of both a cryogenic cooling device and getter reagents. When used to determine the REE concentrations in a standard rock sample, the chemical elimination approach yielded comparable results to that obtained by other analytical methods. Further studies focused on probing the chemical reactions involving the REE and other plasma constituents in the glow discharge. It is proposed that the availability of the atomic REE in the glow discharge is strongly influenced by the oxidant and reductant contents in the plasma. Species that contain oxygen tend to shift the redox equilibria of REE toward the formation of their oxides, whereas species that compete for oxygen help reduce the oxidant content in the plasma, and shift the REE redox equilibria toward the formation of the REE atoms. Factors that govern the reaction processes of the REE equilibria were investigated by means of plasma reagent introduction and time-resolved discharge operation. Results indicate that while redox equilibria between the elemental REE and their monoxides exist on the cathode surface and in the gas phase, interactions occurring in the gas phase are probably the main paths for this equilibration in the glow discharge.

  15. Charge Compensation in RE3+ (RE = Eu, Gd) and M+ (M = Li, Na, K) Co-Doped Alkaline Earth Nanofluorides Obtained by Microwave Reaction with Reactive Ionic Liquids Leading to Improved Optical Properties

    SciTech Connect

    Lorbeer, C; Behrends, F; Cybinska, J; Eckert, H; Mudring, Anja -V

    2014-01-01

    Alkaline earth fluorides are extraordinarily promising host matrices for phosphor materials with regard to rare earth doping. In particular, quantum cutting materials, which might considerably enhance the efficiency of mercury-free fluorescent lamps or SC solar cells, are often based on rare earth containing crystalline fluorides such as NaGdF4, GdF3 or LaF3. Substituting most of the precious rare earth ions and simultaneously retaining the efficiency of the phosphor is a major goal. Alkaline earth fluoride nanoparticles doped with trivalent lanthanide ions (which are required for the quantum cutting phenomenon) were prepared via a microwave assisted method in ionic liquids. As doping trivalent ions into a host with divalent cations requires charge compensation, this effect was thoroughly studied by powder X-ray and electron diffraction, luminescence spectroscopy and 23Na, 139La and 19F solid state NMR spectroscopy. Monovalent alkali ions were codoped with the trivalent lanthanide ions to relieve stress and achieve a better crystallinity and higher quantum cutting abilities of the prepared material. 19F-magic angle spinning (MAS)-NMR-spectra, assisted by 19F{23Na} rotational echo double resonance (REDOR) studies, reveal distinct local fluoride environments, the populations of which are discussed in relation to spatial distribution and clustering models. In the co-doped samples, fluoride species having both Na+ and La3+ ions within their coordination sphere can be identified and quantified. This interplay of mono- and trivalent ions in the CaF2 lattice appears to be an efficient charge compensation mechanism that allows for improved performance characteristics of such co-doped phosphor materials.

  16. {sup 1}H and {sup 23}Na MAS NMR spectroscopy of cationic species in CO{sub 2} selective alkaline earth metal porous silicoaluminophosphates prepared via liquid and solid state ion exchange

    SciTech Connect

    Arevalo-Hidalgo, Ana G.; Dugar, Sneha; Fu, Riqiang; Hernandez-Maldonado, Arturo J.

    2012-07-15

    The location of extraframework cations in Sr{sup 2+} and Ba{sup 2+} ion-exchanged SAPO-34 was estimated by means of {sup 1}H and {sup 23}Na MAS NMR spectroscopy and spectral deconvolution. Incorporation of the alkaline earth metal cations onto the SAPO framework was achieved via liquid state ion exchange, coupled partial detemplation/solid-state ion exchange, and combination of both techniques. MAS NMR revealed that the level of ion exchange was limited by the presence of protons and sodium cations near hexagonal prisms (site SI), which are relatively difficult to exchange with the alkaline earth metal due to steric and charge repulsion criteria. In addition, the presence of ammonium cations in the supercages facilitated the exchange of otherwise tenacious hydrogen as corroborated by unit cell compositional data as well as enhanced CO{sub 2} adsorption at low partial pressures. The extraframework ammonium species were produced from partial detemplation of the structure-directing agent employed for the SAPO-34 synthesis, tetraethylammonium. - Graphical abstract: MAS NMR was used to elucidate the position the cationic species in alkaline earth metal exchanged silicoaluminophosphates. These species played a significant role during the ion exchange process and, therefore, the materials ultimate CO{sub 2} adsorption performance. Highlights: Black-Right-Pointing-Pointer Location of extraframework Sr{sup 2+} or Ba{sup 2+} cations was estimated by means of {sup 1}H and {sup 23}Na MAS NMR. Black-Right-Pointing-Pointer Level of Sr{sup 2+} or Ba{sup 2+} ion exchange was limited by the presence of protons and sodium cations. Black-Right-Pointing-Pointer Presence of ammonium cations in the supercages facilitated the exchange. Black-Right-Pointing-Pointer Sr{sup 2+} and Ba{sup 2+} ion exchanged SAPOs are outstanding CO{sub 2} adsorbents.

  17. Evolution of the Oxidation State of the Earth's Mantle: Challenges of High Pressure Quenching

    NASA Astrophysics Data System (ADS)

    Danielson, L. R.; Righter, K.; Keller, L. P.; Rahman, Z.

    2015-12-01

    The oxidation state of the Earth's mantle during formation remains an unresolved question, whether it was constant throughout planetary accretion [1], transitioned from reduced to oxidized [2,3,4], or from oxidized to reduced [1,5]. We investigate the stability of Fe3+ at depth, in order to constrain processes (water, late accretion, dissociation of FeO) which may reduce or oxidize the Earth's mantle. Experiments of more mafic compositions and at higher pressures commonly form a polyphase quench intergrowth composed primarily of pyroxenes, with interstitial glass which hosts nearly all of the more volatile minor elements. In our previous experiments on shergottite compositions, variable fO2, T, and P <4 GPa, Fe3+/ΣFe decreased slightly with increasing P, similar to terrestrial basalt [6,7,8]. For oxidizing experiments < 7GPa, Fe3+/ΣFe decreased as well [9], but it's unclear from previous modelling whether the deeper mantle could retain significant Fe3+ [1,10]. Our current experiments expand our pressure range deeper into the Earth's mantle and focus on compositions and conditions relevant to the early Earth. Experiments with Knippa basalt as the starting composition were conducted at 1-8 GPa and 1800 °C, using a molybdenum capsule to set the fO2 near IW, by buffering with Mo-MoO3. TEM and EELS analyses revealed the run products from 7-8 GPa quenched to polycrystalline phases, with the major phase pyroxene containing approximately equal Fe3+/2+. A number of different approaches have been employed to produce glassy samples that can be measured by EELS and XANES. A more intermediate andesite was used in one experiment, and decompression during quenching was attempted after [11], but both resulted in a finer grained polyphase texture. Experiments are currently underway to test how different capsule materials may affect quench texture. A preliminary experiment using liquid nitrogen to greatly enhance the rate of cooling of the assembly has also been attempted and

  18. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Canfield, Donald E.; Ngombi-Pemba, Lauriss; Hammarlund, Emma U.; Bengtson, Stefan; Chaussidon, Marc; Gauthier-Lafaye, François; Meunier, Alain; Riboulleau, Armelle; Rollion-Bard, Claire; Rouxel, Olivier; Asael, Dan; Pierson-Wickmann, Anne-Catherine; El Albani, Abderrazak

    2013-10-01

    The oxygen content of Earth's atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth's oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth's oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest-lived positive δ13C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.

  19. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.

    PubMed

    Canfield, Donald E; Ngombi-Pemba, Lauriss; Hammarlund, Emma U; Bengtson, Stefan; Chaussidon, Marc; Gauthier-Lafaye, François; Meunier, Alain; Riboulleau, Armelle; Rollion-Bard, Claire; Rouxel, Olivier; Asael, Dan; Pierson-Wickmann, Anne-Catherine; El Albani, Abderrazak

    2013-10-15

    The oxygen content of Earth's atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth's oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth's oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest-lived positive δ(13)C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years. PMID:24082125

  20. Oxygen dynamics in the aftermath of the Great Oxidation of Earth's atmosphere.

    PubMed

    Canfield, Donald E; Ngombi-Pemba, Lauriss; Hammarlund, Emma U; Bengtson, Stefan; Chaussidon, Marc; Gauthier-Lafaye, François; Meunier, Alain; Riboulleau, Armelle; Rollion-Bard, Claire; Rouxel, Olivier; Asael, Dan; Pierson-Wickmann, Anne-Catherine; El Albani, Abderrazak

    2013-10-15

    The oxygen content of Earth's atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth's oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth's oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest-lived positive δ(13)C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.

  1. Rare-earth metal oxide doped transparent mesoporous silica plates under non-aqueous condition as a potential UV sensor.

    PubMed

    Lee, Sang-Joon; Park, Sung Soo; Lee, Sang Hyun; Hong, Sang-Hyun; Ha, Chang-Sik

    2013-11-01

    Transparent mesoporous silica plates doped with rare-earth metal oxide were prepared using solvent-evaporation method based on the self-organization between structure-directing agent and silicate in a non-aqueous solvent. A triblock copolymer, Pluronic (F127 or P123), was used as the structure-directing agent, while tetraethyl orthosilicate (TEOS) was used as a silica source. The pore diameter and the surface area of the mesoporous silica plate prepared with the optimized conditions were ca 40 A and 600 m2 g(-1), respectively, for both structure-directing agent. Rare-earth metal oxides (Eu, Tb, Tm oxide) in mesochannel were formed via one-step synthetic route based on the preparation method of a silica plate. Optical properties of rare-earth metal oxide-doped mesoporous silica plates were investigated by UV irradiation and photoluminescence (PL) spectroscopy. Under the exitation wavelength of 254 nm, the doped mesoporous silica plates emitted red, green and blue for Eu, Tb and Tm oxides, respectively. Rare-earth metal oxide-doped mesoporous silica plates showed enhanced PL intensity compared to that of the bulk rare-earth metal oxide.

  2. Structure-Guided Systems-Level Engineering of Oxidation-Prone Methionine Residues in Catalytic Domain of an Alkaline α-Amylase from Alkalimonas amylolytica for Significant Improvement of Both Oxidative Stability and Catalytic Efficiency

    PubMed Central

    Yang, Haiquan; Liu, Long; Shin, Hyun-dong; Li, Jianghua; Du, Guocheng; Chen, Jian

    2013-01-01

    High oxidative stability and catalytic efficiency are required for the alkaline α-amylases to keep the enzymatic performance under the harsh conditions in detergent industries. In this work, we attempted to significantly improve both the oxidative stability and catalytic efficiency of an alkaline α-amylase from Alkalimonas amylolytica by engineering the five oxidation-prone methionine residues around the catalytic domain via a systematic approach. Specifically, based on the tertiary structure analysis, five methionines (Met 145, Met 214, Met 229, Met 247 and Met 317) were individually substituted with oxidation-resistant threonine, isoleucine and alaline, respectively. Among the created 15 mutants, 7 mutants M145A, M145I, M214A, M229A, M229T, M247T and M317I showed significantly enhanced oxidative stability or catalytic efficiency. In previous work, we found that the replacement of M247 with leucine could significantly improve the oxidative stability. Thus, these 8 positive mutants (M145A, M145I, M214A, M229A, M229T, M247T, M247L and M317I) were used to conduct the second round of combinational mutations. Among the constructed 85 mutants (25 two-point mutants, 36 three-point mutants, 16 four-point mutants and 8 five-point mutants), the mutant M145I-214A-229T-247T-317I showed a 5.4-fold increase in oxidative stability and a 3.0-fold increase in catalytic efficiency. Interestingly, the specific activity, alkaline stability and thermal stability of this mutant were also increased. The increase of salt bridge and hydrogen bonds around the catalytic domain contributed to the significantly improved catalytic efficiency and stability, as revealed by the three-dimensional structure model of wild-type alkaline α-amylase and its mutant M145I-214A-229T-247T-317I. With the significantly improved oxidative stability and catalytic efficiency, the mutant M145I-214A-229T-247T-317I has a great potential as a detergent additive, and this structure-guided systems engineering

  3. Magnetic properties of ternary sodium oxides Na LnO 2 ( Ln=rare earths)

    NASA Astrophysics Data System (ADS)

    Hashimoto, Yuta; Wakeshima, Makoto; Hinatsu, Yukio

    2003-11-01

    Magnetic properties of ternary sodium oxides Na LnO 2 ( Ln=rare earths) are investigated. Their crystal structures are grouped into three types of structures, which are α-LiFeO 2, β-LiFeO 2, and α-NaFeO 2, depending on the size of rare earths. Their magnetic susceptibilities and specific heats have been measured from 1.8 to 300 K. Among them, NaGdO 2, NaDyO 2, and NaHoO 2 show antiferromagnetic transitions at 2.4, 2.2, and 2.4 K, respectively, and NaNdO 2 transforms to the ferromagnetic state below 2.4 K. NaSmO 2, NaErO 2, and NaYbO 2 exhibit a magnetic anomaly below 1.8 K.

  4. Bolide impacts and the oxidation state of carbon in the Earth's early atmosphere

    NASA Technical Reports Server (NTRS)

    Kasting, J. F.

    1992-01-01

    A one-dimensional photochemical model was used to examine the effect of bolide impacts on the oxidation state of Earth's primitive atmosphere. The impact rate should have been high prior to 3.8 Ga before present, based on evidence derived from the Moon. Impacts of comets or carbonaceous asteroids should have enhanced the atmospheric CO/CO2 ratio by bringing in CO ice and/or organic carbon that can be oxidized to CO in the impact plume. Ordinary chondritic impactors would contain elemental iron that could have reacted with ambient CO2 to give CO. Nitric oxide (NO) should also have been produced by reaction between ambient CO2 and N2 in the hot impact plumes. High NO concentrations increase the atmospheric CO/CO2 ratio by increasing the rainout rate of oxidized gases. According to the model, atmospheric CO/CO2 ratios of unity or greater are possible during the first several hundred million years of Earth's history, provided that dissolved CO was not rapidly oxidized to bicarbonate in the ocean. Specifically, high atmospheric CO/CO2 ratios are possible if either: (1) the climate was cool (like today's climate), so that hydration of dissolved CO to formate was slow, or (2) the formate formed from CO was efficiently converted into volatile, reduced carbon compounds, such as methane. A high atmospheric CO/CO2 ratio may have helped to facilitate prebiotic synthesis by enhancing the production rates of hydrogen cyanide and formaldehyde. Formaldehyde may have been produced even more efficiently by photochemical reduction of bicarbonate and formate in Fe(++)-rich surface waters.

  5. Enhanced methanol oxidation and oxygen reduction reactions on palladium-decorated FeCo@Fe/C core-shell nanocatalysts in alkaline medium.

    PubMed

    Fashedemi, Omobosede O; Ozoemena, Kenneth I

    2013-12-28

    Palladium based nano-alloys are well known for their unique electrocatalytic properties. In this work, a palladium-decorated FeCo@Fe/C core-shell nanocatalyst has been prepared by a new method called microwave-induced top-down nanostructuring and decoration (MITNAD). This simple, yet efficient technique, resulted in the generation of sub-10 nm sized FeCo@Fe@Pd nanocatalysts (mainly 3-5 nm) from a micron-sized (0.21-1.5 μm) FeCo@Fe/C. The electrocatalytic activities of the core-shell nanocatalysts were explored for methanol oxidation reaction (MOR) and oxygen reduction reaction (ORR) in alkaline medium. A negative shift of 300 mV in the onset potential for MOR was observed, with a current thrice that of the Pd/C catalysts. A very low resistance to electron transfer (Rct) was observed while the ratio of forward-to-backward oxidation current (If/Ib) was doubled. The overpotential of ORR was significantly reduced with a positive shift of about 250 mV and twice the reduction current density was observed in comparison with Pd/C nanocatalysts with the same mass loading. The kinetic parameters (in terms of the Tafel slope (b) = -59.7 mV dec(-1) (Temkin isotherm) and high exchange current density (jo) = 1.26 × 10(-2) mA cm(-2)) provide insights into the favorable electrocatalytic performance of the catalysts in ORR in alkaline media. Importantly, the core-shell nanocatalyst exhibited excellent resistance to possible methanol cross-over during ORR, which shows excellent promise for application in direct alkaline alcohol fuel cells (DAAFCs).

  6. Effects of the surface mobility on the oxidation of adsorbed CO on platinum electrodes in alkaline media. The role of the adlayer and surface defects.

    PubMed

    Herrero, Enrique; Chen, Qing-Song; Hernández, Javier; Sun, Shi-Gang; Feliu, Juan M

    2011-10-01

    The oxidation of adsorbed CO on Pt single crystal electrodes has been studied in alkaline media. The surfaces used in this study were the Pt(111) electrode and vicinal stepped and kinked surfaces with (111) terraces. The kinked surfaces have either (110) steps broken by (100) kinks or (100) steps broken by (110) kinks and different kink densities. The voltammetric profiles for the CO stripping on those electrodes show peaks corresponding to the oxidation of CO on the (111) terraces, on the (100) steps/kinks and on the (110) steps/kinks at very distinctive potentials. Additionally, the stripping voltammograms always present a prewave. The analysis of the results with the different stepped and kinked surfaces indicates that the presence of the prewave is not associated with defects or kinks in the electrode surface. Also, the clear separation of the CO stripping process in different peak contributions indicates that the mobility of CO on the surface is very low. Using partial CO stripping experiments and studies at different pH, it has been proposed that the low mobility is a consequence of the negative absolute potential at which the adlayers are formed in alkaline media. Also, the surface diffusion coefficient for CO in these media has been estimated from the dependence of the stripping charge of the peaks with the scan rate of the voltammetry. PMID:21863178

  7. Oxidative Weathering of Earth's Surface 3.7 Billion Years ago? - A Chromium Isotope Perspective

    NASA Astrophysics Data System (ADS)

    Frei, R.; Crowe, S.; Bau, M.; Polat, A.; Fowle, D. A.; Døssing, L. N.

    2015-12-01

    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3-2.9 Gyr ago. 3.8-3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth's earliest surface chemistry and the low oxygen primordial biosphere. We find positive Cr isotope values (average δ53Cr = +0.05 +/- 0.10 permil; δ53Cr = (53Cr/52Cr)sample/(53Cr/52Cr)SRM 979 - 1) x 1000, where SRM 979 denotes Standard Reference Material 979 in both the Fe and Si-rich mesobands of 7 compositionally distinct quartz-magnetite and magnesian banded iron formation (BIF) samples collected from the eastern portion of the Isua BIF (Western Greenland). These postively fractioned Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed BIFs from Isua indicate oxidative Cr cycling 3.8-3.7 Gyr ago. We also examined the distribution of U, which is immobile in its reduced state but mobile when it is oxidized. Elevated U/Th ratios (mean U/Th ratio of 0.70 ± 0.29) in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species (ROS) accumulated in Earth's surface environment inducing the oxidative weathering of rocks during the deposition of the Isua BIFs. The precise threshold atmospheric O2 concentrations for the induction of Cr isotope fractionation remain uncertain, but we argue that our data are consistent with the very low levels of oxygen or other ROS indicated by other proxies. Importantly, any trace of Cr that cycled through redox reactions on land would tend both to be heavy, and to mobilize into the contemporaneous run-off more readily than Cr weathered directly as Cr(III). Once having reached the oceans, this fractionated Cr would have been stripped from seawater by Fe (oxy)hydroxides formed during the deposition of BIFs from low oxygen oceans. The

  8. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-11-30

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere.

  9. The oxidation state of Hadean magmas and implications for early Earth's atmosphere.

    PubMed

    Trail, Dustin; Watson, E Bruce; Tailby, Nicholas D

    2011-12-01

    Magmatic outgassing of volatiles from Earth's interior probably played a critical part in determining the composition of the earliest atmosphere, more than 4,000 million years (Myr) ago. Given an elemental inventory of hydrogen, carbon, nitrogen, oxygen and sulphur, the identity of molecular species in gaseous volcanic emanations depends critically on the pressure (fugacity) of oxygen. Reduced melts having oxygen fugacities close to that defined by the iron-wüstite buffer would yield volatile species such as CH(4), H(2), H(2)S, NH(3) and CO, whereas melts close to the fayalite-magnetite-quartz buffer would be similar to present-day conditions and would be dominated by H(2)O, CO(2), SO(2) and N(2) (refs 1-4). Direct constraints on the oxidation state of terrestrial magmas before 3,850 Myr before present (that is, the Hadean eon) are tenuous because the rock record is sparse or absent. Samples from this earliest period of Earth's history are limited to igneous detrital zircons that pre-date the known rock record, with ages approaching ∼4,400 Myr (refs 5-8). Here we report a redox-sensitive calibration to determine the oxidation state of Hadean magmatic melts that is based on the incorporation of cerium into zircon crystals. We find that the melts have average oxygen fugacities that are consistent with an oxidation state defined by the fayalite-magnetite-quartz buffer, similar to present-day conditions. Moreover, selected Hadean zircons (having chemical characteristics consistent with crystallization specifically from mantle-derived melts) suggest oxygen fugacities similar to those of Archaean and present-day mantle-derived lavas as early as ∼4,350 Myr before present. These results suggest that outgassing of Earth's interior later than ∼200 Myr into the history of Solar System formation would not have resulted in a reducing atmosphere. PMID:22129728

  10. Kinetics and mechanism of the Ir(III)-catalyzed oxidation of xylose and maltose by potassium iodate in aqueous alkaline medium.

    PubMed

    Singh, Ashok Kumar; Srivastava, Shalini; Srivastava, Jaya; Singh, Reena

    2007-06-11

    For the first time, the Ir(III) catalysis of the iodate oxidation of xylose and maltose in aqueous alkaline medium has been investigated. The reactions exhibit first-order kinetics with respect to lower [IO(3)(-)] and [OH(-)] and show zero-order kinetics at their higher concentrations. Unity order at low concentrations of maltose becomes zero order at its higher concentrations, whereas zero-order kinetics with respect to [xylose] was observed throughout its variation. The reaction rate is found to be directly proportional to [Ir(III)] in the oxidation of both reducing sugars. Negligible effect of [Cl(-)] and nil effect of ionic strength (mu) on the rate of oxidation have also been noted. The species, [IrCl(3)(H(2)O)(2)OH](-) was ascertained as the reactive species of Ir(III) chloride for both the redox systems. Various activation parameters have been calculated. Formic acid and arabinonic acid for maltose and formic acid and threonic acid for xylose were identified as the main oxidation products of the reactions. Mechanisms consistent with the observed kinetic data and spectral evidence have been proposed for the oxidation of xylose and maltose.

  11. Encapsulated solid phase epitaxy of a Ge quantum well embedded in an epitaxial rare earth oxide.

    PubMed

    Laha, Apurba; Bugiel, E; Jestremski, M; Ranjith, R; Fissel, A; Osten, H J

    2009-11-25

    An efficient method based on molecular beam epitaxy has been developed to integrate an epitaxial Ge quantum well buried into a single crystalline rare earth oxide. The monolithic heterostructure comprised of Gd2O3-Ge-Gd2O3 grown on an Si substrate exhibits excellent crystalline quality with atomically sharp interfaces. This heterostructure with unique structural quality could be used for novel nanoelectronic applications in quantum-effect devices such as nanoscale transistors with a high mobility channel, resonant tunneling diode/transistors, etc. A phenomenological model has been proposed to explain the epitaxial growth process of the Ge layer under oxide encapsulation using a solid source molecular beam epitaxy technique. PMID:19875877

  12. Rare-Earth Oxide (Yb2O3) Selective Emitter Fabrication and Evaluation

    NASA Technical Reports Server (NTRS)

    Jennette, Bryan; Gregory, Don A.; Herren, Kenneth; Tucker, Dennis; Smith, W. Scott (Technical Monitor)

    2001-01-01

    This investigation involved the fabrication and evaluation of rare-earth oxide selective emitters. The first goal of this study was to successfully fabricate the selective emitter samples using paper and ceramic materials processing techniques. The resulting microstructure was also analyzed using a Scanning Electron Microscope. All selective emitter samples fabricated for this study were made with ytterbium oxide (Yb2O3). The second goal of this study involved the measurement of the spectral emission and the radiated power of all the selective emitter samples. The final goal of this study involved the direct comparison of the radiated power emitted by the selective emitter samples to that of a standard blackbody at the same temperature and within the same wavelength range.

  13. The Development of HfO2-Rare Earth Based Oxide Materials and Barrier Coatings for Thermal Protection Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan James

    2014-01-01

    Advanced hafnia-rare earth oxides, rare earth aluminates and silicates have been developed for thermal environmental barrier systems for aerospace propulsion engine and thermal protection applications. The high temperature stability, low thermal conductivity, excellent oxidation resistance and mechanical properties of these oxide material systems make them attractive and potentially viable for thermal protection systems. This paper will focus on the development of the high performance and high temperature capable ZrO2HfO2-rare earth based alloy and compound oxide materials, processed as protective coating systems using state-or-the-art processing techniques. The emphasis has been in particular placed on assessing their temperature capability, stability and suitability for advanced space vehicle entry thermal protection systems. Fundamental thermophysical and thermomechanical properties of the material systems have been investigated at high temperatures. Laser high-heat-flux testing has also been developed to validate the material systems, and demonstrating durability under space entry high heat flux conditions.

  14. Multifunctional rare-Earth vanadate nanoparticles: luminescent labels, oxidant sensors, and MRI contrast agents.

    PubMed

    Abdesselem, Mouna; Schoeffel, Markus; Maurin, Isabelle; Ramodiharilafy, Rivo; Autret, Gwennhael; Clément, Olivier; Tharaux, Pierre-Louis; Boilot, Jean-Pierre; Gacoin, Thierry; Bouzigues, Cedric; Alexandrou, Antigoni

    2014-11-25

    Collecting information on multiple pathophysiological parameters is essential for understanding complex pathologies, especially given the large interindividual variability. We report here multifunctional nanoparticles which are luminescent probes, oxidant sensors, and contrast agents in magnetic resonance imaging (MRI). Eu(3+) ions in an yttrium vanadate matrix have been demonstrated to emit strong, nonblinking, and stable luminescence. Time- and space-resolved optical oxidant detection is feasible after reversible photoreduction of Eu(3+) to Eu(2+) and reoxidation by oxidants, such as H2O2, leading to a modulation of the luminescence emission. The incorporation of paramagnetic Gd(3+) confers in addition proton relaxation enhancing properties to the system. We synthesized and characterized nanoparticles of either 5 or 30 nm diameter with compositions of GdVO4 and Gd0.6Eu0.4VO4. These particles retain the luminescence and oxidant detection properties of YVO4:Eu. Moreover, the proton relaxivity of GdVO4 and Gd0.6Eu0.4VO4 nanoparticles of 5 nm diameter is higher than that of the commercial Gd(3+) chelate compound Dotarem at 20 MHz. Nuclear magnetic resonance dispersion spectroscopy showed a relaxivity increase above 10 MHz. Complexometric titration indicated that rare-earth leaching is negligible. The 5 nm nanoparticles injected in mice were observed with MRI to concentrate in the liver and the bladder after 30 min. Thus, these multifunctional rare-earth vanadate nanoparticles pave the way for simultaneous optical and magnetic resonance detection, in particular, for in vivo localization evolution and reactive oxygen species detection in a broad range of physiological and pathophysiological conditions.

  15. The sulphate-reduction alkalinity pump tested

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Petrishcheva, Elena

    2016-04-01

    Carbonate precipitation has been suggested to be induced by alkalinity increase during sulphate reduction under anoxic conditions. This mechanism may explain the formation of carbonate deposits in shallow marine environments, either within a redox stratified sediment inhabited by phototrophic microbial mats or in shallow water within the photic zone where sulphidic water is upwelling onto the shelf. The alkalinity pump may work as long as the sulphide is not reoxidized to sulphate, a process that would acidify the surrounding. The alkalinity effect of sulphate reduction was recently tested by Aloisi (2008) for microbial mats using a model approach. He found that sulphate reduction does not significantly increase or even decrease carbonate saturation and is unlikely to have played a significant role through Earth history. The model considers many environmental factors, including the effect of carbonate precipitation itself on the carbonate equilbrium and on the alkalinity. We used a modified version of Aloisi's (2008) model to simulate the saturation states of aragonite, calcite and dolomite without the effects of carbonate precipitation. This is necessary to evaluate the effect of microbial metabolisms exclusively on carbonate saturation, since carbonate precipitation is only the consequence, but not the cause of oversaturation. First results show that the saturation state is increased in the zone of phototrophic CO2 uptake. In contrast, the saturation state is strongly decreased in the zone where dissolved oxygen overlaps with dissolved sulphide. Aerobic sulphide oxidation consumes most of the HS- and dissipates most of the alkalinity produced in the sulphate reduction zone below. Hence, our results are consistent with the findings of Aloisi (2008), and they even more clearly show that sulphate reduction does not induce carbonate precipitation nor contributes to carbonate precipitation in combination with phototrophic CO2 uptake. The alkalinity effect of sulphate

  16. Metal oxide nanoparticles embedded in rare-earth matrix for low temperature thermal imaging applications

    NASA Astrophysics Data System (ADS)

    Rauwel, E.; Galeckas, A.; Rauwel, P.; Hansen, P.-A.; Wragg, D.; Nilsen, O.; Fjellvåg, H.

    2016-05-01

    We report on the synthesis and characterization of nanocomposites comprising of oxide nanoparticles (NPs) (ZnO, CaHfO3 and SrHfO3) embedded in rare-earth oxide (Eu2O3, Nd2O3) matrices by using atomic layer deposition. The different oxide surroundings allowed highlighting the role of interface defects in the recombination processes of charge carriers in the NPs. We provide a comparative analysis of optical absorption and emission properties of the constituents: thin films, free-standing and embedded NPs, and discuss the intrinsic and extrinsic nature of the luminescent sites in different nanocomposites. The photoluminescence properties of ZnO nanocomposites are clearly distinguishable from those of free-standing NPs in terms of overall quantum efficiency as well as intensity ratios of the characteristic blue and green emission bands associated with radiative transitions involving excitons and intrinsic defects, respectively. In contrast to PL enhancement due to surface-passivating effect of the surrounding media in the case of ZnO nanocomposites, the embedment of hafnia perovskites into oxide matrices generally leads to suppressed luminescence in the visible range, thus confirming its extrinsic, surface-defect related nature.

  17. Formation of nitrogen oxides in the Earth's atmosphere by solar proton flares

    NASA Astrophysics Data System (ADS)

    Komitov, B.; Dechev, M.; Duchlev, P.

    2016-01-01

    The results from the study of daily average values of the background concentrations of nitrogen oxides (NO and NO_{2}) in the terrestrial atmosphere are presented. The study aim was to reveal some aspects of the relation between the solar flares, as sources of solar energetic protons (SEP-Solar Energetic Protons), and the nitrogen oxides formation in the Earth's atmosphere. For this aim, except the time series of the nitrogen oxides for the period Oct 15, 2004 - Sept 1, 2009, the total daily fluxes of the solar protons for the energy diapasons E ≥ 10 MeV and E ≥ 100 MeV, registered by GOES-11 and GOES-13 satellites, were used.The obtained results suggest that the significant peaks in the time series of the nitrogen oxides should be explained with 'volley' effect of NO and NO_{2} formations in the middle atmosphere. Such formation processes take place in the time interval from one month to about one year before the peaks registration at the ground-level station of the Rozhen National Astronomical Observatory. In view of the short period with continuous time series, to give a certain answer of the question whether and how the solar protons affect the NO and NO_{2} formation it is necessary to prolong the study in future.

  18. Design, microstructure, and high-temperature behavior of silicon nitride sintered with rate-earth oxides

    SciTech Connect

    Ciniculk, M.K. . Dept. of Materials Science and Mineral Engineering)

    1991-08-01

    The processing-microstructure-property relations of silicon nitride ceramics sintered with rare-earth oxide additives have been investigated with the aim of improving their high-temperature behavior. The additions of the oxides of Y, Sm, Gd, Dy, Er, or Yb were compositionally controlled to tailor the intergranular phase. The resulting microstructure consisted of {beta}-Si{sub 3}N{sub 4} grains and a crystalline secondary phase of RE{sub 2}Si{sub 2}O{sub 7}, with a thin residual amorphous phase present at grain boundaries. The lanthanide oxides were found to be as effective as Y{sub 2}O{sub 3} in densifying Si{sub 3}N{sub 4}, resulting in identical microstructures. The crystallization behavior of all six disilicates was similar, characterized by a limited nucleation and rapid growth mechanism resulting in large single crystals. Complete crystallization of the intergranular phase was obtained with the exception of a residual amorphous, observed at interfaces and believed to be rich in impurities, the cause of incomplete devitrification. The low resistance to oxidation of these materials was attributed to the minimization of amorphous phases via devitrification to disilicates, compatible with SiO{sub 2}, the oxidation product of Si{sub 3}N{sub 4}. The strength retention of these materials at 1300{degrees}C was found to be between 80% and 91% of room-temperature strength, due to crystallization of the secondary phase and a residual but refractory amorphous grain-boundary phase. The creep behavior was found to be strongly dependent on residual amorphous phase viscosity as well as on the oxidation behavior, as evidenced by the nonsteady-state creep rates of all materials. 122 refs., 51 figs., 12 tabs.

  19. Understanding and Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study.

    PubMed

    Carchini, Giuliano; García-Melchor, Max; Łodziana, Zbigniew; López, Núria

    2016-01-13

    Rare-earth oxides (REOs) possess a remarkable intrinsic hydrophobicity, making them candidates for a myriad of applications. Although the superhydrophobicity of REOs has been explored experimentally, the atomistic details of the structure at the oxide-water interface are still not well understood. In this work, we report a density functional theory study of the interaction between water and CeO2, Nd2O3, and α-Al2O3 to explain their different wettability. The wetting of the metal oxide surface is controlled by geometric and electronic factors. While the electronic term is related to the acid-base properties of the surface layer, the geometric factor depends on the matching between adsorption sites and oxygen atoms from the hexagonal water network. For all the metal oxides considered here, water dissociation is confined to the first oxide-water layer. Hydroxyl groups on α-Al2O3 are responsible for the strong oxide-water interaction, and thus, both Al- and hydroxyl-terminated wet. On CeO2, the intrinsic hydrophobicity of the clean surface disappears when lattice hydroxyl groups (created by the reaction of water with oxygen vacancies) are present as they dominate the interaction and drive wetting. Therefore, hydroxyls may convert a intrinsic nonwetting surface into a wetting one. Finally, we also report that surface modifications, like cation substitution, do not change the acid-base character of the surface, and thus they show the same nonwetting properties as native CeO2 or Nd2O3.

  20. Understanding and Tuning the Intrinsic Hydrophobicity of Rare-Earth Oxides: A DFT+U Study.

    PubMed

    Carchini, Giuliano; García-Melchor, Max; Łodziana, Zbigniew; López, Núria

    2016-01-13

    Rare-earth oxides (REOs) possess a remarkable intrinsic hydrophobicity, making them candidates for a myriad of applications. Although the superhydrophobicity of REOs has been explored experimentally, the atomistic details of the structure at the oxide-water interface are still not well understood. In this work, we report a density functional theory study of the interaction between water and CeO2, Nd2O3, and α-Al2O3 to explain their different wettability. The wetting of the metal oxide surface is controlled by geometric and electronic factors. While the electronic term is related to the acid-base properties of the surface layer, the geometric factor depends on the matching between adsorption sites and oxygen atoms from the hexagonal water network. For all the metal oxides considered here, water dissociation is confined to the first oxide-water layer. Hydroxyl groups on α-Al2O3 are responsible for the strong oxide-water interaction, and thus, both Al- and hydroxyl-terminated wet. On CeO2, the intrinsic hydrophobicity of the clean surface disappears when lattice hydroxyl groups (created by the reaction of water with oxygen vacancies) are present as they dominate the interaction and drive wetting. Therefore, hydroxyls may convert a intrinsic nonwetting surface into a wetting one. Finally, we also report that surface modifications, like cation substitution, do not change the acid-base character of the surface, and thus they show the same nonwetting properties as native CeO2 or Nd2O3. PMID:26652180

  1. The Effect of Low Earth Orbit Atomic Oxygen Exposure on Phenylphosphine Oxide-Containing Polymers

    NASA Technical Reports Server (NTRS)

    Connell, John W.

    2000-01-01

    Thin films of phenylphosphine oxide-containing polymers were exposed to low Earth orbit aboard a space shuttle flight (STS-85) as part of flight experiment designated Evaluation of Space Environment and Effects on Materials (ESEM). This flight experiment was a cooperative effort between the NASA Langley Research Center (LaRC) and the National Space Development Agency of Japan (NASDA). The thin film samples described herein were part of an atomic oxygen exposure experiment (AOE) and were exposed to primarily atomic oxygen (1 X 1019 atoms/cm2). The thin film samples consisted of three phosphine oxide containing polymers (arylene ether, benzimidazole and imide). Based on post-flight analyses using atomic force microscopy, X-ray photoelectron spectroscopy, and weight loss data, it was found that atomic oxygen exposure of these materials efficiently produces a phosphate layer at the surface of the samples. This layer provides a barrier towards further attack by AO. Consequently, these materials do not exhibit linear erosion rates which is in contrast with most organic polymers. Qualitatively, the results obtained from these analyses compare favorably with those obtained from samples exposed to atomic oxygen and or oxygen plasma in ground based exposure experiments. The results of the low Earth orbit atomic oxygen exposure on these materials will be compared with those of ground based exposure to AO.

  2. Oxidative Stress as Estimated by Gamma-Glutamyl Transferase Levels Amplifies the Alkaline Phosphatase-Dependent Risk for Mortality in ESKD Patients on Dialysis

    PubMed Central

    Mattace-Raso, Francesco; van Saase, Jan L. C. M.; Postorino, Maurizio; Tripepi, Giovanni Luigi; Mallamaci, Francesca; PROGREDIRE Study Group

    2016-01-01

    Alkaline phosphatase (Alk-Phos) is a powerful predictor of death in patients with end-stage kidney disease (ESKD) and oxidative stress is a strong inducer of Alk-Phos in various tissues. We tested the hypothesis that oxidative stress, as estimated by a robust marker of systemic oxidative stress like γ-Glutamyl-Transpeptidase (GGT) levels, may interact with Alk-Phos in the high risk of death in a cohort of 993 ESKD patients maintained on chronic dialysis. In fully adjusted analyses the HR for mortality associated with Alk-Phos (50 IU/L increase) was progressively higher across GGT quintiles, being minimal in patients in the first quintile (HR: 0.89, 95% CI: 0.77–1.03) and highest in the GGT fifth quintile (HR: 1.13, 95% CI: 1.03–1.2) (P for the effect modification = 0.02). These findings were fully confirmed in sensitivity analyses excluding patients with preexisting liver disease, excessive alcohol intake, or altered liver disease biomarkers. GGT amplifies the risk of death associated with high Alk-Phos levels in ESKD patients. This observation is compatible with the hypothesis that oxidative stress is a strong modifier of the adverse biological effects of high Alk-Phos in this population. PMID:27525053

  3. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Zhou, Yuchen; Yue, Shiyu; Wang, Lei; Su, Dong; Tong, Xiao; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2016-05-19

    With the increased interest in the development of hydrogen fuel cells as a plausible alternative to internal combustion engines, recent work has focused on creating alkaline fuel cells (AFC), which employ an alkaline environment. Working in alkaline as opposed to acidic media yields a number of tangible benefits, including (i) the ability to use cheaper and plentiful precious-metal-free catalysts, due to their increased stability, (ii) a reduction in the amount of degradation and corrosion of Pt-based catalysts, and (iii) a longer operational lifetime for the overall fuel cell configuration. However, in the absence of Pt, no catalyst has achieved activitiesmore » similar to those of Pt. Herein, we have synthesized a number of crystalline ultrathin PtM alloy nanowires (NWs) (M = Fe, Co, Ru, Cu, Au) in order to replace a portion of the costly Pt metal without compromising on activity while simultaneously adding in metals known to exhibit favorable synergistic ligand and strain effects with respect to the host lattice. In fact, our experiments confirm theoretical insights about a clear and correlative dependence between measured activity and chemical composition. We have conclusively demonstrated that our as-synthesized alloy NW catalysts yield improved hydrogen oxidation reaction (HOR) activities as compared with a commercial Pt standard as well as with our as-synthesized Pt NWs. The Pt7Ru3 NW system, in particular, quantitatively achieved an exchange current density of 0.493 mA/cm2, which is higher than the corresponding data for Pt NWs alone. In addition, the HOR activities follow the same expected trend as their calculated hydrogen binding energy (HBE) values, thereby confirming the critical importance and correlation of HBE with the observed activities.« less

  4. Synthesis of nitrous oxide by lightning in the early anoxic Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Navarro, K. F.; Navarro-Gonzalez, R.; McKay, C. P.

    2013-12-01

    Carbon dioxide (CO2) was the main atmospheric component of the early Earth's atmosphere and exerted a key role in climate by maintaining a hydrosphere during a primitive faint Sun [1]; however, CO2 was eventually removed from the atmosphere by rock weathering and sequestered in the Earth's crust and mantle [1]. Nitric oxide (NO) was fixed by lightning discharges at a rate of 1×1016 molecules J-1 in CO2 (50-80%) rich atmospheres [2]. As the levels of atmospheric CO2 dropped to 20%, the production rate of NO by lightning rapidly decreased to 2×1014 molecules J-1 and then slowly diminished to 1×1014 molecules J-1 at CO2 levels of about 2.5% [2]. In order to maintain the existence of liquid water in the early Earth, it is required to warm up the planet with other greenhouse gases such as methane (CH4) [3]. Here we report an experimental study of the effects of lightning discharges on the nitrogen fixation rate during the evolution of the Earth's early atmosphere from 10 to 0.8 percent of carbon dioxide with methane concentrations from 0 to 1,000 ppm in molecular nitrogen. Lightning was simulated in the laboratory by a plasma generated with a pulsed Nd-YAG laser [2]. Our results show that the production of NO by lightning is independent of the presence of methane but drops from 3×1014 molecules J-1 in 10% CO2 to 5×1013 molecules J-1 in 1% CO2. Surprisingly, nitrous oxide (N2O) is also produced at a rate of 4×1013 molecules J-1 independent of the levels of CH4 and CO2. N2O is produced by lightning in the contemporaneous oxygenated Earth's atmosphere at a comparable rate of (0.4-1.5)×1013 molecules J-1 [4, 5], but was not detected in nitrogen-carbon dioxide mixtures in the absence of oxygen [6]. The only previously reported abiotic synthesis of N2O was by corona discharges in rich CO2 atmospheres (20-80%) with a production rate of 8×1012 molecules J-1 [6]; however at lower CO2 (<20%) levels, N2O is no longer produced. Therefore, lightning in the early Earth

  5. [Use of coulometric titration for elucidating the mechanism of the oxidation of 6-APA alkaline breakdown products by halogens].

    PubMed

    Kharlamov, V T; Inkin, A A; Ermolina, G E

    1975-02-01

    Penaldinic acid and penicillamine were formed on alkali decomposition (1 N NaOH) of 6-APA for 20 minutes at room temperature, penicillamine being completely oxidized to disulphide by the air oxygen. Coulometric titration of the alkali decomposition products showed that generated chlorine in 0.5 N HCl solution or bromine in a week acid solution of KBr oxidized them with participation of 7 electrones. Generated iodine did not practically oxidize the 6-APA decomposition products during the coulometric titration.

  6. Synthesis of metastable rare-earth-iron mixed oxide with the hexagonal crystal structure

    SciTech Connect

    Nishimura, Tatsuya; Hosokawa, Saburo; Masuda, Yuichi; Wada, Kenji; Inoue, Masashi

    2013-01-15

    Rare-earth-iron mixed oxides with the rare earth/iron ratio=1 have either orthorhombic (o-REFeO{sub 3}) or hexagonal (h-REFeO{sub 3}) structure. h-REFeO{sub 3} is a metastable phase and the synthesis of h-REFeO{sub 3} is usually difficult. In this work, the crystallization process of the precursors obtained by co-precipitation and Pechini methods was investigated in detail to synthesize h-REFeO{sub 3}. It was found that the crystallization from amorphous to hexagonal phase and the phase transition from hexagonal to orthorhombic phase occurred at a similar temperature range for rare earth elements with small ionic radii (Er-Lu, Y). For both co-precipitation and Pechini methods, single-phase h-REFeO{sub 3} was obtained by shortening the heating time during calcination process. The hexagonal-to-orthorhombic phase transition took place by a nucleation growth mechanism and vermicular morphology of the thus-formed orthorhombic phase was observed. The hexagonal YbFeO{sub 3} had higher catalytic activity for C{sub 3}H{sub 8} combustion than orthorhombic YbFeO{sub 3}. - Graphical abstract: Although the synthesis of metastable hexagonal REFeO{sub 3} by the conventional method is difficult, we found that this phase is obtained by shortening the heating time of the precursor prepared by co-precipitation method. Highlights: Black-Right-Pointing-Pointer Synthesis of metastable REFeO{sub 3} with hexagonal structure by the co-precipitation method. Black-Right-Pointing-Pointer Hexagonal REFeO{sub 3} is obtained for the rare earth elements with small ionic radii. Black-Right-Pointing-Pointer Hexagonal-to-orthorhombic transformation of REFeO{sub 3}. Black-Right-Pointing-Pointer Catalytic activity of hexagonal REFeO{sub 3} for C{sub 3}H{sub 8} combustion.

  7. Waiting ages for atmospheric oxygen: A titration hourglass and the oxidation of the solid Earth. (Invited)

    NASA Astrophysics Data System (ADS)

    Catling, D. C.; Claire, M.; Zahnle, K. J.

    2013-12-01

    Atmospheric O2 increased from less than 1 ppm to 0.2-2% at 2.45-2.22 Ga in the Great Oxidation Event (GOE). A minority opinion is that the GOE happened close to the time when oxygenic photosynthesis originated but evidence from the concentration of redox-sensitive elements in shales and their isotopes, as well as the setting and morphology of stromatolites supports the consensus view that oxygenic photosynthesis had originated by 2.8-2.7 Ga. Models show that O2 can be consumed rapidly by reductants in the Archean so that the air can remain anoxic even after photosynthesis began pumping out O2. Why did the world ultimately shift away from this balance? What conditions were needed to oxygenate the atmosphere in addition to oxygenic photosynthesis? A general principle is that a shift to an oxic environment from a reducing one requires net export of reductant. In planetary science, for example, the oxidation of the surfaces and atmospheres of other planets or satellites is universally attributed to the escape of hydrogen to space. Hydrogen escape explains the redness of Mars, several characteristics of the atmosphere of Venus, and the presence of tenuous O2 atmospheres on Ganymede, Europa, Rhea and Dione. For the Earth's rise of oxygen, many ideas focus on a decline in mantle or seafloor reductant fluxes (driven by internal geologic evolution) to the point where these fluxes were surpassed by biogenic oxygen fluxes. But for such a shift (without a role for hydrogen escape), the surface still has to export net reductant to the mantle. Such net export depends on the ratio of subducted ferric iron versus reduced carbon during the Archean, which remains poorly constrained. Over a decade ago, we proposed that rapid escape of hydrogen to space from the pre-GOE atmosphere would have gradually oxidized the Earth's surface and crust, accompanied by falling levels of atmospheric CH4 [1]. The idea is that Earth underwent a redox titration. A point would be reached where O2 became

  8. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    NASA Astrophysics Data System (ADS)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  9. Fluorescence in nanocomposites based on polyethylene oxides and block copolymers of polyethylene oxide-polypropylene oxide loaded with rare earth doped fluorides

    NASA Astrophysics Data System (ADS)

    Yust, Brian; Pedraza, Francisco; Sardar, Dhiraj; Saenz, Aaron; Chipara, Mircea

    2015-03-01

    Rare earth doped fluoride nanoparticles with a size of about 25 nm have been synthesized by a solvothermal process. Polymer-based nanocomposites, containing various weight fraction of nanofillers, have been obtained by dissolving the polymeric matrix (polyethylene oxide) within a solvent (deionized water), adding the nanoparticles, sonicating the mixture, and finally removing the solvent. The complete removal of the solvent has been confirmed by Thermogravimetric Analysis. Additional information about the thermal features have been obtained by Differential Scanning Calorimetry, Wide Angle X-Ray Scattering, FTIR, UV-Visible, and Raman. The effect of the loading with nanoparticles on the glass, crystallization, and melting transition temperatures of the polymeric matrix are reported. Fluorescence of rare earth doped nanoparticles dispersed within the polymeric matrix has been tested by laser spectroscopy. The dependence of fluorescence intensity on the concentration of nanofillers and on temperature in the range 300 to 400 K is analyzed.

  10. CO2-free power generation on an iron group nanoalloy catalyst via selective oxidation of ethylene glycol to oxalic acid in alkaline media.

    PubMed

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-08

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  11. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  12. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  13. Monitoring, field experiments, and geochemical modeling of Fe(II) oxidation kinetics in a stream dominated by net-alkaline coal-mine drainage, Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, Charles A.

    2015-01-01

    Watershed-scale monitoring, field aeration experiments, and geochemical equilibrium and kinetic modeling were conducted to evaluate interdependent changes in pH, dissolved CO2, O2, and Fe(II) concentrations that typically take place downstream of net-alkaline, circumneutral coal-mine drainage (CMD) outfalls and during aerobic treatment of such CMD. The kinetic modeling approach, using PHREEQC, accurately simulates observed variations in pH, Fe(II) oxidation, alkalinity consumption, and associated dissolved gas concentrations during transport downstream of the CMD outfalls (natural attenuation) and during 6-h batch aeration tests on the CMD using bubble diffusers (enhanced attenuation). The batch aeration experiments demonstrated that aeration promoted CO2 outgassing, thereby increasing pH and the rate of Fe(II) oxidation. The rate of Fe(II) oxidation was accurately estimated by the abiotic homogeneous oxidation rate law −d[Fe(II)]/dt = k1·[O2]·[H+]−2·[Fe(II)] that indicates an increase in pH by 1 unit at pH 5–8 and at constant dissolved O2 (DO) concentration results in a 100-fold increase in the rate of Fe(II) oxidation. Adjusting for sample temperature, a narrow range of values for the apparent homogeneous Fe(II) oxidation rate constant (k1′) of 0.5–1.7 times the reference value of k1 = 3 × 10−12 mol/L/min (for pH 5–8 and 20 °C), reported by Stumm and Morgan (1996), was indicated by the calibrated models for the 5-km stream reach below the CMD outfalls and the aerated CMD. The rates of CO2 outgassing and O2ingassing in the model were estimated with first-order asymptotic functions, whereby the driving force is the gradient of the dissolved gas concentration relative to equilibrium with the ambient atmosphere. Although the progressive increase in DO concentration to saturation could be accurately modeled as a kinetic function for the conditions evaluated, the simulation of DO as an instantaneous equilibrium process did not affect the

  14. Efficient solar water oxidation using photovoltaic devices functionalized with earth-abundant oxygen evolving catalysts.

    PubMed

    Cristino, Vito; Berardi, Serena; Caramori, Stefano; Argazzi, Roberto; Carli, Stefano; Meda, Laura; Tacca, Alessandra; Bignozzi, Carlo Alberto

    2013-08-21

    Indium tin oxide (ITO) surfaces of triple junction photovoltaic cells were functionalized with oxygen evolving catalysts (OECs) based on amorphous hydrous earth-abundant metal oxides (metal = Fe, Ni, Co), obtained by straightforward Successive Ionic Layer Adsorption and Reaction (SILAR) in an aqueous environment. Functionalization with Fe(iii) oxides gave the best results, leading to photoanodes capable of efficiently splitting water, with photocurrent densities up to 6 ± 1 mA cm(-2) at 0 V vs. the reversible hydrogen electrode (RHE) under AM 1.5 G simulated sunlight illumination. The resulting Solar To Hydrogen (STH) conversion efficiencies, measured in two electrodes configuration, were in the range 3.7-5%, depending on the counter electrode that was employed. Investigations on the stability showed that these photoanodes were able to sustain 120 minutes of continuous illumination with a < 10% photocurrent loss at 0 V vs. RHE. Pristine photoanodic response of the cells could be fully restored by an additional SILAR cycle, evidencing that the observed loss is due to the detachment of the more weakly surface bound catalyst.

  15. Ultrasonic-assisted synthesis of Pd-Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium.

    PubMed

    Yang, Guohai; Zhou, Yazhou; Pan, Horng-Bin; Zhu, Chengzhou; Fu, Shaofang; Wai, Chien M; Du, Dan; Zhu, Jun-Jie; Lin, Yuehe

    2016-01-01

    Herein, a facile ultrasonic-assisted strategy was proposed to fabricate the Pd-Pt alloy/multi-walled carbon nanotubes (Pd-Pt/CNTs) nanocomposites. A good number of Pd-Pt alloy nanoparticles with an average of 3.4 ± 0.5 nm were supported on sidewalls of CNTs with uniform distribution. The composition of the Pd-Pt/CNTs nanocomposites could also be easily controlled, which provided a possible approach for the preparation of other architectures with anticipated properties. The Pd-Pt/CNTs nanocomposites were extensively studied by electron microscopy, induced coupled plasma atomic emission spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy, and applied for the ethanol and methanol electro-oxidation reaction in alkaline medium. The electrochemical results indicated that the nanocomposites had better electrocatalytic activities and stabilities, showing promising applications for fuel cells.

  16. A comparative investigation of metal-support interactions on the catalytic activity of Pt nanoparticles for ethanol oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Godoi, Denis R. M.; Villullas, Hebe M.; Zhu, Fu-Chun; Jiang, Yan-Xia; Sun, Shi-Gang; Guo, Junsong; Sun, Lili; Chen, Rongrong

    2016-04-01

    The effects of interactions of Pt nanoparticles with hybrid supports on reactivity towards ethanol oxidation in alkaline solution are investigated. Studies involve catalysts with identical Pt nanoparticles on six hybrid supports containing carbon powder and transition metal oxides (TiO2, ZrO2, SnO2, CeO2, MoO3 and WO3). In situ X-ray absorption spectroscopy (XAS) results evidence that metal-support interactions produce changes in the Pt 5d band vacancy, which appears to determine the catalytic activity. The highest and lowest activities are observed for Pt nanoparticles on hybrid supports containing TiO2 and CeO2, respectively. Further studies are presented for these two catalysts. In situ FTIR reflection spectroscopy measurements, taken using both multi-stepped FTIR spectroscopy (MS-FTIR) and single potential alteration FTIR spectroscopy (SPA-FTIR), evidence that the main product of ethanol oxidation is acetate, although signals attributed to carbonate and CO2 indicate some differences in CO2 production. Fuel cell performances of these catalysts, tested in a 4.5 cm2 single cell at different temperatures (40-90 °C) show good agreement with data obtained by electrochemical techniques. Results of this comprehensive study point out the possibility of compensating a reduction of noble metal load with an increase in activity promoted by interactions between metallic nanoparticles and a support.

  17. Synthesis of cobalt oxide-reduced graphene nanocomposite and its enhanced electrochemical properties as negative material for alkaline secondary battery

    NASA Astrophysics Data System (ADS)

    Xu, Yanan; Wang, Xiaofeng; An, Cuihua; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2014-12-01

    A potential negative electrode material Co3O4@rGO is synthesized via a facile reflux condensation route. The electrochemical performances of Co3O4@rGO composite for alkaline rechargeable Ni/Co batteries have been systemically investigated for the first time. The reduced-graphene can remarkably enhance the electrochemical activity of Co3O4 materials, leading to a notable improvement of discharge capacity, cycle stability and rate capability. Interestingly, the maximum discharge capacity of Co3O4@rGO-20 (additive amount of GO is 20 mg) electrode can reach 511.4 mAh g-1 with the capacity retention of 89.1% after 100 cycles at a discharge current of 100 mA g-1. A properly electrochemical reaction mechanism of Co3O4@rGO electrode is also constructed in detail.

  18. A set of alkali and alkaline-earth coordination polymers based on the ligand 2-(1H-benzotriazol-1-yl) acetic acid: Effects the radius of metal ions on structures and properties

    SciTech Connect

    Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik

    2014-11-15

    Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one

  19. Structure-Based Engineering of Methionine Residues in the Catalytic Cores of Alkaline Amylase from Alkalimonas amylolytica for Improved Oxidative Stability

    PubMed Central

    Yang, Haiquan; Wang, Mingxing; Li, Jianghua; Wang, Nam Sun; Du, Guocheng

    2012-01-01

    This work aims to improve the oxidative stability of alkaline amylase from Alkalimonas amylolytica through structure-based site-directed mutagenesis. Based on an analysis of the tertiary structure, five methionines (Met 145, Met 214, Met 229, Met 247, and Met 317) were selected as the mutation sites and individually replaced with leucine. In the presence of 500 mM H2O2 at 35°C for 5 h, the wild-type enzyme and the M145L, M214L, M229L, M247L, and M317L mutants retained 10%, 28%, 46%, 28%, 72%, and 43% of the original activity, respectively. Concomitantly, the alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant were also improved. The pH stability of the mutants (M145L, M214L, M229L, and M317L) remained unchanged compared to that of the wild-type enzyme, while the stable pH range of the M247L mutant was extended from pH 7.0 to 11.0 for the wild type to pH 6.0 to 12.0 for the mutant. The wild-type enzyme lost its activity after incubation at 50°C for 2 h, and the M145L, M214L, M229L, and M317L mutants retained less than 14% of the activity, whereas the M247L mutant retained 34% of the activity under the same conditions. Compared to the wild-type enzyme, the kcat values of the M145L, M214L, M229L, and M317L mutants decreased, while that of the M247L mutant increased slightly from 5.0 × 104 to 5.6 × 104 min−1. The mechanism responsible for the increased oxidative stability, alkaline stability, thermal stability, and catalytic efficiency of the M247L mutant was further analyzed with a structure model. The combinational mutants were also constructed, and their biochemical properties were characterized. The resistance of the wild-type enzyme and the mutants to surfactants and detergents was also investigated. Our results indicate that the M247L mutant has great potential in the detergent and textile industries. PMID:22865059

  20. Slurry and Plasma-spray Coating of Selective Emitting Rare-earth Oxides on High Temperature Resistant Substrates

    NASA Astrophysics Data System (ADS)

    Tobler, W. J.; Durisch, W.

    2007-02-01

    Selective emitting coatings of the rare-earth oxides Yb2O3 and Yb-doped garnet have been applied on SiC by slurry coating and on the high refractory intermetallic compound MoSi2 by vacuum plasma-spraying. The TPV emitters produced are fully operable in oxygen atmosphere at high temperatures > 1500 °C. The novel technique of pairing MoSi2 substrate with plasma-sprayed rare-earth oxide results in highly thermal shock stable emitters due to an ideal match of the thermal expansion coefficients of intermetallic compound and ceramics.

  1. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide templates

    SciTech Connect

    Kuang Qin; Lin Zhiwei; Lian Wei; Jiang Zhiyuan; Xie Zhaoxiong Huang Rongbin; Zheng Lansun

    2007-04-15

    In this paper, we report a versatile synthetic method of ordered rare-earth metal (RE) oxide nanotubes. RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution TEM, and X-ray diffraction (XRD) have been employed to characterize the morphology and composition of the as-prepared nanotubes. It is found that as-prepared RE oxides evolve into bamboo-like nanotubes and entirely hollow nanotubes. A new possible formation mechanism of RE oxide nanotubes in the AAO channels is proposed. These high-quantity RE oxide nanotubes are expected to have promising applications in many areas such as luminescent materials, catalysts, magnets, etc. - Graphical abstract: A versatile synthetic method for the preparation of ordered rare-earth (RE) oxide nanotubes is reported, by which RE (RE=Y, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) oxide nanotubes were successfully prepared from corresponding RE nitrate solution via the sol-gel method assisted with porous anodic aluminum oxide (AAO) templates.

  2. Strength and microstructure of sintered Si3N4 with rare-earth-oxide additions

    NASA Technical Reports Server (NTRS)

    Sanders, W. A.; Mieskowski, D. M.

    1985-01-01

    Room temperature, 700-, 1000-, 1200-, and 1370-C examinations of the effect of 1.7-2.6 mol pct rare earth oxide additions to sintered Si3N4 are conducted. While the room temperature-1000 C bend strengths were higher for this material with Y2O3 additions than with CeO2, La2O3, or Sm2O3, the reverse was true at 1200-1370 C. This phenomenon is explained on the basis of microstructural differences, since quantitative microscopy of SEM replicas showed the Si3N4-Y2O3 composition to contain both a higher percentage of elongated grains and a coarser microstructure than the other three alternatives. The elongated grains appear to increase this composition's low temperature strength irrespective of microstructural coarseness; this coarseness, however, decreases strength relative to the other compositions at higher temperatures.

  3. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics

    NASA Astrophysics Data System (ADS)

    Preston, Daniel J.; Miljkovic, Nenad; Sack, Jean; Enright, Ryan; Queeney, John; Wang, Evelyn N.

    2014-07-01

    Vapor condensation is routinely used as an effective means of transferring heat, with dropwise condensation exhibiting a 5 - 7x heat transfer improvement compared to filmwise condensation. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings, which are often not robust and therefore undesirable for industrial implementation. Natural surface contamination due to hydrocarbon adsorption, particularly on noble metals, has been explored as an alternative approach to realize stable dropwise condensing surfaces. While noble metals are prohibitively expensive, the recent discovery of robust rare earth oxide (REO) hydrophobicity has generated interest for dropwise condensation applications due to material costs approaching 1% of gold; however, the underlying mechanism of REO hydrophobicity remains under debate. In this work, we show through careful experiments and modeling that REO hydrophobicity occurs due to the same hydrocarbon adsorption mechanism seen previously on noble metals. To investigate adsorption dynamics, we studied holmia and ceria REOs, along with control samples of gold and silica, via X-Ray photoelectron spectroscopy (XPS) and dynamic time-resolved contact angle measurements. The contact angle and surface carbon percent started at ≈0 on in-situ argon-plasma-cleaned samples and increased asymptotically over time after exposure to laboratory air, with the rare earth oxides displaying hydrophobic (>90°) advancing contact angle behavior at long times (>4 days). The results indicate that REOs are in fact hydrophilic when clean and become hydrophobic due to hydrocarbon adsorption. Furthermore, this study provides insight into how REOs can be used to promote stable dropwise condensation, which is important for the development of enhanced phase change surfaces.

  4. Effects of rare earth oxide nanoparticles on root elongation of plants.

    PubMed

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles.

  5. The oxidation state of the mantle and the extraction of carbon from Earth's interior.

    PubMed

    Stagno, Vincenzo; Ojwang, Dickson O; McCammon, Catherine A; Frost, Daniel J

    2013-01-01

    Determining the oxygen fugacity of Earth's silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet's formation. Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found. Here we report the results of experiments to test garnet oxythermobarometry equilibria under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe(3+) in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe(3+) to total iron in the bulk rock. This 'redox melting' relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting. PMID:23282365

  6. Effect of hydrocarbon adsorption on the wettability of rare earth oxide ceramics

    SciTech Connect

    Preston, Daniel J.; Miljkovic, Nenad; Sack, Jean; Queeney, John; Wang, Evelyn N.; Enright, Ryan

    2014-07-07

    Vapor condensation is routinely used as an effective means of transferring heat, with dropwise condensation exhibiting a 5 − 7x heat transfer improvement compared to filmwise condensation. However, state-of-the-art techniques to promote dropwise condensation rely on functional hydrophobic coatings, which are often not robust and therefore undesirable for industrial implementation. Natural surface contamination due to hydrocarbon adsorption, particularly on noble metals, has been explored as an alternative approach to realize stable dropwise condensing surfaces. While noble metals are prohibitively expensive, the recent discovery of robust rare earth oxide (REO) hydrophobicity has generated interest for dropwise condensation applications due to material costs approaching 1% of gold; however, the underlying mechanism of REO hydrophobicity remains under debate. In this work, we show through careful experiments and modeling that REO hydrophobicity occurs due to the same hydrocarbon adsorption mechanism seen previously on noble metals. To investigate adsorption dynamics, we studied holmia and ceria REOs, along with control samples of gold and silica, via X-Ray photoelectron spectroscopy (XPS) and dynamic time-resolved contact angle measurements. The contact angle and surface carbon percent started at ≈0 on in-situ argon-plasma-cleaned samples and increased asymptotically over time after exposure to laboratory air, with the rare earth oxides displaying hydrophobic (>90°) advancing contact angle behavior at long times (>4 days). The results indicate that REOs are in fact hydrophilic when clean and become hydrophobic due to hydrocarbon adsorption. Furthermore, this study provides insight into how REOs can be used to promote stable dropwise condensation, which is important for the development of enhanced phase change surfaces.

  7. Effects of rare earth oxide nanoparticles on root elongation of plants.

    PubMed

    Ma, Yuhui; Kuang, Linglin; He, Xiao; Bai, Wei; Ding, Yayun; Zhang, Zhiyong; Zhao, Yuliang; Chai, Zhifang

    2010-01-01

    The phytotoxicity of four rare earth oxide nanoparticles, nano-CeO(2), nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) on seven higher plant species (radish, rape, tomato, lettuce, wheat, cabbage, and cucumber) were investigated in the present study by means of root elongation experiments. Their effects on root growth varied greatly between different nanoparticles and plant species. A suspension of 2000 mg L(-1) nano-CeO(2) had no effect on the root elongation of six plants, except lettuce. On the contrary, 2000 mg L(-1) suspensions of nano-La(2)O(3), nano-Gd(2)O(3) and nano-Yb(2)O(3) severely inhibited the root elongation of all the seven species. Inhibitory effects of nano-La(2)O(3), nano-Gd(2)O(3), and nano-Yb(2)O(3) also differed in the different growth process of plants. For wheat, the inhibition mainly took place during the seed incubation process, while lettuce and rape were inhibited on both seed soaking and incubation process. The fifty percent inhibitory concentrations (IC(50)) for rape were about 40 mg L(-1) of nano-La(2)O(3), 20mg L(-1) of nano-Gd(2)O(3), and 70 mg L(-1) of nano-Yb(2)O(3), respectively. In the concentration ranges used in this study, the RE(3+) ion released from the nanoparticles had negligible effects on the root elongation. These results are helpful in understanding phytotoxicity of rare earth oxide nanoparticles. PMID:19897228

  8. The oxidation state of the mantle and the extraction of carbon from Earth's interior.

    PubMed

    Stagno, Vincenzo; Ojwang, Dickson O; McCammon, Catherine A; Frost, Daniel J

    2013-01-01

    Determining the oxygen fugacity of Earth's silicate mantle is of prime importance because it affects the speciation and mobility of volatile elements in the interior and has controlled the character of degassing species from the Earth since the planet's formation. Oxygen fugacities recorded by garnet-bearing peridotite xenoliths from Archaean lithosphere are of particular interest, because they provide constraints on the nature of volatile-bearing metasomatic fluids and melts active in the oldest mantle samples, including those in which diamonds are found. Here we report the results of experiments to test garnet oxythermobarometry equilibria under high-pressure conditions relevant to the deepest mantle xenoliths. We present a formulation for the most successful equilibrium and use it to determine an accurate picture of the oxygen fugacity through cratonic lithosphere. The oxygen fugacity of the deepest rocks is found to be at least one order of magnitude more oxidized than previously estimated. At depths where diamonds can form, the oxygen fugacity is not compatible with the stability of either carbonate- or methane-rich liquid but is instead compatible with a metasomatic liquid poor in carbonate and dominated by either water or silicate melt. The equilibrium also indicates that the relative oxygen fugacity of garnet-bearing rocks will increase with decreasing depth during adiabatic decompression. This implies that carbon in the asthenospheric mantle will be hosted as graphite or diamond but will be oxidized to produce carbonate melt through the reduction of Fe(3+) in silicate minerals during upwelling. The depth of carbonate melt formation will depend on the ratio of Fe(3+) to total iron in the bulk rock. This 'redox melting' relationship has important implications for the onset of geophysically detectable incipient melting and for the extraction of carbon dioxide from the mantle through decompressive melting.

  9. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    SciTech Connect

    Khan, Sami; Varanasi, Kripa K.; Azimi, Gisele; Yildiz, Bilge

    2015-02-09

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ∼3 and a water contact angle of ∼15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (∼2.2) and becomes hydrophobic (contact angle of ∼104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs.

  10. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions.

    PubMed

    Chen, Pengzuo; Xu, Kun; Zhou, Tianpei; Tong, Yun; Wu, Junchi; Cheng, Han; Lu, Xiuli; Ding, Hui; Wu, Changzheng; Xie, Yi

    2016-02-12

    Developing highly active catalysts for the oxygen evolution reaction (OER) is of paramount importance for designing various renewable energy storage and conversion devices. Herein, we report the synthesis of a category of Co-Pi analogue, namely cobalt-based borate (Co-Bi ) ultrathin nanosheets/graphene hybrid by a room-temperature synthesis approach. Benefiting from the high surface active sites exposure yield, enhanced electron transfer capacity, and strong synergetic coupled effect, this Co-Bi NS/G hybrid shows high catalytic activity with current density of 10 mA cm(-2) at overpotential of 290 mV and Tafel slope of 53 mV dec(-1) in alkaline medium. Moreover, Co-Bi NS/G electrocatalysts also exhibit promising performance under neutral conditions, with a low onset potential of 235 mV and high current density of 14.4 mA cm(-2) at 1.8 V, which is the best OER performance among well-developed Co-based OER electrocatalysts to date. Our finding paves a way to develop highly active OER electrocatalysts. PMID:26757358

  11. Effect of the length and surface area on electrochemical performance of cobalt oxide nanowires for alkaline secondary battery application

    NASA Astrophysics Data System (ADS)

    Xu, Yanan; Wang, Xiaofeng; An, Cuihua; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2014-12-01

    One-dimensional porous Co3O4 nanowires with different length have been successfully synthesized by thermal decomposition of Co-NA polymer precursors at various hydrothermal reaction times. The positive effects of longer nanowires and larger surface area on electrochemical performance of Co3O4 samples were investigated systematically. All the as-prepared Co3O4 samples display excellent discharge capacities and cycle stability on account of large surface area and porous structure, indicating great potential application of porous Co3O4 nanowires for alkaline rechargeable batteries. The Co3O4-24 h sample with the longest length shows the most outstanding electrochemical performance, and displays the maximum discharge capacity of 450.1 mAh g-1 with the capacity retention of 90.4% after 100 cycles at a current density of 100 mA g-1. Electrochemical reactions between Co and Co(OH)2 occurring on the Co3O4 electrodes are investigated by XRD, cyclic voltammetry (CV) and charge-discharge measurements.

  12. Oxygen evolution reaction characteristics of synthetic nickel-cobalt-oxide electrodes for alkaline anion-exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Koo, Tae Woo; Park, ChanSu; Kim, Yang Do; Lee, Dooyong; Park, Sungkyun; Lee, Jae Ho; Choi, Sung Mook; Choi, Chul Young

    2015-11-01

    A polymer electrolyte membrane water electrolysis system can produce high-purity hydrogen gases in a highly efficient manner. However, the level of hydrogen gas production is still small. In addition, noble-metal catalysts for the reaction in acidic environments, as well as an additional drying step to remove water contained in the hydrogen, are required. Therefore, water electrolysis system with high efficiency and lower cost, an alkaline anion-exchange membrane system that can produce high-purity hydrogen without a noble-metal catalyst, is needed. Nano-size NiCo2O4 powders were prepared by using a sol-gel method to achieve an efficient and economical water electrolysis system. When the powder was calcined at 450 °C, the crystallinity and the cyclic voltammogram measurement showed the best values. In addition, the 15-wt.% polytetrafluoroethylene mixed NiCo2O4 powders exhibited the largest cyclic voltammetry active area and the highest oxygen evolution reaction activity with the appropriate stability.

  13. Isotopic Evidence for Internal Oxidation of the Earth's Mantle During Accretion

    NASA Astrophysics Data System (ADS)

    Williams, H. M.; Wood, B. J.; Wade, J.; Frost, D. J.; Tuff, J.

    2010-12-01

    The Earth’s mantle is currently oxidised and out of chemical equilibrium with the core. Why this should be the case, and why the Earth’s mantle should be more oxidised relative to other terrestrial planets is poorly understood. It has been proposed that the oxidised nature and high ferric iron (Fe3+) content of the Earth’s mantle was produced internally by disproportionation of ferrous iron (Fe2+) into Fe3+ and metallic iron by perovskite crystallisation during accretion [1]. Here we show that there is a substantial Fe isotope fractionation between experimentally equilibrated metal and perovskite, where perovskite is isotopically heavy relative to metal. This fractionation can explain the heavy Fe isotope compositions of terrestrial basalts relative to equivalent samples derived from Mars and Vesta [2, 3], as the latter planets are too small to stabilise significant perovskite. Mass balance calculations indicate that all of the mantle’s Fe3+ could have been generated from a single disproportionation event, which is consistent with complete dissolution of perovskite in the lower mantle during the Moon-forming giant impact. The similar Fe isotope compositions of terrestrial and lunar basalts are consistent with equilibration between the mantles of the Earth and Moon in the aftermath of the giant impact [4] and implies that the heavy Fe isotope composition of the Earth’s mantle was established prior to, or during this event. The oxidation state and ferric iron content of the Earth’s mantle was therefore plausibly set by the end of accretion, and is decoupled from late volatile additions and the rise of oxygen in the Earth’s atmosphere at 2.45 Ga [5]. [1] Frost, D. J.et al., Nature 428, p. 409 (2004). [2] Poitrasson, F.et al., Earth and Planetary Science Letters 223 (3-4), p. 253 (2004). [3] Weyer, S. et al., Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240 (2), p. 251 (2005). [4] Pahlevan, K. and

  14. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm-2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm-2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  15. Graphene oxide electrocatalyst on MnO₂ air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution.

    PubMed

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-03-13

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm(-2), in contrast to MnO2, which produced a maximum power density of 9.2 mW cm(-2). The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms.

  16. Graphene oxide electrocatalyst on MnO2 air cathode as an efficient electron pump for enhanced oxygen reduction in alkaline solution

    PubMed Central

    Basirun, Wan Jeffrey; Sookhakian, Mehran; Baradaran, Saeid; Endut, Zulkarnain; Mahmoudian, Mohammad Reza; Ebadi, Mehdi; Yousefi, Ramin; Ghadimi, Hanieh; Ahmed, Sohail

    2015-01-01

    Graphene oxide (GO) was deposited on the surface of a MnO2 air cathode by thermal evaporation at 50°C from a GO colloidal suspension. Fourier transformed infrared spectroscopy and field emission scanning electron microscopy confirmed the presence of GO on the MnO2 air cathode (GO-MnO2). Voltammetry and chrono-amperometry showed increased currents for the oxygen reduction reaction (ORR) in 6 M KOH solution for GO-MnO2 compared to the MnO2 cathode. The GO-MnO2 was used as an air cathode in an alkaline tin-air cell and produced a maximum power density of 13 mW cm−2, in contrast to MnO2, which produced a maximum power density of 9.2 mW cm−2. The electrochemical impedance spectroscopy results suggest that the chemical step for the ORR is the rate determining step, as proposed earlier by different researchers. It is suggested that the presence of GO and electrochemically reduced graphene oxide (ERGO) on the MnO2 surface are responsible for the increased rate of this step, whereby GO and ERGO accelerate the process of electron donation to the MnO2 and to adsorbed oxygen atoms. PMID:25765731

  17. Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium

    NASA Astrophysics Data System (ADS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-08-01

    One of the obstacles to the commercialisation of fuel cells is the high cost of noble metals, such as platinum, that are used as electrocatalysts. Silver-incorporated nitrogen-doped reduced graphene oxide (Ag/N-rGO) has been synthesised through the simple annealing of metal salts with graphene oxide and melamine. The presence of silver and nitrogen atoms in Ag/N-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) analysis. Both the XPS and EDS results showed a higher Ag loading on the N-rGO surface compared with the rGO surface. Transmission electron microscopy (TEM) images revealed a wide size distribution of Ag particles loaded on the N-rGO surface. Electrochemical results indicate that N-rGO is a better support for Ag than rGO. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results indicate that Ag/N-rGO is a potential ORR catalyst candidate in alkaline as it exhibited an onset potential of -0.15 V vs. Ag/AgCl and a limiting diffusion current density of -4.38 mA cm-2 with four electron pathways. In addition, Ag/N-rGO also showed better methanol tolerance than Pt/C.

  18. Synthesis of silver/nitrogen-doped reduced graphene oxide through a one-step thermal solid-state reaction for oxygen reduction in an alkaline medium

    NASA Astrophysics Data System (ADS)

    Soo, Li Ting; Loh, Kee Shyuan; Mohamad, Abu Bakar; Daud, Wan Ramli Wan; Wong, Wai Yin

    2016-08-01

    One of the obstacles to the commercialisation of fuel cells is the high cost of noble metals, such as platinum, that are used as electrocatalysts. Silver-incorporated nitrogen-doped reduced graphene oxide (Ag/N-rGO) has been synthesised through the simple annealing of metal salts with graphene oxide and melamine. The presence of silver and nitrogen atoms in Ag/N-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS) analysis. Both the XPS and EDS results showed a higher Ag loading on the N-rGO surface compared with the rGO surface. Transmission electron microscopy (TEM) images revealed a wide size distribution of Ag particles loaded on the N-rGO surface. Electrochemical results indicate that N-rGO is a better support for Ag than rGO. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV) results indicate that Ag/N-rGO is a potential ORR catalyst candidate in alkaline as it exhibited an onset potential of -0.15 V vs. Ag/AgCl and a limiting diffusion current density of -4.38 mA cm-2 with four electron pathways. In addition, Ag/N-rGO also showed better methanol tolerance than Pt/C.

  19. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. PMID:26851453

  20. Use of rare earth oxides and iron oxides as soil erosion tracers in water erosion experiments at hillslope scale

    NASA Astrophysics Data System (ADS)

    Guzmán, G.; Cañasveras, J. C.; Barrón, V.; Boulal, H.; Gómez, H.; Conde, E.; Fernández, M.; Gómez, J. A.

    2010-05-01

    The characteristics of the ideal soil erosion have been defined by several authors, for example by Zhang et al. (2001). Despite intensive research on erosion tracers in the last decades there is not a single tracer fulfilling all these characteristics. That is why research on different soil erosion tracers remains as an active field. Two desirable characteristics in erosion tracers are that they should be relatively inexpensive (to purchase and analyze) and that they should be determined with high accuracy in soil or sediment. The availability of multiple tracers is another of the key requirements. In this communication we present our preliminary results on the use of two different sets of erosion tracers. One set are iron oxides with different magnetic and optical properties (Fe3O4, α-Fe2O3 and FeOOH) analyzed by NIRS and magnetic susceptibility measurements. The other set consists of five rare earth oxides (La2O3, Pr6O11, Nd2O3, Sm2O3 and Gd2O3) analyzed using inductively coupled plasma mass spectrometry (ICP-MS). These two groups were studied under controlled and natural conditions, through several water erosion experiments, in field plots with different soil management, crops and scale. In one experiment these tracers were used to determine the source of sediment within sprinkle irrigated fields planted with cotton on shoulders. For this purpose, rainfall simulations were performed under controlled conditions at two scales, one with a portable rainfall simulator at small scale (0.81m2) and with the sprinkler irrigation system in the whole cotton field (2450 m2). Furrows were tagged with both groups of tracers, keeping shoulders untagged (where cotton was planted). Soil samples before and after the rainfall simulations were collected as well as sediment samples. In another experiment four olive orchard plots (330 m2) with different soil managements (cover crop and conventional tillage) were also tagged with the two groups of tracers. Soil samples were taken at

  1. Sodium N-Chlorobenzenesulfonamide as a Selective Oxidant for Hexosamines in Alkaline Medium: A Kinetic and Mechanistic Study.

    PubMed

    Rangappa, Kanchugarakoppal S.; Raghavendra, Manikanahally P.; Mahadevappa, Dandinasivara S.; Channegowda, Doddegowda

    1998-02-01

    Oxidation of D-mannosamine (1), D-glucosamine (2), and D-galctosamine (3) by sodium N-chlorobenzenesulfonamide or chloramine-B (CAB) at 313 K is followed by a shortening of carbon chain and obeys the rate law, rate = k[CAB][sugar][HO(-)](x)(), where x is less than unity. The products are arabinonic acid, ribonic acid, and erythronic acid for 1 and 2 with smaller amounts of glyceric and hexonic acids, while lyxonic and threonic acids are predominant in the oxidation of 3 with smaller amounts of glyceric and hexonic acids. Proton inventory studies made in a H(2)O-D(2)O mixture point toward a single transition state. In the proposed mechanism the alkoxy anion (S(-)) of the hexosamine formed in a base-catalyzed reaction at C-1 carbon is subjected to an electrophilic rate-limiting attack by Cl(+) of the oxidant. The hexonic acid formed is decarboxylated with loss of ammonia to form the respective pentose, which is further converted into the corresponding pentonic acid. The breaking of the bond between C-1 and C-2 carbons in pentose yields tetronic acids. The thermodynamic parameters for sugar alkoxy anion formation and activation parameters for the rate-limiting step have been evaluated.

  2. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  3. COMBUSTION SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE ALKALINE EARTH ALUMINATE Sr4Al14O25:RE(RE = Eu, Dy, Sm)

    NASA Astrophysics Data System (ADS)

    Hedaoo, V. P.; Bhatkar, V. B.; Omanwar, S. K.

    2013-08-01

    Nanoscale phosphors have superior performance characteristics than the bulk phosphors. This paper explains the synthesis and characterization like XRD, FTIR, SEM and photoluminescence properties of nanocrystalline Sr4Al14O25 doped with rare earth elements like europium, dysprosium and samarium by combustion method. XRD showed the nanoscale crystalline nature of as-prepared samples. SEM confirmed size of the particle less than 100 nm. Photoluminescent emission spectra showed strong orange red emission at 593 nm for Sr4Al14O25:Sm3+. The green emission of Eu2+ was observed at around 490 nm for Sr4Al14O25:Eu2+.

  4. Dielectric Relaxation of Rare Earth Ordered Double Perovskite Oxide Ba2ErTaO6

    NASA Astrophysics Data System (ADS)

    Mukherjee, Rajesh; Dutta, Alo; Sinha, T. P.

    2016-01-01

    The electrical properties of rare-earth based ordered double perovskite oxide barium erbium tantalate, Ba2ErTaO6 synthesized by solid-state reaction method are investigated. The x-ray diffraction pattern of the sample shows cubic Fm3m phase at room temperature with ordering of the B cations. Fourier transform infrared spectrum shows two primary phonon modes of the sample at around 350 cm-1 and 600 cm-1. The dielectric relaxation of the sample is investigated in the frequency range from 50 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. Electric modulus and electrical impedance data are fitted to the Cole-Cole equation. The frequency dependent conductivity spectra follow the power law. Summerfield scaling is used to explain the conduction mechanism. The scaling behavior of the imaginary part of the impedance spectra suggests that the relaxation shows the same mechanism at various temperatures. The complex impedance plane plots show that the relaxation (conduction) mechanism in this material is mainly due to grain boundary effect for all temperatures and grain effect for low temperature. The relaxation frequency corresponding to dielectric loss is found to obey Arrhenius law with activation energy of 0.50 eV. The values of activation energy indicate that the dielectric relaxation and the conduction mechanism are due to adiabatic small polaronic hole hopping mechanism.

  5. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants.

    PubMed

    Goodall, Josephine B M; Illsley, Derek; Lines, Robert; Makwana, Neel M; Darr, Jawwad A

    2015-02-01

    In this paper, we demonstrate the use of continuous hydrothermal flow synthesis (CHFS) technology to rapidly produce a library of 56 crystalline (doped) zinc oxide nanopowders and two undoped samples, each with different particle properties. Each sample was produced in series from the mixing of an aqueous stream of basic zinc nitrate (and dopant ion or modifier) solution with a flow of superheated water (at 450 °C and 24.1 MPa), whereupon a crystalline nanoparticle slurry was rapidly formed. Each composition was collected in series, cleaned, freeze-dried, and then characterized using analytical methods, including powder X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, X-ray photoelectron spectroscopy, and UV-vis spectrophotometry. Photocatalytic activity of the samples toward the decolorization of methylene blue dye was assessed, and the results revealed that transition metal dopants tended to reduce the photoactivity while rare earth ions, in general, increased the photocatalytic activity. In general, low dopant concentrations were more beneficial to having greater photodecolorization in all cases.

  6. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.

    PubMed

    Lee, Jang-Soo; Park, Gi Su; Lee, Ho Il; Kim, Sun Tai; Cao, Ruiguo; Liu, Meilin; Cho, Jaephil

    2011-12-14

    A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity of MnOx while acting as a supporting matrix for the catalyst. The large surface area of the amorphous MnOx nanowires, together with other microscopic features (e.g., high density of surface defects), potentially offers more active sites for oxygen adsorption, thus significantly enhancing ORR activity. In particular, a Zn-air battery based on this composite air electrode exhibits a peak power density of ∼190 mW/cm2, which is far superior to those based on a commercial air cathode with Mn3O4 catalysts. PMID:22050041

  7. Extraction of rare earth oxides using supercritical carbon dioxide modified with Tri-n-butyl phosphate–nitric acid adducts

    DOE PAGES

    Baek, Donna L.; Fox, Robert V.; Case, Mary E.; Sinclair, Laura K.; Schmidt, Alex B.; McIlwain, Patrick R.; Mincher, Bruce J.; Wai, Chien M.

    2016-06-14

    A new tri-n-butylphosphate–nitric acid (TBP–HNO3) adduct was prepared by combining TBP and fuming (90%) HNO3. The adduct was characterized, and its phase-equilibrium behavior in supercritical carbon dioxide is reported. Supercritical carbon dioxide (sc-CO2) was modified with this new adduct [TBP(HNO3)5.2(H2O)1.7], and the extraction efficacies of selected rare earth oxides (Y, Ce, Eu, Tb, and Dy) at 338 K and 34.5 MPa were compared with those obtained using an adduct formed from concentrated (70%) HNO3 and TBP [TBP(HNO3)1.7(H2O)0.6]. All rare earth oxides tested with both adduct species could be extracted with the exception of cerium oxide. Furthermore, the water and acidmore » concentrations in the different adducts were found to play a significant role in rare earth oxide extraction efficiency.« less

  8. Facile self-assembly synthesis of PdPt bimetallic nanotubes with good performance for ethanol oxidation in an alkaline medium.

    PubMed

    Huang, Zhongyuan; Zhou, Haihui; Sun, Feifei; Fu, Chaopeng; Zeng, Fanyan; Li, Tianqi; Kuang, Yafei

    2013-10-01

    PdPt bimetallic nanotubes were prepared by the self-assembly of Pt and Pd on Te nanowires at room temperature. The morphologies of the as-prepared PdPt nanotubes were investigated by scanning electron microscopy and transmission electron microscopy, and the results display a large amount of PdPt bimetallic nanotubes with a diameter of 10-20 nm and a length of several micrometers. The composition and structure of the nanotubes were characterized by X-ray diffraction, high-resolution transmission electron microscopy, scanning transmission electron microscopy, and energy spectrum analysis, and the results display uniform compositional distributions of both elements (Pd and Pt). The mechanism of the formation of the nanotube structure was supposed. The electrocatalytic performance of PdPt nanotubes were studied by cyclic voltammetry and chronoamperometry. Electrochemical results show that the as-prepared PdPt nanotube catalysts have not only high activity but also good stability for ethanol oxidation in alkaline medium.

  9. Size-controllable synthesis of trimetallic RhPdPt island-shaped nanoalloys with enhanced electrocatalytic performance for ethanol oxidation in alkaline medium.

    PubMed

    Huang, Da-Bing; He, Pei-Lei; Yuan, Qiang; Wang, Xun

    2015-03-01

    Size-controllable, high-yield, island-shaped RhPdPt trimetallic nanocrystals with sub-2.0 nm islands have been successfully synthesized through a facile aqueous solution approach. The results of X-ray diffraction (XRD), energy-dispersive X-ray (EDX) line scanning and elemental mapping analysis showed the as-synthesized RhPdPt nanocrystals are alloy structures. These island-shaped RhPdPt trimetallic nanoalloys showed a composition-dependent electrocatalytic performance for ethanol oxidation in alkaline medium. Due to the special structure and intermetallic synergies, the Rh10Pd40Pt50 nanoalloys exhibited an enhanced catalytic activity and durability relative to island-shaped Pd50Pt50 bimetallic nanoalloys and commercial Pt black. The peak current density for Rh10Pd40Pt50 nanoalloys was 1.81 and 1.38 times that for commercial Pt black and Pd50Pt50 nanoalloys, respectively. In addition, the peak potential on Rh10Pd40Pt50 nanoalloys decreased 42 mV relative to commercial Pt black and Pd50Pt50 nanoalloys.

  10. N-doped carbon@Ni-Al2O3 nanosheet array@graphene oxide composite as an electrocatalyst for hydrogen evolution reaction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Wang, Juan; Qiu, Tian; Chen, Xu; Lu, Yanluo; Yang, Wensheng

    2015-10-01

    An NiAl-layered double-hydroxide (NiAl-LDH) nanosheet array is grown on a graphene oxide (GO) substrate (NiAl-LDH@GO) by the hydrothermal method. The NiAl-LDH@GO is used as the precursor to synthetize an N-doped carbon@Ni-Al2O3 nanosheet array@GO composite (N-C@Ni-Al2O3@GO) by coating with dopamine followed by calcination. The N-C@Ni-Al2O3@GO is used as a non-noble metal electrocatalyst for hydrogen evolution reaction in alkaline medium, and exhibits high electrocatalytic activity with low onset overpotential (-75 mV). The improved electrocatalytic performance of N-C@Ni-Al2O3@GO arises from its intrinsic features. First, it has a high specific surface area with the Ni nanoparticles in the composite dispersed well and the sizes of Ni nanoparticles are small, which lead to the exposure of more active sites for electrocatalysis. Second, there is a synergistic effect between the Ni nanoparticles and the N-C coating layer, which is beneficial to reduce the activation energy of the Volmer step and improve the electrocatalytic activity. Third, the N-C coating layer and the XC-72 additive can form an electrically conductive network, which serves as a bridge for the transfer of electrons from the electrode to the Ni nanoparticles.

  11. Effect of magnesium on the aluminothermic reduction rate of zinc oxide obtained from spent alkaline battery anodes for the preparation of Al-Zn-Mg alloys

    NASA Astrophysics Data System (ADS)

    Ochoa, Rocio; Flores, Alfredo; Torres, Jesus

    2016-04-01

    The aluminothermic reduction of zinc oxide (ZnO) from alkaline battery anodes using molten Al may be a good option for the elaboration of secondary 7000-series alloys. This process is affected by the initial content of Mg within molten Al, which decreases the surface tension of the molten metal and conversely increases the wettability of ZnO particles. The effect of initial Mg concentration on the aluminothermic reduction rate of ZnO was analyzed at the following values: 0.90wt%, 1.20wt%, 4.00t%, 4.25wt%, and 4.40wt%. The ZnO particles were incorporated by mechanical agitation using a graphite paddle inside a bath of molten Al maintained at a constant temperature of 1123 K and at a constant agitation speed of 250 r/min, the treatment time was 240 min and the ZnO particle size was 450-500 mesh. The results show an increase in Zn concentration in the prepared alloys up to 5.43wt% for the highest initial concentration of Mg. The reaction products obtained were characterized by scanning electron microscopy and X-ray diffraction, and the efficiency of the reaction was measured on the basis of the different concentrations of Mg studied.

  12. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    PubMed

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging. PMID:26878217

  13. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Río, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature.

  14. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports

  15. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  16. Ultrafast pump-probe dynamics of iron oxide based earth pigments for applications to ancient pottery manufacture

    NASA Astrophysics Data System (ADS)

    Villafana, Tana E.; Brown, William; Warren, Warren S.; Fischer, Martin

    2015-06-01

    We demonstrate that ultrafast pump-probe microscopy provides unique dynamics for natural iron oxide and iron hydroxide earth pigments, despite their chemical similarity. First, we conducted a pump-probe spectroscopy study on heat-treated hematite (the pure red iron oxide mineral) and found the pump-probe dynamics to be temperature dependent. Second, we investigated pottery fired under known conditions and observed firing dependent pump-probe dynamics. Finally, we imaged a New World potshard from the North Carolina Museum of Art. Our results indicate that pump-probe microscopy could be a useful tool in elucidating pottery manufacture.

  17. Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design.

    PubMed

    Li, Ruibin; Ji, Zhaoxia; Chang, Chong Hyun; Dunphy, Darren R; Cai, Xiaoming; Meng, Huan; Zhang, Haiyuan; Sun, Bingbing; Wang, Xiang; Dong, Juyao; Lin, Sijie; Wang, Meiying; Liao, Yu-Pei; Brinker, C Jeffrey; Nel, Andre; Xia, Tian

    2014-02-25

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use.

  18. Surface Interactions with Compartmentalized Cellular Phosphates Explain Rare Earth Oxide Nanoparticle Hazard and Provide Opportunities for Safer Design

    PubMed Central

    2014-01-01

    Growing international exploitation of rare earth oxides (REOs) for commercial and biological use has increased the possibility of human exposure and adverse health effects. Occupational exposure to rare earth materials in miners and polishers leads to a severe form of pneumoconiosis, while gadolinium-containing MRI contrast agents cause nephrogenic systemic fibrosis in patients with renal impairment. The mechanisms for inducing these adverse pro-fibrogenic effects are of considerable importance for the safety assessment of REO particles as well as presenting opportunities for safer design. In this study, using a well-prepared REO library, we obtained a mechanistic understanding of how REOs induce cellular and pulmonary damage by a compartmentalized intracellular biotransformation process in lysosomes that results in pro-fibrogenic growth factor production and lung fibrosis. We demonstrate that rare earth oxide ion shedding in acidifying macrophage lysosomes leads to biotic phosphate complexation that results in organelle damage due to stripping of phosphates from the surrounding lipid bilayer. This results in nanoparticle biotransformation into urchin shaped structures and setting in motion a series of events that trigger NLRP3 inflammasome activation, IL-1β release, TGF-β1 and PDGF-AA production. However, pretreatment of REO nanoparticles with phosphate in a neutral pH environment prevents biological transformation and pro-fibrogenic effects. This can be used as a safer design principle for producing rare earth nanoparticles for biological use. PMID:24417322

  19. Low-Temperature Oxidation Reactions and Cool Flames at Earth and Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard

    1999-01-01

    Non-isothermal studies of cool flames and low temperature oxidation reactions in unstirred closed vessels are complicated by the perturbing effects of natural convection at earth gravity. Buoyant convection due to self-heating during the course of slow reaction produces spatio-temporal variations in the thermal and thus specie concentration fields due to the Arrhenius temperature dependence of the reaction rates. Such complexities have never been quantitatively modeled and were the primary impetus for the development of CSTR's (continuously stirred tank reactors) 30 years ago. While CSTR's have been widely adopted since they offer the advantage of spatial uniformity in temperature and concentration, all gradients are necessarily destroyed along with any structure that may otherwise develop. Microgravity offers a unique environment where buoyant convection can be effectively minimized and the need for stirring eliminated. Moreover, eliminating buoyancy and the need for stirring eliminates complications associated with the induced hydrodynamic field whose influence on heat transport and hot spot formation, hence explosion limits, is not fully realized. The objective of this research is to quantitatively determine and understand the fundamental mechanisms that control the onset and evolution of low temperature reactions and cool flames in both static and flow reactors. Microgravity experiments will be conducted to obtain benchmark data on the structure (spatio-temporal temperature, concentration, flow fields), the dynamics of the chemical fronts, and the ignition diagrams (pressure vs. temperature). Ground-based experiments will be conducted to ascertain the role of buoyancy. Numerical simulations including detailed kinetics will be conducted and compared to experiment.

  20. Rusty Relics of Earth History: Iron(III) Oxides, Isotopes, and Surficial Environments

    NASA Astrophysics Data System (ADS)

    Yapp, Crayton

    The two most common low-temperature iron(III) oxides on Earth are goethite (α-FeOOH) and hematite (α-Fe2O3). The δ18O values of natural goethites range from -15.5 o/oo to +3.3 o/oo, whereas δ18O values of low-temperature hematites range from -16.7 o/oo to +4.7 o/oo. Plots of δD against δ18O for continental goethites are approximately parallel to the meteoric water line of Craig (H Craig. 1961. Science 133:1702-3). This suggests that goethite-water fractionation factors are systematic over a wide range of surficial environments and may indicate that isotopic equilibrium is commonly attained or closely approached. Several experimental or calculated mineral-water, oxygen isotope fractionation curves have been determined for both goethite and hematite. Although there is not yet a consensus on which of these curves best approximates isotopic fractionation in natural samples, oxygen isotope measurements of both goethite and hematite have provided evidence of significant continental climate change on time scales that range from thousands to millions of years. The concentration and 13C values of an Fe(CO3)OH component in apparent solid solution in goethite are proxies for the partial pressure and 13C values, respectively, of CO2 in the environment at the time of goethite crystallization. Biological productivity, CO2 pressures in soil or groundwater, and partial pressures of atmospheric CO2 in ancient environments have been estimated from measurements of the mole fractions and 13C values of Fe(CO3)OH in goethite.

  1. Oxidation state of the Earth's upper mantle during the last 3800 million years: Implications for the origin of life

    NASA Technical Reports Server (NTRS)

    Delano, J. W.

    1993-01-01

    A popular, as well as scientifically rigorous, scenario for the origin of life on Earth involves the production of organic molecules by interaction of lightning (or other forms of energy) with a chemically reducing atmosphere in the early history of Earth. Experiments since the 1950's have convincingly demonstrated that the yield of organic molecules is high when the atmosphere contains molecular hydrogen, methane, ammonia, and water vapor. Additional work has also shown that such a highly reducing atmosphere might not, however, have been sufficiently long-lived in the presence of intense solar ultraviolet radiation for life to have formed from it. One way of maintaining such an atmosphere would be to have a continual replenishment of the reduced gases by prolonged volcanic outgassing from a reducing of Earth's interior. The length of time that this replenishment might need to continue is in part constrained by the flux of asteroids onto the Earth's surface containing sufficient energy to destroy most, if not all, life that had developed up to that point in time. If a reducing atmosphere is a key ingredient for the origin of life on Earth, the time of the last environmental sterilization due to large impacts would be an important constraint. In a deep marine setting (e.g., hydrothermal vent), the last global sterilization might have occurred at 4200-4000 Ma. On the Earth's surface, the last global sterilization event might have occurred at 4000-3700 Ma. If these are meaningful constraints, how likely is it that a reducing atmosphere could have survived on the Earth until about 3800 Ma ago? Due to the importance of replenishing this atmosphere with reducing components by volcanic outgassing from the mantle, geochemical information on the history of the mantle's oxidation state would be useful for addressing this question. Geochemical and experimental data discussed in this abstract suggest that extrusive mafic volcanics derived from the upper mantle have had

  2. Observation of superconductivity ( Tc = 50 K) in a new tetragonal alkaline-earth cuprate Sr 0.8Ba 1.2CuO 3+δ, synthesised at ambient pressure

    NASA Astrophysics Data System (ADS)

    Hodges, J. P.; Slater, P. R.; Edwards, P. P.; Greaves, C.; Slaski, M.; Van Tendeloo, G.; Amelinckx, S.

    1996-02-01

    The ambient-pressure synthesis of a new tetragonal alkaline-earth superconducting cuprate, Sr 0.8Ba 1.2CuO 3+δ, from a cupro-oxycarbonate is reported. Magnetic-susceptibility measurements show the presence of a superconducting transition ˜50 K in a post-annealed sample. The crystal structure, refined from time-of-flight powder neutron-diffraction data was found to have an oxygen-deficient La 2CuO 4-type tetragonal T structure ( a = 3.8988(3) Å and c = 12.815(3) Å) with oxygen vacancies located within the CuO 2 planes. Ordering of these oxygen vacancies is responsible for the observation of a superlattice in both neutron- and electron-diffraction measurements. An interpretation of the electron-diffraction patterns suggests that the superlattice in Sr 0.8Ba 1.2CuO 3+δ and also in the isostructural superconductor Sr 2CuO 3+δ are of an identical nature.

  3. Eu(2+)-Activated Alkaline-Earth Halophosphates, M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) for NUV-LEDs: Site-Selective Crystal Field Effect.

    PubMed

    Kim, Donghyeon; Kim, Sung-Chul; Bae, Jong-Seong; Kim, Sungyun; Kim, Seung-Joo; Park, Jung-Chul

    2016-09-01

    Eu(2+)-activated M5(PO4)3X (M = Ca, Sr, Ba; X = F, Cl, Br) compounds providing different alkaline-earth metal and halide ions were successfully synthesized and characterized. The emission peak maxima of the M5(PO4)3Cl:Eu(2+) (M = Ca, Sr, Ba) compounds were blue-shifted from Ca to Ba (454 nm for Ca, 444 nm for Sr, and 434 nm for Ba), and those of the Sr5(PO4)3X:Eu(2+) (X = F, Cl, Br) compounds were red-shifted along the series of halides, F → Cl → Br (437 nm for F, 444 nm for Cl, and 448 nm for Br). The site selectivity and occupancy of the activator ions (Eu(2+)) in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) crystal lattices were estimated based on theoretical calculation of the 5d → 4f transition energies of Eu(2+) using LCAO. In combination with the photoluminescence measurements and theoretical calculation, it was elucidated that the Eu(2+) ions preferably enter the fully oxygen-coordinated sites in the M5(PO4)3X:Eu(2+) (M = Ca, Sr, Ba; X = F, Cl, Br) compounds. This trend can be well explained by "Pauling's rules". These compounds may provide a platform for modeling a new phosphor and application in the solid-state lighting field. PMID:27494550

  4. [Treatment of chronic inflammation of the upper respiratory airways by inhalation thermal therapy with sulfur-sulfate-bicarbonate- carbonate-alkaline earth mineral water: a study of nasal cytology].

    PubMed

    Cristalli, G; Abramo, A; Pollastrini, L

    1996-12-01

    The purpose of the paper is to better characterise changes occurred in nose cytology in a group of 50 subjects affected by chronic inflammation of upper respiratory airway. The patients were random shared in two groups: group A 40 subjects treated using sulphurous thermal water and a group B (control), 10 cases, treated using placebo saline solution. The post-therapy evaluation of nasal cytology showed an improvement of the chronic inflammation in 65% of group A patients (diminution of bacterial dust 65%, diminution of PMN cells in 60% of cases and disappearance of metaplasy notes in all the cases of group A. No statistical modifications were observed in control group. Moreover were observed a increase of plasma-cell number much more in group A. The author conclusion is that a period of thermal therapy using sulphur-sulphate-alkaline-earth metals water in chronic inflammation of the nose, throw pharmacological and physical actions, cause an improvement of the chronic inflammation and a normalisation of nose cytology. PMID:9381939

  5. Coordination of alkaline earth metal ions in the inverted cucurbit[7]uril supramolecular assemblies formed in the presence of [ZnCl4]2- and [CdCl4]2-.

    PubMed

    Li, Qing; Zhang, Yun-Qian; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu; Xiao, Xin

    2015-05-01

    A convenient method to isolate inverted cucurbit[7]uril (iQ[7]) from a mixture of water-soluble Q[n]s was established by eluting the soluble mixture of Q[n]s on a Dowex (H(+) form) column so that iQ[7] could be selected as a ligand for coordination and supramolecular assembly with alkaline earth cations (AE(2+)) in aqueous HCl solutions in the presence of [ZnCl(4)](2-) and [CdCl(4)](2-) anions as structure-directing agents. Single-crystal X-ray diffraction analysis revealed that both iQ[7]-AE(2+) -[ZnCl(4)](2-) -HCl and iQ[7]-AE(2+) -[CdCl(4)](2-) -HCl interaction systems yielded supramolecular assemblies, in which the [ZnCl(4)](2-) and [CdCl(4)](2-) anions presented a honeycomb effect, and this resulted in the formation of linear iQ[7]/AE(2+) coordination polymers through outer-surface interactions of Q[n]s.

  6. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium.

    PubMed

    Ren, Fangfang; Wang, Huiwen; Zhai, Chunyang; Zhu, Mingshan; Yue, Ruirui; Du, Yukou; Yang, Ping; Xu, Jingkun; Lu, Wensheng

    2014-03-12

    In this article, a clean method for the synthesis of PtPd/reduced graphene oxide (RGO) catalysts with different Pt/Pd ratios is reported in which no additional components such as external energy (e.g., high temperature or high pressure), surfactants, or stabilizing agents are required. The obtained catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), induced coupled plasma atomic emission spectroscopy (ICP-AES), and electrochemical measurements. The HRTEM measurements showed that all of the metallic nanoparticles (NPs) exhibited well-defined crystalline structures. The composition of these Pt-Pd/RGO catalysts can be easily controlled by adjusting the molar ratio of the Pt and Pd precursors. Both cyclic voltammetry (CV) and chronoamperometry (CA) results demonstrate that bimetallic PtPd catalysts have superior catalytic activity for the ethanol oxidation reaction compared to the monometallic Pt or Pd catalyst, with the best performance found with the PtPd (1:3)/RGO catalyst. The present study may open a new approach for the synthesis of PtPd alloy catalysts, which is expected to have promising applications in fuel cells.

  7. Photo-Fenton oxidation of phenol and organochlorides (2,4-DCP and 2,4-D) in aqueous alkaline medium with high chloride concentration.

    PubMed

    Luna, Airton J; Chiavone-Filho, Osvaldo; Machulek, Amilcar; de Moraes, José Ermírio F; Nascimento, Cláudio A O

    2012-11-30

    A highly concentrated aqueous saline-containing solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a system composed of an annular reactor with a quartz immersion well and a medium-pressure mercury lamp (450 W). The study was conducted under special conditions to minimize the costs of acidification and neutralization, which are usual steps in this type of process. Photochemical reactions were carried out to investigate the influence of some process variables such as the initial concentration of Fe(2+) ([Fe(2+)](0)) from 1.0 up to 2.5 mM, the rate in mmol of H(2)O(2) fed into the system (FH(2)O(2);in) from 3.67 up to 7.33 mmol of H(2)O(2)/min during 120 min of reaction time, and the initial pH (pH(0)) from 3.0 up to 9.0 in the presence and absence of NaCl (60.0 g/L). Although the optimum pH for the photo-Fenton process is about 3.0, this particular system performed well in experimental conditions starting at alkaline and neutral pH. The results obtained here are promising for industrial applications, particularly in view of the high concentration of chloride, a known hydroxyl radical scavenger and the main oxidant present in photo-Fenton processes.

  8. Two and three way spectrophotometric-assisted multivariate determination of linezolid in the presence of its alkaline and oxidative degradation products and application to pharmaceutical formulation

    NASA Astrophysics Data System (ADS)

    Hegazy, Maha Abd El-Monem; Eissa, Maya Shaaban; Abd El-Sattar, Osama Ibrahim; Abd El-Kawy, Mohammad

    2014-07-01

    Linezolid (LIN) is determined in the presence of its alkaline (ALK) and oxidative (OXD) degradation products without preliminary separation based on ultraviolet spectrophotometry using two-way chemometric methods; principal component regression (PCR) and partial least-squares (PLS), and three-way chemometric methods; parallel factor analysis (PARAFAC) and multi-way partial least squares (N-PLS). A training set of mixtures containing LIN, ALK and OXD; was prepared in the concentration ranges of 12-18, 2.4-3.6 and 1.2-1.8 μg mL-1, respectively according to a multilevel multifactor experimental design. The multivariate calibrations were obtained by measuring the zero-order absorbance from 220 to 320 nm using the training set. The validation of the multivariate methods was realized by analyzing their synthetic mixtures. The capabilities of the chemometric analysis methods for the analysis of real samples were evaluated by determination of LIN in its pharmaceutical preparation with satisfactory results. The accuracy of the methods, evaluated through the root mean square error of prediction (RMSEP), was 0.058, 0.026, 0.101 and 0.026 for LIN using PCR, PLS, PARAFAC and N-PLS, respectively. Protolytic equilibria of LIN and its degradation products were evaluated using the corresponding absorption spectra-pH data obtained with PARAFAC. The obtained pKa values of LIN, ALK and OXD are 5.70, 8.90 and 6.15, respectively. The results obtained were statistically compared to that of a reported HPLC method, and there was no significant difference between the proposed methods and the reported method regarding both accuracy and precision.

  9. Highly porous nickel@carbon sponge as a novel type of three-dimensional anode with low cost for high catalytic performance of urea electro-oxidation in alkaline medium

    NASA Astrophysics Data System (ADS)

    Ye, Ke; Zhang, Dongming; Guo, Fen; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2015-06-01

    Highly porous nickel@carbon sponge electrode with low cost is synthesized via a facile sponge carbonization method coupled with a direct electrodeposition of Ni. The obtained electrodes are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The catalytic performances of urea electro-oxidation in alkaline medium are investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The Ni@carbon sponge electrode exhibits three-dimensional open network structures with a large surface area. Remarkably, the Ni@carbon sponge electrode shows much higher electrocatalytic activity and lower onset oxidation potential towards urea electro-oxidation compared to a Ni/Ti flat electrode synthesized by the same procedure. The Ni@carbon sponge electrode achieves an onset oxidation potential of 0.24 V (vs. Ag/AgCl) and a peak current density of 290 mA cm-2 in 5 mol L-1 NaOH and 0.10 mol L-1 urea solutions accompanied with a desirable stability. The impressive electrocatalytic activity is largely attributed to the high intrinsic electronic conductivity, superior porous network structures and rich surface Ni active species, which can largely boost the interfacial electroactive sites and charge transfer rates for urea electro-oxidation in alkaline medium, indicating promising applications in fuel cells.

  10. Magnetic interactions in new fluorite-related rare earth oxides LnLn'2RuO7 (Ln, Ln'=rare earths)

    NASA Astrophysics Data System (ADS)

    Hinatsu, Yukio; Doi, Yoshihiro

    2016-07-01

    New fluorite-related quaternary rare earth oxides Pr2YRuO7 and La2TbRuO7 have been prepared. They crystallize in an orthorhombic superstructure of cubic fluorite with space group Cmcm. Through magnetic susceptibility and specific heat measurements, Pr2YRuO7 shows an antiferromagnetic transition at 27 K, which is considerably lowered compared with that for Pr3RuO7. Analysis of the magnetic specific heat indicates that the magnetic behavior observed at 27 K for Pr2YRuO7 is predominantly due to the magnetic interactions between Ru ions, and that the interactions between the Pr3+ and Ru5+ ions are also important. La2TbRuO7 shows magnetic ordering at 9.0 K, which is ascribed to the magnetic ordering between Ru5+ ions from the analysis of the magnetic specific heat data.

  11. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, W.; Flytzani-Stephanopoulos, M.

    1996-03-19

    A method and composition are disclosed for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdenum, copper, cobalt, manganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  12. Composite catalyst for carbon monoxide and hydrocarbon oxidation

    DOEpatents

    Liu, Wei; Flytzani-Stephanopoulos, Maria

    1996-01-01

    A method and composition for the complete oxidation of carbon monoxide and/or hydrocarbon compounds. The method involves reacting the carbon monoxide and/or hydrocarbons with an oxidizing agent in the presence of a metal oxide composite catalyst. The catalyst is prepared by combining fluorite-type oxygen ion conductors with active transition metals. The fluorite oxide, selected from the group consisting of cerium oxide, zirconium oxide, thorium oxide, hafnium oxide, and uranium oxide, and may be doped by alkaline earth and rare earth oxides. The transition metals, selected from the group consisting of molybdnum, copper, cobalt, maganese, nickel, and silver, are used as additives. The atomic ratio of transition metal to fluorite oxide is less than one.

  13. Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-light-driven water oxidation in a neutral phosphate buffer solution.

    PubMed

    Chen, Hung-Cheng; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2016-06-01

    Very photostable tetrachloro-metalloporphyrins were developed as sensitizers for visible-light-driven water oxidation coupled to cobalt based water-oxidation catalysts in concentrated (0.1 M) phosphate buffer solution. Potassium persulfate (K2S2O8) acts as a sacrificial electron acceptor to oxidize the metalloporphyrin photosensitizers in their excited states. The radical cations thus produced drive the cobalt based water-oxidation catalysts: Co4O4-cubane and Co(NO3)2 as pre-catalyst for cobalt-oxide (CoOx) nanoparticles. Two different metalloporphyrins (Cu(ii) and Ni(ii)) both showed very high photostability in the photocatalytic reaction, as compared to non-halogenated analogues. This indicates that photostability primarily depends on the substitution of the porphyrin macrocycle, not on the central metal. Furthermore, our molecular design strategy not only positively increases the electrochemical potential by 120-140 mV but also extends the absorption spectrum up to ∼600 nm. As a result, the solar photon capturing abilities of halogenated metalloporphyrins (Cu(ii) and Ni(ii)) are comparable to that of the natural photosynthetic pigment, chlorophyll a. We successfully demonstrate long-term (>3 h) visible-light-driven water oxidation using our molecular system based on earth-abundant (first-row transition) metals in concentrated phosphate buffer solution.

  14. Halogenated earth abundant metalloporphyrins as photostable sensitizers for visible-light-driven water oxidation in a neutral phosphate buffer solution.

    PubMed

    Chen, Hung-Cheng; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2016-06-01

    Very photostable tetrachloro-metalloporphyrins were developed as sensitizers for visible-light-driven water oxidation coupled to cobalt based water-oxidation catalysts in concentrated (0.1 M) phosphate buffer solution. Potassium persulfate (K2S2O8) acts as a sacrificial electron acceptor to oxidize the metalloporphyrin photosensitizers in their excited states. The radical cations thus produced drive the cobalt based water-oxidation catalysts: Co4O4-cubane and Co(NO3)2 as pre-catalyst for cobalt-oxide (CoOx) nanoparticles. Two different metalloporphyrins (Cu(ii) and Ni(ii)) both showed very high photostability in the photocatalytic reaction, as compared to non-halogenated analogues. This indicates that photostability primarily depends on the substitution of the porphyrin macrocycle, not on the central metal. Furthermore, our molecular design strategy not only positively increases the electrochemical potential by 120-140 mV but also extends the absorption spectrum up to ∼600 nm. As a result, the solar photon capturing abilities of halogenated metalloporphyrins (Cu(ii) and Ni(ii)) are comparable to that of the natural photosynthetic pigment, chlorophyll a. We successfully demonstrate long-term (>3 h) visible-light-driven water oxidation using our molecular system based on earth-abundant (first-row transition) metals in concentrated phosphate buffer solution. PMID:27197873

  15. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  16. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  17. The Oxidation State Of Iron In Chromite As A Record Of Deep Earth Processes

    NASA Astrophysics Data System (ADS)

    McGowan, N.; Griffin, W. L.; Pearson, N.; O'Reilly, S. Y.; Clark, S. M.; Roque-Rosell, J.; Marcus, M.; McCammon, C. A.

    2015-12-01

    Recent work on podiform chromitite from the Luobusa massif, Tibet, suggests that a lithospheric slab containing the chromitite was driven into the Transition Zone (>400 km) after primary crystallisation at shallow depth [1]. Exsolution of coesite and pyroxenes from chromite is believed to reflect conversion from the spinel structure to the ultra-high pressure (UHP) calcium ferrite (CF) polymorph below 400 km [2]. Experimental studies report that UHP polymorphs can have a high affinity for Fe3+, leading to disproportionation of Fe2+ to Fe3+ + Fe0 [3], despite low fO2 as evidenced by inclusions of diamond, native metals and alloys, moissanite, and Cr2+-bearing chromite. Luobusa chromitites may be the first natural example of this phenomenon; one study reported a massive chromitite with higher Fe3+/∑Fe than nodular or disseminated varieties with lower modal chromite [4]. The absence of indicators of oxidation implies that the high Fe3+/∑Fe was not produced by formation or alteration of chromite at Earth's surface. A study using samples from Luobusa and the low-pressure Antalya Complex, Turkey was carried out to investigate relationships between pressure, fO2 and Fe3+/∑Fe. In the first application of μ-X-ray absorption near edge structure (μ-XANES) spectroscopy to measure chromite Fe3+/∑Fe, we constructed calibration curves for the pre-edge centroid and main edge maximum features using Fe3+/∑Fe (from Mössbauer spectroscopy) in synthetic and natural spinels. Pre-edge results show that Fe3+/∑Fe increases with vol.% chromite in chromitites from Luobusa, but not from Antalya (fig. 1). High Fe3+/∑Fe thus appears to be a consequence of crystallographic stabilisation of Fe3+ in the UHP polymorph stable below 400 km, despite low-fO2 conditions. The rapid upwelling of the Luobusa chromitite to the uppermost mantle (<10 Ma) has preserved the high Fe3+/∑Fe in samples where re-equilibration with olivine was limited. [1] McGowan et al., Geology (2015) 43, 179

  18. Effect of the introduction of oxide ion vacancies into cubic fluorite-type rare earth oxides on the NO decomposition catalysis

    SciTech Connect

    Masui, Toshiyuki; Nagai, Ryosuke; Imanaka, Nobuhito

    2014-12-15

    Cubic fluorite-type solid solutions based on Pr{sub 6}O{sub 11} and CeO{sub 2} were synthesized and oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice through the charge compensating mechanism by Mg{sup 2+} and/or Ca{sup 2+} doping into their lattices. The oxide anion vacancies bring about positive effect on NO decomposition catalysis. The reason for the increase in the catalytic activity was attributed to defect fluorite-type structures close to the C-type cubic one, because C-type cubic rare earth oxides, in which one-quarter of the oxygen atoms in the fluorite-type structure are removed, show high NO decomposition activity. In particular, the positive effect of the formation of oxide anion vacancies was significant for Pr{sub 6}O{sub 11} and its solid solutions, because the molar volume of Pr{sub 6}O{sub 11} is larger than that of CeO{sub 2}, and Pr{sub 6}O{sub 11} contains Pr{sup 3+} as well as Pr{sup 4+} and thereby a small amount of oxide anion vacancies exist inherently in the lattice. - Graphical abstract: Oxide anion vacancies intentionally introduced into the cubic fluorite-type lattice bring about positive effect on NO decomposition catalysis. - Highlights: • Cubic fluorite-type solid solutions were synthesized. • Oxide anion vacancies were intentionally introduced into the cubic fluorite-type lattice. • The oxide anion vacancies bring about positive effect on NO decomposition catalysis. • The activity was enhanced by making the structure close to the C-type cubic one.

  19. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOEpatents

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  20. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOEpatents

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.