Science.gov

Sample records for alkaline elution technique

  1. The alkaline elution technique for measuring DNA single strand breaks: increased reliability and sensitivity.

    PubMed

    Koch, C J; Giandomenico, A R

    1994-07-01

    The alkaline elution procedure is noted, on the one hand, for its sensitivity in the detection of DNA damage, but on the other hand, for its extreme variability and inconsistency. These deficiencies in the technique have been traced to incomplete exchanges of the various solutions used in the cell rinse and lysis and DNA rinse and elution portions of the procedure. Solutions to the above indicated problems involve several changes to the standard procedure, including, at the cellular stage, the complete removal of rinsing solutions followed by the addition of lysis solution at 0 degrees C. After standard cell lysis and alkaline rinse of the DNA, the alkaline rinse solution is replaced by elution solution at high flow rate to allow a uniform starting time for the elution, which then proceeds as a nearly first-order function of time (not elution volume). Using gamma-rays as the damaging agent, reproducibility within and between experiments is easily comparable to radiation survival itself, and typically, duplicate elution channels within an experiment provide nearly identical information without the need for internal standards and complex ratiometric analysis techniques. The procedures described allow the reproducible assessment of radiation damage to cellular DNA at doses much below 1 Gy and allow the study of repair processes down to similar levels of residual damage. This unexpected increase in technique sensitivity may be caused by maintenance of near-freezing temperatures during cell manipulation and addition of lysis solutions or to more complete and uniform lysis.

  2. Evaluation of the probe dihydrocalcein acetoxymethylester as an indicator of reactive oxygen species formation and comparison with oxidative DNA base modification determined by modified alkaline elution technique.

    PubMed

    Rohnstock, A; Lehmann, L

    2007-12-01

    Reactive oxygen species (ROS) play a predominant role in various diseases and the development of fast and easy methods for the quantification of intracellular ROS represents an important goal. Therefore, the aim of the present study was the evaluation of the fluorogenic probe dihydrocalcein acetoxymethylester (AM) for the detection of intracellular ROS. A flow cytometric method was developed using MCF-7 cells and the kinetics of ester hydrolysis and the cellular distribution and stability of calcein were characterized using calcein AM. Then, MCF-7 cells were challenged with model agents for the generation of singlet oxygen (illumination with visible light), peroxyl and hydroxyl radicals (tert-butylhydroperoxide, tBHP), superoxide anion radicals (potassium dioxide), and the intracellular formation of superoxide anion radicals by redox cycling (menadione) and the formation of calcein was compared with the induction of oxidative DNA base modifications assessed by modified alkaline elution technique. Every model agent significantly induced formamidopyrimidine-DNA glycosylase-sensitive sites (i.e. oxidative DNA base modifications) and most also induced DNA strand breaks. In contrast, exclusively tBHP and illumination with visible light induced the intracellular formation of calcein. In conclusion, though intracellular oxidation of dihydrocalcein represents a fast screening method, it detects a limited spectrum of ROS.

  3. Rapid detection of DNA-interstrand and DNA-protein cross-links in mammalian cells by gravity-flow alkaline elution

    SciTech Connect

    Hincks, J.R.; Coulombe, R.A. Jr.

    1989-01-01

    Alkaline elution is a sensitive and commonly used technique to detect cellular DNA damage in the form of DNA strand breaks and DNA cross-links. Conventional alkaline elution procedures have extensive equipment requirements and are tedious to perform. Our laboratory recently presented a rapid, simplified, and sensitive modification of the alkaline elution technique to detect carcinogen-induced DNA strand breaks. In the present study, we have further modified this technique to enable the rapid characterization of chemically induced DNA-interstrand and DNA-protein associated cross-links in cultured epithelial cells. Cells were exposed to three known DNA cross-linking agents, nitrogen mustard (HN/sub 2/), mitomycin C (MMC), or ultraviolet irradiation (UV). One hour exposures of HN/sub 2/ at 0.25, 1.0, and 4.0 microM or of MMC at 20, 40, and 60 microM produced a dose-dependent induction of total DNA cross-links by these agents. Digestion with proteinase K revealed that HN/sub 2/ and MMC induced both DNA-protein cross-links and DNA-interstrand cross-links. Ultraviolet irradiation induced both DNA cross-links and DNA strand breaks, the latter of which were either protein and nonprotein associated. The results demonstrate that gravity-flow alkaline elution is a sensitive and accurate method to characterize the molecular events of DNA cross-linking. Using this procedure, elution of DNA from treated cells is completed in 1 hr, and only three fractions per sample are analyzed. This method may be useful as a rapid screening assay for genotoxicity and/or as an adjunct to other predictive assays for potential mutagenic or carcinogenic agents.

  4. Validation of a high-throughput in vitro alkaline elution/rat hepatocyte assay for DNA damage.

    PubMed

    Gealy, Robert; Wright-Bourque, Jennifer L; Kraynak, Andrew R; McKelvey, Troy W; Barnum, John E; Storer, Richard D

    2007-04-20

    In vitro alkaline elution is a sensitive and specific short term assay which measures DNA strand breakage in a mammalian test system (primary rat hepatocytes). This lab has previously demonstrated the performance of the assay with known genotoxic and non-genotoxic compounds. The methodology employed has relatively low sample throughput and is labor-intensive, requiring a great deal of manual processing of samples in a format that is not amenable to automation. Here, we present an automated version of the assay. This high-throughput alkaline elution assay (HT-AE) was made possible through 3 key developments: (1) DNA quantitation using PicoGreen and OliGreen fluorescent DNA binding dyes; (2) design and implementation of a custom automation system; and (3) reducing the assay to a 96-well plate format. The assay can now be run with 5-50mg of test compound. HT-AE was validated in a similar manner as the original assay, including assessment of non-genotoxic and non-carcinogenic compounds and evaluation of cytotoxicity to avoid confounding effects of toxicity-associated DNA degradation. The validation test results from compounds of known genotoxic potential were used to set appropriate criteria to classify alkaline elution results for genotoxicity.

  5. H/sub 2/O/sub 2/ as a DNA fragmenting agent in the alkaline elution interstrand crosslinking and DNA-protein crosslinking assays

    SciTech Connect

    Szmigiero, L.; Studzian, K.

    1988-01-01

    A method for DNA fragmentation by H/sub 2/O/sub 2/ in the DNA alkaline elution procedure is described. Treatment of cell suspensions for 1 h with 100 microM H/sub 2/O/sub 2/ or 5 mM H/sub 2/O/sub 2/ at 0-1 degree C resulted in DNA breakage equivalent to doses of 300 and 3000 rad of gamma-rays, respectively. The elution profiles were reproducible and H/sub 2/O/sub 2/ was used for measurements of interstrand crosslinks and DNA-protein crosslinks induced in HeLa cells by mitomycin C, cis-diamminedichloroplatinum(II), and trans-diamminedichloroplatinum(II). The comparison of data obtained with the use of H/sub 2/O/sub 2/ and gamma-rays has shown that both methods have similar sensitivity and reproducibility.

  6. First- and second-generation drug-eluting balloons for femoro-popliteal arterial obstructions: update of technique and results.

    PubMed

    De Vries, J P P M; Karimi, A; Fioole, B; Van Leersum, M; Werson, D A B; Van Den Heuvel, D A F

    2013-06-01

    The use of drug-eluting balloons for treatment of long-segment femoropopliteal artery obstructions has become widespread in recent years. The possibility to deliver a drug into the arterial wall with sustained antiproliferative effects, without leaving behind metal scaffolding, seems very promising. The current generation of drug-eluting balloons differs in the formulation of the drug (usually paclitaxel), technique of coating, and the elution excipients. Results of published randomized trials are reviewed in this report. A new innovative coating technique has been introduced recently. The PRIMUS® coronary drug-eluting balloon and the Legflow® peripheral drug-eluting balloon consist of paclitaxel nanoparticles that are embedded underneath the surface of the balloon as well as inside a new shellolic acid drug-release matrix. Risk for dislodgement of the paclitaxel particles is minimized in the newest generation of drug-eluting balloons. Short-term in vitro and in vivo results of this stable, coated balloon are promising, and large randomized trials have been started recently to gather more long-term and robust clinical data.

  7. DNA single-strand breaks, double-strand breaks, and crosslinks in rat testicular germ cells: Measurements of their formation and repair by alkaline and neutral filter elution

    SciTech Connect

    Bradley, M.O.; Dysart, G. )

    1985-06-01

    This work describes a neutral and alkaline elution method for measuring DNA single-strand breaks (SSBs), DNA double-strand breaks (DSBs), and DNA-DNA crosslinks in rat testicular germ cells after treatments in vivo or in vitro with both chemical mutagens and gamma-irradiation. The methods depend upon the isolation of testicular germ cells by collagenase and trypsin digestion, followed by filtration and centrifugation. {sup 137}Cs irradiation induced both DNA SSBs and DSBs in germ cells held on ice in vitro. Irradiation of the whole animal indicated that both types of DNA breaks are induced in vivo and can be repaired. A number of germ cell mutagens induced either DNA SSBs, DSBs, or cross-links after in vivo and in vitro dosing. These chemicals included methyl methanesulfonate, ethyl methanesulfonate, ethyl nitrosourea, dibromochlorpropane, ethylene dibromide, triethylene melamine, and mitomycin C. These results suggest that the blood-testes barrier is relatively ineffective for these mutagens, which may explain in part their in vivo mutagenic potency. This assay should be a useful screen for detecting chemical attack upon male germ-cell DNA and thus, it should help in the assessment of the mutagenic risk of chemicals. In addition, this approach can be used to study the processes of SSB, DSB, and crosslink repair in DNA of male germ cells, either from all stages or specific stages of development.

  8. Combination of modified mixing technique and low frequency ultrasound to control the elution profile of vancomycin-loaded acrylic bone cement

    PubMed Central

    Wendling, A.; Mar, D.; Wischmeier, N.; Anderson, D.

    2016-01-01

    Objectives The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Methods Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. A-priori t-tests and univariate ANOVAs were used to compare elution and mechanical test results between the two mix groups and the control group. Results The delayed technique showed a significant increase in elution on day one compared with the standard mix technique (p < 0.001). The transition point from Phase I to Phase II occurred on day ten. LFUS treatments significantly increased elution amounts for all groups above control. Delayed technique resulted in significantly higher elution amounts for the five-minute- (p = 0.004) and 45-minute- (p < 0.001) duration groups compared with standard technique. Additionally, the correlations between LFUS duration and total elution amount for both mix techniques were significant (p = 0.03). Both antibiotic-impregnated groups exhibited a significant decrease in offset yield stress compared with the control group (p < 0.001), however, their lower 95% confidence intervals were all above the 70 MPa limit defined by International Standards Organization (ISO) 5833-2 reference standard for acrylic bone cement. Conclusion The combination of a delayed mix technique with LFUS treatments

  9. Endovascular techniques in limb salvage: cutting, cryo, brachy, and drug-eluting balloons.

    PubMed

    Davies, Mark G; Anaya-Ayala, Javier E

    2013-04-01

    The complex pathophysiology response to injury of the lower-extremity arteries has prompted the development of several unique balloon technologies to overcome initial technical failures and short-term intimal hyperplasia. Cryoplasty alters the cellular and mechanical properties of the vessel wall during angioplasty. Cutting balloons incise the wall, preventing elastic recoil and allowing expansion of the lumen at a lower pressure, thus limiting barotrauma. Drug-eluting balloons actively transfer inhibitory compounds to the wall during the initial therapy, while brachytherapy balloons allow for localized delivery of radiation to inhibit the proliferative response seen after angioplasty. These platforms provide unique means to enhance immediate and short-term results and also reduce stent usage in the lower extremity.

  10. Combination of alkaline phosphatase anti-alkaline phosphatase (APAAP)- and avidin-biotin-alkaline phosphatase complex (ABAP)-techniques for amplification of immunocytochemical staining of human testicular tissue.

    PubMed

    Davidoff, M S; Schulze, W; Holstein, A F

    1991-01-01

    An amplification procedure was developed for the visualization of antigens in human testis using monoclonal antibodies against desmin and vimentin. The technique combines the high sensitive and specific APAAP- and ABAP-methods. Depending on the quality of the antibodies used and the processing of the material prior to the immunocytochemical staining the amplification technique may be applied either as a single APAAP and ABAP- or as a double APAAP and ABAP-combination. Especially after the double amplification reaction a distinct increase of the staining intensity of the vimentin- (in Sertoli cells, myofibroblasts of the lamina propria, and fibroblasts of the interstitium) and desmin- (in myofibroblasts of the lamina propria and smooth muscle cells of the blood vessels) like immunoreactivity was observed. If different diazonium salts were used for the visualization of the alkaline phosphatase activity (e.g. Fast Red TR Salt, Fast Blue BB Salt) desmin- and vimentin-like immunoreactivity can be demonstrated in the same tissue section in a double sequential staining approach. For double staining, the alkaline phosphatase technique may be combined successfully with a technique or a combination that uses peroxidase as a marker.

  11. A new adsorption-elution technique for the concentration of aquatic extracellular antibiotic resistance genes from large volumes of water.

    PubMed

    Wang, Da-Ning; Liu, Lu; Qiu, Zhi-Gang; Shen, Zhi-Qiang; Guo, Xuan; Yang, Dong; Li, Jing; Liu, Wei-Li; Jin, Min; Li, Jun-Wen

    2016-04-01

    Extracellular antibiotic resistance genes (eARGs) that help in the transmission and spread of antibiotic-resistant bacteria are emerging environmental contaminants in water, and there is therefore a growing need to assess environmental levels and associated risks of eARGs. However, as they are present in low amounts, it is difficult to detect eARGs in water directly with PCR techniques. Here, we prepared a new type of nucleic acid adsorption particle (NAAP) with high capacity and developed an optimal adsorption-elution method to concentrate eARGs from large volumes of water. With this technique, we were able to achieve an eARG recovery rate of above 95% from 10 L of water samples. Moreover, combining this new method with quantitative real-time PCR (qPCR), the sensitivity of the eARG detection was 10(4) times that of single qPCR, with the detection limit lowered to 100 gene copies (GCs)/L. Our analyses showed that the eARG load, virus load and certain water characteristics such as pH, chemical oxygen demand (CODMn), and turbidity affected the eARGs recovery rate. However, high eARGs recovery rates always remained within the standard limits for natural surface water quality, while eARG levels in water were lower than the detection limits of single qPCR assays. The recovery rates were not affected by water temperature and heterotrophic plate counts (HPC). The eARGs whatever located in the plasmids or the short-length linear DNAs can be recovered from the water. Furthermore, the recovery rate was high even in the presence of high concentrations of plasmids in different natural water (Haihe river, well water, raw water for drinking water, Jinhe river, Tuanbo lake and the Yunqiao reservoir). By this technology, eARGs concentrations were found ranging from (2.70 ± 0.73) × 10(2) to (4.58 ± 0.47) × 10(4) GCs/L for the extracellular ampicillin resistance gene and (5.43 ± 0.41) × 10(2) to (2.14 ± 0.23) × 10(4) GCs/L for the extracellular gentamicin

  12. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  13. Coral calcification under environmental change: a direct comparison of the alkalinity anomaly and buoyant weight techniques

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Hu, Xinping; Holcomb, Michael; Cai, Wei-Jun; Li, Qian; Wang, Yongchen; Xu, Hui; Warner, Mark E.; Melman, Todd F.; Hoadley, Kenneth D.; Pettay, D. Tye; Matsui, Yohei; Baumann, Justin H.; Grottoli, Andréa G.

    2017-03-01

    Two primary methods—the buoyant weight (BW) and alkalinity anomaly (AA) techniques—are currently used to quantify net calcification rates ( G) in scleractinian corals. However, it remains unclear whether they are directly comparable since the few method comparisons conducted to date have produced inconsistent results. Further, such a comparison has not been made for tropical corals. We directly compared G BW and G AA in four tropical and one temperate coral species cultured under various pCO2, temperature, and nutrient conditions. A range of protocols for conducting alkalinity depletion incubations was assessed. For the tropical corals, open-top incubations with manual stirring produced G AA that were highly correlated with and not significantly different from G BW. Similarly, G AA of the temperate coral was not significantly different from G BW when incubations provided water motion using a pump, but were significantly lower than G BW by 16% when water motion was primarily created by aeration. This shows that the two techniques can produce comparable calcification rates in corals but only when alkalinity depletion incubations are conducted under specific conditions. General recommendations for incubation protocols are made, especially regarding adequate water motion and incubation times. Further, the re-analysis of published data highlights the importance of using appropriate regression statistics when both variables are random and measured with error. Overall, we recommend the AA technique for investigations of community and short-term day versus night calcification, and the BW technique to measure organism calcification rates integrated over longer timescales due to practical limitations of both methods. Our findings will facilitate the direct comparison of studies measuring coral calcification using either method and thus have important implications for the fields of ocean acidification research and coral biology in general.

  14. How do porosity-inducing techniques affect antibiotic elution from bone cement? An in vitro comparison between hydrogen peroxide and a mechanical mixer

    PubMed Central

    Lovric, V.; Leung, A.; Walsh, W. R.

    2008-01-01

    Background Increasing the porosity of an antibiotic-loaded cement spacer increases the antibiotic elution, but the correlation between porosity and antibiotic elution is not well documented. The purposes of this study was to attempt new porosity-increasing methods and to investigate the correlation between antibiotic elution and both total and surface porosity. Materials and methods Five types of antibiotic-loaded bone cement (ALBC) using 2 g cefazolin and 40 g cement were prepared. Other than manual mixing, hydrogen peroxide was used as a foaming agent and a mixing drill piece was used as a mechanical device to try to induce porosity when mixing the cement. Elution of antibiotic into phosphate-buffered saline was measured from 1 h to 1 week. Surface porosity was calculated from density values which were measured with a density kit and an electronic balance, while total porosity was quantified using micro-computed tomography. Results When a mixing drill piece was used to induce porosity, we observed a significant increasin antibiotic elution compared to a manually mixed ALBC. On the other hand, hydrogen peroxide reduced the elution significantly. Mild correlation between the total amount of cluted in 1 week antibiotic elution and total porosity was observed. Conclusions In terms of improving elution, the mixing drill piece seemed to be efficient. A relationship between surface porosity and elution efficacy was not observed. PMID:19384476

  15. The artificial and natural isotopes distribution in sedge (Carex L.) biomass from the Yenisei River flood-plain: Adaptation of the sequential elution technique.

    PubMed

    Kropacheva, Marya; Melgunov, Mikhail; Makarova, Irina

    2017-02-01

    The study of migration pathways of artificial isotopes in the flood-plain biogeocoenoses, impacted by the nuclear fuel cycle plants, requires determination of isotope speciations in the biomass of higher terrestrial plants. The optimal method for their determination is the sequential elution technique (SET). The technique was originally developed to study atmospheric pollution by metals and has been applied to lichens, terrestrial and aquatic bryophytes. Due to morphological and physiological differences, it was necessary to adapt SET for new objects: coastal macrophytes growing on the banks of the Yenisei flood-plain islands in the near impact zone of Krasnoyarsk Mining and Chemical Combine (KMCC). In the first version of SET, 20 mM Na2EDTA was used as a reagent at the first stage; in the second version of SET, it was 1 M CH3COONH4. Four fractions were extracted. Fraction I included elements from the intercellular space and those connected with the outer side of the cell wall. Fraction II contained intracellular elements; fraction III contained elements firmly bound in the cell wall and associated structures; fraction IV contained insoluble residue. Adaptation of SET has shown that the first stage should be performed immediately after sampling. Separation of fractions III and IV can be neglected, since the output of isotopes into the IV fraction is at the level of error detection. The most adequate version of SET for terrestrial vascular plants is the version using 20 mM Na2EDTA at the first stage. Isotope (90)Sr is most sensitive to the technique changes. Its distribution depends strongly on both the extractant used at stage 1 and duration of the first stage. Distribution of artificial radionuclides in the biomass of terrestrial vascular plants can vary from year to year and depends significantly on the age of the plant.

  16. Sequential elution process

    DOEpatents

    Kingsley, I.S.

    1987-01-06

    A process and apparatus are disclosed for the separation of complex mixtures of carbonaceous material by sequential elution with successively stronger solvents. In the process, a column containing glass beads is maintained in a fluidized state by a rapidly flowing stream of a weak solvent, and the sample is injected into this flowing stream such that a portion of the sample is dissolved therein and the remainder of the sample is precipitated therein and collected as a uniform deposit on the glass beads. Successively stronger solvents are then passed through the column to sequentially elute less soluble materials. 1 fig.

  17. Investigation of alkaline mine drainage impacted streamside soil composition for select metals using extraction and acid digestion techniques

    SciTech Connect

    Styer, J.C.; Fish, C.

    1996-10-01

    The concentrations of Fe, Mg, Mn, Na, Ca, Zn and P were determined in soils that are adjacent to alkaline mine drainage impacted Four Mile Run in Latrobe, PA. The hypothesis stated: soils closer to the mine drainage win have higher extractable and total metal concentrations in an eroded zone closer to the stream than soils in an uneroded zone farther from the stream. Since the area will sustain enhanced and man-made wetlands, it is necessary to determine the bioavailability of nutrients to plants. A comparison was made of extractions, which mimic plant roots, and digestions which give total metals. The extraction technique is the Mehlich Method, and the digestion technique is EPA SW-846 method No.3050A. The samples were analyzed on the Inductively Coupled Plasma Spectrophotometer. The results show no difference between extractable metals in erosion and uneroded zones. This study will also provide valuable information as to the fertility and cation exchange capacity of these soils.

  18. Innovative Elution Processes for Recovering Uranium from Seawater

    SciTech Connect

    Wai, Chien; Tian, Guoxin; Janke, Christopher

    2014-05-29

    Utilizing amidoxime-based polymer sorbents for extraction of uranium from seawater has attracted considerable interest in recent years. Uranium collected in the sorbent is recovered typically by elution with an acid. One drawback of acid elution is deterioration of the sorbent which is a significant factor that limits the economic competitiveness of the amidoxime-based sorbent systems for sequestering uranium from seawater. Developing innovative elution processes to improve efficiency and to minimize loss of sorbent capacity become essential in order to make this technology economically feasible for large-scale industrial applications. This project has evaluated several elution processes including acid elution, carbonate elution, and supercritical fluid elution for recovering uranium from amidoxime-based polymer sorbents. The elution efficiency, durability and sorbent regeneration for repeated uranium adsorption- desorption cycles in simulated seawater have been studied. Spectroscopic techniques are used to evaluate chemical nature of the sorbent before and after elution. A sodium carbonate-hydrogen peroxide elution process for effective removal of uranium from amidoxime-based sorbent is developed. The cause of this sodium carbonate and hydrogen peroxide synergistic leaching of uranium from amidoxime-based sorbent is attributed to the formation of an extremely stable uranyl peroxo-carbonato complex. The efficiency of uranium elution by the carbonate-hydrogen peroxide method is comparable to that of the hydrochloric acid elution but damage to the sorbent material is much less for the former. The carbonate- hydrogen peroxide elution also does not need any elaborate step to regenerate the sorbent as those required for hydrochloric acid leaching. Several CO2-soluble ligands have been tested for extraction of uranium from the sorbent in supercritical fluid carbon dioxide. A mixture of hexafluoroacetylacetone and tri-n-butylphosphate shows the best result but uranium

  19. Cation exchange chromatographic elution and separation of rubidium

    SciTech Connect

    Mehta, V.P.; Khopkar, S.M.

    1982-01-01

    The systematic cation exchange chromatographic separation of rubidium on Dowex 50W-X8 was carried out with mineral acids and their salts as eluants.A selectivity scale for various eluants in terms of the elution constant was devised. Rubidium was separated from a large number of elements in binary mixtures by the process of gradient or selective elutions or selective sorption. The noteworthy feature of the method is the sequential separation of rubidium from alkali as well as alkaline earth elements.

  20. Highly porous drug-eluting structures

    PubMed Central

    Elsner, Jonathan J.; Kraitzer, Amir; Grinberg, Orly; Zilberman, Meital

    2012-01-01

    For many biomedical applications, there is need for porous implant materials. The current article focuses on a method for preparation of drug-eluting porous structures for various biomedical applications, based on freeze drying of inverted emulsions. This fabrication process enables the incorporation of any drug, to obtain an “active implant” that releases drugs to the surrounding tissue in a controlled desired manner. Examples for porous implants based on this technique are antibiotic-eluting mesh/matrix structures used for wound healing applications, antiproliferative drug-eluting composite fibers for stent applications and local cancer treatment, and protein-eluting films for tissue regeneration applications. In the current review we focus on these systems. We show that the release profiles of both types of drugs, water-soluble and water-insoluble, are affected by the emulsion's formulation parameters. The former's release profile is affected mainly through the emulsion stability and the resulting porous microstructure, whereas the latter's release mechanism occurs via water uptake and degradation of the host polymer. Hence, appropriate selection of the formulation parameters enables to obtain desired controllable release profile of any bioactive agent, water-soluble or water-insoluble, and also fit its physical properties to the application. PMID:23507890

  1. Coupling technique of self-ordered ring and phosphorimetry for the determination of alkaline phosphatase and diseases prediction

    NASA Astrophysics Data System (ADS)

    Zhang, Li Hong; Zheng, Zhi Yong; Jiang, Shu-Lian; Cui, Ma-Lin; Jiao, Li; Lin, Xuan; Cai, Wen-Lian; Lin, Shao-Qin; liu, Jia-Ming

    2012-11-01

    Rhodamine S could emit strong and stable room temperature phosphorescence (RTP) on polyamide membrane (PAM) in the presence of heavy atom perturber Pb2+. When Rhodamine S-piperidine solution was dropped on PAM, the red (Rhod.S)n-P-SOR (Rhod.S, (Rhod.S)n, P and SOR refer to alizarin red S, multiple Rhod.S molecules, piperidine and self-ordered ring, respectively) formed on PAM, leading to the enhancement of room temperature phosphorimetry (RTP) intensity (Ip, 117.2) of (Rhod.S)n-P-SOR system, which was 2.4 times higher than that without SOR (Ip, 48.1). Wheat germ agglutinin (WGA) was labelled with (Rhod.S)n-P-SOR by the -NH- of Rhod.S reacting with the -COOH of WGA to form WGA-(Rhod.S)n-P-SOR. The formation of WGA-AP-WGA-(Rhod.S)n-P-SOR in the affinity adsorption (AA) reaction carried out between the -COOH of WGA in WGA-(Rhod.S)n-P-SOR and the -NH2 of alkaline phosphatase (AP) caused the RTP intensity (ΔIp) of the WGA-AP-WGA-(Rhod.S)n-P-SOR system 7.8 times larger than that without (Rhod.S)n-P-SOR. Therefore, the coupling technique of SOR and solid substrate-room temperature phosphorimetry (SS-RTP) for the determination of trace AP has been established. This method possessed good selectivity, high sensitivity (Detection limit (L.D) was 3.4 × 10-16 g mL-1) and accuracy, and it has been applied to the determination of trace AP in human serum and the forecast of human diseases, and the results agreed well with those obtained by enzyme-linked immunoassay (ELISA). Besides, the mechanism of the coupling technique for the determination of AP was discussed.

  2. Development of an analytical technique for the detection of alteration minerals formed in bentonite by reaction with alkaline solutions

    NASA Astrophysics Data System (ADS)

    Sakamoto, H.; Shibata, M.; Owada, H.; Kaneko, M.; Kuno, Y.; Asano, H.

    A multibarrier system consisting of cement-based backfill, structures and support materials, and a bentonite-based buffer material has been studied for the TRU waste disposal concept being developed in Japan, the aim being to restrict the migration of radionuclides. Concern regarding bentonite-based materials in this disposal environment relates to long-term alteration under hyper-alkaline conditions due to the presence of cementitious materials. In tests simulating the interaction between bentonite and cement, formation of secondary minerals due to alteration reactions under the conditions expected for geological disposal of TRU waste (equilibrated water with cement at low liquid/solid ratio) has not been observed, although alteration was observed under extremely hyper-alkaline conditions with high temperatures. This was considered to be due to the fact that analysis of C-S-H gel formed at the interface as a secondary mineral was difficult using XRD, because of its low crystallinity and low content. This paper describes an analytical technique for the characterization of C-S-H gel using a heavy liquid separation method which separates C-S-H gel from Kunigel V1 bentonite (bentonite produced in Japan) based on the difference in specific gravity between the crystalline minerals constituting Kunigel V1 and the secondary C-S-H gel. For development of C-S-H gel separation methods, simulated alteration samples were prepared by mixing 990 mg of unaltered Kunigel V1 and 10 mg of C-S-H gel synthesized using pure chemicals at a ratio of Ca/Si = 1.2. The simulated alteration samples were dispersed in bromoform-methanol mixtures with specific gravities ranging from 2.00 to 2.57 g/cm 3 and subjected to centrifuge separation to recover the light density fraction. Subsequent XRD analysis to identify the minerals was complemented by dissolution in 0.6 N hydrochloric acid to measure the Ca and Si contents. The primary peak (2 θ = 29.4°, Cu Kα) and secondary peaks (2 θ = 32.1

  3. Comparison of diazo-coupling, formazan, and silver staining techniques for visualizing alkaline phosphatase isoenzymes after electrophoresis in homogeneous-pore and gradient-pore polyacrylamide gels.

    PubMed

    Hodson, A W; Skillen, A W

    1988-03-01

    Three techniques for visualization of alkaline phosphatase after polyacrylamide-gel electrophoresis are compared. These are diazo-dye simultaneous coupling with the substrate sodium naphthyl phosphate and 5-chloro-2-toluene diazonium chloride; formazan precipitation with the substrate 5-bromo-4-chloro-3-indolyl phosphate and 3-[4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; and silver staining with the substrate sodium glycerophosphate. Each staining technique was tested with gradient-pore and homogeneous-pore acrylamide-gel electrophoresis. The main factors assessed are sensitivity; separation of the human serum alkaline phosphatase isoenzymes of the liver, bone, and intestinal types; and differences in substrate affinity, as well as the complexity of each technique. Using the three techniques only minor differences in substrate affinity are evident. There is some nonspecific staining with the diazo-coupling technique but not with the formazan and silver staining techniques. The differences, in the mobility of the liver, bone, and intestinal isoenzymes achieved by homogeneous-pore gel electrophoresis are sufficient to allow them to be clearly distinguished. However, only very small differences in mobility are found with gradient-pore gel electrophoresis, but the sharper bands in this medium allow much smaller amounts of activity to be detected. As little as 160 microU of enzyme can be visualized by the diazo technique. Silver staining gives an approximately fourfold increase in sensitivity over the formazan technique, which in turn gives a fourfold increase over the diazo technique. An important aspect of the silver staining technique is the potential of increasing sensitivity much further by improvements in the photographic physical development stage.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Drug-eluting technologies in femoral artery lesions.

    PubMed

    Deloose, K; Lauwers, K; Callaert, J; Maene, L; Keirse, K; Verbist, J; Peeters, P; Bosiers, M

    2013-04-01

    The treatment of femoropopliteal lesions has known an important evolution in the last years. An important limitation of current endovascular therapy remains the occurrence of restenosis. In order to minimize restenosis rates, drug eluting technologies are evolving. The use of drug-eluting stents (DES) in coronary arteries shows beneficial results, leading to investigation of DES in femoropopliteal arteries. In this article, we give an overview of current available data on treatment with drug eluting technologies in the superficial femoral artery (SFA). This paper summarizes also the current available data of the use of drug-coated balloons (DCB) in the femoropopliteal tract. Currently, no data are available on the use of DCB in long lesions. A drug eluting bioresorbable scaffold seems to be very promising in coronary arteries. The transfer to the peripheral area is nowadays ongoing. Which technique and device for which lesion and patient requires further investigation to build up a real evidence based SFA treatment strategy.

  5. Filter elution assyas for DNA damage : practical and mechanistic significance of the DNA on the filter support.

    SciTech Connect

    Blazek, E. R.; Peak, J. G.; Biological and Medical Research; Rush Presbyterian St. Luke's Medical Center

    1992-01-01

    The alkaline and neutral (or nondenaturing) filter elution assays are popular methods for the measurement of DNA strand breakage and its repair in eukaryotic cells. In both alkaline and neutral elution, it is recommended practice to wash the filter support after removal of the filter and to analyze the DNA recovered by this procedure together with that remaining on the filter as uneluted DNA, although it is not obvious why the DNA in the filter support wash should be so interpreted. We have observed that the sum of the DNA on the filter and that recovered in the filter support wash is approximately constant when the pH of the alkaline filter elution assay for total strand breaks is increased from 12.1 to 12.6, whereas the fraction on the filter itself is markedly smaller at the higher pH. This behavior characterized DNA elution from undamaged cells, as well as from cells treated with various DNA-damaging agents. These findings are consistent with the 'tug-of-war' mechanism that has been proposed for alkaline elution, but are inconsistent with the simplest mechanism of the 'sieve' class. In the neutral filter elution assay for double-strand breaks, by contrast, the distribution of DNA between the filter and the filter support wash is pH-independent. This suggests that single- and double-stranded DNA segments traverse a filter by different physical mechanisms. Our observations underscore the importance of carrying out the filter support wash and the analysis of the DNA it contains as uneluted DNA in alkaline elution, while indicating that a different analysis of this DNA might be appropriate for neutral elution.

  6. Single-strand breaks in DNA of various organs of mice induced by methyl methanesulfonate and dimethylsulfoxide determined by the alkaline unwinding technique

    SciTech Connect

    Solveig Walles, S.A.; Erixon, K.

    1984-03-01

    The method for determination of single-strand breaks (SSB) in DNA by the technique of alkaline unwinding and hydroxylapatite chromatography has been applied for cell nuclei from organs of mice. Male mice were given methyl methane-sulfonate (MMS) and dimethylsulfoxide (DMSO) by i.p. administration. Cell nuclei were prepared from various organs and then lysed in alkali. The amount of DNA was determined by fluorometry using 4',6-diamidino-2-phenylindole.2HCl. The relative level of SSB in DNA was determined in various organs (liver, kidney, lung, spleen, testis and brain) 1-24 h after administration of the agent. After MMS-treatment the number of SSB in DNA increased to about the same extent in all organs 1 h post-treatment but then decreased by time. The SSB persisted for the longest time in brain- and lung-DNA. DMSO induced SSB only in DNA of kidney.

  7. ELUTION OF URANIUM FROM RESIN

    DOEpatents

    McLEan, D.C.

    1959-03-10

    A method is described for eluting uranium from anion exchange resins so as to decrease vanadium and iron contamination and permit recycle of the major portion of the eluats after recovery of the uranium. Diminution of vanadium and iron contamination of the major portion of the uranium is accomplished by treating the anion exchange resin, which is saturated with uranium complex by adsorption from a sulfuric acid leach liquor from an ore bearing uranium, vanadium and iron, with one column volume of eluant prepared by passing chlorine into ammonium hydroxide until the chloride content is about 1 N and the pH is about 1. The resin is then eluted with 8 to 9 column volumes of 0.9 N ammonium chloride--0.1 N hydrochloric acid solution. The eluants are collected separately and treated with ammonia to precipitate ammonium diuranate which is filtered therefrom. The uranium salt from the first eluant is contaminated with the major portion of ths vanadium and iron and is reworked, while the uranium recovered from the second eluant is relatively free of the undesirable vanadium and irons. The filtrate from the first eluant portion is discarded. The filtrate from the second eluant portion may be recycled after adding hydrochloric acid to increase the chloride ion concentration and adjust the pH to about 1.

  8. A modified Ce/Mg-BCIP-NBT formazan/indigoblue technique for demonstration of non-specific alkaline phosphatase activity.

    PubMed

    Halbhuber, K J; Krieg, R; Geidel, O; Dietz, W

    2004-01-01

    The wide ranged structurally variability of formazans and their accessibility for auxiliary additives as redoxmediators or metals provide an easy tunable chromogenic visualization technique. We present here an improved nitro blue tetrazolium (NBT) 5-bromo-4-chloro-3-indolyl phosphate (BCIP) method which is superior to the classical McGadey's procedure regarding proper precipitation and localization as well as sensitivity. Different metal additives as well as the overall reaction course modifying additives (redox mediators, chelating additives, buffer) were optimized.

  9. Chemoembolization of Hepatocellular Carcinoma with Drug-Eluting Beads Complicated by Interstitial Pneumonitis

    PubMed Central

    Aladdin, Mohammed; Ilyas, Mohammed

    2011-01-01

    Transarterial chemoembolization has proven benefit in the treatment of unresectable hepatocellular carcinoma (HCC). Commonly reported symptoms following chemoembolization with or without drug-eluting beads include abdominal pain, nausea, and low-grade fever, which typically limited resolve within a few days. A recent study comparing traditional chemoembolization versus chemoembolization with drug-eluting beads demonstrated similar survival between the two techniques, but improved tolerability when the drug-eluting beads were used. This case report describes a patient with unresectable HCC undergoing chemoembolization with drug-eluting beads. The postprocedure course was complicated by interstitial pneumonitis secondary to shunting of the drug-eluting beads containing doxorubicin to both lungs via tumor vasculature. This case highlights the relationship between the number and size of the tumors to be treated, arteriovenous shunting within the liver/tumors, and the size of the embolization particles. PMID:22654266

  10. Decoration of Micro-/Nanoscale Noble Metal Particles on 3D Porous Nickel Using Electrodeposition Technique as Electrocatalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte.

    PubMed

    Qian, Xin; Hang, Tao; Shanmugam, Sangaraju; Li, Ming

    2015-07-29

    Micro-/nanoscale noble metal (Ag, Au, and Pt) particle-decorated 3D porous nickel electrodes for hydrogen evolution reaction (HER) in alkaline electrolyte are fabricated via galvanostatic electrodeposition technique. The developed electrodes are characterized by field emission scanning electron microscopy and electrochemical measurements including Tafel polarization curves, cyclic voltammetry, and electrochemical impedance spectroscopy. It is clearly shown that the enlarged real surface area caused by 3D highly porous dendritic structure has greatly reinforced the electrocatalytic activity toward HER. Comparative analysis of electrodeposited Ag, Au, and Pt particle-decorated porous nickel electrodes for HER indicates that both intrinsic property and size of the noble metal particles can lead to distinct catalytic activities. Both nanoscale Au and Pt particles have further reinforcement effect toward HER, whereas microscale Ag particles exhibit the reverse effect. As an effective 3D hydrogen evolution cathode, the nanoscale Pt-particle-decorated 3D porous nickel electrode demonstrates the highest catalytic activity with an extremely low overpotential of -0.045 V for hydrogen production, a considerable exchange current density of 9.47 mA cm(-2) at 25 °C, and high durability in long-term electrolysis, all of which are attributed to the intrinsic catalytic property and the extremely small size of Pt particles.

  11. Millimeter-scale alkalinity measurement in marine sediment using DET probes and colorimetric determination.

    PubMed

    Metzger, E; Viollier, E; Simonucci, C; Prévot, F; Langlet, D; Jézéquel, D

    2013-10-01

    Constrained DET (Diffusive Equilibration in Thin films) probes equipped with 75 sampling layers of agarose gel (DGT Research(©)) were used to sample bottom and pore waters in marine sediment with a 2 mm vertical resolution. After retrieval, each piece of hydrogel, corresponding to 25 μL, was introduced into 1 mL of colorimetric reagent (CR) solution consisting of formic acid and bromophenol blue. After the elution/reaction time, absorbance of the latter mixture was read at 590 nm and compared to a calibration curve obtained with the same protocol applied to mini DET probes soaked in sodium hydrogen carbonate standard solutions. This method allows rapid alkalinity determinations for the small volumes of anoxic pore water entrapped into the gel. The method was assessed on organic-rich coastal marine sediments from Thau lagoon (France). Alkalinity values in the overlying waters were in agreement with data obtained by classical sampling techniques. Pore water data showed a progressive increase of alkalinity in the sediment from 2 to 10 mmol kg(-1), corresponding to anaerobic respiration in organic-rich sediments. Moreover, replicates of high-resolution DET profiles showed important lateral heterogeneity at a decimeter scale. This underlines the importance of high-resolution spatial methods for alkalinity profiling in coastal marine systems.

  12. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-12-22

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. A study has been conducted to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. A select few of the top candidate eluants from the screening tests were subjected to actual sorption (loading) and elution tests to confirm their elution ability. The actual sorption (loading) and elution tests mimicked the typical sRF-cesium ion exchange process (i.e., sorption or loading, caustic wash, water rinse, and elution) via batch contact sorption and quasi column caustic wash/water rinse/elution. The eluants tested included ammonium carbonate, ammonium acetate, calcium acetate, magnesium

  13. Nanoparticles and drug eluting stents for disease detection and treatment

    NASA Astrophysics Data System (ADS)

    Meng, Juan

    This thesis presents the results of experimental and theoretical studies of nanoparticle entry/adhesion to breast cancer cells and adhesion in drug-eluting stents. Atomic Force Microscopy (AFM) techniques are used to quantify the adhesion. The thermodynamics and kinetics concepts are presented for the modeling of nanoparticle entry into breast cancer cells. In the case of the drug-eluting stents studies, a combination of adhesion theory and fracture mechanics concepts is used to estimate the adhesion energies. To investigate the specific accumulation of the functionalized super-paramagnetic iron oxide nanoparticles (SPIONs) in breast cancer cells, a combination of transmission electron microscopy (TEM) and spectrophotometric analysis was used. It is shown that SPIONs conjugated to luteinizing hormone releasing hormone (LHRH) (LHRH-SPIONs), can be used to specifically target breast cancer cells. They also act as contrast enhancement agents during the magnetic resonance imaging (MRI) of breast cancer xenografts. The adhesion between LHRH and breast cancer cells is an important factor for LHRH-SPIONs to target breast cancer cells. AFM techniques were used to quantify adhesion between LHRH peptides and their receptors on breast cancer cells. The adhesion force between LHRH-coated AFM tips and human breast cancer cells is shown to be about five times greater than that between LHRH-coated AFM tips and normal breast cells. This result also suggests that force microscopy can be used for the specific detection of breast cancer cells. Adhesion and fracture mechanics techniques were used to study the adhesion between the drug eluting layer and Parylene C layer coated onto a model drug-eluting stent. AFM force--displacement measurements were used to quantify the adhesion between the parylene C primer and the drug-eluting layer and the cohesion between the three constituents of the drug-eluting layer. Adhesion theories were then used to relate the measured forces to adhesion

  14. Drug-Eluting Stents: Do They Increase Heart Attack Risk?

    MedlinePlus

    ... intervention, or PCI). Drug-eluting stents have a polymer coating over mesh that emits a drug over ... 2014. Bangalore S, et al. Bare metal stents, durable polymer drug eluting stents, and biodegradable polymer drug eluting ...

  15. Gradient elution moving boundary electrophoresis enables rapid analysis of acids in complex biomass-derived streams

    SciTech Connect

    Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; Salit, Marc; Beckham, Gregg T.

    2016-09-27

    Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment. As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.

  16. Gradient elution moving boundary electrophoresis enables rapid analysis of acids in complex biomass-derived streams

    DOE PAGES

    Munson, Matthew S.; Karp, Eric M.; Nimlos, Claire T.; ...

    2016-09-27

    Biomass conversion processes such as pretreatment, liquefaction, and pyrolysis often produce complex mixtures of intermediates that are a substantial challenge to analyze rapidly and reliably. To characterize these streams more comprehensively and efficiently, new techniques are needed to track species through biomass deconstruction and conversion processes. Here, we present the application of an emerging analytical method, gradient elution moving boundary electrophoresis (GEMBE), to quantify a suite of acids in a complex, biomass-derived streams from alkaline pretreatment of corn stover. GEMBE offers distinct advantages over common chromatography-spectrometry analytical approaches in terms of analysis time, sample preparation requirements, and cost of equipment.more » As demonstrated here, GEMBE is able to track 17 distinct compounds (oxalate, formate, succinate, malate, acetate, glycolate, protocatechuate, 3-hydroxypropanoate, lactate, glycerate, 2-hydroxybutanoate, 4-hydroxybenzoate, vanillate, p-coumarate, ferulate, sinapate, and acetovanillone). The lower limit of detection was compound dependent and ranged between 0.9 and 3.5 umol/L. Results from GEMBE were similar to recent results from an orthogonal method based on GCxGC-TOF/MS. Altogether, GEMBE offers a rapid, robust approach to analyze complex biomass-derived samples, and given the ease and convenience of deployment, may offer an analytical solution for online tracking of multiple types of biomass streams.« less

  17. Functional Nanoarchitectures For Enhanced Drug Eluting Stents.

    PubMed

    Saleh, Yomna E; Gepreel, Mohamed A; Allam, Nageh K

    2017-01-12

    Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile.

  18. Functional Nanoarchitectures For Enhanced Drug Eluting Stents

    NASA Astrophysics Data System (ADS)

    Saleh, Yomna E.; Gepreel, Mohamed A.; Allam, Nageh K.

    2017-01-01

    Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile.

  19. Functional Nanoarchitectures For Enhanced Drug Eluting Stents

    PubMed Central

    Saleh, Yomna E.; Gepreel, Mohamed A.; Allam, Nageh K.

    2017-01-01

    Different strategies have been investigated to allow for optimum duration and conditions for endothelium healing through the enhancement of coronary stents. In this study, a nanoarchitectured system is proposed as a surface modification for drug eluting stents. Highly oriented nanotubes were vertically grown on the surface of a new Ni-free biocompatible Ti-based alloy, as a potential material for self-expandable stents. The fabricated nanotubes were self-grown from the potential stent substrate, which are also proposed to enhance endothelial proliferation while acting as drug reservoir to hinder Vascular Smooth Muscle Cells (VSMC) proliferation. Two morphologies were synthesized to investigate the effect of structure homogeneity on the intended application. The material was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), Raman spectroscopy, energy dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Nanoindentation technique was used to study the mechanical properties of the fabricated material. Cytotoxicity and proliferation studies were performed and compared for the two fabricated nanoarchitectures, versus smooth untextured samples, using in-vitro cultured endothelial cells. Finally, the drug loading capacity was experimentally studied and further supported by computational modeling of the release profile. PMID:28079127

  20. Cold acid elution (ELU Kit II).

    PubMed

    Hinrichs, Monica; Keith, Monica A

    2014-01-01

    Elution is a procedure for recovery of antibody attached to intact,immunoglobulin-coated red blood cells (RBCs) by disrupting the antigen-antibody bonds. The recovered antibody is collected in an inert diluent and is referred to as an eluate. Testing of an eluate may be desired to identify antibody(ies) coating the RBCs of patients with a positive direct antiglobulin test. Many types of elution procedures have been developed and described; however,·an acid elution is suitable for antibody recovery in most cases, such as recovery of alloantibodies and warm-reactive autoantibodies.Studies have compared methods such as xylene, chloroform, digitnin acid, dichloromethane, citric acid, and Immucor Elu-KitII (cold acid elution). The ELU-Kit II has been shown to be quick and effective at eluting a wide range of alloantibodies as well as autoantibodies without the use of hazardous chemicals or costly reagent preparation time that some methods use. It is for these reasons that the ELU-Kit II is a very popular method for the elution of immunoglobulin G (IgG) antibodies.

  1. Purification of human adult and foetal intestinal alkaline phosphatases by monoclonal antibody immunoaffinity chromatography.

    PubMed Central

    Vockley, J; Harris, H

    1984-01-01

    We have used the technique of monoclonal antibody immunoaffinity chromatography to purify adult and foetal intestinal alkaline phosphatases. Pure adult intestinal enzyme was obtained from a crude tissue extract with a single immunoaffinity chromatographic step in yields exceeding 95%. An additional ion-exchange chromatographic step was necessary for purification of the foetal enzyme, but yields still exceeded 70%. Experiments to optimize the efficiency of the monoclonal antibody immunoaffinity chromatography procedure suggest that the relative strength of binding of an antibody to its antigen is the most important factor to consider when constructing such columns. A column made from an antibody of too low an avidity will not retain the enzyme, while one of too high an avidity will make elution of enzyme in the active state difficult. A scheme is suggested for the application of this technique to a general approach to enzyme purification. Images Fig. 2. PMID:6365087

  2. Exploring doxorubicin localization in eluting TiO2 nanotube arrays through fluorescence correlation spectroscopy analysis.

    PubMed

    De Santo, Ilaria; Sanguigno, Luigi; Causa, Filippo; Monetta, Tullio; Netti, Paolo A

    2012-11-07

    Drug elution properties of TiO(2) nanotube arrays have been largely investigated by means of solely macroscopic observations. Controversial elution performances have been reported so far and a clear comprehension of these phenomena is still missing as a consequence of a lack of molecular investigation methods. Here we propose a way to discern drug elution properties of nanotubes through the evaluation of drug localization by Fluorescence Correlation Spectroscopy (FCS) analysis. We verified this method upon doxorubicin elution from differently loaded TiO(2) nanotubes. Diverse elution profiles were obtained from nanotubes filled by soaking and wet vacuum impregnation methods. Impregnated nanotubes controlled drug diffusion up to thirty days, while soaked samples completed elution in seven days. FCS analysis of doxorubicin motion in loaded nanotubes clarified that more than 90% of drugs dwell preferentially in inter-nanotube spaces in soaked samples due to decorrelation in a 2D fashion, while a 97% fraction of molecules showed 1D mobility ascribable to displacements along the nanotube vertical axis of wet vacuum impregnated nanotubes. The diverse drug localizations inferred from FCS measurements, together with distinct drug-surface interaction strengths resulting from diverse drug filling techniques, could explain the variability in elution kinetics.

  3. Advances in below-the-knee drug-eluting balloons.

    PubMed

    Ferraresi, R; Centola, M; Biondi-Zoccai, G

    2012-04-01

    The management of critical limb ischemia due to below-the-knee disease remains challenging due to the frequent patient comorbidities, diffuse vascular involvement, and high rates of restenosis and disease progression. The BASIL study has established the substantial equivalence between bypass surgery and percutaneous transluminal angioplasty in this setting, at least at mid-term follow-up, but percutaneous techniques and devices have seen major developments since the publication of this pivotal trial in 2005. A major breakthrough has indeed been the introduction of drug-eluting balloons, which have several theoretical advantages in comparison to standard balloons and metallic stents for infra-popliteal lesions. Two clinical trials have already been reported with favorable results for the In.Pact Amphirion paclitaxel-eluting balloon, when employed for below-the-knee lesions. We hereby discuss the rationale for the use of drug-eluting balloons in this complex setting and the main findings of the study by Schmidt et al. and the DEBATE-BTK trial.

  4. Drug-eluting stents in superficial femoral artery treatment: could they be the standard of care?

    PubMed

    Bosiers, Marc; Deloose, Koen; Callaert, Joren; Peeters, Patrick; Bosiers, Michel

    2016-12-01

    Endovascular techniques have improved markedly over the past several decades. Plain old balloon angioplasty can only reach patencies around 40% after 1 year. Scaffolding stents have resulted in improved short-term results but encountered limitations for longer-term durability. With the introduction of drug-eluting technologies the process of intimal hyperplasia might be slowed, resulting in improved long-term patency results. At first, limus-eluting technologies were not able to transfer the enthusiasm from the coronaries to the infrainguinal vascular bed. However, the newer generation paclitaxel-eluting technologies perform significantly better in femoropopliteal arteries than their non-eluting or non-coated counterparts. The results of a prospective randomized trial comparing DES versus DCB is eagerly awaited. For the moment there seems, based on the meta-analysis, no difference between the two treatment modalities. Although, we need to keep in mind that DCB perform worse in long calcified lesions.

  5. Fractionated elution using the TEKCIS technetium-99m generator.

    PubMed

    Vigne, Jonathan; De Mil, Rémy; Peyronnet, Damien; Hecquard, Claudine; Agostini, Denis; Lemonnier, Françoise

    2016-06-01

    The TEKCIS technetium-99m (Tc) generator was designed to allow dry column shipment and automatized conception. A high Tc radioactive concentration is required in a subset of radiopharmacy procedures. Fractionated elution can be a useful tool to meet this requirement, especially when current elution is close to the generator expiration date. The aim of our study was to assess TEKCIS generator elution kinetics and to determine the optimal fractionated elution time to fit with procedures requiring the highest Tc radioactive concentration in clinical use. After duplicate elution at several predetermined elution times, the volume and activity of each eluate were measured. Two optimal time points were selected to perform fractionated elution and repeatability (n=34 and 33) assessed on TEKCIS generators calibrated at 6 or 8 GBq. The complete eluate volume (5 ml) was collected after 60 s of elution. A logarithmic equation was established between eluate volume (v, ml) from elapsed elution time (t, s): v=1.8335ln(t)-2.5965. Using the reciprocal equation, elution times required to obtain some commonly eluted volumes were calculated. Fractionated elutions during 15 and 20 s were selected and an average elution volume from 2.74 to 3.27 ml was collected, with an average elution yield of approximately 90 and 100%, respectively. Our work provides a simple and reliable methodology for the use of fractionated elution with the new TEKCIS generator.

  6. Structure reactivity and thermodynamic analysis on the oxidation of ampicillin drug by copper(III) complex in aqueous alkaline medium (stopped-flow technique)

    NASA Astrophysics Data System (ADS)

    Shetti, Nagaraj P.; Hegde, Rajesh N.; Nandibewoor, Sharanappa T.

    2009-07-01

    Oxidation of penicillin derivative, ampicillin (AMP) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.01-mol dm -3 was studied spectrophotometrically. The reaction between DPC and ampicillin in alkaline medium exhibits 1:4 stoichiometry (ampicillin:DPC). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the protonated form of DPC as the reactive oxidant species has been proposed. The oxidation reaction in alkaline medium has been shown to proceed via a DPC-AMP complex, which decomposes slowly in a rate determining step to yield phenyl glycine (PG) and free radical species of 6-aminopenicillanic acid (6-APA), followed by other fast steps to give the products. The two major products were characterized by IR, NMR, LC-MS and Spot test. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.

  7. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  8. Sirolimus-eluting coronary stents: a review

    PubMed Central

    Abizaid, Alexandre

    2007-01-01

    The sirolimus-eluting coronary stent received CE Mark approval in Europe in April 2002. In the US, FDA approval followed in April 2003. Since the preliminary results from the First-in-Man feasibility study were presented, several randomized, controlled trials have documented the profound antiproliferative effects of sirolimus, a macrolide antibiotic and potent cytostatic inhibitor of smooth muscle cell proliferation. Subsequently, the body of clinical evidence was increased by the second wave of evidence from trials in more complex lesions (such as in-stent restenosis, small vessels, chronic total occlusions) and “high-risk” patients such as those with diabetes. More recently we have had the opportunity to compare the two commercially available drug-eluting stents following the presentation of data from six head-to-head trials. As a result of numerous single and multi-center, national and international studies in which the safety and efficacy of sirolimus-eluting coronary stents have been subjected to close scrutiny, the global interventional cardiology community now has a wealth of evidence in support of the use of this technology resulting in dramatically improved patient outcomes after percutaneous intervention. PMID:17580729

  9. Recent Advances in Drug Eluting Stents

    PubMed Central

    Puranik, Amey S.; Dawson, Eileen R.; Peppas, Nicholas A.

    2013-01-01

    One of the most common medical interventions to reopen an occluded vessel is the implantation of a coronary stent. While this method of treatment is effective initially, restenosis, or the re-narrowing of the artery frequently occurs largely due to neointimal hyperplasia of smooth muscle cells. Drug eluting stents were developed in order to provide local, site-specific, controlled release of drugs that can inhibit neointima formation. By implementing a controlled release delivery system it may be possible to control the time release of the pharmacological factors and thus be able to bypass some of the critical events associated with stent hyperplasia and prevent the need for subsequent intervention. However, since the advent of first-generation drug eluting stents, long-term adverse effects have raised concerns regarding their safety. These limitations in safety and efficacy have triggered considerable research in developing biodegradable stents and more potent drug delivery systems. In this review, we shed light on the current state-of-the-art in drug eluting stents, problems related to them and highlight some of the ongoing research in this area. PMID:23117022

  10. Endovascular Gene Delivery from a Stent Platform: Gene- Eluting Stents.

    PubMed

    Fishbein, Ilia; Chorny, Michael; Adamo, Richard F; Forbes, Scott P; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation.

  11. Endovascular Gene Delivery from a Stent Platform: Gene- Eluting Stents

    PubMed Central

    Fishbein, Ilia; Chorny, Michael; Adamo, Richard F; Forbes, Scott P; Corrales, Ricardo A; Alferiev, Ivan S; Levy, Robert J

    2015-01-01

    A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation. PMID:26225356

  12. Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-Phos-recovery process).

    PubMed

    Petzet, S; Peplinski, B; Bodkhe, S Y; Cornel, P

    2011-01-01

    The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants.

  13. Evaluation of DNA Single and Double Strand Breaks in Women with Cervical Neoplasia Based on Alkaline and Neutral Comet Assay Techniques

    PubMed Central

    Cortés-Gutiérrez, Elva I.; Hernández-Garza, Fernando; García-Pérez, Jorge O.; Dávila-Rodríguez, Martha I.; Aguado-Barrera, Miguel E.; Cerda-Flores, Ricardo M.

    2012-01-01

    A hospital-based unmatched case-control study was performed in order to determine the relation of DNA single (ssb) and double (dsb) strand breaks in women with and without cervical neoplasia. Cervical epithelial cells of 30 women: 10 with low grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 without cervical lesions were evaluated using alkaline and neutral comet assays. A significant increase in global DNA damage (ssb + dsb) and dsb was observed in patients with HG-SIL (48.90 ± 12.87 and 23.50 ± 13.91), patients with LG-SIL (33.60 ± 14.96 and 11.20 ± 5.71), and controls (21.70 ± 11.87 and 5.30 ± 5.38; resp.). Pearson correlation coefficient reveled a strong relation between the levels ssb and dsb (r2 = 0.99, P = 0.03, and r2 = 0.94, P = 0.16, resp.) and progression of neoplasia. The increase of dsb damage in patients with HG-SIL was confirmed by DNA breakage detection-FISH (DBD-FISH) on neutral comets. Our results argue in favor of a real genomic instability in women with cervical neoplasia, which was strengthened by our finding of a higher proportion of DNA dsb. PMID:23093842

  14. A Drug-Eluting Contact Lens

    PubMed Central

    Ciolino, Joseph B.; Hoare, Todd R.; Iwata, Naomi G.; Behlau, Irmgard; Dohlman, Claes H.; Langer, Robert; Kohane, Daniel S.

    2014-01-01

    Purpose To formulate and characterize a drug-eluting contact lens designed to provide extended, controlled release of a drug. Methods Prototype contact lenses were created by coating PLGA (poly[lactic-co-glycolic acid]) films containing test compounds with pHEMA (poly[hydroxyethyl methacrylate]) by ultraviolet light polymerization. The films, containing encapsulated fluorescein or ciprofloxacin, were characterized by scanning electron microscopy. Release studies were conducted in phosphate-buffered saline at 37°C with continuous shaking. Ciprofloxacin eluted from the contact lens was studied in an antimicrobial assay to verify antimicrobial effectiveness. Results After a brief and minimal initial burst, the prototype contact lenses demonstrated controlled release of the molecules studied, with zero-order release kinetics under infinite sink conditions for over 4 weeks. The rate of drug release was controlled by changing either the ratio of drug to PLGA or the molecular mass of the PLGA used. Both the PLGA and the pHEMA affected release kinetics. Ciprofloxacin released from the contact lenses inhibited ciprofloxacin-sensitive Staphylococcus aureus at all time-points tested. Conclusions A prototype contact lens for sustained drug release consisting of a thin drug-PLGA film coated with pHEMA could be used as a platform for ocular drug delivery with widespread therapeutic applications. PMID:19136709

  15. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  16. Mass transfer coefficients determination from linear gradient elution experiments.

    PubMed

    Pfister, David; Morbidelli, Massimo

    2015-01-02

    A procedure to estimate mass transfer coefficients in linear gradient elution chromatography is presented and validated by comparison with experimental data. Mass transfer coefficients are traditionally estimated experimentally through the van Deemter plot, which represents the HETP as a function of the fluid velocity. Up to now, the HETP was obtained under isocratic elution conditions. Unfortunately, isocratic elution experiments are often not suitable for large biomolecules which suffer from severe mass transfer hindrances. Yamamoto et al. were the first to propose a semi-empirical equation to relate HETPs measured from linear gradient elution experiments to those obtained under isocratic conditions [7]. Based on his pioneering work, the approach presented in this work aims at providing an experimental procedure supported by simple equations to estimate reliable mass transfer parameters from linear gradient elution chromatographic experiments. From the resolution of the transport model, we derived a rigorous analytical expression for the HETP in linear gradient elution chromatography.

  17. Extended elution of phospholipid from silicone hydrogel contact lenses.

    PubMed

    Pitt, William G; Zhao, Yibei; Jack, Daniel R; Perez, Krystian X; Jones, Peter W; Marelli, Ryan; Nelson, Jared L; Pruitt, John D

    2015-01-01

    Characterization of phospholipid release from an experimental reusable wear silicone hydrogel contact lens was performed to assess the possible use of these lenses for phospholipid delivery to increase eye comfort to patients who prefer reusable wear lenses. Contact lenses were loaded with 200 μg of radio-labeled 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) from a solution of n-propanol. To simulate 30 days of diurnal use with overnight cleaning, these lenses were eluted for 16 h at 35 °C into artificial tear fluid (ATF), and then eluted at room temperature (~22 °C) for 8 h in one of three commercial contact lens cleaning systems. This was repeated for 30 days. The elution of DMPC into ATF was greater on the first day, followed by a fairly constant amount of elution each day thereafter. The type of cleaning system had a statistically significant effect on the elution rate during daily exposure to ATF. The rate of elution into cleaning solutions did not show any enhanced elution on the first day; there was a fairly constant elution rate. Again, the type of cleaning system significantly influenced the elution rate into the nightly cleaner.

  18. Evaluation of Elution Parameters for Cesium Ion Exchange Resins

    SciTech Connect

    Burgeson, Ingrid E.; Deschane, Jaquetta R.; Cook, Bryan J.; Blanchard, David L.; Weier, Dennis R.

    2006-08-28

    Cesium ion exchange is one of the planned processes for treating and disposing of waste at the U.S. Department of Energy Hanford Site. Radioactive supernatant liquids from the waste tanks will undergo ultrafiltration, followed by cesium ion exchange using a regenerable organic ion exchange resin. Two resins, SuperLig?644 and a Resorcinol-formaldehyde resin are being evaluated for cesium removal and cesium elution characteristics. The main purpose of this study is to optimize the cesium elution to provide a resin which after undergoing elution would meet the U.S. Department of Energy/Office of River Protection Project-Waste Treatment Plant processing and resin disposal criteria. Columns of each resin type were loaded to greater or equal to 90% breakthrough with a Hanford waste stimulant and eluted with nitric acid. The temperature, flow rate and nitric acid concentration were varied to determine the optimal elution conditions. Temperature and eluant flow rate were the most important elution parameters. As would be predicted based upon kinetic consideration alone, decreasing the eluant flow rate and increasing the temperature provided the optimal elution conditions. Varying the nitric acid concentration did not have a significant effect on the elution; however, elutions performed using both high acid concentration (1M) and elevated temperature (45 C) resulted in resin degradation, causing gas generation and resin bed disruption.

  19. Drug-eluting balloons in below the knee treatment.

    PubMed

    VAN DEN Berg, Jos C

    2016-12-01

    The endovascular treatment of atherosclerotic disease of the infra-inguinal arteries has changed significantly since the introduction of drug-eluting balloon technology. The role of angioplasty using drug-eluting balloons for lesions of the superficial femoral and popliteal artery is now well established. The positive results of the use of drug-eluting balloons in the above knee segment could not be achieved in the below-the-knee segment. This paper will give an overview of the current status of drug-eluting balloon angioplasty for below-the-knee lesions, and will present a review of 2 single center registry, 5 randomized trials and a meta-analysis.

  20. Drug-eluting stents below the knee.

    PubMed

    Bosiers, M; Deloose, K; Callaert, J; Keirse, K; Verbist, J; Peeters, P

    2011-04-01

    The fear that early thrombosis and late luminal loss due to intimal hyperplasia formation potentially leads to insufficient long-term patency rates can explain the reluctance on implanting stents in small diameter below-the-knee (BTK) arteries. Drug-eluting stent (DES) technology was developed to prevent early thrombosis and late luminal loss to potentially improve long-term patency rates. Currently, the first level 1 evidence from prospective, randomized, controlled DESTINY and ACHILLES studies indicate that the implantation of DES in short lesion lenghts in the infrapopliteal vasculature leads to favorable outcomes with high primary patency rates. This makes that primary DES placement can be recommended as treatment strategy in short BTK-lesions.

  1. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  2. Everolimus-eluting stents: update on current clinical studies.

    PubMed

    Allocco, Dominic J; Joshi, Anita A; Dawkins, Keith D

    2011-01-01

    Everolimus-eluting stents (EES) have become the most commonly implanted coronary stents worldwide. This review describes and analyzes the clinical data supporting the use of EES, focusing primarily on published, randomized, controlled trials. Everolimus-eluting stents have been shown to have less restenosis, stent thrombosis, and periprocedural myocardial infarction compared with earlier generation paclitaxel-eluting stents (PES). Lower rates of adverse events for EES compared with PES were generally seen in all subgroups, with the notable exception of patients with diabetes mellitus. There have been fewer, randomized, clinical trials comparing EES with either sirolimus-eluting stents or zotarolimus-eluting stents, although very good results with EES have been observed in the trials that have been performed. Recent clinical trial data suggest that this excellent safety and efficacy profile is maintained in a next-generation EES designed to have improved mechanical properties and radiopacity.

  3. Array tomography: immunostaining and antibody elution.

    PubMed

    Micheva, Kristina D; O'Rourke, Nancy; Busse, Brad; Smith, Stephen J

    2010-11-01

    Array tomography is a volumetric microscopy method based on physical serial sectioning. Ultrathin sections of a plastic-embedded tissue are cut using an ultramicrotome, bonded in an ordered array to a glass coverslip, stained as desired, and imaged. The resulting two-dimensional image tiles can then be reconstructed computationally into three-dimensional volume images for visualization and quantitative analysis. The minimal thickness of individual sections permits high-quality rapid staining and imaging, whereas the array format allows reliable and convenient section handling, staining, and automated imaging. Also, the physical stability of the arrays permits images to be acquired and registered from repeated cycles of staining, imaging, and stain elution, as well as from imaging using multiple modalities (e.g., fluorescence and electron microscopy). Array tomography makes it possible to visualize and quantify previously inaccessible features of tissue structure and molecular architecture. However, careful preparation of the tissue is essential for successful array tomography; these steps can be time-consuming and require some practice to perfect. In this protocol, tissue arrays are prepared for imaging by tagging with primary antibodies against specific cellular targets, followed by labeling with fluorescent secondary antibodies. Alternatively, fluorescent proteins that have been introduced into the tissue before dissection can be used.

  4. Bead Based Proteome Enrichment Enhances Features of the Protein Elution Plate (PEP) for Functional Proteomic Profiling

    PubMed Central

    Wang, Xing; Davies, Michael; Roy, Swapan; Kuruc, Matthew

    2015-01-01

    A novel functional proteomics technology called PEP(Protein Elution Plate) was developed to separate complex proteomes from natural sources and analyze protein functions systematically. The technology takes advantage of the powerful resolution of two-dimensional gel electrophoresis (2-D Gels). The modification of electrophoretic conditions in combination with a high-resolution protein elution plate supports the recovery of functionally active proteins. As 2DE(2-Dimensional Electrophoresis) resolution can be limited by protein load, we investigated the use of bead based enrichment technologies, called AlbuVoid™ and KinaSorb™ to determine their effect on the proteomic features which can be generated from the PEP platform. Using a variety of substrates and enzyme activity assays, we report on the benefits of combining bead based enrichment to improve the signal report and the features generated for Hexokinase, Protein Kinase, Protease, and Alkaline Phosphatase activities. As a result, the PEP technology allows systematic analysis of large enzyme families and can build a comprehensive picture of protein function from a complex proteome, providing biological insights that could otherwise not be observed if only protein abundances were analyzed. PMID:28248280

  5. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  6. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  7. Transcatheter Arterial Chemoembolization for Liver Cancer: Is It Time to Distinguish Conventional from Drug-Eluting Chemoembolization?

    SciTech Connect

    Liapi, Eleni; Geschwind, Jean-Francois H.

    2011-02-15

    Conventional transcatheter arterial chemoembolization and chemoembolization with drug-eluting beads are increasingly being performed interchangeably in many institutions throughout the world. As both therapies continue to being tested in many phase II and III studies and in combination with other therapies, especially targeted agents, for treatment of primary and metastatic liver cancer, it is imperative to review their current status and evaluate their impact on patient survival. This review critically assesses patient selection, indications, contraindications, techniques, materials, safety, and clinical outcomes of patients treated with conventional chemoembolization and chemoembolization with drug-eluting beads.

  8. Elution of Uranium and Transition Metals from Amidoxime-Based Polymer Adsorbents for Sequestering Uranium from Seawater

    SciTech Connect

    Pan, Horng-Bin; Kuo, Li-Jung; Wai, Chien M.; Miyamoto, Naomi; Joshi, Ruma; Wood, Jordana R.; Strivens, Jonathan E.; Janke, Christopher J.; Oyola, Yatsandra; Das, Sadananda; Mayes, Richard T.; Gill, Gary A.

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3-H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3-H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater.

  9. The effect of an alendronate-eluting titanium system to induce osteogenic differentiation in human buccal fat cells (HBFCs)

    NASA Astrophysics Data System (ADS)

    Kim, Sung Eun; Lee, Su-Young; Yun, Young-Pil; Lee, Jae Yong; Park, Kyeongsoon; Lee, Deok-Won; Song, Hae-Ryong

    2012-10-01

    The purpose of this study was to develop alendronate (Aln)-eluting Ti substrates to induce osteogenic differentiation of human buccal fat cells (HBFCs). The surface of pristine Ti was modified by dopamine (DOPA) and then heparin was grafted onto the aminated Ti surfaces to achieve the Aln-eluting Ti system. Aln was subsequently immobilized on the surface of heparinized Ti (Hep-Ti). Pristine Ti and surface-modified-Ti were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle. Osteogenic differentiation of HBFCs on the surface of pristine-Ti, Hep-Ti, Aln (1 mg)/Hep-Ti, and Aln (5 mg)/Hep-Ti was demonstrated by alkaline phosphatase (ALP) activity, calcium deposition, and osteocalcin and osteopontin mRNA expression. Successful immobilization of Aln on Hep-Ti was confirmed by XPS and contact angle. Aln/Hep-Ti showed the sustained release for up to 28 days. Additionally, HBFCs cultured on Aln/Hep-Ti substrates showed significantly induced ALP activity, calcium deposition, and osteocalcin and osteopontin mRNA expression. These results suggest that Aln-eluting Ti substrates have a potential effect on osteogenic differentiation of HBFCs and will be a promising material for bone regeneration.

  10. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    DOE PAGES

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; ...

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. Themore » Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.« less

  11. Elution of uranium and transition metals from amidoxime-based polymer adsorbents for sequestering uranium from seawater

    SciTech Connect

    Pan, Horng-Bin; Kuo, Li-Jung; Miyamoto, Naomi; Wood, Jordana; Strivens, Jonathan E.; Gill, Gary; Janke, Christopher James; Wai, Chien

    2015-11-30

    High-surface-area amidoxime and carboxylic acid grafted polymer adsorbents developed at Oak Ridge National Laboratory were tested for sequestering uranium in a flowing seawater flume system at the PNNL-Marine Sciences Laboratory. FTIR spectra indicate that a KOH conditioning process is necessary to remove the proton from the carboxylic acid and make the sorbent effective for sequestering uranium from seawater. The alkaline conditioning process also converts the amidoxime groups to carboxylate groups in the adsorbent. Both Na2CO3 H2O2 and hydrochloric acid elution methods can remove ~95% of the uranium sequestered by the adsorbent after 42 days of exposure in real seawater. The Na2CO3 H2O2 elution method is more selective for uranium than conventional acid elution. Iron and vanadium are the two major transition metals competing with uranium for adsorption to the amidoxime-based adsorbents in real seawater. Tiron (4,5-Dihydroxy-1,3-benzenedisulfonic acid disodium salt, 1 M) can remove iron from the adsorbent very effectively at pH around 7. The coordination between vanadium (V) and amidoxime is also discussed based on our 51V NMR data.

  12. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  13. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  14. Design of elution strategy for simultaneous detection of chloramphenicol and gentamicin in complex samples using surface plasmon resonance.

    PubMed

    Xia, Yinqiang; Su, Rongxin; Huang, Renliang; Ding, Li; Wang, Libing; Qi, Wei; He, Zhimin

    2017-06-15

    For the analysis of massive samples containing multiple analytes, the enhancement of detection efficiency is crucial. In this study, a facile method was developed for sequential detection of chloramphenicol (CAP) and gentamicin (GEN) in complex samples, e.g. milk, using a surface plasmon resonance (SPR)-based biosensor. Based on the immune inhibition format, two conjugates of antigen and bovine serum albumin (BSA)-denoted as CAP-BSA and GEN-BSA-were grafted on the same channel of the SPR sensor chip. Two standard curves for CAP and GEN were separately obtained by first mixing a single antibody with different concentrations of the relevant antigen. Moreover, different regeneration solutions were screened for sequential analysis. An alkaline solution was found to completely remove the antibody against GEN (AbGEN) from the chip, but it exhibited limited ability to dissociate the antibody against CAP (AbCAP). Therefore, alkaline solution and Gly-HCl solutions are successively applied to elute AbGEN and AbCAP, respectively. By gradual elutions, CAP and GEN concentrations were simultaneously calculated with limit of detection values of 5.28ng/mL and 2.26ng/mL, respectively. Furthermore, the spiking milk samples with CAP and GEN validated the assay with recoveries of 77.6-101.1%. Therefore, this method is expected to improve the detection efficiency of SPR biosensors.

  15. Multiplexed electrokinetic sample fractionation, preconcentration and elution for proteomics.

    PubMed

    Hua, Yujuan; Jemere, Abebaw B; Dragoljic, Jelena; Harrison, D Jed

    2013-07-07

    Both 6 and 8-channel integrated microfluidic sample pretreatment devices capable of performing "in space" sample fractionation, collection, preconcentration and elution of captured analytes via sheath flow assisted electrokinetic pumping are described. Coatings and monolithic polymer beds were developed for the glass devices to provide cationic surface charge and anodal electroosmotic flow for delivery to an electrospray emitter tip. A mixed cationic ([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (META) and hydrophobic butyl methacrylate-based monolithic porous polymer, photopolymerized in the 6- or 8-fractionation channels, was used to capture and preconcentrate samples. A 0.45 wt% META loaded bed generated comparable anodic electroosmotic flow to the cationic polymer PolyE-323 coated channel segments in the device. The balanced electroosmotic flow allowed stable electrokinetic sheath flow to prevent cross contamination of separated protein fractions, while reducing protein/peptide adsorption on the channel walls. Sequential elution of analytes trapped in the SPE beds revealed that the monolithic columns could be efficiently used to provide sheath flow during elution of analytes, as demonstrated for neutral carboxy SNARF (residual signal, 0.08% RSD, n = 40) and charged fluorescein (residual signal, 2.5% n = 40). Elution from monolithic columns showed reproducible performance with peak area reproducibility of ~8% (n = 6 columns) in a single sequential elution and the run-to-run reproducibility was 2.4-6.7% RSD (n = 4) for elution from the same bed. The demonstrated ability of this device design and operation to elute from multiple fractionation beds into a single exit channel for sample analysis by fluorescence or electrospray mass spectrometry is a crucial component of an integrated fractionation and assay system for proteomics.

  16. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer

    NASA Astrophysics Data System (ADS)

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.

    2015-03-01

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.

  17. Isolation and characterization of Chinese standard fulvic acid sub-fractions separated from forest soil by stepwise elution with pyrophosphate buffer.

    PubMed

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P

    2015-03-04

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants.

  18. Isolation and Characterization of Chinese Standard Fulvic Acid Sub-fractions Separated from Forest Soil by Stepwise Elution with Pyrophosphate Buffer

    PubMed Central

    Bai, Yingchen; Wu, Fengchang; Xing, Baoshan; Meng, Wei; Shi, Guolan; Ma, Yan; Giesy, John P.

    2015-01-01

    XAD-8 adsorption technique coupled with stepwise elution using pyrophosphate buffers with initial pH values of 3, 5, 7, 9, and 13 was developed to isolate Chinese standard fulvic acid (FA) and then separated the FA into five sub-fractions: FApH3, FApH5, FApH7, FApH9 and FApH13, respectively. Mass percentages of FApH3-FApH13 decreased from 42% to 2.5%, and the recovery ratios ranged from 99.0% to 99.5%. Earlier eluting sub-fractions contained greater proportions of carboxylic groups with greater polarity and molecular mass, and later eluting sub-fractions had greater phenolic and aliphatic content. Protein-like components, as well as amorphous and crystalline poly(methylene)-containing components were enriched using neutral and basic buffers. Three main mechanisms likely affect stepwise elution of humic components from XAD-8 resin with pyrophosphate buffers including: 1) the carboxylic-rich sub-fractions are deprotonated at lower pH values and eluted earlier, while phenolic-rich sub-fractions are deprotonated at greater pH values and eluted later. 2) protein or protein-like components can be desorbed and eluted by use of stepwise elution as progressively greater pH values exceed their isoelectric points. 3) size exclusion affects elution of FA sub-fractions. Successful isolation of FA sub-fractions will benefit exploration of the origin, structure, evolution and the investigation of interactions with environmental contaminants. PMID:25735451

  19. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  20. PRELIMINARY REPORT ON EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Pennebaker, F.

    2010-09-01

    Small-column ion exchange (SCIX) units installed in high-level waste tanks to remove Cs-137 from highly alkaline salt solutions are among the waste treatment plans in the DOE-complex. Spherical Resorcinol-Formaldehyde (sRF) is the ion exchange resin selected for use in the Hanford Waste Treatment and Immobilization Plant (WTP). It is also the primary ion exchange material under consideration for SCIX at the Hanford site. The elution step of the multi-step ion exchange process is typically done with 0.5 M nitric acid. An acid eluant is a potential hazard in the event of a spill, leak, etc. because the high-level waste tanks are made of carbon steel. Corrosion and associated structural damage may ensue. Studies are ongoing to explore non-acid elution as an alternative. Batch contact sorption equilibrium screening tests have been conducted with 36 potential non-acid eluants. The sorption tests involve equilibrating each cesium-containing eluant solution with the sRF resin for 48 hours at 25 C in a shaker oven. In the sorption tests, an eluant is deemed to have a high cesium elution potential if it minimizes cesium sorption onto the sRF resin. The top candidates (based on lowest cesium sorption distribution coefficients) include ammonium carbonate, ammonium carbonate/ammonium hydroxide, ammonium bicarbonate, rubidium carbonate, ammonium acetate, ammonium acetate/ammonium hydroxide, ammonium bicarbonate/ammonium hydroxide, calcium chloride, and magnesium chloride. The next phase of testing for this work will focus on the following down selected eluants: Ammonium carbonate, ammonium acetate, calcium acetate, magnesium acetate, nitric acid, and ammonium hydroxide. The next testing phase is a confirmation of the elution ability of the selected eluants. It will mimic a typical sRF cesium ion exchange process i.e., sorption or loading, caustic wash, water rinse, and elution via batch contact sorption and quasi column caustic wash/water rinse/elution. Due to corrosion

  1. Linear isotherm determination from linear gradient elution experiments.

    PubMed

    Pfister, David; Steinebach, Fabian; Morbidelli, Massimo

    2015-01-02

    A procedure to estimate equilibrium adsorption parameters as a function of the modifier concentration in linear gradient elution chromatography is proposed and its reliability is investigated by comparison with experimental data. Over the past decades, analytical solutions of the so-called equilibrium model under linear gradient elution conditions were derived assuming that proteins and modifier molecules access the same fraction of the pore size distribution of the porous particles. The present approach developed in this work accounts for the size exclusion effect resulting in different exclusions for proteins and modifier. A new analytical solution was derived by applying perturbation theory for differential equations, and the 1st-order approximated solution is presented in this work. Eventually, a turnkey and reliable procedure to efficiently estimate isotherm parameters as a function of modifier concentration from linear gradient elution experiments is proposed.

  2. Drug-eluting stents: some first-generation problems.

    PubMed

    Murphy, Bruce E

    2004-01-01

    The recent fervor surrounding the introduction of drug-eluting stents into the practice of cardiology has proven to be problematic. The experience with the Cypher Sirolimus-Eluting Coronary Stent (Cordis Corp., Miami Lakes, FL) at Arkansas Heart Hospital progressed from anxious anticipation to complete removal of the stent from inventory in a 6-month period. Several cases involving edge dissection and subacute thrombosis were the catalyst for the decision to cease use of the device. While new products may entice, each new modality must be approached with measured enthusiasm. Drug-eluting stents are first-generation devices that may have unexposed flaws when used as first-line treatment in routine practice. The first-generation Cypher stent, as with many new devices, offers treatment-not a cure-for coronary atherosclerosis and enhances the desire for an evolved product.

  3. Pharmacokinetics of gentamicin eluted from a regenerating bone graft substitute

    PubMed Central

    Stravinskas, M.; Horstmann, P.; Ferguson, J.; Hettwer, W.; Tarasevicius, S.; Petersen, M. M.; McNally, M. A.; Lidgren, L.

    2016-01-01

    Objectives Deep bone and joint infections (DBJI) are directly intertwined with health, demographic change towards an elderly population, and wellbeing. The elderly human population is more prone to acquire infections, and the consequences such as pain, reduced quality of life, morbidity, absence from work and premature retirement due to disability place significant burdens on already strained healthcare systems and societal budgets. DBJIs are less responsive to systemic antibiotics because of poor vascular perfusion in necrotic bone, large bone defects and persistent biofilm-based infection. Emerging bacterial resistance poses a major threat and new innovative treatment modalities are urgently needed to curb its current trajectory. Materials and Methods We present a new biphasic ceramic bone substitute consisting of hydroxyapatite and calcium sulphate for local antibiotic delivery in combination with bone regeneration. Gentamicin release was measured in four setups: 1) in vitro elution in Ringer’s solution; 2) local elution in patients treated for trochanteric hip fractures or uncemented hip revisions; 3) local elution in patients treated with a bone tumour resection; and 4) local elution in patients treated surgically for chronic corticomedullary osteomyelitis. Results The release pattern in vitro was comparable with the obtained release in the patient studies. No recurrence was detected in the osteomyelitis group at latest follow-up (minimum 1.5 years). Conclusions This new biphasic bone substitute containing antibiotics provides safe prevention of bone infections in a range of clinical situations. The in vitro test method predicts the in vivo performance and makes it a reliable tool in the development of future antibiotic-eluting bone-regenerating materials. Cite this article: M. Stravinskas, P. Horstmann, J. Ferguson, W. Hettwer, M. Nilsson, S. Tarasevicius, M. M. Petersen, M. A. McNally, L. Lidgren. Pharmacokinetics of gentamicin eluted from a regenerating

  4. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  5. Acute Thrombocytopenia: An Unusual Complication Occurring After Drug-Eluting Microspheres Transcatheter Hepatic Chemoembolization

    SciTech Connect

    Poggi, Guido; Quaretti, Pietro; Montagna, Benedetta Sottotetti, Federico Tagliaferri, Barbara Pozzi, Emma Amatu, Alessio Pagella, Chiara; Bernardo, Giovanni

    2011-02-15

    Image-guided transcatheter hepatic chemoembolization (TACE) is accepted worldwide as an effective treatment for patients with unresectable hepatocellular carcinoma and liver metastases from neuroendocrine tumors, colorectal carcinomas, and uveal melanomas. Although the technique is relatively safe, it has been associated with several complications. We report the cases of two patients with colorectal liver metastases who developed acute thrombocytopenia a few hours after TACE. To our knowledge, acute thrombocytopenia occurring after TACE with drug-eluting microspheres has not yet been reported. Here we discuss the hypothetical etiopathogenetic mechanisms.

  6. Development of a pheromone elution rate physical model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A first principle modeling approach is applied to available data describing the elution of semiochemicals from pheromone dispensers. These data include field data for 27 products developed by several manufacturers, including homemade devices, as well as laboratory data collected on three semiochemi...

  7. Quantitation of specific proteins in polyacrylamide gels by the elution of Fast Green FCF.

    PubMed

    Gilmore, L B; Hook, G E

    1981-07-01

    The quantitation of proteins in polyacrylamide gels stained with Fast green FCF has been investigated using a modification of the elution technique originally described by Fenner et al. (Fenner, C., Traut, R.R., Mason, D.T. and Wikman-Coffelt, J. (1975) Anal. Biochem. 63, 595--602) for Coomassie Blue and adapted by Medugorac (Medugorac, I. (1979) Basic Res. Cardiol. 74, 406--416) for use with proteins stained with Fast Green FCF. The elution of dye from stained protein was accomplished using 1.0 M NaOH instead of aqueous pyridine as required by the original method. The primary advantages of our modification are that the time required for protein quantitation has been considerably reduced and the use of toxic organic solvents has been eliminated. We have investigated the applicability of the method of several different proteins and our results indicate: (a) The quantity of Fast Green FCF eluted from specific proteins is proportional to the quantity of protein applied to the gel, but varies for each individual protein. (b) The method allows quantitation over a very wide range of protein (1--800 micrograms). (c) Quantitation of protein is independent of the width of the stained bands as well as acrylamide concentration. (d) The method is applicable to gels of many types including disc, slab and continuous gradient gels. (e) Protein can be estimated from the patterns obtained by two-dimensional polyacrylamide gel electrophoresis. (f) The presence of Triton X-100 in gel and protein sample does not affect quantitation; the method is applicable to gels containing SDS provided that SDS is removed prior to staining. (g) Precipitation of protein with 12.5% TCA following electrophoresis does not interfere with quantitation. (h) The reproducibility of the technique is excellent, with standard deviations being less than 10% of the mean in all cases. This method appears highly versatile but requires appropriate standards for the quantitation of individual proteins.

  8. GUESSmix-guided optimization of elution-extrusion counter-current separations.

    PubMed

    Friesen, J Brent; Pauli, Guido F

    2009-05-08

    Rational strategies for the optimization of separations are vital to any chromatographic technique. In counter-current separations (CS), once a suitable solvent system is selected for a given separation, the operator is faced with the task of optimizing the separation through the manipulation of those adjustable operation parameters allowed for by the current CS technology. This study employed a mixture of 21 natural products of varying polarity, molecular mass, and functionality, termed the GUESSmix, as a tool to assess the effectiveness of optimization strategies. The behavior of the GUESSmix was observed in the hexane/ethyl acetate/methanol/water 4:6:4:6 (HEMWat +3) solvent system. The effect of operation parameters on both the elution and extrusion stages of a recently introduced CS methodology, termed elution-extrusion counter-current chromatography (EECCC), was investigated. The resulting chromatograms were plotted with K-based reciprocal symmetry plots (ReS and ReSS), which allow comparison of the K values of significant peaks and assessment of resolution of eluting compounds in the interval 0< or =K< or =infinity. The operation parameters studied were: (1) the effect of temperature controlled water circulation around the centrifuge; (2) the combination of flow rate and revolution speed; (3) sample loading capacity; (4) the direction of rotation either agreeing with or opposing the direction of coil winding; (5) injection before equilibration, a practice that saves operator time and reduces solvent consumption. The GUESSmix was found to be a highly useful reference mixture to compare and contrast stationary phase retention volume ratios, resolution, K-values, peak shapes, and extrusion characteristics between CS experiments. EECCC is shown to be a robust technique that may be enhanced with appropriate temperature, rpm, flow rate, sample loading, direction of rotation, and injection timing. Plotting ReS[S] chromatograms enables systematic study of CS

  9. Preparation of proteins from different organs of Japanese morning glory by an in vivo electro-elution procedure.

    PubMed

    Yanohara, Taishi; Okamoto, Shigehisa; Hongye, Zhao; Nakamura, Yasushi; Matsuo, Tomoaki

    2005-01-01

    An electro-elution procedure has been employed efficiently to collect proteins from stem segments, young leaves and roots of the Japanese morning glory. Electrophoretic conditions were optimised, including the size of segments (10-30 mm), the strength of the current for electro-elution (2.5-10 mA), and the exposure time of electro-elution (2-12 h). From the same quantity of organs, the in vivo electro-elution procedure permitted the collection of an amount of protein up to six times greater than that obtained with an earlier-reported centrifugation procedure. Both preparations were analysed by SDS-PAGE and showed similar protein profiles. This new technique provided an interesting insight into the large differences in both the quality and quantity of proteins between different organs of the plants. The average amount of protein collected from organs was 0.1 mg/g of tissue fresh weight. It is expected that this procedure may facilitate the discovery of new proteins with unique functions in extracellular matrices involved in the response of plants to various external stimuli.

  10. RhC Phenotyping, Adsorption/Elution Test, and SSP-PCR: The Combined Test for D-Elute Phenotype Screening in Thai RhD-Negative Blood Donors.

    PubMed

    Srijinda, Songsak; Suwanasophon, Chamaiporn; Visawapoka, Unchalee; Pongsavee, Malinee

    2012-01-01

    The Rhesus (Rh) blood group is the most polymorphic human blood group and it is clinically significant in transfusion medicine. Especially, D antigen is the most important and highly immunogenic antigen. Due to anti-D, it is the cause of the hemolytic disease of the newborn and transfusion reaction. About 0.1%-0.5% of Asian people are RhD-negative, whereas in the Thai population, the RhD-negative blood type only occurs in 0.3%. Approximately 10%-30% of RhD-negative in Eastern Asian people actually were D-elute (DEL) phenotype, the very weak D antigen that cannot be detected by indirect antiglobulin test (IAT). There are many reports about anti-D immunization in RhD-negative recipients through the transfusion of red blood cells from individuals with DEL phenotype. D-elute phenotype screening in Thai RhD-negative blood donors was studied to distinguish true RhD-negative from DEL phenotype. A total of 254 Thai serologically RhD-negative blood donors were tested for RhCE phenotypes and anti-D adsorption/elution test. In addition, RhC(+) samples were tested for RHD 1227A allele by SSP-PCR technique. The RhD-negative phenotype samples consisted of 131 ccee, 4 ccEe, 1 ccEE, 101 Ccee, 16 CCee, and 1 CcEe. The 42 Ccee and 8 CCee phenotype samples were typed as DEL phenotype and 96% of DEL samples were positive for RHD 1227A allele. The incidence of RhC(+) was 46.4%, and 48 of the 118 RhC(+) samples were positive for both anti-D adsorption/elution test and SSP-PCR technique for RHD 1227A allele. The sensitivity and specificity were 96% and 100%, respectively, for RHD 1227A detection as compared with the adsorption/elution test. In conclusion, RhC(+) phenotype can combine with anti-D adsorption/elution test and RHD 1227A allele SSP-PCR technique for distinguishing true RhD-negative from DEL phenotype.

  11. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  12. Late acute thrombosis after paclitaxel eluting stent implantation

    PubMed Central

    Liistro, F; Colombo, A

    2001-01-01

    Late (more than six months) total occlusion after coronary stenting is a progressive phenomenon occurring in approximately 4% of patients, leading to acute myocardial infarction in less than 0.5%. The process must be related to severe and progressive intimal hyperplasia. In patients receiving coronary stenting with simultaneous brachytherapy, late total occlusion has been reported at a higher rate and to be related to stent thrombosis rather than intimal hyperplasia. Late total occlusion presenting with an acute clinical event seven months after the implantation of a paclitaxel drug eluting stent is reported. The occlusion developed soon after the interruption of ticlopidine treatment, suggesting that the event had a thrombotic genesis and that the risk is not confined to the first six month period.


Keywords: paclitaxel eluting stent; late thrombosis PMID:11514475

  13. Suppression of scarring in peripheral nerve implants by drug elution

    NASA Astrophysics Data System (ADS)

    FitzGerald, James J.

    2016-04-01

    Objective. Medical implants made of non-biological materials provoke a chronic inflammatory response, resulting in the deposition of a collagenous scar tissue (ST) layer on their surface, that gradually thickens over time. This is a critical problem for neural interfaces. Scar build-up on electrodes results in a progressive decline in signal level because the scar tissue gradually separates axons away from the recording contacts. In regenerative sieves and microchannel electrodes, progressive scar deposition will constrict and may eventually choke off the sieve hole or channel lumen. Interface designs need to address this issue if they are to be fit for long term use. This study examines a novel method of inhibiting the formation and thickening of the fibrous scar. Approach. Research to date has mainly focused on methods of preventing stimulation of the foreign body response by implant surface modification. In this paper a pharmacological approach using drug elution to suppress chronic inflammation is introduced. Microchannel implants made of silicone doped with the steroid drug dexamethasone were implanted in the rat sciatic nerve for periods of up to a year. Tissue from within the microchannels was compared to that from control devices that did not release any drug. Main results. In the drug eluting implants the scar layer was significantly thinner at all timepoints, and unlike the controls it did not continue to thicken after 6 months. Control implants supported axon regeneration well initially, but axon counts fell rapidly at later timepoints as scar thickened. Axon counts in drug eluting devices were initially much lower, but increased rather than declined and by one year were significantly higher than in controls. Significance. Drug elution offers a potential long term solution to the problem of performance degradation due to scarring around neural implants.

  14. Fully bioresorbable drug-eluting coronary scaffolds: A review.

    PubMed

    Charpentier, Emmanuel; Barna, Alexandre; Guillevin, Loïc; Juliard, Jean-Michel

    2015-01-01

    Following the development of stents, then drug-eluting stents (DES), bioresorbable scaffolds are proposed as a third evolution in coronary angioplasty, aiming to reduce the incidence of restenosis and stent thrombosis and to restore vascular physiology. At least 16 such devices are currently under development, but published clinical data were available for only three of them in September 2014. The first device is Abbott's BVS(®), a poly-L-lactic acid (PLLA)-based everolimus-eluting device, which has been tested in a registry and two non-randomized trials. Clinical results seem close to what is expected from a modern DES, but possibly with more post-procedural side-effects. Two randomized trials versus DES are underway. This device is already marketed in many European countries. The second device is Elixir's DESolve(®), a PLLA-based novolimus-eluting device, which has been evaluated in two single-arm trials. Results are not widely different from those expected from a DES. The third device is Biotronik's DREAMS(®), a metallic magnesium-based paclitaxel-eluting device, which has been assessed in an encouraging single-arm trial; its second version is currently undergoing evaluation in a single-arm trial. The available results suggest that the technological and clinical development of bioresorbable scaffolds is not yet complete: their possible clinical benefits are still unclear compared with third-generation DES; the impact of arterial physiology restoration has to be assessed over the long term; and their cost-effectiveness has to be established. From the perspective of a health technology assessment, there is no compelling reason to hasten the clinical use of these devices before the results of ongoing randomized controlled trials become available.

  15. Organ transplantation and drug eluting stents: Perioperative challenges

    PubMed Central

    Dalal, Aparna

    2016-01-01

    Patients listed for organ transplant frequently have severe coronary artery disease (CAD), which may be treated with drug eluting stents (DES). Everolimus and zotarolimus eluting stents are commonly used. Newer generation biolimus and novolimus eluting biodegradable stents are becoming increasingly popular. Patients undergoing transplant surgery soon after the placement of DES are at increased risk of stent thrombosis (ST) in the perioperative period. Dual antiplatelet therapy (DAPT) with aspirin and a P2Y12 inhibitor such as clopidogrel, prasugrel and ticagrelor is instated post stenting to decrease the incident of ST. Cangrelor has recently been approved by Food and Drug Administration and can be used as a bridging antiplatelet drug. The risk of ischemia vs bleeding must be considered when discontinuing or continuing DAPT for surgery. Though living donor transplant surgery is an elective procedure and can be optimally timed, cadaveric organ availability is unpredictable, therefore, discontinuation of antiplatelet medication cannot be optimally timed. The type of stent and timing of transplant surgery can be of utmost importance. Many platelet function point of care tests such as Light Transmittance Aggregrometry, Thromboelastography Platelet Mapping, VerifyNow, Multiple Electrode Aggregrometry are used to assess bleeding risk and guide perioperative platelet transfusion. Response to allogenic platelet transfusion to control severe intraoperative bleeding may differ with the antiplatelet drug. In stent thrombosis is an emergency where management with either a drug eluting balloon or a DES has shown superior outcomes. Post-transplant complications often involved stenosis of an important vessel that may need revascularization. DES are now used for endovascular interventions for transplant orthotropic heart CAD, hepatic artery stenosis post liver transplantation, transplant renal artery stenosis following kidney transplantation, etc. Several antiproliferative drugs

  16. Metal elution from Ni- and Fe-based alloy reactors under hydrothermal conditions.

    PubMed

    Faisal, Muhammad; Quitain, Armando T; Urano, Shin-Ya; Daimon, Hiroyuki; Fujie, Koichi

    2004-05-20

    Elution of metals from Ni- and Fe-based alloy (i.e. Inconel 625 and SUS 316) under hydrothermal conditions was investigated. Results showed that metals could be eluted even in a short contact time. At subcritical conditions, a significant amount of Cr was extracted from SUS 316, while only traces of Ni, Fe, Mo, and Mn were eluted. In contrast, Ni was removed in significant amounts compared to Cr when Inconel 625 was tested. Several factors including temperature and contact time were found to affect elution behavior. The presence of air in the fluid even promoted elution under subcritical conditions.

  17. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  18. Use of FTA elute card impregnated with cervicovaginal sample directly into the amplification reaction increases the detection of human papillomavirus DNA

    PubMed Central

    Santos, Carla R.; Franciscatto, Laura G.; Barcellos, Regina B.; Almeida, Sabrina E. M.; Rossetti, Maria Lucia R.

    2012-01-01

    This study aimed to evaluate the use of the FTA elute cardTM impregnated with cervicovaginal sample directly in the PCR amplification for detection of HPV-DNA. The results were compared to a reference technique. This method was more efficient than the protocol indicated by the manufacturer, identifying 91.7% against 54.2% of the positive samples. PMID:24031844

  19. Digoxigenylated wheat germ agglutinin visualized with alkaline phosphatase-labeled anti-digoxigenin antibodies--a new, sensitive technique with the potential for single and double tracing of neuronal connections.

    PubMed

    Veh, R W

    1991-01-02

    For double tracing experiments, wheat germ agglutinin (WGA) molecules labeled with two different haptens are desirable. In the present report the suitability of digoxigenylated WGA (DIG-WGA) for retrograde tracing was investigated. For this purpose the new tracer was pressure injected into rat brains and the transported DIG-WGA visualized via its digoxigenyl group with an alkaline phosphatase linked anti DIG antibody in permanently stained sections of high quality. With fixatives containing 2.5% glutaraldehyde only few positive cells were found. However, at milder fixation conditions (4% paraformaldehyde, 0.05% glutaraldehyde 0.2% picric acid, 30 min) retrogradely labeled cells were detected with a sensitivity comparable to tetramethylbenzidine protocols for conventional WGA-HRP (horseradish peroxidase) tracing. Preliminary experiments suggest excellent suitability for double labeling.

  20. Exact peak compression factor in linear gradient elution. I. Theory.

    PubMed

    Gritti, Fabrice; Guiochon, Georges

    2008-11-28

    The only existing expression for the peak compression factor in linear gradient elution chromatography assumes that the linear-solvent-strength model (LSSM) applies to the retention of the compound studied, that the column efficiency is independent of the mobile phase composition, and that, during gradient elution, the relative retention factor of a compound inside its band varies linearly with the distance from the band center. Because the retention factors of many analytes in reversed-phase liquid chromatography do not rigorously follow the LSSM, we extend the theoretical approach of Poppe et al. to the prediction of peak compression factors in linear gradient elution chromatography for any retention model, when column efficiency varies with the mobile phase composition. Only the contribution of the chromatographic column to the peak compression was taken into account, the contribution of the dwell volume being neglected. A second restriction is the linearity of the relative retention factor as a function of the position along the band width inside the column. These constraints could be the sources for the difference observed between experimental and theoretical values of peak compression factors. When the retention factor varies steeply with the mobile phase composition, such as with proteins or large peptides in RP-HPLC, it is found that the thermodynamic compression term, which tends to sharpen the peak, is coupled with the column dispersion term, which tends to broaden the peak. This coupling term acts as an apparent dispersion term, contributing to broaden the peak. This result is consistent with the measurements of peak compression factors found in the literature.

  1. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    SciTech Connect

    Tangutoori, S; Kumar, R; Sridhar, S; Korideck, H; Makrigiorgos, G; Cormack, R

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischer Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing effect as

  2. Optimization of Drug Delivery by Drug-Eluting Stents

    PubMed Central

    Bozsak, Franz; Gonzalez-Rodriguez, David; Sternberger, Zachary; Belitz, Paul; Bewley, Thomas; Chomaz, Jean-Marc; Barakat, Abdul I.

    2015-01-01

    Drug-eluting stents (DES), which release anti-proliferative drugs into the arterial wall in a controlled manner, have drastically reduced the rate of in-stent restenosis and revolutionized the treatment of atherosclerosis. However, late stent thrombosis remains a safety concern in DES, mainly due to delayed healing of the endothelial wound inflicted during DES implantation. We present a framework to optimize DES design such that restenosis is inhibited without affecting the endothelial healing process. To this end, we have developed a computational model of fluid flow and drug transport in stented arteries and have used this model to establish a metric for quantifying DES performance. The model takes into account the multi-layered structure of the arterial wall and incorporates a reversible binding model to describe drug interaction with the cells of the arterial wall. The model is coupled to a novel optimization algorithm that allows identification of optimal DES designs. We show that optimizing the period of drug release from DES and the initial drug concentration within the coating has a drastic effect on DES performance. Paclitaxel-eluting stents perform optimally by releasing their drug either very rapidly (within a few hours) or very slowly (over periods of several months up to one year) at concentrations considerably lower than current DES. In contrast, sirolimus-eluting stents perform optimally only when drug release is slow. The results offer explanations for recent trends in the development of DES and demonstrate the potential for large improvements in DES design relative to the current state of commercial devices. PMID:26083626

  3. [DNA degradation during standard alkaline of thermal denaturation].

    PubMed

    Drozhdeniuk, A P; Sulimova, G E; Vaniushin, B F

    1976-01-01

    Essential degradation 8 DNA (up to 10 per cent) with liberation of acid-soluble fragments takes place on the standard alkaline (0,01 M sodium phosphate, pH 12, 60 degrees, 15 min) or thermal (0.06 M sodium phosphate buffer, pH 6.8, 102 degrees C, 15 min) denaturation. This degradation is more or less selective: fraction of low molecular weight fragments, isolated by hydroxyapatite cromatography and eluted by 0.06 M sodium phosphate buffer, pH 6.8 is rich in adenine and thymine and contains about 2 times less 5-methylcytosine than the total wheat germ DNA. The degree of degradation of DNA on thermal denaturation is higher than on alkaline degradation. Therefore while studying reassociation of various DNA, one and the same standard method of DNA denaturation should be used. Besides, both the level of DNA degradation and the nature of the resulting products (fragments) should be taken into account.

  4. Cost-Effectiveness Analysis of Infrapopliteal Drug-Eluting Stents

    SciTech Connect

    Katsanos, Konstantinos Karnabatidis, Dimitris; Diamantopoulos, Athanasios; Spiliopoulos, Stavros; Siablis, Dimitris

    2013-02-15

    IntroductionThere are no cost-utility data about below-the-knee placement of drug-eluting stents. The authors determined the cost-effectiveness of infrapopliteal drug-eluting stents for critical limb ischemia (CLI) treatment. The event-free individual survival outcomes defined by the absence of any major events, including death, major amputation, and target limb repeat procedures, were reconstructed on the basis of two published infrapopliteal series. The first included spot Bail-out use of Sirolimus-eluting stents versus bare metal stents after suboptimal balloon angioplasty (Bail-out SES).The second was full-lesion Primary Everolimus-eluting stenting versus plain balloon angioplasty and bail-out bare metal stenting as necessary (primary EES). The number-needed-to-treat (NNT) to avoid one major event and incremental cost-effectiveness ratios (ICERs) were calculated for a 3-year postprocedural period for both strategies. Overall event-free survival was significantly improved in both strategies (hazard ratio (HR) [confidence interval (CI)]: 0.68 [0.41-1.12] in Bail-out SES and HR [CI]: 0.53 [0.29-0.99] in Primary EES). Event-free survival gain per patient was 0.89 (range, 0.11-3.0) years in Bail-out SES with an NNT of 4.6 (CI: 2.5-25.6) and a corresponding ICER of 6,518 Euro-Sign (range 1,685-10,112 Euro-Sign ). Survival gain was 0.91 (range 0.25-3.0) years in Primary EES with an NNT of 2.7 (CI: 1.7-5.8) and an ICER of 11,581 Euro-Sign (range, 4,945-21,428 Euro-Sign ) per event-free life-year gained. Two-way sensitivity analysis showed that stented lesion length >10 cm and/or DES list price >1000 Euro-Sign were associated with the least economically favorable scenario in both strategies. Both strategies of bail-out SES and primary EES placement in the infrapopliteal arteries for CLI treatment exhibit single-digit NNT and relatively low corresponding ICERs.

  5. Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies

    PubMed Central

    2013-01-01

    Background Informing and evaluating malaria control efforts relies on knowledge of local transmission dynamics. Serological and molecular tools have demonstrated great sensitivity to quantify transmission intensity in low endemic settings where the sensitivity of traditional methods is limited. Filter paper blood spots are commonly used a source of both DNA and antibodies. To enhance the operational practicability of malaria surveys, a method is presented for combined DNA extraction and antibody elution. Methods Filter paper blood spots were collected as part of a large cross-sectional survey in the Kenyan highlands. DNA was extracted using a saponin/chelex method. The eluate of the first wash during the DNA extraction process was used for antibody detection and compared with previously validated antibody elution procedures. Antibody elution efficiency was assessed by total IgG ELISA for malaria antigens apical membrane antigen-1 (AMA-1) and merozoite-surface protein-1 (MSP-142). The sensitivity of nested 18S rRNA and cytochrome b PCR assays and the impact of doubling filter paper material for PCR sensitivity were determined. The distribution of cell material and antibodies throughout filter paper blood spots were examined using luminescent and fluorescent reporter assays. Results Antibody levels measured after the combined antibody/DNA extraction technique were strongly correlated to those measured after standard antibody elution (p < 0.0001). Antibody levels for both AMA-1 and MSP-142 were generally slightly lower (11.3-21.4%) but age-seroprevalence patterns were indistinguishable. The proportion of parasite positive samples ranged from 12.9% to 19.2% in the different PCR assays. Despite strong agreement between outcomes of different PCR assays, none of the assays detected all parasite-positive individuals. For all assays doubling filter paper material for DNA extraction increased sensitivity. The concentration of cell and antibody material was not

  6. Biodegradable-Polymer Biolimus-Eluting Stents versus Durable-Polymer Everolimus-Eluting Stents at One-Year Follow-Up: A Registry-Based Cohort Study.

    PubMed

    Parsa, Ehsan; Saroukhani, Sepideh; Majlessi, Fereshteh; Poorhosseini, Hamidreza; Lofti-Tokaldany, Masoumeh; Jalali, Arash; Salarifar, Mojtaba; Nematipour, Ebrahim; Alidoosti, Mohammad; Aghajani, Hassan; Amirzadegan, Alireza; Kassaian, Seyed Ebrahim

    2016-04-01

    We compared outcomes of percutaneous coronary intervention patients who received biodegradable-polymer biolimus-eluting stents with those who received durable-polymer everolimus-eluting stents. At Tehran Heart Center, we performed a retrospective analysis of the data from January 2007 through December 2011 on 3,270 consecutive patients with coronary artery disease who underwent percutaneous coronary intervention with the biodegradable-polymer biolimus-eluting stent or the durable-polymer everolimus-eluting stent. We excluded patients with histories of coronary artery bypass grafting or percutaneous coronary intervention, acute ST-segment-elevation myocardial infarction, or the implantation of 2 different stent types. Patients were monitored for 12 months. The primary endpoint was a major adverse cardiac event, defined as a composite of death, nonfatal myocardial infarction, and target-vessel and target-lesion revascularization. Durable-polymer everolimus-eluting stents were implanted in 2,648 (81%) and biodegradable-polymer biolimus-eluting stents in 622 (19%) of the study population. There was no significant difference between the 2 groups (2.7% vs 2.7%; P=0.984) in the incidence of major adverse cardiac events. The cumulative adjusted probability of major adverse cardiac events in the biodegradable-polymer biolimus-eluting stent group did not differ from that of such events in the durable-polymer everolimus-eluting stent group (hazard ratio=0.768; 95% confidence interval, 0.421-1.44; P=0.388). We conclude that in our patients the biodegradable-polymer biolimus-eluting stent was as effective and safe, during the 12-month follow-up period, as was the durable-polymer everolimus-eluting stent.

  7. Escherichia coli alkaline phosphatase. Kinetic studies with the tetrameric enzyme.

    PubMed

    Halford, S E; Schlesinger, M J; Gutfreund, H

    1972-03-01

    1. The stability of the tetrameric form of Escherichia coli alkaline phosphatase was examined by analytical ultracentrifugation. 2. The stopped-flow technique was used to study the hydrolysis of nitrophenyl phosphates by the alkaline phosphatase tetramer at pH7.5 and 8.3. In both cases transient product formation was observed before the steady state was attained. Both transients consisted of the liberation of 1mol of nitrophenol/2mol of enzyme subunits within the dead-time of the apparatus. The steady-state rates were identical with those observed with the dimer under the same conditions. 3. The binding of 2-hydroxy-5-nitrobenzyl phosphonate to the alkaline phosphatase tetramer was studied by the temperature-jump technique. The self-association of two dimers to form the tetramer is linked to a conformation change within the dimer. This accounts for the differences between the transient phases in the reactions of the dimer and the tetramer with substrate. 4. Addition of P(i) to the alkaline phosphatase tetramer caused it to dissociate into dimers. The tetramer is unable to bind this ligand. It is suggested that the tetramer undergoes a compulsory dissociation before the completion of its first turnover with substrate. 5. On the basis of these findings a mechanism is proposed for the involvement of the alkaline phosphatase tetramer in the physiology of E. coli.

  8. Numerical modeling of elution peak profiles in supercritical fluid chromatography. Part I-Elution of an unretained tracer

    SciTech Connect

    Kaczmarski, Krzysztof; Guiochon, Georges A

    2010-01-01

    When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as 'supercritical fluid chromatography' or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data.

  9. Nano-scale adhesion in multilayered drug eluting stents.

    PubMed

    Youssefian, Sina; Rahbar, Nima

    2013-02-01

    Using stainless steel 316L for drug-eluting stents needs specific surface finishing due to corrosion phenomena that take place on the metal surface upon prolonged contact with human tissue. Poly (o-chloro-p-xylylene) (Parylene C) is one of the inert and biocompatible materials that are used for 316L coating with γ-methacryloxypropyltrimethoxysilane as an adhesion promoter. In this study, a combination of atomic force microscopy experiments and contact theories have been used to quantify the work of adhesion between parylene C/316L and silane added parylene C/316L. An atomistic simulation has been used, first, to investigate and compare the adhesion at the room temperature with the experiments and then, to investigate the effect of aqueous environment with higher temperature, inside the body, on the adhesion between layers in the structure of drug eluting stent. The simulation results of simplified model for 316L are in good agreement with the experimental results and suggest that the week affiliation between this polymer and 316L is mainly due to Van der Waals interactions. The effect of temperature on the adhesion is found to be regressive and as the water molecules permeate the polymer the adhesion decreases. They also imply that the effect of silane on the adhesion between parylene C and steel is modest.

  10. Drug-eluting fibers for HIV-1 inhibition and contraception.

    PubMed

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract.

  11. Drug- and Gene-eluting Stents for Preventing Coronary Restenosis

    PubMed Central

    Lekshmi, Kamali Manickavasagam; Che, Hui-Lian; Cho, Chong-Su

    2017-01-01

    Coronary artery disease (CAD) has been reported to be a major cause of death worldwide. Current treatment methods include atherectomy, coronary angioplasty (as a percutaneous coronary intervention), and coronary artery bypass. Among them, the insertion of stents into the coronary artery is one of the commonly used methods for CAD, although the formation of in-stent restenosis (ISR) is a major drawback, demanding improvement in stent technology. Stents can be improved using the delivery of DNA, siRNA, and miRNA rather than anti-inflammatory/anti-thrombotic drugs. In particular, genes that could interfere with the development of plaque around infected regions are conjugated on the stent surface to inhibit neointimal formation. Despite their potential benefits, it is necessary to explore the various properties of gene-eluting stents. Furthermore, multifunctional electronic stents that can be used as a biosensor and deliver drug- or gene-based on physiological condition will be a very promising way to the successful treatment of ISR. In this review, we have discussed the molecular mechanism of restenosis, the use of drug- and gene-eluting stents, and the possible roles that these stents have in the prevention and treatment of coronary restenosis. Further, we have explained how multifunctional electronic stents could be used as a biosensor and deliver drugs based on physiological conditions. PMID:28184335

  12. Drug-Eluting Fibers for HIV-1 Inhibition and Contraception

    PubMed Central

    Ball, Cameron; Krogstad, Emily; Chaowanachan, Thanyanan; Woodrow, Kim A.

    2012-01-01

    Multipurpose prevention technologies (MPTs) that simultaneously prevent sexually transmitted infections (STIs) and unintended pregnancy are a global health priority. Combining chemical and physical barriers offers the greatest potential to design effective MPTs, but integrating both functional modalities into a single device has been challenging. Here we show that drug-eluting fiber meshes designed for topical drug delivery can function as a combination chemical and physical barrier MPT. Using FDA-approved polymers, we fabricated nanofiber meshes with tunable fiber size and controlled degradation kinetics that facilitate simultaneous release of multiple agents against HIV-1, HSV-2, and sperm. We observed that drug-loaded meshes inhibited HIV-1 infection in vitro and physically obstructed sperm penetration. Furthermore, we report on a previously unknown activity of glycerol monolaurate (GML) to potently inhibit sperm motility and viability. The application of drug-eluting nanofibers for HIV-1 prevention and sperm inhibition may serve as an innovative platform technology for drug delivery to the lower female reproductive tract. PMID:23209601

  13. Materials technology in drug eluting balloons: Current and future perspectives.

    PubMed

    Xiong, Gordon Minru; Ang, Huiying; Lin, Jinjie; Lui, Yuan Siang; Phua, Jie Liang; Chan, Jing Ni; Venkatraman, Subbu; Foin, Nicolas; Huang, Yingying

    2016-10-10

    The coating material technology is important for the delivery of anti-proliferative drugs from the surface of drug-eluting balloons (DEBs), which are emerging as alternatives to drug-eluting stents (DES) in the field of interventional cardiology. Currently, several shortcomings limit their competition with DES, including low drug transfer efficiency to the arterial tissues and undesirable particulate generation from the coating matrix. In this review, we provide a survey of the materials used in existing DEBs, and discussed the mechanisms of actions of both the drugs and coating materials. The type of drug and the influence of the coating material characteristics on the drug uptake, distribution and retention in arterial tissues are described. We also summarize the novel coating excipients under development and provide our perspective on the possible use of nano-scale carriers to address the shortcomings of current coating technology. The scope of this review includes only materials that have been approved for biomedical applications or are generally recognized as safe (GRAS) for drug delivery.

  14. Drug-eluting stents in unprotected left main coronary artery disease.

    PubMed

    Bernelli, Chiara

    2014-11-01

    Though coronary bypass graft surgery (CABG) has traditionally been the cornerstone of therapy in patients with unprotected left main coronary artery (ULMCA) disease, recent evidence supports the use of percutaneous coronary intervention in appropriate patients. Indeed in patients with ULMCA disease, drug-eluting stents (DES) have shown similar incidence of hard end points, fewer periprocedural complications and lower stroke rates compared with CABG, though at the cost of increased revascularization with time. Furthermore, the availability of newer efficacious and safer DES as well as improvements in diagnostic tools, percutaneous techniques and, importantly, a better patient selection, allowed percutaneous coronary intervention a viable alternative to CABG of left main-patients with low disease complexity; however, even in this interventional era characterized by efficacious DES, patients with ULMCA disease remain a challenging high-risk population where outcomes strongly depend on clinical characteristics, anatomical disease complexity and extension and operator's experience. This review summarizes the role of DES in ULMCA disease patients.

  15. Characterization of polypropylene-polyethylene blends by temperature rising elution and crystallization analysis fractionation.

    PubMed

    Monrabal, Benjamín; del Hierro, Pilar

    2011-02-01

    The introduction of single-site catalysts in the polyolefins industry opens new routes to design resins with improved performance through multicatalyst-multireactor processes. Physical combination of various polyolefin types in a secondary extrusion process is also a common practice to achieve new products with improved properties. The new resins have complex structures, especially in terms of composition distribution, and their characterization is not always an easy task. Techniques like temperature rising elution fractionation (TREF) or crystallization analysis fractionation (CRYSTAF) are currently used to characterize the composition distribution of these resins. It has been shown that certain combinations of polyolefins may result in equivocal results if only TREF or CRYSTAF is used separately for their characterization.

  16. [A study on the appropriate fixation for the procedures for the better preservation of cellular antigenicity and morphology of the blood smear in immunocytochemistry: an improvement of the immunostain technique using alkaline-phosphatase (ALP) as a labeling enzyme].

    PubMed

    Aoki, J; Sasaki, N; Hino, N; Nanba, K

    1991-01-01

    The authors previously reported a new coloration method which utilized hexazotized newfuchsin as a coupler for the immuno-enzyme-cytochemistry. This procedure used alkaline-phosphatase (ALP) as the labeling enzyme. The insolubility of the reaction product to organic solvents made it possible to prepare permanent slides. However, this suffered from several drawbacks, due to the fixation procedures, in the preservation of better morphology and antigenicity of the cell. The present study was undertaken to overcome such problems by modifying the fixation procedure. The study utilized twenty monoclonal and polyclonal antibodies commonly used in immunohematological staining. Various fixative solutions and timing of fixation were evaluated. The results indicated that; 1) the best fixative solution was a mixture of buffered paraformaldehyde (PFA) and acetone (10 ml 40% PFA solution, 10 ml pH 6.6 0.02 M phosphate buffer, 20 ml distilled water, 60 ml acetone, with pH adjusted to 6.6-7.4 with HCl) and 2) the fixation should be performed just before the immunostain. The results further showed that unstained smear slides, when freshly air dried and stored in a desicator, could maintain various differentiation antigens (CD2, 3, 4, 5, 8, 10, 14, 15, 16, 19, 25, L26, HLA-DR) for at least 4 weeks without any change in the immuno-reactivity. Thus, we conclude that this improved fixation procedure is an optimum fixative and should be used in routine application of the immunostain method for blood smears.

  17. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  18. A chelating ion exchanger for gallium recovery from alkaline solution using 5-palmitoyl-8-hydroxyquinoline immobilized on a nonpolar adsorbent

    SciTech Connect

    Filik, H.; Apak, R.

    1998-06-01

    The recently developed method of gallium recovery from alkaline solution by alkanoyl oxine/chloroform extraction has been improved by immobilizing palmitoyl oxine on hydrophobic macroporous styrene-divinylbenzene copolymer Amberlite XAD-2 and passing the GA-containing alkaline solution of pH 13.5 through the synthesized resin column. The developed column showed reasonable efficiency after successive passages, and the selectivity of Ga over Al was very high, suggesting the utilizibility of the method in Ga recovery from the basic aluminate liquor of the Bayer process. The Ga capacity of the oxine-based resin was 3.94 {micro}mol/g. Two mg Ga retained on 10 g resin could be eluted with 25 mL of 2 N HCl at a throughput rate of 2 mL/min. The developed process has prospective use in Ga separation from Al in a strongly alkaline solution.

  19. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  20. Neoatherosclerosis after Drug-Eluting Stent Implantation: Roles and Mechanisms

    PubMed Central

    Cui, Yuanyuan; Shi, Dazhuo; Chen, Keji

    2016-01-01

    In-stent neoatherosclerosis (NA), characterized by a relatively thin fibrous cap and large volume of yellow-lipid accumulation after drug-eluting stents (DES) implantation, has attracted much attention owing to its close relationship with late complications, such as revascularization and late stent thrombosis (ST). Accumulating evidence has demonstrated that more than one-third of patients with first-generation DES present with NA. Even in the advent of second-generation DES, NA still occurs. It is indicated that endothelial dysfunction induced by DES plays a critical role in neoatherosclerotic development. Upregulation of reactive oxygen species (ROS) induced by DES implantation significantly affects endothelial cells healing and functioning, therefore rendering NA formation. In light of the role of ROS in suppression of endothelial healing, combining antioxidant therapies with stenting technology may facilitate reestablishing a functioning endothelium to improve clinical outcome for patients with stenting. PMID:27446509

  1. Are drug-eluting stents the future of SFA treatment?

    PubMed

    Bosiers, M; Deloose, K; Keirse, K; Verbist, J; Peeters, P

    2010-02-01

    Drug-eluting stent (DES) technology was developed to prevent early thrombosis and late luminal loss to potentially improve long-term patency rates. Although favorable DES results have recently become available with the Zilver PTX and STRIDES studies, the high price of DES is a major drawback for this technology to become the golden standard for peripheral endovascular therapy in de novo femoro-popliteal (FP) lesions. Nevertheless, DES has the potential to make the difference and to establish itself as an important treatment option in patients presenting with TASC C&D FP lesions who are at high-risk for surgery and for the treatment of in-stent restenosis, where until now, no valuable treatment option has proven to be beneficial.

  2. Development of Absorbable, Antibiotic-Eluting Sutures for Ophthalmic Surgery

    PubMed Central

    Kashiwabuchi, Fabiana; Parikh, Kunal S.; Omiadze, Revaz; Zhang, Shuming; Luo, Lixia; Patel, Himatkumar V.; Xu, Qingguo; Ensign, Laura M.; Mao, Hai-Quan; Hanes, Justin; McDonnell, Peter J.

    2017-01-01

    Purpose To develop and evaluate an antibiotic-eluting suture for ophthalmic surgery. Methods Wet electrospinning was used to manufacture sutures composed of poly(L-lactide), polyethylene glycol (PEG), and levofloxacin. Size, morphology, and mechanical strength were evaluated via scanning electron microscopy and tensile strength, respectively. In vitro drug release was quantified using high performance liquid chromatography. In vitro suture activity against Staphylococcus epidermidis was investigated through bacterial inhibition studies. Biocompatibility was determined via histological analysis of tissue sections surrounding sutures implanted into Sprague-Dawley rat corneas. Results Sutures manufactured via wet electrospinning were 45.1 ± 7.7 μm in diameter and 0.099 ± 0.007 newtons (N) in breaking strength. The antibiotic release profile demonstrated a burst followed by sustained release for greater than 60 days. Increasing PEG in the polymer formulation, from 1% to 4% by weight, improved drug release without negatively affecting tensile strength. Sutures maintained a bacterial zone of inhibition for at least 1 week in vitro and elicited an in vivo tissue reaction comparable to a nylon suture. Conclusions There is a need for local, postoperative delivery of antibiotics following ophthalmic procedures. Wet electrospinning provides a suitable platform for the development of sutures that meet size requirements for ophthalmic surgery and are capable of sustained drug release; however, tensile strength must be improved prior to clinical use. Translational Relevance No antibiotic-eluting suture exists for ophthalmic surgery. A biocompatible, high strength suture capable of sustained antibiotic release could prevent ocular infection and preclude compliance issues with topical eye drops. PMID:28083445

  3. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  4. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  5. Determinants of Protein Elution Rates from Preparative Ion-Exchange Adsorbents

    PubMed Central

    Angelo, James M.; Lenhoff, Abraham M.

    2016-01-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their uptake and elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and L-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents. PMID:26948763

  6. Determinants of protein elution rates from preparative ion-exchange adsorbents.

    PubMed

    Angelo, James M; Lenhoff, Abraham M

    2016-04-01

    The rate processes involved in elution in preparative chromatography can affect both peak resolution and hence selectivity as well as practical factors such as facility fit. These processes depend on the physical structure of the adsorbent particles, the amount of bound solute, the solution conditions for operation or some combination of these factors. Ion-exchange adsorbents modified with covalently attached or grafted polymer layers have become widely used in preparative chromatography. Their often easily accessible microstructures offer substantial binding capacities for biomolecules, but elution has sometimes been observed to be undesirably slow. In order to determine which physicochemical phenomena control elution behavior, commercially available cellulosic, dextran-grafted and unmodified agarose materials were characterized here by their elution profiles at various conditions, including different degrees of loading. Elution data were analyzed under the assumption of purely diffusion-limited control, including the role of pore structure properties such as porosity and tortuosity. In general, effective elution rates decreased with the reduction of accessible pore volume, but differences among different proteins indicated the roles of additional factors. Additional measurements and analysis, including the use of confocal laser scanning microscopy to observe elution within single chromatographic particles, indicated the importance of protein association within the particle during elution. The use of protein stabilizing agents was explored in systems presenting atypical elution behavior, and l-arginine and disaccharide excipients were shown to alleviate the effects for one protein, lysozyme, in the presence of sodium chloride. Incorporation of these excipients into eluent buffer gave rise to faster elution and significantly lower pool volumes in elution from polymer-modified adsorbents.

  7. Impact of normal-phase gradient elution in chiral chromatography: a novel, robust, efficient and rapid chiral screening procedure.

    PubMed

    de la Puente Luz, María; White, Craig T; Rivera-Sagredo, Alfonso; Reilly, John; Burton, Keith; Harvey, Georgina

    2003-01-03

    Novel normal-phase gradient systems have been employed for fast high-throughput chiral analyses of Discovery compounds in our research laboratories in Eli Lilly and Company. In this report, we describe an automated screening approach based on gradient elution, in order to achieve accurate enantiomeric excess determinations, and chiral separations when needed, in the shortest possible timeframe. Baseline resolution of enantiomers has been obtained for over 85% of the samples so tested. For the remaining cases, complete enantioseparation by isocratic optimisation is generally achieved in a single shot. This technique has been proven to be robust and is now standard operating procedure at our analytical research laboratories.

  8. Randomized clinical trial comparing abluminal biodegradable polymer sirolimus-eluting stents with durable polymer sirolimus-eluting stents

    PubMed Central

    Zhang, Haijun; Wang, Xiangfei; Deng, Wei; Wang, Shenguo; Ge, Junbo; Toft, Egon

    2016-01-01

    Abstract Background: The biodegradable polymer drug-eluting stents (DES) were developed to improve vascular healing. However, further data and longer-term follow-up are needed to confirm safety and efficacy of these stents. This randomized clinical trial aimed to compare safety and efficacy of 2 sirolimus-eluting stents (SES): Cordimax—a novel abluminal biodegradable polymer SES and Cypher Select—a durable polymer SES, at 9 months angiographic and 5-year clinical follow-up. Methods: We randomized 402 patients with coronary artery disease to percutaneous coronary intervention with Cordimax (n = 202) or Cypher select (n = 200). Angiographic follow-up was performed at 9 months after the index procedure and clinical follow-up annually up to 5 years. The primary endpoint was angiographic in-stent late luminal loss (LLL). Secondary endpoints included angiographic restenosis rate, target vessel revascularization (TVR), and major adverse cardiac events (MACEs; defined as cardiac death, myocardial infarction, or TVR) at 5-year follow-up. Results: Cordimax was noninferior to Cypher select for in-stent LLL (0.25 ± 0.47 vs 0.18 ± 0.49 mm; P = 0.587) and in-stent mean diameter stenosis (22.19 ± 12.21% vs 19.89 ± 10.79%; P = 0.064) at 9 months angiographic follow-up. The MACE rates were not different at 1 year (5.9% vs 4.0%, P = 0.376); however, MACE rates from 2 to 5 years were lower in the Cordimax group (6.8% vs 13.1%; P = 0.039). Conclusion: Abluminal biodegradable polymer SES is noninferior to durable polymer SES at 9-month angiographic and 1-year clinical follow-up. However, MACE rates from 2 to 5 years were less in the abluminal biodegradable polymer group. PMID:27661023

  9. Nobori-Biolimus-Eluting Stents versus Resolute Zotarolimus-Eluting Stents in Patients Undergoing Coronary Intervention: A Propensity Score Matching

    PubMed Central

    Tantawy, Ayman; Ahn, Chul-Min; Shin, Dong-Ho; Kim, Jung-Sun; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo

    2017-01-01

    Purpose To compare the 1-year outcomes of a durable polymer Zotarolimus-eluting stent (ZES) versus a biodegradable polymer Biolimus-eluting stent (BES) in patients undergoing percutaneous coronary intervention. Materials and Methods A total of 2083 patients from 2 different registries, 1125 treated with BES in NOBORI registry and 858 received ZES in CONSTANT registry were included in this study. Clinical outcomes were compared with the use of propensity score matching (PSM). The primary endpoint was a composite of major adverse cardiovascular and cerebrovascular events (MACCEs) including cardiac death, myocardial infarction, clinically driven target lesion revascularization and stroke. Secondary end points were individual components of MACCEs as well as the incidence of stent thrombosis at 1-year follow-up. Results After PSM, 699 matched pairs of patients (n=1398) showed no significant difference between BES and ZES in the risk of composite MACCEs at 1 year (2.6% vs. 1.7%; p=0.36). Cardiac death was not statistically different between groups (0.7% vs. 0.4%, p=0.73). Target lesion revascularization rate was also similar between BES and ZES (1.1% vs. 0.7%, p=0.579). Non-Q wave myocardial infarction, as well as target-vessel revascularization rate, was similar between the two groups (0.14% for BES and 0.72% for ZES). Both stent types were excellent with no cases of stent thrombosis and rate of Q wave myocardial infarction reported during the follow-up period. Conclusion In this cohort of patients treated with BES or ZES, the rate of MACCEs at 1 year was low and significantly not different between both groups. PMID:28120558

  10. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  11. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  12. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  13. Development of an alkaline fuel cell subsystem

    NASA Astrophysics Data System (ADS)

    1987-03-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  14. Remediation of Former Manufactured Gas Plant Tars Using Alkaline Flushing

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Rylander, S.; Birak, P. S.; Miller, C. T.

    2010-12-01

    The remediation of former manufactured gas plant (FMGP) tars in the subsurface is particularly difficult due to the wetting behavior and high viscosities of these dense non-aqueous liquids (DNAPLs). Alkaline flooding is a technique which has proven effective in improving the recovery of crude oils, which share some characteristics with FMGP tars. For this study, we measured the effect of NaOH solutions on interfacial tension and conducted column experiments to investigate the feasibility of applying this technique to FMGP tars. The pendant drop technique was used to measure interfacial tensions for solutions ranging from 0-1% NaOH. Column experiments were conducted by contaminating sands with tars recovered from a FMGP then flushing the columns with NaOH solutions. A final, 70% v/v ethanol cosolvent flush was conducted to investigate the effectiveness of a two-stage remediation approach. The mass removal of tar, as well as 26 individual PAHs, was measured, along with the aqueous phase mass flux of PAHs after each flushing stage. The interfacial tension was reduced from about 20 mN/m with pure water to a minimum of 0.05 mN/m at a concentration of 0.1% NaOH. In the column experiments, alkaline flushing resulted in a 50% reduction of the residual saturation. Aqueous phase PAH concentrations, however, were similar before and after the alkaline flushing stage. The combination of alkaline and cosolvent flushing resulted in an overall reduction of 95% of the total mass of the 16 EPA PAHs. Final aqueous phase concentrations were reduced significantly for lower molecular weight PAHs, but increased slightly for the higher molecular weight compounds, likely due to their increased mole fraction within the remaining tar. Additional work is being conducted to improve the effectiveness of the alkaline flushing through the use of surfactants and polymers.

  15. [Drug-eluting stents do they make the difference? ].

    PubMed

    Presbitero, P; Asioli, M

    2002-10-01

    The main limitation to further expansion of PTCI (percutaneous transluminal coronary intervention) is restenosis that occurs in 30% of the patients within 6-months after the procedure. Coronary stenting decreases the percent of restenosis due to arterial remodeling after PTCI but proliferation of smooth muscle cells due to vascular injury still remains. A mechanical approach the only treatment up to now (further balloon expansion, plaque removal with rotablator or directional atherectomy) failed. Because the restenotic process is due to a complex series of biological events which start with platelet aggregation, grow-factors and cytochine release, the use of antiflammatory, antithrombotic and antiproliferative drugs were attempted. Cortisone and heparin showed low benefits in clinical trial. New drugs (rapamycin, taxol, actinomycin D, tacrolimus, estradiol, dexamethazone) with antiproliferative and antiflammatory activities are under evaluation. They act as inhibitors of the cell migration and of the cell cicle progression with different specific molecular mechanisms. The first pilot study performed in 45 patients with sirolimus-eluting stents has shown a sustained suppression (25% in the fast release group and 23% in the slow release group) of neointimal formation at 12 months after procedure with absence of restenosis. The Ravel study, a randomized trial, has enrolled 238 patients treated with sirolimus coated stent vs a control group: the results confirm the previous data with a complete suppression of intimal hyperproliferation and restenosis at six months follow-up. The first 400 patients treated in the Sirius trial a similar study which will randomize 1100 pts show a low, but not a complete inhibition of the restenotic process probably due to a more complexity of the lesions treated in comparison to Ravel trial (9.2% of restenosis). Another very promising drug is taxol (paclitaxel). It is an antiproliferative and antinflammatory molecule tested in a series of

  16. Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies

    PubMed Central

    Hsu, Yung-Heng; Chen, Dave Wei-Chih; Tai, Chun-Der; Chou, Ying-Chao; Liu, Shih-Jung; Ueng, Steve Wen-Neng; Chan, Err-Cheng

    2014-01-01

    We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics. PMID:25246790

  17. Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies.

    PubMed

    Hsu, Yung-Heng; Chen, Dave Wei-Chih; Tai, Chun-Der; Chou, Ying-Chao; Liu, Shih-Jung; Ueng, Steve Wen-Neng; Chan, Err-Cheng

    2014-01-01

    We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics.

  18. Ultrasonic atomization and subsequent desolvation for monoclonal antibody (mAb) to the glycoprotein (GP) IIIa receptor into drug eluting stent.

    PubMed

    Wang, G X; Luo, L L; Yin, T Y; Li, Y; Jiang, T; Ruan, C G; Guidoin, R; Chen, Y P; Guzman, R

    2010-01-01

    An eluting-stent system with mAb dispersed in the PLLA (poly (L-lactic acid)) was validated in vitro. Specifically designed spray equipment based on the principle of ultrasonic atomization was used to produce a thin continuous PLLA (poly (L-lactic acid)) polymer coating incorporating monoclonal antibody (mAb). This PLLA coating was observed in light microscopy (LM) and scanning electron microscopy (SEM). The concentration of the monoclonal antibody (mAb) to the platelet glycoprotein (GP) IIIa receptor and the eluting rate were then measured by a radioisotope technique with (125)I-labelled GP IIIa mAb. An in vitro perfusion circuit was designed to evaluate the release rates at different velocities (10 or 20 ml min(-1)). The PLLA coating was thin and transparent, uniformly distributed on the surface of the stent. Three factors influenced its thickness: PLLA concentration, duration and gas pressure. The concentration of mAb was influenced by the duration of absorption and the concentration of the mAb solution; the maximum was 1662.23 + or - 38.83 ng. The eluting rate was fast for the first 2 h, then decreased slowly and attained 80% after 2 weeks. This ultrasonic atomization spray equipment and technological process to prepare protein eluting-stents were proved to be effective and reliable.

  19. Recent developments in drug-eluting coronary stents.

    PubMed

    Yildiz, Mustafa; Yildiz, Banu Sahin; Gursoy, Mustafa Ozan; Akin, Ibrahim

    2014-01-01

    The interventional treatment of coronary artery disease was introduced in 1970`s by Andreas Grüntzig. The initial treatment strategy with plain old balloon angioplasty (POBA) was associated with high restenosis rates. The introduction of coronary stents, especially drug-eluting stents (DES) in 2002 has improved the results by lowering the rate of in-stent restenosis from 20-40% in the era of bare-metal stent (BMS) to 6-8%. However, in 2006 with the observation of late stent thrombosis the reputations of DES have decreased. However, improvements in stent design especially antiproliferative agents, polymeric agents as well as stent platforms improved newer generation DES. In controlled trials as well as registries the use of second-generation DES as compared to bare-metal stents (BMS) was associated with better clinical and angiographic results. A further development of these stents with use of biodegradable polymers, polymer-free stents, and biodegradable stents on the basis of poly L-lactide (PLLA) or magnesium resulted in third-generation DES and has been evaluated in preclinical and first clinical trials. However, to date, there is a lack of data comparing these third-generation DES with first- and second-generatrion DES in a large scale.

  20. The ultimate band compression factor in gradient elution chromatography

    SciTech Connect

    Gritti, Fabrice; Guiochon, Georges A

    2008-01-01

    The equations predicting the ultimate time band compression factor, G = (t{sub R}-t{sub F})/t{sub p} in linear gradient elution chromatography, for an infinitely narrow injection (injection time t{sub p} {yields} 0) were derived for an ideal-model column (dispersionless chromatography, H = 0) assuming the Linear Solvent Strength Model for the retention behavior of the analyte. Numerical solutions can readily be obtained when the LSSM model does not apply. The results can be generalized to any retained organic modifier (k'{sub A}) in the mobile phase. The stronger the retention of the organic modifier, the more effective the band compression. Dispersion in real chromatographic column (H {ne} 0) affects the limits that can be reached in linear gradients but poorly in step gradients. Examples based on a conventional HETP of about 12 {micro}m using a 5 {micro}m particle packed column reveal that the best time compression factor that could be expected is twice the one predicted with an ideal column.

  1. CN-GELFrEE - Clear Native Gel-eluted Liquid Fraction Entrapment Electrophoresis.

    PubMed

    Melani, Rafael D; Seckler, Henrique S; Skinner, Owen S; Do Vale, Luis H F; Catherman, Adam D; Havugimana, Pierre C; Valle de Sousa, Marcelo; Domont, Gilberto B; Kelleher, Neil L; Compton, Philip D

    2016-02-29

    Protein complexes perform an array of crucial cellular functions. Elucidating their non-covalent interactions and dynamics is paramount for understanding the role of complexes in biological systems. While the direct characterization of biomolecular assemblies has become increasingly important in recent years, native fractionation techniques that are compatible with downstream analysis techniques, including mass spectrometry, are necessary to further expand these studies. Nevertheless, the field lacks a high-throughput, wide-range, high-recovery separation method for native protein assemblies. Here, we present clear native gel-eluted liquid fraction entrapment electrophoresis (CN-GELFrEE), which is a novel separation modality for non-covalent protein assemblies. CN-GELFrEE separation performance was demonstrated by fractionating complexes extracted from mouse heart. Fractions were collected over 2 hr and displayed discrete bands ranging from ~30 to 500 kDa. A consistent pattern of increasing molecular weight bandwidths was observed, each ranging ~100 kDa. Further, subsequent reanalysis of native fractions via SDS-PAGE showed molecular-weight shifts consistent with the denaturation of protein complexes. Therefore, CN-GELFrEE was proved to offer the ability to perform high-resolution and high-recovery native separations on protein complexes from a large molecular weight range, providing fractions that are compatible with downstream protein analyses.

  2. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  3. EVALUATION OF POTENTIAL ELUANTS FOR NON-ACID ELUTION OF CESIUM FROM SPHERICAL RESORCINOL-FORMALDEHYDE RESIN

    SciTech Connect

    Adu-Wusu, K.; Nash, C.; Pennebaker, F.

    2011-10-23

    Ion Exchange column loading and elution of cesium from spherical resorcinol-formaldehyde resin have been conducted for two potential non-acid eluants -(NH{sub 4}){sub 2}CO{sub 3} and CH{sub 3}COONH{sub 4}. The results revealed encouraging cesium elution performance. 100% elution was achieved in at most 22 hours ({approx}28 bed volumes) of elution. Elution performance was fairly high at 6 hours ({approx}8 bed volumes) of elution for some of the eluants and also practically comparable to the benchmark acid eluant (HNO{sub 3}). Hence, it is quite possible 100% percent elution will be closer to the 6th hour than the 22nd hour. Elution is generally enhanced by increasing the concentration and pH of the eluants, and combining the eluants.

  4. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  5. Drug-eluting versus bare-metal coronary stents: where are we now?

    PubMed

    Amoroso, Nicholas S; Bangalore, Sripal

    2012-11-01

    Drug-eluting stents have dramatically reduced the risk of restenosis, but concerns of an increased risk of stent thrombosis have provided uncertainty about their use. Recent studies have continued to show improved procedural and clinical outcomes with drug-eluting stents both in the setting of acute coronary syndromes and stable coronary artery disease. Newer generation drug-eluting stents (especially everolimus-eluting stents) have been shown to be not only efficacious but also safe with reduced risk of stent thrombosis when compared with bare-metal stents, potentially changing the benchmark for stent safety from bare-metal stents to everolimus-eluting stents. While much progress is being made in the development of bioabsorbable polymer stents, nonpolymer stents and bioabsorbable stent technology, it remains to be seen whether these stents will have superior safety and efficacy outcomes compared with the already much improved rates of revascularization and stent thrombosis seen with newer generation stents (everolimus-eluting stents and resolute zotarolimus-eluting stents).

  6. Blood compatibility of a ferulic acid (FA)-eluting PHBHHx system for biodegradable magnesium stent application.

    PubMed

    Zhang, Erlin; Shen, Feng

    2015-01-01

    Magnesium stent has shown potential application as a new biodegradable stent. However, the fast degradation of magnesium stent limited its clinic application. Recently, a biodegradable and drug-eluting coating system was designed to prevent magnesium from fast degradation by adding ferulic acid (FA) in poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) by a physical method. In vitro study has demonstrated that the FA-eluting system exhibited strong promotion to the endothelialization, which might be a choice for the stent application. In this paper, the hemolysis rate, the plasma recalcification time (PRT), the plasma prothrombin time (PT) and the kinetic clotting time of the FA-eluting films were investigated and the platelet adhesion was observed in order to assess the blood compatibility of the FA-eluting PHBHHx films in comparison with PHBHHx film. The results have shown that the addition of FA had no influence on the hemolysis, but prolonged PRT, PT and the clotting time and reduced the platelet adhesion and activation, displaying that the FA-eluting PHBHHx exhibited better blood compatibility than PHBHHx. In addition, the effect of alkali treatment on the blood compatibility of FA-eluting PHBHHx was also studied. It was indicated that alkali treatment had no effect on the hemolysis and the coagulation time, but enhanced slightly the platelet adhesion. All these demonstrated that FA-eluting PHBHHx film had good blood compatibility and might be a candidate surface coating for the biodegradable magnesium stent.

  7. In vitro elution characteristics of antibiotic laden BoneSource™, hydroxyapatite bone cement.

    PubMed

    Hernandez-Soria, Alexia; Yang, Xu; Grosso, Matthew J; Reinhart, Janine; Ricciardi, Benjamin F; Bostrom, Mathias

    2013-01-01

    A calcium phosphate - hydroxyapatite (HA) bone cement was loaded with varying concentrations of tobramycin and vancomycin and the elution properties of these antibiotics were evaluated. Nine groups of antibiotic loaded cement cylinders (N = 6 in each group) were prepared and placed in saline for 28 days. Elution rates of tobramycin and vancomycin from the HA cement were evaluated at high, medium, and low doses of incorporated antibiotic. Tobramycin elution rates did not vary according to dose (0.36, 0.18, and 0.09g). Vancomycin elution rates were also not significantly affected by dose (0.1 , 0.05 , and 0.025 g). The combination of tobramycin and vancomycin increased the elution rate of vancomycin for the medium and low dose of tobramycin. The dose of tobramycin did not affect its elution rate from the cement in the combined groups. Importantly, the concentration of antibiotic eluent stayed above the minimum inhibitory concentration for the entire 28 days for all groups except the medium and low dose of vancomycin alone. Overall, elution rates of both tobramycin and vancomycin in the calcium phosphate-HA cement were comparable to those from polymethylmethacryltate beads in vitro.

  8. Spatial Patterns of Alkaline Phosphatase Expression within Bacterial Colonies and Biofilms in Response to Phosphate Starvation

    PubMed Central

    Huang, Ching-Tsan; Xu, Karen D.; McFeters, Gordon A.; Stewart, Philip S.

    1998-01-01

    The expression of alkaline phosphatase in response to phosphate starvation was shown to be spatially and temporally heterogeneous in bacterial biofilms and colonies. A commercial alkaline phosphatase substrate that generates a fluorescent, insoluble product was used in conjunction with frozen sectioning techniques to visualize spatial patterns of enzyme expression in both Klebsiella pneumoniae and Pseudomonas aeruginosa biofilms. Some of the expression patterns observed revealed alkaline phosphatase activity at the boundary of the biofilm opposite the place where the staining substrate was delivered, indicating that the enzyme substrate penetrated the biofilm fully. Alkaline phosphatase accumulated linearly with time in K. pneumoniae colonies transferred from high-phosphate medium to low-phosphate medium up to specific activities of 50 μmol per min per mg of protein after 24 h. In K. pneumoniae biofilms and colonies, alkaline phosphatase was initially expressed in the region of the biofilm immediately adjacent to the carbon and energy source (glucose). In time, the region of alkaline phosphatase expression expanded inward until it spanned most, but not all, of the biofilm or colony depth. In contrast, expression of alkaline phosphatase in P. aeruginosa biofilms occurred in a thin, sharply delineated band at the biofilm-bulk fluid interface. In this case, the band of activity never occupied more than approximately one-sixth of the biofilm. These results are consistent with the working hypothesis that alkaline phosphatase expression patterns are primarily controlled by the local availability of either the carbon and energy source or the electron acceptor. PMID:9546188

  9. The Nickel(111)/Alkaline Electrolyte Interface

    NASA Technical Reports Server (NTRS)

    Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.

    1991-01-01

    The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.

  10. Toxicity of Irinotecan-Eluting Beads in the Treatment of Hepatic Malignancies: Results of a Multi-Institutional Registry

    SciTech Connect

    Martin, R. C. G.; Howard, J.; Tomalty, D.; Robbins, K.; Padr, R.; Bosnjakovic, P. M.; Tatum, Cliff

    2010-10-15

    PurposeTo evaluate the predictors of toxicity of drug-eluting beads loaded with irinotecan (DEBIRI) in the treatment of hepatic malignancies.Materials and MethodsA total of 330 patients were enrolled in a prospective, open-label, multicenter, multinational, single-arm study administering two types of drug-eluting beads (DEBIRI and drug-eluting beads loaded with doxorubicin). Complications were graded by Cancer Therapy Evaluation Program's Common Terminology Criteria for Adverse Events (CTCAE) version 3.0. All events requiring additional physician treatment or requiring extended hospital stay or readmission within 30 days were included.ResultsA total of 109 patients received 187 DEBIRI treatments (range 1 to 5 per patient). The most common histology was metastatic colorectal cancer in 76% of patients, cholangiocarcinoma in 7% of patients, and other metastatic disease in 17% of patients. There were 35 patients (19%) with irinotecan treatments who sustained 158 treatment-related adverse events, with the median CTCAE event grade being CTCAE grade 2 (range 1 to 5). The most common adverse events were postembolic symptoms (42%). Multivariate analysis identified pretreatment and treatment-related risk factors as follows: lack of pretreatment with hepatic arterial lidocaine (p = 0.005), {>=}3 treatments (p = 0.05), achievement of complete stasis (p = 0.04), treatment with >100 mg DEBIRI in 1 treatment (p = 0.03), and bilirubin >2.0 {mu}g/dl with >50% liver involvement (p = 0.05). These factors were predictive of adverse events and significantly greater hospital length of stay.ConclusionsDEBIRI is safe when appropriate technique and treatment are used. Adverse events can be predicted based on pretreatment- and treatment-related factors, and their occurrence can become part of the informed consent process. Continued standardization of this treatment will lead to fewer adverse events and improved patient quality of life.

  11. Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS.

    PubMed

    Ščančar, Janez; Berlinger, Balázs; Thomassen, Yngvar; Milačič, Radmila

    2015-09-01

    A novel analytical procedure was developed for the simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate by anion-exchange high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC-ICP-MS). Linear gradient elution from 100% water to 100% 0.7 M NaCl was applied for chromatographic separation of metal species. In standard aqueous solution at neutral pH molybdate, tungstate and vanadate exist in several aqueous species, while chromate is present as a single CrO4(2-) species. Consequently, only chromate can be separated from this solution in a sharp chromatographic peak. For obtaining sharp chromatographic peaks for molybdate, tungstate and vanadate, the pH of aqueous standard solutions was raised to 12. At highly alkaline conditions single CrO4(2-), MoO4(2-) and WO4(2-) are present and were eluted in sharp chromatographic peaks, while VO4(3-) species, which predominates at pH 12 was eluted in slightly broaden peak. In a mixture of aqueous standard solutions (pH 12) chromate, molybdate, tungstate and vanadate were eluted at retention times from 380 to 420 s, 320 to 370 s, 300 to 350 s and 240 to 360 s, respectively. Eluted species were simultaneously detected on-line by ICP-MS recording m/z 52, 95, 182 and 51. The developed procedure was successfully applied to the analysis of leachable concentrations of chromate, molybdate, tungstate and vanadate in alkaline extracts (2% NaOH+3% Na2CO3) of manual metal arc (MMA) welding fumes loaded on filters. Good repeatability and reproducibility of measurement (RSD±3.0%) for the investigated species were obtained in both aqueous standard solutions (pH 12) and in alkaline extracts of welding fumes. Low limits of detection (LODs) were found for chromate (0.02 ng Cr mL(-1)), molybdate (0.1 ng Mo mL(-1)), tungstate (0.1 ng W mL(-1)) and vanadate (0.2 ng V mL(-1)). The accuracy of analytical procedure for the determination of chromate was checked by analysis of

  12. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  13. Drug eluting biliary stents to decrease stent failure rates: A review of the literature

    PubMed Central

    Shatzel, Joseph; Kim, Jisoo; Sampath, Kartik; Syed, Sharjeel; Saad, Jennifer; Hussain, Zilla H; Mody, Kabir; Pipas, J Marc; Gordon, Stuart; Gardner, Timothy; Rothstein, Richard I

    2016-01-01

    Biliary stenting is clinically effective in relieving both malignant and non-malignant obstructions. However, there are high failure rates associated with tumor ingrowth and epithelial overgrowth as well as internally from biofilm development and subsequent clogging. Within the last decade, the use of prophylactic drug eluting stents as a means to reduce stent failure has been investigated. In this review we provide an overview of the current research on drug eluting biliary stents. While there is limited human trial data regarding the clinical benefit of drug eluting biliary stents in preventing stent obstruction, recent research suggests promise regarding their safety and potential efficacy. PMID:26839648

  14. Gradient elution in counter-current chromatography: a new layout for an old path.

    PubMed

    Ignatova, Svetlana; Sumner, Neil; Colclough, Nicola; Sutherland, Ian

    2011-09-09

    Gradient elution in CCC is a powerful tool, which needs further systematic development to become robust and easy to use. The first attempt to build a correlation between gradient elution profile and distribution ratio (K(D)) values for model mixtures containing typical representatives of pharmaceutical compounds is presented in this paper. The three step estimation of the solvent system composition of a heptane-ethyl acetate-methanol-water (HEMWat) series is described. The estimation is based on simple measurements of initial and final stationary phase retention for gradient elution run, calculating gradient distribution ratio and correlating it with static K(D) against HEMWat number.

  15. Intraoperative drug-eluting stent thrombosis in a patient undergoing robotic prostatectomy.

    PubMed

    Sharma, Aarti; Berkeley, Abiona

    2009-11-01

    Insertion of drug-eluting stents is one of the strategies for treating patients with coronary artery disease. These patients can be a perioperative challenge in management as they need to be maintained on antiplatelet therapy to prevent stent thrombosis, which puts them at an increased risk for surgical bleeding. Recently revised guidelines on elective surgery following insertion of a drug-eluting stent recommend dual antiplatelet therapy for a period of twelve months. The management of a patient who presented for surgery more than two years after the insertion of a drug-eluting stent, and who developed in-stent thrombosis intraoperatively, is presented.

  16. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  17. Acid and alkaline phosphatases of Capnocytophaga species. II. Isolation, purification, and characterization of the enzymes from Capnocytophaga ochracea.

    PubMed

    Poirier, T P; Holt, S C

    1983-10-01

    Capnocytophaga ochracea acid (AcP; EC 3.1.3.2) and alkaline (AlP; EC 3.1.3.1) phosphatase was isolated by Ribi cell disruption and purified by sodium dodecyl sulphate - polyacrylamide gel electrophoresis (SDS-PAGE.) Both phosphatases eluted from Sephadex G-150 consistent with molecular weights (migration) of 140 000 and 110 000. SDS-PAGE demonstrated a 72 000 and 55 000 subunit molecular migration for AcP and AlP, respectively. The kinetics of activity of purified AcP and AlP on p-nitrophenol phosphate and phosphoseryl residues of the phosphoproteins are presented.

  18. Determination of adsorption isotherm parameters for minor whey proteins by gradient elution preparative liquid chromatography.

    PubMed

    Faraji, Naeimeh; Zhang, Yan; Ray, Ajay K

    2015-09-18

    Ion-Exchange Chromatography (IEC) techniques have been extensively investigated in protein purification processes, due to the more selective and milder separation steps. To date, existing studies of minor whey proteins fractionation in IEC have primarily been conducted as batch uptake studies, which require more experimental search space, time and materials. In this work, the selected resin's (SP Sepharose FF) equilibrium and dynamic binding capacity were first investigated. Next, adsorption of the pure binary mixture of lactoperoxidase and lactoferrin was studied to calibrate steric mass action (SMA) model using a simplified approach with data from single column experiments. The calibrated model was then verified by performing factorial-design based experiments for various process operating conditions assessing process performance on a larger bed height column. The model predicted results demonstrated a realistic agreement with the experiments providing reproducible column elution profile and reduced experimental work. Finally, whey protein isolate was used to evaluate model parameters in real conditions. Results obtained herein are suitable for future large scale applications.

  19. Strict vs lenient criteria for elution testing: comparison of yields between two tertiary care medical centers.

    PubMed

    Veeraputhiran, Muthu K; Pesek, Gina A; Blackall, Douglas P

    2011-09-01

    In this study, 2 patient populations, using different elution strategies, were compared to evaluate eluate yields under more and less restrictive conditions. An informative eluate was defined as one in which an antibody that could be clinically significant was detected in the eluate but was not detectable in the plasma at the time of elution testing. The results for 160 direct antiglobulin tests (DATs) and 160 elution studies were evaluated in 71 patients at the adult hospital (lenient criteria). The results for 372 DATs and 43 elution studies were evaluated in 123 patients at the pediatric hospital (strict criteria). The yields from these eluates were 0.6% at the adult hospital (C antibody) vs 2.3% at the pediatric hospital (Jk(a) antibody). Thus, the yield of information from eluate testing is low regardless of the stringency applied to testing. However, considering the cost and time required for testing, more stringent criteria are advised.

  20. Shotgun electroelution: a proteomic tool for simultaneous sample elution from whole SDS-polyacrylamide gel slabs.

    PubMed

    Antal, József; Bányász, Borbála; Buzás, Zsuzsanna

    2007-02-01

    A high-throughput device has been constructed which allows parallel electroelution of separated SDS-protein bands directly from intact unsectioned polyacrylamide gel slabs as well as single electroelution of certain protein spots into a 384-well standard flat-bottom multiwell plate. The prototype provides complete, quick elution for proteomics from 1-D or from 2-D gels without gel sectioning. Since the elution chamber matrix requires no assembly, sample handling can be easily carried out by existing robotic workstations. The current design is a good candidate for automation of spot elution since there are no moving liquid containing components in the apparatus. Eight SDS-proteins were eluted in test runs and an average 70% sample recovery was achieved by re-electrophoresis of the electro-eluates.

  1. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  2. Late stent thrombosis after implantation of a sirolimus-eluting stent.

    PubMed

    Kerner, Arthur; Gruberg, Luis; Kapeliovich, Michael; Grenadier, Ehud

    2003-12-01

    Late stent thrombosis in the era of routine high-pressure stent deployment and combined antiplatelet therapy with thienopyridines and aspirin has become a rare but feared complication. We describe a patient with acute myocardial infarction due to late stent thrombosis 6 weeks after deployment of a sirolimus-eluting stent and 2 weeks after the discontinuation of clopidogrel. This is the first report of late thrombosis of a sirolimus-eluting stent.

  3. Modeling of salt and pH gradient elution in ion-exchange chromatography.

    PubMed

    Schmidt, Michael; Hafner, Mathias; Frech, Christian

    2014-01-01

    The separation of proteins by internally and externally generated pH gradients in chromatofocusing on ion-exchange columns is a well-established analytical method with a large number of applications. In this work, a stoichiometric displacement model was used to describe the retention behavior of lysozyme on SP Sepharose FF and a monoclonal antibody on Fractogel SO3 (S) in linear salt and pH gradient elution. The pH dependence of the binding charge B in the linear gradient elution model is introduced using a protein net charge model, while the pH dependence of the equilibrium constant is based on a thermodynamic approach. The model parameter and pH dependences are calculated from linear salt gradient elutions at different pH values as well as from linear pH gradient elutions at different fixed salt concentrations. The application of the model for the well-characterized protein lysozyme resulted in almost identical model parameters based on either linear salt or pH gradient elution data. For the antibody, only the approach based on linear pH gradients is feasible because of the limited pH range useful for salt gradient elution. The application of the model for the separation of an acid variant of the antibody from the major monomeric form is discussed.

  4. Size and composition of synthetic calcium sulfate beads influence dissolution and elution rates in vitro.

    PubMed

    Roberts, Randy; McConoughey, Stephen J; Calhoun, Jason H

    2014-05-01

    Treatments of osteomyelitis lag behind bacterial resistance to antibiotics. We tested different-sized calcium sulfate beads and their ability to elute multiple antibiotics in vitro as a possible method to improve the therapeutic delivery in patients. Two sizes of calcium sulfate beads (4.8 and 3.0 mm diameter) that contained vancomycin, tobramycin, or both were dissolved in phosphate-buffered saline, and the rate of dissolution by weight and antibiotic elution by the disc diffusion assay and high-pressure liquid chromatography were measured. The 4.8 mm beads showed significantly higher dissolution rates relative to the 3.0 mm beads (2.3 mg/day vs. 1.3 mg/day). While the vancomycin-loaded 4.8 mm beads eluted for a longer time relative to the 3.0 mm beads (20 days vs. 10 days), the smaller beads had threefold higher elution for the first 2 days, before dropping to near zero elution by day 4. The presence of tobramycin extended the elution of the vancomycin to day 40, which closely matches the recommended 6 weeks to treat orthopedic staphylococcus infections. These data suggest that size and content of the bead are variables that could affect their clinical success, and both could be exploited to tailor treatments of specific infections and injuries.

  5. Improved blood compatibility of rapamycin-eluting stent by incorporating curcumin.

    PubMed

    Pan, C J; Tang, J J; Shao, Z Y; Wang, J; Huang, N

    2007-09-01

    This paper dealt with improving the blood compatibility of the rapamycin-eluting stent by incorporating curcumin. The rapamycin- and rapamycin/curcumin-loaded PLGA (poly(d,l-lactic acid-co-glycolic acid)) coatings were fabricated onto the surface of the stainless steel stents using an ultrasonic atomization spray method. The structure of the coating films was characterized by Fourier transform infrared spectroscopy (FTIR). The optical microscopy and scanning electron microscopy (SEM) images of the drug-eluting stents indicated that the surface of all drug-eluting stents was very smooth and uniform, and there were not webbings and "bridges" between struts. There were not any cracks and delaminations on stent surface after expanded by the angioplasty balloon. The in vitro platelet adhesion and activation were investigated by static platelet adhesion test and GMP140 (P-selection), respectively. The clotting time was examined by activated partially prothromplastin time (APTT) test. The fibrinogen adsorption on the drug-loaded PLGA films was evaluated by enzyme-linked immunosorbent assay (ELISA). All obtained data showed that incorporating curcumin in rapamycin-loaded PLGA coating can significantly decrease platelet adhesion and activation, prolong APTT clotting time as well as decrease the fibrinogen adsorption. All results indicated that incorporating curcumin in rapamycin-eluting coating obviously improve the blood compatibility of rapamycin-eluting stents. It was suggested that it may be possible to develop a drug-eluting stent which had the characteristics of not only good anti-proliferation but also improved anticoagulation.

  6. Nonspecific native elution of proteins and mumps virus in immunoaffinity chromatography.

    PubMed

    Brgles, Marija; Sviben, Dora; Forčić, Dubravko; Halassy, Beata

    2016-05-20

    Immunoaffinity chromatography, based on the antigen-antibody recognition, enables specific purification of any antigen (protein, virus) by its antibody. The problem with immunoaffinity chromatography is the harsh elution conditions required for disrupting strong antigen-antibody interactions, such as low pH buffers, which are often deleterious for the immobilized protein and the protein to be isolated since they can also disrupt the intramolecular forces. Therefore, immunoaffinity chromatography can only be partially used for protein and virus purification. Here we report on a nonspecific elution in immunoaffinity chromatography using native conditions by elution with amino acid solution at physiological pH for which we suppose possible competing mechanism of action. Elution potential of various amino acid solutions was tested using immunoaffinity columns specific for ovalbumin and mumps virus, and protein G affinity column. Results have shown that the most successful elution solutions were those containing imidazole and arginine of high molarity. Imidazole represents aromatic residues readily found at the antigen-antibody interaction surface and arginine is most frequently found on protein surface in general. Therefore, results on their eluting power in immunoaffinity chromatography, which increases with increasing molarity, are in line with the competing mechanism of action. Virus immunoaffinity chromatography resulted in removal on nonviable virus particles, which is important for research and biotechnology purposes. In addition, amino acids are proven stabilizers for proteins and viruses making approach presented in this work a very convenient purification method.

  7. Microscopic examination of volcanic rocks subjected to alkaline leaching

    NASA Astrophysics Data System (ADS)

    Seidlova, Z.; Prikryl, R.; Sachlova, S.

    2012-04-01

    Volcanic rocks supply one third of crushed stone in the Czech Republic. Some of these rocks significantly contribute to concrete damage by alkali silica reaction (ASR) as has been recognised by previous studies in several concrete constructions (dams, highways, bridges). In recent study, volcanic rocks (basalts, spilites, melaphyres, phonolites, rhyolites, diabases) were subjected to several test procedures aiming to evaluate their ASR potential. The experimental study employed accelerated mortar bar test (following the standard ASTM C1260), chemical test (following the standard ASTM C289), and microscopic techniques (polarising microscopy, scanning electron microscopy combined with energy dispersive analysis). The interaction of cement paste and aggregate under high alkaline solution and increasing temperature conditions takes place during the accelerated mortar bar test. Microscopic techniques applied on mortar bar specimens enabled identification of ASR products (alkali-silica gels). Chemical test quantified ASR potential based on the amount of Si4+ leached into the solution within 24 hours testing period and contemporaneous reduction of alkalinity. Volcanic particles leached in alkaline solution were subjected to microscopic analysis with the aim to find minerals (phases) affecting their ASR potential. ASR of volcanic rocks was found highly variable connected to the mineral composition. The highest degree of ASR was found in connection with melaphyres, rhyolites and one sample of spilite. The main factor influencing ASR of investigated aggregates is regarded in the presence of SiO2-rich phases (e.g. SiO2-rich glass).

  8. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  9. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  10. Repeated probing of Southwestern blots using alkaline phosphatase stripping.

    PubMed

    Jia, Yinshan; Jiang, Daifeng; Jarrett, Harry W

    2010-11-05

    Southwestern blotting is when a DNA sequence is used to probe DNA-binding proteins on an electrophoretic gel blot. It would be highly desirable to be able to probe a blot repeatedly with different DNA sequences. Alkaline phosphatase can remove 5'-phosphoryl groups from DNA and radiolabeled 5'-(32)P-DNA probes are commonly used in Southwestern blotting. Here is shown that once probed, the radioisotope signal on the blot can be effectively removed by brief digestion with alkaline phosphatase, and the blot can then be repeatedly probed at least six times with different DNA probes. This exceeds the repetitions possible with another commonly used method using SDS. The technique can be used with either one-dimensional or multi-dimensional Southwestern blots and does not have a large effect on the phosphorylation state of the blotted proteins. An alternative method using T4 polynucleotide kinase stripping is also introduced but was less well characterized.

  11. Biological impacts of enhanced alkalinity in Carcinus maenas.

    PubMed

    Cripps, Gemma; Widdicombe, Stephen; Spicer, John I; Findlay, Helen S

    2013-06-15

    Further steps are needed to establish feasible alleviation strategies that are able to reduce the impacts of ocean acidification, whilst ensuring minimal biological side-effects in the process. Whilst there is a growing body of literature on the biological impacts of many other carbon dioxide reduction techniques, seemingly little is known about enhanced alkalinity. For this reason, we investigated the potential physiological impacts of using chemical sequestration as an alleviation strategy. In a controlled experiment, Carcinus maenas were acutely exposed to concentrations of Ca(OH)2 that would be required to reverse the decline in ocean surface pH and return it to pre-industrial levels. Acute exposure significantly affected all individuals' acid-base balance resulting in slight respiratory alkalosis and hyperkalemia, which was strongest in mature females. Although the trigger for both of these responses is currently unclear, this study has shown that alkalinity addition does alter acid-base balance in this comparatively robust crustacean species.

  12. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.

    PubMed

    Jeong, Lena N; Sajulga, Ray; Forte, Steven G; Stoll, Dwight R; Rutan, Sarah C

    2016-07-29

    High-performance liquid chromatography (HPLC) simulators are effective method development tools. The goal of the present work was to design and implement a simple algorithm for simulation of liquid chromatographic separations that allows for characterization of the effect of injection solvent mismatch and injection solvent volume overload. The simulations yield full analyte profiles during solute migration and at elution, which enable a thorough physical understanding of the effects of method variables on chromatographic performance. The Craig counter-current distribution model (the plate model) is used as the basis for simulation, where a local retention factor is assigned for each spatial and temporal element within the simulation. The algorithm, which is an adaptation of an approach originally described by Czok and Guiochon (Ref. [10]), is sufficiently flexible to allow the use of either linear (e.g., Linear Solvent Strength Theory) or non-linear models of solute retention (e.g., Neue-Kuss (Ref. [36])). In this study, both types of models were used, one for simulating separations of a homologous series of alkylbenzenes, and the other for separations of selected amphetamines. The simulation program was validated first by comparison of simulated retention times and peak widths for five amphetamines to predictions obtained using linear solvent strength (LSS) theory, and to results from experimental separations of these compounds. The simulated retention times for the amphetamines agreed within 0.02% and 2.5% compared to theory and experiment, respectively. Secondly, the program was evaluated for simulating the case where there is a compositional mismatch between the mobile phase at the column inlet and the injection solvent (i.e., the sample matrix). This work involved alkylbenzenes, and retention time and peak width predictions from simulations were within 1.5 and 6.0% of experimental values, respectively, even without correction for extra-column dispersion. The

  13. Elution strategies for reversed-phase high-performance liquid chromatography analysis of sucrose alkanoate regioisomers with charged aerosol detection.

    PubMed

    Lie, Aleksander; Pedersen, Lars Haastrup

    2013-10-11

    A broad range of elution strategies for RP-HPLC analysis of sucrose alkanoate regioisomers with CAD was systematically evaluated. The HPLC analyses were investigated using design-of-experiments methodology and analysed by analysis of variance (ANOVA) and regression modelling. Isocratic elutions, isocratic elutions with increased flow, and gradient elutions with step-down profiles and step-up profiles were performed and the chromatographic parameters of the different elution strategies were described by suitable variables. Based on peak resolutions general resolution deviation for multiple peaks (RDm) was developed for sample-independent evaluation of separation of any number of peaks in chromatographic analysis. Isocratic elutions of sucrose alkanoates showed similar relationships between eluent acetonitrile concentration and retention time for all regioisomers of sucrose caprate and sucrose laurate, as confirmed by evaluation of the curvatures using approximate second derivatives and Kendall rank correlation coefficients. Regression modelling and statistical analysis showed that acetonitrile concentration and flow rate were highly significant for both average adjusted retention time and RDm for sucrose laurate. For both responses the effect of changes in acetonitrile concentration was larger than the effect of changes in flow rate, over the ranges studied. Regression modelling of the step-down gradient profiles for the sucrose alkanoates showed that the eluent acetonitrile concentrations were the overall most significant variables for retention time and separation. The models for average adjusted retention time of sucrose caprate and sucrose laurate showed only a few differences in the significance levels of terms, while the models for RDm showed larger differences between the sucrose alkanoates, in both the number of terms and their significance. Efficiency evaluation of elution strategies, in terms of RDm and analysis time, showed that the best results were

  14. Paclitaxel Drug-eluting Tracheal Stent Could Reduce Granulation Tissue Formation in a Canine Model

    PubMed Central

    Wang, Ting; Zhang, Jie; Wang, Juan; Pei, Ying-Hua; Qiu, Xiao-Jian; Wang, Yu-Ling

    2016-01-01

    Background: Currently available silicone and metallic stents for tracheal stenosis are associated with many problems. Granulation proliferation is one of the main complications. The present study aimed to evaluate the efficacy of paclitaxel drug-eluting tracheal stent in reducing granulation tissue formation in a canine model, as well as the pharmacokinetic features and safety profiles of the coated drug. Methods: Eight beagles were randomly divided into a control group (bare-metal stent group, n = 4) and an experimental group (paclitaxel-eluting stent group, n = 4). The observation period was 5 months. One beagle in both groups was sacrificed at the end of the 1st and 3rd months, respectively. The last two beagles in both groups were sacrificed at the end of 5th month. The proliferation of granulation tissue and changes in tracheal mucosa were compared between the two groups. Blood routine and liver and kidney function were monitored to evaluate the safety of the paclitaxel-eluting stent. The elution method and high-performance liquid chromatography were used to characterize the rate of in vivo release of paclitaxel from the stent. Results: Compared with the control group, the proliferation of granulation tissue in the experimental group was significantly reduced. The drug release of paclitaxel-eluting stent was the fastest in the 1st month after implantation (up to 70.9%). Then, the release slowed down gradually. By the 5th month, the release reached up to 98.5%. During the observation period, a high concentration of the drug in the trachea (in the stented and adjacent unstented areas) and lung tissue was not noted, and the blood test showed no side effect. Conclusions: The paclitaxel-eluting stent could safely reduce the granulation tissue formation after stent implantation in vivo, suggesting that the paclitaxel-eluting tracheal stent might be considered for potential use in humans in the future. PMID:27824004

  15. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite

    PubMed Central

    Jakubowska, Katarzyna; Chlubek, Dariusz; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution. PMID:27366742

  16. The Influence of Irradiation Time and Layer Thickness on Elution of Triethylene Glycol Dimethacrylate from SDR® Bulk-Fill Composite.

    PubMed

    Łagocka, Ryta; Jakubowska, Katarzyna; Chlubek, Dariusz; Buczkowska-Radlińska, Jadwiga

    2016-01-01

    Objective. This study aimed to evaluate triethylene glycol dimethacrylate (TEGDMA) elution from SDR bulk-fill composite. Methods. Three groups of samples were prepared, including samples polymerized in a 4 mm layer for 20 s, in a 4 mm layer for 40 s, and in a 2 mm layer for 20 s. Elution of TEGDMA into 100% ethanol, a 75% ethanol/water solution, and distilled water was studied. The TEGDMA concentration was measured using HPLC. Results. The TEGDMA concentration decreased in the following order: 100% ethanol > 75% ethanol > distilled water. Doubling the energy delivered to the 4 mm thick sample caused decrease (p < 0.05) in TEGDMA elution to distilled water. In ethanol solutions, the energy increase had no influence on TEGDMA elution. Decreasing the sample thickness resulted in decrease (p < 0.05) in TEGDMA elution for all the solutions. Conclusions. The concentration of eluted TEGDMA and the elution time were both strongly affected by the hydrophobicity of the solvent. Doubling the energy delivered to the 4 mm thick sample did not decrease the elution of TEGDMA but did decrease the amount of the monomer available to less aggressive solvents. Elution of TEGDMA was also correlated with the exposed sample surface area. Clinical Relevance. Decreasing the SDR layer thickness decreases TEGDMA elution.

  17. Precision-controlled elution of a 82Sr/82Rb generator for cardiac perfusion imaging with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Klein, R.; Adler, A.; Beanlands, R. S.; de Kemp, R. A.

    2007-02-01

    A rubidium-82 (82Rb) elution system is described for use with positron emission tomography. Due to the short half-life of 82Rb (76 s), the system physics must be modelled precisely to account for transport delay and the associated activity decay and dispersion. Saline flow is switched between a 82Sr/82Rb generator and a bypass line to achieve a constant-activity elution of 82Rb. Pulse width modulation (PWM) of a solenoid valve is compared to simple threshold control as a means to simulate a proportional valve. A predictive-corrective control (PCC) algorithm is developed which produces a constant-activity elution within the constraints of long feedback delay and short elution time. The system model parameters are adjusted through a self-tuning algorithm to minimize error versus the requested time-activity profile. The system is self-calibrating with 2.5% repeatability, independent of generator activity and elution flow rate. Accurate 30 s constant-activity elutions of 10-70% of the total generator activity are achieved using both control methods. The combined PWM-PCC method provides significant improvement in precision and accuracy of the requested elution profiles. The 82Rb elution system produces accurate and reproducible constant-activity elution profiles of 82Rb activity, independent of parent 82Sr activity in the generator. More reproducible elution profiles may improve the quality of clinical and research PET perfusion studies using 82Rb.

  18. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  19. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  20. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  1. Aluminum elution and precipitation in glass vials: effect of pH and buffer species.

    PubMed

    Ogawa, Toru; Miyajima, Makoto; Wakiyama, Naoki; Terada, Katsuhide

    2015-02-01

    Inorganic extractables from glass vials may cause particle formation in the drug solution. In this study, the ability of eluting Al ion from borosilicate glass vials, and tendencies of precipitation containing Al were investigated using various pHs of phosphate, citrate, acetate and histidine buffer. Through heating, all of the buffers showed that Si and Al were eluted from glass vials in ratios almost the same as the composition of borosilicate glass, and the amounts of Al and Si from various buffer solutions at pH 7 were in the following order: citrate > phosphate > acetate > histidine. In addition, during storage after heating, the Al concentration at certain pHs of phosphate and acetate buffer solution decreased, suggesting the formation of particles containing Al. In citrate buffer, Al did not decrease in spite of the high elution amount. Considering that the solubility profile of aluminum oxide and the Al eluting profile of borosilicate glass were different, it is speculated that Al ion may be forced to leach into the buffer solution according to Si elution on the surface of glass vials. When Al ions were added to the buffer solutions, phosphate, acetate and histidine buffer showed a decrease of Al concentration during storage at a neutral range of pHs, indicating the formation of particles containing Al. In conclusion, it is suggested that phosphate buffer solution has higher possibility of forming particles containing Al than other buffer solutions.

  2. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers.

    PubMed

    Vandeventer, Peter E; Mejia, Jorge; Nadim, Ali; Johal, Malkiat S; Niemz, Angelika

    2013-09-19

    Solid phase extraction and purification of DNA from complex samples typically requires chaotropic salts that can inhibit downstream polymerase amplification if carried into the elution buffer. Amino acid buffers may serve as a more compatible alternative for modulating the interaction between DNA and silica surfaces. We characterized DNA binding to silica surfaces, facilitated by representative amino acid buffers, and the subsequent elution of DNA from the silica surfaces. Through bulk depletion experiments, we found that more DNA adsorbs to silica particles out of positively compared to negatively charged amino acid buffers. Additionally, the type of the silica surface greatly influences the amount of DNA adsorbed and the final elution yield. Quartz crystal microbalance experiments with dissipation monitoring (QCM-D) revealed multiphasic DNA adsorption out of stronger adsorbing conditions such as arginine, glycine, and glutamine, with DNA more rigidly bound during the early stages of the adsorption process. The DNA film adsorbed out of glutamate was more flexible and uniform throughout the adsorption process. QCM-D characterization of DNA elution from the silica surface indicates an uptake in water mass during the initial stage of DNA elution for the stronger adsorbing conditions, which suggests that for these conditions the DNA film is partly dehydrated during the prior adsorption process. Overall, several positively charged and polar neutral amino acid buffers show promise as an alternative to methods based on chaotropic salts for solid phase DNA extraction.

  3. Impact of ultrasonic time on hot water elution of severely biodegraded heavy oil from weathered soils.

    PubMed

    Ji, Guodong; Sui, Xin

    2010-07-15

    An ultrasound-enhanced elution system employing water at a temperature of 70 degrees C was used to remedy weathered soils contaminated with severely biodegraded heavy oil (SBHO). The effect of varying the ultrasonic irradiation time from 0 to 1800 s on the elution of SBHO and three characteristic biomarkers (C(26-34) 17alpha 25-norhopanes, C(26-28) TAS, and C(27-29) MTAS) was analyzed using GC/MS, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Elution of the three biomarkers was closely related to the carbon number of the marker. C(26-34) 17alpha 25-norhopanes and C(26-28) TAS species with higher carbon numbers and C(27-29) MTAS species with lower carbon numbers were more readily eluted using sonication times of 1080-1800 s, while smaller TAS homologs were more readily eluted after sonication times of 0-360 s. SEM images of samples treated for longer periods revealed larger "bare patches" on the soil surface. The results of XRD and energy spectroscopy experiments indicated that ultrasound irradiation for 1080 s negatively affected the deposition of CaCO(3), but overall improved the mineral and chemical compositions of treated soils and removal of SBHO.

  4. Contrasting Effects of Physical Wear on Elution of Two Antibiotics from Orthopedic Cement

    PubMed Central

    Dodds, S.; Akid, R.; Stephenson, J.; Nichol, T.; Banerjee, R. D.; Stockley, I.; Townsend, R.

    2012-01-01

    The use of antibiotics as a supplement to bone cement for the purposes of providing a local release of antibiotics is common practice in arthroplasty surgery and the kinetics of elution of the antibiotics in such systems have been investigated previously. However, in these previous studies no account was taken of the potential effects that wear may have on the elution kinetics of the antibiotic. Here, we have modified an existing wear testing rig to allow the simultaneous study of the elution kinetics of bone cement samples containing antibiotics being subjected to immersion only and immersion and conjoint wear. The results show contrasting effects with two commonly used antibiotics. Bone cement containing daptomycin showed no substantial change in antibiotic elution due to wear, while cement containing gentamicin (the most commonly used antibiotic in this application) in contrast demonstrated a substantial reduction in the rate of antibiotic elution when wear was applied. Scanning electron microscopy revealed a possible explanation for these diverse results, due to wear-induced “sealing” of the surface in conjunction with the crystal morphology of the antibiotic. PMID:22155831

  5. Propensity-matched patient-level comparison of the TAXUS Liberté and TAXUS element (ION) paclitaxel-eluting stents.

    PubMed

    Kereiakes, Dean J; Cannon, Louis A; Ormiston, John A; Turco, Mark A; Mann, Tift; Mishkel, Gregory J; McGarry, Thomas; Wang, Hong; Underwood, Paul; Dawkins, Keith D

    2011-09-15

    Stent design, metal alloy composition, and strut thickness may influence late lumen loss and clinical outcomes after bare metal stent deployment; however, their impact on outcomes after drug-eluting stent deployment is unknown. Although the TAXUS Liberté and ION paclitaxel-eluting stents use similar polymer and drug, the ION stent incorporates a novel thin-strut platinum chromium metal alloy and cell design. We therefore compared patient-level data from 2,298 subjects enrolled into the TAXUS ATLAS (TAXUS Liberté) and PERSEUS (ION) clinical trials. Propensity-score (1:1) matching was performed to adjust for covariate imbalance between stent types. Twelve-month major adverse cardiac events were less frequent after use of the ION compared to the TAXUS Liberté (12.7% vs 8.3%, p <0.001, unadjusted; 12.0% vs 7.5%, p = 0.007, propensity matched) largely because of decreased non-Q-wave myocardial infarction (MI; 2.9% vs 1.4%, p = 0.01, unadjusted; 3.2% vs 0.9%, p = 0.004, propensity matched). The MI difference was predominantly periprocedural and in patients treated with a single stent. In conclusion, this exploratory post hoc analysis demonstrated that the ION was associated with fewer adverse clinical events than the TAXUS Liberté because of decreased non-Q-wave MI. Stent platform-related variables may influence clinical outcomes after drug-eluting stent use despite similar polymer and drug elution. Differences in adjunctive pharmacotherapy and/or stenting technique may also be contributory.

  6. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    PubMed

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films.

  7. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  8. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  9. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  10. In vitro tobramycin elution analysis from a novel beta-tricalcium phosphate-silicate-xerogel biodegradable drug-delivery system.

    PubMed

    DiCicco, Michael; Goldfinger, Aaron; Guirand, Felix; Abdullah, Aquill; Jansen, Susan A

    2004-07-15

    This in vitro research analyzed local tobramycin elution characteristics from a novel, biodegradable drug delivery system, consisting of a beta-TCP bone substitute, VITOSS trade mark, encapsulated with silicate xerogel prepared by the sol-gel process. Tobramycin elution from silicate-xerogel-encapsulated VITOSS was compared directly with non-silicate-xerogel-encapsulated VITOSS to assess whether xerogels are effective in delivering greater tobramycin quantities in a controllable, sustained manner crucial for microbial inhibition. Tobramycin elution characteristics indicate an initial release maximum during the first 24 h that diminishes gradually several days after impregnation. The copious tobramycin quantity eluted from the VITOSS/silicate-xerogel systems is attributed to various factors: the intrinsic ultraporosity and hydrophilicity of VITOSS, the ability of tobramycin to completely dissolve in aqueous media, tobramycin complexation with highly polar SO(4) (2-) salts that further assist dissolution, and ionic exchanges between VITOSS and the environment. Silicate-xerogel-encapsulated VITOSS eluted 60.65 and 61.31% of impregnated tobramycin, whereas non-silicate-xerogel-encapsulated VITOSS eluted approximately one-third less impregnated tobramycin, at 21.53 and 23.60%. These results suggest that silicate xerogel optimizes tobramycin elution because of its apparent biodegradability. This mechanism occurs through xerogel superficial acidic sites undergoing exchanges with various ions present in the leaching buffer. Tobramycin elution kinetics were evaluated, and demonstrate that first-order elution rate constants are considerably less when silicate xerogels are employed, following a more uniform exponential decay-type mechanism, thus bolstering controlled release. Overall, tobramycin elution rates adhere to linear-type Higuchi release profiles. Elution rate constants are initially first order, and taper into zero-order elution kinetics in the latter stages of

  11. The elution of certain protein affinity tags with millimolar concentrations of diclofenac.

    PubMed

    Baliova, Martina; Juhasova, Anna; Jursky, Frantisek

    2015-12-01

    Diclofenac (2-[(2, 6-dichlorophenyl)amino] benzeneacetic acid) is a sparingly soluble, nonsteroidal anti-inflammatory drug therapeutically acting at low micromolar concentrations. In pH range from 8 to 11, its aqueous solubility can be increased up to 200 times by the presence of counter ions such as sodium. Our protein interaction studies revealed that a millimolar concentration of sodium diclofenac is able to elute glutathione S-transferase (GST), cellulose binding protein (CBD), and maltose binding protein (MBP) but not histidine-tagged or PDZ-tagged proteins from their affinity resins. The elution efficiency of diclofenac is comparable with the eluting agents normally used at similar concentrations. Native gel electrophoresis of sodium diclofenac-treated proteins showed that the interaction is non-covalent and non-denaturing. These results suggest that sodium diclofenac, in addition to its pharmaceutical applications, can also be exploited as a lead for the development of new proteomics reagents.

  12. Clinical application of iodine-eluting stent in patients with advanced esophageal cancer

    PubMed Central

    DAI, ZHENBO; ZHOU, DEJUN; HU, JIANZHANG; ZHANG, LEI; LIN, YUNSHOU; ZHANG, JING; LI, FENGLING; LIU, PENG; LI, HUA; CAO, FULIANG

    2013-01-01

    The aim of the present study was to compare the clinical effectiveness of an iodine-eluting stent with a conventional stent in patients with advanced esophageal cancer. Patients with malignant esophageal cancer were randomly assigned to receive a conventional stent (group A) or an iodine-eluting stent (group B). Following implantation, the relief from dysphagia, survival time, routine blood tests, thyroid function examination and complications were compared in the two groups. Groups A and B consisted of 36 and 31 patients, respectively. The mean value that the dysphagia score decreased by was significantly lower in group A (0.83) compared with group B (1.65). The median survival time was longer in group B compared with group A (P=0.0022). No significant differences were observed in the severe complications between the two groups (P=0.084). The iodine-eluting esophageal stent is a relatively safe, feasible and effective treatment for malignant esophageal strictures. PMID:24137396

  13. Controversies in the use & implementation of drug-eluting stent technology

    PubMed Central

    Itagaki, Brandon K.; Brar, Somjot S.

    2012-01-01

    The introduction of drug eluting stents has resulted in dramatic reductions in the rates of restenosis and the need for repeat revascularization. In the last several years, concern has been raised regarding the long-term safety of this technology, particularly in the area of late restenosis and stent thrombosis. The development of newer anti-restenotic drug coatings, biodegradable polymers and even completely bioabsorbable stents offer the potential to address these limitations. Additional questions that have recently come to the forefront include the optimal duration of dual antiplatelet therapy, the use of platelet reactivity assays and genetic testing and drug eluting stent use in the treatment of acute myocardial infarction. This article will attempt to address these and other areas of controversy in the use and implementation of drug eluting stents. PMID:23391788

  14. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  15. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  16. Alternate Methods for Eluting Cesium from Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen; Johnson, Heather Lauren

    2009-02-01

    A small-column ion exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high-level-waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST), an inorganic, non-regenerable sorbent, or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The baseline method for eluting the cesium from the RF resin uses 15 bed volumes (BV) of 0.5 M nitric acid (HNO{sub 3}). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid that would be used to elute the RF resin, using the current elution protocol, exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing environment in the glass melt. Installing a denitration evaporator at SRS is technically feasible but would add considerable cost to the project. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 BV of 0.5 M HNO{sub 3} are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the baseline elution method removes a very small quantity of cesium from the resin. A summary of the elution methods that have been tested are listed.

  17. Bare metal or drug-eluting stent implantation in last remaining vessel PCI? A serious dilemma.

    PubMed

    Zhang, Lei; Zhu, Jianhua; Kiemeneij, Ferdinand

    2009-04-01

    This case report describes the treatment of an old male diabetic patient with last remaining vessel coronary artery disease and poor left ventricular function. In presence of an old occlusion of the left main coronary artery, a subtotal stenosis of a dominant right coronary artery required angioplasty. After ample consideration it was decided to implant a bare metal stent (BMS) instead of a drug-eluting stent (DES). The major reason was the fear for early discontinuation of clopidogrel in case a drug-eluting stent was placed. The procedure and follow-up are described followed by an overview of current literature concerning similar pathology.

  18. Drug-eluting stents in the management of peripheral arterial disease.

    PubMed

    Bosiers, Marc; Cagiannos, Catherine; Deloose, Koen; Verbist, Jürgen; Peeters, Patrick

    2008-01-01

    Since major meta-analyses of randomized controlled trials in interventional cardiology showed the potential of drug-eluting stents in decreasing restenosis and reintervention rates after coronary artery stenting, one of the next steps in the treatment of arterial occlusive disease is the transfer of the active coating technology towards peripheral arterial interventions. In this manuscript, we aim to provide a literature overview on available peripheral (lower limb, renal, and supra-aortic) drug-eluting stent applications, debate the cost implications, and give recommendations for future treatment strategies.

  19. Drug-eluting stents in the management of peripheral arterial disease

    PubMed Central

    Bosiers, Marc; Cagiannos, Catherine; Deloose, Koen; Verbist, Jürgen; Peeters, Patrick

    2008-01-01

    Since major meta-analyses of randomized controlled trials in interventional cardiology showed the potential of drug-eluting stents in decreasing restenosis and reintervention rates after coronary artery stenting, one of the next steps in the treatment of arterial occlusive disease is the transfer of the active coating technology towards peripheral arterial interventions. In this manuscript, we aim to provide a literature overview on available peripheral (lower limb, renal, and supra-aortic) drug-eluting stent applications, debate the cost implications, and give recommendations for future treatment strategies. PMID:18827906

  20. Longitudinal deformation of a third generation zotarolimus eluting stent: “The concertina returns!”

    PubMed Central

    Panoulas, Vasileios F; Demir, Ozan M; Ruparelia, Neil; Malik, Iqbal

    2017-01-01

    In the current case series we describe two cases of longitudinal stent deformation in ostial lesions treated with a new generation zotarolimus eluting stent and review current literature on longitudinal stent deformation. Historically not a common occurrence, longitudinal deformation occurred mainly in Promus Element everolimus eluting stents, which had only two rather than the commonly used 3 links between stent rings. Longitudinal deformation commonly occurs secondary to compression of the proximal edge of the stent by either the guide catheters, or intravascular balloons and imaging catheters. The degree of deformation however, depends on the longitudinal strength and design of the stent. PMID:28163838

  1. Drug-eluting coronary stents – focus on improved patient outcomes

    PubMed Central

    Jaffery, Zehra; Prasad, Amit; Lee, John H; White, Christopher J

    2011-01-01

    The development of stent has been a major advance in the treatment of obstructive coronary artery disease since the introduction of balloon angioplasty. Subsequently, neointimal hyperplasia within the stent leading to in-stent restenosis emerged as a major obstacle in long-term success of percutaneous coronary intervention. Recent introduction of drug-eluting stents is a major breakthrough to tackle this problem. This review article summarizes stent technology, reviews progress of drug-eluting stents and discusses quality of life, patient satisfaction, and acceptability of percutaneous coronary intervention. PMID:22915977

  2. Two Cases of Immediate Stent Fracture after Zotarolimus-Eluting Stent Implantation

    PubMed Central

    Lee, Pil Hyung; Lee, Seung-Whan; Lee, Jong-Young; Kim, Young-Hak; Lee, Cheol Whan; Park, Duk-Woo; Park, Seong-Wook

    2015-01-01

    Drug-eluting stent (DES) implantation is currently the standard treatment for various types of coronary artery disease. However, previous reports indicate that stent fractures, which usually occur after a period of time from the initial DES implantation, have increased during the DES era; stent fractures can contribute to unfavorable events such as in-stent restenosis and stent thrombosis. In our present report, we describe two cases of zotarolimus-eluting stent fracture: one that was detected six hours after implementation, and the other case that was detected immediately after deployment. Both anatomical and technical risk factors contributed to these unusual cases of immediate stent fracture. PMID:25653706

  3. Alternate Methods For Eluting Cesium From Spherical Resorcinol-Formaldehyde Resin

    SciTech Connect

    Taylor, Paul Allen; Johnson, Heather Lauren

    2009-01-01

    A Small Column Ion Exchange (SCIX) system has been proposed for removing cesium from the supernate and dissolved salt solutions in the high level waste tanks at the Savannah River Site (SRS). The SCIX system could use either crystalline silicotitanate (CST) an inorganic, non-regenerable sorbent or spherical resorcinol-formaldehyde (RF), a new regenerable resin, to remove cesium from the waste solutions. The standard method for eluting the cesium from the RF resin uses 15-20 bed volumes (BV) of 0.5 M nitric acid (HNO3). The nitric acid eluate, containing the radioactive cesium, would be combined with the sludge from the waste tanks, and would be converted into glass at the Defense Waste Processing Facility (DWPF) at SRS. The amount of nitric acid generated by the standard elution method exceeds the capacity of DWPF to destroy the nitrate ions and maintain the required chemical reducing conditions in the glass melt. Alternate methods for eluting the resin have been tested, including using lower concentrations of nitric acid, other acids, and changing the flow regimes. About 4 bed volumes of 0.5 M nitric acid are required to remove the sodium (titrate the resin) and most of the cesium from the resin, so the bulk of the acid used for the standard elution method removes a very small quantity of cesium from the resin. The resin was loaded with 9.5 g Cs/L of resin prior to elution, which is the maximum expected loading for RF resin treating the actual dissolved salt waste at SRS. For the baseline elution method, 465 g of nitrate is used per liter of resin, and >99.9999% of the cesium is removed from the resin. An alternative method that used 4 bed volumes of 0.5 M HNO3 followed by 11 bed volumes of 0.05 M HNO3, used 158 g of nitrate per liter of resin (66% less nitrate than used for the standard elution) and removed >99.998% of the cesium. A staccato flow mode using 0.5 M HNO3 (1 hr on at 1 BV/hr, followed by 3 hrs off) after the resin had been titrated using a continuous

  4. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  5. 4-Nitrophenol in 4-nitrophenyl phosphate, a substrate for alkaline phosphatase, as measured by paired-ion high-performance liquid chromatography.

    PubMed

    Culbreth, P H; Duncan, I W; Burtis, C A

    1977-12-01

    We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.

  6. Usefulness of Drug-Eluting Balloons for Bare-Metal and Drug-Eluting In-Stent Restenosis (from the RIBS IV and V Randomized Trials).

    PubMed

    Alfonso, Fernando; Pérez-Vizcayno, María José; García Del Blanco, Bruno; García-Touchard, Arturo; López-Mínguez, José-Ramón; Sabaté, Manel; Zueco, Javier; Melgares, Rafael; Hernández, Rosana; Moreno, Raul; Domínguez, Antonio; Sanchís, Juan; Moris, Cesar; Moreu, José; Cequier, Angel; Romaguera, Rafael; Rivero, Fernando; Cuesta, Javier; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Cárdenas, Alberto; Fernández, Cristina

    2017-04-01

    Treatment of patients with drug-eluting stent (DES) in-stent restenosis (ISR) is particularly challenging. We sought to compare results of drug-eluting balloons in patients with DES-ISR with those in patients with bare-metal stent (BMS) ISR. A pooled analysis of the Restenosis Intra-Stent: Drug-Eluting Balloon versus Everolimus-Eluting Stent IV and V randomized trials was performed. Both trials had identical inclusion and exclusion criteria. Results of drug-eluting balloons in 95 patients with BMS-ISR and 154 patients with DES-ISR were compared. Patients with DES-ISR were more frequently diabetics, presented more often as an acute coronary syndrome and had more severe lesions and more frequently a focal pattern, including edge-ISR. Late angiographic findings (92% of eligible patients), including minimal lumen diameter (1.80 ± 0.6 vs 2.01 ± 0.6 mm, p = 0.001; absolute mean difference 0.21 mm; 95% confidence interval 0.04 to 0.38; p = 0.014) and restenosis rate (19% vs 9.5%, p <0.05) were poorer in DES-ISR. Results were consistent across 10 prespecified subgroups. Moreover, on multiple linear regression analysis, minimal lumen diameter at follow-up remained significantly smaller in patients with DES-ISR after adjusting for potential confounders (adjusted absolute mean difference 0.17 mm; 95% confidence interval 0.04 to 0.41; p = 0.019). Finally, at 1-year clinical follow-up (100% of patients), rates of target vessel revascularization (16% vs 6%, p = 0.02) and of the main combined clinical end point (18% vs 8%, p = 0.03) were significantly higher in patients treated for DES-ISR. In conclusion, this study confirms the efficacy of DEB for patients with ISR. However, the long-term clinical and angiographic results of DEB are poorer in patients with DES-ISR than in those with BMS-ISR. (ClinicalTrials.govIdentifier:NCT01239953&NCT01239940).

  7. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces

    NASA Astrophysics Data System (ADS)

    Wan, Shanhong; Tieu, A. Kiet; Zhu, Qiang; Zhu, Hongtao; Cui, Shaogang; Mitchell, David R. G.; Kong, Charlie; Cowie, Bruce; Denman, John A.; Liu, Rong

    2016-05-01

    Alkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing. The chemical composition and fine structure of polyphosphate lubricating film is not well understood as well as the role of alkaline elements within the reaction film at hot rubbing surface. This work makes use of the coupling surface analytical techniques on the alkaline polyphosphate tribofilm, XANES, TOF-SIMS and FIB/TEM. The data show the composition in gradient distribution and trilaminar structure of tribofilm: a shorter chain phosphate overlying a long chain polyphosphate that adheres onto oxide steel base through a short chain phosphate. The chemical hardness model well explains the anti-abrasive mechanism of alkaline polyphosphate at elevated temperatures and also predicts a depolymerisation and simultaneous cross-linking of the polyphosphate glass. The role of alkaline elements in the lubrication mechanism is especially explained. This work firstly serves as a basis for a detailed study of alkaline polyphosphate tribofilm at temperature over 600 °C.

  8. Chemical nature of alkaline polyphosphate boundary film at heated rubbing surfaces

    PubMed Central

    Wan, Shanhong; Tieu, A. Kiet; Zhu, Qiang; Zhu, Hongtao; Cui, Shaogang; Mitchell, David R. G.; Kong, Charlie; Cowie, Bruce; Denman, John A.; Liu, Rong

    2016-01-01

    Alkaline polyphosphate has been demonstrated to be able to reduce significant wear and friction of sliding interfaces under heavy loads (>1 GPa) and elevated temperature (800 °C and above) conditions, e.g. hot metal manufacturing. The chemical composition and fine structure of polyphosphate lubricating film is not well understood as well as the role of alkaline elements within the reaction film at hot rubbing surface. This work makes use of the coupling surface analytical techniques on the alkaline polyphosphate tribofilm, XANES, TOF-SIMS and FIB/TEM. The data show the composition in gradient distribution and trilaminar structure of tribofilm: a shorter chain phosphate overlying a long chain polyphosphate that adheres onto oxide steel base through a short chain phosphate. The chemical hardness model well explains the anti-abrasive mechanism of alkaline polyphosphate at elevated temperatures and also predicts a depolymerisation and simultaneous cross-linking of the polyphosphate glass. The role of alkaline elements in the lubrication mechanism is especially explained. This work firstly serves as a basis for a detailed study of alkaline polyphosphate tribofilm at temperature over 600 °C. PMID:27180956

  9. Alkaline phosphatase activity in salivary gland cells of Rhodnius neglectus and R. prolixus (Hemiptera, Triatominae).

    PubMed

    Lima-Oliveira, A P M; Alevi, K C C; Anhê, A C B; Azeredo-Oliveira, M T V

    2016-07-29

    Alkaline phosphatase activity was detected in salivary gland cells of the Rhodnius neglectus Lent, 1954, and R. prolixus Stal, 1859, vectors of Trypanosoma cruzi Chagas, 1909 (etiological agent of Chagas disease) and T. rangeli Tejera, 1920 (pathogenic to insect). The Gomori technique was used to demonstrate alkaline phosphatase activity. Alkaline phosphatase activity was observed throughout the entire gland, with an increased activity in the posterior region of the principal gland. In particular, phosphatase activity was found in the nucleolar corpuscles, suggesting a relationship with the rRNA transcription and ribosomal biogenesis. Alkaline phosphatase was also detected in the nuclear membrane and nuclear matrix, suggesting an association with the nucleo-cytoplasmic transport of ribonucleoproteins and the mechanisms of cell cycle and DNA replication, respectively. This study highlights the importance of alkaline phosphatase in the salivary gland of R. prolixus and R. neglectus and emphasizes its importance in secretory activity. Secretory activity is directly involved in hematophagy and, consequently, in development during metamorphosis. The observed presence of alkaline phosphatase suggests its involvement in the production of saliva allowing feeding of these insects that are important vectors of Chagas disease.

  10. Transformation of glucocorticoid receptors bound to the antagonist RU 486: Effects of alkaline phosphatase

    SciTech Connect

    Gruol, D.J.; Wolfe, K.A. )

    1990-08-28

    RU 486 is a synthetic steroid that binds avidly to glucocorticoid receptors without promoting their transformation into activated transcription factors. A significant part of this behavior has been shown to be due to a failure of the RU 486 bound receptor to be efficiently released from a larger (sedimenting at 8-9 S) multimeric complex containing the 90-kDa heat shock protein. The studies have found that in vitro at 15{degree}C the RU 486-receptor was slowly released from the 8-9S complex and converted into a DNA binding protein by a process that could be blocked by sodium fluoride. Moreover, this transition was significantly accelerated by treatment with alkaline phosphatase. High-resolution anion-exchange chromatography showed that the profile of receptor subspecies released from the 8-9S complex was different for the RU 486 bound receptor when compared to the receptor occupied by the agonist triamcinolone acetonide. Production of the earliest eluting receptor form (peak A) was inhibited with RU 486. Treatment of the Ru 486-receptor with alkaline phosphatase increased the formation of the peak A subspecies as well as the capacity of receptor to bind DNA-cellulose. Taken together, the results indicate that phosphorylation of the receptor or a tightly bound factor contributes to defining the capacity with which individual steroids can promote dissociation of the 8-9S complex and conversion of the glucocorticoid receptor into a DNA-binding protein.

  11. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  12. Some insights on the description of gradient elution in reversed-phase liquid chromatography.

    PubMed

    Baeza-Baeza, Juan José; García-Álvarez-Coque, María Celia

    2014-09-01

    The so-called "fundamental equation for gradient elution" has been used for modeling the retention in gradient elution. In this approach, the instantaneous retention factor (k) is expressed as a function of the change in the modifier content (φ(ts )), ts being the time the solute has spent in the stationary phase. This approach can only be applied at constant flow rate and with gradients where the elution strength depends on the column length following a f(t-l/u) function, u being the linear mobile phase flow rate, and l the distance from the column inlet to the location where the solute is at time t measured from the beginning of the gradient. These limitations can be solved by using the here called "general equation for gradient elution", where k is expressed as a function of φ(t,l). However, this approach is more complex. In this work, a method that facilitates the integration of the "general equation" is described, which allows an approximate analytical solution with the quadratic retention model, improving the predictions offered by the "linear solvent strength model." It also offers direct information about the changes in the instantaneous modifier content and retention factor, and gives a meaning to the gradient retention factor.

  13. Elution behavior of insulin on high-performance size exclusion chromatography at neutral pH.

    PubMed

    Tantipolphan, Ruedeeporn; Romeijn, Stefan; Engelsman, John den; Torosantucci, Riccardo; Rasmussen, Tue; Jiskoot, Wim

    2010-06-05

    The pharmacopoeia protocol for HP-SEC of insulin, using an acidic non-physiological eluent, does not represent insulin's association state in the formulation. This study aimed to evaluate insulin's elution behavior in HP-SEC in a "physiological" (aqueous, neutral pH) eluent, using on-line UV absorption and multi-angle laser light scattering detection. The effect of insulin concentration and association state in the formulation (monitored by circular dichroism) and eluent composition (zinc ion, arginine) on its elution behavior was assessed. We showed that the elution behavior of insulin in "physiological" HP-SEC is affected by both dynamic association-dissociation of insulin molecules and insulin-column interactions. Insulin molecules re-equilibrated in the HP-SEC eluent, making its elution behavior practically insensitive to the association state of insulin in the formulation. Zinc ions in the eluent promoted association of insulin to hexamers, whereas arginine overruled the effect of zinc ions and induced on-column dissociation of insulin to dimers and monomers. Combined results from "physiological" and compendial HP-SEC were shown to provide a better view of the aggregation state of heat-stressed insulin than either of the single methods. The insights obtained with this study are crucial for a proper evaluation of HP-SEC data of insulin.

  14. Balloon angioplasty of the bilateral renal arteries by Takayasu arteritis with a paclitaxel-eluting balloon.

    PubMed

    Hecht, Tobias; Esmaeili, Anoosh; Behnke-Hall, Kachina

    2015-10-01

    We report about a 12-year-old girl who presented with a blood pressure difference between the extremities with the suspicion of an aortic coarctation. After imaging and laboratory tests, the diagnosis of Takayasu arteritis was made. Owing to persistent arterial hypertension despite medical treatment, we initiated a treatment with a balloon angioplasty of the renal arteries with an eluting balloon.

  15. The utility of accurate mass and LC elution time information in the analysis of complex proteomes

    SciTech Connect

    Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Anderson, Kevin K.; Daly, Don S.; Smith, Richard D.

    2005-08-01

    Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/- 5 ppm and 1 ppm) and NET value (no constraint, +/- 0.05 and 0.01 on a 0-1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LCMS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate easurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/- 1 ppm and elution time easurements within +/- 0.01 NET.

  16. Surface induced three-peak elution behavior of a monoclonal antibody during cation exchange chromatography.

    PubMed

    Guo, Jing; Creasy, Arch D; Barker, Gregory; Carta, Giorgio

    2016-11-25

    A monoclonal antibody exhibits a two- or three-peak elution behavior when loaded on the CEX resin POROS XS and eluted with a salt gradient. Two peaks are observed without a hold step while a third more strongly retained peak becomes noticeable with a hold time as low as 10min. As the hold time is increased further, the first peak gradually disappears, the second peak initially increases and then decreases, and the third peak continuously increases. Dynamic light scattering shows that the third peak contains significant levels of aggregates formed in the column. Circular dichroism, HX-MS analyses of the eluted fraction, in-line fluorescence detection, and bound-state HX-MS analysis indicate that the aggregates derive from an unfolded intermediate that is slowly formed while the protein is bound to the resin. Aggregate formation does not occur on a different CEX resin, Nuvia HR-S, with similar particle size but with a more homogenous structure or when the sodium acetate load buffer is replaced with arginine acetate. The two early eluting peaks observed for POROS XS regardless of hold time are shown to comprise exclusively monomeric species. A set of biophysical measurements as well as mechanistic modeling support the hypothesis that these two peaks form as a result of the presence of weak and strong binding sites on the resin having, respectively, fast and slow binding kinetics.

  17. A bioengineered drug-Eluting scaffold accelerated cutaneous wound healing In diabetic mice.

    PubMed

    Yin, Hao; Ding, Guoshan; Shi, Xiaoming; Guo, Wenyuan; Ni, Zhijia; Fu, Hong; Fu, Zhiren

    2016-09-01

    Hyperglycemia in diabetic patients can greatly hinder the wound healing process. In this study we investigated if the engagement of F4/80(+) murine macrophages could accelerate the cutaneous wound healing in streptozotocin induced diabetic mice. To facilitate the engagement of macrophages, we engineered a drug-eluting electrospun scaffold with a payload of monocyte chemoattractant protein-1 (MCP-1). MCP-1 could be readily released from the scaffold within 3 days. The electrospun scaffold showed no cytotoxic effects on human keratinocytes in vitro. Full-thickness excisional cutaneous wound was created in diabetic mice. The wound fully recovered within 10 days in mice treated with the drug-eluting scaffold. In contrast, the wound took 14 days to fully recover in control groups. The use of drug-eluting scaffold also improved the re-epithelialization. Furthermore, we observed a larger population of F4/80(+) macrophages in the wound bed of mice treated with drug-eluting scaffolds on day 3. This marked increase of macrophages in the wound bed could have contributed to the accelerated wound healing. Our study shed new light on an immuno-engineering solution for wound healing management in diabetic patients.

  18. AN ALTERNATIVE ELUENT TO BEEF EXTRACT FOR ELUTING POLIOVIRUS FROM ELECTROPOSITIVE FILTERS

    EPA Science Inventory

    Traditional methods for enteric virus removal from waters involve filtering the water through a positively charged filter followed by elution with beef extract, second step concentration by flocculation, and assay in cell culture. Two of the problems associated with this method ...

  19. Does antibiotic elution from PMMA beads deteriorate after 1-year shelf storage?

    PubMed

    Balsamo, Luke H; Whiddon, David R; Simpson, R Bruce

    2007-09-01

    Antibiotic-impregnated polymethylmethacrylate beads are widely used as an adjunct in the treatment of orthopaedic infections. Because there is no commercially available bead in the United States, surgeons must manufacture bead sets at the time of implantation. This can be time consuming and wasteful. We hypothesized antibiotic-impregnated beads would maintain consistent elution for up to 1 year after manufacturing and storage. Tobramycin-impregnated antibiotic beads were manufactured using a bead mold. The antibiotic was either hand-mixed into the polymethylmethacrylate powder (1.2 g/40 g) or came premixed from the factory (1 g/40 g). Packages of beads were gas-sterilized and stored at room temperature. Beads were tested at 0, 1, 2, 3, 6, and 12 months. Antibiotic levels in the eluent from each day of the month were measured. We were unable to detect any difference in the amount of antibiotic elution between beads tested immediately after manufacture and beads manufactured and stored for 6 or 12 months. Beads with hand-mixed antibiotics eluted higher levels of antibiotics than the beads prepared with factory-mixed antibiotics. We conclude antibiotic beads can be made, sterilized, and used after 1 year of storage with no deleterious effect on antibiotic elution characteristics.

  20. The elution of colistimethate sodium from polymethylmethacrylate and calcium phosphate cement beads.

    PubMed

    Waterman, Paige; Barber, Melissa; Weintrob, Amy C; VanBrakle, Regina; Howard, Robin; Kozar, Michael P; Andersen, Romney; Wortmann, Glenn

    2012-06-01

    Gram-negative bacilli resistance to all antibiotics, except for colistimethate sodium (CMS), is an emerging healthcare concern. Incorporating CMS into orthopedic cement to treat bone and soft-tissue infections due to these bacteria is attractive, but the data regarding the elution of CMS from cement are conflicting. The in vitro analysis of the elution of CMS from polymethylmethacrylate (PMMA) and calcium phosphate (CP) cement beads is reported. PMMA and CP beads containing CMS were incubated in phosphate-buffered saline and the eluate sampled at sequential time points. The inhibition of the growth of a strain of Acinetobacter baumannii complex by the eluate was measured by disk diffusion and microbroth dilution assays, and the presence of CMS in the eluate was measured by mass spectroscopy. Bacterial growth was inhibited by the eluate from both PMMA and CP beads. Mass spectroscopy demonstrated greater elution of CMS from CP beads than PMMA beads. The dose of CMS in PMMA beads was limited by failure of bead integrity. CMS elutes from both CP and PMMA beads in amounts sufficient to inhibit bacterial growth in vitro. The clinical implications of these findings require further study.

  1. Chronic total occlusion successfully treated with a bioresorbable everolimus-eluting vascular scaffold

    PubMed Central

    Mattesini, Alessio; Dall'Ara, Gianni; Mario, Carlo Di

    2014-01-01

    Fully bioresorbable vascular scaffolds (BVS) are a new approach to the percutaneous treatment of coronary artery disease. The BVS have not yet been fully tested in complex lesions, including chronic total occlusion (CTO). We report a CTO case successfully treated with a second-generation bioabsorbable drug-eluting scaffold. PMID:25061461

  2. A new mixed-mode model for interpreting and predicting protein elution during isoelectric chromatofocusing.

    PubMed

    Choy, Derek Y C; Creagh, A Louise; von Lieres, Eric; Haynes, Charles

    2014-05-01

    Experimental data are combined with classic theories describing electrolytes in solution and at surfaces to define the primary mechanisms influencing protein retention and elution during isoelectric chromatofocusing (ICF) of proteins and protein mixtures. Those fundamental findings are used to derive a new model to understand and predict elution times of proteins during ICF. The model uses a modified form of the steric mass action (SMA) isotherm to account for both ion exchange and isoelectric focusing contributions to protein partitioning. The dependence of partitioning on pH is accounted for through the characteristic charge parameter m of the SMA isotherm and the application of Gouy-Chapman theory to define the dependence of the equilibrium binding constant Kbi on both m and ionic strength. Finally, the effects of changes in matrix surface pH on protein retention are quantified through a Donnan equilibrium type model. By accounting for isoelectric focusing, ion binding and exchange, and surface pH contributions to protein retention and elution, the model is shown to accurately capture the dependence of protein elution times on column operating conditions.

  3. Preparation, characterization and anticoagulation of curcumin-eluting controlled biodegradable coating stents.

    PubMed

    Pan, Ch J; Tang, J J; Weng, Y J; Wang, J; Huang, N

    2006-11-01

    Curcumin is pharmaceutically active in many ways, having properties including anticoagulation, anti-proliferation, anti-inflammatory, and may be used to fabricate drug-eluting stents to treat in-stent restenosis after stent implantation. Here we describe our investigations of curcumin-eluting PLGA coatings formed using the biodegradable polymer PLGA (polylactic acid-co-glycolic acid) as drug carrier and uniformly fabricated on the surface of 316L stainless steel stents by an ultrasonic spray method. Three doses were explored--low dose ( approximately 140 microg per stent or 115 microg/cm(2)), moderate dose ( approximately 280 microg per stent or 230 microg/cm(2)), and high dose ( approximately 490 microg per stent or 408 microg/cm(2)). Pre- and post-expansion morphologies of the stent coating were examined by optical microscopy (OM) and scanning electron microscopy (SEM), indicating that the coating not only was very smooth and uniform but also had the ability to withstand the compressive and tensile strains imparted without cracking from the stent during the expansion process. Atomic force microscopy (AFM) images indicated the topography of the PLGA-only and moderate dose curcumin-eluting stent that showed an average roughness below 1 nm; no drug particles could be seen on the stent surface, indicating that curcumin can be mixed with PLGA at the molecular level using an ultrasonic atomization spray method. The structure of the coating films was characterized by Fourier Transform Infrared (FTIR) spectroscopy and X-ray electron spectroscopy (XPS), with results suggesting that there was no chemical reaction between curcumin and the drug. The results of in vitro measurements of drug release from curcumin-eluting stents showed that all the curcumin-eluting stents studied exhibited a nearly linear sustained-release profile with no significant burst releases within the measurement period. The in vitro anticoagulation behavior of curcumin-eluting stents was investigated

  4. The chromatographic co-elution of dihydrodehydrodiconiferyl alcohol monopyranose with eleutheroside E in Eleutherococcus senticosus: implications for eleutheroside E assays.

    PubMed

    Gaffney, B T; Hügell, H M; Rich, P A

    2004-01-01

    During a quantification assay of the constituents of Eleutherococcus senticosus by reverse-phase HPLC using acetonitrile:water gradient elution, it was observed that a recently reported component, dihydrodehydrodiconiferyl alcohol monopyranose, co-eluted with eleutheroside E. The implications of this finding for researchers and the herbal medicine industry are discussed. C

  5. Elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate beads in vitro.

    PubMed

    Tulipan, Rachel J; Phillips, Heidi; Garrett, Laura D; Dirikolu, Levent; Mitchell, Mark A

    2016-11-01

    OBJECTIVE To characterize the elution of platinum from carboplatin-impregnated calcium sulfate hemihydrate (CSH) beads in vitro. SAMPLE 60 carboplatin-impregnated CSH beads and 9 CSH beads without added carboplatin (controls). PROCEDURES Carboplatin-impregnated CSH beads (each containing 4.6 mg of carboplatin [2.4 mg of platinum]) were placed into separate 10-mL plastic tubes containing 5 mL of PBSS in groups of 1, 3, 6, or 10; 3 control beads were placed into a single tube of PBSS at the same volume. Experiments were conducted in triplicate at 37°C and a pH of 7.4 with constant agitation. Eluent samples were collected at 1, 2, 3, 6, 12, 24, and 72 hours. Samples were analyzed for platinum content by inductively coupled plasma-mass spectrometry. RESULTS The mean concentration of platinum released per carboplatin-impregnated bead over 72 hours was 445.3 mg/L. Cumulative concentrations of platinum eluted increased as the number of beads per tube increased. There was a significant difference in platinum concentrations over time, with values increasing over the first 12 hours and then declining for all tubes. There was also a significant difference in percentage of total incorporated platinum released into tubes with different numbers of beads: the percentage of eluted platinum was higher in tubes containing 1 or 3 beads than in those containing 6 or 10 beads. CONCLUSIONS AND CLINICAL RELEVANCE Carboplatin-impregnated CSH beads eluted platinum over 72 hours. Further studies are needed to determine whether implantation of carboplatin-impregnated CSH beads results in detectable levels of platinum systemically and whether the platinum concentrations eluted locally are toxic to tumor cells.

  6. Small-Column Cesium Ion Exchange Elution Testing of Spherical Resorcinol-Formaldehyde

    SciTech Connect

    Brown, Garrett N.; Russell, Renee L.; Peterson, Reid A.

    2011-10-21

    This report summarizes the work performed to evaluate multiple, cesium loading, and elution cycles for small columns containing SRF resin using a simple, high-level waste (HLW) simulant. Cesium ion exchange loading and elution curves were generated for a nominal 5 M Na, 2.4E-05 M Cs, 0.115 M Al loading solution traced with 134Cs followed by elution with variable HNO3 (0.02, 0.07, 0.15, 0.23, and 0.28 M) containing variable CsNO3 (5.0E-09, 5.0E-08, and 5.0E-07 M) and traced with 137Cs. The ion exchange system consisted of a pump, tubing, process solutions, and a single, small ({approx}15.7 mL) bed of SRF resin with a water-jacketed column for temperature-control. The columns were loaded with approximately 250 bed volumes (BVs) of feed solution at 45 C and at 1.5 to 12 BV per hour (0.15 to 1.2 cm/min). The columns were then eluted with 29+ BVs of HNO3 processed at 25 C and at 1.4 BV/h. The two independent tracers allowed analysis of the on-column cesium interaction between the loading and elution solutions. The objective of these tests was to improve the correlation between the spent resin cesium content and cesium leached out of the resin in subsequent loading cycles (cesium leakage) to help establish acid strength and purity requirements.

  7. Modeling the elution of organic chemicals from a melting homogeneous snow pack.

    PubMed

    Meyer, Torsten; Wania, Frank

    2011-06-01

    Organic chemicals are often released in peak concentrations from melting snow packs. A simple, mechanistic snowmelt model was developed to simulate and predict the elution of organic substances from melting, homogeneous snow, as influenced by chemical properties and snow pack characteristics. The model calculates stepwise the chemical transport along with the melt water flow in a multi-layered snow pack, based on chemical equilibrium partitioning between the individual bulk snow phases. The model succeeds in reproducing the elution behavior of several organic contaminants observed in previously conducted cold room experiments. The model aided in identifying four different types of enrichment of organic substances during snowmelt. Water soluble substances experience peak releases early during a melt period (type 1), whereas chemicals that strongly sorb to particulate matter (PM) or snow grain surfaces elute at the end of melting (type 2). Substances that are somewhat water soluble and at the same time have a high affinity for snow grain surfaces may exhibit increasing concentrations in the melt water (type 3). Finally, elution sequences involving peak loads both at the beginning and the end of melting are simulated for chemicals that are partially dissolved in the aqueous melt water phase and partially sorbed to PM (type 4). The extent of type 1 enrichment mainly depends on the snow depth, whereby deeper snow generates more pronounced concentration peaks. PM influences the elution behavior of organic chemicals strongly because of the very large natural variability in the type and amount of particles present in snow. Urban and road-side snow rich in PM can generate type 2 concentration peaks at the end of the melt period for even relatively water soluble substances. From a clean, melting snow pack typical for remote regions, even fairly hydrophobic chemicals can be released in type 1 mode while being almost completely dissolved in the aqueous melt water phase. The

  8. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  9. Size- and density-dependent elution of normal and pathological red blood cells by gravitational field-flow fractionation.

    PubMed

    Cardot, P J; Elgéa, C; Guernet, M; Godet, D; Andreux, J P

    1994-04-01

    Elution of normal and pathological human red blood cells (RBCs) was performed by gravitational field-flow fractionation (GFFF). The reproducibility of the retention factor was lower than 10% and elution at high and low flow-rates confirmed the existence of "lifting forces". No direct correlation between size and retention was observed for normal RBCs in the absence of density information. Elution of pathological human RBCs, known to be modified in shape, density and rigidity, was performed. The elution parameters confirmed that the retention mechanism of RBCs is at least density dependent but that other factors can be involved, such as shape or deformity. Moreover, peak profile description parameters (standard deviation and asymmetry) can be qualitatively related to some biophysical parameters. Numerous elution characteristics can be linked to cell properties described in the literature and although GFFF appeared to have limited capabilities in terms of size analysis it appeared to be a versatile tool for studying cell biophysical characteristics.

  10. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  11. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  12. Systematic studies of the mass spectrometric properties of alkaline earth metal cationized amino acids and peptides

    NASA Astrophysics Data System (ADS)

    Küjckelmann, Ulrich; Müller, Dietrich; Weber, Carsten

    1997-07-01

    The results of a systematic study of the gas phase interactions of α-amino acids and peptides (4-15 amino acids) with alkaline earth metals, observed with mass spectrometric techniques, are presented. Furthermore, a model for the cationization with calcium at the C-terminal amino acid arginine in rotaviral polypeptides is presented.

  13. Enhanced Magnetic Trap Loading for Alkaline-Earth Atoms

    NASA Astrophysics Data System (ADS)

    Reschovsky, Benjamin J.; Barker, Daniel S.; Pisenti, Neal C.; Campbell, Gretchen K.

    2016-05-01

    We report on a technique to improve the continuous loading of atomic strontium into a magnetic trap from a Magneto-Optical Trap (MOT). This is achieved by adding a depumping laser addressing the 3P1 level. For the 3P1 -->3S1 (688-nm) transition in strontium, the depumping laser increases atom number in the magnetic trap and subsequent cooling stages by up to 65 % for the bosonic isotopes and up to 30 % for the fermionic isotope. We optimize this trap loading strategy with respect to the 688-nm laser detuning, intensity, and beam size. To understand the results, we develop a one-dimensional rate equation model of the system, which is in good agreement with the data. We discuss the use of other transitions in strontium for accelerated trap loading and the application of the technique to other alkaline-earth-like atoms.

  14. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  15. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    PubMed

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  16. Test Procedures for Characterizing, Evaluating, and Managing Separator Materials used in Secondary Alkaline Batteries

    NASA Technical Reports Server (NTRS)

    Guasp, Edwin; Manzo, Michelle A.

    1997-01-01

    Secondary alkaline batteries, such as nickel-cadmium and silver-zinc, are commonly used for aerospace applications. The uniform evaluation and comparison of separator properties for these systems is dependent upon the measurement techniques. This manual presents a series of standard test procedures that can be used to evaluate, compare, and select separator materials for use in alkaline batteries. Detailed test procedures evaluating the following characteristics are included in this manual: physical measurements of thickness and area weight, dimensional stability measurements, electrolyte retention, resistivity, permeability as measured via bubble pressure, surface evaluation via SEM, chemical stability, and tensile strength.

  17. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  18. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  19. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  20. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  1. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  2. Alkaline earth metal catalysts for asymmetric reactions.

    PubMed

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  3. Theoretical considerations and a simple method for measuring alkalinity and acidity in low-pH waters by gran titration

    USGS Publications Warehouse

    Barringer, J.L.; Johnsson, P.A.

    1996-01-01

    Titrations for alkalinity and acidity using the technique described by Gran (1952, Determination of the equivalence point in potentiometric titrations, Part II: The Analyst, v. 77, p. 661-671) have been employed in the analysis of low-pH natural waters. This report includes a synopsis of the theory and calculations associated with Gran's technique and presents a simple and inexpensive method for performing alkalinity and acidity determinations. However, potential sources of error introduced by the chemical character of some waters may limit the utility of Gran's technique. Therefore, the cost- and time-efficient method for performing alkalinity and acidity determinations described in this report is useful for exploring the suitability of Gran's technique in studies of water chemistry.

  4. Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme.

    PubMed

    Shirai, T; Ishida, H; Noda, J; Yamane, T; Ozaki, K; Hakamada, Y; Ito, S

    2001-07-27

    The crystal structure of the catalytic domain of alkaline cellulase K was determined at 1.9 A resolution. Because of the most alkaliphilic nature and it's highest activity at pH 9.5, it is used commercially in laundry detergents. An analysis of the structural bases of the alkaliphilic character of the enzyme suggested a mechanism similar to that previously proposed for alkaline proteases, that is, an increase in the number of Arg, His, and Gln residues, and a decrease in Asp and Lys residues. Some ion pairs were formed by the gained Arg residues, which is similar to what has been found in the alkaline proteases. Lys-Asp ion pairs are disfavored and partly replaced with Arg-Asp ion pairs. The alkaline adaptation appeared to be a remodeling of ion pairs so that the charge balance is kept in the high pH range.

  5. Subacute Drug-Eluting Stent Thrombosis Caused by Stent Underexpansion: Evaluation by Optical Coherence Tomography

    PubMed Central

    Martín-Reyes, Roberto; Jiménez-Valero, Santiago; Navarro, Felipe; Moreno, Raúl

    2011-01-01

    We present the case report of a patient presenting with ST segment elevation myocardial infarction due to a subacute drug-eluting stent trombosis within the proximal segment of the left circumflex artery (LCX). Six days before a total chronic occlusion was treated at the mid segment of the LCX by overlapping two drug-eluting stents. Optical coherence tomography (OCT) was helpful to demonstrate stent underexpansion of the overlaping segment as the main mechanism of early stent thrombosis. This case is illustrative about the potential role of OCT to identify the mechanisms of ST and thus guiding the PCI procedure. Moreover, our case shows the capability of the Imagewire to cross a severe stenosis due to stent underexpansion that could not be crossed by the IVUS catheter. PMID:21423540

  6. The Ultimaster Biodegradable-Polymer Sirolimus-Eluting Stent: An Updated Review of Clinical Evidence.

    PubMed

    Chisari, Alberto; Pistritto, Anna Maria; Piccolo, Raffaele; La Manna, Alessio; Danzi, Gian Battista

    2016-09-06

    The Ultimaster coronary stent system (Terumo Corporation, Tokyo, Japan) represents a new iteration in drug-eluting stent (DES) technology that has recently received the Conformité Européenne (CE) mark approval for clinical use. The Ultimaster is a thin-strut, cobalt chromium, biodegradable-polymer, sirolimus-eluting coronary stent. The high elasticity of the biodegradable-polymer (PDLLA-PCL) and the abluminal gradient coating technology are additional novel features of this coronary device. The Ultimaster DES has undergone extensive clinical evaluation in two studies: The CENTURY I and II trials. Results from these two landmark studies suggested an excellent efficacy and safety profile of the Ultimaster DES across several lesion and patient subsets, with similar clinical outcomes to contemporary, new-generation DES. The aim of this review is to summarize the rationale behind this novel DES technology and to provide an update of available evidence about the clinical performance of the Ultimaster DES.

  7. Everolimus-eluting stent platforms in percutaneous coronary intervention: comparative effectiveness and outcomes

    PubMed Central

    Panoulas, Vasileios F; Mastoris, Ioannis; Konstantinou, Klio; Tespili, Maurizio; Ielasi, Alfonso

    2015-01-01

    Despite the remarkable benefits obtained following the introduction of the first-generation drug-eluting stent (DES), concerns were raised over its long-term safety, particularly with regard to very late (beyond 1 year) stent thrombosis. Newer-generation DESs have been developed to overcome this limitation using novel stent platforms, new drugs, more biocompatible durable polymers, and bioabsorbable polymers or backbones. To date, new-generation DESs have virtually replaced the use of first-generation DESs worldwide. In this review article, we discuss in detail the design, pharmacology, and mechanism of action of the newer-generation permanent and bioresorbable everolimus-eluting platforms. Furthermore, we present and evaluate the current evidence on the performance and safety of these devices compared to those of other available stent platforms. PMID:26244031

  8. Leaching potential of phenylurea herbicides in a calcareous soil: comparison of column elution and batch studies.

    PubMed

    Langeron, Julie; Sayen, Stéphanie; Couderchet, Michel; Guillon, Emmanuel

    2014-04-01

    The transfer of eleven phenylurea herbicides through soil columns was investigated in laboratory conditions in order to determine leaching properties in a calcareous soil. Elution curves with distilled water were plotted after herbicide application on the soil column. Phenylurea retention by the soil indicating interactions with soil can be classified as follows: fenuron < fluometron ≤ isoproturon = monuron < metoxuron < monolinuron < metobromuron < chlorotoluron < linuron = diuron < chlorbromuron. The number and nature of halogen atoms on the phenyl ring had an important influence on leaching. Retention was higher for molecules with higher number of halogen, and it was also higher for bromine than chlorine. Column elution experiments were compared to batch experiments from which the distribution coefficients K d were determined. According to Kendall correlation coefficients, parameter m/m 0 max from column experiments was relatively well linked to K d. In case of phenylurea, a linear relationship between K d and m/m 0 max was established.

  9. The Ultimaster Biodegradable-Polymer Sirolimus-Eluting Stent: An Updated Review of Clinical Evidence

    PubMed Central

    Chisari, Alberto; Pistritto, Anna Maria; Piccolo, Raffaele; La Manna, Alessio; Danzi, Gian Battista

    2016-01-01

    The Ultimaster coronary stent system (Terumo Corporation, Tokyo, Japan) represents a new iteration in drug-eluting stent (DES) technology that has recently received the Conformité Européenne (CE) mark approval for clinical use. The Ultimaster is a thin-strut, cobalt chromium, biodegradable-polymer, sirolimus-eluting coronary stent. The high elasticity of the biodegradable-polymer (PDLLA-PCL) and the abluminal gradient coating technology are additional novel features of this coronary device. The Ultimaster DES has undergone extensive clinical evaluation in two studies: The CENTURY I and II trials. Results from these two landmark studies suggested an excellent efficacy and safety profile of the Ultimaster DES across several lesion and patient subsets, with similar clinical outcomes to contemporary, new-generation DES. The aim of this review is to summarize the rationale behind this novel DES technology and to provide an update of available evidence about the clinical performance of the Ultimaster DES. PMID:27608017

  10. Advantages of novel BioMimeTM Sirolimus Eluting Coronary Stent system. Moving towards biomimicry.

    PubMed

    Upendra, K; Sanjeev, B

    2012-02-01

    Since the first reported use of percutaneous transluminal coronary angioplasty (PTCA), advancements in interventional cardiology arena have been fast paced. Within the last ten years, these developments have been exponential. Developers & clinicians are fast adapting from the learning curve awarded by the time course of DES evolution. In that light BioMimeTM Sirolimus Eluting Coronary Stent comes as a fresh thought in taking stents towards a biomimicry concept. The stent is built on an ultra-low strut thickness (65 µm) cobalt chromium stent platform, using an intelligent hybrid of close and open cells allowing for morphology mediated expansion, employs a well known anti-proliferative - Sirolimus that elutes from a biodegradable co-polymer formulation in 30 days and ensures high coating integrity and low coating thickness of 2 µm. The resultant stent demonstrates almost 100% endothelialization at 30 days in preclinical model and zero percent MACE >18 months in the primary efficacy and safety clinical study.

  11. Application of cyclodextrin-based eluents in hydrophobic charge-induction chromatography: elution of antibody at neutral pH.

    PubMed

    Ren, Jun; Yao, Peng; Cao, Yaming; Cao, Jian; Zhang, Lijun; Wang, Yuanqiang; Jia, Lingyun

    2014-07-25

    Hydrophobic charge-induction chromatography (HCIC) has emerged as a useful addition to Protein A chromatography for antibody purification due to its remarkable merits in cost and stability. However, the instability of antibody during acidic elution, which may cause inactivation and aggregation, is still a major concern for the efficiency of this method. The aim of this study is to develop a new strategy of competitive elution with inclusion complexes in HCIC, and to apply it to antibody elution under neutral pH conditions. Interactions between 4-mercaptoethylpyridine (MEP), a typical ligand of HCIC, and four different types of cyclodextrins (CDs) were investigated by molecular docking; immunoglobulin G (IgG) elution capacities of CDs were characterized on MEP-based HCIC mediums. The results demonstrated the general effectiveness of CD-based eluents for HCIC. This type of displacement eluents could allow an efficient elution of bound antibody over a broad range of pH and ion strength. With 15 mM β-CD, elution of human IgG was achieved at physiological pH, with an average IgG recovery of 87%. When this elution strategy was used to separate antibody directly from human serum, substantial elution of bound IgG could be obtained at pH 7.4, with product purity comparable to traditional method with an acidic buffer. We expect such method can be of special interest in developing HCIC elution strategy for the proteins like antibody that are sensitive to acidic conditions.

  12. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers

    PubMed Central

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries. PMID:27574423

  13. Dual delivery of active antibactericidal agents and bone morphogenetic protein at sustainable high concentrations using biodegradable sheath-core-structured drug-eluting nanofibers.

    PubMed

    Hsu, Yung-Hen; Lin, Chang-Tun; Yu, Yi-Hsun; Chou, Ying-Chao; Liu, Shih-Jung; Chan, Err-Cheng

    2016-01-01

    In this study, we developed biodegradable sheath-core-structured drug-eluting nanofibers for sustainable delivery of antibiotics (vancomycin and ceftazidime) and recombinant human bone morphogenetic protein (rhBMP-2) via electrospinning. To prepare the biodegradable sheath-core nanofibers, we first prepared solutions of poly(d,l)-lactide-co-glycolide, vancomycin, and ceftazidime in 1,1,1,3,3,3-hexafluoro-2-propanol and rhBMP-2 in phosphate-buffered solution. The poly(d,l)-lactide-co-glycolide/antibiotics and rhBMP-2 solutions were then fed into two different capillary tubes controlled by two independent pumps for coaxial electrospinning. The electrospun nanofiber morphology was observed under a scanning electron microscope. We further characterized the in vitro antibiotic release from the nanofibers via high-performance liquid chromatography and that of rhBMP-2 via enzyme-linked immunosorbent assay and alkaline phosphatase activity. We showed that the biodegradable coaxially electrospun nanofibers could release high vancomycin/ceftazidime concentrations (well above the minimum inhibition concentration [MIC]90) and rhBMP-2 for >4 weeks. These experimental results demonstrate that novel biodegradable nanofibers can be constructed with various pharmaceuticals and proteins for long-term drug deliveries.

  14. Determination of free acidic and alkaline residues of protein via moving reaction boundary titration in microdevice electrophoresis.

    PubMed

    Wang, Hou-yu; Li, Si; Tang, Yun-yun; Dong, Jing-yu; Fan, Liu-yin; Cao, Cheng-xi

    2013-06-21

    As two important physico-chemical parameters, the acidic and alkaline residues of protein are of evident significance for the evaluation of protein properties and the design of relevant separation and analysis. However, there is still no electrophoretic method used for the direct detection of free acidic and alkaline residues of protein. Herein, we developed the concepts of moving reaction boundary (MRB) and MRB titration, relevant MRB titration theory, and the method of microdevice electrophoresis for the determination of free acidic and alkaline residues of protein. In the MRB titration, the boundary was created with acid or alkali and target protein immobilized via highly cross-linked polyacrylamide gel (PAG). It was theoretically revealed that the number of free acidic or alkaline residues of protein was as a function of MRB displacement in the electrophoretic titration system. As a proof of concept, seven model proteins were chosen for the determination of acidic or alkaline residues of protein via MRB titration. The results showed that the numbers of free acidic and alkaline residues of proteins detected were in good agreement with those obtained from the relevant amino sequences in the NCBI database, demonstrating the feasibility of the developed concept, theory and technique. The general methodology of MRB titration has potential application for inexpensive, facilitative and informative protein structure analysis of free acidic or alkaline residues of protein.

  15. Everolimus-induced Pneumonitis after Drug-eluting Stent Implantation: A Case Report

    SciTech Connect

    Sakamoto, Susumu Kikuchi, Naoshi; Ichikawa, Atsuo; Sano, Go; Satoh, Keita; Sugino, Keishi; Isobe, Kazutoshi; Takai, Yujiro; Shibuya, Kazutoshi; Homma, Sakae

    2013-08-01

    Despite the wide use of everolimus as an antineoplastic coating agent for coronary stents to reduce the rate of restenosis, little is known about the health hazards of everolimus-eluting stents (EES). We describe a case of pneumonitis that developed 2 months after EES implantation for angina. Lung pathology demonstrated an organizing pneumonia pattern that responded to corticosteroid therapy. Although the efficacy of EES for ischemic heart disease is well established, EES carries a risk of pneumonitis.

  16. The utility of accurate mass and LC elution time information in the analysis of complex proteomes

    PubMed Central

    Norbeck, Angela D.; Monroe, Matthew E.; Adkins, Joshua N.; Smith, Richard D.

    2007-01-01

    Theoretical tryptic digests of all predicted proteins from the genomes of three organisms of varying complexity were evaluated for specificity and possible utility of combined peptide accurate mass and predicted LC normalized elution time (NET) information. The uniqueness of each peptide was evaluated using its combined mass (+/− 5 ppm and 1 ppm) and NET value (no constraint, +/− 0.05 and 0.01 on a 0–1 NET scale). The set of peptides both underestimates actual biological complexity due to the lack of specific modifications, and overestimates the expected complexity since many proteins will not be present in the sample or observable on the mass spectrometer because of dynamic range limitations. Once a peptide is identified from an LC-MS/MS experiment, its mass and elution time is representative of a unique fingerprint for that peptide. The uniqueness of that fingerprint in comparison to that for the other peptides present is indicative of the ability to confidently identify that peptide based on accurate mass and NET measurements. These measurements can be made using HPLC coupled with high resolution MS in a high-throughput manner. Results show that for organisms with comparatively small proteomes, such as Deinococcus radiodurans, modest mass and elution time accuracies are generally adequate for peptide identifications. For more complex proteomes, increasingly accurate measurements are required. However, the majority of proteins should be uniquely identifiable by using LC-MS with mass accuracies within +/− 1 ppm and elution time measurements within +/− 0.01 NET. PMID:15979333

  17. Severe Complication After a Doxorubicin-Eluting-Bead Embolization: Surgical Management and Pathological Findings

    SciTech Connect

    Lesevic, Veiba Marzano, Ettore; Greget, Michel; Rosso, Edoardo Bachellier, Philippe Pessaux, Patrick

    2011-02-15

    Doxorubicin-eluting-bead embolization (DEB) is considered a safe and efficient treatment of hepatocellular carcinoma (HCC) with a low complication rate and an increased tumor response compared with conventional transarterial chemoembolization. We describe a case of a 69-year-old patient who underwent DEB for HCC and who developed a liver abscess requiring urgent left liver lobectomy. Despite this severe complication, efficacy of DEB embolization was histologically proved as a large ischemic zone with complete tumor necrosis.

  18. Modeling of dual gradient elution in ion exchange and mixed-mode chromatography.

    PubMed

    Lee, Yi Feng; Schmidt, Michael; Graalfs, Heiner; Hafner, Mathias; Frech, Christian

    2015-10-23

    Protein retention using dual gradient elution in ion exchange- and mixed-mode chromatography can be modeled using the combination of a modified Yamamoto's LGE model and a conversion term to correlate the elution salt concentration and pH at any given gradient slope. Incorporation of the pH dependence of the binding charges into the model also provides some insights on the dual effects of salt and pH in protein-ligand interaction. The fitted thermodynamic parameters (ΔGP(0)/RT, ΔGS(0)/RT, number of charged amino acids involved in binding) of the dual gradient elution data using lysozyme and mAbs on SP Sepharose(®) FF, Eshmuno(®) HCX, and Capto(®) MMC ImpRes were consistent to the results of mono gradient data. This gives rise to an approach to perform thermodynamic modeling of protein retention in ion exchange- and mixed-mode chromatography by combining both salt and pH gradient into a single run of dual gradient elution which will increase time and cost efficiency. The dual gradients used in this study encompassed a wide range of pH (4-8) and NaCl concentrations (0-1M). Curve fits showed that ΔGP(0)/RT is protein type and ligand dependent. ΔGS(0)/RT is strongly dependent on the stationary phase but not the protein. For mAb04 on mixed-mode resin Capto(®) MMC, ΔGS(0)/RT is 5-6 times higher than the result reported for the same protein on cation exchanger Fractogel(®) EMD SO3(-) (S).

  19. In vitro and in vivo performance of a dual drug-eluting stent (DDES).

    PubMed

    Huang, Yingying; Venkatraman, Subbu S; Boey, Freddy Y C; Lahti, Eeva M; Umashankar, P R; Mohanty, Mira; Arumugam, Sabareeswaran; Khanolkar, Laxmikant; Vaishnav, Sudhir

    2010-05-01

    This study reports on a dual drug-eluting stent (DDES) that has an anti-proliferative and an anti-thrombotic in a biodegradable polymer-coated onto a cobalt-chromium stent. The DDES was prepared by spray coating the bare metal stent with a biodegradable polymer loaded with sirolimus and triflusal, to treat against restenosis and thrombosis, respectively. The 2-layered dual-drug coated stent was characterized in vitro for surface properties before and after expansion, as well as for possible delamination by cross-sectioning the stent in vitro. The in vitro anti-platelet behavior of the triflusal-loaded films was investigated by using dynamic platelet adhesion measurements. Additionally, the in vitro degradation and release study of the films and the stents w/single sirolimus and dual sirolimus-triflusal in different formulations were examined. Finally, in vivo studies (in a porcine carotid artery model) were performed for acute thrombosis, inflammation and restenosis at 30 days. The in vitro results show DDES can sustain release both anti-proliferation drug (sirolimus) and anti-thrombosis drug (triflusal), two drugs were controlled in different rates to effectively reduce thrombosis and proliferation at the same time. In vivo results show a significant reduction in restenosis with dual-drug eluting stent compared with the controls (a bare metal stent, a sirolimus coated and a pure polymer-coated stent). The reduction in restenosis with a dual sirolimus-triflusal eluting stent is associated with an inhibition of inflammation, especially thrombus formation, suggesting that such dual-drug eluting stents have a role to play for the treatment of coronary artery disease.

  20. The influence of atherosclerotic plaques on the pharmacokinetics of a drug eluted from bioabsorbable stents.

    PubMed

    Ferreira, José A; Gonçalves, Lino; Naghipoor, Jahed; de Oliveira, Paula; Rabczuk, Timon

    2017-01-01

    In this paper the effect of plaque composition, on the accumulation of drug released by a drug eluting stent, is analyzed. The mathematical model is represented by two coupled systems of partial differential equations that describe the pharmacokinetics of drug in the stent coating and in the arterial wall. The influence of the stiffness and porosity of soft and hard plaques is studied. A case study based on optical coherence tomography images is also included.

  1. A current problem in cardiology: very late thrombosis after implantation of sirolimus eluting stent.

    PubMed

    Sharifkazemi, Mohammad Bagher; Zamirian, Mahmood; Aslani, Amir

    2007-01-01

    Discontinuation of antiplatelet medications has been strongly associated with coronary stent thrombosis. The first reported cases have been documented at 6 h to 6 weeks after stent implantation. This article presents a case of very late stent thrombosis 24 months after sirolimus eluting stent implantation and 18 months after clopidogrel discontinuation, despite aspirin continuation, and argues in favor of prolonging dual antiplatelet medication including clopidogrel in this setting, at least until data from randomized trials address this important issue.

  2. Hepatic Arterial Chemoembolization Using Drug-Eluting Beads in Gastrointestinal Neuroendocrine Tumor Metastatic to the Liver

    SciTech Connect

    Gaur, Shantanu K.; Friese, Jeremy L.; Sadow, Cheryl A.; Ayyagari, Rajasekhara; Binkert, Christoph A.; Schenker, Matthew P.; Kulke, Matthew; Baum, Richard

    2011-06-15

    Purpose: This study was designed to evaluate short (<3 months) and intermediate-term (>3 months) follow-up in patients with metastatic neuroendocrine tumor to the liver who underwent hepatic arterial chemoembolization with drug-eluting beads at a single institution. Methods: Institutional review board approval was obtained for this retrospective review. All patients who were treated with 100-300 or 300-500 {mu}m drug-eluting LC Beads (Biocompatibles, UK) preloaded with doxorubicin (range, 50-100 mg) for GI neuroendocrine tumor metastatic to the liver from June 2004 to June 2009 were included. CT and MRI were evaluated for progression using Response Evaluation Criteria In Solid Tumors (RECIST) or European Association for the Study of the Liver (EASL) criteria. Short-term (<3 months) and intermediate-term (>3 months) imaging response was determined and Kaplan-Meier survival curves were plotted. Results: Thirty-eight drug-eluting bead chemoembolization procedures were performed on 32 hepatic lobes, comprising 21 treatment cycles in 18 patients. All procedures were technically successful with two major complications (biliary injuries). At short-term follow-up (<3 months), 22 of 38 (58%) procedures and 10 of 21 (48%) treatment cycles produced an objective response (OR) with the remainder having stable disease (SD). At intermediate-term follow-up (mean, 445 days; range, 163-1247), 17 of 26 (65%) procedures and 8 of 14 (57%) treatment cycles produced an OR. Probability of progressing was approximately 52% at 1 year with a median time to progression of 419 days. Conclusions: Drug-eluting bead chemoembolization is a reasonable alternative to hepatic arterial embolization and chemoembolization for the treatment of metastatic neuroendocrine tumor to the liver.

  3. Elution characteristics of residual monomers in different light- and auto-curing resins.

    PubMed

    Danesh, Gholamreza; Hellak, Tobias; Reinhardt, Klaus-Jürgen; Végh, András; Schäfer, Edgar; Lippold, Carsten

    2012-11-01

    The aim of this in vitro study was to assess different auto-curing resins based on methylmethacrylate (MMA) and new light-curing resins based on urethane dimethacrylate (UDMA) regarding the residual monomers remaining in the resin and their elution over time. Specimens from three auto-curing and three light-curing resins were produced following the manufacturer's instructions. The concentration of residual MMA and UDMA monomers present in the resins as well as the quantity of the residual monomers released into artificial saliva solution after immersion times of 1, 3, and 7 days were analyzed by high-performance liquid chromatography (HPLC). Data were statistically analyzed using ANOVA and the post hoc Student-Newman-Keuls test. The highest and lowest amounts of residual monomers were found in the group of light-curing resins (p<0.05). The light-curing resins Triad Trans Sheet (0.06 wt%) and Primosplint (0.06 wt%) released over the entire immersion time of 7 days the smallest (p<0.05) quantity of UDMA. These two light-curing resins based on UDMA exhibited lower elution of residual monomers than auto-curing resins (MMA). The elution characteristics of the residual monomers do not seem to correlate with the residual monomer concentration in resins. These observations demonstrate that the quantitative determination of residual monomers alone - as required by the ISO specification 20795-1 - does not seem to be sufficient for an assessment of the biological properties of different resins. Instead, the evaluation of elution characteristics appears to be of higher clinical relevance.

  4. Real-time materials evolution visualized within intact cycling alkaline batteries

    SciTech Connect

    Gallaway, JW; Erdonmez, CK; Zhong, Z; Croft, M; Sviridov, LA; Sholklapper, TZ; Turney, DE; Banerjee, S; Steingart, DA

    2014-01-01

    The scientific community has focused on the problem of inexpensive, safe, and sustainable large-scale electrical energy storage, which is needed for a number of emerging societal reasons such as stabilizing intermittent renewables-based generation like solar and wind power. The materials used for large-scale storage will need to be low cost, earth-abundant, and safe at the desired scale. The Zn-MnO2 "alkaline" battery chemistry is associated with one-time use, despite being rechargeable. This is due to material irreversibilities that can be triggered in either the anode or cathode. However, as Zn and MnO2 have high energy density and low cost, they are economically attractive even at limited depth of discharge. As received, a standard bobbin-type alkaline cell costs roughly $20 per kW h. The U. S. Department of Energy ARPA-E $100 per kW h cost target for grid storage is thus close to the cost of alkaline consumer primary cells if re-engineered and/or cycled at 5-20% nominal capacity. Herein we use a deeply-penetrating in situ technique to observe ZnO precipitation near the separator in an alkaline cell anode cycled at 5% DOD, which is consistent with cell failures observed at high cycle life. Alkaline cells designed to avoid such causes of cell failure could serve as a low-cost baseload for large-scale storage.

  5. Investigation on phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions

    SciTech Connect

    Li, Peng Ding, Tian Liu, Liping Xiong, Guang

    2013-12-15

    The phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions was investigated by UV Raman spectroscopy, X-ray diffraction, X-ray fluorescence and scanning electron microscopy techniques. The results revealed that the products and transformation rate are dependent on the alkalinities. All of the starting and resulting zeolites are constructed with the 4-ring and 6-ring secondary building units. The products have lower Si/Al ratio, higher framework density and smaller pore size, which are more stable under alkaline hydrothermal condition. During the phase transformation the fragments of faujasite are formed, then the fragments combine to form different zeolites depending on basicity. Zeolite NaY crystals are consumed as the reservoir for the transformation products during the recrystallization process. For the first time, a 4-membered ring intermediate was found at the early stage of the recrystallization process. A cooperative interaction of liquid and solid phases is required for inducing the phase transformation. - Graphical Abstract: Phase transformation of NaY zeolite under alkaline hydrothermal condition is achieved by the cooperative interaction of the liquid and solid phases. A 4-membered ring species is an intermediate for recrystallization process. Highlights: • The products and transformation rate are dependent on the alkalinity. • A 4-membered ring species is an intermediate for recrystallization process. • A cooperative interaction of liquid and solid phases is required.

  6. Microsphere-integrated drug-eluting stents: PLGA microsphere integration in hydrogel coating for local and prolonged delivery of hydrophilic antirestenosis agents.

    PubMed

    Indolfi, Laura; Causa, Filippo; Giovino, Concetta; Ungaro, Francesca; Quaglia, Fabiana; Netti, Paolo Antonio

    2011-05-01

    The development of a novel generation of drug-eluting stent (DES) relies upon the idea to obtain very flexible platforms able to overcome some issues associated to available devices and widen their field of application, especially to the currently emerging biotech therapeutics. Here, we propose a new concept of DES named microsphere-integrated drug-eluting stent (MIDES) composed of drug eluting biodegradable poly(D,L-lactide-co-glycolide) microspheres--encapsulating an hydrophilic model molecule (dextran)--fully integrated in a poly(2-hydroxy-ethyl-methacrylate) coating. By implementing a modified spray-coating technique, we have been able to achieve a thin (10 μm), smooth, and homogeneous hydrogel surface embedding underneath a population of two different microparticles formulations--Dex502H and Dex506. The amount of drug can be tailored, resulting in a dextran loading as high as 1.4 μg/cm, by simply reiteration of coating layer deposition making the MIDES a custom-made device where the release kinetics can be further modified by opportunely choosing microsphere properties. DES use is nowadays restricted to delivery of hydrophobic pharmaceuticals; release of hydrophilic therapeutics from MIDES can, however, be finely controlled by specifically engineering biodegradable microspheres. By varying polymer resomer, we obtained a tunable release rate in the first month of delivery. Depending on the microspheres properties release profile changes drastically moving from a biphasic release, in the case of Dex502H, with a burst of about 20% in the first day to a more sustained release for Dex506 particles. As proof of principle, we also demonstrated that MIDES approach can allows the delivery of two different agents opening up the way to a multitherapy in restenosis treatment.

  7. Degradation modes of alkaline fuel cells and their components

    NASA Astrophysics Data System (ADS)

    Tomantschger, Klaus; Findlay, Robert; Hanson, Michael; Kordesch, Karl; Srinivasan, Supramaniam

    The performance and life-limiting parameters of multilayer polytetrafluoroethylene (PTFE) bonded carbon air cathodes and hydrogen anodes, developed at the Institute for Hydrogen Systems (IHS) for use in low temperature alkaline electrolyte fuel cells (AFC) and batteries, were investigated. Scanning electron microscopy (SEM), X-ray energy spectroscopy (XES), electron spectroscopy for chemical analysis (ESCA), microcalorimetry and intrusion porosimetry techniques in conjunction with electrochemical testing methods were used to characterize electrode components, electrodes and alkaline fuel cells. The lifetime of air cathodes is mainly limited by carbon corrosion and structural degradation, while that of hydrogen anodes is frequently limited by electrocatalyst problems and structural degradation. The PTFE binder was also found to degrade in both the cathodes and the anodes. The internal resistance, which was found to generally increase in AFCs in particular between the cathode and the current collector, can be minimized by the proper choice of materials. Temperature cycling of AFCs may result in mechanical problems; however, these problems can be overcome by using AFC components with compatible thermal expansion coefficients.

  8. In vitro hemocompatibility and cytocompatibility of dexamethasone-eluting PLGA stent coatings

    NASA Astrophysics Data System (ADS)

    Zhang, Jiang; Liu, Yang; Luo, Rifang; Chen, Si; Li, Xin; Yuan, Shuheng; Wang, Jin; Huang, Nan

    2015-02-01

    Drug-eluting stents (DESs) have been an important breakthrough for interventional cardiology applications since 2002. Though successful in reducing restenosis, some adverse clinical problems still emerged, which were mostly caused by the bare-metal stents and non-biodegradable polymer coatings, associated with the delayed endothelialization process. In this study, dexamethasone-loaded poly (lactic-co-glycolic acid) (PLGA) coatings were developed to explore the potential application of dexamethasone-eluting stents. Dexamethasone-eluting PLGA stents were prepared using ultrasonic atomization spray method. For other tests like stability and cytocompatibility and hemocompatibility tests, dexamethasone loaded coatings were deposited on 316L SS wafers. Fourier transform-infrared spectroscopy (FT-IR) results demonstrated that there was no chemical reaction between PLGA and dexamethasone. The balloon expansion experiment and surface morphology observation suggested that the stent coatings were smooth and uniform, and could also withstand the compressive and tensile strains imparted without cracking after stent expansion. The drug release behavior in vitro indicated that dexamethasone existed burst release within 1 day, but it presented linear release characteristics after 6 days. In vitro platelets adhesion, activation test and APTT test were also done, which showed that after blending dexamethasone into PLGA, the hemocompatibility was improved. Besides, dexamethasone and dexamethasone-loaded PLGA coatings could significantly inhibit the attachment and proliferation of smooth muscle cells.

  9. Second- and third-generation drug-eluting coronary stents: progress and safety.

    PubMed

    Akin, I; Schneider, H; Ince, H; Kische, S; Rehders, T C; Chatterjee, T; Nienaber, C A

    2011-05-01

    Drug-eluting stents (DES) have revolutionized the treatment of coronary artery disease by reducing the rate of in-stent restenosis from 20-40% with bare-metal stent (BMS) to 6-8% with DES. However, with widespread use of DES, safety concerns have risen due to the observation of late stent thrombosis. With this in mind and better understanding of mechanism and pathophysiology of stent thrombosis, the technological platform, especially innovative anti-restenotic agents, polymeric coatings, and stent platforms, improved with newer DES. Two second-generation DES, the Endeavor zotarolimus-eluting stent (ZES) and the Xience-V everolimus-eluting stent (EES), have provided promising results in both randomized controlled trials (SPIRIT and ENDEAVOR) and registries (E-Five, COMPARE) compared with bare-metal stents (BMS) and first-generation DES. Newer third-generation stent technology, especially biodegradable polymers, polymer-free stents, and biodegradable stents on the basis of poly-L-lactide (PLLA) or magnesium, has been evaluated in preclinical and initial clinical trials. However, despite encouraging initial results, long-term data of large-scale randomized trials as well as registries comparing them to currently approved first- and second-generation DES are still lacking.

  10. Megasonic sonication for cost-effective and automatable elution of Cryptosporidium from filters and membranes.

    PubMed

    Kerrouche, Abdelfateh; Desmulliez, Marc P Y; Bridle, Helen

    2015-11-01

    Sample processing is a highly challenging stage in the monitoring of waterborne pathogens. This step is time-consuming, requires highly trained technicians and often results in low recovery rates of pathogens. In the UK but also in other parts of the world, Cryptosporidium is the only pathogen directly tested for in routine operational monitoring. The traditional sampling process involves the filtration of 1000L of water, semi-automated elution of the filters and membranes with recovery rates of about 30-40% typically. This paper explores the use of megasonic sonication in an attempt to increase recovery rates and reduce both the time required for processing and the number of labour-intensive steps. Results demonstrate that megasonic energy assisted elution is equally effective as the traditional manual process in terms of recovery rates. Major advantages are however offered in terms of reduction of the elution volume enabling the current centrifugation stage to be avoided. This saves time, equipment and staff costs and critically removes the step in the process that would be most challenging to automate, paving the way thereby for highly effective automated solutions to pathogens monitoring.

  11. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement.

    PubMed

    Gálvez-López, Ruben; Peña-Monje, Alejandro; Antelo-Lorenzo, Ramón; Guardia-Olmedo, Juan; Moliz, Juan; Hernández-Quero, José; Parra-Ruiz, Jorge

    2014-01-01

    Antibiotic-loaded acrylic bone cements (ALABC) spacers are routinely used in the treatment of prosthetic joint infections. The objectives of our study were to evaluate different ALABC for elution kinetics, thermal stability, and mechanical properties. A 10 or 20% mixture (w/w) beads of medium viscosity bone cement (DePuy, Inc) and vancomycin (VAN), gentamycin (GM), daptomycin (DAP), moxifloxacin (MOX), rifampicin (RIF), cefotaxime (CTX), cefepime (FEP), amoxicillin clavulanate (AmC), ampicillin (AMP), meropenem (MER), and ertapenem (ERT) were formed and placed into wells filled with phosphate-buffered saline. Antibiotic concentrations were determined using high-performance liquid chromatography. Antimicrobial activity was tested against Micrococcus luteus ATCC 9341 or Escherichia coli ATCC 25922. AmC, AMP, and FEP concentration rapidly decreased after day 2, being almost undetectable at day 4. Sustained and high elution rates were observed with VAN, GM, MOX, and RIF for the 30-day duration of the experiment. DAP, MER, ERT, and CTX elution rates constantly decreased from day 4. All antibiotics tested retained antimicrobial activity proving thermal stability. Mechanical properties of ALABC were maintained except when RIF was used.

  12. Retention prediction and separation optimization under multilinear gradient elution in liquid chromatography with Microsoft Excel macros.

    PubMed

    Fasoula, S; Zisi, Ch; Gika, H; Pappa-Louisi, A; Nikitas, P

    2015-05-22

    A package of Excel VBA macros have been developed for modeling multilinear gradient retention data obtained in single or double gradient elution mode by changing organic modifier(s) content and/or eluent pH. For this purpose, ten chromatographic models were used and four methods were adopted for their application. The methods were based on (a) the analytical expression of the retention time, provided that this expression is available, (b) the retention times estimated using the Nikitas-Pappa approach, (c) the stepwise approximation, and (d) a simple numerical approximation involving the trapezoid rule for integration of the fundamental equation for gradient elution. For all these methods, Excel VBA macros have been written and implemented using two different platforms; the fitting and the optimization platform. The fitting platform calculates not only the adjustable parameters of the chromatographic models, but also the significance of these parameters and furthermore predicts the analyte elution times. The optimization platform determines the gradient conditions that lead to the optimum separation of a mixture of analytes by using the Solver evolutionary mode, provided that proper constraints are set in order to obtain the optimum gradient profile in the minimum gradient time. The performance of the two platforms was tested using experimental and artificial data. It was found that using the proposed spreadsheets, fitting, prediction, and optimization can be performed easily and effectively under all conditions. Overall, the best performance is exhibited by the analytical and Nikitas-Pappa's methods, although the former cannot be used under all circumstances.

  13. The sulphate-reduction alkalinity pump tested

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Petrishcheva, Elena

    2016-04-01

    Carbonate precipitation has been suggested to be induced by alkalinity increase during sulphate reduction under anoxic conditions. This mechanism may explain the formation of carbonate deposits in shallow marine environments, either within a redox stratified sediment inhabited by phototrophic microbial mats or in shallow water within the photic zone where sulphidic water is upwelling onto the shelf. The alkalinity pump may work as long as the sulphide is not reoxidized to sulphate, a process that would acidify the surrounding. The alkalinity effect of sulphate reduction was recently tested by Aloisi (2008) for microbial mats using a model approach. He found that sulphate reduction does not significantly increase or even decrease carbonate saturation and is unlikely to have played a significant role through Earth history. The model considers many environmental factors, including the effect of carbonate precipitation itself on the carbonate equilbrium and on the alkalinity. We used a modified version of Aloisi's (2008) model to simulate the saturation states of aragonite, calcite and dolomite without the effects of carbonate precipitation. This is necessary to evaluate the effect of microbial metabolisms exclusively on carbonate saturation, since carbonate precipitation is only the consequence, but not the cause of oversaturation. First results show that the saturation state is increased in the zone of phototrophic CO2 uptake. In contrast, the saturation state is strongly decreased in the zone where dissolved oxygen overlaps with dissolved sulphide. Aerobic sulphide oxidation consumes most of the HS- and dissipates most of the alkalinity produced in the sulphate reduction zone below. Hence, our results are consistent with the findings of Aloisi (2008), and they even more clearly show that sulphate reduction does not induce carbonate precipitation nor contributes to carbonate precipitation in combination with phototrophic CO2 uptake. The alkalinity effect of sulphate

  14. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    PubMed

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  15. Drug-eluting stents in percutaneous coronary intervention: a benefit-risk assessment.

    PubMed

    Byrne, Robert A; Sarafoff, Nikolaus; Kastrati, Adnan; Schömig, Albert

    2009-01-01

    Drug-eluting stent (DES) therapy has represented a very significant milestone in the evolution of percutaneous coronary intervention (PCI) therapy. This review attempts to provide a balanced overview of the unprecedented wealth of data generated on this new technology, by examining the evidence bases for anti-restenotic efficacy, safety and cost effectiveness. The performance of a DES may be related to each of its three components: stent backbone; carrier polymer (to control drug-release kinetics); and active drug. In terms of anti-restenotic efficacy, the most appropriate parameters to examine are target lesion revascularization, angiographic restenosis and late luminal loss. The principal safety parameters are overall mortality, myocardial infarction (MI) and stent thrombosis. Anti-restenotic superiority of DES over bare metal stents (BMS) has been demonstrated across a spectrum of disease from straightforward 'vanilla lesions' through higher disease complexity in pivotal clinical trials to phase IV studies of efficacy in 'off-label' populations. The treatment effect of DES versus BMS is consistent in terms of a reduction in the need for repeat intervention of the order of 35-70%. Regarding differential efficacy of first-generation DES, a benefit may exist in favour of the Cypher (sirolimus-eluting) stent over Taxus (paclitaxel-eluting), particularly in high-risk lesion subsets. The second-generation approved devices are the Endeavor (zotarolimus-eluting) and Xience (everolimus-eluting) DES. While all four of these stents are permanent polymer-based, the current focus of development is towards DES platforms that are devoid of durable polymer, the presence of which has been implicated in late adverse events. In terms of safety concerns raised in relation to DES therapy, it is reasonable to conclude the following at 4- to 5-year post-stent implantation: (i) that there is no increased risk of death or MI with DES (neither is there a general signal of mortality

  16. Protein adsorption to poly(ethylenimine)-modified Sepharose FF. IV. Dynamic adsorption and elution behaviors.

    PubMed

    Liu, Na; Yu, Lin-Ling; Sun, Yan

    2014-10-03

    We have previously investigated bovine serum albumin (BSA) uptake to poly(ethylenimine) (PEI)-grafted Sepharose FF. It was found that there was a critical ionic capacity (cIC; 600mmol/L) for BSA, above which the protein adsorption capacity and uptake kinetics increased drastically. In this work, two poly(ethylenimine) (PEI)-grafted resins with IC values of 271mmol/L (FF-PEI-L270) and 683mmol/L (FF-PEI-L680), which were below and above the cIC, respectively, were chosen to investigate the breakthrough and linear gradient elution (LGE) behaviors of BSA. Commercially available anion exchanger, Q Sepharose FF, was used for comparison. The DBC values of FF-PEI-L680 were much higher in the entire residence time range (2-10min) than the other two resins due to its high static adsorption capacity and uptake kinetics. At a residence time of 5.0min, the DBC of FF-PEI-L680 (104mg/mL) was about seven times that of FF-PEI-L270 and three times that of Q Sepharose FF. A rise-fall trend of the DBCs with increasing ionic strength (IS) was found for all the three resins studied, indicating the presence of electrostatic exclusion for protein uptake at low IS. With increasing NaCl concentration from 20 to 200mmol/L, FF-PEI-L680 kept very high DBC values (64-114mg/mL). In addition, FF-PEI-L270 showed more favorable adsorption properties than Q Sepharose FF at 100-300mmol/L NaCl. These results proved that the three-dimensional grafting ion exchange layer on the PEI resins enhanced their tolerance to IS. In the study of LGE, the three resins showed similar elution behaviors and no distinct peak tailings were observed. The salt concentrations at the elution peaks (IR) were in the order of FF-PEI-L680>FF-PEI-L270>Q Sepharose FF, indicating that the elution for the PEI resins needed higher salt concentrations, which was also an appearance of the salt-tolerant feature of the PEI resins. When protein loading amount was increased to the value equivalent to the DBC at 10% breakthrough, the

  17. Efficacy of drug-eluting stents for treating in-stent restenosis of drug-eluting stents (from the Korean DES ISR multicenter registry study [KISS]).

    PubMed

    Ko, Young-Guk; Kim, Jung-Sun; Kim, Byeong-Keuk; Choi, Donghoon; Hong, Myeong-Ki; Jeon, Dong Woon; Yang, Joo-Young; Ahn, Young Keun; Jeong, Myung Ho; Yu, Cheol Woong; Yun, Kyeong-Ho; Lim, Do-Sun; Jang, Yangsoo

    2012-03-01

    There is currently no established standard treatment for in-stent restenosis (ISR) after the implantation of a drug-eluting stent (DES). The aim of this study was to investigate the efficacy of DES versus balloon angioplasty (BA) for the treatment of DES ISR in a multicenter registry cohort. After matching propensity scores of 805 patients with DES ISR treated with either DES (n = 422) or BA (n = 383), 268 matched pairs were selected and analyzed for major adverse cardiac events, a composite of death, myocardial infarction, and target-vessel revascularization, as the primary end point. Baseline clinical and lesion characteristics of the matched pairs were similar. Survival free of major adverse cardiac events at 2 years was higher with DES compared to BA (88.9% vs 78.7%, p <0.001), mainly because of higher TVR-free survival (92.4% vs 81.0%, p <0.001). Among various baseline variables, BA (hazard ratio 2.546, 95% confidence interval 1.412 to 4.593, p = 0.002) was the most important independent risk factor for recurrent target vessel revascularization, followed by acute coronary syndromes as the clinical presentation of DES ISR, and previous implantation of a sirolimus-eluting stent. Survival free of death, myocardial infarction, or stent thrombosis did not differ between the 2 groups. Whereas there was no significant difference in survival free of target vessel revascularization between DES and BA for focal ISR lesions, DES was superior to BA in diffuse ISR lesions (94.3% vs 75.2% at 2 years, p <0.001). In conclusion, compared to BA, the implantation of DES was safe and more effective in the treatment of DES ISR.

  18. Network meta-analysis of balloon angioplasty, nondrug metal stent, drug-eluting balloon, and drug-eluting stent for treatment of infrapopliteal artery occlusive disease

    PubMed Central

    Xiao, Yaowen; Chen, Zhong; Yang, Yaoguo; Kou, Lei

    2016-01-01

    PURPOSE We aimed to conduct a network meta-analysis of mixed treatments for the infrapopliteal artery occlusive disease. METHODS We searched randomized controlled trials (RCTs) regarding balloon angioplasty (BA), nondrug metal stent (NDMS), drug-eluting balloon (DEB), or drug-eluting stent (DES) in PubMed, Embase, CENTRAL, Ovid, Sinomed, and other relevant websites. We selected and assessed the trials that met the inclusion criteria and conducted a network meta-analysis using the ADDIS software. RESULTS We included 11 relevant trials. We analyzed data of 1322 patients with infrapopliteal artery occlusive disease, of which 351 were in the NDMS vs. DES trials, 231 in the NDMS vs. BA trials, 490 in the BA vs. DEB trials, 50 in the DEB vs. DES trials, and 200 in the BA vs. DES trials. The network meta-analysis indicated that with NDMS as the reference, DES had a better result with respect to restenosis (odds ratio [OR], 5.16; 95% credible interval [CI], 1.58–18.41; probability of the best treatment, 84%) and amputation (OR, 2.50; 95% CI, 0.81–7.11; probability of the best treatment, 61%) and DEB had a better result with respect to target lesion revascularization (TLR; OR, 3.74; 95% CI, 0.78–17.05; probability of the best treatment, 57%). Moreover, with BA as the reference, NDMS had a better result with respect to technical success (OR, 0.10; 95% CI, 0.00–1.15; probability of the best treatment, 86%). CONCLUSION Our meta-analysis revealed that DES is a better treatment with respect to short-term patency and limb salvage rate, NMDS may provide a better technical success, and DEB and DES are good choices for reducing revascularization. PMID:27559766

  19. Long-term (three-year) safety and efficacy of everolimus-eluting stents compared to paclitaxel-eluting stents (from the SPIRIT III Trial).

    PubMed

    Applegate, Robert J; Yaqub, Manejeh; Hermiller, James B; Sood, Poornima; Yu, Shui; Doostzadeh, Julie; Williams, Jerome E; Farhat, Naim; Caputo, Ronald; Lansky, Alexandra J; Cutlip, Donald E; Sudhir, Krishnankutty; Stone, Gregg W

    2011-03-15

    The safety and efficacy of the XIENCE V everolimus-eluting stent (EES) compared to the Taxus Express(2) paclitaxel-eluting stent (PES) has been demonstrated through 2 years in the SPIRIT II and III randomized clinical trials, but limited longer-term data have been reported. In the SPIRIT III trial, 1,002 patients with up to 2 lesions in 2 coronary arteries were randomized 2:1 to EESs versus PESs at 65 United States sites. At completion of 3-year follow-up, treatment with EES compared to PES resulted in a significant 30% decrease in the primary clinical end point of target vessel failure (cardiac death, myocardial infarction, or ischemic-driven target vessel revascularization, 13.5% vs 19.2%, hazard ratio 0.70, 95% confidence interval 0.50 to 0.96, p = 0.03) and a 43% decrease in major adverse cardiovascular events, cardiac death, myocardial infarction, or ischemic-driven target lesion revascularization (9.1% vs 15.7%, hazard ratio 0.57, 95% confidence interval 0.39 to 0.83, p = 0.003). In a landmark analysis, major adverse cardiovascular events were decreased to a similar extent with EES compared to PES 0 through 1 year and 1 year through 3 years (hazard ratio 0.56, 95% confidence interval 0.35 to 0.90; hazard ratio 0.59, 95% confidence interval 0.31 to 1.11, respectively). In conclusion, patients treated with EES rather than PES in the SPIRIT III trial had significantly improved event-free survival at 3 years. From 1 year to 3 years hazard curves continued to diverge in favor of EES, consistent with an improving long-term safety and efficacy profile of EES compared to PES, with no evidence of late catchup.

  20. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  1. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  2. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  3. Inhibition of Alkaline Phosphatase by Several Diuretics

    DTIC Science & Technology

    1980-01-01

    August 20th, 1979) . . Summary , . Acetazolamide, furosemide, ethacrynic acid and chlorothiazide, diuretics of considerable structural diversity, inhibit...Ki is calculated to be 8.4, 7.0, 2.8 and 0.1 mmol/l for acetazolamide, furosemide, ethacrynic acid and chlorothiazide, respectively. Chlorothiazide...is a much more potent inhibitor of alkaline phos- phatase than the other three diuretics. The combination of ethacrynic acid and cysteine, itself an

  4. Sequential elution of multiply and singly phosphorylated peptides with polar-copolymerized mixed-mode RP18/SCX material.

    PubMed

    Li, Xiuling; Guo, Zhimou; Sheng, Qianying; Xue, Xingya; Liang, Xinmiao

    2012-06-21

    Novel polar-copolymerized mixed-mode RP18/SCX material was developed for feasible phosphopeptide enrichment, in which multiply and singly phosphorylated peptides could be sequentially eluted and separated with high selectivity.

  5. Elution of TEGDMA and BisGMA from a resin and a resin composite cured with halogen or plasma light.

    PubMed

    Munksgaard, E C; Peutzfeldt, A; Asmussen, E

    2000-08-01

    Plasma arc light units for curing resin composites have been introduced with the claim of relatively short curing times. The purpose of the present study was to measure and compare elution of monomers from an experimental BisGMA-TEGDMA resin and a commercial resin composite when cured with a halogen unit and when cured with a plasma arc unit. Specimens of the materials were immersed in methanol, and the amounts of monomers released with time were analyzed by HPLC. By use of Fick's laws of diffusion, the amount of eluted monomers from the specimen at infinity was estimated. The elution from resin specimens and from resin composite specimens cured with the plasma arc light unit was 7 and 4 times higher, respectively, compared to the elution from specimens cured with the halogen unit. It was concluded that the plasma arc light curing unit did not provide optimal cure when used as recommended by the manufacturer.

  6. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  7. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  8. Poly(N-vinyl-2-pyrrolidone) elution from polysulfone dialysis membranes by varying solvent and wall shear stress.

    PubMed

    Namekawa, Koki; Matsuda, Masato; Fukuda, Makoto; Kaneko, Ami; Sakai, Kiyotaka

    2012-06-01

    Some dialysis patients are treated with post-hemodiafiltration (HDF); the blood viscosity of the patients who undergo post-HDF is higher than that of the patients who undergo conventional hemodialysis. This study aims to evaluate poly(N-vinyl-2-pyrrolidone) (PVP) elution from PSf dialysis membranes by varying solvents and high wall shear stress caused by blood viscosity. We tested three commercial membranes: APS-15SA (Asahi Kasei Kuraray), CX-1.6U (Toray) and FX140 (Fresenius). Dialysate and blood sides of the dialyzers were primed with reverse osmosis (RO) water and saline. RO water, saline and dextran solution (2.9 and 5.8 mPa s) were circulated in the blood side. The amount of eluted PVP was determined by 0.02 N iodometry. The hardness and adsorption force of human serum albumin (HSA) on the membrane surfaces were measured by the atomic force microscope. When wall shear stress was increased using dextran, the amount of PVP eluted by the 2.9 mPa s solution equaled that eluted by the 5.8 mPa s solution with APS-15SA and CX-1.6U sterilized by gamma rays. The amount of PVP eluted by the 5.8 mPa s solution was higher than that eluted by the 2.9 mPa s solution with FX140 sterilized by autoclaving. The wall shear stress increased the PVP elution from the surface, hardness and adsorption force of HSA. Sufficient gamma-ray irradiation is effective in decreasing PVP elution.

  9. Elution and Mechanical Strength of Vancomycin-Loaded Bone Cement: In Vitro Study of the Influence of Brand Combination

    PubMed Central

    Tai, Ching-Lung; Chen, Szu-Yuan; Chang, Chih-Hsiang; Chang, Yu-Han; Hsieh, Pang-Hsin

    2016-01-01

    Antibiotic-loaded bone cement (ALBC) is widely used in orthopaedic surgery for both prevention and treatment of infection. Little is known about the effect of different brand combinations of antibiotic and bone cement on the elution profile and mechanical strength of ALBC. Standardized specimens that consisted of one of the 4 brands of bone cement and one of the 3 brands of vancomycin were fashioned, producing 12 combinations of ALBC. Two dosages of vancomycin in 40g bone cement were used to represent the high (4g vancomycin) and low (1g vancomycin) dose groups. Concentrations of vancomycin elution from ALBC was measured for up to 336 hours. The ultimate compression strength was tested at axial compression using a material testing machine before and after elution. In both high-dose and low-dose groups, Lyo-Vancin in PALACOS bone cement resulted in the highest cumulative elution and Vanco in Simplex P bone cement resulted in the lowest elution (458% and 65% higher in high- and low-dose groups, respectively). The mechanical strength was not significantly compromised in all groups with low dose vancomycin (range: 70.31 ± 2.74 MPa to 87.28 ± 8.26MPa after elution). However, with the addition of high dose vancomycin, there was a mixed amount of reduction in the ultimate compression strength after cement aging, ranging from 5% (Vanco in Simplex P, 81.10 ± 0.48 MPa after elution) to 38% (Sterile vancomycin in CMW, 60.94 ± 5.74 MPa after elution). We concluded that the selection of brands of vancomycin and bone cement has a great impact on the release efficacy and mechanical strength of ALBC. PMID:27855203

  10. Drug eluting and bare metal stents in people with and without diabetes: collaborative network meta-analysis

    PubMed Central

    Stettler, Christoph; Allemann, Sabin; Wandel, Simon; Kastrati, Adnan; Morice, Marie Claude; Schömig, Albert; Pfisterer, Matthias E; Stone, Gregg W; Leon, Martin B; de Lezo, José Suárez; Goy, Jean-Jacques; Park, Seung-Jung; Sabaté, Manel; Suttorp, Maarten J; Kelbaek, Henning; Spaulding, Christian; Menichelli, Maurizio; Vermeersch, Paul; Dirksen, Maurits T; Cervinka, Pavel; Carlo, Marco De; Erglis, Andrejs; Chechi, Tania; Ortolani, Paolo; Schalij, Martin J; Diem, Peter; Meier, Bernhard; Windecker, Stephan

    2008-01-01

    Objective To compare the effectiveness and safety of three types of stents (sirolimus eluting, paclitaxel eluting, and bare metal) in people with and without diabetes mellitus. Design Collaborative network meta-analysis. Data sources Electronic databases (Medline, Embase, the Cochrane Central Register of Controlled Trials), relevant websites, reference lists, conference abstracts, reviews, book chapters, and proceedings of advisory panels for the US Food and Drug Administration. Manufacturers and trialists provided additional data. Review methods Network meta-analysis with a mixed treatment comparison method to combine direct within trial comparisons between stents with indirect evidence from other trials while maintaining randomisation. Overall mortality was the primary safety end point, target lesion revascularisation the effectiveness end point. Results 35 trials in 3852 people with diabetes and 10 947 people without diabetes contributed to the analyses. Inconsistency of the network was substantial for overall mortality in people with diabetes and seemed to be related to the duration of dual antiplatelet therapy (P value for interaction 0.02). Restricting the analysis to trials with a duration of dual antiplatelet therapy of six months or more, inconsistency was reduced considerably and hazard ratios for overall mortality were near one for all comparisons in people with diabetes: sirolimus eluting stents compared with bare metal stents 0.88 (95% credibility interval 0.55 to 1.30), paclitaxel eluting stents compared with bare metal stents 0.91 (0.60 to 1.38), and sirolimus eluting stents compared with paclitaxel eluting stents 0.95 (0.63 to 1.43). In people without diabetes, hazard ratios were unaffected by the restriction. Both drug eluting stents were associated with a decrease in revascularisation rates compared with bare metal stents in people both with and without diabetes. Conclusion In trials that specified a duration of dual antiplatelet therapy of six

  11. Separation of polyphenols from leaves of Malus hupehensis (Pamp.) Rehder by off-line two-dimensional High Speed Counter-Current Chromatography combined with recycling elution mode.

    PubMed

    Liu, Qi; Zeng, Hualiang; Jiang, Shujing; Zhang, Li; Yang, Fuzhu; Chen, Xiaoqing; Yang, Hua

    2015-11-01

    In this study, off-line two-dimensional High Speed Counter-Current Chromatography (2D HSCCC) strategy combined with recycling elution mode was developed to isolate compounds from the ethyl acetate extract of a common green tea--leaves of Malus hupehensis (Pamp.) Rehder. In the orthogonal separation system, a conventional HSCCC was employed for the first dimension and two recycling HSCCCs were used for the second in parallel. Using a solvent system consisting of n-hexane-ethyl acetate-methanol-water (1:4:0.6:4.4, v/v) in the first and second dimension, four compounds including 3-hydroxy-phlorizin (1), phloretin (2), avicularin (3) and kaempferol 3-O-β-D-glucoside (4) were obtained. The purities of these four compounds were all over 95.0% as determined by HPLC. And their structures were all identified through UV, MS and (1)H NMR. It has been demonstrated that the combination of off-line 2D HSCCC with recycling elution mode is an efficient technique to isolate compounds with similar polarities in natural products.

  12. Drug-eluting coating of ginsenoside Rg1 and Re incorporated poly(lactic-co-glycolic acid) on stainless steel 316L: Physicochemical and drug release analyses.

    PubMed

    Miswan, Zulaika; Lukman, Siti Khadijah; Abd Majid, Fadzilah Adibah; Loke, Mun Fai; Saidin, Syafiqah; Hermawan, Hendra

    2016-12-30

    Active ingredients of ginsenoside, Rg1 and Re, are able to inhibit the proliferation of vascular smooth muscle cells and promote the growth of vascular endothelial cells. These capabilities are of interest for developing a novel drug-eluting stent to potentially solve the current problem of late-stent thrombosis and poor endotheliazation. Therefore, this study was aimed to incorporate ginsenoside into degradable coating of poly(lactic-co-glycolic acid) (PLGA). Drug mixture composed of ginseng extract and 10% to 50% of PLGA (xPLGA/g) was coated on electropolished stainless steel 316L substrate by using a dip coating technique. The coating was characterized principally by using attenuated total reflectance-Fourier transform infrared spectroscopy, scanning electron microscopy and contact angle analysis, while the drug release profile of ginsenosides Rg1 and Re was determined by using mass spectrometry at a one month immersion period. Full and homogenous coating coverage with acceptable wettability was found on the 30PLGA/g specimen. All specimens underwent initial burst release dependent on their composition. The 30PLGA/g and 50PLGA/g specimens demonstrated a controlled drug release profile having a combination of diffusion- and swelling-controlled mechanisms of PLGA. The study suggests that the 30PLGA/g coated specimen expresses an optimum composition which is seen as practicable for developing a controlled release drug-eluting stent.

  13. Mesozoic mafic alkaline magmatism of southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian

    2004-11-01

    More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17 27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the

  14. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  15. Solvent modulated linear pH gradient elution for the purification of conventional and bispecific antibodies: Modeling and application.

    PubMed

    Kluters, Simon; Hafner, Mathias; von Hirschheydt, Thomas; Frech, Christian

    2015-10-30

    Classical ion-exchange chromatography using a linear salt gradient to elute the adsorbed protein at fixed pH is the most common method to separate product-related impurities during downstream processing of biopharmaceuticals. Linear pH gradient elution provides a useful alternative by separating proteins in a linear pH gradient at fixed salt concentration. Although linear pH gradient elution provides excellent selectivity, it is rarely encountered in industrial purification processes. Here, a stoichiometric displacement model is used to characterize pH gradient elution based on simple linear gradient elution experiments. Protein retention behavior is described with respect to the pH dependencies of the characteristic binding charge and the equilibrium constant of the ion exchange reaction. Furthermore, the influence of solvent composition using PEG as a mobile phase modifier is investigated. Validity and applicability of the model are demonstrated for the purification of a conventional monoclonal antibody from soluble aggregates and for a novel bispecific antibody format containing a unique product-related impurity profile. pH step elution protocols are derived from model calculations without further optimization experiments necessary.

  16. Comparison of zonal elution and nonlinear chromatography in determination of the interaction between seven drugs and immobilised β(2)-adrenoceptor.

    PubMed

    Li, Qian; Wang, Jing; Zheng, Yuqing Yuan; Yang, Lingjian; Zhang, Yajun; Bian, Liujiao; Zheng, Jianbin; Li, Zijian; Zhao, Xinfeng; Zhang, Youyi

    2015-07-03

    Zonal elution and nonlinear chromatography are two mainstream models for the determination of drug-protein interaction in affinity chromatography. This work intended to compare the results by zonal elution with that by nonlinear chromatography when it comes to the analysis of the interaction between seven drugs and immobilised β2-adrenoceptor (β2-AR). The results of the zonal elution showed that clorprenaline, clenbuterol, methoxyphenamine, salbutamol, terbutaline, tulobuterol and bambuterol have only one type of binding site on immobilised β2-AR, while nonlinear chromatography confirmed the existence of at least two types of binding sites between β2-AR and clorprenaline, clenbuterol and bambuterol. On these sites, both zonal elution and nonlinear chromatography presented the same rank order for the association constants of the seven drugs. Compared with the data from zonal elution, the association constants calculated using nonlinear chromatography gave a good linear response to the corresponding values by radio-ligand binding assay. The sampling efficiencies of nonlinear chromatography were clearly higher than zonal elution. Nonlinear chromatography will probably become a powerful alternative for the high throughput determination of drug-protein interaction.

  17. Application of quality by design (QbD) approach to ultrasonic atomization spray coating of drug-eluting stents.

    PubMed

    McDermott, Martin; Chatterjee, Sharmista; Hu, Xiaoli; Ash-Shakoor, Ariel; Avery, Reginald; Belyaeva, Anastasiya; Cruz, Celia; Hughes, Minerva; Leadbetter, Joanne; Merkle, Conrad; Moot, Taylor; Parvinian, Sepideh; Patwardhan, Dinesh; Saylor, David; Tang, Nancy; Zhang, Tina

    2015-08-01

    The drug coating process for coated drug-eluting stents (DES) has been identified as a key source of inter- and intra-batch variability in drug elution rates. Quality-by-design (QbD) principles were applied to gain an understanding of the ultrasonic spray coating process of DES. Statistically based design of experiments (DOE) were used to understand the relationship between ultrasonic atomization spray coating parameters and dependent variables such as coating mass ratio, roughness, drug solid state composite microstructure, and elution kinetics. Defect-free DES coatings composed of 70% 85:15 poly(DL-lactide-co-glycolide) and 30% everolimus were fabricated with a constant coating mass. The drug elution profile was characterized by a mathematical model describing biphasic release kinetics. Model coefficients were analyzed as a DOE response. Changes in ultrasonic coating processing conditions resulted in substantial changes in roughness and elution kinetics. Based on the outcome from the DOE study, a design space was defined in terms of the critical coating process parameters resulting in optimum coating roughness and drug elution. This QbD methodology can be useful to enhance the quality of coated DES.

  18. A case of Z/E-isomers elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography.

    PubMed

    Pokrovskiy, Oleg I; Ustinovich, Konstantin B; Usovich, Oleg I; Parenago, Olga O; Lunin, Valeriy V; Ovchinnikov, Denis V; Kosyakov, Dmitry S

    2017-01-06

    A case of elution order inversion caused by cosolvent percentage change in supercritical fluid chromatography was observed and investigated in some detail. Z- and E-isomers of phenylisobutylketone oxime experience an elution order reversal on most columns if the mobile phase consists of CO2 and alcohol. At lower percentages of alcohol Z-oxime is retained less, somewhere at 2-5% coelution occurs and at larger cosolvent volume elution order reverses - Z-oxime is eluted later than E-oxime. We suppose inversion with CO2-ROH phases happens due to a shift in balance between two main interactions governing retention. At low ROH percentages stationary phase surface is only slightly covered by ROH molecules so oximes primarily interact with adsorption sites via hydrogen bond formation. Due to intramolecular sterical hindrance Z-oxime is less able to form hydrogen bonds and consequently is eluted first. At higher percentages alcohols occupy most of strong hydrogen bonding sites on silica surface thus leaving non-specific electrostatic interactions predominantly responsible for Z/E selectivity. Z-oxime has a much larger dipole moment than E-oxime and at these conditions it is eluted later. Additional experimental data with CO2-CH3CN, hexane-iPrOH and CHF3-ROH mobile phases supporting this explanation are presented.

  19. Separation of five compounds from leaves of Andrographis paniculata (Burm. f.) Nees by off-line two-dimensional high-speed counter-current chromatography combined with gradient and recycling elution.

    PubMed

    Zhang, Li; Liu, Qi; Yu, Jingang; Zeng, Hualiang; Jiang, Shujing; Chen, Xiaoqing

    2015-05-01

    An off-line two-dimensional high-speed counter-current chromatography method combined with gradient and recycling elution mode was established to isolate terpenoids and flavones from the leaves of Andrographis paniculata (Burm. f.) Nees. By using the solvent systems composed of n-hexane/ethyl acetate/methanol/water with different volume ratios, five compounds including roseooside, 5,4'-dihydroxyflavonoid-7-O-β-d-pyranglucuronatebutylester, 7,8-dimethoxy-2'-hydroxy-5-O-β-d-glucopyranosyloxyflavon, 14-deoxyandrographiside, and andrographolide were successfully isolated. Purities of these isolated compounds were all over 95% as determined by high-performance liquid chromatography. Their structures were identified by UV, mass spectrometry, and (1) H NMR spectroscopy. It has been demonstrated that the combination of off-line two-dimensional high-speed counter-current chromatography with different elution modes is an efficient technique to isolate compounds from complex natural product extracts.

  20. Miniaturized Self-Expanding Drug-Eluting Stent in Small Coronary Arteries: Late Effectiveness

    PubMed Central

    de Oliveira, Flavio Roberto Azevedo; Mattos, Luiz Alberto Piva e; Abizaid, Alexandre; Abizaid, Andrea S.; Costa, J. Ribamar; Costa, Ricardo; Staico, Rodolfo; Botelho, Roberto; Sousa, J. Eduardo; Sousa, Amanda

    2013-01-01

    Background Small vessels represent a risk factor for restenosis in percutaneous coronary angioplasty (PCA). The Sparrow® self-expanding drug-eluting stent, which has a lower profile than the current systems, has never been tested in this scenario. Objectives To evaluate the late effectiveness of the Sparrow® drug-eluting stent, regarding in-stent late lumen loss (LLL). Methods Patients with ischemia, symptomatic or documented, were submitted to PCA in vessels with reference diameter < 2.75 mm, divided into two groups regarding Sparrow® stent type: group 1: Sparrow® drug-eluting stent (DES), group 2: Sparrow® bare metal stent (BMS). Clinical follow-up duration was 12 months. Evaluation using quantitative coronary angiography (QCA) was performed immediately and at 8 months. A decrease of over 65% of in-stent LLL with DES was estimated to calculate sample size. IBM® SPSS software, release 19 (Chicago, Illinois, USA) was used for the statistical analysis. Results A total of 24 patients were randomized, 12 in each group. The DES and BMS groups were similar in age (63.25 ± 10.01 vs. 64.58 ± 11.54, p = 0.765), male gender (58.3% vs. 33.3%, p = 0.412), risk factors and all angiographs aspects. Immediate results were satisfactory in both groups. At 8 months in-stent late lumen loss was significantly lower in DES than in BMS group (DES vs. BMS 0.25 ± 0.16 0.97 ± 0.76, p = 0.008). Conclusion In small-vessel PCA, the Sparrow® DES determined significant reduction in in-stent LLL, when compared to Sparrow® BMS. PMID:24100691

  1. A resorbable antibiotic eluting bone void filler for periprosthetic joint infection prevention.

    PubMed

    Jones, Zachary; Brooks, Amanda E; Ferrell, Zachary; Grainger, David W; Sinclair, Kristofer D

    2016-11-01

    Periprosthetic joint infection (PJI) following total knee arthroplasty is a globally increasing procedural complication. These infections are difficult to treat and typically require revision surgery. Antibiotic-loaded bone cement is frequently utilized to deliver antibiotics to the site of infection; however, bone cement is a nondegrading foreign body and known to leach its antibiotic load, after an initial burst release, at subtherapeutic concentrations for months. This work characterized a resorbable, antibiotic-eluting bone void filler designed to restore bone volume and prevent PJI. Three device formulations were fabricated, consisting of different combinations of synthetic inorganic bone graft material, degradable polymer matrices, salt porogens, and antibiotic tobramycin. These formulations were examined to determine the antibiotic's elution kinetics and bactericidal potential, the device's degradation in vitro, as well as osteoconductivity and device resorption in vivo using a pilot rabbit bone implant model. Kirby-Bauer antibiotic susceptibility tests assessed bactericidal activity. Liquid chromatography with tandem mass spectrometry measured antibiotic elution kinetics, and scanning electron microscopy was used to qualitatively assess degradation. Results indicated sustained antibiotic release from all three formulations above the Staphylococcus aureus minimum inhibitory concentration for a period of 5 to 8 weeks. Extensive degradation was observed with the Group 3 formulation after 90 days in phosphate-buffered saline, with a lesser degree of degradation observed in the other two formulations. Results from the pilot rabbit study showed the Group 3 device to be biocompatible, with minimal inflammatory response and no fibrous encapsulation in bone. The device was also highly osteoconductive-exhibiting an accelerated mineral apposition rate. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1632-1642, 2016.

  2. Extended Outcomes of Complex Coronary Disease in the Drug Eluting Stent Era

    PubMed Central

    Desrosiers, Kevin P.; Brown, Jeremiah R.; Langner, Craig A.; Sidhu, Mandeep S.; Robb, John F.; Hearne, Michael J.; Lee, Peter M. Ver; Kellett, Mirle A.; Ryan, Thomas J.; O’Meara, John R.; Dauerman, Harold L.; Silver, M. Theodore; Thompson, Craig A.; Malenka, David J.

    2011-01-01

    Background Several randomized trials comparing bare-metal stents to Drug-Eluting Stents (DES) have demonstrated a significant reduction in Target Vessel Revascularization (TVR) and Target Lesion Revascularization (TLR) exists with the use of drug-eluting stents, without compromising survival. These conclusions are based on restricted inclusion criteria for patients and lesion. It is unknown if these results can be generalized to an unselected patient population and more complex disease. The objective of this study was to determine to what extent the availability of DES has impacted survival, TVR, and TLR in a large regional experience without the restriction of on-label indications. Methods Patients registered with the Northern New England Cardiovascular Disease Study Group’s PCI registry with single vessel coronary disease undergoing a first PCI were sorted according to the Bare-Metal stent (BMS) era (2001 - 2002) or the Drug-Eluting stent (DES) era (2004 - 2005) based on the time period their first PCI took place. Totally, 6,093 BMS and 5,651 DES patients were identified. Outcomes of survival, TLR and TVR were measured after one year. Results After 1 year, survival was comparable, TLR was reduced by 4.9% (absolute) and TVR was reduced by 5.4% (absolute) in the DES era compared to the BMS era. The TLR/TVR differences remained significant after propensity matching in the DES era vs BMS era (Mortality: HR 1.00, 95% CI: 0.83 - 1.28; TLR: HR 0.40, 95% CI 0.32 - 0.46; TVR: HR 0.44, 95% CI 0.38 - 0.51). Conclusions In large regional experience with a consecutive series of patients representing the contemporary practice of PCI, including both on and off label use, the frequent use of DES reduces the risk of TVR and TLR without compromising survival.

  3. Sustained Antibiotic-Eluting Intra-Ocular Lenses: A New Approach

    PubMed Central

    Tan, Dulcia W. N.; Lim, Soo Ghim; Wong, Tina T.; Venkatraman, Subbu S.

    2016-01-01

    Currently, infections following cataract surgery are not as effectively managed with antibiotic eye drops, which suffer from poor bioavailability of drug and low patient compliance. The ideal solution, which can help to overcome the issue of drug wastage and poor bioavailabilty, as well as the need for frequent applications (patient inconvenience), is a drug-eluting intraocular lens (IOL). We describe a novel approach to such a drug-eluting lens by using a peripheral IOL attachment as a drug depot to deliver antibiotics, Levofloxacin (LFX) or Moxifloxacin (MFX). In this work, drug was entrapped within a fully-degradable polymer, poly(L-lactide-co-ɛ-caprolactone) (PLC). The effects of drug loading and solvent type on drug release and film morphology were investigated using cast films. The study clearly demonstrated that a slower-evaporating solvent tetrahydrofuran (THF) resulted in a better surface morphology, as well as lower initial burst compared to dichloromethane (DCM), and hence, was better suited to developing a drug-eluting attachment with sustained release of drug. When attachments were fabricated with drugs at high loading percentages (20% and 25% in polymer), significant burst was observed compared to films: this is attributed to the higher surface-to-volume ratio of the attachments. When the levofloxacin (LFX) loading percentage was decreased to 3% and 5%, the attachments presented lower burst and sustained release with therapeutic efficacy. This work has demonstrated the potential of using an IOL attachment as a more efficacious anti-infective option compared to daily eye drops. PMID:27741256

  4. Performance of the Orsiro Hybrid drug-eluting stent in high-risk subgroups.

    PubMed

    Iglesias, Juan F; Muller, Olivier; Zuffi, Andrea; Eeckhout, Eric

    2016-02-01

    Newer-generation drug-eluting stents (DES) with enhanced biocompatibility that deliver antiproliferative drugs from a durable polymer have significantly improved safety and efficacy outcomes, compared with both early-generation DES and bare-metal stents, and they represent the current standard of care in all patient and lesion subsets. However, newer durable polymers have been associated with the occurrence of chronic inflammation, delayed vascular healing, incomplete endothelialisation, and neoatherosclerosis, which may result in persistent late adverse cardiovascular events, particularly in patients with high-risk baseline clinical features and angiographic complex coronary artery disease. Newer-generation DES with biodegradable polymer and controlled drug release have been recently introduced to overcome long-term adverse outcomes observed with both early-generation and newer-generation permanent polymer-based DES, and they may be of incremental clinical value in subgroups of patients at higher risk of stent failure. The recent ultrathin-strut cobalt-chromium Orsiro Hybrid DES (BIOTRONIK AG, Bülach, Switzerland) eluting sirolimus from a biodegradable polymer was designed to improve arterial healing and clinical outcomes. The Orsiro Hybrid DES has demonstrated clinical performance comparable to the current state-of-the-art newer-generation thin-strut cobalt-chromium, permanent polymer-based everolimus-eluting stent in a broad patient population. In subgroups of patients at highest-risk of adverse ischemic events, such as patients with diabetes mellitus, small vessels, long lesions, complex coronary lesions, multivessel disease, chronic total occlusion, or ST-segment elevation myocardial infarction, the Orsiro Hybrid DES has shown low rates of adverse clinical outcomes, similar to rates observed in lower-risk patients, and extremely low rates of definite stent thrombosis. This article reviews current evidence on safety and efficacy of the recent ultrathin

  5. Concentration and Purification of Viruses by Adsorption to and Elution from Insoluble Polyelectrolytes

    PubMed Central

    Wallis, Craig; Melnick, Joseph L.; Fields, Joseph E.

    1971-01-01

    Acid-resistant, nonenveloped viruses belonging to the enterovirus, reovirus, and adenovirus groups were readily concentrated on PE60, an insoluble cross-linked polyelectrolyte based on isobutylene maleic anhydride. Hydrolysis of PE60 by NaOH increased its capacity to adsorb viruses. Hydrogen ion levels played an important role in virus concentration; optimal pH levels for maximal virus adsorption were between pH 3.0 and 4.5. Undiluted virus was easily concentrated from large volumes on PE60, and the adsorbed virus was readily eluted at pH 8 to 9. PMID:4325020

  6. Elution power of a solvent as a criterion of relative lipid polarity

    NASA Astrophysics Data System (ADS)

    Pchelkin, V. P.

    2016-09-01

    New parameters are proposed that allow reliable calculation of fixed hydrophilicity values for different classes of lipids over the widest possible range, based on the elution power of solvents and using two compounds at the boundaries of the range as standards. The values of relative hydrophilicity are calculated from the values of relative chromatographic mobility of these types of compounds. It is established that the levels of hydrophilicity of different classes of lipids relative to the selected hexadecane-glycerol pair do not depend on the composition of the different mobile phases used in either planar or column types of liquid chromatography for the separation of complex lipid mixtures.

  7. Bradycardia Associated With Drug-Eluting Beads Loaded With Irinotecan (DEBIRI) Infusion for Colorectal Liver Metastases

    SciTech Connect

    Pua, Uei

    2013-06-15

    Intra-arterial injection of drug-eluting beads loaded with irinotecan (DEBIRI) is a new treatment option being investigated, with encouraging results, for unresectable colorectal liver metastases that are refractory to systemic chemotherapy (Martin et al., Ann Surg Oncol 18:192-198, 2011). Toxicity related to DEBIRI has also been described (Martin et al., Cardiovasc Intervent Radiol 33:960-966, 2010). Nevertheless, experience and literature related to DEBIRI remain limited, and experience with this treatment is expected to increase. The purpose of this article is to describe bradycardia occurring during DEBIRI administration, which has not been reported thus far.

  8. Drug eluting balloons for the treatment of coronary artery disease: What can we expect?

    PubMed Central

    Joost, Alexander; Kurowski, Volkhard; Radke, Peter W

    2010-01-01

    Drug-eluting balloons (DEBs) represent an enhancement of the therapeutic repertoire for the interventional cardiologist. The therapeutic concept of DEBs is promising, notably on the basis of initial studies in patients with diffuse in-stent restenosis (ISR). At present, however, a number of questions regarding long-term efficacy and safety remain, specifically in indications other than diffuse ISR. The results of the evaluation of different substances, balloon systems and clinical indications will determine the long-term success of DEBs. PMID:21160601

  9. Are Everolimus-Eluting Stents Associated With Better Clinical Outcomes Compared to Other Drug-Eluting Stents in Patients With Type 2 Diabetes Mellitus?

    PubMed Central

    Bundhun, Pravesh Kumar; Pursun, Manish; Teeluck, Abhishek Rishikesh; Long, Man-Yun

    2016-01-01

    Abstract Controversies still exist with the use of Everolimus-Eluting Stents (EES) compared to other Drug-Eluting Stents (DES) in patients with Type 2 Diabetes Mellitus (T2DM). Therefore, in order to solve this issue, we aim to compare the 1-year adverse clinical outcomes between EES and non-EE DES with a larger number of patients with T2DM. Medline, EMBASE, PubMed databases, as well as the Cochrane library were searched for randomized controlled trials (RCTs) and observational studies (OS) comparing EES and non-EE DES in patients with T2DM. One-year adverse outcomes were considered as the clinical endpoints in this study. Odd ratios (OR) with 95% confidence interval (CI) were used to express the pooled effect on discontinuous variables and the pooled analyses were performed with RevMan 5.3. Ten studies consisting of a total of 11,981 patients with T2DM (6800 patients in the EES group and 5181 in the non-EE DES group) were included in this meta-analysis. EES were associated with a significantly lower major adverse cardiac events (MACEs) with OR: 0.83, 95% CI: 0.70–0.98, P = 0.03. Revascularization including target vessel revascularization (TVR) and target lesion revascularization (TLR) were also significantly lower in the EES group with OR: 0.62, 95% CI: 0.40–0.94, P = 0.03 and OR: 0.74, 95% CI: 0.57–0.95, P = 0.02, respectively. Also, a significantly lower rate of stent thrombosis with OR: 0.63, 95% CI: 0.46–0.86, P = 0.003 was observed in the EES group. However, a similar mortality rate was reported between the EES and non-EE DES groups. During this 1-year follow-up period, EES were associated with significantly better clinical outcomes compared to non-EE DES in patients suffering from T2DM. However, further research comparing EES with non-EE DES in insulin-treated and noninsulin-treated patients with T2DM are recommended. PMID:27057888

  10. Desialylated alkaline phosphatase: activation by 4-nitrophenol.

    PubMed

    Nayudu, P R

    1984-01-01

    Mouse ileal alkaline phosphatase is a sialyl enzyme (12-14 moles per mole of enzyme). When partially desialylated by treatment with neuraminidase, the enzyme loses most of its activity, associated with reduced apparent Vmax and Km. Part of that loss, however, is recovered as the product 4-nitrophenol's concentration builds up in the cuvette. Experimental results are presented to demonstrate that the activation is due to the binding of 4-nitrophenol as a ligand by the partially desialylated enzyme and that both the loss of activity by sialic acid removal and activation by ligand-binding are correlated with changes in protein conformation.

  11. A facile chemical route for recovery of high quality zinc oxide nanoparticles from spent alkaline batteries.

    PubMed

    Deep, Akash; Sharma, Amit L; Mohanta, Girish C; Kumar, Parveen; Kim, Ki-Hyun

    2016-05-01

    Recycling of spent domestic batteries has gained a great environmental significance. In the present research, we propose a new and simple technique for the recovery of high-purity zinc oxide nanoparticles from the electrode waste of spent alkaline Zn-MnO2 batteries. The electrode material was collected by the manual dismantling and mixed with 5M HCl for reaction with a phosphine oxide reagent Cyanex 923® at 250°C for 30min. The desired ZnO nanoparticles were restored from the Zn-Cyanex 923 complex through an ethanolic precipitation step. The recovered particle product with about 5nm diameter exhibited fluorescent properties (emission peak at 400nm) when excited by UV radiation (excitation energy of 300nm). Thus, the proposed technique offered a simple and efficient route for recovering high purity ZnO nanoparticles from spent alkaline batteries.

  12. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    SciTech Connect

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  13. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs

    PubMed Central

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-01-01

    Statement of the Problem Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. Purpose The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Materials and Method Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. Results There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). Conclusion An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH. PMID:26966703

  14. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL

    SciTech Connect

    Gary M. Blythe

    2000-12-01

    A test program is being sponsored by the US Department of Energy (DOE), EPRI, FirstEnergy, and TVA to investigate furnace injection of alkaline sorbents as a means of reducing sulfuric acid concentrations in the flue gas from coal-fired boilers. This test program is being conducted at the FirstEnergy Bruce Mansfield Plant (BMP), although later testing will be conducted at a TVA plant. A sorbent injection test was conducted the week of April 18, 2000. The test was the first of several short-term (one- to two-week duration) tests to investigate the effectiveness of various alkaline sorbents for sulfuric acid control and the effects of these sorbents on boiler equipment performance. This first short-term test investigated the effect of injecting dry dolomite powder (CaCO{sub 3} {center_dot} MgCO{sub 3}), a mineral similar to limestone, into the furnace of Unit 2. During the test program, various analytical techniques were used to assess the effects of sorbent injection. These primarily included sampling with the controlled condensation system (CCS) for determining flue gas SO{sub 3} content and an acid dew-point (ADP) meter for determining the sulfuric acid dew point (and, indirectly, the concentration of sulfuric acid) of the flue gas. EPA Reference Method 26a was used for determining hydrochloric acid (HCl) and hydrofluoric acid (HF), as well and chlorine (Cl{sub 2}) and fluorine (F{sub 2}) concentrations in the flue gas. Fly ash resistivity was measured using a Southern Research Institute (SRI) point-to-plane resistivity probe, and unburned carbon in fly ash was determined by loss on ignition (LOI). Coal samples were also collected and analyzed for a variety of parameters. Finally, visual observations were made of boiler furnace and convective pass surfaces prior to and during sorbent injection.

  15. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

    NASA Astrophysics Data System (ADS)

    Gulati, Karan; Aw, Moom Sinn; Losic, Dusan

    2011-10-01

    Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.

  16. Perioperative management of a patient with recently placed drug-eluting stents requiring urgent spinal surgery.

    PubMed

    Roth, Eira; Purnell, Chad; Shabalov, Olga; Moguillansky, Diego; Hernandez, Caridad A; Elnicki, Michael

    2012-08-01

    Patients receiving drug-eluting coronary stents (DES) require antiplatelet therapy for at least 12 months to prevent stent thrombosis (ST), a potentially calamitous event. Since interruption of antiplatelet therapy is the greatest risk factor for ST, it is imperative that the decision to discontinue these agents be based on an accurate assessment of the patient's risk for bleeding complications. Individuals who are regarded as being at a high risk are those undergoing intracranial, spinal or intraocular surgeries. These patients require alternative agents during the perioperative period to minimize both their risk of perioperative thrombosis and intraoperative hemorrhage. We report the case of a woman who required spinal surgery 3 months after she underwent placement of two drug-eluting stents. The patient's clopidogrel was stopped 5 days prior to surgery and an infusion of eptifibatide was used to "bridge" antiplatelet therapy during the perioperative period. Postoperatively, anticoagulation therapy was reinstituted using aspirin with clopidogrel. This case serves as a successful example of bridging therapy using a short acting and gycoprotein (GP) IIb/IIIa inhibitor as a means of maintaining antiplatelet therapy during the perioperative period to minimize the risk of stent thrombosis and the risk of intraoperative bleeding.

  17. Fabrication of a novel polymer-free nanostructured drug-eluting coating for cardiovascular stents.

    PubMed

    Wang, Yao; Zhang, Wenli; Zhang, Jixi; Sun, Wei; Zhang, Ruiyan; Gu, Hongchen

    2013-10-23

    Angioplasty with stents is the most important method for the treatment of coronary artery disease (CAD). However, the drug-eluting stents (DES) that are widely used have the increased risks of inflammatory reactions and late stent thrombosis (LST) because of the persistence of the polymer coatings. To improve the biosafety, a novel polymer-free-composite drug-eluting coating composed of magnetic mesoporous silica nanoparticles (MMSNs) and carbon nanotubes (CNTs) was constructed using the electrophoretic deposition (EPD) method in this study. A crack-free two-layered coating with impressive network nanotopologies was successfully obtained by regulating the composition and structures. This nanostructured coating exhibits excellent mechanical flexibility and blood compatibility in vitro, and the drug-loading and release performance is satisfactory as well. The in vivo study shows that this composite coating has the obvious advantage of rapid endothelialization because of its unique 3D nanostructured topology in comparison with the commercial polymer-coated DES. This study aims to provide new ideas and reliable data to design novel functional coatings that could accelerate the re-endothelialization process and avoid inflammatory reactions, thus improving the in vivo biosafety of DES.

  18. Use of Drug-Eluting Stents in Patients With Coronary Artery Disease and Renal Insufficiency

    PubMed Central

    El-Menyar, Ayman A.; Al Suwaidi, Jassim; Holmes, David R.

    2010-01-01

    Renal insufficiency (RI) has been shown to be associated with increased major adverse cardiovascular events after percutaneous coronary intervention. We reviewed the impact of RI on the pathogenesis of coronary artery disease and outcomes after percutaneous coronary intervention in the form of drug-eluting stent (DES) implantation in these high-risk patients. We searched the English-language literature indexed in MEDLINE, Scopus, and EBSCO Host research databases from 1990 through January 2009, using as search terms coronary revascularization, drug-eluting stent, and renal insufficiency. Studies that assessed DES implantation in patients with various degrees of RI were selected for review. Most of the available data were extracted from observational studies, and data from randomized trials formed the basis of a post hoc analysis. The outcomes after coronary revascularization were less favorable in patients with RI than in those with normal renal function. In patients with RI, DES implantation yielded better outcomes than did use of bare-metal stents. Randomized trials are needed to define optimal treatment of these high-risk patients with coronary artery disease. PMID:20118392

  19. Modelling chemistry and biology after implantation of a drug-eluting stent. Part I: Drug transport.

    PubMed

    Vo, Tuoi; Lee, William; Peddle, Adam; Meere, Martin

    2017-04-01

    Drug-eluting stents have been used widely to prevent restenosis of arteries following percutaneous balloon angioplasty. Mathematical modelling plays an important role in optimising the design of these stents to maximise their efficiency. When designing a drug-eluting stent system, we expect to have a sufficient amount of drug being released into the artery wall for a sufficient period to prevent restenosis. In this paper, a simple model is considered to provide an elementary description of drug release into artery tissue from an implanted stent. From the model, we identified a parameter regime to optimise the system when preparing the polymer coating. The model provides some useful order of magnitude estimates for the key quantities of interest. From the model, we can identify the time scales over which the drug traverses the artery wall and empties from the polymer coating, as well as obtain approximate formulae for the total amount of drug in the artery tissue and the fraction of drug that has released from the polymer. The model was evaluated by comparing to in-vivo experimental data and good agreement was found.

  20. New drug-eluting lenses to be applied as bandages after keratoprosthesis implantation.

    PubMed

    Carreira, A S; Ferreira, P; Ribeiro, M P; Correia, T R; Coutinho, P; Correia, I J; Gil, M H

    2014-12-30

    Corneal tissue is the most commonly transplanted tissue worldwide. This work aimed to develop a new drug-eluting contact lens that may be used as a bandage after keratoprosthesis. During this work, films were produced using poly(vinyl alcohol) (PVA) and chitosan (CS) crosslinked with glyoxal (GL). Vancomycin chlorhydrate (VA) was impregnated in these systems by soaking. Attenuated total reflectance - Fourier transform infrared spectroscopy was used to confirm crosslinking. The cytotoxic and drug release profile, hydrophilicity, thermal and biodegradation as well as swelling capacity of the samples were assessed through in vitro studies. PVA and PVA/CS films were obtained by crosslinking with GL. The films were transparent, flexible with smooth surfaces, hydrophilic and able to load and release vancomycin for more than 8h. Biodegradation in artificial lachrymal fluid (ALF) with lysozyme at 37°C showed that mass loss was higher for the samples containing CS. Also, the samples prepared with CS showed the formation of pores which were visualized by SEM. All samples revealed a biocompatible character after 24h in contact with cornea endothelial cells. As a general conclusion it was possible to determine that the 70PVA/30CS film showed to combine the necessary features to prepare vancomycin-eluting contact lenses to prevent inflammation after corneal substitution.

  1. Instrument Parameters Controlling Retention Precision in Gradient Elution Reversed-Phase Liquid Chromatography

    PubMed Central

    Beyaz, Ayse; Fan, Wenzhe; Carr, Peter W.; Schellinger, Adam P.

    2014-01-01

    The precision of retention time in RPLC is important for compound identification, for setting peak integration time windows and in fundamental studies of retention. In this work, we studied the effect of temperature (T), initial (ϕ0) and final mobile phase (ϕf)composition, gradient time (tG), and flow rate (F) on the retention time precision under gradient elution conditions for various types of low MW solutes. We determined the retention factor in pure water (k′w) and the solute-dependent solvent strength (S) parameters of Snyder's linear solvent strength theory (LSST) as a function of temperature for three different groups of solutes. The effect of small changes in the chromatographic variables (T, ϕ0, ϕf, tG and F) by use of the LSST gradient retention equation were estimated. Peaks at different positions in the chromatogram have different sensitivities to changes in these instrument parameters. In general, absolute fluctuations in retention time are larger at longer gradient times. Drugs showed less sensitivity to changes in temperature compared to relatively less polar solutes, non-ionogenic solutes. Surprisingly we observed that fluctuations in temperature, mobile phase composition and flow rate had less effect on retention time under gradient conditions as compared to isocratic conditions. Overall temperature and the initial mobile phase composition are the more important variables affecting retention reproducibility in gradient elution chromatography. PMID:25459648

  2. Impact of metabolic syndrome on re-stenosis development: role of drug-eluting stents.

    PubMed

    Goyal, S N; Bharti, S; Krishnamurthy, B; Agrawal, Y; Ojha, S K; Arya, D S

    2012-07-01

    Metabolic syndrome (MetS) is defined as a cluster of numerous cardiovascular risk factors, which encompasses obesity, dyslipidaemia, insulin resistance and hypertension. Patients with MetS are more prone to developing cardiovascular events than other patients. To date, several approaches such as physical exercise, dietary control and invasive and non-invasive therapeutic interventions for dyslipidaemia, hypertension and insulin resistance have been used to manage MetS. However, there is a progressive elevation in the incidence of fatal and non-fatal cardiovascular events due to the increased prevalence of obesity and diabetes. Percutaneous coronary intervention has emerged over the last few years as an effective revascularisation strategy for those with coronary artery disease, in parallel with the development of effective anti-platelet medications and newer drug-eluting stents. In recent years, considerable research efforts have been undertaken to elucidate the pathophysiology of re-stenosis and develop strategies to prevent re-stenosis following percutaneous transluminal coronary angioplasty and stent implantation. Although the rate of stent re-stenosis and target-lesion revascularisation has been reduced, there is little information in the literature on the outcome of MetS in the pathophysiology of re-stenosis. In this review article, we summarise the recent development and progress on re-stenosis and the role of drug-eluting stents, particularly in MetS.

  3. Chiral separation with gradient elution isotachophoresis for future in situ extraterrestrial analysis.

    PubMed

    Danger, Grégoire; Ross, David

    2008-10-01

    The first results of chiral separations with the gradient elution isotachophoresis method are presented. As previously described, citrate is used in the run buffer as the leading ion and borate in the sample buffer as the terminating ion. Modulation of parameters such as electrolyte pH, pressure scan rate, chiral selector concentration, combinations of CD or the percentage of ampholytes provides an easy optimization of the separations. To perform fluorescent detection 5-carboxyfluorescein succinimidyl ester and two fluorogenic-labeling agents, fluorescamine (Fluram) and 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, are used to label amino acids. With the 5-carboxyfluorescein amino acids, chiral separations are easily obtained using a neutral CD ((2-hydroxypropyl)-beta-CD) at a low concentration (2 mmol/L). With Fluram amino acids, the situation is more complicated due to the formation of diastereoisomers and due to weak interactions with the different CDs used. The use of the 3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde-labeling agent solves the problems observed with the Fluram agent while retaining the fluorogenic properties. These first results demonstrate the simplicity and the feasibility of gradient elution isotachophoresis for chiral separations.

  4. Nanoporous CREG-Eluting Stent Attenuates In-Stent Neointimal Formation in Porcine Coronary Arteries

    PubMed Central

    Sun, Mingyu; Tao, Jie; Yan, Chenghui; Kang, Jian; Li, Shaohua

    2013-01-01

    Background The goal of this study was to evaluate the efficacy of a nanoporous CREG-eluting stent (CREGES) in inhibiting neointimal formation in a porcine coronary model. Methods In vitro proliferation assays were performed using isolated human endothelial and smooth muscle cells to investigate the cell-specific pharmacokinetic effects of CREG and sirolimus. We implanted CREGES, control sirolimus-eluting stents (SES) or bare metal stents (BMS) into pig coronary arteries. Histology and immunohistochemistry were performed to assess the efficacy of CREGES in inhibiting neointimal formation. Results CREG and sirolimus inhibited in vitro vascular smooth muscle cell proliferation to a similar degree. Interestingly, human endothelial cell proliferation was only significantly inhibited by sirolimus and was increased by CREG. CREGES attenuated neointimal formation after 4 weeks in porcine coronary model compared with BMS. No differences were found in the injury and inflammation scores among the groups. Scanning electron microscopy and CD31 staining by immunohistochemistry demonstrated an accelerated reendothelialization in the CREGES group compared with the SES or BMS control groups. Conclusions The current study suggests that CREGES reduces neointimal formation, promotes reendothelialization in porcine coronary stent model. PMID:23573278

  5. Locoregional Drug Delivery Using Image-guided Intra-arterial Drug Eluting Bead Therapy

    PubMed Central

    Lewis, Andrew L.; Dreher, Matthew R.

    2012-01-01

    Lipiodol-based transarterial chemoembolization (TACE) has been performed for over 3 decades for the treatment of solid tumors and describes the infusion of chemotherapeutic agents followed by embolization with particles. TACE is an effective treatment for inoperable hepatic tumors, especially hypervascular tumors such as hepatocellular carcinoma. Recently, drug eluting beads (DEBs), in which a uniform embolic material is loaded with a drug and delivered in a single image-guided step, have been developed to reduce the variability in a TACE procedure. DEB-TACE results in localization of drug to targeted tumors while minimizing systemic exposure to chemotherapeutics. Once localized in the tissue, drug is eluted from the DEB in a controlled manner and penetrates hundreds of microns of tissue from the DEB surface. Necrosis is evident surrounding a DEB in tissue days to months after therapy; however, the contribution of drug and ischemia is currently unknown. Future advances in DEB technology may include image-ability, DEB size tailored to tumor anatomy and drug combinations. PMID:22285550

  6. Numerical modeling of the elution peak profiles of retained solutes in supercritical fluid chromatography

    SciTech Connect

    Kaczmarski, Krzysztof; Guiochon, Georges A

    2011-01-01

    In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily for the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.

  7. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold.

    PubMed

    Kumar, Sachin; Chatterjee, Kaushik

    2015-02-07

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.

  8. Selection and elution of aptamers using nanoporous sol-gel arrays with integrated microheaters.

    PubMed

    Park, Seung-Min; Ahn, Ji-Young; Jo, Minjoung; Lee, Dong-Ki; Lis, John T; Craighead, Harold G; Kim, Soyoun

    2009-05-07

    RNA and DNA aptamers that bind to target molecules with high specificity and affinity have been a focus of diagnostics and therapeutic research. These aptamers are obtained by SELEX (Systematic Evolution of Ligands by EXponential enrichment) often requiring more than 10 successive cycles of selection and amplification, where each cycle normally takes 2 days per cycle of SELEX. Here, we have demonstrated the use of sol-gel arrays of proteins in a microfluidic system for efficient selection of RNA aptamers against multiple target molecules. The microfluidic chip incorporates five sol-gel binding droplets, within which specific target proteins are imbedded. The droplets are patterned on top of individually addressable electrical microheaters used for selective elution of aptamers bound to target proteins in the sol-gel droplets. We demonstrate that specific aptamers bind their respective protein targets and can be selectively eluted by micro-heating. Finally, our microfluidic SELEX system greatly improved selection efficiency, reducing the number of selection cycles needed to produce high affinity aptamers. The process is readily scalable to larger arrays of sol-gel-embedded proteins. To our knowledge, this is the first demonstration of a chip-based selection of aptamers using microfluidics, thereby allowing development of a high throughput and efficient SELEX procedures.

  9. Characterizing and modeling of extensive atrazine elution tailing for stable manure-amended agricultural soil.

    PubMed

    Akyol, Nihat Hakan

    2015-01-01

    Non-ideal sorption and extensive elution tailing behavior of atrazine was evaluated for an agricultural soil with and without stable manure amendment (10% by weight). A series of laboratory experiments showed that the sorption of atrazine was described by rate-limited, nonlinear reversible processes (Freundlich isotherm) for both non-amended and amended soil. Non-ideal transport of atrazine exhibited extensive low concentration elution tailing due to the most likely organic carbon fraction in the soil. This tailing behavior was more pronounced and extensive for soil with 10% stable-manure amendment. Two-site transport modeling analyses including non-linear sorption and rate-limited sorption-desorption provided a reasonably good match to the atrazine breakthrough curves but were unable to match the long-term concentration tailing, even for non-amended soil. A mathematical model incorporating nonlinear, rate-limited sorption/desorption described by a continuous-distribution function was used to successfully simulate atrazine transport early-time breakthrough and long-term concentration tailing for both non-amended and amended soil conditions.

  10. Effect of Atorvastatin-Eluting Stents in a Rabbit Iliac Artery Restenosis Model

    PubMed Central

    Lim, Kyung Seob; Bae, In Ho; Park, Jun-Kyu; Park, Dae Sung; Kim, Jong Min; Kim, Jung Ha; Cho, Dong Lyun; Sim, Doo Sun; Park, Keun-Ho; Hong, Young Joon; Ahn, Youngkeun

    2013-01-01

    Statins have pleiotropic effects, which include the inhibition of neointima hyperplasia, the inhibition of vascular inflammation, and platelet inhibition. The aim of this study was to examine the effect of an atorvastatin-eluting stent (AES) in a rabbit iliac artery overstretch restenosis model. Ten rabbits were used in this study (10 rabbits, 10 iliac arteries for each stent). An AES and paclitaxel-eluting stent (PES) were implanted in the left and right iliac arteries in a rabbit (2 stents in each rabbit). The stents were deployed with oversizing (stent/artery ratio 1.3:1), and histopathologic analysis was assessed at 28 days after stenting. There were no significant differences in the injury score, lumen area, or inflammation score. There were significant differences in the neointimal area (0.7±0.18 mm2 in the AES group vs. 0.4±0.25 mm2 in the PES group, p<0.01), in the percentage stenosis area (14.8±5.06% in the AES group vs. 10.5±6.80% in the PES group, p<0.05), and in the fibrin score (0.4±0.51 in the AES group vs. 2.7±0.48 in the PES group, p<0.001). Although the AES did not suppress neointimal hyperplasia compared with the PES, it showed a superior arterial healing effect in a rabbit iliac artery overstretch restenosis model. PMID:24400214

  11. Nanoparticle Drug- and Gene-eluting Stents for the Prevention and Treatment of Coronary Restenosis

    PubMed Central

    Yin, Rui-Xing; Yang, De-Zhai; Wu, Jin-Zhen

    2014-01-01

    Percutaneous coronary intervention (PCI) has become the most common revascularization procedure for coronary artery disease. The use of stents has reduced the rate of restenosis by preventing elastic recoil and negative remodeling. However, in-stent restenosis remains one of the major drawbacks of this procedure. Drug-eluting stents (DESs) have proven to be effective in reducing the risk of late restenosis, but the use of currently marketed DESs presents safety concerns, including the non-specificity of therapeutics, incomplete endothelialization leading to late thrombosis, the need for long-term anti-platelet agents, and local hypersensitivity to polymer delivery matrices. In addition, the current DESs lack the capacity for adjustment of the drug dose and release kinetics appropriate to the disease status of the treated vessel. The development of efficacious therapeutic strategies to prevent and inhibit restenosis after PCI is critical for the treatment of coronary artery disease. The administration of drugs using biodegradable polymer nanoparticles as carriers has generated immense interest due to their excellent biocompatibility and ability to facilitate prolonged drug release. Despite the potential benefits of nanoparticles as smart drug delivery and diagnostic systems, much research is still required to evaluate potential toxicity issues related to the chemical properties of nanoparticle materials, as well as to their size and shape. This review describes the molecular mechanism of coronary restenosis, the use of DESs, and progress in nanoparticle drug- or gene-eluting stents for the prevention and treatment of coronary restenosis. PMID:24465275

  12. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  13. Preparative isolation and purification of macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens using high-speed counter-current chromatography in stepwise elution mode.

    PubMed

    He, Shan; Wang, Hongqiang; Yan, Xiaojun; Zhu, Peng; Chen, Juanjuan; Yang, Rui

    2013-01-11

    Preparative high-speed counter-current chromatography (HSCCC) was successfully applied to the isolation and purification of two macrolactin antibiotics from marine bacterium Bacillus amyloliquefaciens for the first time using stepwise elution with a pair of two-phase solvent systems composed of n-hexane-ethyl acetate-methanol-water at (1:4:1:4, v/v) and (3:4:3:4, v/v). The preparative HSCCC separation was performed on 300 mg of crude sample yielding macrolactin B (22.7 mg) and macrolactin A (40.4 mg) in a one-step separation, with purities over 95% as determined by HPLC. The structures of these compounds were identified by MS, (1)H NMR and (13)C NMR. Our results demonstrated that HSCCC was an efficient technique to separate marine antibiotics, which provide an approach to solve the problem of their sample availability for drug development.

  14. Online assay of bone specific alkaline phosphatase with a flow injection-bead injection system.

    PubMed

    Hartwell, Supaporn Kradtap; Somprayoon, Duangporn; Kongtawelert, Prachya; Ongchai, Siriwan; Arppornchayanon, Olarn; Ganranoo, Lucksagoon; Lapanantnoppakhun, Somchai; Grudpan, Kate

    2007-09-26

    Alkaline phosphatase (ALP) has been used as one of the biomarkers for bone resorption and liver diseases. Normally, total alkaline phosphatase is quantified along with other symptoms to determine the releasing source of the alkaline phosphatase. A semi-automated flow injection-bead injection system was proposed to conveniently and selectively assay bone alkaline phosphatase (BALP) based on its specific binding to wheat germ coated beads. Amount of BALP in serum was determined from the intensity of the yellow product produced from bound BALP on the retained beads and its substrate pNPP. The used beads were discarded and the fresh ones were introduced for the next analysis. The reaction cell was designed to be opened and closed using a computer controlled solenoid valve for a precise incubation time. The performance of the proposed system was evaluated by using it to assay BALP in human serum. The results were compared to those obtained by using a commercial ELISA kit. The system is proposed to be an easy and cost effective system for quantification of BALP as an alternative to batch wise wheat germ specific binding technique.

  15. Response of Desulfovibrio vulgaris to alkaline stress.

    PubMed

    Stolyar, Sergey; He, Qiang; Joachimiak, Marcin P; He, Zhili; Yang, Zamin Koo; Borglin, Sharon E; Joyner, Dominique C; Huang, Katherine; Alm, Eric; Hazen, Terry C; Zhou, Jizhong; Wall, Judy D; Arkin, Adam P; Stahl, David A

    2007-12-01

    The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently controlled by unique regulatory circuits since the alternative sigma factors (sigma S and sigma E) contributing to this stress response in E. coli appear to be absent in D. vulgaris. Genes previously reported to be up-regulated in E. coli were up-regulated in D. vulgaris; these genes included three ATPase genes and a tryptophan synthase gene. Transcription of chaperone and protease genes (encoding ATP-dependent Clp and La proteases and DnaK) was also elevated in D. vulgaris. As in E. coli, genes involved in flagellum synthesis were down-regulated. The transcriptional data also identified regulators, distinct from sigma S and sigma E, that are likely part of a D. vulgaris Hildenborough-specific stress response system. Characterization of a study set of mutants with genes implicated in alkaline stress response deleted confirmed that there was protective involvement of the sodium/proton antiporter NhaC-2, tryptophanase A, and two putative regulators/histidine kinases (DVU0331 and DVU2580).

  16. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions.

  17. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  18. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  19. Thermodynamic model for an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verhaert, Ivan; De Paepe, Michel; Mulder, Grietus

    Alkaline fuel cells are low temperature fuel cells for which stationary applications, e.g. cogeneration in buildings, are a promising market. In order to guarantee a long life, water and thermal management has to be done in a careful way. In order to better understand the water, alkali and thermal flows, a two-dimensional model for an Alkaline Fuel Cell is developed using a control volume approach. In each volume the electrochemical reactions together with the mass and energy balance are solved. The model is created in Aspen Custom Modeller, the development environment of Aspen Plus, where special attention is given to the physical flow of hydrogen, water and air in the system. In this way the developed component, the AFC-cell, can be built into stack configurations to understand its effect on the overall performance. The model is validated by experimental data from measured performance by VITO with their Cell Voltage Monitor at a test case, where the AFC-unit is used as a cogeneration unit.

  20. Mechanical Properties and Elution Characteristics of Polymethylmethacrylate Bone Cement Impregnated with Antibiotics for Various Surface Area and Volume Constructs

    PubMed Central

    Duey, Richard E.; Chong, Alexander CM.; McQueen, David A.; Womack, James L.; Song, Zheng; Steinberger, Tristan A.; Wooley, Paul H.

    2012-01-01

    Background Numerous studies have examined the elution characteristics and the effects of antibiotics from bone cement. this study seeks to determine the effect that surface area and volume have on the elution characteristics and bioavailability of tobramycin and vancomycin when mixed in polymethylmethacralate (PMMA) bone cement in various combinations. It also investigates the mechanical properties of antibiotic-impregnated bone cement and its relationship to surface area and volume. Methods Three antibiotic-bone cement combinations were used, and these consisted of PMMA mixed with tobramycin and vancomycin or tobramycin alone. Four groups of specimens (different surface area and volume) were made. the elution characteristics of the different specimens were examined using the minimum inhibitory concentration (MIc) method at different time intervals. the bacteria used during testing were methicillin-sensitive staphylococcus aureus (MssA). the ultimate compressive strength (Ucs) of the specimens was also determined at various time intervals. Results the bactericidal activity of a tobramycin/vancomycin combination against MssA was not significantly greater than tobramycin alone. tobramycin was more effective than vancomycin against MssA (average: 168%, p<0.05). the inhibitory capabilities of tobramycin and vancomycin individually were not found to be additive. combination 2 (1.0g tobramycin/1.0g vancomycin) had a higher antibiotic elution mass and rate for all sample sizes compared to the other two combinations (average: 170%, p<0.05). surface area and volume did not have a significant effect on the elution rate of the antibiotics. the Ucs of all samples tested was greater than 70MPa at all three testing intervals. Discussion Mixing tobramycin and vancomycin did not have a synergistic effect against the bacteria as expected. Increasing the concentration of antibiotics in bone cement increases both elution mass and elution rate over time. Although the Ucs of the

  1. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  2. Differential elution of sodium or potassium dihydrogen- and hydrogenphosphate ions from a sephadex G-15 column with sodium or potassium chloride solution.

    PubMed

    Okada, T K; Miyakoshi, M; Inoue, M; Nakabayashi, Y; Jisaki, F

    2001-04-20

    When a mixed solution of sodium or potassium dihydrogenphosphate and disodium or dipotassium hydrogenphosphate was eluted from a Sephadex G-15 column with either a sodium or potassium chloride solution, the elution profiles of ions showed that the hydrogenphosphate ion was eluted more rapidly than the dihydrogenphosphate ion. When the sample solutions containing potassium dihydrogenphosphate and/or dipotassium hydrogenphosphate, all of which were supplemented with phosphorus-32-labelled potassium dihydrogenphosphate, were eluted with sodium chloride solution, the elution profiles of radioactivity showed that the dihydrogenphosphate ion changed to hydrogenphosphate ion and vice versa, depending on the pH values of the sample solution and the availability of the cation of the eluent during elution for the phosphate ion to pair with.

  3. Unenhanced and Contrast-Enhanced Ultrasonography During Hepatic Transarterial Embolization and Chemoembolization With Drug-Eluting Beads

    SciTech Connect

    Moschouris, Hippocrates; Malagari, Katerina; Kornezos, Ioannis; Papadaki, Marina Georgiou; Gkoutzios, Panagiotis; Matsaidonis, Dimitrios

    2010-12-15

    The purpose of this study was to describe and evaluate the findings of unenhanced ultrasonography (US) and contrast-enhanced ultrasonography (CEUS) when these modalities are applied during transarterial embolization (TAE) or transarterial chemoembolization (TACE) of liver tumors. Sixteen tumors (9 hepatocellular carcinomas, 5 metastases from colorectal cancer, and 2 hemangiomas) were treated with TAE with microspheres and/or TACE with drug-eluting beads. All of these lesions were studied with intraprocedural unenhanced US and 12 were studied with intraprocedural CEUS. For the latter, a second-generation echo-enhancer (SonoVue; Bracco, Milan, Italy) and a low mechanical index technique were used. Intraprocedural findings were classified according to an arbitrary scale and were compared with pretreatment imaging (CEUS and computed tomography or CEUS and magnetic resonance imaging), with postembolization angiography, and with follow-up results. On unenhanced intraprocedural US, 13 of 16 tumors demonstrated intralesional high-level echoes of varying extent. These feature correlated poorly (r = 0.33, p = 0.097) with and generally underestimated the actual extent of necrosis. Exceptionally, high-level echoes that occupied the largest part of the treated lesions were associated with >50% tumor necrosis. Intraprocedural CEUS clearly depicted immediate partial or complete disappearance of tumor enhancement as a result of TAE/TACE. Three of 6 tumors with complete devascularization on postembolization angiogram showed residual enhancement on intraprocedural CEUS. Intraprocedural CEUS findings correlated closely (r = 0.91, p = 0.002) with follow-up findings. Intraprocedural sonography, particularly with echo-enhancers, could be used for intraprocedural monitoring in selected cases of liver tumors that undergo TAE or TACE.

  4. Comparison of the Efficacy of Everolimus-Eluting Stents Versus Drug-Eluting Balloons in Patients With In-Stent Restenosis (from the RIBS IV and V Randomized Clinical Trials).

    PubMed

    Alfonso, Fernando; Pérez-Vizcayno, María José; García Del Blanco, Bruno; García-Touchard, Arturo; Masotti, Mónica; López-Minguez, José R; Iñiguez, Andrés; Zueco, Javier; Velazquez, Maite; Cequier, Angel; Lázaro-García, Rosa; Martí, Vicens; Moris, César; Urbano-Carrillo, Cristobal; Bastante, Teresa; Rivero, Fernando; Cárdenas, Alberto; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Fernández, Cristina

    2016-02-15

    Treatment of patients with in-stent restenosis (ISR) remains a challenge. This study sought to compare the efficacy of everolimus-eluting stents (EESs) and drug-eluting balloons (DEBs) with paclitaxel in patients with ISR. A pooled analysis of the Restenosis Intra-Stent of Drug-Eluting Stents: Drug-Eluting Balloon vs Everolimus-Eluting Stent (RIBS IV) and Restenosis Intra-Stent of Bare-Metal Stents: Drug-Eluting Balloon vs Everolimus-Eluting Stent (RIBS V) randomized trials was performed using patient-level data. In both trials, EESs were compared with DEBs in patients with ISR (RIBS V included 189 patients with bare-metal ISR; RIBS IV included 309 patients with drug-eluting ISR). Inclusion and exclusion criteria were identical in both trials. A total of 249 patients were allocated to EES and 249 to DEB. Clinical follow-up at 1 year was obtained in all (100%) patients and late angiography (median 249 days) in 91% of eligible patients. Compared with patients treated with DEBs, patients treated with EESs obtained better short-term results (postprocedural minimal lumen diameter 2.28 ± 0.5 vs 2.12 ± 0.4 mm, p <0.0001). At follow-up, patients treated with EESs had larger in-segment minimal lumen diameter (primary end point 2.16 ± 0.7 vs 1.88 ± 0.6 mm, p <0.0001; absolute mean difference 0.28 mm; 95% confidence interval [CI] 0.16 to 0.40) and net lumen gain (1.33 ± 0.6 vs 1.00 ± 0.7 mm, p <0.0001) and had lower %diameter stenosis (19 ± 21% vs 28 ± 22%, p <0.0001) and binary restenosis rate (8.7% vs 15.7%, p = 0.02). Consistent results were observed in the in-lesion analysis. No interactions were found between the underlying stent type and treatment effects. At 1-year clinical follow-up, the composite of cardiac death, myocardial infarction, and target vessel revascularization was significantly reduced in the EES arm (8.8% vs 14.5%, p = 0.03; hazard ratio 0.59, 95% CI 0.31 to 0.94) mainly driven by a lower need for target vessel revascularization (6% vs 12.4%, p

  5. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  6. Platelet reactivity over time in coronary artery disease patients treated with a bioabsorbable everolimus-eluting scaffold.

    PubMed

    Tello-Montoliu, Antonio; Rivera, José; Hernández-Romero, Diana; Silvente, Ana; Jover, Eva; Quintana, Miriam; Orenes-Piñero, Esteban; Hurtado, José; Ferreiro, José Luis; Marín, Francisco; Valdés, Mariano

    2016-12-01

    Everolimus-eluting bioabsorbable scaffolds (BVSs) have exhibited similar long-term clinical outcomes compared to its everolimus-eluting metallic counterparts. However, reports from earlier studies have shown a signal for an increased rate of stent thrombosis. The aim of the current investigation is to describe the platelet reactivity profiles over time in patients treated with everolimus-eluting BVS in comparison to everolimus-eluting metallic stents. This is a pilot study in which patients on aspirin and clopidogrel with at least 1 everolimus-eluting BVS were included (n = 24). Patients with at least 1 everolimus-eluting metallic stent implanted were included as control group (n = 25). Blood samples were taken at time of discharge and at 3- and 6-month follow-up. Platelet function tests included VerifyNow (VN-P2Y12), multiplate aggregometry (MEA), and light transmission aggregometry (LTA). There was no difference in platelet reactivity at discharge, 3- and 6-month visits (unadjusted p = 0.733 and p = 0.582; p = 0.432 and p = 0.899 after adjusting for discharge value platelet reactivity0, respectively) using VN-P2Y12. Similar findings were observed with LTA. However, patients with BVS showed significantly higher platelet reactivity than patients with metallic stents at 3 and 6 months in the crude analysis (p = 0.003) and after adjusting for discharge value (p = 0.013) measured with ADP-MEA. There were no differences in platelet reactivity mediated by the T × A2 pathway between both groups. Finally, there is no statistical difference in high on-clopidogrel platelet reactivity (HPR) rate between both groups. The results of this pilot study suggest that BVS might have different platelet reactivity profiles, and warrants further investigation in dedicated clinical studies.

  7. Impact of ultrasonic power density on hot water elution of severely biodegraded heavy oil from weathered soils.

    PubMed

    Ji, Guodong; Guo, Feng

    2010-03-01

    An ultrasound-enhanced elution system using water at a temperature of 70 degrees C was employed to remove severely biodegraded heavy oil (SBHO) from weathered soil. The effect of varying the ultrasonic power density from 0 to 100 W L(-1) on the elution of SBHO and three characteristic biomarkers (C(26-34) 17alpha 25-norhopanes, C(26-28) triaromatic steroids (TAS), and C(27-29) methyl triaromatic steroids (MTAS) was analyzed using GC/MS, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The amount of SBHO and biomarkers present in the treated soils and eluent had significant negative correlation with increasing ultrasonic power density. Elution of the three biomarkers was closely related to the number of C atoms in the marker: C(26-34) 17alpha 25-norhopanes with more carbon numbers and MTAS homologs with less carbon numbers were more readily eluted at higher power densities. The smaller TAS species were more readily eluted at a power density of less than 60 W L(-1), while larger TAS species displayed improved elution at power densities greater than 60 W L(-1). SEM images of samples treated at higher power densities revealed a more compact SBHO accumulation layer at the water-soil interface. The results of XRD and energy spectroscopy experiments indicated that ultrasound at a power density of 20 W L(-1) was helpful for the formation and sedimentation of calcite, although this effect disappeared at higher power of greater than 60 W L(-1).

  8. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  9. Advanced-capability alkaline fuel cell powerplant

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  10. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  11. Rechargeable alkaline manganese dioxide/zinc batteries

    NASA Astrophysics Data System (ADS)

    Kordesh, K.; Weissenbacher, M.

    The rechargeable alkaline manganese dioxide/zinc MnO 2/Zn) system, long established commercial as a primay battery, has reached a high level of performance as a secondary battery system. The operating principles are presented and the technological achievements are surveyed by referencing the recent publications and patent literature. A review is also given of the improvements obtained with newly formulated cathodes and anodes and specially designed batteries. Supported by modelling of the cathode and anode processes and by statistical evidence during cycling of parallel/series-connected modules, the envisioned performance of the next generation of these batteries is described. The possibility of extending the practical use of the improved rechargeable MnO 2/Zn system beyond the field of small electronics into the area of power tools, and even to kW-sized power sources, is demonstrated. Finally, the commercial development in comparison with other rechargeable battery systems is examined.

  12. Inhibition of renal alkaline phosphatase by cimetidine.

    PubMed

    Minai-Tehrani, Dariush; Khodai, Somayeh; Aminnaseri, Somayeh; Minoui, Saeed; Sobhani-Damavadifar, Zahra; Alavi, Sana; Osmani, Raheleh; Ahmadi, Shiva

    2011-08-01

    Alkaline phosphatase (ALP) belongs to hydrolase group of enzymes. It is responsible for removing phosphate groups from many types of molecules, including nucleotides and proteins. Cimetidine (trade name Tagamet) is an antagonist of histamine H2-receptor that inhibits the production of gastric acid. Cimetidine is used for the treatment of gastrointestinal diseases. In this study the inhibitory effect of cimetidine on mouse renal ALP activity was investigated. Our results showed that cimetidine can inhibit ALP by uncompetitive inhibition. In the absence of inhibitor the V(max) and K(m) of the enzyme were found to be 13.7 mmol/mg prot.min and 0.25 mM, respectively. Both the Vmax and Km of the enzyme decreased with increasing cimetidine concentrations (0- 1.2 mM). The Ki and IC(50) of cimetidine were determined to be about 0.5 mM and 0.52 mM, respectively.

  13. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Swette, Larry; Giner, Jose

    1987-09-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  14. Acylglucuronide in alkaline conditions: migration vs. hydrolysis.

    PubMed

    Di Meo, Florent; Steel, Michele; Nicolas, Picard; Marquet, Pierre; Duroux, Jean-Luc; Trouillas, Patrick

    2013-06-01

    This work rationalizes the glucuronidation process (one of the reactions of the phase II metabolism) for drugs having a carboxylic acid moiety. At this stage, acylglucuronides (AG) metabolites are produced, that have largely been reported in the literature for various drugs (e.g., mycophenolic acid (MPA), diclofenac, ibuprofen, phenylacetic acids). The competition between migration and hydrolysis is rationalized by adequate quantum calculations, combing MP2 and density functional theory (DFT) methods. At the molecular scale, the former process is a real rotation of the drug around the glucuconic acid. This chemical-engine provides four different metabolites with various toxicities. Migration definitely appears feasible under alkaline conditions, making proton release from the OH groups. The latter reaction (hydrolysis) releases the free drug, so the competition is of crucial importance to tackle drug action and elimination. From the theoretical data, both migration and hydrolysis appear kinetically and thermodynamically favored, respectively.

  15. The Alkaline Dissolution Rate of Calcite.

    PubMed

    Colombani, Jean

    2016-07-07

    Due to the widespread presence of calcium carbonate on Earth, several geochemical systems, among which is the global CO2 cycle, are controlled to a large extent by the dissolution and precipitation of this mineral. For this reason, the dissolution of calcite has been thoroughly investigated for decades. Despite this intense activity, a consensual value of the dissolution rate of calcite has not been found yet. We show here that the inconsistency between the reported values stems mainly from the variability of the chemical and hydrodynamic conditions of measurement. The spreading of the values, when compared in identical conditions, is much less than expected and is interpreted in terms of sample surface topography. This analysis leads us to propose benchmark values of the alkaline dissolution rate of calcite compatible with all the published values, and a method to use them in various chemical and hydrodynamic contexts.

  16. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  17. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  18. Alkaline pulping of some eucalypts from Sudan.

    PubMed

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  19. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification

    USGS Publications Warehouse

    Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.

    2014-01-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate + sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen–Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate + sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  20. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification.

    PubMed

    Stets, E G; Kelly, V J; Crawford, C G

    2014-08-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  1. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Zhang, Chang-Qing; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E

    2010-03-15

    Local antibiotic delivery system has an advantage over systemic antibiotic for osteomyelitis treatment due to the delivery of high local antibiotic concentration while avoiding potential systemic toxicity. Composite biomaterials with multifunctional roles, consisting of a controlled antibiotic release, a mechanical (load-bearing) function, and the ability to promote bone regeneration, gradually become the most active area of investigation and development of local antibiotic delivery vehicles. In the present study, a composite of borate glass and chitosan (designated BG/C) was developed as teicoplanin delivery vehicle. The in vitro elution kinetics and antibacterial activity of teicoplanin released from BG/C composite as a function of immersion time were determined. Moreover, the pH changes of eluents and the bioactivity of the composite were characterized using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction analysis.

  2. Drug-Eluting Nasal Implants: Formulation, Characterization, Clinical Applications and Challenges

    PubMed Central

    Parikh, Ankit; Anand, Utkarshini; Ugwu, Malachy C.; Feridooni, Tiam; Massoud, Emad; Agu, Remigius U.

    2014-01-01

    Chronic inflammation and infection of the nasal sinuses, also referred to as Chronic Rhinosinusitis (CRS), severely affects patients’ quality of life. Adhesions, ostial stenosis, infection and inflammation relapses complicate chronic sinusitis treatment strategies. Drug-eluting stents, packings or implants have been suggested as reasonable alternatives for addressing these concerns. This article reviewed potential drug candidates for nasal implants, formulation methods/optimization and characterization methods. Clinical applications and important considerations were also addressed. Clinically-approved implants (Propel™ implant, the Relieva stratus™ MicroFlow spacer, and the Sinu-Foam™ spacer) for CRS treatment was an important focus. The advantages and limitations, as well as future considerations, challenges and the need for additional research in the field of nasal drug implant development, were discussed. PMID:24871904

  3. Expanding the elution by characteristic point method for determination of various types of adsorption isotherms.

    PubMed

    Samuelsson, Jörgen; Undin, Torgny; Fornstedt, Torgny

    2011-06-17

    Important improvements have recently been made on the elution by characteristic point (ECP) method to increase the accuracy of the determined adsorption isotherms. However, the method has so far been limited/used for only type I adsorption isotherms (e.g. Langmuir, Tóth, bi-Langmuir). In this study, general strategies are developed to expand the ECP method for the determination of more complex adsorption isotherms including such containing inflection points. We will exemplify the methodology with type II, type III and type V isotherms. Guidelines are given for how to determine such isotherms using the ECP method and for the experimental considerations that must be taken into account or that may be eliminated in the particular case.

  4. Refractory coronary vasospasm following drug-eluting stent placement treated with cyproheptadine.

    PubMed

    El-Bialy, Adel; Shenoda, Michael; Caraang, Chris

    2006-02-01

    Serotonin (5-hydroxytryptamine) has been recently shown to be an important mediator of coronary vasospasm. Its divergent effect on normal and atherosclerosed arteries has been demonstrated in both animal and human studies. We present a case of coronary vasospasm in a 55-year-old man with repeated episodes of chest pain following coronary percutaneous intervention. Repeat angiography demonstrated no reocclusion or complication. The patient's symptoms were resistant to treatment with maximum doses of two calcium channel antagonists and oral and intravenous nitrates, but responded to cyproheptadine, a nonselective serotonin antagonist. Currently, there are only two reported cases of coronary vasospasm following balloon angioplasty responding to treatment with serotonin antagonists. This is the first case reported case following drug-eluting stent deployment.

  5. MRI visible drug eluting magnetic microspheres for transcatheter intra-arterial delivery to liver tumors.

    PubMed

    Kim, Dong-Hyun; Chen, Jeane; Omary, Reed A; Larson, Andrew C

    2015-01-01

    Magnetic resonance imaging (MRI)-visible amonafide-eluting alginate microspheres were developed for targeted arterial-infusion chemotherapy. These alginate microspheres were synthesized using a highly efficient microfluidic gelation process. The microspheres included magnetic clusters formed by USPIO nanoparticles to permit MRI and a sustained drug-release profile. The biocompatibility, MR imaging properties and amonafide release kinetics of these microspheres were investigated during in vitro studies. A xenograft rodent model was used to demonstrate the feasibility to deliver these microspheres to liver tumors using hepatic transcatheter intra-arterial infusions and potential to visualize the intra-hepatic delivery of these microspheres to both liver tumor and normal tissues with MRI immediately after infusion. This approach offer the potential for catheter-directed drug delivery to liver tumors for reduced systemic toxicity and superior therapeutic outcomes.

  6. Hydrogen sulfide production by sulfate-reducing bacteria utilizing additives eluted from plastic resins.

    PubMed

    Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto

    2011-06-01

    In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.

  7. Bioresorbable drug-eluting magnesium-alloy scaffold for treatment of coronary artery disease.

    PubMed

    Campos, Carlos M; Muramatsu, Takashi; Iqbal, Javaid; Zhang, Ya-Jun; Onuma, Yoshinobu; Garcia-Garcia, Hector M; Haude, Michael; Lemos, Pedro A; Warnack, Boris; Serruys, Patrick W

    2013-12-16

    The introduction of metallic drug-eluting stents has reduced the risk of restenosis and widened the indications of percutaneous coronary intervention in treatment of coronary artery disease. However, this medical device can induce hypersensitive reaction that interferes with the endothelialization and healing process resulting in late persistent or acquired malapposition of the permanent metallic implant. Delayed endotheliaization and malapposition may lead to late and very late stent thrombosis. Bioresorbable scaffolds (BRS) have been introduced to potentially overcome these limitations, as they provide temporary scaffolding and then disappear, liberating the treated vessel from its cage. Magnesium is an essential mineral needed for a variety of physiological functions in the human body and its bioresorbable alloy has the strength-to-weight ratio comparable with that of strong aluminum alloys and alloy steels. The aim of this review is to present the new developments in Magnesium BRS technology, to describe its clinical application and to discuss the future prospects of this innovative therapy.

  8. MRI Visible Drug Eluting Magnetic Microspheres for Transcatheter Intra-Arterial Delivery to Liver Tumors

    PubMed Central

    Kim, Dong-Hyun; Chen, Jeane; Omary, Reed A.; Larson, Andrew C.

    2015-01-01

    Magnetic resonance imaging (MRI)-visible amonafide-eluting alginate microspheres were developed for targeted arterial-infusion chemotherapy. These alginate microspheres were synthesized using a highly efficient microfluidic gelation process. The microspheres included magnetic clusters formed by USPIO nanoparticles to permit MRI and a sustained drug-release profile. The biocompatibility, MR imaging properties and amonafide release kinetics of these microspheres were investigated during in vitro studies. A xenograft rodent model was used to demonstrate the feasibility to deliver these microspheres to liver tumors using hepatic transcatheter intra-arterial infusions and potential to visualize the intra-hepatic delivery of these microspheres to both liver tumor and normal tissues with MRI immediately after infusion. This approach offer the potential for catheter-directed drug delivery to liver tumors for reduced systemic toxicity and superior therapeutic outcomes. PMID:25767615

  9. Coronary artery bypass is superior to drug-eluting stents in multivessel coronary artery disease.

    PubMed

    Guyton, Robert A

    2006-06-01

    Percutaneous intervention for the treatment of multivessel coronary artery disease continues to displace coronary artery bypass graft surgery. But controlled trials of percutaneous intervention versus coronary bypass, in meta-analysis, have shown a significant survival advantage for coronary bypass. Studies of bare metal stents have not presented any data to prompt reversal of this conclusion for all but the small portion of patients most suited for stenting. Drug-eluting stents have no survival advantage compared with bare metal stents. Data from real-world registries have shown that the current therapy of multivessel disease patients has resulted in a relative excess mortality of as much as 46% in patients with initial stenting compared with patients with initial coronary bypass. Ethical considerations demand that patients with multivessel disease be informed of the documented mortality benefit of coronary bypass graft surgery.

  10. Twelve or 30 Months of Dual Antiplatelet Therapy After Drug-eluting Stents

    PubMed Central

    Mauri, Laura; Kereiakes, Dean J.; Yeh, Robert W.; Driscoll-Shempp, Priscilla; Cutlip, Donald E.; Steg, P. Gabriel; Normand, Sharon-Lise T.; Braunwald, Eugene; Wiviott, Stephen D.; Cohen, David J.; Holmes, David R.; Krucoff, Mitchell W.; Hermiller, James; Dauerman, Harold L.; Simon, Daniel I.; Kandzari, David E.; Garratt, Kirk N.; Lee, David P.; Pow, Thomas K.; Lee, Peter Ver; Rinaldi, Michael J.; Massaro, Joseph M.

    2015-01-01

    Background Dual antiplatelet therapy is recommended after coronary stenting to prevent thrombotic complications, yet the benefits and risks of treatment beyond 1 year are uncertain. Methods Subjects were enrolled after a drug-eluting coronary stent procedure. After 12 months of thienopyridine (clopidogrel bisulfate [Plavix] or prasugrel [Effient/Efient]) with aspirin, subjects were randomized to continued thienopyridine or placebo for another 18 months; all continued aspirin. The co-primary effectiveness end points were stent thrombosis and major adverse cardiovascular and cerebrovascular events (a composite of death, myocardial infarction, or stroke) at 12 to 30 months. The primary safety end point was moderate or severe bleeding. Results Subjects (N=9,961) were randomized to continued thienopyridine or placebo. Continued thienopyridine reduced stent thrombosis (0.4% vs. 1.4%, hazard ratio 0.29, 95% confidence interval [CI] 0.17-0.48, P<0.001) and major adverse cardiovascular and cerebrovascular events (4.3% vs. 5.9%, hazard ratio 0.71, 95% CI 0.59-0.85, P<0.001). Myocardial infarction was reduced (2.1% vs. 4.1%, hazard ratio 0.47, P<0.001). Rates of all-cause mortality in the continued thienopyridine and placebo groups were 2.0 and 1.5%, respectively (hazard ratio 1.36, 95% CI 1.00-1.85, P=0.052). Moderate or severe bleeding was increased with continued thienopyridine (2.5% vs. 1.6%, P=0.001). An elevated hazard for stent thrombosis and myocardial infarction was observed in both groups during the 3 months following thienopyridine discontinuation. Conclusion Dual antiplatelet therapy beyond one year after drug-eluting stent placement significantly reduced the risks of stent thrombosis and major adverse cardiovascular and cerebrovascular events compared with aspirin alone, but was associated with increased bleeding. PMID:25399658

  11. Chemoembolization (TACE) of Unresectable Intrahepatic Cholangiocarcinoma with Slow-Release Doxorubicin-Eluting Beads: Preliminary Results

    SciTech Connect

    Aliberti, Camillo; Benea, Giorgio Tilli, Massimo; Fiorentini, Giammaria

    2008-09-15

    The purpose of this study was to evaluate the safety and efficacy of TACE with microspheres preloaded with doxorubicin in unresectable intrahepatic cholangiocarcinoma (UCH). Twenty patients with UCH were observed; 9 refused, preferring other palliative care or chemotherapy, and 11 agreed to be treated with one or more cycles of DC beads loaded with doxorubicin (100-150 mg) in a TACE procedure between February 2006 and September 2007. A total of 29 individual TACE procedures were performed. Follow-up imaging was performed on all patients before, immediately after, and 4 weeks after each TACE procedure to evaluate the response and need for further treatment. Each patient received i.v hydration, antibiotics, and medications against nausea and pain before TACE. Survival rate was calculated using Kaplan-Meier survival curve. A response rate of 100% followed RECIST criteria was observed. Eight of eleven patients are alive, with a median survival of 13 months. TACE was well tolerated by all patients. One patient developed hepatic abscess requiring antibiotic therapy. No evidence of marrow toxicity has been reported. Only one of nine patients treated with chemotherapy or palliative care is alive (with a median survival of 7 months in this group of patients). In conclusion, we suggest that doxorubicin-eluting beads TACE is a feasible and effective treatment in patients with UCH. Survival seems to be clearly prolonged in the treated group with respect to the palliative group. We consider that doxorubicin-eluting beads TACE of 100-150 mg may be an appropriate palliative therapy for these patients. Further studies are warranted to confirm these interesting preliminary data.

  12. Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites.

    PubMed

    Lempel, Edina; Czibulya, Zsuzsanna; Kovács, Bálint; Szalma, József; Tóth, Ákos; Kunsági-Máté, Sándor; Varga, Zoltán; Böddi, Katalin

    2016-05-20

    The degree of conversion (DC) and the released bisphenol A diglycidyl ether dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers of bulk-fill composites compared to that of conventional flowable ones were assessed using micro-Raman spectroscopy and high performance liquid chromatography (HPLC). Four millimeter-thick samples were prepared from SureFil SDR Flow (SDR), X-tra Base (XB), Filtek Bulk Fill (FBF) and two and four millimeter samples from Filtek Ultimate Flow (FUF). They were measured with micro-Raman spectroscopy to determine the DC% of the top and the bottom surfaces. The amount of released monomers in 75% ethanol extraction media was measured with HPLC. The differences between the top and bottom DC% were significant for each material. The mean DC values were in the following order for the bottom surfaces: SDR_4mm_20s > FUF_2mm_20s > XB_4mm_20s > FBF_4mm_20s > XB_4mm_10s > FBF_4mm_10s > FUF_4mm_20s. The highest rate in the amount of released BisGMA and TEGDMA was found from the 4 mm-thick conventional flowable FUF. Among bulk-fills, FBF showed a twenty times higher amount of eluted UDMA and twice more BisGMA; meanwhile, SDR released a significantly higher amount of TEGDMA. SDR bulk-fill showed significantly higher DC%; meanwhile XB, FBF did not reach the same level DC, as that of the 2 mm-thick conventional composite at the bottom surface. Conventional flowable composites showed a higher rate of monomer elution compared to the bulk-fills, except FBF, which showed a high amount of UDMA release.

  13. Degree of Conversion and BisGMA, TEGDMA, UDMA Elution from Flowable Bulk Fill Composites

    PubMed Central

    Lempel, Edina; Czibulya, Zsuzsanna; Kovács, Bálint; Szalma, József; Tóth, Ákos; Kunsági-Máté, Sándor; Varga, Zoltán; Böddi, Katalin

    2016-01-01

    The degree of conversion (DC) and the released bisphenol A diglycidyl ether dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers of bulk-fill composites compared to that of conventional flowable ones were assessed using micro-Raman spectroscopy and high performance liquid chromatography (HPLC). Four millimeter-thick samples were prepared from SureFil SDR Flow (SDR), X-tra Base (XB), Filtek Bulk Fill (FBF) and two and four millimeter samples from Filtek Ultimate Flow (FUF). They were measured with micro-Raman spectroscopy to determine the DC% of the top and the bottom surfaces. The amount of released monomers in 75% ethanol extraction media was measured with HPLC. The differences between the top and bottom DC% were significant for each material. The mean DC values were in the following order for the bottom surfaces: SDR_4mm_20s > FUF_2mm_20s > XB_4mm_20s > FBF_4mm_20s > XB_4mm_10s > FBF_4mm_10s > FUF_4mm_20s. The highest rate in the amount of released BisGMA and TEGDMA was found from the 4 mm-thick conventional flowable FUF. Among bulk-fills, FBF showed a twenty times higher amount of eluted UDMA and twice more BisGMA; meanwhile, SDR released a significantly higher amount of TEGDMA. SDR bulk-fill showed significantly higher DC%; meanwhile XB, FBF did not reach the same level DC, as that of the 2 mm-thick conventional composite at the bottom surface. Conventional flowable composites showed a higher rate of monomer elution compared to the bulk-fills, except FBF, which showed a high amount of UDMA release. PMID:27213361

  14. Ketoprofen-eluting biodegradable ureteral stents by CO2 impregnation: In vitro study.

    PubMed

    Barros, Alexandre A; Oliveira, Carlos; Reis, Rui L; Lima, Estevão; Duarte, Ana Rita C

    2015-11-30

    Ureteral stents are indispensable tools in urologic practice. The main complications associated with ureteral stents are dislocation, infection, pain and encrustation. Biodegradable ureteral stents are one of the most attractive designs with the potential to eliminate several complications associated with the stenting procedure. In this work we hypothesize the impregnation of ketoprofen, by CO2-impregnation in a patented biodegradable ureteral stent previously developed in our group. The biodegradable ureteral stents with each formulation: alginate-based, gellan gum-based were impregnated with ketoprofen and the impregnation conditions tested were 100 bar, 2 h and three different temperatures (35 °C, 40 °C and 50 °C). The impregnation was confirmed by FTIR and DSC demonstrated the amorphization of the drug upon impregnation. The in vitro elution profile in artificial urine solution (AUS) during degradation of a biodegradable ureteral stent loaded with ketoprofen was evaluated. According to the kinetics results these systems have shown to be very promising for the release ketoprofen in the first 72 h, which is the necessary time for anti-inflammatory delivery after the surgical procedure. The in vitro release studied revealed an influence of the temperature on the impregnation yield, with a higher impregnation yield at 40 °C. Higher yields were also obtained for gellan gum-based stents. The non-cytotoxicity characteristic of the developed ketoprofen-eluting biodegradable ureteral stents was evaluated in L929 cell line by MTS assay which demonstrated the feasibility of this product as a medical device.

  15. DMSO inhibits human platelet activation through cyclooxygenase-1 inhibition. A novel agent for drug eluting stents?

    SciTech Connect

    Asmis, Lars; Tanner, Felix C.; Sudano, Isabella; Luescher, Thomas F.; Camici, Giovanni G.

    2010-01-22

    Background: DMSO is routinely infused together with hematopoietic cells in patients undergoing myeloablative therapy and was recently found to inhibit smooth muscle cells proliferation and arterial thrombus formation in the mouse by preventing tissue factor (TF), a key activator of the coagulation cascade. This study was designed to investigate whether DMSO prevents platelet activation and thus, whether it may represent an interesting agent to be used on drug eluting stents. Methods and results: Human venous blood from healthy volunteers was collected in citrated tubes and platelet activation was studied by cone and platelet analyzer (CPA) and rapid-platelet-function-assay (RPFA). CPA analysis showed that DMSO-treated platelets exhibit a lower adherence in response to shear stress (-15.54 {+-} 0.9427%, n = 5, P < 0.0001 versus control). Additionally, aggregometry studies revealed that DMSO-treated, arachidonate-stimulated platelets had an increased lag phase (18.0% {+-} 4.031, n = 9, P = 0.0004 versus control) as well as a decreased maximal aggregation (-6.388 {+-} 2.212%, n = 6, P = 0.0162 versus control). Inhibitory action of DMSO could be rescued by exogenous thromboxane A2 and was mediated, at least in part, by COX-1 inhibition. Conclusions: Clinically relevant concentrations of DMSO impair platelet activation by a thromboxane A2-dependent, COX-1-mediated effect. This finding may be crucial for the previously reported anti-thrombotic property displayed by DMSO. Our findings support a role for DMSO as a novel drug to prevent not only proliferation, but also thrombotic complications of drug eluting stents.

  16. Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

    PubMed

    Cox, Sophie C; Jamshidi, Parastoo; Eisenstein, Neil M; Webber, Mark A; Hassanin, Hany; Attallah, Moataz M; Shepherd, Duncan E T; Addison, Owen; Grover, Liam M

    2016-07-01

    Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (<28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16μg/mL) and Staphylococcus epidermidis (1μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections.

  17. Meta-analysis of long-term clinical outcomes of everolimus-eluting stents.

    PubMed

    Toyota, Toshiaki; Shiomi, Hiroki; Morimoto, Takeshi; Kimura, Takeshi

    2015-07-15

    The superiority of everolimus-eluting stents (EES) over sirolimus-eluting stents (SES) for long-term clinical outcomes has not been yet firmly established. We conducted a systematic review and a meta-analysis of randomized controlled trials (RCTs) comparing EES directly with SES using the longest available follow-up data. We searched PubMed, the Cochrane database, and ClinicalTrials.gov for RCTs comparing outcomes between EES and SES and identified 13,434 randomly assigned patients from 14 RCTs. EES was associated with significantly lower risks than SES for definite stent thrombosis (ST), definite/probable ST, target-lesion revascularization (TLR), and major adverse cardiac events (MACE). The risks for all-cause death and myocardial infarction were similar between EES and SES. By the stratified analysis according to the timing after stent implantation, the favorable trend of EES relative to SES for ST, TLR, and MACE was consistently observed both within and beyond 1 year. The lower risk of EES relative to SES for MACE beyond 1 year was statistically significant (pooled odds ratio 0.77, 95% confidence interval 0.61 to 0.96, p = 0.02). In conclusion, the current meta-analysis of 14 RCTs directly comparing EES with SES suggested that EES provided improvement in both safety and efficacy; EES compared with SES was associated with significantly lower risk for definite ST, definite/probable ST, TLR, and MACE. The direction and magnitude of the effect beyond 1 year were comparable with those observed within 1 year.

  18. Effects of fluid flow on elution of hydrophilic modifier from dialysis membrane surfaces.

    PubMed

    Matsuda, Masato; Sato, Mika; Sakata, Hiroki; Ogawa, Takahisa; Yamamoto, Ken-ichiro; Yakushiji, Taiji; Fukuda, Makoto; Miyasaka, Takehiro; Sakai, Kiyotaka

    2008-01-01

    When uremic blood flows through dialyzers during hemodialysis, dialysis membrane surfaces are exposed to shear stress and internal filtration, which may affect the surface characteristics of the dialysis membranes. In the present study, we evaluated changes in the characteristics of membrane surfaces caused by shear stress and internal filtration using blood substitutes: water purified by reverse osmosis and 6.7 wt% dextran70 solution. We focused on the levels of a hydrophilic modifier, polyvinylpyrrolidone (PVP), on the membrane surface measured by attenuated total reflectance Fourier transform infrared spectroscopy. Experiments involving 4 h dialysis, 0-144 h shear-stress loading, and 4 h dead-end filtration were performed using polyester-polymer alloy (PEPA) and polysulfone (PS) membranes. After the dialysis experiments with accompanying internal filtration, average PVP retention on the PEPA membrane surface was 93.7% in all areas, whereas that on the PS membrane surface was 98.9% in all areas. After the shear-stress loading experiments, PVP retention on the PEPA membrane surface decreased as shear-stress loading time and the magnitude of shear stress increased. However, with the PS membrane, PVP retention scarcely changed. After the dead-end filtration experiments, PVP retention decreased in all areas for both PEPA and PS membranes, but PVP retention on the PEPA membrane surface was lower than that on the PS membrane surface. PVP on the PEPA membrane surface was eluted by both shear stress and internal filtration, while that on the PS membrane surface was eluted only by internal filtration.

  19. Polymer-based paclitaxel-eluting coronary stents. Clinical results in de novo lesions.

    PubMed

    Chieffo, Alaide; Colombo, Antonio

    2004-03-01

    Drug-eluting stents (DES) represent one of the fastest-growing fields in interventional cardiology today. Paclitaxel (Taxol) is a potent antiproliferative agent that shifts the microtubule equilibrium toward assembly, favoring the formation of abnormally stable microtubules with blockage of the cell cycle in G2/M phases. A series of clinical trials (TAXUS I through VI) have been designed to test the safety and the efficacy of polymer- based paclitaxel-eluting stents (Taxus, Boston Scientific, Natick, MA, USA) at the dosage 1 microg/mm(2) in a variety of clinical settings. Except for TAXUS III and TAXUS V-ISR, in the TAXUS program de novo lesions have been evaluated. Two different release kinetics were evaluated: slow-release (SR) and moderate- release (MR) formulation. Very encouraging preliminary results also come from the "real world" data on Taxus SR stent collected in the "Web-based taxus Intercontinental obServational Data TransitiOnal registry prograM" (the WISDOM Registry) and in the "Real Life Polymer-Based Paclitaxel Registry" (the Real Life PBPaclitaxel Registry). The remarkable positive results obtained from the randomized trials offer the interventional cardiologist another effective option (besides the Cypher stent, Cordis a J & J, Warren, NJ, USA) to treat patients with a DES. This fact may certainly drive the competition and, ultimately, lower the cost. The final answer will probably come from the ongoing registries and prospective trials versus coronary artery bypass grafting (CABG), which will reveal the real impact of this new technology on everyday practice.

  20. Drug-Eluting Balloons in the Treatment of Coronary De Novo Lesions: A Comprehensive Review.

    PubMed

    Richelsen, Rasmus Kapalu Broge; Overvad, Thure Filskov; Jensen, Svend Eggert

    2016-12-01

    Drug-eluting balloons (DEBs) have emerged as a new application in percutaneous coronary intervention. DEBs have proven successful in the treatment of in-stent restenosis, but their role in de novo lesions is less clear. This paper provides a review of the current studies where DEBs have been used in coronary de novo lesions, either as part of a DEB-only strategy or in combination with another device, mainly a bare metal stent (BMS). By searching Pubmed and Embase we were able to identify 52 relevant studies, differing in design, intervention, and clinical setting, including patients with small vessel disease, bifurcation lesions, complex long lesions, acute myocardial infarction, diabetes mellitus, and elderly. In 23 studies, a DEB was combined with a BMS, 25 studies used a DEB-only strategy with only provisional BMS implantation, and four studies combined a DEB with a drug-eluting stent (DES). In the vast majority of studies, DEB in combination with BMS does not seem to improve clinical or angiographic outcome compared with DES, whereas a DEB-only strategy seems promising, especially when predilatation and geographical mismatch are taken into account. A lower risk of recurrent thrombosis with DEB compared with DES is not evident from the current studies. In conclusion, the main indication for DEB seems to be small vessel disease, especially in clinical scenarios in which a contraindication to dual antiplatelet therapy exists. The main approach should be a DEB-only strategy with only provisional bailout stenting, which has shown interesting results in different clinical scenarios. In general, larger randomized controlled studies with prolonged follow-up comparing DEB with best in class DES are warranted. Technical developments of DEBs including the use of different drugs might potentially improve the efficacy of such treatment.

  1. Alkaline cleaner replacement for printed wiring board fabrication

    SciTech Connect

    Goldammer, S.E.; Pemberton, S.E.; Tucker, D.R.

    1997-04-01

    A replacement alkaline cleaning chemistry was qualified for the copper cleaning process used to support printed wiring board fabrication. The copper cleaning process was used to prepare copper surfaces for enhancing the adhesion of dry film photopolymers (photoresists and solder masks) and acrylic adhesives. The alkaline chemistry was used to remove organic contaminates such as fingerprints.

  2. Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes

    DTIC Science & Technology

    2015-04-29

    Organic Cations for Polymer Hydroxide Exchange Membranes Hydroxide exchange membranes (HEMs) are important polymer electrolytes for electrochemical...Exploring Alkaline Stable Organic Cations for Polymer Hydroxide Exchange Membranes Report Title Hydroxide exchange membranes (HEMs) are important polymer ...constructing HEMs. EXPLORING ALKALINE STABLE ORGANIC CATIONS FOR POLYMER HYDROXIDE EXCHANGE MEMBRANES by Bingzi Zhang

  3. The Chemistry of Paper Preservation Part 4. Alkaline Paper.

    ERIC Educational Resources Information Center

    Carter, Henry A.

    1997-01-01

    Discusses the problem of the inherent instability of paper due to the presence of acids that catalyze the hydrolytic degradation of cellulose. Focuses on the chemistry involved in the sizing of both acid and alkaline papers and the types of fillers used. Discusses advantages and problems of alkaline papermaking. Contains 48 references. (JRH)

  4. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  5. Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids.

    PubMed

    Marino, M G; Kreuer, K D

    2015-02-01

    The alkaline stability of 26 different quaternary ammonium groups (QA) is investigated for temperatures up to 160 °C and NaOH concentrations up to 10 mol L(-1) with the aim to provide a basis for the selection of functional groups for hydroxide exchange membranes in alkaline fuel cells and of ionic-liquid cations stable in basic conditions. Most QAs exhibit unexpectedly high alkaline stability with the exception of aromatic cations. β-Protons are found to be far less susceptible to nucleophilic attack than previously suggested, whereas the presence of benzyl groups, nearby hetero-atoms, or other electron-withdrawing species promote degradation reactions significantly. Cyclic QAs proved to be exceptionally stable, with the piperidine-based 6-azonia-spiro[5.5]undecane featuring the highest half-life at the chosen conditions. Absolute and relative stabilities presented herein stand in contrast to literature data, the differences being ascribed to solvent effects on degradation.

  6. Rapid alkaline methylene blue supravital staining for assessment of anterior segment infections

    PubMed Central

    Kiuchi, Katsuji

    2016-01-01

    Purpose To present the Löffler’s alkaline methylene blue technique of staining eye discharges in eyes with anterior segment infections. Method The Löffler’s alkaline methylene blue staining method is a simple staining technique that can be used to differentiate bacterial, viral, and fungal infections. It is a cationic dye that stains cells blue because the positively charged dye is attracted to negatively charged particles such as polyphosphates, DNAs, and RNAs. Specimens collected from patients by swabbing are smeared onto microscope slides and the methylene blue solution is dropped on the slide. The slide is covered with a glass cover slip and examined under a microscope. The entire time from the collection to the viewing is about 30 seconds. Results Histopathological images of the conjunctival epithelial cells and neutrophils in eye discharges were dyed blue and the nuclei were stained more intensely blue. Bacterial infections consisted mainly of neutrophils, and viral infections consisted mainly of lymphocytes. Conclusions Löffler’s alkaline methylene blue staining can be done in about 30 seconds for diagnosis. Even though this is a one color stain, it is possible to infer the cause of the infection by detection of the absence of bacteria and/or fungi in context of the differential distribution of neutrophils and lymphocytes. PMID:27784986

  7. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific.

  8. Salt- and alkaline-tolerance are linked in Acacia

    PubMed Central

    Bui, Elisabeth N.; Thornhill, Andrew; Miller, Joseph T.

    2014-01-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific. PMID:25079493

  9. Identification of a retroelement from the resurrection plant Boea hygrometrica that confers osmotic and alkaline tolerance in Arabidopsis thaliana.

    PubMed

    Zhao, Yan; Xu, Tao; Shen, Chun-Ying; Xu, Guang-Hui; Chen, Shi-Xuan; Song, Li-Zhen; Li, Mei-Jing; Wang, Li-Li; Zhu, Yan; Lv, Wei-Tao; Gong, Zhi-Zhong; Liu, Chun-Ming; Deng, Xin

    2014-01-01

    Functional genomic elements, including transposable elements, small RNAs and non-coding RNAs, are involved in regulation of gene expression in response to plant stress. To identify genomic elements that regulate dehydration and alkaline tolerance in Boea hygrometrica, a resurrection plant that inhabits drought and alkaline Karst areas, a genomic DNA library from B. hygrometrica was constructed and subsequently transformed into Arabidopsis using binary bacterial artificial chromosome (BIBAC) vectors. Transgenic lines were screened under osmotic and alkaline conditions, leading to the identification of Clone L1-4 that conferred osmotic and alkaline tolerance. Sequence analyses revealed that L1-4 contained a 49-kb retroelement fragment from B. hygrometrica, of which only a truncated sequence was present in L1-4 transgenic Arabidopsis plants. Additional subcloning revealed that activity resided in a 2-kb sequence, designated Osmotic and Alkaline Resistance 1 (OAR1). In addition, transgenic Arabidopsis lines carrying an OAR1-homologue also showed similar stress tolerance phenotypes. Physiological and molecular analyses demonstrated that OAR1-transgenic plants exhibited improved photochemical efficiency and membrane integrity and biomarker gene expression under both osmotic and alkaline stresses. Short transcripts that originated from OAR1 were increased under stress conditions in both B. hygrometrica and Arabidopsis carrying OAR1. The relative copy number of OAR1 was stable in transgenic Arabidopsis under stress but increased in B. hygrometrica. Taken together, our results indicated a potential role of OAR1 element in plant tolerance to osmotic and alkaline stresses, and verified the feasibility of the BIBAC transformation technique to identify functional genomic elements from physiological model species.

  10. Contrast-Enhanced Ultrasonography of Hepatocellular Carcinoma After Chemoembolisation Using Drug-Eluting Beads: A Pilot Study Focused on Sustained Tumor Necrosis

    SciTech Connect

    Moschouris, Hippocrates; Malagari, Katerina; Papadaki, Marina Georgiou; Kornezos, Ioannis Matsaidonis, Dimitrios

    2010-10-15

    The purpose of this study was to assess the use of contrast-enhanced ultrasonography (CEUS) and the sustained antitumor effect of drug-eluting beads used for transarterial chemoembolisation (TACE) of unresectable hepatocellular carcinoma (HCC). Ten patients with solitary, unresectable HCC underwent CEUS before, 2 days after, and 35 to 40 days after TACE using a standard dose (4 ml) of drug-eluting beads (DC Beads; Biocompatibles, Surrey, UK) preloaded with doxorubicin (25 mg doxorubicin/ml hydrated beads). For CEUS, a second-generation contrast agent (SonoVue, Bracco, Milan, Italy) and a low mechanical-index technique were used. A part of the tumor was characterized as necrotic if it showed complete lack of enhancement. The percentage of necrosis was calculated at the sonographic section that depicted the largest diameter of the tumor. Differences in the extent of early (2 days after TACE) and delayed (35 to 40 days after TACE) necrosis were quantitatively and subjectively assessed. Early post-TACE tumor necrosis ranged from 21% to 70% (mean 43.5% {+-} 19%). There was a statistically significant (p = 0.0012, paired Student t test) higher percentage of delayed tumor necrosis, which ranged from 24% to 88% (mean 52.3% {+-} 20.3%). Subjective evaluation showed a delayed obvious increase of the necrotic areas in 5 patients. In 2 patients, tumor vessels that initially remained patent disappeared on the delayed follow-up. A part of tumor necrosis after chemoembolisation of HCC with DEB seems to take place later than 2 days after TACE. CEUS may provide evidence for the sustained antitumor effect of DEB-TACE. Nevertheless, the ideal time for the imaging evaluation of tumor response remains to be defined.

  11. Bioinspired Titanium Drug Eluting Platforms Based on a Poly-β-cyclodextrin-Chitosan Layer-by-Layer Self-Assembly Targeting Infections.

    PubMed

    Pérez-Anes, Alexandra; Gargouri, Myriem; Laure, William; Van Den Berghe, Hélène; Courcot, Elisabeth; Sobocinski, Jonathan; Tabary, Nicolas; Chai, Feng; Blach, Jean-François; Addad, Ahmed; Woisel, Patrice; Douroumis, Dennis; Martel, Bernard; Blanchemain, Nicolas; Lyskawa, Joël

    2015-06-17

    In the field of implantable titanium-based biomaterials, infections and inflammations are the most common forms of postoperative complications. The controlled local delivery of therapeutics from implants through polyelectrolyte multilayers (PEMs) has recently emerged as a versatile technique that has shown great promise in the transformation of a classical medical implant into a drug delivery system. Herein, we report the design and the elaboration of new biodegradable multidrug-eluting titanium platforms based on a polyelectrolyte multilayer bioactive coating that target infections. These systems were built up in mild conditions according to the layer-by-layer (L-b-L) assembly and incorporate two biocompatible polysaccharides held together through electrostatic interactions. A synthetic, negatively charged β-cyclodextrin-based polymer (PCD), well-known for forming stable and reversible complexes with hydrophobic therapeutic agents, was exploited as a multidrug reservoir, and chitosan (CHT), a naturally occurring, positively charged polyelectrolyte, was used as a barrier for controlling the drug delivery rate. These polyelectrolyte multilayer films were strongly attached to the titanium surface through a bioinspired polydopamine (PDA) film acting as an adhesive first layer and promoting the robust anchorage of PEMs onto the biomaterials. Prior to the multilayer film deposition, the interactions between both oppositely charged polyelectrolytes, as well the multilayer growth, were monitored by employing surface plasmon resonance (SPR). Several PEMs integrating 5, 10, and 15 bilayers were engineered using the dip coating strategy, and the polyelectrolyte surface densities were estimated by colorimetric titrations and gravimetric analyses. The morphologies of these multilayer systems, as well as their naturally occurring degradation in a physiological medium, were investigated by scanning electron microscopy (SEM), and their thicknesses were measured by means of

  12. Multi-elemental Gd, Eu, Sm, Nd isotope ratio measurements by liquid chromatography coupled to MC-ICPMS with variable Faraday cup configurations during elution.

    PubMed

    Guéguen, Florence; Nonell, Anthony; Isnard, Hélène; Vio, Laurent; Chartier, Frédéric

    2017-01-01

    The high-precision isotopic characterization of actinides and fission products in nuclear samples is fundamental for various applications such as the management of spent nuclear fuel or the validation of neutronic calculation codes. However multi-elemental isotope ratio measurements by mass spectrometric techniques are hampered by the presence of both spectral and non-spectral interferences as complex sample matrices are encountered in such topics, but also due to the lack of high precision mass spectrometers able to cover the entire mass spectrum. This work describes a new LC-MC-ICPMS approach allowing simultaneous high-precision and multi-elemental isotope ratio measurements of four fission products of interest for nuclear issues (Nd, Sm, Eu, Gd) within a single elution run. Variable motorized Faraday cup configurations were successively used during a specifically designed elution procedure in order to take into account the non-natural Nd, Sm, Eu, Gd isotopic compositions encountered in irradiated nuclear samples. This new method, involving the relevant isotopic reference standard injection timings for on-line mass bias corrections, was validated by the analysis of a simulated fission product fraction from a (235)U-irradiated target. Reproducibilities better than 2‰ (k=2), comparable to those obtained by off-line measurements and the classic sample-standard bracketing mass bias correction approach, were obtained for all isotope ratios, except those involving isotopes with a transient signal peak apex lower than 100mV, for which the reproducibilities were comprised between 2‰ and 6‰.

  13. Caprylic acid-induced impurity precipitation from protein A capture column elution pool to enable a two-chromatography-step process for monoclonal antibody purification.

    PubMed

    Zheng, Ji; Wang, Lu; Twarowska, Barbara; Laino, Sarah; Sparks, Colleen; Smith, Timothy; Russell, Reb; Wang, Michelle

    2015-01-01

    This article presents the use of caprylic acid (CA) to precipitate impurities from the protein A capture column elution pool for the purification of monoclonal antibodies (mAbs) with the objective of developing a two chromatography step antibody purification process. A CA-induced impurity precipitation in the protein A column elution pool was evaluated as an alternative method to polishing chromatography techniques for use in the purification of mAbs. Parameters including pH, CA concentrations, mixing time, mAb concentrations, buffer systems, and incubation temperatures were evaluated on their impacts on the impurity removal, high-molecular weight (HMW) formation and precipitation step yield. Both pH and CA concentration, but not mAb concentrations and buffer systems, are key parameters that can affect host-cell proteins (HCPs) clearance, HMW species, and yield. CA precipitation removes HCPs and some HMW species to the acceptable levels under the optimal conditions. The CA precipitation process is robust at 15-25°C. For all five mAbs tested in this study, the optimal CA concentration range is 0.5-1.0%, while the pH range is from 5.0 to 6.0. A purification process using two chromatography steps (protein A capture column and ion exchange polishing column) in combination with CA-based impurity precipitation step can be used as a robust downstream process for mAb molecules with a broad range of isoelectric points. Residual CA can be effectively removed by the subsequent polishing cation exchange chromatography.

  14. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    SciTech Connect

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast, treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.

  15. Genotoxicity of environmental agents assessed by the alkaline comet assay.

    PubMed

    Møller, Peter

    2005-01-01

    . High levels of oxidative DNA lesions were detected after exposure to benzene or X-ray irradiation. The comet assay did not detect DNA damage in colon or liver following ingestion of diets containing of high contents of animal fat or sucrose, although other indices of DNA damage were found. Determined from the results of a large Japanese study, the discrimination between carcinogens and non-carcinogens appears to be similar between the comet assay and alkaline elution, which also detects SB. This suggests that the comet assay is a reliable genotoxicity test in animal experimental systems. In the biomonitoring studies, we investigated the effect of common exposures and lifestyle factors (rather than effects of known carcinogens) on the level of oxidative DNA damage in mononuclear blood cells of humans. In the first study, based on repeated measurements, it was shown that interindividual variation and seasonal variation were major determinants for the basal level of SB, whereas no effect of age, exercise, or antioxidant intake could be detected. The effect of exercise was further investigated under both normoxic and hypoxic circumstances, showing a strong effect of hypoxia, and only effect of exercise in terms of SB in hypoxia. In a placebo-controlled parallel dietary fruit and vegetable (or the corresponding amount of antioxidants) intervention study, no effects of the level of oxidative DNA damage or sensitivity to hydrogen peroxide were observed. Although this may seem in contrast to other antioxidant intervention studies, a critical literature survey of antioxidant intervention studies on oxidative DNA damage suggested that well-controlled studies tended to show no effect of antioxidant supplementation. In summary, the aggregated data from the publications included in this thesis, and other publications encompassing the comet assay, indicate that the comet assay is a reliable method for detection of DNA damage in tissues of experimental animals. Although not all types

  16. Ultrafine polybenzimidazole (PBI) fibers. [separators for alkaline batteries and dfuel cells

    NASA Technical Reports Server (NTRS)

    Chenevey, E. C.

    1979-01-01

    Mats were made from ultrafine polybenzimidazole (PBI) fibers to provide an alternate to the use of asbestos as separators in fuel cells and alkaline batteries. To minimize distortion during mat drying, a process to provide a dry fibrid was developed. Two fibrid types were developed: one coarse, making mats for battery separators; the other fine, making low permeability matrices for fuel cells. Eventually, it was demonstrated that suitable mat fabrication techniques yielded fuel cell separators from the coarser alkaline battery fibrids. The stability of PBI mats to 45% KOH at 123 C can be increased by heat treatment at high temperatures. Weight loss data to 1000 hours exposure show the alkali resistance of the mats to be superior to that of asbestos.

  17. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

    PubMed Central

    2015-01-01

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and a carbon paste (CP) electrode that is prepared by the students in the laboratory. The GC and CP were modified with palladium nanoparticles (PdNP) suspensions. The electrodes efficiencies were studied for ethanol oxidation in alkaline solution using cyclic voltammetry techniques. The ethanol oxidation currents obtained were used to determine the current density using the geometric and surface area of each electrode. Finally, students were able to choose the best electrode and relate catalytic activity to surface area for ethanol oxidation in alkaline solution by completing a critical analysis of the cyclic voltammetry results. With this activity, fundamental electrochemical concepts were reinforced. PMID:25691801

  18. Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications.

    PubMed

    Feliciano-Ramos, Ileana; Casañas-Montes, Barbara; García-Maldonado, María M; Menéndez, Christian L; Mayol, Ana R; Díaz-Vázquez, Liz M; Cabrera, Carlos R

    2015-02-10

    Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and a carbon paste (CP) electrode that is prepared by the students in the laboratory. The GC and CP were modified with palladium nanoparticles (PdNP) suspensions. The electrodes efficiencies were studied for ethanol oxidation in alkaline solution using cyclic voltammetry techniques. The ethanol oxidation currents obtained were used to determine the current density using the geometric and surface area of each electrode. Finally, students were able to choose the best electrode and relate catalytic activity to surface area for ethanol oxidation in alkaline solution by completing a critical analysis of the cyclic voltammetry results. With this activity, fundamental electrochemical concepts were reinforced.

  19. Batteries: from alkaline to zinc-air.

    PubMed

    Dondelinger, Robert M

    2004-01-01

    There is no perfect disposable battery--one that will sit on the shelf for 20 years, then continually provide unlimited current, at a completely constant voltage until exhausted, without producing heat. There is no perfect rechargeable battery--one with all of the above characteristics and will also withstand an infinite overcharge while providing an equally infinite cycle life. There are only compromises. Every battery selection is a compromise between the ideally required characteristics, the advantages, and the limitations of each battery type. General selection of a battery type to power a medical device is largely outside the purview of the biomed. Initially, these are engineering decisions made at the time of medical equipment design and are intended to be followed in perpetuity. However, since newer cell types evolve and the manufacturer's literature is fixed at the time of printing, some intelligent substitutions may be made as long as the biomed understands the characteristics of both the recommended cell and the replacement cell. For example, when the manufacturer recommends alkaline, it is usually because of the almost constant voltage it produces under the devices' design load. Over time, other battery types may be developed that will meet the intent of the manufacturer, at a lower cost, providing longer operational life, at a lower environmental cost, or with a combination of these advantages. In the Obstetrical Doppler cited at the beginning of this article, the user had put in carbon-zinc cells, and the biomed had unknowingly replaced them with carbonzinc cells. If the alkaline cells recommended by the manufacturer had been used, there would have been the proper output voltage at the battery terminals when the [table: see text] cells were at their half-life. Instead, the device refused to operate since the battery voltage was below presumed design voltage. While battery-type substitutions may be easily and relatively successfully made in disposable

  20. Advances in the growth of alkaline-Earth halide single crystals for scintillator detectors

    NASA Astrophysics Data System (ADS)

    Boatner, L. A.; Ramey, J. O.; Kolopus, J. A.; Neal, J. S.; Cherepy, N. J.; Beck, P. R.; Payne, S. A.; Burger, A.; Rowe, E.; Bhattacharya, P.

    2014-09-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystalgrowth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  1. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    SciTech Connect

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A; Neal, John S; Cherepy, Nerine; Payne, Stephen A.; Beck, P; Burger, Arnold; Rowe, E; Bhattacharya, P.

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector production costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.

  2. Deselenization and detellurization of precious-metal ore concentrates by swelling oxidizing roasting and successive alkaline leaching

    NASA Astrophysics Data System (ADS)

    Zhang, Fu-yuan; Zheng, Ya-jie; Peng, Guo-min

    2017-02-01

    A new technique of swelling oxidizing roasting and alkaline leaching was proposed for deselenization and detellurization of precious-metal ore concentrates. Alkali-metal and alkaline-earth-metal chlorides and carbonates were preliminarily selected as swelling agents. The roasting removal rate and alkaline leaching rate of selenium and tellurium were investigated, and NaCl was selected as an appropriate swelling agent. Furthermore, the effects of various factors on the selenium gasification rate and leaching rate of selenium and tellurium were investigated. The results show that the selenium gasification rate reaches 88.41% after swelling oxidizing roasting for 2 h at 510°C using an NaCl dosage coefficient of 100 and a sulfuric acid dosage coefficient of 1.3; the amorphous elemental tellurium is completely transformed into TiO2. The roasted product is subjected to alkaline leaching using a 100 g/L NaOH solution, which results in a selenium leaching rate of 10.51%, a total selenium removal rate of 98.92%, and a tellurium leaching rate of 97.64%. In the alkaline leaching residue, the contents of selenium, tellurium, gold, platinum, and palladium are 0.7825%, 5.492%, 8.333%, 0.2587%, and 1.113%, respectively; the precious metals are enriched approximately sixfold.

  3. In vitro mutagenicity and genotoxicity study of a number of short-chain chlorinated hydrocarbons using the micronucleus test and the alkaline single cell gel electrophoresis technique (Comet assay) in human lymphocytes: a structure-activity relationship (QSAR) analysis of the genotoxic and cytotoxic potential.

    PubMed

    Tafazoli, M; Baeten, A; Geerlings, P; Kirsch-Volders, M

    1998-03-01

    Using the micronucleus (MN) test and the alkaline single cell gel electrophoresis (Comet) assay, potential mutagenicity (MN formation), genotoxicity (DNA breakage capacity) and cytotoxicity (cell proliferation reduction) of five chlorinated hydrocarbons (carbon tetrachloride, hexachloroethane, 1,2-dichloroethane, 1-chlorohexane and 2,3-dichlorobutane) have been evaluated in isolated human lymphocytes. With the MN test a low but statistically significant mutagenic activity was detected for all tested substances (except 2,3-dichlorobutane) with one out of the two donors and in the presence or absence of an exogenous metabolic activation system (S9 mix). However, at the concentration ranges tested none of the positive compounds induced a clear dose-dependent mutagenic effect. The Comet assay detected a strong DNA damaging effect for 1-chlorohexane, 2,3-dichlorobutane and 1,2-dichloroethane, but not for carbon tetrachloride and hexachloroethane. The influence of metabolism on the genotoxic activity of the chemicals was more clear in the Comet assay than in the MN test. The experimental genotoxicity and cytotoxicity data obtained in this study, together with data on five more related chemicals previously investigated, and their physico-chemical descriptors or electronic parameters have been used for QSAR analysis. The QSAR analysis high-lighted that the toxicity of the tested compounds was influenced by different parameters, like lipophilicity (logP), electron donor ability (charge) and longest carbon-chlorine (LBC-Cl) bond length. In addition, steric parameters, like molar refractivity (MR) and LBC-Cl, and electronic parameters, like ELUMO (energy of the lowest unoccupied molecular orbital, indicating electrophilicity), were predominant factors discriminating genotoxins from non-genotoxins in the presence but not in the absence of S9 mix. Although a limited number of compounds have been examined and cytotoxicity and genotoxicity were identified in two different

  4. Reduction of burn scar formation by halofuginone-eluting silicone gel sheets: a controlled study on nude mice.

    PubMed

    Zeplin, Philip H

    2012-03-01

    Burn scar formations can cause disfiguration and loss of dermal function. The purpose of this study was to examine whether application of modified silicone gel sheets with an antifibrotic drug halofuginone-eluting hybrid surface produce an effect on scar development. There were a total of 2 animal groups. The athymic nude mice (nu/nu) of both groups underwent transplantation of full-thickness human skin grafts onto their backs and setting of partial thickness burn injury. The status of local scar development was observed over a period of 3 months after the application of silicone gel sheets and also after application of surface-modified halofuginone-eluting silicone gel sheets. Subsequently, via real-time polymerase chain reaction, the cDNA levels from key mediators of scar formation (transforming growth factor beta, COL1A1, connective tissue growth factor, fibroblast growth factor 2, matrix metalloproteinase 2, matrix metalloproteinase 9) were established and statistically evaluated. In comparison with uncoated silicone gel sheets, the application of halofuginone-eluting silicone gel sheets lead to a significant difference in gene expression activity in scar tissue. Halofuginone-eluting hybrid surface silicone gel sheets significantly increase the antiscarring effect of adhesive silicone gel sheets by deceleration and downregulation of scar development by normalization of the expression activity.

  5. Systematic interpolation method predicts protein chromatographic elution from batch isotherm data without a detailed mechanistic isotherm model.

    PubMed

    Creasy, Arch; Barker, Gregory; Yao, Yan; Carta, Giorgio

    2015-09-01

    Predicting protein elution for overloaded ion exchange columns requires models capable of describing protein binding over broad ranges of protein and salt concentrations. Although approximate mechanistic models are available, they do not always have the accuracy needed for precise predictions. The aim of this work is to develop a method to predict protein chromatographic behavior from batch isotherm data without relying on a mechanistic model. The method uses a systematic empirical interpolation (EI) scheme coupled with a lumped kinetic model with rate parameters determined from HETP measurements for non-binding conditions, to numerically predict the column behavior. For two experimental systems considered in this work, predictions based on the EI scheme are in excellent agreement with experimental elution profiles under highly overloaded conditions without using any adjustable parameters. A qualitative study of the sensitivity of predicting protein elution profiles to the precision, granularity, and extent of the batch adsorption data shows that the EI scheme is relatively insensitive to the properties of the dataset used, requiring only that the experimental ranges of protein and salt concentrations overlap those under which the protein actually elutes from the column and possess a ± 10% measurement precision.

  6. Sustained Efficacy and Arterial Drug Retention by a Fast Drug Eluting Cross-Linked Fatty Acid Coronary Stent Coating

    PubMed Central

    Artzi, Natalie; Tzafriri, Abraham R.; Faucher, Keith M.; Moodie, Geoffrey; Albergo, Theresa; Conroy, Suzanne; Corbeil, Scott; Martakos, Paul; Virmani, Renu; Edelman, Elazer R.

    2015-01-01

    The long held assumption that sustained drug elution from stent coatings over weeks to months is imperative for clinical efficacy has limited the choice for stent coating materials. We developed and evaluated an omega-3 fatty acid (O3FA) based stent coating that is 85% absorbed and elutes 97% of its Sirolimus analog (Corolimus) load within 8d of implantation. O3FA coated stents sustained drug levels in porcine coronary arteries similarly to those achieved by slow-eluting durable coated Cypher Select Plus Stents and with significantly lower levels of granuloma formation and luminal stenosis. Computational modeling confirmed that diffusion and binding constants of Corolimus and Sirolimus are identical and explained that the sustained retention of Corolimus was facilitated by binding to high affinity intracellular receptors (FKBP12). First in man outcomes were positive—unlike Cypher stents where late lumen loss drops over 6 month, there was a stable effect without diminution in the presence of O3FA. These results speak to a new paradigm whereby the safety of drug eluting stents can be optimized through the use of resorbable biocompatible coating materials with resorption kinetics that coincide with the dissociation and tissue elimination of receptor-bound drug. PMID:26314990

  7. Comparison of the quantitative performance of constant pressure versus constant flow rate gradient elution separations using concentration-sensitive detectors.

    PubMed

    Verstraeten, M; Broeckhoven, K; Lynen, F; Choikhet, K; Dittmann, M; Witt, K; Sandra, P; Desmet, G

    2012-04-06

    This contribution discusses the difference in chromatographic performance when switching from the customary employed constant flow rate gradient elution mode to the recently re-introduced constant pressure gradient elution mode. In this mode, the inlet pressure is maintained at a set value even when the mobile phase viscosity becomes lower than the maximum mobile phase viscosity encountered during the gradient program. This leads to a higher average flow rate compared to the constant flow rate mode and results in a shorter analysis time. When both modes carry out the same mobile phase gradient program in volumetric units, normally identical selectivities are obtained. However, small deviations in selectivity are found due to the differences in pressure and viscous heating effects. These selectivity differences are of the same type as those observed when switching from HPLC to UHPLC and are inevitable when speeding up the analysis by applying a higher pressure. It was also found that, when using concentration-sensitive detectors, the constant pressure elution mode leads to identical peak areas as the constant flow rate mode. Also the linearity is maintained. In addition, the repeatability of the peak area and retention time remains the same when switching between both elution modes.

  8. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography.

    PubMed

    Gika, Helen; Theodoridis, Georgios; Mattivi, Fulvio; Vrhovsek, Urska; Pappa-Louisi, Adriani

    2012-02-01

    The analysis of amino acids presents significant challenges to contemporary analytical separations. The present paper investigates the possibility of retention prediction in hydrophilic interaction chromatography (HILIC) gradient elution based on the analytical solution of the fundamental equation of the multilinear gradient elution derived for reversed-phase systems. A simple linear dependence of the logarithm of the solute retention (ln k) upon the volume fraction of organic modifier (φ) in a binary aqueous-organic mobile is adopted. Utility of the developed methodology was tested on the separation of a mixture of 21 amino acids carried out with 14 different gradient elution programs (from simple linear to multilinear and curved shaped) using ternary eluents in which a mixture of methanol and water (1:1, v/v) was the strong eluting member and acetonitrile was the weak solvent. Starting from at least two gradient runs, the prediction of solute retention obtained under all the rest gradients was excellent, even when curved gradient profiles were used. Development of such methodologies can be of great interest for a wide range of applications.

  9. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    Three kinds of alkaliphilic bacteria able to utilize thiocyanate (CNS−) at pH 10 were found in highly alkaline soda lake sediments and soda soils. The first group included obligate heterotrophs that utilized thiocyanate as a nitrogen source while growing at pH 10 with acetate as carbon and energy sources. Most of the heterotrophic strains were able to oxidize sulfide and thiosulfate to tetrathionate. The second group included obligately autotrophic sulfur-oxidizing alkaliphiles which utilized thiocyanate nitrogen during growth with thiosulfate as the energy source. Genetic analysis demonstrated that both the heterotrophic and autotrophic alkaliphiles that utilized thiocyanate as a nitrogen source were related to the previously described sulfur-oxidizing alkaliphiles belonging to the gamma subdivision of the division Proteobacteria (the Halomonas group for the heterotrophs and the genus Thioalkalivibrio for autotrophs). The third group included obligately autotrophic sulfur-oxidizing alkaliphilic bacteria able to utilize thiocyanate as a sole source of energy. These bacteria could be enriched on mineral medium with thiocyanate at pH 10. Growth with thiocyanate was usually much slower than growth with thiosulfate, although the biomass yield on thiocyanate was higher. Of the four strains isolated, the three vibrio-shaped strains were genetically closely related to the previously described sulfur-oxidizing alkaliphiles belonging to the genus Thioalkalivibrio. The rod-shaped isolate differed from the other isolates by its ability to accumulate large amounts of elemental sulfur inside its cells and by its ability to oxidize carbon disulfide. Despite its low DNA homology with and substantial phenotypic differences from the vibrio-shaped strains, this isolate also belonged to the genus Thioalkalivibrio according to a phylogenetic analysis. The heterotrophic and autotrophic alkaliphiles that grew with thiocyanate as an N source possessed a relatively high level of cyanase

  10. Double-peak elution profile of a monoclonal antibody in cation exchange chromatography is caused by histidine-protonation-based charge variants.

    PubMed

    Luo, Haibin; Cao, Mingyan; Newell, Kelcy; Afdahl, Christopher; Wang, Jihong; Wang, William K; Li, Yuling

    2015-12-11

    We have systemically investigated unusual elution behaviors of an IgG4 (mAb A) in cation exchange chromatography (CEX). This mAb A exhibited two elution peaks under certain conditions when being purified by several strong CEX columns. When either of the two peaks was isolated and re-injected on the same column, the similar pattern was observed again during elution. The protein distribution between the two peaks could be altered by NaCl concentration in the feed, or NaCl concentration in wash buffer, or elution pH, suggesting two pH-associated strong-and-weak binding configurations. The protein distributions under different pH values showed good correlation with protonated/un-protonated fractions of a histidine residue. These results suggest that the double-peak elution profile associates with histidine-protonation-based charge variants. By conducting pepsin digestion, amino-acid specific chemical modifications, peptide mapping, and measuring the effects of elution residence time, a histidine in the variable fragment (Fab) was identified to be the root cause. Besides double-peak pattern, mAb A can also exhibit peak-shouldering or single elution peak on different CEX resins, reflecting different resins' resolving capability on protonated/un-protonated forms. This work characterizes a novel cause for unusual elution behaviors in CEX and also provides alternative avenues of purification development for mAbs with similar behaviors.

  11. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  12. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  13. Low pH alkaline chemical formulations

    SciTech Connect

    French, T.R.; Peru, D.A.; Thornton, S.D.

    1989-01-01

    This report describes the development of a surfactant-enhanced alkaline flooding system that is applicable to specific reservoir conditions in Wilmington (California) field. The cost of the chemicals for an ASP (alkali/surfactant/polymer) flood is calculated to be $3.90/bbl of oil produced, with 78% of that cost attributable to polymer. This research included phase behavior tests, oil displacement tests, mineral dissolution tests, and adsorption measurements. It was discovered that consumption of low pH alkalis is low enough in the Wilmington field to be acceptable. In addition, alkali dramatically reduced surfactant adsorption and precipitation. A mixture of NaHCO3 and Na2CO3 was recommended for use as a preflush and in the ASP formulation. Research was also conducted on the synergistic effect that occurs when a mixture of alkali and synthetic surfactant contacts crude oil. It appears that very low IFT is predominantly a result of the activation of the natural surfactants present in the Wilmington oil, and the sustained low IFT is primarily the result of the synthetic surfactant. It also appears that removal of acids from the crude oil by the alkali renders the oil more interfacially reactive to synthetic surfactant. These phenomena help to explain the synergism that results from combining alkali and synthetic surfactant into a single oil recovery formulation. 19 refs., 24 figs., 10 tabs.

  14. Process for treating alkaline wastes for vitrification

    SciTech Connect

    Hsu, Chia-lin W.

    1994-01-01

    According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.

  15. Identification of human pulmonary alkaline phosphatase isoenzymes.

    PubMed

    Capelli, A; Cerutti, C G; Lusuardi, M; Donner, C F

    1997-04-01

    An increase of alkaline phosphatase (ALP) activity has been observed in the bronchoalveolar lavage fluid (BALF) of patients affected by pulmonary fibrosis in chronic interstitial lung disorders. To characterize the ALP isoenzymes in such cases, we used gel filtration, agarose gel electrophoresis, heat and amino acid inhibition assays, wheat-germ agglutinin (WGA) precipitation, and an immunoassay specific for the bone-isoform of ALP. Only one anodic band representing a high-molecular-weight isoform of ALP (Mr approximately 2,000 kDa) was observed on electrophoresis of BALF. The inhibition assay results were consistent for a tissue-nonspecific isoenzyme sensitive to a temperature of 56 degrees C (71.9 +/- 2.5% inhibition) and to homoarginine (65.7 +/- 1.9%), and resistant to L-phenylalanine and L-leucine. Less than 13% of ALP activity was heat-stable. After incubation of BALF specimens with glycosyl-phosphatidylinositol-phospholipase D plus Nonidet P-40, or with phosphatidylinositol-phospholipase C alone, an electrophoretic cathodic band (Mr approximately 220 kDa) appeared near the bone band of a standard serum. With the WGA assay, 84.4 +/- 3.3% of ALP precipitated and the band disappeared. After immunoassay for the bone isoform, a mean of less than 5% enzyme activity was measured. We conclude that the ALP found in BALF is a pulmonary isoform of a tissue nonspecific isoenzyme.

  16. Extracellular alkaline proteinase of Colletotrichum gloeosporioides.

    PubMed

    Dunaevsky, Ya E; Matveeva, A R; Beliakova, G A; Domash, V I; Belozersky, M A

    2007-03-01

    The main proteinase of the filamentous fungus Colletotrichum gloeosporioides causing anthracnoses and serious problems for production and storage of agricultural products has molecular mass of 57 kD and was purified more than 200-fold to homogeneity with the yield of 5%. Maximal activity of the proteinase is at pH 9.0-10.0, and the enzyme is stable at pH 6.0-11.5 (residual activity not less than 70%). The studied enzyme completely kept its activity to 55 degrees C, with a temperature optimum of 45 degrees C. The purified C. gloeosporioides proteinase is stable at alkaline pH values, but rapidly loses its activity at pH values lower than 5.0. Addition of bovine serum albumin stabilizes the enzyme under acidic conditions. Data on inhibitor analysis and substrate specificity of the enzyme allow its classification as a serine proteinase of subtilisin family. It is demonstrated that the extracellular proteinase of C. gloeosporioides specifically effects plant cell wall proteins. It is proposed that the studied proteinase--via hydrolysis of cell wall--provides for penetration of the fungus into the tissues of the host plant.

  17. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  18. Solubility of pllutonium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1993-02-26

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model.

  19. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, Chia-lin W.

    1995-01-01

    A process for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO.sub.2 to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO.sub.2, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product.

  20. Process for treating alkaline wastes for vitrification

    DOEpatents

    Hsu, C.L.W.

    1995-07-25

    A process is described for treating alkaline wastes for vitrification. The process involves acidifying the wastes with an oxidizing agent such as nitric acid, then adding formic acid as a reducing agent, and then mixing with glass formers to produce a melter feed. The nitric acid contributes nitrates that act as an oxidant to balance the redox of the melter feed, prevent reduction of certain species to produce conducting metals, and lower the pH of the wastes to a suitable level for melter operation. The formic acid reduces mercury compounds to elemental mercury for removal by steam stripping, and MnO{sub 2} to the Mn(II) ion to prevent foaming of the glass melt. The optimum amounts of nitric acid and formic acid are determined in relation to the composition of the wastes, including the concentrations of mercury (II) and MnO{sub 2}, noble metal compounds, nitrates, formates and so forth. The process minimizes the amount of hydrogen generated during treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. 4 figs.

  1. Engineering challenges of ocean alkalinity enhancement

    NASA Astrophysics Data System (ADS)

    Kruger, T.; Renforth, P.

    2012-04-01

    The addition of calcium oxide (CaO) to the ocean as a means of enhancing the capacity of the ocean as a carbon sink was first proposed by Haroon Kheshgi in 1995. Calcium oxide is created by heating high purity limestone in a kiln to temperatures of approximately 1000°C. Addition of this material to the ocean draws carbon dioxide out of the atmosphere (approximately 1 tonne of CaO could sequester 1.3 tonnes of CO2). Abiotic carbonate precipitation is inhibited in the surface ocean. This is a carbon and energy expensive process, where approximately 0.8 tonnes of CO2 are produced at a point source for every tonne sequestered. The feasibility of ocean alkalinity enhancement requires capture and storage of the point source of CO2. We present details of a feasibility study of the engineering challenges of Kheshgi's method focusing on the potential scalability and costs of the proposed process. To draw down a PgC per year would require the extraction and processing of ~6Pg of limestone per year, which is similar in scale to the current coal industry. Costs are estimated at ~USD30-40 per tonne of CO2 sequestered through the process, which is favourable to comparative processes. Kheshgi, H. (1995) Energy 20 (9) 915-922

  2. Response of Desulfovibrio vulgaris to Alkaline Stress

    SciTech Connect

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  3. Copper release in low and high alkaline water.

    PubMed

    D'Antonio, L; Fabbricino, M; Nasso, M; Trifuoggi, M

    2008-04-01

    Copper release in drinking water, caused by electrochemical corrosion of household distribution systems, was investigated. Experiments were developed testing both low and high alkaline water in stagnant conditions. The effect of varying stagnation time was investigated also. Both soluble and insoluble copper compounds, produced by corrosion processes are quantified, using appropriate experimental procedures. On the basis of obtained results, copper concentration in stagnant water is defined as a function of water alkalinity, while total metal release is defined as a function of stagnation length, and is not dependent on water alkalinity.

  4. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  5. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  6. Polyvinyl alcohol battery separator containing inert filler. [alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Hsu, L. C.; Manzo, M. A. (Inventor)

    1981-01-01

    A cross-linked polyvinyl alcohol battery separator is disclosed. A particulate filler, inert to alkaline electrolyte of an alkaline battery, is incorporated in the separator in an amount of 1-20% by weight, based on the weight of the polyvinyl alcohol, and is dispersed throughout the product. Incorporation of the filler enhances performance and increases cycle life of alkaline batteries when compared with batteries containing a similar separator not containing filler. Suitable fillers include titanates, silicates, zirconates, aluminates, wood floor, lignin, and titania. Particle size is not greater than about 50 microns.

  7. Brachytherapy Application With In Situ Dose Painting Administered by Gold Nanoparticle Eluters

    SciTech Connect

    Sinha, Neeharika; Cifter, Gizem; Sajo, Erno; Kumar, Rajiv; Sridhar, Srinivas; Nguyen, Paul L.; Cormack, Robert A.; Makrigiorgos, G. Mike; Ngwa, Wilfred

    2015-02-01

    Purpose: Recent studies show promise that administering gold nanoparticles (GNP) to tumor cells during brachytherapy could significantly enhance radiation damage to the tumor. A new strategy proposed for sustained administration of the GNP in prostate tumors is to load them into routinely used brachytherapy spacers for customizable in situ release after implantation. This in silico study investigated the intratumor biodistribution and corresponding dose enhancement over time due to GNP released from such GNP-loaded brachytherapy spacers (GBS). Method and Materials: An experimentally determined intratumoral diffusion coefficient (D) for 10-nm nanoparticles was used to estimate D for other sizes by using the Stokes-Einstein equation. GNP concentration profiles, obtained using D, were then used to calculate the corresponding dose enhancement factor (DEF) for each tumor voxel, using dose painting-by-numbers approach, for times relevant to the considered brachytherapy sources' lifetimes. The investigation was carried out as a function of GNP size for the clinically applicable low-dose-rate brachytherapy sources iodine-125 (I-125), palladium-103 (Pd-103), and cesium-131 (Cs-131). Results: Results showed that dose enhancement to tumor voxels and subvolumes during brachytherapy can be customized by varying the size of GNP released or eluted from the GBS. For example, using a concentration of 7 mg/g GNP, significant DEF (>20%) could be achieved 5 mm from a GBS after 5, 12, 25, 46, 72, 120, and 195 days, respectively, for GNP sizes of 2, 5, 10, 20, 30, and 50 nm and for 80 nm when treating with I-125. Conclusions: Analyses showed that using Cs-131 provides the highest dose enhancement to tumor voxels. However, given its relatively longer half-life, I-125 presents the most flexibility for customizing the dose enhancement as a function of GNP size. These findings provide a useful reference for further work toward development of potential new brachytherapy application with

  8. Does Drug-Eluting Bead Transcatheter Arterial Chemoembolization Improve the Management of Patients with Hepatocellular Carcinoma? A Meta-Analysis

    PubMed Central

    Han, Shilong; Zhang, Xiaoping; Zou, Liling; Lu, Chenhui; Zhang, Jun; Li, Jue; Li, Maoquan

    2014-01-01

    Background Drug eluting beads (DEB) are relatively new embolic agents that allow sustained release of chemotherapeutic agents in a localized fashion to the tumor. This technique is associated with reduced systemic side effects relative to systemic chemotherapy and an increase in the dose of antineoplastic agent delivered to the lesion. The meta-analysis was undertaken to assess the effectiveness of DEB-transcatheter arterial chemoembolization (TACE) in the management of hepatocellular cancer. Methods We searched the Web of Science, PubMed, EBSCO, EMBASE, the Wiley Library and Google Scholar for studies on DEB-TACE in the management of hepatocellular cancer from 1979 to April 2013. The risk of bias was assessed using RevMan 5·1. Random and fixed-effects meta-analytical models were used where indicated, and between-study heterogeneity was assessed. Disease control, complications and severe complications were recorded. Results Five studies met the selection criteria, three RCTs and two case-control studies, published from 2010 to 2012, included 217 patients in the DEB-TACE group and 237 in the conventional-TACE group. There was no significance over disease control (OR 2.27, 95% CI 0.78–6.63) with moderate between-study heterogeneity (χ2 = 6.83, degrees of freedom [df] = 3; p<0.08; I2 = 56%). Complications in both groups were assessed and no significant difference was observed (χ2 = 6.34, degrees of freedom [df] = 4; p<0.18; I2 = 37%). Severe complications were also assessed and no significant difference was observed (χ2 = 6.47, degrees of freedom [df] = 4; p<0.17; I2 = 38%). No publication bias relating to the above outcomes was detected by funnel plot. DEB-TACE benefited disease control without an increase in complications and severe complications. PMID:25083860

  9. Investigation of the behavior of plutonium(V) in alkaline media

    SciTech Connect

    Budantseva, N.A.; Tananaev, I.G.; Fedoseev, A.M.; Bessonov, A.A.

    1997-09-01

    The stability of the plutonium(V) oxidation state in alkaline media was studied with respect to the neighboring Pu(IV) and Pu(VI) oxidation states. Tests were conducted in 1 M or higher NaOH solutions in the presence and absence of other components of Hanford Site high-level tank waste. Spectrophotometric techniques were found to be effective in studying the behavior of plutonium(V) in alkaline solution at plutonium concentrations above 10{sup -3} M. To this end, plutonium(V) and plutonium(VI) in NaOH were prepared and their spectra characterized. In alkaline solutions with NaOH concentration below 8 M, plutonium(V) was found to be unstable to disproportionation occurring according to the reaction 2 Pu(V)(aq) {yields} Pu(VI)(aq) + Pu(IV)(s). The disproportionation of Pu(V) is complicated by at least two simultaneous processes: (1) the sorption of a significant fraction of the Pu(V) onto the forming Pu(IV) hydrous oxide precipitate, and (2) partial reduction of Pu(VI) by water {alpha}-radiolysis products.

  10. Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation.

    PubMed

    Basu, Swarna; Campagnola, Paul J

    2004-01-01

    We demonstrate micron scale control of bioactivity through the use of multiphoton excited photochemistry, where this technique has been used to cross-link three-dimensional matrixes of alkaline phosphatase, bovine serum albumin, and polyacrylamide and combinations therein. Using a fluorescence-based assay (ELF-97), the enzymatic activity has been studied using a Michaelis-Menten analysis, and we have measured the specificity constants kcat/KM for alkaline phosphatase in both the protein and polymer matrixes to be on the order of 10(5)-10(6) M(-1) s(-1)and are comparable to known literature values in other environments. It is found that the enzyme is simply entrapped in the polymer matrix, whereas it is completely covalently bound in the protein structures. The relative reaction rate of alkaline phosphatase bound to BSA with the ELF substrate was measured as a function of cross-link density and was found to decrease in the more tightly formed matrixes, indicating a decrease in the diffusion in the matrix.

  11. Enhanced coagulation with polyaluminum chlorides: role of pH/alkalinity and speciation.

    PubMed

    Yan, Mingquan; Wang, Dongsheng; Yu, Jianfeng; Ni, Jinren; Edwards, Marc; Qu, Jiuhui

    2008-04-01

    Enhanced coagulation is considered to be among the best available techniques (BAT) for disinfection by-product (DBP) precursor removal in water treatment. Improving existing understanding requires further consideration of nuances of chemical speciation relative to source water chemistry. In this paper, the effect of alkalinity/pH and speciation on inorganic polymer flocculants, polyaluminum chlorides (PACls) for enhanced particle and natural organic matter (NOM) removal was investigated. Three kinds of well-characterized typical source waters in China with low, moderate, and high alkalinity were selected. Performance of coagulants is controlled not only by preformed species but also by those formed in situ. At neutral and basic pH values, PACls with higher basicity (ratio of OH(-)/Al), which have more stable preformed Alb (the rapid reacted species as in ferron assay), are more efficient for turbidity and NOM removal. At slightly acidic pH, PACls with lower basicity are more efficient since more Alb can be formed in situ. Optimal NOM removal was achieved at pH 5.5-6.5 for all PACls. Basicity, speciation, and dosage of coagulant should be optimized based on raw water alkalinity to enhance the removal efficiency of NOM.

  12. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    PubMed

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH.

  13. Alkaline earth metal doped tin oxide as a novel oxygen storage material

    SciTech Connect

    Dong, Qiang; Yin, Shu; Yoshida, Mizuki; Wu, Xiaoyong; Liu, Bin; Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Sato, Tsugio

    2015-09-15

    Alkaline earth metal doped tin oxide (SnO{sub 2}) hollow nanospheres with a diameter of 50 nm have been synthesized successfully via a facial solvothermal route in a very simple system composed of only ethanol, acetic acid, SnCl{sub 4}·5H{sub 2}O and A(NO{sub 3}){sub 2}·xH{sub 2}O (A = Mg, Ca, Sr, Ba). The synthesized undoped SnO{sub 2} and A-doped SnO{sub 2} hollow nanospheres were characterized by the oxygen storage capacity (OSC), X-ray diffraction, transmission electron microscopy and the Brunauer–Emmet–Teller (BET) technique. The OSC values of all samples were measured using thermogravimetric-differential thermal analysis. The incorporation of alkaline earth metal ion into tin oxide greatly enhanced the thermal stability and OSC. Especially, Ba-doped SnO{sub 2} hollow nanospheres calcined at 1000 °C for 20 h with a BET surface area of 61 m{sup 2} g{sup −1} exhibited the considerably high OSC of 457 μmol-O g{sup −1} and good thermal stability. Alkaline earth metal doped tin oxide has the potential to be a novel oxygen storage material.

  14. New aliphatic glycerophosphoryl-containing polyurethanes: synthesis, platelet adhesion and elution cytotoxicity studies.

    PubMed

    Acetti, Daniela; D'Arrigo, Paola; Giordano, Carmen; Macchi, Piero; Servi, Stefano; Tessaro, Davide

    2009-04-01

    in this study new poly(ether)urethanes (PeUs) based on aliphatic diisocyanates were synthesized with phospholipid-like residues as chain extenders. The primary objective was to prepare new polyurethanes from diisocyanates that are less toxic than the aromatic ones widely used in medical-grade polyurethanes, in order to investigate the effect of the different aromatic or aliphatic hard segment content on the final properties of the materials. Some glycerophospho residues were simultaneously introduced to enhance the hemocompatibility of these materials. Polymers were prepared by a conventional two-step solution polymerization procedure using hexamethylene diisocyanate (HDi) and dodecametilendiisocyanate (DDi) and poly(1,4-butanediol) with molecular weight 1000 to form prepolymers, which were subsequently polymerized with 1-glycerophosphorylcholine (1-GPC) or glycerophosphorylserine (GPS) to act as chain extenders. The reference polymers bearing 1,4-butandiol (BD) were also synthesized. The polymers obtained were characterized by fourier transform infrared spectroscopy (fT-iR), nuclear magnetic resonance (1H nmR), and differential scanning calorimetry (DSC). The hemocompatibility of synthesized segmented polyurethanes was preliminarily investigated by platelet-rich plasma contact studies and related scanning electron microscopy (Sem) photographs as well as by cell viability assay after cell exposure to material elutions to assess the effect of any toxic leachables coming out from the samples. Two of the polymers gave interesting results, suggesting the desirability of further investigation into their possible use in biomedical devices.

  15. 3D-Printed Multidrug-Eluting Stent from Graphene-Nanoplatelet-Doped Biodegradable Polymer Composite.

    PubMed

    Misra, Santosh K; Ostadhossein, Fatemeh; Babu, Ramya; Kus, Joseph; Tankasala, Divya; Sutrisno, Andre; Walsh, Kathleen A; Bromfield, Corinne R; Pan, Dipanjan

    2017-03-21

    Patients with percutaneous coronary intervention generally receive either bare metal stents or drug-eluting stents to restore the normal blood flow. However, due to the lack of stent production with an individual patient in mind, the same level of effectiveness may not be possible in treating two different clinical scenarios. This study introduces for the first time the feasibility of a patient-specific stenting process constructed from direct 3D segmentation of medical images using direct 3D printing of biodegradable polymer-graphene composite with dual drug incorporation. A biodegradable polymer-carbon composite is prepared doped with graphene nanoplatelets to achieve controlled release of combinatorics as anticoagulation and antirestenosis agents. This study develops a technology prototyped for personalized stenting. An in silico analysis is performed to optimize the stent design for printing and its prediction of sustainability under force exerted by coronary artery or blood flow. A holistic approach covering in silico to in situ-in vivo establishes the structural integrity of the polymer composite, its mechanical properties, drug loading and release control, prototyping, functional activity, safety, and feasibility of placement in coronary artery of swine.

  16. Antibiotic-eluting hydrophilized PMMA bone cement with prolonged bactericidal effect for the treatment of osteomyelitis.

    PubMed

    Oh, Eun Jo; Oh, Se Heang; Lee, In Soo; Kwon, Oh Soo; Lee, Jin Ho

    2016-05-01

    Osteomyelitis is still considered to be one of the major challenges for orthopedic surgeons despite advanced antiseptic surgical procedures and pharmaceutical therapeutics. In this study, hydrophilized poly(methyl methacrylate) (PMMA) bone cements containing Pluronic F68 (EG79PG28EG79) as a hydrophilic additive and vancomycin (F68-VAcements) were prepared to allow the sustained release of the antibiotic for adequate periods of time without any significant loss of mechanical properties. The compressive strengths of the bone cements with Pluronic F68 compositions less than 7 wt% were not significantly different compared with the control vancomycin-loaded bone cement (VAcement). TheF68 (7 wt%)-VAcement showed sustained release of the antibiotic for up to 11 weeks and almost 100% release from the bone cement. It also prohibited the growth ofS. aureus(zone of inhibition) over six weeks (the required period to treat osteomyelitis), and it did not show any notable cytotoxicity. From an animal study using a femoral osteomyelitis rat model, it was observed that theF68 (7 wt%)-VAcement was effective for the treatment of osteomyelitis, probably as a result of the prolonged release of antibiotic from the PMMA bone cement. On the basis of these findings, it can be suggested that the use of Pluronic F68 as a hydrophilic additive for antibiotic-eluting PMMA bone cement can be a promising strategy for the treatment of osteomyelitis.

  17. Long-Term Clinical Outcomes Following Drug-eluting and Bare Metal Stenting in Massachusetts

    PubMed Central

    Mauri, Laura; Silbaugh, Treacy S; Wolf, Robert E; Zelevinsky, Katya; Lovett, Ann; Zhou, Zheng; Resnic, Frederic S; Normand, Sharon-Lise T

    2010-01-01

    Background Drug-eluting stents (DES) reduce the need for repeat revascularization, but their long term safety relative to bare metal stents (BMS) in general use remains uncertain. We sought to compare the clinical outcome of patients treated with DES vs. BMS. Methods and Results All adults undergoing percutaneous coronary intervention (PCI) with stenting between April 1, 2003 and September 30, 2004 at non-US governmental hospitals in Massachusetts were identified from a mandatory state database. Patients were classified according to stent types used from the index admission. Clinical and procedural risk factors were collected prospectively. Risk-adjusted mortality, myocardial infarction, and revascularization rate differences (DES-BMS) were estimated through propensity score matching without replacement. 11556 patients were treated with DES and 6237 treated with BMS with unadjusted 2 year mortality of 7.0% and 12.6% respectively (p<0.0001). In 5549 DES patients matched to 5549 BMS patients, 2 year risk-adjusted mortality rates were 9.8% and 12.0% (p=0.0002), myocardial infarction, 8.3% vs. 10.3% (p=0.0005), and target vessel revascularization, 11.0% vs. 16.8% (p<0.0001). Conclusions DES treatment was associated with lower mortality, myocardial infarction, and target vessel revascularization compared with BMS treatment in similar patients in a matched population based study. Comprehensive follow-up in this inclusive population is warranted to identify if similar safety and efficacy remain beyond 2 years. PMID:18852368

  18. Zotarolimus-eluting stent utilization in small-vessel coronary artery disease (ZEUS).

    PubMed

    Jim, Man-Hong; Yiu, Kai-Hang; Fung, Raymond Chi-Yan; Ho, Hee-Hwa; Ng, Andrew Kei-Yan; Siu, Chung-Wah; Chow, Wing-Hing

    2014-01-01

    The role of the second-generation zotarolimus-eluting stent RESOLUTE in small-vessel coronary artery disease is unclear. The aim of this study was examine the angiographic results of RESOLUTE in de novo coronary lesions of ≥50 % diameter stenosis in target vessels ≤2.5 mm. From August 2008 to April 2010, 142 symptomatic patients with 159 lesions who fitted the inclusion criteria were treated with RESOLUTE. The mean age of patients was 66 ± 10 years, with male predominance (66 %). Diabetes mellitus was found in 62 (43.7 %) patients, whereas multivessel disease was observed in 105 (73.9 %). The mean stent size and length used were 2.33 ± 0.13 and 22 ± 8 mm, respectively. Follow-up angiography was performed on 143 (89.9 %) lesions in 127 (89.4 %) patients at a mean of 10.3 ± 3.6 months. Angiographic restenosis was found in 9 (6.3 %) lesions; the late loss was 0.26 ± 0.34 mm. At 1-year follow-up there were four cardiovascular deaths, two nonfatal myocardial infarctions, and six repeated revascularizations. The resultant major adverse cardiac event rate was 8.5 %. The use of RESOLUTE to treat small-vessel disease is associated with good clinical and angiographic outcomes at 1 year.

  19. Novel A20-gene-eluting stent inhibits carotid artery restenosis in a porcine model

    PubMed Central

    Zhou, Zhen-hua; Peng, Jing; Meng, Zhao-you; Chen, Lin; Huang, Jia-Lu; Huang, He-qing; Li, Li; Zeng, Wen; Wei, Yong; Zhu, Chu-Hong; Chen, Kang-Ning

    2016-01-01

    Background Carotid artery stenosis is a major risk factor for ischemic stroke. Although carotid angioplasty and stenting using an embolic protection device has been introduced as a less invasive carotid revascularization approach, in-stent restenosis limits its long-term efficacy and safety. The objective of this study was to test the anti-restenosis effects of local stent-mediated delivery of the A20 gene in a porcine carotid artery model. Materials and methods The pCDNA3.1EHA20 was firmly attached onto stents that had been collagen coated and treated with N-succinimidyl-3-(2-pyridyldithiol)propionate solution and anti-DNA immunoglobulin fixation. Anti-restenosis effects of modified vs control (the bare-metal stent and pCDNA3.1 void vector) stents were assessed by Western blot and scanning electron microscopy, as well as by morphological and inflammatory reaction analyses. Results Stent-delivered A20 gene was locally expressed in porcine carotids in association with significantly greater extent of re-endothelialization at day 14 and of neointimal hyperplasia inhibition at 3 months than stenting without A20 gene expression. Conclusion The A20-gene-eluting stent inhibits neointimal hyperplasia while promoting re-endothelialization and therefore constitutes a novel potential alternative to prevent restenosis while minimizing complications. PMID:27540277

  20. Drug-eluting stent thrombosis: the Kounis hypersensitivity-associated acute coronary syndrome revisited.

    PubMed

    Chen, Jack P; Hou, Dongming; Pendyala, Lakshmana; Goudevenos, John A; Kounis, Nicholas G

    2009-07-01

    The advent of drug-eluting stents (DES) has revolutionized the field of interventional cardiology. Their dramatic and persistent restenotic and target lesion revascularization advantages are unquestioned. However, concerns over the rare but potentially catastrophic risk of stent thrombosis (ST) have tempered universal acceptance of these devices. Although the precise mechanism of DES ST is undoubtedly multifactorial and as yet not fully elucidated, delayed or incomplete endothelial healing clearly plays a pivotal role. Detailed histopathological data have implicated a contributory allergic or hypersensitivity component, as verified by the Food and Drug Administration's Manufacturer and User Device Experience Center and the Research on Adverse Drug/device events And Reports (RADAR) project. These findings thus suggest a potential connection with the Kounis syndrome, the concurrence of acute coronary events with allergic, hypersensitivity, anaphylactic, or anaphylactoid reactions. Potential culprits responsible for this phenomenon include: arachidonic acid metabolites such as leukotrienes and thromboxane, proteolytic enzymes such as chymase and tryptase, histamine, cytokines, and chemokines. Additionally, inflammatory cells such as macrophages, T-lymphocytes, and mast cells are probably also contributory. Autopsy-confirmed infiltrates of various inflammatory cells including lymphocytes, plasma cells, macrophages, and eosinophils have been reported in all 3 vascular wall layers and are reminiscent of those associated with the Kounis syndrome. Although the concurrence of acute coronary syndromes with hypersensitivity reactions has been long established, the specific association with DES ST remains unproven. Potential incorporation of hypersensitivity suppressive agents might represent a promising paradigm shift from efficacy to safety in future DES designs.

  1. Acrylamide elution from roasted barley grains into mugicha and its formation during roasting.

    PubMed

    Mizukami, Yuzo; Yoshida, Mitsuru; Ono, Hiroshi

    2016-01-01

    This paper investigated acrylamide elution from roasted barley grain into mugicha and its formation during roasting of the grain. Mugicha is an infusion of roasted barley grains. Highly water-soluble acrylamide was easily extracted to mugicha from milled roasted barley grains in teabags. On the other hand, the acrylamide concentration in mugicha prepared from loose grain increased with longer simmering and steeping times. During roasting in a drum roaster, the acrylamide concentration of the grain increased as the surface temperature rose, reaching a maximum at 180-240°C. Above this temperature, the acrylamide concentration decreased with continued roasting, exhibiting an inverted 'U'-shaped curve. For most of the samples, the acrylamide concentration showed good correlation with the value of the colour space parameter L*. The dark-coloured roasted barley grains with lower L* values contained lower amounts of acrylamide as a result of deep roasting. The level of asparagine in barley grains was found to be a significant factor related to acrylamide formation in roasted barley products. The data are an important contribution to the mitigation of acrylamide intake from mugicha.

  2. Effect of a paclitaxel-eluting metallic stent on rabbit esophagus

    PubMed Central

    Zhang, Yin; Gao, Ying; Chen, Jianping; Ma, Limei; Liu, Li; Wang, Xiang; Fan, Zhining

    2016-01-01

    The use of self-expanding metallic stents (SEMS) is the current treatment of choice for malignant gastrointestinal obstructions. A paclitaxel-eluting metallic SEMS (PEMS) may have an antitumor effect on esophageal tissue. PEMS with 10% paclitaxel or conventional SEMS were inserted into the lower esophagus of rabbits. Following the insertion of the stents for 1, 2, 4 and 6 weeks, the rabbits were sacrificed and the status of the stent insertion was examined, as well as any macroscopic or microscopic mucosal changes in the esophageal tissue. All the rabbits survived until death without any complications. No migration following stent insertion occurred. The number of cases with proximal obstruction increased in a time-dependent manner, and no significant difference was observed between the two groups. Gross histological examination showed similar tissue reaction to the stents at 1, 2 and 4 weeks, and inflammatory cell infiltrating was higher in the SEMS group at 1 and 2 weeks. However, inflammatory cell infiltration was markedly higher in the PEMS group at 4 and 6 weeks. Food-intake and weight were similar in the two groups. The results of the present study demonstrated that PEMS may serve as a safe alternative treatment strategy for esophageal obstruction. Furthermore, PEMS may inhibit the tumor growth of the esophageal wall through inflammatory infiltration and targeted drug delivery. A tumor model will be required in the future for evaluating the prognosis of patients with advanced esophageal carcinoma. PMID:27882097

  3. Total protein quantitation using the bicinchoninic acid assay and gradient elution moving boundary electrophoresis.

    PubMed

    Kralj, Jason G; Munson, Matthew S; Ross, David

    2014-07-01

    We investigated the ability of gradient elution moving boundary electrophoresis (GEMBE) with capacitively coupled contactless conductivity detection (C(4) D) to assay total protein concentration using the bicinchoninic acid (BCA) reaction. We chose this format because GEMBE-C(4) D behaves as a concentration dependent detection system, unlike optical methods that also rely on pathlength (due to Beer's law). This system tolerates proteins well compared with other capillary electrophoretic methods, allowing the capillary to be reused without coatings or additional hydroxide wash steps. The typical reaction protocol was modified by reducing the pH slightly from 11.25 to 9.4, which enabled elimination of tartrate from the reagents. We estimated that copper (I) could be detected at approximately 3.0 μmol/L, which agrees with similar GEMBE and CZE systems utilizing C(4) D. Under conditions similar to the BCA "micro method" assay, we determined the LOD for three common proteins (insulin, BSA, and bovine gamma globulin) and found that they agree well with the existing spectroscopic detection methods. Further, we investigated how long reaction times impact the LOD and found that the conversion was proportional to log(time). This indicated that little sensitivity is gained by extending the reaction past 1 h. Hence, GEMBE provides an alternative platform for total protein assays while maintaining the excellent sensitivity of the optical-based methods.

  4. Multi-objective global optimization (MOGO): Algorithm and case study in gradient elution chromatography.

    PubMed

    Freier, Lars; von Lieres, Eric

    2016-12-23

    Biotechnological separation processes are routinely designed and optimized using parallel high-throughput experiments and/or serial experiments. Well-characterized processes can further be optimized using mechanistic models. In all these cases - serial/parallel experiments and modeling - iterative strategies are customarily applied for planning novel experiments/simulations based on the previously acquired knowledge. Process optimization is typically complicated by conflicting design targets, such as productivity and yield. We address these issues by introducing a novel algorithm that combines recently developed approaches for utilizing statistical regression models in multi-objective optimization. The proposed algorithm is demonstrated by simultaneous optimization of elution gradient and pooling strategy for chromatographic separation of a three-component system with respect to purity, yield, and processing time. Gaussian Process Regression Models (GPM) are used for estimating functional relationships between design variables (gradient, pooling) and performance indicators (purity, yield, time). The Pareto front is iteratively approximated by planning new experiments such as to maximize the Expected Hypervolume Improvement (EHVI) as determined from the GPM by Markov Chain Monte Carlo (MCMC) sampling. A comprehensive Monte-Carlo study with in-silico data illustrates efficiency, effectiveness and robustness of the presented Multi-Objective Global Optimization (MOGO) algorithm in determining best compromises between conflicting objectives with comparably very low experimental effort.

  5. Radiation and ethylene oxide terminal sterilization experiences with drug eluting stent products.

    PubMed

    Lambert, Byron J; Mendelson, Todd A; Craven, Michael D

    2011-12-01

    Radiation and ethylene oxide terminal sterilization are the two most frequently used processes in the medical device industry to render product within the final sterile barrier package free from viable microorganisms. They are efficacious, safe, and efficient approaches to the manufacture of sterile product. Terminal sterilization is routinely applied to a wide variety of commodity healthcare products (drapes, gowns, etc.) and implantable medical devices (bare metal stents, heart valves, vessel closure devices, etc.) along with products used during implantation procedures (catheters, guidewires, etc.). Terminal sterilization is also routinely used for processing combination products where devices, drugs, and/or biologics are combined on a single product. High patient safety, robust standards, routine process controls, and low-cost manufacturing are appealing aspects of terminal sterilization. As the field of combination products continues to expand and evolve, opportunity exists to expand the application of terminal sterilization to new combination products. Material compatibility challenges must be overcome to realize these opportunities. This article introduces the reader to terminal sterilization concepts, technologies, and the related standards that span different industries (pharmaceutical, medical device, biopharmaceuticals, etc.) and provides guidance on the application of these technologies. Guidance and examples of the application of terminal sterilization are discussed using experiences with drug eluting stents and bioresorbable vascular restoration devices. The examples provide insight into selecting the sterilization method, developing the process around it, and finally qualifying/validating the product in preparation for regulatory approval and commercialization. Future activities, including new sterilization technologies, are briefly discussed.

  6. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  7. Spectroscopic studies of alkaline activated slag geopolymers

    NASA Astrophysics Data System (ADS)

    Mozgawa, W.; Deja, J.

    2009-04-01

    In the work, results of structural studies of different geopolymers, obtained using a granulated blast furnace slag, are presented. The slag was subjected to an alkaline activation process. As activators, NaOH, Na 2CO 3 and liquid glass were applied. IR and NMR spectroscopy were the main experimental methods used, the results obtained were compared with XRD phase analysis and SEM observations. In the IR spectra of raw slag as well as in the spectra of products of paste hydration, the bands due to the characteristic vibrations of bonds observed in both types of oxygen bridges: Si-O-Si and Si-O-Al, were assigned. These bridges constitute basic structural units, forming tetrahedral geopolymer chains. It was found that the slag composition, mainly SiO 2/Al 2O 3 ratio and modification in oxides concentration, influences the presence of the bands connected with the phases (mainly C-S-H) formed during the hydration in the IR spectra. Additionally, significant effect of amorphous phases share on the spectra shape was established. 29Si and 27Al MAS-NMR spectra of initial slag geopolymers and pastes provided information concerning coordination of both atoms in the structures. It was revealed that the kind of slag geopolymers and the conditions of paste hydration influence connectedness of silicooxygen tetrahedra and coordination number of aluminium atoms. Based on IR spectra, it was also possible to determine the influence of the activator type, activation time and hydration conditions on the products formed. Significant changes were observed for the bands assigned to vibrations of carbonate and hydroxide groups. The changes were also noticed in the case of bands due to vibrations of silicate and aluminosilicate bonds.

  8. Alkaline decomposition of synthetic jarosite with arsenic

    PubMed Central

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061

  9. Alkaline decomposition of synthetic jarosite with arsenic.

    PubMed

    Patiño, Francisco; Flores, Mizraim U; Reyes, Iván A; Reyes, Martín; Hernández, Juan; Rivera, Isauro; Juárez, Julio C

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb(2+), Cr(6+), As(5+), Cd(2+), Hg(2+)). For the present paper, AsO4 (3-) was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH(-)] > 8 × 10(-3) mol L(-1), the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol(-1) was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH(-)] > 1.90 × 10(-2) mol L(-1), the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol(-1) was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control.

  10. Improving the alkaline stability of imidazolium cations by substitution.

    PubMed

    Dong, Huilong; Gu, Fenglou; Li, Min; Lin, Bencai; Si, Zhihong; Hou, Tingjun; Yan, Feng; Lee, Shuit-Tong; Li, Youyong

    2014-10-06

    Imidazolium cations are promising candidates for preparing anion-exchange membranes because of their good alkaline stability. Substitution of imidazolium cations is an efficient way to improve their alkaline stability. By combining density functional theory calculations with experimental results, it is found that the LUMO energy correlates with the alkaline stability of imidazolium cations. The results indicate that alkyl groups are the most suitable substituents for the N3 position of imidazolium cations, and the LUMO energies of alkyl-substituted imidazolium cations depend on the electron-donating effect and the hyperconjugation effect. Comparing 1,2-dimethylimidazolium cations (1,2-DMIm+) and 1,3-dimethylimidazolium cations (1,3-DMIm+) with the same substituents reveals that the hyperconjugation effect is more significant in influencing the LUMO energy of 1,3-DMIms. This investigation reveals that LUMO energy is a helpful aid in predicting the alkaline stability of imidazolium cations.

  11. Processes affecting the oceanic distributions of dissolved calcium and alkalinity

    SciTech Connect

    Shiller, A.M.; Gieskes, J.M.

    1980-05-20

    Recent studies of the CO/sub 2/ system have suggested that chemical processes in addition to the dissolution and precipitation of calcium carbonate affect the oceanic calcium and alkalinity distributions. Calcium and alkalinity data from the North Pacific have been examined both by using the simple physical-chemical model of previous workers and by a study involving the broader oceanographic context of these data. The simple model is shown to be an inadequate basis for these studies. Although a proton flux associated with organic decomposition may affect the alkalinity, previously reported deviations of calcium-alkalinity correlations from expected trends appear to be related to boundary processes that have been neglected rather than to this proton flux. The distribution of calcium in the surface waters of the Pacific Ocean is examined.

  12. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  13. ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS

    EPA Science Inventory

    SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...

  14. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  15. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  16. Uranium mobility during interaction of rhyolitic glass with alkaline solutions: dissolution of glass

    USGS Publications Warehouse

    Zielinski, Robert A.

    1977-01-01

    This report concerns investigations designed to identify the important physical and chemical parameters influencing the rate of release of uranium from glass shards of rhyolitic air-fall ash. Oxidizing, silica undersaturated, alkaline solutions are eluted through a column of rhyolitic glass shards at a carefully controlled temperature, pressure, and flow rate. The solutions are monitored for the concentration of uranium and selected additional elements (Si, K, Li, F), and the glass is recovered and examined for physical and/or chemical evidence of attack. The flushing mode is designed to mimic leaching of glass shards by intermittent, near-surface waters with which the glass is not in equilibrium. Reported rates are applicable only to the experimental conditions (120?C, 7,000 psi), but it is assumed that the reaction mechanisms and the relative importance of rate-influencing parameters remain unchanged, at reduced temperature and pressure. Results of the above experiment indicate that silica and uranium are released from glass shards at comparable rates, while lithium and potassium are released faster and fluorine slower than either Si or U. Rates of release of silica and uranium correlate positively with the surface area of the shards. Rhyolitic shards release uranium at faster rates than rhyodacitic shards of comparable surface area. Changes in the shards resulting from experimental treatment and observed in the original glass separates from an Oligocene ash (compared to a Pleistocene ash) include; surface pitting, increased surface area, devitrification rinds (<1l micron wide) and reduced lithium contents. Future investigations will study the effect of temperature, pressure, solution composition, and flow rate on the relative mobility of U, Si, Li, F, and K.

  17. Removal and recovery of vanadium from alkaline steel slag leachates with anion exchange resins.

    PubMed

    Gomes, Helena I; Jones, Ashley; Rogerson, Mike; Greenway, Gillian M; Lisbona, Diego Fernandez; Burke, Ian T; Mayes, William M

    2017-02-01

    Leachable vanadium (V) from steel production residues poses a potential environmental hazard due to its mobility and toxicity under the highly alkaline pH conditions that characterise these leachates. This work aims to test the efficiency of anion exchange resins for vanadium removal and recovery from steel slag leachates at a representative average pH of 11.5. Kinetic studies were performed to understand the vanadium sorption process. The sorption kinetics were consistent with a pseudo-first order kinetic model. The isotherm data cannot differentiate between the Langmuir and Freundlich models. The maximum adsorption capacity (Langmuir value qmax) was 27 mg V g(-1) resin. In column anion exchange, breakthrough was only 14% of the influent concentration after passing 90 L of steel slag leachate with 2 mg L(-1) V through the column. When eluting the column 57-72% of vanadium was recovered from the resin with 2 M NaOH. Trials on the reuse of the anion exchange resin showed it could be reused 20 times without loss of efficacy, and on average 69% of V was recovered during regeneration. The results document for the first time the use of anion exchange resins to remove vanadium from steel slag leachate. As an environmental contaminant, removal of V from leachates may be an obligation for long-term management requirements of steel slag repositories. Vanadium removal coupled with the recovery can potentially be used to offset long-term legacy treatment costs.

  18. A Simple and High-Throughput Analysis of Amatoxins and Phallotoxins in Human Plasma, Serum and Urine Using UPLC-MS/MS Combined with PRiME HLB μElution Platform

    PubMed Central

    Zhang, Shuo; Zhao, Yunfeng; Li, Haijiao; Zhou, Shuang; Chen, Dawei; Zhang, Yizhe; Yao, Qunmei; Sun, Chengye

    2016-01-01

    Amatoxins and phallotoxins are toxic cyclopeptides found in the genus Amanita and are among the predominant causes of fatal food poisoning in China. In the treatment of Amanita mushroom poisoning, an early and definite diagnosis is necessary for a successful outcome, which has prompted the development of protocols for the fast and confirmatory determination of amatoxins and phallotoxins in human biological fluids. For this purpose, a simple, rapid and sensitive multiresidue UPLC-MS/MS method for the simultaneous determination of α-amanitin, β-amanitin, γ-amanitin, phalloidin (PHD) and phallacidin (PCD) in human plasma, serum and urine was developed and validated. The diluted plasma, serum and urine samples were directly purified with a novel PRiME technique on a 96-well μElution plate platform, which allowed high-throughput sample processing and low reagent consumption. After purification, a UPLC-MS/MS analysis was performed using positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. This method fulfilled the requirements of a validation test, with good results for the limit of detection (LOD), lower limit of quantification (LLOQ), accuracy, intra- and inter-assay precision, recovery and matrix effects. All of the analytes were confirmed and quantified in authentic plasma, serum and urine samples obtained from cases of poisoning using this method. Using the PRiME μElution technique for quantification reduces labor and time costs and represents a suitable method for routine toxicological and clinical emergency analysis. PMID:27153089

  19. A Simple and High-Throughput Analysis of Amatoxins and Phallotoxins in Human Plasma, Serum and Urine Using UPLC-MS/MS Combined with PRiME HLB μElution Platform.

    PubMed

    Zhang, Shuo; Zhao, Yunfeng; Li, Haijiao; Zhou, Shuang; Chen, Dawei; Zhang, Yizhe; Yao, Qunmei; Sun, Chengye

    2016-05-04

    Amatoxins and phallotoxins are toxic cyclopeptides found in the genus Amanita and are among the predominant causes of fatal food poisoning in China. In the treatment of Amanita mushroom poisoning, an early and definite diagnosis is necessary for a successful outcome, which has prompted the development of protocols for the fast and confirmatory determination of amatoxins and phallotoxins in human biological fluids. For this purpose, a simple, rapid and sensitive multiresidue UPLC-MS/MS method for the simultaneous determination of α-amanitin, β-amanitin, γ-amanitin, phalloidin (PHD) and phallacidin (PCD) in human plasma, serum and urine was developed and validated. The diluted plasma, serum and urine samples were directly purified with a novel PRiME technique on a 96-well μElution plate platform, which allowed high-throughput sample processing and low reagent consumption. After purification, a UPLC-MS/MS analysis was performed using positive electrospray ionization (ESI+) in multiple reaction monitoring (MRM) mode. This method fulfilled the requirements of a validation test, with good results for the limit of detection (LOD), lower limit of quantification (LLOQ), accuracy, intra- and inter-assay precision, recovery and matrix effects. All of the analytes were confirmed and quantified in authentic plasma, serum and urine samples obtained from cases of poisoning using this method. Using the PRiME μElution technique for quantification reduces labor and time costs and represents a suitable method for routine toxicological and clinical emergency analysis.

  20. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  1. Acid transformation of bauxite residue: Conversion of its alkaline characteristics.

    PubMed

    Kong, Xiangfeng; Li, Meng; Xue, Shengguo; Hartley, William; Chen, Chengrong; Wu, Chuan; Li, Xiaofei; Li, Yiwei

    2017-02-15

    Bauxite residue (BR) is a highly alkaline solid hazardous waste produced from bauxite processing for alumina production. Alkaline transformation appears to reduce the environmental risk of bauxite residue disposal areas (BRDAs) whilst potentially providing opportunities for the sustainable reuse and on-going management of BR. Mineral acids, a novel citric acid and a hybrid combination of acid-gypsum treatments were investigated for their potential to reduce residue pH and total alkalinity and transform the alkaline mineral phase. XRD results revealed that with the exception of andradite, the primary alkaline solid phases of cancrinite, grossular and calcite were transformed into discriminative products based on the transformation used. Supernatants separated from BR and transformed bauxite residue (TBR) displayed distinct changes in soluble Na, Ca and Al, and a reduction in pH and total alkalinity. SEM images suggest that mineral acid transformations promote macro-aggregate formation, and the positive promotion of citric acid, confirming the removal or reduction in soluble and exchangeable Na. NEXAFS analysis of Na K-edge revealed that the chemical speciation of Na in TBRs was consistent with BR. Three acid treatments and gypsum combination had no effect on Na speciation, which affects the distribution of Na revealed by sodium STXM imaging.

  2. The alkalinizing effects of metabolizable bases in the healthy calf.

    PubMed Central

    Naylor, J M; Forsyth, G W

    1986-01-01

    The alkalinizing effect of citrate, acetate, propionate, gluconate, L and DL-lactate were compared in healthy neonatal calves. The calves were infused for a 3.5 hour period with 150 mmol/L solutions of the sodium salts of the various bases. Blood pH, base excess, and metabolite concentrations were measured and the responses compared with sodium bicarbonate and sodium chloride infusion. D-gluconate and D-lactate had poor alkalinizing abilities and accumulated in blood during infusion suggesting that they are poorly metabolized by the calf. Acetate, L-lactate and propionate had alkalinizing effects similar to bicarbonate, although those of acetate had a slightly better alkalinizing effect than L-lactate. Acetate was more effectively metabolized because blood acetate concentrations were lower than L-lactate concentrations. There was a tendency for a small improvement in metabolism of acetate and lactate with age. Sodium citrate infusion produced signs of hypocalcemia, presumably because it removed ionized calcium from the circulation. D-gluconate, D-lactate and citrate are unsuitable for use as alkalinizing agents in intravenous fluids. Propionate, acetate and L-lactate are all good alkalinizing agents in healthy calves but will not be as effective in situations where tissue metabolism is impaired. PMID:3024796

  3. Nitrogen isotope evidence for alkaline lakes on late Archean continents

    NASA Astrophysics Data System (ADS)

    Stüeken, E. E.; Buick, R.; Schauer, A. J.

    2015-02-01

    Nitrogen isotope ratios in ancient sedimentary rocks are generally interpreted as a proxy for metabolic nitrogen pathways and the redox state of the water column. Fractionation processes occurring under anoxic, alkaline conditions during the dissociation of NH4+ to H+ and volatile NH3 are frequently overlooked, although this mechanism imparts large isotopic fractionations. Here we propose that NH3 volatilization is largely responsible for δ15N values of up to + 50 ‰ at high C/N ratios in the late Archean Tumbiana Formation. This sequence of sedimentary rocks represents a system of lakes that formed on subaerial flood basalts and were partly filled by basaltic volcanic ash. Aqueous alteration of volcanic glass followed by evaporative concentration of ions should have led to the development of high alkalinity with a pH of 9 or higher, as in modern analogues. In this sedimentologically unusual setting, nitrogen isotope ratios thus provide indirect evidence for the oldest alkaline lake system in the rock record. These very heavy lacustrine δ15N values contrast markedly with those of Archean marine sedimentary rocks, making a Precambrian "soda ocean" unlikely. Today, alkaline lakes are among the most productive ecosystems on Earth. Some nutrients, in particular molybdenum, are more soluble at high pH, and certain prebiotic reactions would likely have been favored under alkaline conditions in similar settings earlier in Earth's history. Hence alkaline lakes in the Archean could have been significant for the origin and early evolution of life.

  4. Characteristics of plasmalemma alkaline phosphatase of rat mesenteric artery.

    PubMed

    Kwan, C Y

    1983-01-01

    General characteristics of alkaline phosphatase activity of the plasma membrane-enriched fraction isolated from rat mesenteric arteries were investigated. The vascular smooth muscle plasmalemma alkaline phosphatase is a metalloenzyme which is strongly inhibited by chelating agents and this inhibition can be completely overcome by addition of Mg2+ or Ca2+. Zn2+ only partially reactivates the enzyme in the presence of low concentrations of EDTA. The enzymatic hydrolysis of p-nitrophenyl phosphate, beta-glycerophosphate, alpha-glycerophosphate, or 3'-adenosine monophosphate showed an optimal activity in the alkaline region between pH 9 and 11. The alkaline phosphatase activity is distinctly different from the plasmalemma ATPase and 5'-nucleotidase activities with respect to their pH dependence, influence by added divalent metal ions and stability against heat inactivation. Vanadate ion, being structurally similar to the transition state analog of the phosphoryl group, potently inhibits alkaline phosphatase with an apparent Ki of 1.5 microM. The altered alkaline phosphatase activity of vascular smooth muscle in relation to its possible physiological function and pathophysiological manifestation associated with hypertensive disease are discussed.

  5. Overexpression of Human Bone Alkaline Phosphatase in Pichia Pastoris

    NASA Technical Reports Server (NTRS)

    Karr, Laurel; Malone, Christine, C.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    The Pichiapastoris expression system was utilized to produce functionally active human bone alkaline phosphatase in gram quantities. Bone alkaline phosphatase is a key enzyme in bone formation and biomineralization, yet important questions about its structural chemistry and interactions with other cellular enzymes in mineralizing tissues remain unanswered. A soluble form of human bone alkaline phosphatase was constructed by deletion of the 25 amino acid hydrophobic C-terminal region of the encoding cDNA and inserted into the X-33 Pichiapastoris strain. An overexpression system was developed in shake flasks and converted to large-scale fermentation. Alkaline phosphatase was secreted into the medium to a level of 32mgAL when cultured in shake flasks. Enzyme activity was 12U/mg measured by a spectrophotometric assay. Fermentation yielded 880mgAL with enzymatic activity of 968U/mg. Gel electrophoresis analysis indicates that greater than 50% of the total protein in the fermentation is alkaline phosphatase. A purification scheme has been developed using ammonium sulfate precipitation followed by hydrophobic interaction chromatography. We are currently screening crystallization conditions of the purified recombinant protein for subsequent X-ray diffraction analyses. Structural data should provide additional information on the role of alkaline phosphatase in normal bone mineralization and in certain bone mineralization anomalies.

  6. Enhanced recovery of alkaline protease from fish viscera by phase partitioning and its application

    PubMed Central

    2013-01-01

    Background Too many different protein and enzyme purification techniques have been reported, especially, chromatographic techniques. Apart from low recovery, these multi-step methods are complicated, time consuming, high operating cost. So, alternative beneficially methods are still required. Since, the outstanding advantages of aqueous two phase system (ATPS) such as simple, low cost, high recovery and scalable, ATPS have been used to purify various enzymes. To improve purification efficiency, parameters affected to enzyme recovery or purity was investigated. The objectives of the present study were to optimize of alkaline protease recovery from giant catfish fish viscera by using ATPS and to study of hydrolytic patterns against gelatin. Results Using 70% (w/w) crude enzyme extract (CE) in system (15% PEG2000-15% sodium citrate) provided the highest recovery, PF and KE. At unmodified pH (8.5) gave the best recovery and PF with compare to other pHs of the system. The addition of 1% (w/w) NaCl showed the recovery (64.18%), 3.33-fold and 15.09 of KE compared to the system without NaCl. After addition of 10% (w/w) sodium citrate in the second ATPS cycle, the highest protease recovery (365.53%) and PF (11.60-fold) were obtained. Thus, the top phase from the system was subjected to further studied. The protein bands with molecular weights (MWs) of 20, 24, 27, 36, 94 and 130 kDa appeared on the protein stained gel and also exhibited clear zone on casein-substrate gel electrophoresis. The β, α1, α2 of skin gelatin extensively degraded into small molecules when treated with 10 units of the extracted alkaline protease compared to those of the level of 0.21 units of Flavourzyme. Conclusions Repetitive ATPS is the alternative strategy to increase both recovery and purity of the alkaline protease from farmed giant catfish viscera. Extracted alkaline protease exposed very high effectiveness in gelatin hydrolysis. It is suggested that the alkaline protease from this fish

  7. Inhibition of Brass Corrosion by 2-Mercapto-1-methylimidazole in Weakly Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Radovanovic, Milan B.; Antonijevic, Milan M.

    2016-03-01

    The electrochemical behavior of brass and anticorrosion effect of 2-mercapto-1-methylimidazole (2-MMI) in weakly alkaline solution with and without presence of chloride ions was investigated using electrochemical techniques in addition to SEM-EDS analysis. Results show that inhibition efficiency depended on inhibitor concentration and immersion time of brass electrode in inhibitor solution. Inhibition mechanism of 2-mercapto-1-methylimidazole includes adsorption of inhibitor on active sites on electrode surface which was confirmed by SEM-EDS analysis of the brass. Adsorption of the 2-MMI in sodium tetraborate solution obeys Flory-Huggins adsorption isotherm, while in the presence of chloride, ions adsorption of inhibitor obeys Langmuir adsorption isotherm.

  8. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOEpatents

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  9. Modeling of complex antibody elution behavior under high protein load densities in ion exchange chromatography using an asymmetric activity coefficient.

    PubMed

    Huuk, Thiemo C; Hahn, Tobias; Doninger, Katharina; Griesbach, Jan; Hepbildikler, Stefan; Hubbuch, Jürgen

    2017-03-01

    A main requirement for the implementation of model-based process development in industry is the capability of the model to predict high protein load densities. The frequently used steric mass action isotherm assumes a thermodynamically ideal system and, hence constant activity coefficients. In this manuscript, an industrial antibody purification problem under high load conditions is considered where this assumption does not hold. The high protein load densities, as commonly applied in industrial downstream processing, may lead to complex elution peak shapes. Using Mollerup's generalized ion-exchange isotherm (GIEX), the observed elution peak shapes could be modeled. To this end, the GIEX isotherm introduced two additional parameters to approximate the asymmetric activity coefficient. The effects of these two parameters on the curvature of the adsorption isotherm and the resulting chromatogram are investigated. It could be shown that they can be determined by inverse peak fitting and conform with the mechanistic demands of model-based process development.

  10. Alkaline phosphatase revisited: hydrolysis of alkyl phosphates.

    PubMed

    O'Brien, Patrick J; Herschlag, Daniel

    2002-03-05

    Escherichia coli alkaline phosphatase (AP) is the prototypical two metal ion catalyst with two divalent zinc ions bound approximately 4 A apart in the active site. Studies spanning half a century have elucidated many structural and mechanistic features of this enzyme, rendering it an attractive model for investigating the potent catalytic power of bimetallic centers. Unfortunately, fundamental mechanistic features have been obscured by limitations with the standard assays. These assays generate concentrations of inorganic phosphate (P(i)) in excess of its inhibition constant (K(i) approximately 1 muM). This tight binding by P(i) has affected the majority of published kinetic constants. Furthermore, binding limits k(cat)/K(m) for reaction of p-nitrophenyl phosphate, the most commonly employed substrate. We describe a sensitive (32)P-based assay for hydrolysis of alkyl phosphates that avoids the complication of product inhibition. We have revisited basic mechanistic features of AP with these alkyl phosphate substrates. The results suggest that the chemical step for phosphorylation of the enzyme limits k(cat)/K(m). The pH-rate profile and additional results suggest that the serine nucleophile is active in its anionic form and has a pK(a) of < or = 5.5 in the free enzyme. An inactivating pK(a) of 8.0 is observed for binding of both substrates and inhibitors, and we suggest that this corresponds to ionization of a zinc-coordinated water molecule. Counter to previous suggestions, inorganic phosphate dianion appears to bind to the highly charged AP active site at least as strongly as the trianion. The dependence of k(cat)/K(m) on the pK(a) of the leaving group follows a Brønsted correlation with a slope of beta(lg) = -0.85 +/- 0.1, differing substantially from the previously reported value of -0.2 obtained from data with a less sensitive assay. This steep leaving group dependence is consistent with a largely dissociative transition state for AP-catalyzed hydrolysis of

  11. Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin

    DTIC Science & Technology

    1989-07-01

    SIl Quantitation of Alkaline Phosphatase Isoenzymes Using Agarose Containing Wheat Germ Lectin A thesis submitted in partial fulfillment of the...16 Wheat Germ Lectin Electrophoresis to Quantitate Alkaline Phosphatase Isoenzymes ................ 16 Alkaline Phosphatase Isoenzyme...vs Polyacrylamide Gel Electrophoresis ......................... 40 Clinical Correlation Using Wheat Germ Lectin 45 Placental Alkaline Phosphatase

  12. Thermodynamic modeling of protein retention in mixed-mode chromatography: An extended model for isocratic and dual gradient elution chromatography.

    PubMed

    Lee, Yi Feng; Graalfs, Heiner; Frech, Christian

    2016-09-16

    An extended model is developed to describe protein retention in mixed-mode chromatography based on thermodynamic principles. Special features are the incorporation of pH dependence of the ionic interaction on a mixed-mode resin and the addition of a water term into the model which enables one to describe the total number of water molecules released at the hydrophobic interfaces upon protein-ligand binding. Examples are presented on how to determine the model parameters using isocratic elution chromatography. Four mixed-mode anion-exchanger prototype resins with different surface chemistries and ligand densities were tested using isocratic elution of two monoclonal antibodies at different pH values (7-10) and encompassed a wide range of NaCl concentrations (0-5M). U-shape mixed-mode retention curves were observed for all four resins. By taking into account of the deprotonation and protonation of the weak cationic functional groups in these mixed-mode anion-exchanger prototype resins, conditions which favor protein-ligand binding via mixed-mode strong cationic ligands as well as conditions which favor protein-ligand binding via both mixed-mode strong cationic ligands and non-hydrophobic weak cationic ligands were identified. The changes in the retention curves with pH, salt, protein, and ligand can be described very well by the extended model using meaningful thermodynamic parameters like Gibbs energy, number of ionic and hydrophobic interactions, total number of released water molecules as well as modulator interaction constant. Furthermore, the fitted model parameters based on isocratic elution data can also be used to predict protein retention in dual salt-pH gradient elution chromatography.

  13. Balancing Long-Term Risks of Ischemic and Bleeding Complications after Percutaneous Coronary Intervention with Drug-Eluting Stents

    PubMed Central

    Matteau, Alexis; Yeh, Robert; Camenzind, Edoardo; Steg, Ph. Gabriel; Wijns, William; Mills, Joseph; Gershlick, Anthony; de Belder, Mark; Ducrocq, Gregory; Mauri, Laura

    2015-01-01

    Introduction While trials comparing antiplatelet strategies after coronary intervention report average risks of bleeding and ischemia in a population, there is limited information to guide choices based on individual patient risks, particularly beyond one year after treatment. Methods Patient-level data from PROTECT, a broadly inclusive trial enrolling 8709 subjects treated with drug-eluting stents (sirolimus vs. zotarolimus-eluting stent), and PROTECT US, a single arm study including 1018 subjects treated with a zotarolimus-eluting stent were combined. The risk of ischemic events, cardiovascular death/non-periprocedural myocardial infarction (MI)/definite or probable stent thrombosis and the risk of bleeding events, GUSTO moderate or severe bleed were predicted using logistic regression, and the correlation between predicted ischemic and bleeding risks within individual patients was estimated. Results At median follow-up of 4.1 years, major bleeding occurred in 260 subjects (2.8%), and ischemic events in 595 (6.3%). Multivariate predictors of bleeding were: older age, smoking, diabetes mellitus, congestive heart failure, and chronic kidney disease (all p<0.05). Ischemic events shared all of the same predictors with bleeding events as well as: sex, BMI, prior MI, prior CABG, STEMI on presentation, stent length and sirolimus-eluting stent use (all p<0.05). Within individual subjects, bleeding and ischemic risks were strongly correlated (ρ=0.76, p<0.001). 97% of subjects had a greater risk of ischemic events than bleeding. Conclusions Individual patient risks of ischemia and bleeding are related to many common risk factors, yet the predicted risks of ischemic events are greater than those of major bleeding in the large majority of patients in long-term follow-up. PMID:26187674

  14. Accurate retention time determination of co-eluting proteins in analytical chromatography by means of spectral data.

    PubMed

    Dismer, Florian; Hansen, Sigrid; Oelmeier, Stefan Alexander; Hubbuch, Jürgen

    2013-03-01

    Chromatography is the method of choice for the separation of proteins, at both analytical and preparative scale. Orthogonal purification strategies for industrial use can easily be implemented by combining different modes of adsorption. Nevertheless, with flexibility comes the freedom of choice and optimal conditions for consecutive steps need to be identified in a robust and reproducible fashion. One way to address this issue is the use of mathematical models that allow for an in silico process optimization. Although this has been shown to work, model parameter estimation for complex feedstocks becomes the bottleneck in process development. An integral part of parameter assessment is the accurate measurement of retention times in a series of isocratic or gradient elution experiments. As high-resolution analytics that can differentiate between proteins are often not readily available, pure protein is mandatory for parameter determination. In this work, we present an approach that has the potential to solve this problem. Based on the uniqueness of UV absorption spectra of proteins, we were able to accurately measure retention times in systems of up to four co-eluting compounds. The presented approach is calibration-free, meaning that prior knowledge of pure component absorption spectra is not required. Actually, pure protein spectra can be determined from co-eluting proteins as part of the methodology. The approach was tested for size-exclusion chromatograms of 38 mixtures of co-eluting proteins. Retention times were determined with an average error of 0.6 s (1.6% of average peak width), approximated and measured pure component spectra showed an average coefficient of correlation of 0.992.

  15. Elution of Nitrate at the NABIR Field Research Center, Oak Ridge Reservation, Oak Ridge, TN

    NASA Astrophysics Data System (ADS)

    Fienen, M. N.; Criddle, C. S.; Jardine, P. M.; Kitanidis, P. K.; Mehlhorn, T. L.; Watson, D. B.; Wu, W.

    2003-12-01

    As part of a bioremediation project for the in situ bioreduction of uranium at the Department of Energy Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) in Oak Ridge, TN, aquifer and groundwater conditioning is required before conducting the remediation experiment. One step includes flushing of the aquifer with pH-adjusted fresh water in order to remove extremely high concentrations of nitrate, calcium, and aluminum that would interfere with in situ bioreduction. The elution of nitrate from the test zone was used as an inverse tracer to discern contaminant transport pathways and model parameters. Concentration time series data augmented pressure tests, a bromide tracer study, and electromagnetic borehole flowmeter (EBF) measurements. The aquifer at the FRC is a fractured shale with strike of about 1.5 degrees north of west, and dip of about 30 degrees to the southwest, as inferred from area observations and EBF logging. A network of injection and extraction wells are aligned along strike, while a separate network of observation wells with multiple screen intervals (MLS wells) are oriented along dip at the midpoint of the injection/extraction well network. Flow generally occurs along strike in fractures associated with bedding planes, however other lesser fracture networks provide communication between the major fracture sets. Previous data have indicated a high hydraulic conductivity zone, approximately 10-50 cm thick located at a depth of about 12 m along the centerline of the injection/extraction well network. Above the major flow zone, the matrix weathers to saprolite, decreasing hydraulic conductivity. The elution tracer test was conducted by injecting clean, acidified tap water in the farthest upgradient injection well, and extracting at half the injection rate from the farthest downgradient extraction well. This flow ratio was chosen to produce flushing focused on a small cell of the aquifer which will later be used as an in

  16. Reduction of Solvent Effect in Reverse Phase Gradient Elution LC-ICP-MS

    SciTech Connect

    Sullivan, Patrick Allen

    2005-12-17

    %-35% (simulated) and 8%-32% (actual). Quadrupole (low resolution) and sector field (high resolution) ICP-MS instrumentation were utilized in these studies. Once an AIS pair is determined, quantification studies can be performed. First, an analysis is performed by adding both elements of the AIS pair post-column while performing the gradient elution without sample injection. A comparison of the ratio of the measured intensities to the atomic ratio of the two standards is used to determine a correction factor that can be used to account for the matrix effects caused by the mobile phase. Then, organic and/or biological molecules containing one of the two elements in the AIS pair are injected into the LC column. A gradient method is used to vary the methanol-water mixture in the mobile phase and to separate out the compounds in a given sample. A standard solution of the second ion in the AIS pair is added continuously post-column. By comparing the ratio of the measured intensities to the atomic ratio of the eluting compound and internal standard, the concentration of the injected compound can be determined.

  17. A Budget Impact Model for Paclitaxel-eluting Stent in Femoropopliteal Disease in France

    SciTech Connect

    De Cock, Erwin; Sapoval, Marc; Julia, Pierre; Lissovoy, Greg de; Lopes, Sandra

    2013-04-15

    The Zilver PTX drug-eluting stent (Cook Ireland Ltd., Limerick, Ireland) represents an advance in endovascular treatments for atherosclerotic superficial femoral artery (SFA) disease. Clinical data demonstrate improved clinical outcomes compared to bare-metal stents (BMS). This analysis assessed the likely impact on the French public health care budget of introducing reimbursement for the Zilver PTX stent. A model was developed in Microsoft Excel to estimate the impact of a progressive transition from BMS to Zilver PTX over a 5-year horizon. The number of patients undergoing SFA stenting was estimated on the basis of hospital episode data. The analysis from the payer perspective used French reimbursement tariffs. Target lesion revascularization (TLR) after primary stent placement was the primary outcome. TLR rates were based on 2-year data from the Zilver PTX single-arm study (6 and 9 %) and BMS rates reported in the literature (average 16 and 22 %) and extrapolated to 5 years. Net budget impact was expressed as the difference in total costs (primary stenting and reinterventions) for a scenario where BMS is progressively replaced by Zilver PTX compared to a scenario of BMS only. The model estimated a net cumulative 5-year budget reduction of Euro-Sign 6,807,202 for a projected population of 82,316 patients (21,361 receiving Zilver PTX). Base case results were confirmed in sensitivity analyses. Adoption of Zilver PTX could lead to important savings for the French public health care payer. Despite higher initial reimbursement for the Zilver PTX stent, fewer expected SFA reinterventions after the primary stenting procedure result in net savings.

  18. Comparison of Full Lesion Coverage versus Spot Drug-Eluting Stent Implantation for Coronary Artery Stenoses

    PubMed Central

    Kim, Seunghwan; Yun, Kyeong Ho; Shin, Dong-Ho; Kim, Jung-Sun; Kim, Byeong-Keuk; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo

    2014-01-01

    Purpose The aim of this study was to evaluate and compare the long-term clinical outcomes of the spot drug-eluting stent (DES) implantation strategy, which is used to minimize implanted stent length and the number of stents, versus full lesion coverage for treatment of coronary artery stenoses. Materials and Methods We evaluated 1-year clinical outcomes of 1619 patients with stent implantation for a single coronary lesion. They were divided into two groups: those treated by full lesion coverage (n=1200) and those treated with the spot stenting strategy (n=419). The combined occurrence of 1-year target vessel failure (TVF), including cardiac death, target-vessel related myocardial infarction, or ischemia-driven target-vessel revascularization was evaluated. Results The spot DES implantation group had a shorter stent length (23.14±9.70 mm vs. 25.44±13.24 mm, respectively; p<0.001) and a fewer number of stents (1.09±0.30 vs. 1.16±0.41, respectively; p<0.001), even though the average lesion length was similar to the full lesion coverage group (21.36±10.30 mm vs. 20.58±10.97 mm, respectively; p=0.206). Spot DES implantation was superior to full DES coverage with respect to 1-year TVF (1.4% vs. 3.3%, p=0.044). Cox proportional hazard model analysis showed that the risk for 1-year TVF was almost 60% lower among patients who received spot DESs compared to those who received full DES coverage after adjustment for other risk factors (HR=0.40, 95% confidence interval=0.17-0.98; p=0.046). Conclusion Minimizing stent length and the number of stents with overlapping by spot DES implantation may result in reduced rates of 1-year TVF, compared with full DES coverage. PMID:24719123

  19. Elution behavior of poly(lactide-co-succinimide) copolymers studied by SEC-MALS.

    PubMed

    Gricar, Maja; Zigon, Majda; Zagar, Ema

    2009-03-01

    We synthesized poly(lactide-co-succinimide) (PLS) copolymers with the ratio of lactide to succinimide units of 3:1 and 6.5:1 and studied their elution behavior by size exclusion chromatography with an on-line light-scattering detection. Since the copolymers contain a certain amount of carboxyl groups, they behave as ionomers in N,N-dimethylacetamide (DMAc) and show a typical polyelectrolyte (PE) effect. The PE effect was eliminated by the addition of simple electrolyte like LiBr, H(3)PO(4), or both in DMAc. The efficiency of the additive decreases in the order: LiBr > LiBr + H(3)PO(4) > H(3)PO(4). The ionic strength of the 0.1 M LiBr/DMAc was high enough for the onset of hydrophobic interactions of PLS lactic acid segments intermolecularly as well as with the column packing material. The drawback of the LiBr + H(3)PO(4)/DMAc solvent system is a rather high intensity of the system peaks, which are imposed on the right side of the copolymer signal. System peaks strongly influence the determination of number and to a lesser extent the weight average molar masses of PLS copolymers. An addition of only H(3)PO(4) in high enough concentration to DMAc (0.05 and 0.1 M) successfully eliminated the PE effect of the 6.5:1 PLS copolymer. On the contrary, the PE effect of the 3:1 PLS copolymer having higher charge density compared to 6.5:1 PLS copolymer cannot be entirely canceled out in any of the H(3)PO(4)/DMAc solutions examined.

  20. Randomised controlled trial of doxorubicin-eluting beads vs conventional chemoembolisation for hepatocellular carcinoma

    PubMed Central

    Golfieri, R; Giampalma, E; Renzulli, M; Cioni, R; Bargellini, I; Bartolozzi, C; Breatta, A D; Gandini, G; Nani, R; Gasparini, D; Cucchetti, A; Bolondi, L; Trevisani, F

    2014-01-01

    Background: Transcatheter arterial chemoembolisation (TACE) is the treatment of choice for intermediate stage hepatocellular carcinoma (HCC). Doxorubicin-loaded drug-eluting beads (DEB)-TACE is expected to improve the performance of conventional TACE (cTACE). The aim of this study was to compare DEB-TACE with cTACE in terms of time-to-tumour progression (TTP), adverse events (AEs), and 2-year survival. Methods: Patients were randomised one-to-one to undergo cTACE or DEB-TACE and followed-up for at least 2 years or until death. Transcatheter arterial chemoembolisation was repeated ‘on-demand'. Results: We enrolled 177 patients: 89 underwent DEB-TACE and 88 cTACE. The median number of procedures was 2 in each arm, and the in-hospital stay was 3 and 4 days, respectively (P=0.323). No differences were found in local and overall tumour response. The median TTP was 9 months in both arms. The AE incidence and severity did not differ between the arms, except for post-procedural pain, more frequent and severe after cTACE (P<0.001). The 1- and 2-year survival rates were 86.2% and 56.8% after DEB-TACE and 83.5% and 55.4% after cTACE (P=0.949). Eastern Cooperative Oncology Group (ECOG), serum albumin, and tumour number independently predicted survival (P<0.05). Conclusions: The DEB-TACE and the cTACE are equally effective and safe, with the only advantage of DEB-TACE being less post-procedural abdominal pain. PMID:24937669

  1. Impact of Coronary Plaque Characteristics on Late Stent Malapposition after Drug-Eluting Stent Implantation

    PubMed Central

    Hong, Sung-Jin; Kim, Byeong-Keuk; Shin, Dong-Ho; Kim, Jung-Sun; Ko, Young-Guk; Choi, Donghoon; Jang, Yangsoo

    2015-01-01

    Purpose To evaluate the impact of pre-procedural coronary plaque composition assessed by virtual histology intravascular ultrasound (VH-IVUS) on late stent malapposition assessed by optical coherence tomography (OCT) following drug-eluting stent (DES) implantation. Materials and Methods The study population consisted of 121 patients (121 lesions) who underwent both pre-procedural VH-IVUS and follow-up OCT after DES implantation. The association between pre-procedural plaque composition [necrotic core (NC), dense calcium (DC), fibrotic (FT), and fibro-fatty (FF) volumes] assessed by VH-IVUS and late stent malapposition (percent malapposed struts) or strut coverage (percent uncovered struts) assessed by follow-up OCT was evaluated. Results Pre-procedural absolute total NC, DC, FT, and FF plaque volumes were 22.9±19.0, 7.9±9.6, 63.8±33.8, and 16.5±12.4 mm3, respectively. At 6.3±3.1 months post-intervention, percent malapposed and uncovered struts were 0.8±2.5% and 15.3±16.7%, respectively. Pre-procedural absolute total NC and DC plaque volumes were positively correlated with percent malapposed struts (r=0.44, p<0.001 and r=0.45, p<0.001, respectively), while pre-procedural absolute total FT plaque volume was weakly associated with percent malapposed struts (r=0.220, p=0.015). Pre-procedural absolute total DC plaque volume was the only independent predictor of late stent malapposition on multivariate analysis (β=1.12, p=0.002). There were no significant correlations between pre-intervention plaque composition and percent uncovered struts. Conclusion Pre-procedural plaque composition was associated with late stent malapposition but not strut coverage after DES implantation. Larger pre-procedural absolute total DC plaque volumes were associated with greater late stent malapposition. PMID:26446634

  2. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery

    PubMed Central

    Ansel, Gary M.; Jaff, Michael R.; Ohki, Takao; Saxon, Richard R.; Smouse, H. Bob; Machan, Lindsay S.; Snyder, Scott A.; O’Leary, Erin E.; Ragheb, Anthony O.; Zeller, Thomas

    2016-01-01

    Background— This randomized controlled trial evaluated clinical durability of Zilver PTX, a paclitaxel-coated drug-eluting stent (DES), for femoropopliteal artery lesions. Outcomes compare primary DES versus percutaneous transluminal angioplasty (PTA), overall DES (primary and provisional) versus standard care (PTA and provisional Zilver bare metal stent [BMS]), and provisional DES versus provisional BMS. Methods and Results— Patients with symptomatic femoropopliteal artery disease were randomly assigned to DES (n=236) or PTA (n=238). Approximately 91% had claudication; 9% had critical limb ischemia. Patients experiencing acute PTA failure underwent secondary randomization to provisional BMS (n=59) or DES (n=61). The 1-year primary end points of event-free survival and patency showed superiority of primary DES in comparison with PTA; these results were sustained through 5 years. Clinical benefit (freedom from persistent or worsening symptoms of ischemia; 79.8% versus 59.3%, P<0.01), patency (66.4% versus 43.4%, P<0.01), and freedom from reintervention (target lesion revascularization, 83.1% versus 67.6%, P<0.01) for the overall DES group were superior to standard care in nonrandomized comparisons. Similarly, clinical benefit (81.8% versus 63.8%, P=0.02), patency (72.4% versus 53.0%, P=0.03), and freedom from target lesion revascularization (84.9% versus 71.6%, P=0.06) with provisional DES were improved over provisional BMS. These results represent >40% relative risk reduction for restenosis and target lesion revascularization through 5 years for the overall DES in comparison with standard care and for provisional DES in comparison with provisional BMS. Conclusions— The 5-year results from this large study provide long-term information previously unavailable regarding endovascular treatment of femoropopliteal artery disease. The Zilver PTX DES provided sustained safety and clinical durability in comparison with standard endovascular treatments. Clinical Trial

  3. RNA-Eluting Surfaces for the Modulation of Gene Expression as A Novel Stent Concept

    PubMed Central

    Koenig, Olivia; Zengerle, Diane; Perle, Nadja; Hossfeld, Susanne; Neumann, Bernd; Behring, Andreas; Avci-Adali, Meltem; Walker, Tobias; Schlensak, Christian; Wendel, Hans Peter; Nolte, Andrea

    2017-01-01

    Presently, a new era of drug-eluting stents is continuing to improve late adverse effects such as thrombosis after coronary stent implantation in atherosclerotic vessels. The application of gene expression–modulating stents releasing specific small interfering RNAs (siRNAs) or messenger RNAs (mRNAs) to the vascular wall might have the potential to improve the regeneration of the vessel wall and to inhibit adverse effects as a new promising therapeutic strategy. Different poly (lactic-co-glycolic acid) (PLGA) resomers for their ability as an siRNA delivery carrier against intercellular adhesion molecule (ICAM)-1 with a depot effect were tested. Biodegradability, hemocompatibility, and high cell viability were found in all PLGAs. We generated PLGA coatings with incorporated siRNA that were able to transfect EA.hy926 and human vascular endothelial cells. Transfected EA.hy926 showed significant siICAM-1 knockdown. Furthermore, co-transfection of siRNA and enhanced green fluorescent protein (eGFP) mRNA led to the expression of eGFP as well as to the siRNA transfection. Using our PLGA and siRNA multilayers, we reached high transfection efficiencies in EA.hy926 cells until day six and long-lasting transfection until day 20. Our results indicate that siRNA and mRNA nanoparticles incorporated in PLGA films have the potential for the modulation of gene expression after stent implantation to achieve accelerated regeneration of endothelial cells and to reduce the risk of restenosis. PMID:28208634

  4. Prognostic value of an abnormal ankle-brachial index in patients receiving drug-eluting stents.

    PubMed

    Ribera, Aida; Ferreira-González, Ignacio; Marsal, Josep Ramón; Cascant, Purificación; Permanyer-Miralda, Gaietà; Abdul-Jawad, Omar; Iñigo-Garcia, Luis Antonio; Guarinos-Oltra, Jordi; Cequier, Angel; Goicolea-Güemez, Leire; García-Del-Blanco, Bruno; Martí, Gerard; García-Dorado, David

    2011-11-01

    Advanced atherosclerotic disease increases the risk of stent thrombosis after drug-eluting stent (DES) implantation. We aimed to determine if an abnormal ankle-brachial index (ABI) value as a surrogate of atherosclerotic disease and vascular inflammation provides information on 1-year risk of cardiovascular events after DES implantation. A prospective cohort of 1,437 consecutive patients undergoing DES implantation from January through April 2008 in 26 Spanish hospitals was examined. ABI was calculated by Doppler in a standardized manner. Patients were followed to 12 months after the percutaneous coronary intervention to determine total and cardiovascular mortality, stroke, nonfatal acute coronary syndrome (ACS), and new revascularizations. Association of an abnormal ABI value (i.e., ≤ 0.9 or ≥ 1.4) with outcomes was assessed by conventional logistic regression and by propensity-score analysis. Patients with abnormal ABI values (n = 582, 40.5%) in general had higher global cardiovascular risk, the reason for DES implantation was more often ACS, and had a higher rate of complications during admission (heart failure or stroke or major hemorrhage 11.3% vs 5.3%, p <0.001). An abnormal ABI value was independently associated with 1-year total mortality (odds ratio 2.23, 95% confidence interval 1.13 to 4.4) and cardiovascular mortality (odds ratio 2.06, 95% confidence interval 1.04 to 4.22). No independent association was found between an abnormal ABI value and 1-year nonfatal ACS, stroke, and new revascularizations. In conclusion, although an abnormal ABI value was associated with fatal outcomes in patients receiving DESs, no association was found with nonfatal ACS and new revascularizations. A clear relation between abnormal ABI and surrogates of DES thrombosis could not be established.

  5. Clopidogrel Therapy Discontinuation Following Drug Eluting Stent Implantation in Real World Practice in Israel

    PubMed Central

    Blich, Miry; Shwiri, Tawfiq Zeidan; Petcherski, Sirouch; Osherov, Azriel B; Hammerman, Haim

    2012-01-01

    Background Incidence and predictors of clopidogrel discontinuation after drug eluting stent (DES) implantation, in real world practice, are poorly known. Methods Prospective study included all patients who underwent implantation of at least one DES between February 2006 and January 2007. Predictors of clopidogrel discontinuation were assessed by a multivariable analysis. Results In 269 patients, mean period for clopidogrel therapy was 13.2 ± 7.2 month. Twenty eight patients (10.4%) discontinued clolopidogrel prematurely (< 3 months). Early clopidogrel discontinuation was a predictor of late stent thrombosis (P = 0.005) and urgent target vessel revascularization (P = 0.05). There was a trend for higher cardiac mortality among that group (P = 0.07). By 12 months, 173 patients (64.3%) have discontinued clopidogrel therapy. The most frequent circumstance to stop clopidogrel before 12 months was recommendation of family physician. Patients that were followed by cardiologist were more encouraged to longer clopidogrel therapy. In multivariable analysis being non Jew (OR 19.2, 95% CI 2.4 to 142, P = 0.005), not followed by cardiologist (OR 4.7, 95% CI 1 to 23.1, P = 0.05) and lack of information regarding the importance of clopidogrel maintenance at discharge from hospital (OR 10.8, 95% CI 2.7 to 42.9, P = 0.001) were independent predictors of early clopidogrel discontinuation. Conclusions Clopidogrel discontinuation, in real world practice is not unusual and related to poor outcome. Education for general physicians, clear instructions about the importance of antiplatelet maintenance at discharge and follow up by an expert cardiologist are opportunities to improve adherence do antiplatelet therapy following DES implantation.

  6. Comparative assessment of drug-eluting balloons in an advanced porcine model of coronary restenosis.

    PubMed

    Joner, M; Byrne, R A; Lapointe, J-M; Radke, P W; Bayer, G; Steigerwald, K; Wittchow, E

    2011-05-01

    The advent of drug-eluting balloon (DEB) therapy has represented an important development in interventional cardiology. Nevertheless, preclinical data with this technology remain scant, and comparative studies have not previously been published. Bare metal stents were implanted in the coronary arteries of 15 pigs followed by balloon angioplasty. Animals were allocated to treatment with a 60-second inflation of one of four different balloon catheters: a conventional untreated plain angioplasty balloon (PBA, Biotronik AG), the Pantera Lux DEB (3.0 μg/mm2 paclitaxel; BTHC excipient, Biotronik AG), the Elutax DEB (2.0 μg/mm2 paclitaxel; no excipient; Aachen Resonance), or the SeQuent Please DEB (3.0 μg/mm2 paclitaxel; iopromide excipient: B. Braun). Twenty-eight days following balloon deployment, animals underwent repeat angiography for quantitative coronary angiography analysis and euthanasia for histopathologic assessment. By histology, the mean neointimal thickness was 0.44 ± 0.19 mm with PBA, 0.35 ± 0.13 mm with Pantera Lux , 0.61 ± 0.20 mm with Elutax , and 0.47 ± 0.21 mm with SeQuent Please DEB (p=0.02). In comparison with PBA, deployment of the Pantera Lux or the SeQuent Please DEB resulted in delayed healing characterised by significant increases in fibrin, neointimal cell vacuity and delayed re-endothelialisation. In conclusion, investigation of comparative DEB performance in a porcine model of advanced coronary restenosis reveals significant heterogeneity of neointimal suppression between the devices tested with numerically lowest values seen in the Pantera Lux group. On the other hand, evidence of delayed healing was observed in the most effective DEB groups.

  7. Modeling the transport of drugs eluted from stents: physical phenomena driving drug distribution in the arterial wall.

    PubMed

    Bozsak, Franz; Chomaz, Jean-Marc; Barakat, Abdul I

    2014-04-01

    Despite recent data that suggest that the overall performance of drug-eluting stents (DES) is superior to that of bare-metal stents, the long-term safety and efficacy of DES remain controversial. The risk of late stent thrombosis associated with the use of DES has also motivated the development of a new and promising treatment option in recent years, namely drug-coated balloons (DCB). Contrary to DES where the drug of choice is typically sirolimus and its derivatives, DCB use paclitaxel since the use of sirolimus does not appear to lead to satisfactory results. Since both sirolimus and paclitaxel are highly lipophilic drugs with similar transport properties, the reason for the success of paclitaxel but not sirolimus in DCB remains unclear. Computational models of the transport of drugs eluted from DES or DCB within the arterial wall promise to enhance our understanding of the performance of these devices. The present study develops a computational model of the transport of the two drugs paclitaxel and sirolimus eluted from DES in the arterial wall. The model takes into account the multilayered structure of the arterial wall and incorporates a reversible binding model to describe drug interactions with the constituents of the arterial wall. The present results demonstrate that the transport of paclitaxel in the arterial wall is dominated by convection while the transport of sirolimus is dominated by the binding process. These marked differences suggest that drug release kinetics of DES should be tailored to the type of drug used.

  8. Sirolimus-loaded CaP coating on Co-Cr alloy for drug-eluting stent

    PubMed Central

    Yang, Jingxin; Lee, In-Seop; Cui, Fuzhai

    2016-01-01

    To achieve polymer-free and controllable drug-eluting system, there have been many efforts to modify the surface composition and topography of metal stent. Recently, calcium phosphate is commonly applied to metallic implants as a coating material for fast fixation and firm-implant bone attachment on the account of its demonstrated bioactive and osteoconductive properties. In the present study, the release of sirolimus could be controllable because of immobilization of sirolimus during the process of biomimetic CaP coating forming. A completely new concept is the drug carrier of biomimetic CaP coating with sirolimus for an absorbable drug eluting system, which in turn can serve as a drug reservoir. We here describe the characteristic, mechanisms and drug release in vitro of new drug-eluting system in comparison to conventional system equivalent. Nano-structured calcium phosphate (CaP) coating was formed on the cobalt–chromium (Co-Cr) alloy substrate. By immersing coated sample in solution with sirolimus (rapamycin), the sirolimus could be immobilized in the newly formed CaP layer. The morphology, composition and formation process of the coating were studied with scanning electron microscopy, energy dispersive spectrometer, X-ray diffraction and X-ray photoelectron spectroscopy. The results showed that a uniform CaP coating incorporated with sirolimus was observed on Co-Cr alloy. PMID:27252886

  9. Gradient x Isocratic Elution CCC on the Isolation of Verbascoside and Other Phenylethanoids: Influence of the Complexity of the Matrix.

    PubMed

    Leitão, Gilda Guimarães; Pinto, Shaft Correa; de Oliveira, Danilo Ribeiro; Timoteo, Patrícia; Guimarães, Michelle Guedes; Cordova, Wilmer H Perera; Leitão, Suzana Guimarães

    2015-11-01

    Verbascoside is a phenylethanoid glycoside widely distributed in nature, especially among the order Lamiales, occurring in numerous plants that are constituents of folk medicine preparations. This natural compound, previously isolated by our group from the ethyl acetate extract of Lantana trifolia using the gradient approach in countercurrent chromatography, was now isolated from the butanol extract of the same plant and from Lippia alba f. intermedia (Verbenaceae) using countercurrent chromatography in either gradient or isocratic elution modes. The ethyl acetate extract of L. alba, rich in phenylethanoids and flavonoids, was fractionated using countercurrent chromatography in the step-gradient elution approach. The four-step solvent system was composed of n-hexane-ethyl acetate-n-butanol-water (4 : 10 : X : 10), where X = 1 (solvent system A), 3 (solvent system B), 5 (solvent system C), and 7 (solvent system D), and allowed for the isolation of verbascoside along with other phenylethanoids and flavonoids from both plants. Verbascoside and 2'-O-β-apiosylverbascoside were further isolated from the n-butanol extract of L. trifolia using the solvent system ethyl acetate-n-butanol-water 10 : 2 : 10 on an isocratic run. The difference in the complexity of the two plant extracts demanded different purification steps, which included a second high-speed countercurrent chromatography purification using the isocratic elution mode.

  10. Elution-extrusion counter-current chromatography for the separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix.

    PubMed

    Chu, Chu; Zhang, Shidi; Tong, Shengqiang; Li, Xingnuo; Li, Qingyong; Yan, Jizhong

    2015-09-01

    In this work, a simple and efficient protocol for the rapid separation of two pairs of isomeric monoterpenes from Paeoniae Alba Radix was developed by combining macroporous resin and elution-extrusion counter-current chromatography. The crude extract was firstly subjected to a D101 macroporous resin column eluted with water and a series of different concentrations of ethanol. Then, effluents of 30 and 95% ethanol were collected as sample 1 and sample 2 for further counter-current chromatography purification. Finally, a pair of isomers, 96 mg of compound 1 and 48 mg of compound 2 with purities of 91.1 and 96.2%, respectively, was isolated from 200 mg of sample 1. The other pair of isomers, 14 mg of compound 3 and 8 mg of compound 4 with purities of 93.6 and 88.9%, respectively, was isolated from 48 mg of sample 2. Their purities were analyzed by high-performance liquid chromatography, and their chemical structures were identified by mass spectrometry and (1) H NMR spectroscopy. Compared to a normal counter-current chromatography separation, the separation time and solvent consumption of elution-extrusion counter-current chromatography were reduced while the resolutions were still good. The established protocol is promising for the separation of natural products with great disparity of content in herbal medicines.

  11. Complete elution of vacuum gas oil resins by comprehensive high-temperature two-dimensional gas chromatography.

    PubMed

    Boursier, Laure; Souchon, Vincent; Dartiguelongue, Cyril; Ponthus, Jérémie; Courtiade, Marion; Thiébaut, Didier

    2013-03-08

    The development of efficient conversion processes requires extended knowledge on vacuum gas oils (VGOs). Among these processes, hydrocracking is certainly one of the best suited to meet the increasing demand on high quality diesel fuels. Most of refractory and inhibiting compounds towards hydrocracking and especially nitrogen containing compounds are contained in a fraction of the VGO called the resin fraction, which corresponds to the most polar fraction of a VGO obtained by liquid chromatography (LC) fractionation on a silica column. However, the lack of resolution observed through existing analytical methods does not allow a detailed characterization of these fractions. A recent study showed that comprehensiv