Science.gov

Sample records for alkaline flooding methods

  1. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  2. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  3. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  4. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  5. Surfactant-enhanced low-pH alkaline flooding

    SciTech Connect

    Peru, D.A. and Co., Columbia, MD . Research Div.); Lorenz, P.B. )

    1990-08-01

    This paper reports sodium bicarbonate investigated as a potential alkaline agent in surfactant-enhanced alkaline flooding because it has very little tendency to dissolve silicate minerals. In experiments performed with Wilmington, CA, crude oil and three types of surfactants, the bicarbonate/surfactant combination caused a marked lowering of interfacial tension (IFT). Bicarbonate protected the surfactant against divalent cations and reduced adsorption of surfactant and polymer on various minerals. Coreflood test confirm that sodium bicarbonate plus surfactant can be an effective alternative to the high-pH flooding process.

  6. Surfactant-enhanced alkaline flooding with weak alkalis

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1991-02-01

    The objective of Project BE4B in FY90 was to develop cost-effective and efficient chemical flooding formulations using surfactant-enhanced, lower pH (weak) alkaline chemical systems. Chemical systems were studied that mitigate the deleterious effects of divalent ions. The experiments were conducted with carbonate mixtures and carbonate/phosphate mixtures of pH 10.5, where most of the phosphate ions exist as the monohydrogen phosphate species. Orthophosphate did not further reduce the deleterious effect of divalent ions on interfacial tension behavior in carbonate solutions, where the deleterious effect of the divalent ions is already very low. When added to a carbonate mixture, orthophosphate did substantially reduce the adsorption of an atomic surfactant, which was an expected result; however, there was no correlation between the amount of reduction and the divalent ion levels. For acidic oils, a variety of surfactants are available commercially that have potential for use between pH 8.3 and pH 9.5. Several of these surfactants were tested with oil from Wilmington (CA) field and found to be suitable for use in that field. Two low-acid crude oils, with acid numbers of 0.01 and 0.27 mg KOH/g of oil, were studied. It was shown that surfactant-enhanced alkaline flooding does have merit for use with these low-acid crude oils. However, each low-acid oil tested was found to behave differently, and it was concluded that the applicability of the method must be experimentally determined for any given low-acid crude oil. 19 refs., 10 figs. 4 tabs.

  7. Surfactant-enhanced alkaline flooding field project. Annual report, Revision

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  8. Interfacial activity in alkaline flooding enhanced oil recovery

    SciTech Connect

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical species in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.

  9. Surfactant-enhanced alkaline flooding for light oil recovery. [Annual report], 1993--1994

    SciTech Connect

    Wasan, D.T.

    1995-03-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (2) investigated the kinetics of oil removal from a silica surface, and (3) developed a theoretical interfacial activity model for determining equilibrium interfacial tension. The results of the studies conducted during the course of this project are presented.

  10. Surfactant-enhanced alkaline flooding for light oil recovery. Annual report, 1992--1993

    SciTech Connect

    Wasan, D.T.

    1994-08-01

    In this report, the authors present the results of experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties.

  11. Aqueous flooding methods for tertiary oil recovery

    DOEpatents

    Peru, Deborah A.

    1989-01-01

    A method of aqueous flooding of subterranean oil bearing formation for tertiary oil recovery involves injecting through a well into the formation a low alkaline pH aqueous sodium bicarbonate flooding solution. The flooding solution's pH ranges from about 8.25 to 9.25 and comprises from 0.25 to 5 weight percent and preferably about 0.75 to 3.0 weight percent of sodium bicarbonate and includes a petroleum recovery surfactant of 0.05 to 1.0 weight percent and between 1 and 20 weight percent of sodium chloride. After flooding, an oil and water mixture is withdrawn from the well and the oil is separated from the oil and water mixture.

  12. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Wasan, D.T.

    1995-09-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested.

  13. Aqueous flooding methods for tertiary oil recovery

    SciTech Connect

    Peru, D.A.

    1989-04-04

    A method is described for flooding of a subterranean petroleum bearing formation for tertiary oil recovery, comprising the steps of providing at least one production well having at least one inlet within the subterranean petroleum bearing formation, and at least one injection well having at least one outlet within the subterranean petroleum bearing formation, injecting into the petroleum bearing formation through the injection well, a low alkaline pH aqueous sodium bicarbonate flooding solution having a pH in the range of from about 8.25 to about 9.25 comprising from about 0.25 to about 5 weight percent of sodium bicarbonate, from about 0.05 to about 1.0 weight percent of petroleum recovery surfactant, and from about 1 to about 20 weight percent of sodium chloride, based on the total weight of the aqueous flooding solution, withdrawing through at least one inlet of the production wells, an oil and water mixture comprising petroleum from the subterranean petroleum bearing formation and at least a portion of the low alkaline pH sodium bicarbonate aqueous flooding solution, and separating the oil from the aqueous oil and water mixture.

  14. An update of the polymer-augmented alkaline flood at the Isenhour unit, Sublette County, Wyoming

    SciTech Connect

    Doll, T.E.

    1988-05-01

    An Almy sand polymer-augmented alkaline flood at the Isenhour Unit, Sublette County, WY, is reviewed. This paper updates process technology, including the use of clay stabilization, sweep improvement, soda ash alkaline agent (to reduce interfacial tension (IFT) and mobilize residual oil), and anionic-polymer-blend mobility buffer. Oil production has been increasing at 20%/yr since the process start.

  15. Critical factors in the design of cost-effective alkaline flooding

    SciTech Connect

    Lorenz, P.B.; Peru, D.A.

    1991-02-01

    A review of major alkaline flooding projects highlights the recognized fact that alkali consumption and scale formation are serious deterrents when strong alkalis are used. The review also confirms that there are several mechanisms of oil mobilization besides reducing interfacial tension. Even oils of low acid number may be amenable to alkaline flooding. Moreover, alkalis in a lower pH range - which have minimal reaction with reservoir minerals - can often mobilize oil, especially when enhanced with a low concentration of surfactant. However, the future of alkaline flooding depends critically on improved reservoir analysis, which includes factors that have often been neglected: (1) thorough mineralogical analysis; (2) evaluation of ion-exchange properties; and (3) assessment of carbon dioxide content. An evaluation of high-pH alkaline flooding field tests over the past 60 years shows that the majority of tests did not produce encouraging results. Laboratory and limited field experience with lower pH alkalis suggests that they may be more feasible in selected cases. Alkaline flooding should be rejected if there is as much as 1% gypsum in the rock or as much as 1 mol % CO{sub 2} in the fluid. Otherwise, a flood at moderate pH (around 10) can be considered for low-kaolinite reservoirs. For low-montmorillonite reservoirs with less than 5 meq divalent exchange ions per kg of rock, a very low pH (around 8.5) may be effective when enhanced with surfactant. 55 refs., 3 tabs.

  16. Surfactant-enhanced alkaline flooding for light oil recovery. Final report 1994--1995

    SciTech Connect

    Wasan, D.T.

    1995-12-01

    In this report, the authors present the results of their experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, the authors have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil, and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are summarized.

  17. Surfactant-enhanced alkaline flooding for light oil recovery. Final report

    SciTech Connect

    Wasan, D.T.

    1996-05-01

    In this report, we present the results of our experimental and theoretical studies in surfactant-enhanced alkaline flooding for light oil recovery. The overall objective of this work is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12. 0) for ultimate spontaneous emulsification and ultralow interfacial tension. In addition, we have (1) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, (2) investigated the mechanisms for spontaneous emulsification, (3) developed a technique to monitor low water content in oil and (4) developed a technique to study water-in-oil emulsion film properties, (5) investigated the effect of surfactant on the equilibrium and transient interfacial tension, (6) investigated the kinetics of oil removal from a silica surface, and (7) developed a theoretical interfacial activity model for determining equilibrium interfacial tension, accounting for added surfactant. The results of the studies conducted during the course of this project are discussed.

  18. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, January 1--March 31, 1994

    SciTech Connect

    Wasan, D.T.

    1994-06-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. Last quarter we investigated the phase behavior and the regions where in the middle phase occurs. The optimum phase was found to go through a maximum with pH, sodium concentration and surfactant concentration. The optimum pH is about 12.0 to 13.5, the optimum sodium concentration is about 0.513 mol/liter, and the optimum surfactant concentration is about 0.2%. The effect of surfactant type was also investigated. Petrostep B-105 was found to give the most middle phase production. This quarter, we investigated the contact angle of Long Beach oil, Adena oil, and a model oil on a solid glass surface in contact with an aqueous alkaline solution both with and without added preformed surfactant. The contact angle with Long Beach and Adena oils showed oil-wet conditions, whereas the model oil showed both oil-wet and water-wet conditions depending on the pH of the aqueous phase. The addition of surfactant to the alkaline solution resulted in making the system less oil-wet. Spreading of the oil on the glass surface was observed in all three systems investigated.

  19. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, October 1--December 30, 1994

    SciTech Connect

    Wasan, D.T.

    1994-12-31

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. The problem of characterizing emulsions in porous media is very important in enhanced oil recovery applications. This is usually accomplished by externally added or insitu generated surfactants that sweep the oil out of the reservoir. Emulsification of the trapped oil is one of the mechanisms of recovery. The ability to detect emulsions in the porous medium is therefore crucial to designing profitable flood systems. The capability of microwave dielectric techniques to detect emulsions in porous medium is demonstrated by mathematical modelling and by experiments. This quarter the dielectric properties of porous media are shown to be predicted adequately by treating it an an O/W type dispersion of sand grains in water. Dielectric measurements of emulsion flow in porous media show that dielectric techniques may be applied to determine emulsion characteristics in porous media. The experimental observations were confirmed by theoretical analysis.

  20. Surfactant-enhanced alkaline flooding for light oil recovery. [Quarterly] report, March 31--June 30, 1993

    SciTech Connect

    Wasan, D.T.

    1993-09-01

    The overall objective of this project is to develop a very cost- effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. Last quarter we have investigated the mechanisms responsible for spontaneous emulsification in alkali/acidic crude oil systems with and without added surfactant. We have observed that the roll cell size and formation time depend strongly on the pH and ionic strength of the alkaline solution. For a particular roll cell size, the addition of surfactant causes the cells to take longer to form, causing an interfacial resistance to mass transfer and making the interface more rigid. We have shown that interfacial turbulence is a necessary but not sufficient condition for spontaneous emulsification. Low interfacial tension is also a necessary condition. This quarter a microwave interferometric procedure was developed for the determination of low water content (0. 5 to 10 vol%) of water-in-oil macroemulsions. The apparatus operates at a frequency of 23.48 GHz in the K-band microwave region. The procedure is based on the large differences in dielectric properties between water and oil, and it utilizes the variation in phase shift as sample path length is varied. Measurements are accurate to within 0.5 vol% water.

  1. Speciation and Release Kinetics of Cadmium in an Alkaline Paddy Soil Under Various Flooding Periods and Draining Conditions

    SciTech Connect

    S Khaokaew; R Chaney; G Landrot; M Ginder-Vogel; D Sparks

    2011-12-31

    This study determined Cd speciation and release kinetics in a Cd-Zn cocontaminated alkaline paddy soil, under various flooding periods and draining conditions, by employing synchrotron-based techniques, and a stirred-flow kinetic method. Results revealed that varying flooding periods and draining conditions affected Cd speciation and its release kinetics. Linear least-squares fitting (LLSF) of bulk X-ray absorption fine structure (XAFS) spectra of the air-dried, and the 1 day-flooded soil samples, showed that at least 50% of Cd was bound to humic acid. Cadmium carbonates were found as the major species at most flooding periods, while a small amount of cadmium sulfide was found after the soils were flooded for longer periods. Under all flooding and draining conditions, at least 14 mg/kg Cd was desorbed from the soil after a 2-hour desorption experiment. The results obtained by micro X-ray fluorescence ({mu}-XRF) spectroscopy showed that Cd was less associated with Zn than Ca, in most soil samples. Therefore, it is more likely that Cd and Ca will be present in the same mineral phases rather than Cd and Zn, although the source of these two latter elements may originate from the same surrounding Zn mines in the Mae Sot district.

  2. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  3. Surfactant adsorption at fluid-fluid interfaces with applications to alkaline flooding

    SciTech Connect

    Borwankar, R.P.

    1984-01-01

    Adsorption of surfactants at fluid-fluid interfaces is studied with respect to equilibrium and dynamic behavior. An equilibrium model is developed wherein the surface concentration of ionic surfactants is distinguished from their surface excess concentration by the contribution from the electrical double layer. A consistent treatment of adsorption dynamics is formulated using a continuum approach. Surfactant transport in the bulk is assumed to consist of diffusion (and convection) with constant transport coefficients. Activation energy barriers to solute exchange between the bulk and the dividing surface are represented by means of kinetics of interphase reactions. This treatment is used to develop diffusion-kinetic models for gas-liquid systems under stagnant batch conditions and for liquid-liquid systems under gyrostatic conditions of the spinning drop tensiometer. In the liquid-liquid case, the acidic oil/caustic system of alkaline flooding for enhanced oil recovery is investigated. A continuous flow model is developed to assess the role of dynamic effects in alkaline flooding processes. Axial dispersion of caustic and its uptake by the reservoir rock are taken into account. An unsteady state solution is obtained when a linear isotherm governs the caustic uptake by the reservoir rock while a steady state solution is obtained for a Langmuir isotherm. Predictions of interfacial tension behavior are made for Wilmington Field crude oil.

  4. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  5. Process, mechanism and impacts of scale formation in alkaline flooding by a variable porosity and permeability model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Li, Jiachun

    2016-06-01

    In spite of the role of alkali in enhancing oil recovery (EOR), the formation of precipitation during alkaline-surfactant-polymer (ASP) flooding can severely do harm to the stratum of oil reservoirs, which has been observed in situ tests of oil fields such as scale deposits found in oil stratum and at the bottom of oil wells. On the other hand, remarkable variation of stratum parameters, e.g., pore radius, porosity, and permeability due to scale formation considerably affects seepage flow and alkaline flooding process in return. The objective of this study is to firstly examine these mutual influential phenomena and corresponding mechanisms along with EOR during alkaline flooding when the effects of precipitation are no longer negligible. The chemical kinetic theory is applied for the specific fundamental reactions to describe the process of rock dissolution in silica-based reservoirs. The solubility product principle is used to analyze the mechanism of alkali scale formation in flooding. Then a 3D alkaline flooding coupling model accounting for the variation of porosity and permeability is established to quantitatively estimate the impact of alkali scales on reservoir stratum. The reliability of the present model is verified in comparison with indoor experiments and field tests of the Daqing oil field. Then, the numerical simulations on a 1/4 well group in a 5-spot pattern show that the precipitation grows with alkali concentration, temperature, and injection pressure and, thus, reduces reservoir permeability and oil recovery correspondingly. As a result, the selection of alkali with a weak base is preferable in ASP flooding by tradeoff strategy.

  6. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-03-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  7. ALKALINE-SURFACTANT-POLYMER FLOODING AND RESERVOIR CHARACTERIZATION OF THE BRIDGEPORT AND CYPRESS RESERVOIRS OF THE LAWRENCE FIELD

    SciTech Connect

    Malcolm Pitts; Ron Damm; Bev Seyler

    2003-04-01

    Feasibility of alkaline-surfactant-polymer flood for the Lawrence Field in Lawrence County, Illinois is being studied. Two injected formulations are being designed; one for the Bridgeport A and Bridgeport B reservoirs and one for Cypress and Paint Creek reservoirs. Fluid-fluid and coreflood evaluations have developed a chemical solution that produces incremental oil in the laboratory from the Cypress and Paint Creek reservoirs. A chemical formulation for the Bridgeport A and Bridgeport B reservoirs is being developed. A reservoir characterization study is being done on the Bridgeport A, B, & D sandstones, and on the Cypress sandstone. The study covers the pilot flood area and the Lawrence Field.

  8. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, J.A.; Turner, C.B.; Johnson, I.

    1980-03-13

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  9. Method of increasing the sulfation capacity of alkaline earth sorbents

    DOEpatents

    Shearer, John A.; Turner, Clarence B.; Johnson, Irving

    1982-01-01

    A system and method for increasing the sulfation capacity of alkaline earth carbonates to scrub sulfur dioxide produced during the fluidized bed combustion of coal in which partially sulfated alkaline earth carbonates are hydrated in a fluidized bed to crack the sulfate coating and convert the alkaline earth oxide to the hydroxide. Subsequent dehydration of the sulfate-hydroxide to a sulfate-oxide particle produces particles having larger pore size, increased porosity, decreased grain size and additional sulfation capacity. A continuous process is disclosed.

  10. Chemical composition profiles during alkaline flooding at different temperatures and extended residence times

    SciTech Connect

    Aflaki, R.; Handy, L.L.

    1992-12-01

    The objective of this work was to investigate whether or not caustic sweeps the major portion of the reservoir efficiently during an alkaline flood process. It was also the objective of this work to study the state of final equilibrium during a caustic flood through determination of the pH and chemical composition profiles along the porous medium. For this purpose, a long porous medium which provided extended residence times was required. It was necessary to set up the porous medium such that the changes in the pH and chemical composition of the solution could be monitored. Four Berea sandstone cores (8 in. length and1 in. diameter) placed in series provided the desired length and the opportunity for sampling in-between cores. This enabled establishment of pH and chemical composition profiles. The experiments were run at, temperatures up.to 180{degrees}C, and the flow rates varied from 4.8 to 0.2 ft/day. The samples were analyzed for pH and for Si and Al concentrations.The results show that caustic consumption is insignificant for temperatures up to 100{degrees}C. Above 100{degrees}C consumption increases and is accompanied by a significant decrease in pH. The sharp decline in pH also coincides with a sharp decline in concentration of silica in solution. The results also show that alumina is removed from the solution and solubility of alumina ultimately reaches zero. Sharp silica and pH declines take place even in the absence of any alumina in solution. As a result, removal of silica from solution is attributed to the irreversible caustic/rock interaction. This interaction is in the form of chemisorption reactions in which silica is adsorbed onto the rock surface consuming hydroxyl ion. Once these reactions were satisfied, caustic breakthrough occurs at a high pH. However, significant pore volumes of caustic must be injected for completion of the chemisorption.

  11. Chemical composition profiles during alkaline flooding at different temperatures and extended residence times

    SciTech Connect

    Aflaki, R.; Handy, L.L.

    1992-12-01

    The objective of this work was to investigate whether or not caustic sweeps the major portion of the reservoir efficiently during an alkaline flood process. It was also the objective of this work to study the state of final equilibrium during a caustic flood through determination of the pH and chemical composition profiles along the porous medium. For this purpose, a long porous medium which provided extended residence times was required. It was necessary to set up the porous medium such that the changes in the pH and chemical composition of the solution could be monitored. Four Berea sandstone cores (8 in. length and1 in. diameter) placed in series provided the desired length and the opportunity for sampling in-between cores. This enabled establishment of pH and chemical composition profiles. The experiments were run at, temperatures up.to 180[degrees]C, and the flow rates varied from 4.8 to 0.2 ft/day. The samples were analyzed for pH and for Si and Al concentrations.The results show that caustic consumption is insignificant for temperatures up to 100[degrees]C. Above 100[degrees]C consumption increases and is accompanied by a significant decrease in pH. The sharp decline in pH also coincides with a sharp decline in concentration of silica in solution. The results also show that alumina is removed from the solution and solubility of alumina ultimately reaches zero. Sharp silica and pH declines take place even in the absence of any alumina in solution. As a result, removal of silica from solution is attributed to the irreversible caustic/rock interaction. This interaction is in the form of chemisorption reactions in which silica is adsorbed onto the rock surface consuming hydroxyl ion. Once these reactions were satisfied, caustic breakthrough occurs at a high pH. However, significant pore volumes of caustic must be injected for completion of the chemisorption.

  12. A method for probabilistic flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Hardy, Jill; Gourley, Jonathan J.; Kirstetter, Pierre-Emmanuel; Hong, Yang; Kong, Fanyou; Flamig, Zachary L.

    2016-10-01

    Flash flooding is one of the most costly and deadly natural hazards in the United States and across the globe. This study advances the use of high-resolution quantitative precipitation forecasts (QPFs) for flash flood forecasting. The QPFs are derived from a stormscale ensemble prediction system, and used within a distributed hydrological model framework to yield basin-specific, probabilistic flash flood forecasts (PFFFs). Before creating the PFFFs, it is important to characterize QPF uncertainty, particularly in terms of location which is the most problematic for hydrological use of QPFs. The SAL methodology (Wernli et al., 2008), which stands for structure, amplitude, and location, is used for this error quantification, with a focus on location. Finally, the PFFF methodology is proposed that produces probabilistic hydrological forecasts. The main advantages of this method are: (1) identifying specific basin scales that are forecast to be impacted by flash flooding; (2) yielding probabilistic information about the forecast hydrologic response that accounts for the locational uncertainties of the QPFs; (3) improving lead time by using stormscale NWP ensemble forecasts; and (4) not requiring multiple simulations, which are computationally demanding.

  13. Evolution of methods for evaluating the occurrence of floods

    USGS Publications Warehouse

    Benson, M.A.

    1962-01-01

    A brief summary is given of the history of methods of expressing flood potentialities, proceeding from simple flood formulas to statistical methods of flood-frequency analysis on a regional basis. Current techniques are described and evaluated. Long-term flood records in the United States show no justification for the adoption of a single type of theoretical distribution of floods. The significance and predictive values of flood-frequency relations are considered. Because of the length of flood records available and the interdependence of flood events within a region, the probable long-term average magnitudes of floods of a given recurrence interval are uncertain. However, if the magnitudes defined by the records available are accepted, the relative effects of drainage-basin characteristics and climatic variables can be determined with a reasonable degree of assurance.

  14. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  15. Flooding

    MedlinePlus

    ... flooding Prepare for flooding For communities, companies, or water and wastewater facilities: Suggested activities to help facilities ... con monóxido de carbono. Limit contact with flood water. Flood water may have high levels of raw ...

  16. Two mantle sources, two plumbing systems: Tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province

    USGS Publications Warehouse

    Arndt, N.; Chauvel, C.; Czamanske, G.; Fedorenko, V.

    1998-01-01

    Rocks of two distinctly different magma series are found in a ???4000-m-thick sequence of lavas and tuffs in the Maymecha River basin which is part of the Siberian flood-volcanic province. The tholeiites are typical low-Ti continental flood basalts with remarkably restricted, petrologically evolved compositions. They have basaltic MgO contents, moderate concentrations of incompatible trace elements, moderate fractionation of incompatible from compatible elements, distinct negative Ta(Nb) anomalies, and ??Nd values of 0 to + 2. The primary magmas were derived from a relatively shallow mantle source, and evolved in large crustal magma chambers where they acquired their relatively uniform compositions and became contaminated with continental crust. An alkaline series, in contrast, contains a wide range of rock types, from meymechite and picrite to trachytes, with a wide range of compositions (MgO from 0.7 to 38 wt%, SiO2 from 40 to 69 wt%, Ce from 14 to 320 ppm), high concentrations of incompatible elements and extreme fractionation of incompatible from compatible elements (Al2O3/TiO2 ??? 1; Sm/Yb up to 11). These rocks lack Ta(Nb) anomalies and have a broad range of ??Nd values, from -2 to +5. The parental magmas are believed to have formed by low-degree melting at extreme mantle depths (>200 km). They bypassed the large crustal magma chambers and ascended rapidly to the surface, a consequence, perhaps, of high volatile contents in the primary magmas. The tholeiitic series dominates the lower part of the sequence and the alkaline series the upper part; at the interface, the two types are interlayered. The succession thus provides evidence of a radical change in the site of mantle melting, and the simultaneous operation of two very different crustal plumbing systems, during the evolution of this flood-volcanic province. ?? Springer-Verlag 1998.

  17. An advanced method for flood risk analysis in river deltas, applied to societal flood fatality risk in the Netherlands

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Diermanse, F. L. M.; Beckers, J. V. L.

    2014-10-01

    This paper discusses a new method for flood risk assessment in river deltas. Flood risk analysis of river deltas is complex, because both storm surges and river discharges may cause flooding and the effect of upstream breaches on downstream water levels and flood risk must be taken into account. This paper presents a Monte Carlo-based flood risk analysis framework for policy making, which considers both storm surges and river flood waves and includes effects from hydrodynamic interaction on flood risk. It was applied to analyse societal flood fatality risk in the Rhine-Meuse delta.

  18. A method for mapping flood hazard along roads.

    PubMed

    Kalantari, Zahra; Nickman, Alireza; Lyon, Steve W; Olofsson, Bo; Folkeson, Lennart

    2014-01-15

    A method was developed for estimating and mapping flood hazard probability along roads using road and catchment characteristics as physical catchment descriptors (PCDs). The method uses a Geographic Information System (GIS) to derive candidate PCDs and then identifies those PCDs that significantly predict road flooding using a statistical modelling approach. The method thus allows flood hazards to be estimated and also provides insights into the relative roles of landscape characteristics in determining road-related flood hazards. The method was applied to an area in western Sweden where severe road flooding had occurred during an intense rain event as a case study to demonstrate its utility. The results suggest that for this case study area three categories of PCDs are useful for prediction of critical spots prone to flooding along roads: i) topography, ii) soil type, and iii) land use. The main drivers among the PCDs considered were a topographical wetness index, road density in the catchment, soil properties in the catchment (mainly the amount of gravel substrate) and local channel slope at the site of a road-stream intersection. These can be proposed as strong indicators for predicting the flood probability in ungauged river basins in this region, but some care is needed in generalising the case study results other potential factors are also likely to influence the flood hazard probability. Overall, the method proposed represents a straightforward and consistent way to estimate flooding hazards to inform both the planning of future roadways and the maintenance of existing roadways.

  19. Changes in the bacterial populations of the highly alkaline saline soil of the former lake Texcoco (Mexico) following flooding.

    PubMed

    Valenzuela-Encinas, César; Neria-González, Isabel; Alcántara-Hernández, Rocio J; Estrada-Alvarado, Isabel; Zavala-Díaz de la Serna, Francisco Javier; Dendooven, Luc; Marsch, Rodolfo

    2009-07-01

    Flooding an extreme alkaline-saline soil decreased alkalinity and salinity, which will change the bacterial populations. Bacterial 16S rDNA libraries were generated of three soils with different electrolytic conductivity (EC), i.e. soil with EC 1.7 dS m(-1) and pH 7.80 (LOW soil), with EC 56 dS m(-1) and pH 10.11 (MEDIUM soil) and with EC 159 dS m(-1) and pH 10.02 (HIGH soil), using universal bacterial oligonucleotide primers, and 463 clone 16S rDNA sequences were analyzed phylogenetically. Library proportions and clone identification of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Cyanobacteria, Bacteroidetes, Firmicutes and Cloroflexi showed that the bacterial communities were different. Species and genera of the Rhizobiales, Rhodobacterales and Xanthomonadales orders of the alpha- and gamma-subdivision of Proteobacteria were found at the three sites. Species and genera of the Rhodospirillales, Sphingobacteriales, Clostridiales, Oscillatoriales and Caldilineales were found only in the HIGH soil, Sphingomonadales, Burkholderiales and Pseudomonadales in the MEDIUM soil, Myxococcales in the LOW soil, and Actinomycetales in the MEDIUM and LOW soils. It was found that the largest diversity at the order and species level was found in the MEDIUM soil as bacteria of both the HIGH and LOW soils were found in it.

  20. An advanced method for flood risk analysis in river deltas, applied to societal flood fatality risks in the Netherlands

    NASA Astrophysics Data System (ADS)

    de Bruijn, K. M.; Diermanse, F. L. M.; Beckers, J. V. L.

    2014-02-01

    This paper discusses the new method developed to analyse flood risks in river deltas. Risk analysis of river deltas is complex, because both storm surges and river discharges may cause flooding and since the effect of upstream breaches on downstream water levels and flood risks must be taken into account. A Monte Carlo based flood risk analysis framework for policy making was developed, which considers both storm surges and river flood waves and includes hydrodynamic interaction effects on flood risks. It was applied to analyse societal flood fatality risks (the probability of events with more than N fatalities) in the Rhine-Meuse delta.

  1. Use of indexed historical floods in flood frequency estimation with Fuzzy Bayesian methods

    NASA Astrophysics Data System (ADS)

    Salinas, Jose; Viglione, Alberto; Kiss, Andrea; Bloeschl, Guenter

    2015-04-01

    Efforts of the historical environmental extremes community during the last decades have resulted in the existence of long time series of floods, for example in Central Europe and the Mediterranean region, which in some cases range longer than 500 years in the past. In most of the cases the flood time series are presented in terms of indices, representing a combination of socio-economic indicators for the flood impact, e.g. economic damage, flood duration and extension, ... In hydrological engineering, historical floods are very useful because they give additional information which will reduce the uncertainty in estimates of discharges with low annual exceedance probabilities, i.e. with high return periods. In order to use the historical floods in formal flood frequency analysis, the precise value of the peak discharges would ideally be known, but as commented, they are most usually given in term of indices. This work presents a novel method on how to obtain a prior distribution for the parameters of the annual peak discharges distribution from indexed historical floods time series. The prior distribution is incorporated in the flood frequency estimation via Bayesian methods (see e.g. Viglione et al., 2013) in order to reduce the uncertainties in the design flood estimates. The historical data used is subject to a high degree of uncertainty and unpreciseness. In this sense, a framework is presented where the discharge thresholds between flood indices are modeled as fuzzy numbers. These fuzzy thresholds will define a fuzzy prior distribution, which will requires to apply Fuzzy Bayesian Inference (Viertl, 2008ab) to obtain fuzzy credibility intervals for the design floods. Viertl, R. (2008a) Foundations of Fuzzy Bayesian Inference, Journal of Uncertain Systems, 2, 187-191. Viertl, R. (2008b) Fuzzy Bayesian Inference. In: Soft Methods For Handling Variability And Imprecision. Advances In Soft Computing. Vol. 48. Springer-Verlag Berlin, pp 10-15. Viglione, A., R. Merz

  2. The effect of polymer-surfactant interaction on the rheological properties of surfactant enhanced alkaline flooding formulations. [Phase separation, precipitation and viscosity loss

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1993-02-01

    Surfactant-enhanced, lower pH (weak) alkaline chemicals are effective for mobilizing residual oil. Polymer is used for mobility control because if mobility control is lost, then oil recovery is reduced. The ability to maintain mobility control during surfactant-alkaline flooding can be adversely affected by chemical interaction. In this work, interaction between polymers and surfactants was shown to be affected by pH, ionic strength, crude oil, and the properties of the polymers and surfactants. Polymer-surfactant interaction (phase separation, precipitation, and viscosity loss) occurred between most of the polymers and surfactants that were tested. Polymer-surfactant interaction is difficult to eliminate, and no method was found for completely eliminating interaction. Polymer-surfactant interaction occurred at optimal salinity and below optimal salinity. Polymer-surfactant interaction had an adverse effect on polymer rheology; however, the adverse effect of interaction on polymer rheology was lessened when oil was present. Increasing the pH of chemical systems further reduced the adverse effects of interaction on polymer rheology.

  3. Efficiency of alkaline hydrolysis method in environment protection.

    PubMed

    Kricka, Tajana; Toth, Ivan; Kalambura, Sanja; Jovicić, Nives

    2014-06-01

    Development of new technologies for the efficient use of proteins of animal origin, apart from heat treatment in rendering facilities that was used to date, has become the primary goal of the integral waste management system. The emergence of bovine spongiform encephalopathy in Europe and in the World in the 1990s opened up new questions regarding medical safety and use of meat bone meal in the animal feed, which is produced by processing animal waste. Animal waste is divided into three categories, out of which the first category is high-risk waste. Alkaline hydrolysis is alternative method for management of animal by-products not intended for human diet and imposes itself as one of the solutions for disposal of high-risk proteins. The paper will present the analyses of animal by-products not intended for human diet treated in laboratory reactor for alkaline hydrolysis, as one of the two recognized methods in EU for the disposal of this type of material and use in fertilization.

  4. Flood risk assessment in France: comparison of extreme flood estimation methods (EXTRAFLO project, Task 7)

    NASA Astrophysics Data System (ADS)

    Garavaglia, F.; Paquet, E.; Lang, M.; Renard, B.; Arnaud, P.; Aubert, Y.; Carre, J.

    2013-12-01

    In flood risk assessment the methods can be divided in two families: deterministic methods and probabilistic methods. In the French hydrologic community the probabilistic methods are historically preferred to the deterministic ones. Presently a French research project named EXTRAFLO (RiskNat Program of the French National Research Agency, https://extraflo.cemagref.fr) deals with the design values for extreme rainfall and floods. The object of this project is to carry out a comparison of the main methods used in France for estimating extreme values of rainfall and floods, to obtain a better grasp of their respective fields of application. In this framework we present the results of Task 7 of EXTRAFLO project. Focusing on French watersheds, we compare the main extreme flood estimation methods used in French background: (i) standard flood frequency analysis (Gumbel and GEV distribution), (ii) regional flood frequency analysis (regional Gumbel and GEV distribution), (iii) local and regional flood frequency analysis improved by historical information (Naulet et al., 2005), (iv) simplify probabilistic method based on rainfall information (i.e. Gradex method (CFGB, 1994), Agregee method (Margoum, 1992) and Speed method (Cayla, 1995)), (v) flood frequency analysis by continuous simulation approach and based on rainfall information (i.e. Schadex method (Paquet et al., 2013, Garavaglia et al., 2010), Shyreg method (Lavabre et al., 2003)) and (vi) multifractal approach. The main result of this comparative study is that probabilistic methods based on additional information (i.e. regional, historical and rainfall information) provide better estimations than the standard flood frequency analysis. Another interesting result is that, the differences between the various extreme flood quantile estimations of compared methods increase with return period, staying relatively moderate up to 100-years return levels. Results and discussions are here illustrated throughout with the example

  5. Separator for alkaline batteries and method of making same

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    The preparation of membranes suitable for use as separators in concentrated alkaline battery cells by selective solvolysis of copolymers of methacrylate esters with acrylate esters followed by addition of a base and to the resultant products is described. The method of making copolymers by first copolymerizing a methacrylate ester (or esters) with a more readily hydrolyzable ester, followed by a selective saponification whereby the methacrylate ester moieties remain essentially intact and the readily hydrolyzable ester moiety is suponified and to the partial or complete neutralization of the relatively brittle copolymer acid with a base to make membranes which are sufficiently flexible in the dry state so that they may be wrapped around electrodes without damage by handling is described.

  6. Quality assurance flood source and method of making

    DOEpatents

    Fisher, Darrell R [Richland, WA; Alexander, David L [West Richland, WA; Satz, Stanley [Surfside, FL

    2002-12-03

    Disclosed is a is an improved flood source, and method of making the same, which emits an evenly distributed flow of energy from a gamma emitting radionuclide dispersed throughout the volume of the flood source. The flood source is formed by filling a bottom pan with a mix of epoxy resin with cobalt-57, preferably at 10 to 20 millicuries and then adding a hardener. The pan is secured to a flat, level surface to prevent the pan from warping and to act as a heat sink for removal of heat from the pan during the curing of the resin-hardener mixture.

  7. A GIS-based method for flood risk assessment

    NASA Astrophysics Data System (ADS)

    Kalogeropoulos, Kleomenis; Stathopoulos, Nikos; Psarogiannis, Athanasios; Penteris, Dimitris; Tsiakos, Chrisovalantis; Karagiannopoulou, Aikaterini; Krikigianni, Eleni; Karymbalis, Efthimios; Chalkias, Christos

    2016-04-01

    Floods are physical global hazards with negative environmental and socio-economic impacts on local and regional scale. The technological evolution during the last decades, especially in the field of geoinformatics, has offered new advantages in hydrological modelling. This study seeks to use this technology in order to quantify flood risk assessment. The study area which was used is an ungauged catchment and by using mostly GIS hydrological and geomorphological analysis together with a GIS-based distributed Unit Hydrograph model, a series of outcomes have risen. More specifically, this paper examined the behaviour of the Kladeos basin (Peloponnese, Greece) using real rainfall data, as well hypothetical storms. The hydrological analysis held using a Digital Elevation Model of 5x5m pixel size, while the quantitative drainage basin characteristics were calculated and were studied in terms of stream order and its contribution to the flood. Unit Hydrographs are, as it known, useful when there is lack of data and in this work, based on time-area method, a sequences of flood risk assessments have been made using the GIS technology. Essentially, the proposed methodology estimates parameters such as discharge, flow velocity equations etc. in order to quantify flood risk assessment. Keywords Flood Risk Assessment Quantification; GIS; hydrological analysis; geomorphological analysis.

  8. Flooding and Flood Management

    USGS Publications Warehouse

    Brooks, K.N.; Fallon, J.D.; Lorenz, D.L.; Stark, J.R.; Menard, Jason; Easter, K.W.; Perry, Jim

    2011-01-01

    Floods result in great human disasters globally and nationally, causing an average of $4 billion of damages each year in the United States. Minnesota has its share of floods and flood damages, and the state has awarded nearly $278 million to local units of government for flood mitigation projects through its Flood Hazard Mitigation Grant Program. Since 1995, flood mitigation in the Red River Valley has exceeded $146 million. Considerable local and state funding has been provided to manage and mitigate problems of excess stormwater in urban areas, flooding of farmlands, and flood damages at road crossings. The cumulative costs involved with floods and flood mitigation in Minnesota are not known precisely, but it is safe to conclude that flood mitigation is a costly business. This chapter begins with a description of floods in Minneosta to provide examples and contrasts across the state. Background material is presented to provide a basic understanding of floods and flood processes, predication, and management and mitigation. Methods of analyzing and characterizing floods are presented because they affect how we respond to flooding and can influence relevant practices. The understanding and perceptions of floods and flooding commonly differ among those who work in flood forecasting, flood protection, or water resource mamnagement and citizens and businesses affected by floods. These differences can become magnified following a major flood, pointing to the need for better understanding of flooding as well as common language to describe flood risks and the uncertainty associated with determining such risks. Expectations of accurate and timely flood forecasts and our ability to control floods do not always match reality. Striving for clarity is important in formulating policies that can help avoid recurring flood damages and costs.

  9. Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, C.A.

    2007-01-01

    This report evaluates the results of a continuous 4.5-day laboratory aeration experiment and the first year of passive, aerobic treatment of abandoned mine drainage (AMD) from a typical flooded underground anthracite mine in eastern Pennsylvania, USA. During 1991-2006, the AMD source, locally known as the Otto Discharge, had flows from 20 to 270 L/s (median 92 L/s) and water quality that was consistently suboxic (median 0.9 mg/L O2) and circumneutral (pH ??? 6.0; net alkalinity >10) with moderate concentrations of dissolved iron and manganese and low concentrations of dissolved aluminum (medians of 11, 2.2, and <0.2 mg/L, respectively). In 2001, the laboratory aeration experiment demonstrated rapid oxidation of ferrous iron (Fe 2+) without supplemental alkalinity; the initial Fe2+ concentration of 16.4 mg/L decreased to less than 0.5 mg/L within 24 h; pH values increased rapidly from 5.8 to 7.2, ultimately attaining a steady-state value of 7.5. The increased pH coincided with a rapid decrease in the partial pressure of carbon dioxide (PCO2) from an initial value of 10 -1.1atm to a steady-state value of 10-3.1atm. From these results, a staged aerobic treatment system was conceptualized consisting of a 2 m deep pond with innovative aeration and recirculation to promote rapid oxidation of Fe2+, two 0.3 m deep wetlands to facilitate iron solids removal, and a supplemental oxic limestone drain for dissolved manganese and trace-metal removal. The system was constructed, but without the aeration mechanism, and began operation in June 2005. During the first 12 months of operation, estimated detention times in the treatment system ranged from 9 to 38 h. However, in contrast with 80-100% removal of Fe2+ over similar elapsed times during the laboratory aeration experiment, the treatment system typically removed less than 35% of the influent Fe2+. Although concentrations of dissolved CO2 decreased progressively within the treatment system, the PCO2 values for treated effluent

  10. Evaluation of alkaline phosphatase detection in dairy products using a modified rapid chemiluminescent method and official methods.

    PubMed

    Albillos, S M; Reddy, R; Salter, R

    2011-07-01

    Alkaline phosphatase is a ubiquitous milk enzyme that historically has been used to verify adequate pasteurization of milk for public health purposes. Current approved methods for detection of alkaline phosphatase in milk include the use of enzyme photoactivated substrates to give readings in milliunits per liter. The U.S. and European public health limit for alkaline phosphatase in pasteurized drinks is 350 mU/liter. A modified chemiluminescent method, fast alkaline phosphatase, was compared with the approved fluorometric and chemiluminescent alkaline phosphatase methods to determine whether the modified method was equivalent to the approved methods and suitable for detecting alkaline phosphatase in milk. Alkaline phosphatase concentrations in cow's, goat's, and sheep's milk and in flavored drinks and cream were determined by three methods. Evaluations in each matrix were conducted with pasteurized samples spiked with raw milk to produce alkaline phosphatase concentrations of 2 to 5,000 mU/liter. The tests were performed by the method developer and then reproduced at a laboratory at the National Center for Food Safety and Technology following the criteria for a single laboratory validation. The results indicated that the fast alkaline phosphatase method was not significantly different from the approved chemiluminescent method, with a limit of detection of 20 to 50 mU/liter in all the studied matrices. This modified chemiluminescent method detects alkaline phosphatase in the 350 mU/liter range with absolute differences from triplicate data that are lower and within the range of the allowed intralaboratory repeatability values published for the approved chemiluminescent method.

  11. Floods

    MedlinePlus

    ... quickly, often have a dangerous wall of roaring water. The wall carries rocks, mud, and rubble and can sweep away most things in its path. Be aware of flood hazards no matter where you live, but especially if you live in a low-lying area, near water or downstream from a dam. Although there are ...

  12. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  13. Laboratory methods for enhanced oil recovery core floods

    SciTech Connect

    Robertson, E.P.; Bala, G.A.; Thomas, C.P.

    1994-03-01

    Current research at the Idaho National Engineering Laboratory (INEL) is investigating microbially enhanced oil recovery (MEOR) systems for application to oil reservoirs. Laboratory corefloods are invaluable in developing technology necessary for a field application of MEOR. Methods used to prepare sandstone cores for experimentation, coreflooding techniques, and quantification of coreflood effluent are discussed in detail. A technique to quantify the small volumes of oil associated with laboratory core floods is described.

  14. An objective method for partitioning the entire flood season into multiple sub-seasons

    NASA Astrophysics Data System (ADS)

    Chen, Lu; Singh, Vijay P.; Guo, Shenglian; Zhou, Jianzhong; Zhang, Junhong; Liu, Pan

    2015-09-01

    Information on flood seasonality is required in many practical applications, such as seasonal frequency analysis and reservoir operation. Several statistical methods for identifying flood seasonality have been widely used, such as directional method (DS) and relative frequency (RF) method. However, using these methods, flood seasons are identified subjectively by visually assessing the temporal distribution of flood occurrences. In this study, a new method is proposed to identify flood seasonality and partition the entire flood season into multiple sub-seasons objectively. A statistical experiment was carried out to evaluate the performance of the proposed method. Results demonstrated that the proposed method performed satisfactorily. Then the proposed approach was applied to the Geheyan and Baishan Reservoirs, China, having different flood regimes. It is shown that the proposed method performs extremely well for the observed data, and is more objective than the traditional methods.

  15. Quantitative method for determining serum alkaline phosphatase isoenzyme activity II. Development and clinical application of method for measuring four serum alkaline phosphatase isoenzymes.

    PubMed Central

    Shephard, M D; Peake, M J; Walmsley, R N

    1986-01-01

    A method for quantitating the liver, bone, intestinal and placental alkaline phosphatase activity of serum, using an algorithm for converting selective inactivation by guanidine hydrochloride, L-phenylalanine, and heat into equivalent isoenzyme activity is described. The method can individually quantify mixtures of isoenzymes to within a margin of 3%; it has acceptable reproducibility and has been used to develop both age and sex related reference ranges. Analysis time is about 30 minutes. The clinical reliability of this method has been shown in a study of 101 patients, in 79% of whom isoenzyme results were compatible with the final clinical diagnosis; in 10% a clinical diagnosis resulted from isoenzyme analysis, and in a further 11% the source of the increased alkaline phosphatase activity was identified and supported by electrophoresis, with a definite clinical diagnosis yet to be made. PMID:3760234

  16. Fluctuation Flooding Method (FFM) for accelerating conformational transitions of proteins

    NASA Astrophysics Data System (ADS)

    Harada, Ryuhei; Takano, Yu; Shigeta, Yasuteru

    2014-03-01

    A powerful conformational sampling method for accelerating structural transitions of proteins, "Fluctuation Flooding Method (FFM)," is proposed. In FFM, cycles of the following steps enhance the transitions: (i) extractions of largely fluctuating snapshots along anisotropic modes obtained from trajectories of multiple independent molecular dynamics (MD) simulations and (ii) conformational re-sampling of the snapshots via re-generations of initial velocities when re-starting MD simulations. In an application to bacteriophage T4 lysozyme, FFM successfully accelerated the open-closed transition with the 6 ns simulation starting solely from the open state, although the 1-μs canonical MD simulation failed to sample such a rare event.

  17. Analysis of flood modeling through innovative geomatic methods

    NASA Astrophysics Data System (ADS)

    Zazo, Santiago; Molina, José-Luis; Rodríguez-Gonzálvez, Pablo

    2015-05-01

    A suitable assessment and management of the exposure level to natural flood risks necessarily requires an exhaustive knowledge of the terrain. This study, primarily aimed to evaluate flood risk, firstly assesses the suitability of an innovative technique, called Reduced Cost Aerial Precision Photogrammetry (RC-APP), based on a motorized technology ultra-light aircraft ULM (Ultra-Light Motor), together with the hybridization of reduced costs sensors, for the acquisition of geospatial information. Consequently, this research generates the RC-APP technique which is found to be a more accurate-precise, economical and less time consuming geomatic product. This technique is applied in river engineering for the geometric modeling and risk assessment to floods. Through the application of RC-APP, a high spatial resolution image (orthophoto of 2.5 cm), and a Digital Elevation Model (DEM) of 0.10 m mesh size and high density points (about 100 points/m2), with altimetric accuracy of -0.02 ± 0.03 m have been obtained. These products have provided a detailed knowledge of the terrain, afterward used for the hydraulic simulation which has allowed a better definition of the inundated area, with important implications for flood risk assessment and management. In this sense, it should be noted that the achieved spatial resolution of DEM is 0.10 m which is especially interesting and useful in hydraulic simulations through 2D software. According to the results, the developed methodology and technology allows for a more accurate riverbed representation, compared with other traditional techniques such as Light Detection and Ranging (LiDAR), with a Root-Mean-Square Error (RMSE ± 0.50 m). This comparison has revealed that RC-APP has one lower magnitude order of error than the LiDAR method. Consequently, this technique arises as an efficient and appropriate tool, especially in areas with high exposure to risk of flooding. In hydraulic terms, the degree of detail achieved in the 3D model

  18. Flood frequency estimation by hydrological continuous simulation and classical methods

    NASA Astrophysics Data System (ADS)

    Brocca, L.; Camici, S.; Melone, F.; Moramarco, T.; Tarpanelli, A.

    2009-04-01

    . Hydrological changes and managements, Taylor & Francis Group, London, 175-179). Specifically, the MISDc structure has been defined by analyzing the hydrologic response of small experimental catchments located in the Upper Tiber basin, also in relation to soil moisture conditions (Brocca, L., Barbetta, S., Melone, F., Moramarco, T., 2009. Catchment runoff prediction based on outcomes from a small experimental basin. International Workshop on Status and Perspectives of Hydrology in Small Basins, Goslar-Hahnenklee (Germany), 30 March-2 April 2009, 4 pp.). MISDc has been applied to several subcatchments of the Upper Tiber river and the peak flow time series thus generated have been compared with the ones obtained through a classical procedure, where the design hyetograph is transformed in runoff by using an event based hydrological model incorporating the Soil Conservation Service method for abstraction. The comparison in terms of flood frequency has shown that the procedure here presented can be considered more reliable for the frequency discharge predictions, thus providing a valuable tool for flooding risk analysis.

  19. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  20. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOEpatents

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  1. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    SciTech Connect

    Krot, N.N.; Charushnikova, I.A.

    1997-06-17

    A method is described for reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH{sup {minus}} concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO{sub 2}(O{sub 2}){sub 3}]{sup 4{minus}} ion is added to the radwastes in the presence of catalytic amounts of Cu{sup +2}, Co{sup +2} or Fe{sup +2} with heating to a temperature in excess of about 60 C or 85 C, depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste. 2 figs.

  2. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOEpatents

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  3. Reservoir Characterization of Bridgeport and Cypress Sandstones in Lawrence Field Illinois to Improve Petroleum Recovery by Alkaline-Surfactant-Polymer Flood

    SciTech Connect

    Seyler, Beverly; Grube, John; Huff, Bryan; Webb, Nathan; Damico, James; Blakley, Curt; Madhavan, Vineeth; Johanek, Philip; Frailey, Scott

    2012-12-21

    Within the Illinois Basin, most of the oilfields are mature and have been extensively waterflooded with water cuts that range up to 99% in many of the larger fields. In order to maximize production of significant remaining mobile oil from these fields, new recovery techniques need to be researched and applied. The purpose of this project was to conduct reservoir characterization studies supporting Alkaline-Surfactant-Polymer Floods in two distinct sandstone reservoirs in Lawrence Field, Lawrence County, Illinois. A project using alkaline-surfactantpolymer (ASP) has been established in the century old Lawrence Field in southeastern Illinois where original oil in place (OOIP) is estimated at over a billion barrels and 400 million barrels have been recovered leaving more than 600 million barrels as an EOR target. Radial core flood analysis using core from the field demonstrated recoveries greater than 20% of OOIP. While the lab results are likely optimistic to actual field performance, the ASP tests indicate that substantial reserves could be recovered even if the field results are 5 to 10% of OOIP. Reservoir characterization is a key factor in the success of any EOR application. Reservoirs within the Illinois Basin are frequently characterized as being highly compartmentalized resulting in multiple flow unit configurations. The research conducted on Lawrence Field focused on characteristics that define reservoir compartmentalization in order to delineate preferred target areas so that the chemical flood can be designed and implemented for the greatest recovery potential. Along with traditional facies mapping, core analyses and petrographic analyses, conceptual geological models were constructed and used to develop 3D geocellular models, a valuable tool for visualizing reservoir architecture and also a prerequisite for reservoir simulation modeling. Cores were described and potential permeability barriers were correlated using geophysical logs. Petrographic analyses

  4. Comparing methods for modeling and detecting flood nonstationarity: an Austrian case study

    NASA Astrophysics Data System (ADS)

    Salinas, J. L.; Viglione, A.; Vogel, R. M.; Hecht, J. S.; Bloeschl, G.

    2015-12-01

    Changes in flood regimes have a huge impact on mid- and long-term flood management strategies. These strategies are often based on design floods defined by return periods, which could be ill-defined if nonstationarity is present. Therefore it is crucial when analyzing existent flood time series to detect and, where possible, attribute flood nonstationarities to changing hydroclimatic and land-use processes. Moreover, the choice of model used to detect and model nonstationary flood regimes can have a profound impact on design flood estimates. This work presents the preliminary results of applying different non-stationarity detection methods on annual peak discharge time series at more than 400 gauging stations in Austria. The type of nonstationarities analyzed include trends (linear and non-linear), change points, clustering beyond stochastic randomness, and detection of flood-rich and flood-poor periods. Austria has a wide variety of physiographic regions with distinct landscapes, elevations and climates which allows us to interpret the spatial patterns obtained with the nonstationarity detection methods in terms of the dominant flood generation mechanisms.

  5. Why does Japan use the probability method to set design flood?

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Oki, T.

    2015-12-01

    Design flood is hypothetical flood to make flood prevention plan. In Japan, a probability method based on precipitation data is used to define the scale of design flood: Tone River, the biggest river in Japan, is 1 in 200 years, Shinano River is 1 in 150 years, and so on. It is one of important socio-hydrological issue how to set reasonable and acceptable design flood in a changing world. The method to set design flood vary among countries. Although the probability method is also used in Netherland, but the base data is water level or discharge data and the probability is 1 in 1250 years (in fresh water section). On the other side, USA and China apply the maximum flood method which set the design flood based on the historical or probable maximum flood. This cases can leads a question: "what is the reason why the method vary among countries?" or "why does Japan use the probability method?" The purpose of this study is to clarify the historical process which the probability method was developed in Japan based on the literature. In the late 19the century, the concept of "discharge" and modern river engineering were imported by Dutch engineers, and modern flood prevention plans were developed in Japan. In these plans, the design floods were set based on the historical maximum method. Although the historical maximum method had been used until World War 2, however, the method was changed to the probability method after the war because of limitations of historical maximum method under the specific socio-economic situations: (1) the budget limitation due to the war and the GHQ occupation, (2) the historical floods: Makurazaki typhoon in 1945, Kathleen typhoon in 1947, Ione typhoon in 1948, and so on, attacked Japan and broke the record of historical maximum discharge in main rivers and the flood disasters made the flood prevention projects difficult to complete. Then, Japanese hydrologists imported the hydrological probability statistics from the West to take account of

  6. An at-site flood estimation method in the context of nonstationarity II. Statistical analysis of floods in Quebec

    NASA Astrophysics Data System (ADS)

    Gado, Tamer A.; Nguyen, Van-Thanh-Van

    2016-04-01

    This paper, the second of a two-part paper, investigates the nonstationary behaviour of flood peaks in Quebec (Canada) by analyzing the annual maximum flow series (AMS) available for the common 1966-2001 period from a network of 32 watersheds. Temporal trends in the mean of flood peaks were examined by the nonparametric Mann-Kendall test. The significance of the detected trends over the whole province is also assessed by a bootstrap test that preserves the cross-correlation structure of the network. Furthermore, The LM-NS method (introduced in the first part) is used to parametrically model the AMS, investigating its applicability to real data, to account for temporal trends in the moments of the time series. In this study two probability distributions (GEV & Gumbel) were selected to model four different types of time-varying moments of the historical time series considered, comprising eight competing models. The selected models are: two stationary models (GEV0 & Gumbel0), two nonstationary models in the mean as a linear function of time (GEV1 & Gumbel1), two nonstationary models in the mean as a parabolic function of time (GEV2 & Gumbel2), and two nonstationary models in the mean and the log standard deviation as linear functions of time (GEV11 & Gumbel11). The eight models were applied to flood data available for each watershed and their performance was compared to identify the best model for each location. The comparative methodology involves two phases: (1) a descriptive ability based on likelihood-based optimality criteria such as the Bayesian Information Criterion (BIC) and the deviance statistic; and (2) a predictive ability based on the residual bootstrap. According to the Mann-Kendall test and the LM-NS method, a quarter of the analyzed stations show significant trends in the AMS. All of the significant trends are negative, indicating decreasing flood magnitudes in Quebec. It was found that the LM-NS method could provide accurate flood estimates in the

  7. Methods for estimating peak discharge and flood boundaries of streams in Utah

    USGS Publications Warehouse

    Thomas, B.E.; Lindskov, K.L.

    1983-01-01

    Equations for estimating 2-, 5-, 10-, 25-, 50-, and 100-year peak discharges and flood depths at ungaged sites in Utah were developed using multiple-regression techniques. Ratios of 500- to 100-year values also were determined. The peak discharge equations are applicable to unregulated streams and the flood depth equations are applicable to the unregulated flow in natural stream channels. The flood depth data can be used to approximate flood prone areas. Drainage area and mean basin elevation are the two basin characteristics needed to use these equations. The standard error of estimate ranges from 38% to 74% for the 100-year peak discharge and from 23% to 33% for the 100-year flood depth. Five different flood mapping methods are described. Streams are classified into four categories as a basis for selecting a flood mapping method. Procedures for transferring flood depths obtained from the regression equations to a flood boundary map are outlined. Also, previous detailed flood mapping by government agencies and consultants is summarized to assist the user in quality control and to minimize duplication of effort. Methods are described for transferring flood frequency data from gaged to ungaged sites on the same stream. Peak discharge and flood depth frequency relations and selected basin characteristics data, updated through the 1980 water year, are tabulated for more than 300 gaging stations in Utah and adjoining states. In addition, weighted estimates of peak discharge relations based on the station data and the regression estimates are provided for each gaging station used in the regression analysis. (Author 's abstract)

  8. Comparison of floods non-stationarity detection methods: an Austrian case study

    NASA Astrophysics Data System (ADS)

    Salinas, Jose Luis; Viglione, Alberto; Blöschl, Günter

    2016-04-01

    Non-stationarities in flood regimes have a huge impact in any mid and long term flood management strategy. In particular the estimation of design floods is very sensitive to any kind of flood non-stationarity, as they should be linked to a return period, concept that can be ill defined in a non-stationary context. Therefore it is crucial when analyzing existent flood time series to detect and, where possible, attribute flood non-stationarities to changing hydroclimatic and land-use processes. This works presents the preliminary results of applying different non-stationarity detection methods on annual peak discharges time series over more than 400 gauging stations in Austria. The kind of non-stationarities analyzed include trends (linear and non-linear), breakpoints, clustering beyond stochastic randomness, and detection of flood rich/flood poor periods. Austria presents a large variety of landscapes, elevations and climates that allow us to interpret the spatial patterns obtained with the non-stationarity detection methods in terms of the dominant flood generation mechanisms.

  9. New methods to assess severity and likelihood of urban flood risk from intense rainfall

    NASA Astrophysics Data System (ADS)

    Fewtrell, Tim; Foote, Matt; Bates, Paul; Ntelekos, Alexandros

    2010-05-01

    the construction of appropriate probabilistic flood models. This paper will describe new research being undertaken to assess the practicality of ultra-high resolution, ground based laser-scanner data for flood modelling in urban centres, using new hydraulic propagation methods to determine the feasibility of such data to be applied within stochastic event models. Results from the collection of ‘point cloud' data collected from a mobile terrestrial laser-scanner system in a key urban centre, combined with appropriate datasets, will be summarized here and an initial assessment of the potential for the use of such data in stochastic event sets will be made. Conclusions are drawn from comparisons with previous studies and underlying DEM products of similar resolutions in terms of computational time, flood extent and flood depth. Based on the above, the study provides some current recommendations on the most appropriate resolution of input data for urban hydraulic modelling.

  10. Novel Flood Detection and Analysis Method Using Recurrence Property

    NASA Astrophysics Data System (ADS)

    Wendi, Dadiyorto; Merz, Bruno; Marwan, Norbert

    2016-04-01

    Temporal changes in flood hazard are known to be difficult to detect and attribute due to multiple drivers that include processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defence, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic behavior to certain flood situations.

  11. Comparison of methods for following alkaline phosphatase catalysis: spectrophotometric versus amperometric detection.

    PubMed

    Thompson, R Q; Barone, G C; Halsall, H B; Heineman, W R

    1991-01-01

    An amperometric method for alkaline phosphatase is described and compared to the most widely used spectrophotometric method. Catalytic hydrogenation of 4-nitrophenylphosphate (the substrate in the spectrophotometric method) gives 4-aminophenylphosphate (the substrate in the amperometric method). The latter substrate has the formula C6H6NO4PNa2.5H2O and a Mr of 323. The Michaelis constant for 4-aminophenylphosphate in 0.10 M, pH 9.0. Tris buffer is 56 microM, while it is 82 microM for 4-nitrophenyl phosphate. The amperometric method has a detection limit of 7 nM for the product of the enzyme reaction, which is almost 20 times better than the spectrophotometric method. Similarly, with a 15-min reaction at room temperature and in a reaction volume of 1.1 ml, 0.05 microgram/l alkaline phosphatase can be detected by electrochemistry, almost an order of magnitude better than by absorption spectrophotometry. Amperometric detection is ideally suited for small-volume and trace immunoassay.

  12. Alkaline solubilization and microwave irradiation as a combined sludge disintegration and minimization method.

    PubMed

    Doğan, Ilgin; Sanin, F Dilek

    2009-05-01

    Commonly used pretreatment method of alkaline solubilization (using NaOH) and a relatively new technology of microwave (MW) irradiation (160 degrees C) were combined as a pretreatment method of waste activated sludge (WAS) in this study. First alkaline and MW pretreatment methods were examined separately, then their combination for different conditions was investigated in terms of their effect on COD solubilization, turbidity and capillary suction time (CST). For combined pretreatments, soluble COD to total COD ratio (SCOD/TCOD) of WAS increased from 0.005 (control) to 0.18, 0.27, 0.34 and 0.37 for combined methods of MW and pH-10, 11, 12 and 12.5, respectively. Deteriorated dewaterability due to alkaline pretreatment was also improved due to the incorporation of MW irradiation. Further, with small scale batch anaerobic reactors, pH-10, pH-12, MW (alone), MW+pH-10 and MW+pH-12 pretreated WAS samples were anaerobically digested. Highest total gas and methane productions were achieved with MW+pH-12 pretreatment with 16.3% and 18.9% improvements over control reactor, respectively. Finally the performance of MW+pH-12 pretreatment was examined with 2L anaerobic semi-continuous reactors for 92 days and compared to that of the control reactors. These reactors were operated at an SRT of 15 days. After steady state, 43.5% and 55% improvements were obtained in respective daily total gas and methane productions. TS, VS and TCOD reductions were improved by 24.9%, 35.4% and 30.3%, respectively based on a relative calculation with respect to control reactors. This way combined alkaline-microwave treatment proved to be an effective sludge minimization method. Pretreated digested sludge had 22% improved dewaterability than unpretreated digested sludge. Higher SCOD and NH(3)-N concentrations were measured in the pretreated digested sludge supernatant; however, PO(4)-P concentration did not increase much.

  13. A simple statistical method for analyzing flood susceptibility with incorporating rainfall and impervious surface

    NASA Astrophysics Data System (ADS)

    Chiang, Shou-Hao; Chen, Chi-Farn

    2016-04-01

    Flood, as known as the most frequent natural hazard in Taiwan, has induced severe damages of residents and properties in urban areas. The flood risk is even more severe in Tainan since 1990s, with the significant urban development over recent decades. Previous studies have indicated that the characteristics and the vulnerability of flood are affected by the increase of impervious surface area (ISA) and the changing climate condition. Tainan City, in southern Taiwan is selected as the study area. This study uses logistic regression to functionalize the relationship between rainfall variables, ISA and historical flood events. Specifically, rainfall records from 2001 to 2014 were collected and mapped, and Landsat images of year 2001, 2004, 2007, 2010 and 2014 were used to generate the ISA with SVM (support vector machine) classifier. The result shows that rainfall variables and ISA are significantly correlated to the flood occurrence in Tainan City. With applying the logistic function, the likelihood of flood occurrence can be estimated and mapped over the study area. This study suggests the method is simple and feasible for rapid flood susceptibility mapping, when real-time rainfall observations can be available, and it has potential for future flood assessment, with incorporating climate change projections and urban growth prediction.

  14. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9 - 8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  15. Hydrophilic Electrode For An Alkaline Electrochemical Cell, And Method Of Manufacture

    DOEpatents

    Senyarich, Stephane; Cocciantelli, Jean-Michel

    2000-03-07

    A negative electrode for an alkaline electrochemical cell. The electrode comprises an active material and a hydrophilic agent constituted by small cylindrical rods of polyolefin provided with hydrophilic groups. The mean length of the rods is less than 50 microns and the mean diameter thereof is less than 20 microns. A method of manufacturing a negative electrode in which hydrophilic rods are made by fragmenting long polyolefin fibers having a mean diameter of less than 20 microns by oxidizing them, with the rods being mixed with the active material and the mixture being applied to a current conductor.

  16. An improved method for analysis of hydroxide and carbonate in alkaline electrolytes containing zinc

    NASA Technical Reports Server (NTRS)

    Reid, M. A.

    1978-01-01

    A simplified method for titration of carbonate and hydroxide in alkaline battery electrolyte is presented involving a saturated KSCN solution as a complexing agent for zinc. Both hydroxide and carbonate can be determined in one titration, and the complexing reagent is readily prepared. Since the pH at the end point is shifted from 8.3 to 7.9-8.0, m-cresol purple or phenol red are used as indicators rather than phenolphthalein. Bromcresol green is recommended for determination of the second end point of a pH of 4.3 to 4.4.

  17. Flood risk assessment in European river basins--concept, methods, and challenges exemplified at the Mulde River.

    PubMed

    Meyer, Volker; Haase, Dagmar; Scheuer, Sebastian

    2009-01-01

    Flood risk assessment is an essential part of flood risk management, a concept that is becoming more and more popular in European flood policy and is part of the new European Union flood directive. This paper gives a brief introduction into the general concept and methods of flood risk assessment. Furthermore, 3 problems in the practical application of flood risk assessment, particularly on the river basin scale, are discussed: First, uncertainties in flood risk assessment; second, the inclusion of social and environmental flood risk factors; and third, the consideration of the spatial dimension of flood risk. In the 2nd part of the paper a multicriteria risk mapping approach is introduced that is intended to address these 3 problems.

  18. Determination of Lutein from Fruit and Vegetables Through an Alkaline Hydrolysis Extraction Method and HPLC Analysis.

    PubMed

    Fratianni, Alessandra; Mignogna, Rossella; Niro, Serena; Panfili, Gianfranco

    2015-12-01

    A simple and rapid analytical method for the determination of lutein content, successfully used for cereal matrices, was evaluated in fruit and vegetables. The method involved the determination of lutein after an alkaline hydrolysis of the sample matrix, followed by extraction with solvents and analysis by normal phase HPLC. The optimized method was simple, precise, and accurate and it was characterized by few steps that could prevent loss of lutein and its degradation. The optimized method was used to evaluate the lutein amounts in several fruit and vegetables. Rich sources of lutein were confirmed to be green vegetables such as parsley, spinach, chicory, chard, broccoli, courgette, and peas, even if in a range of variability. Taking into account the suggested reference values these vegetables can be stated as good sources of lutein.

  19. A method of estimating flood volumes in western Kansas

    USGS Publications Warehouse

    Perry, C.A.

    1984-01-01

    Relationships between flood volume and peak discharge in western Kansas were developed considering basin and climatic characteristics in order to evaluate the availability of surface water in the area. Multiple-regression analyses revealed a relationship between flood volume, peak discharge, channel slope , and storm duration for basins smaller than 1,503 square miles. The equation VOL=0.536 PEAK1.71 SLOPE-0.85 DUR0.24, had a correlation coefficient of R=0.94 and a standard error of 0.33 log units (-53 and +113 percent). A better relationship for basins smaller than 228 square miles resulted in the equation VOL=0.483 PEAK0.98 SLOPE-0.74 AREA0.30, which had a correlation coefficient of R=0.90 and a standard error of 0.23 log units (-41 and +70 percent). (USGS)

  20. Extracting Vanadium from Stone Coal by a Cyclic Alkaline Leaching Method

    NASA Astrophysics Data System (ADS)

    Hu, Kailong; Liu, Xuheng; Li, Qinggang

    2017-04-01

    In order to achieve an efficient and economical approach on extracting vanadium from stone coal, a cyclic alkaline leaching method was studied in this work. The effects of operating parameters, including the NaOH concentration, temperature, reaction time, and liquid-solid ratio, on vanadium leaching efficiency were investigated. Also, we studied the influence of caustic soda dosage on the cyclic leaching process as well as the effect of increasing ionic strength in leachates and wash water. The results show that this method achieved a 51 pct decrease of the dosage of caustic soda under the optimized conditions compared with the single-step alkaline leaching. The average leaching yield of vanadium reached 82.28 pct. The leachates and wash water in each leaching cycle were utilized for the next leaching cycle, achieving the recycling of alkali as well as waste water. During the cyclic process, the volume of water was not increased, which markedly reduces the discharge of waste water and is also beneficial in terms of cost reduction.

  1. Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production.

    PubMed

    Chaudhary, Gaurav; Singh, Lalit Kumar; Ghosh, Sanjoy

    2012-11-01

    Different alkaline pretreatment methods (NaOH, NaOH+10% urea and aqueous ammonia) were optimized for maximum delignification of Saccharum spontaneum at 30°C. Maximum delignification were obtained as 47.8%, 51% and 48% from NaOH (7% NaOH, 48h, and 10% biomass loading), NaOH+urea (7% NaOH+10% urea, 48 h and 10% biomass loading) and 30% ammonia (40 days and 10% biomass loading) respectively. H(2)SO(4) 60% (v/v), 10% biomass loading at 30°C for 4h, were optimized conditions to solubilize the cellulose and hemicellulose from solid residue obtained after different optimized alkaline pretreatments. Slurry thus obtained was diluted to obtain final acid concentration of 10% (v/v) for real hydrolysis of cellulose and hemicellulose at 100°C for 1h. Among all pretreatment methods applied, the best result 0.58 g (85%) reducing sugars/g of initial biomass after acid hydrolysis was obtained from aqueous ammonia pretreated biomass. Scheffersomyces stipitis CBS6054 was used to ferment the hydrolysate; ethanol yield (Y(p/s)) and productivity (r(p)) were found to be 0.35 g/g and 0.22 g/L/h respectively.

  2. Extracting Vanadium from Stone Coal by a Cyclic Alkaline Leaching Method

    NASA Astrophysics Data System (ADS)

    Hu, Kailong; Liu, Xuheng; Li, Qinggang

    2017-01-01

    In order to achieve an efficient and economical approach on extracting vanadium from stone coal, a cyclic alkaline leaching method was studied in this work. The effects of operating parameters, including the NaOH concentration, temperature, reaction time, and liquid-solid ratio, on vanadium leaching efficiency were investigated. Also, we studied the influence of caustic soda dosage on the cyclic leaching process as well as the effect of increasing ionic strength in leachates and wash water. The results show that this method achieved a 51 pct decrease of the dosage of caustic soda under the optimized conditions compared with the single-step alkaline leaching. The average leaching yield of vanadium reached 82.28 pct. The leachates and wash water in each leaching cycle were utilized for the next leaching cycle, achieving the recycling of alkali as well as waste water. During the cyclic process, the volume of water was not increased, which markedly reduces the discharge of waste water and is also beneficial in terms of cost reduction.

  3. Management of hazardous waste at RCRA facilities during the flood of `93 -- Methods used and lessons learned

    SciTech Connect

    Martin, T.; Jacko, R.B.

    1996-11-01

    During the summer of 1993, the state of Iowa experienced severe flooding that caused the release of many hazardous materials into the environment. Six months after the flood, the Iowa section of the RCRA branch, US EPA Region 7, sent inspectors to survey every RCRA facility in Iowa. Information was gathered through questionnaires to determine the flood`s impact and to learn potential lessons that could be beneficial in future flood disasters. The objective of this project was to use the information gathered to determine effective storage methods and emergency procedures for handling hazardous material during flood disasters. Additional data were obtained through record searches, phone interviews, and site visits. Data files and statistics were analyzed, then the evident trends and specific insights observed were utilized to create recommendations for RCRA facilities in the flood plain and for the federal EPA and state regulatory agencies. The recommendations suggest that RCRA regulated facilities in the flood plain should: employ the safest storage methods possible; have a flood emergency plan that includes the most effective release prevention available; and take advantage of several general suggestions for flood protection. The recommendations suggest that the federal EPA and state regulatory agencies consider: including a provision requiring large quantity generators of hazardous waste in the flood plain to include flood procedures in the contingency plans; establishing remote emergency storage areas during the flood disasters; encouraging small quantity generators (SQGs) within the flood plain to establish flood contingency plans; and promoting sound flood protection engineering practices for all RCRA facilities in the flood plain.

  4. An at-site flood estimation method in the context of nonstationarity I. A simulation study

    NASA Astrophysics Data System (ADS)

    Gado, Tamer A.; Nguyen, Van-Thanh-Van

    2016-04-01

    The stationarity of annual flood peak records is the traditional assumption of flood frequency analysis. In some cases, however, as a result of land-use and/or climate change, this assumption is no longer valid. Therefore, new statistical models are needed to capture dynamically the change of probability density functions over time, in order to obtain reliable flood estimation. In this study, an innovative method for nonstationary flood frequency analysis was presented. Here, the new method is based on detrending the flood series and applying the L-moments along with the GEV distribution to the transformed "stationary" series (hereafter, this is called the LM-NS). The LM-NS method was assessed through a comparative study with the maximum likelihood (ML) method for the nonstationary GEV model, as well as with the stationary (S) GEV model. The comparative study, based on Monte Carlo simulations, was carried out for three nonstationary GEV models: a linear dependence of the mean on time (GEV1), a quadratic dependence of the mean on time (GEV2), and linear dependence in both the mean and log standard deviation on time (GEV11). The simulation results indicated that the LM-NS method performs better than the ML method for most of the cases studied, whereas the stationary method provides the least accurate results. An additional advantage of the LM-NS method is to avoid the numerical problems (e.g., convergence problems) that may occur with the ML method when estimating parameters for small data samples.

  5. Estimation of design floods in ungauged catchments using a regional index flood method. A case study of Lake Victoria Basin in Kenya

    NASA Astrophysics Data System (ADS)

    Nobert, Joel; Mugo, Margaret; Gadain, Hussein

    Reliable estimation of flood magnitudes corresponding to required return periods, vital for structural design purposes, is impacted by lack of hydrological data in the study area of Lake Victoria Basin in Kenya. Use of regional information, derived from data at gauged sites and regionalized for use at any location within a homogenous region, would improve the reliability of the design flood estimation. Therefore, the regional index flood method has been applied. Based on data from 14 gauged sites, a delineation of the basin into two homogenous regions was achieved using elevation variation (90-m DEM), spatial annual rainfall pattern and Principal Component Analysis of seasonal rainfall patterns (from 94 rainfall stations). At site annual maximum series were modelled using the Log normal (LN) (3P), Log Logistic Distribution (LLG), Generalized Extreme Value (GEV) and Log Pearson Type 3 (LP3) distributions. The parameters of the distributions were estimated using the method of probability weighted moments. Goodness of fit tests were applied and the GEV was identified as the most appropriate model for each site. Based on the GEV model, flood quantiles were estimated and regional frequency curves derived from the averaged at site growth curves. Using the least squares regression method, relationships were developed between the index flood, which is defined as the Mean Annual Flood (MAF) and catchment characteristics. The relationships indicated area, mean annual rainfall and altitude were the three significant variables that greatly influence the index flood. Thereafter, estimates of flood magnitudes in ungauged catchments within a homogenous region were estimated from the derived equations for index flood and quantiles from the regional curves. These estimates will improve flood risk estimation and to support water management and engineering decisions and actions.

  6. Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review.

    PubMed

    Singh, Joginder; Suhag, Meenakshi; Dhaka, Anil

    2015-03-06

    Lignocellulosic materials can be explored as one of the sustainable substrates for bioethanol production through microbial intervention as they are abundant, cheap and renewable. But at the same time, their recalcitrant structure makes the conversion process more cumbersome owing to their chemical composition which adversely affects the efficiency of bioethanol production. Therefore, the technical approaches to overcome recalcitrance of biomass feedstock has been developed to remove the barriers with the help of pretreatment methods which make cellulose more accessible to the hydrolytic enzymes, secreted by the microorganisms, for its conversion to glucose. Pretreatment of lignocellulosic biomass in cost effective manner is a major challenge to bioethanol technology research and development. Hence, in this review, we have discussed various aspects of three commonly used pretreatment methods, viz., steam explosion, acid and alkaline, applied on various lignocellulosic biomasses to augment their digestibility alongwith the challenges associated with their processing.

  7. The effect of alkaline pretreatment methods on cellulose structure and accessibility

    DOE PAGES

    Bali, Garima; Meng, Xianzhi; Deneff, Jacob I.; ...

    2014-11-24

    The effects of different alkaline pretreatments on cellulose structural features and accessibility are compared and correlated with the enzymatic hydrolysis of Populus. The pretreatments are shown to modify polysaccharides and lignin content to enhance the accessibility for cellulase enzymes. The highest increase in the cellulose accessibility was observed in dilute sodium hydroxide, followed by methods using ammonia soaking and lime (Ca(OH)2). The biggest increase of cellulose accessibility occurs during the first 10 min of pretreatment, with further increases at a slower rate as severity increases. Low temperature ammonia soaking at longer residence times dissolved a major portion of hemicellulose andmore » exhibited higher cellulose accessibility than high temperature soaking. Moreover, the most significant reduction of degree of polymerization (DP) occurred for dilute sodium hydroxide (NaOH) and ammonia pretreated Populus samples. The study thus identifies important cellulose structural features and relevant parameters related to biomass recalcitrance.« less

  8. The effect of alkaline pretreatment methods on cellulose structure and accessibility

    SciTech Connect

    Bali, Garima; Meng, Xianzhi; Deneff, Jacob I.; Sun, Qining; Ragauskas, Arthur J.

    2014-11-24

    The effects of different alkaline pretreatments on cellulose structural features and accessibility are compared and correlated with the enzymatic hydrolysis of Populus. The pretreatments are shown to modify polysaccharides and lignin content to enhance the accessibility for cellulase enzymes. The highest increase in the cellulose accessibility was observed in dilute sodium hydroxide, followed by methods using ammonia soaking and lime (Ca(OH)2). The biggest increase of cellulose accessibility occurs during the first 10 min of pretreatment, with further increases at a slower rate as severity increases. Low temperature ammonia soaking at longer residence times dissolved a major portion of hemicellulose and exhibited higher cellulose accessibility than high temperature soaking. Moreover, the most significant reduction of degree of polymerization (DP) occurred for dilute sodium hydroxide (NaOH) and ammonia pretreated Populus samples. The study thus identifies important cellulose structural features and relevant parameters related to biomass recalcitrance.

  9. Theoretical considerations and a simple method for measuring alkalinity and acidity in low-pH waters by gran titration

    USGS Publications Warehouse

    Barringer, J.L.; Johnsson, P.A.

    1996-01-01

    Titrations for alkalinity and acidity using the technique described by Gran (1952, Determination of the equivalence point in potentiometric titrations, Part II: The Analyst, v. 77, p. 661-671) have been employed in the analysis of low-pH natural waters. This report includes a synopsis of the theory and calculations associated with Gran's technique and presents a simple and inexpensive method for performing alkalinity and acidity determinations. However, potential sources of error introduced by the chemical character of some waters may limit the utility of Gran's technique. Therefore, the cost- and time-efficient method for performing alkalinity and acidity determinations described in this report is useful for exploring the suitability of Gran's technique in studies of water chemistry.

  10. Single well surfactant test to evaluate surfactant floods using multi tracer method

    DOEpatents

    Sheely, Clyde Q.

    1979-01-01

    Data useful for evaluating the effectiveness of or designing an enhanced recovery process said process involving mobilizing and moving hydrocarbons through a hydrocarbon bearing subterranean formation from an injection well to a production well by injecting a mobilizing fluid into the injection well, comprising (a) determining hydrocarbon saturation in a volume in the formation near a well bore penetrating formation, (b) injecting sufficient mobilizing fluid to mobilize and move hydrocarbons from a volume in the formation near the well bore, and (c) determining the hydrocarbon saturation in a volume including at least a part of the volume of (b) by an improved single well surfactant method comprising injecting 2 or more slugs of water containing the primary tracer separated by water slugs containing no primary tracer. Alternatively, the plurality of ester tracers can be injected in a single slug said tracers penetrating varying distances into the formation wherein the esters have different partition coefficients and essentially equal reaction times. The single well tracer method employed is disclosed in U.S. Pat. No. 3,623,842. This method designated the single well surfactant test (SWST) is useful for evaluating the effect of surfactant floods, polymer floods, carbon dioxide floods, micellar floods, caustic floods and the like in subterranean formations in much less time and at much reduced cost compared to conventional multiwell pilot tests.

  11. Development of a screening method to assess flood risk on danish national roads and highway systems.

    PubMed

    Nielsen, N H; Larsen, M R A; Rasmussen, S F

    2011-01-01

    A method to assess flood risk on Danish national roads in a large area in the middle and southern part of Jutland, Denmark, was developed for the Danish Road Directorate. Flood risk has gained renewed focus due to the climate changes in recent years and extreme rain events are expected to become more frequent in the future. The assessment was primarily based on a digital terrain model (DTM) covering 7,500 km2 in a 1.6 x 1.6 m grid. The high-resolution terrain model was chosen in order to get an accurate estimation of the potential flooding in the road area and in the immediate vicinity, but also put a high requirement on the methods, hardware and software applied. The outcome of the analysis was detailed maps (as GIS layers) illustrating the location of depressions with depths, surface area and volume data for each depression. Furthermore, preferential flow paths, catchment boundaries and ranking of each depression were calculated. The ranking was based on volume of depressions compared with upstream catchment and a sensitivity analysis of the runoff coefficient. Finally, a method for assessing flood risk at a more advanced level (hydrodynamic simulation of surface and drainage) was developed and used on a specific blue spot as an example. The case study shows that upstream catchment, depressions, drainage system, and use of hydrodynamic calculations have a great influence on the result. Upstream catchments can contribute greatly to the flooding.

  12. Reducing Salinity by Flooding an Extremely Alkaline and Saline Soil Changes the Bacterial Community but Its Effect on the Archaeal Community Is Limited.

    PubMed

    de León-Lorenzana, Arit S; Delgado-Balbuena, Laura; Domínguez-Mendoza, Cristina; Navarro-Noya, Yendi E; Luna-Guido, Marco; Dendooven, Luc

    2017-01-01

    Regular flooding of the soil to reduce salinity will change soil characteristics, but also the microbial community structure. Soil of the former lake Texcoco with electrolytic conductivity (EC) 157.4 dS m-1 and pH 10.3 was flooded monthly in the laboratory under controlled conditions for 10 months while soil characteristics were determined and the archaeal and bacterial community structure monitored by means of 454 pyrosequencing of the 16S rRNA gene. The EC of the soil dropped from 157.8 to 1.7 dS m-1 and the clay content decreased from 430 to 270 g kg-1 after ten floodings, but the pH (10.3) did not change significantly over time. Flooding the soil had a limited effect on the archaeal community structure and only the relative abundance of Haloferax-like 16S rRNA phylotypes changed significantly. Differences in archaeal population structure were more defined by the initial physicochemical properties of the soil sample than by a reduction in salinity. Flooding, however, had a stronger effect on bacterial community structure than on the archaeal community structure. A wide range of bacterial taxa was affected significantly by changes in the soil characteristics, i.e., four phyla, nine classes, 17 orders, and 28 families. The most marked change occurred after only one flooding characterized by a sharp decrease in the relative abundance of bacterial groups belonging to the Gammaproteobacteria, e.g., Halomonadaceae (Oceanospirillales), Pseudomonadaceae, and Xanthomonadaceae and an increase in that of the [Rhodothermales] (Bacteroidetes), Nitriliruptorales (Actinobacteria), and unassigned Bacteria. It was found that flooding the soil sharply reduced the EC, but also the soil clay content. Flooding the soil had a limited effect on the archaeal community structure, but altered the bacterial community structure significantly.

  13. Reducing Salinity by Flooding an Extremely Alkaline and Saline Soil Changes the Bacterial Community but Its Effect on the Archaeal Community Is Limited

    PubMed Central

    de León-Lorenzana, Arit S.; Delgado-Balbuena, Laura; Domínguez-Mendoza, Cristina; Navarro-Noya, Yendi E.; Luna-Guido, Marco; Dendooven, Luc

    2017-01-01

    Regular flooding of the soil to reduce salinity will change soil characteristics, but also the microbial community structure. Soil of the former lake Texcoco with electrolytic conductivity (EC) 157.4 dS m-1 and pH 10.3 was flooded monthly in the laboratory under controlled conditions for 10 months while soil characteristics were determined and the archaeal and bacterial community structure monitored by means of 454 pyrosequencing of the 16S rRNA gene. The EC of the soil dropped from 157.8 to 1.7 dS m-1 and the clay content decreased from 430 to 270 g kg-1 after ten floodings, but the pH (10.3) did not change significantly over time. Flooding the soil had a limited effect on the archaeal community structure and only the relative abundance of Haloferax-like 16S rRNA phylotypes changed significantly. Differences in archaeal population structure were more defined by the initial physicochemical properties of the soil sample than by a reduction in salinity. Flooding, however, had a stronger effect on bacterial community structure than on the archaeal community structure. A wide range of bacterial taxa was affected significantly by changes in the soil characteristics, i.e., four phyla, nine classes, 17 orders, and 28 families. The most marked change occurred after only one flooding characterized by a sharp decrease in the relative abundance of bacterial groups belonging to the Gammaproteobacteria, e.g., Halomonadaceae (Oceanospirillales), Pseudomonadaceae, and Xanthomonadaceae and an increase in that of the [Rhodothermales] (Bacteroidetes), Nitriliruptorales (Actinobacteria), and unassigned Bacteria. It was found that flooding the soil sharply reduced the EC, but also the soil clay content. Flooding the soil had a limited effect on the archaeal community structure, but altered the bacterial community structure significantly.

  14. LC method for determination of prasugrel and mass spectrometry detection for thermal and alkaline degradation products.

    PubMed

    Rigobello, C; Barden, A T; Steppe, M

    2015-08-01

    A stability-indicating RP-LC method for the determination of prasugrel in tablets was developed and validated. Stress testing of prasugrel was carried out in accordance with ICH guidelines, where the drug was submitted to acidic and basic hydrolysis, oxidative, thermal and photolytic conditions. Prasugrel was unstable under all the conditions and the degradations products were analyzed by HPLC-UV. Furthermore, two main degradation products found under alkaline and thermal conditions were investigated by LC-MS. Based on the fragmentation patterns, two products resulted from hydrolysis of the acetate ester moiety of prasugrel were observed. Due the chemical equilibrium, tautomerism occurs between the ketone and alcohol functions justifying the similar molecular weight and fragment pattern obtained in degradation products analysis. Successful separation was achieved on a RP-18 octadecyl silane column using acetonitrile and triethylamine 0.5% mixture (50:50, v/v) as the mobile phase at 25 degrees C. The flow rate was 1.0 mL/min and the detector wavelength was 263 nm. The method proposed in this work was successfully applied to quality control of prasugrel and contribute to stability assessment of pharmaceutical products containing this drug.

  15. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    NASA Astrophysics Data System (ADS)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  16. Development of a rapid, 96-well alkaline based differential DNA extraction method for sexual assault evidence.

    PubMed

    Hudlow, William R; Buoncristiani, Martin R

    2012-01-01

    We present a rapid alkaline lysis procedure for the extraction of DNA from sexual assault evidence that generates purified sperm fraction extracts that yield STR typing results similar to those obtained from the traditional organic/dithiothreitol differential extraction. Specifically, a sodium hydroxide based differential extraction method has been developed in a single-tube format and further optimized in a 96-well format. The method yields purified extracts from a small sample set (≈ 2-6 swabs) in approximately 2h and from a larger sample set (up to 96 swabs) in approximately 4h. While conventional differential extraction methods require vigorous sample manipulation to remove the spermatozoa from the substrate, the method described here exploits the propensity of sperm to adhere to a substrate and does not require any manipulation of the substrate after it is sampled. For swabs, sample handling is minimized by employing a process where the tip of the swab, including the shaft, is transferred to the appropriate vessel eliminating the need for potentially hazardous scalpels to separate the swab material from the shaft. The absence of multiple handling steps allows the process to be semi-automated, however the procedure as described here does not require use of a robotic system. This method may provide forensic laboratories a cost-effective tool for the eradication of backlogs of sexual assault evidence, and more timely service to their client agencies. In addition, we have demonstrated that a modification of the procedure can be used to retrieve residual sperm-cell DNA from previously extracted swabs.

  17. Floods and Flash Flooding

    MedlinePlus

    Floods and flash flooding Now is the time to determine your area’s flood risk. If you are not sure whether you ... If you are in a floodplain, consider buying flood insurance. Do not drive around barricades. If your ...

  18. Estimation of magnitude and frequency of floods in Pima County, Arizona, with comparisons of alternative methods

    SciTech Connect

    Eychaner, J.H.

    1984-08-01

    In Pima County, Arizona, a semiarid region of large relief, new regression equations estimate 5- to 100-year flood discharges with standard errors of 42 to 49%. Standard errors for 2- and 500-year discharges are about 60%. Predictor variables are drainage area (0.013 to 4471 square miles), channel slope (0.3 to 13%), and shape factor. Second-order regression models represent the logarithmically nonlinear relations found across the wide range of basin characteristics. Flood estimates are reduced if channel conditions cause large attenuation of peaks. Estimates for gaged sites are a variance-weighted average of estimates from regressions and from gage data. Estimates for the Tucson urban area are based on equations developed in a nationwide study. Research on nonlinear logarithmic regressions and variables that index channel conditions might be useful. Two methods for estimating flood discharges from gage records, two sets of new regressions, and two previously published regional methods are compared. Distribution-free tests against maximum observed floods show differences in accuracy between the methods, and comparisons with base methods show differences in variability. The tests and comparisons indicate that the new equations are more accurate and less variable than methods previously published. 29 refs., 12 figs., 9 tabs.

  19. Methods for estimating flood frequency in Montana based on data through water year 1998

    USGS Publications Warehouse

    Parrett, Charles; Johnson, Dave R.

    2004-01-01

    Annual peak discharges having recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years (T-year floods) were determined for 660 gaged sites in Montana and in adjacent areas of Idaho, Wyoming, and Canada, based on data through water year 1998. The updated flood-frequency information was subsequently used in regression analyses, either ordinary or generalized least squares, to develop equations relating T-year floods to various basin and climatic characteristics, equations relating T-year floods to active-channel width, and equations relating T-year floods to bankfull width. The equations can be used to estimate flood frequency at ungaged sites. Montana was divided into eight regions, within which flood characteristics were considered to be reasonably homogeneous, and the three sets of regression equations were developed for each region. A measure of the overall reliability of the regression equations is the average standard error of prediction. The average standard errors of prediction for the equations based on basin and climatic characteristics ranged from 37.4 percent to 134.1 percent. Average standard errors of prediction for the equations based on active-channel width ranged from 57.2 percent to 141.3 percent. Average standard errors of prediction for the equations based on bankfull width ranged from 63.1 percent to 155.5 percent. In most regions, the equations based on basin and climatic characteristics generally had smaller average standard errors of prediction than equations based on active-channel or bankfull width. An exception was the Southeast Plains Region, where all equations based on active-channel width had smaller average standard errors of prediction than equations based on basin and climatic characteristics or bankfull width. Methods for weighting estimates derived from the basin- and climatic-characteristic equations and the channel-width equations also were developed. The weights were based on the cross correlation of residuals from the

  20. Methods for delineating flood-prone areas in the Great Basin of Nevada and adjacent states

    USGS Publications Warehouse

    Burkham, D.E.

    1988-01-01

    The Great Basin is a region of about 210,000 square miles having no surface drainage to the ocean; it includes most of Nevada and parts of Utah, California, Oregon, Idaho, and Wyoming. The area is characterized by many parallel mountain ranges and valleys trending north-south. Stream channels usually are well defined and steep within the mountains, but on reaching the alluvial fan at the canyon mouth, they may diverge into numerous distributary channels, be discontinuous near the apex of the fan, or be deeply entrenched in the alluvial deposits. Larger rivers normally have well-defined channels to or across the valley floors, but all terminate at lakes or playas. Major floods occur in most parts of the Great Basin and result from snowmelt, frontal-storm rainfall, and localized convective rainfall. Snowmelt floods typically occur during April-June. Floods resulting from frontal rain and frontal rain on snow generally occur during November-March. Floods resulting from convective-type rainfall during localized thunderstorms occur most commonly during the summer months. Methods for delineating flood-prone areas are grouped into five general categories: Detailed, historical, analytical, physiographic, and reconnaissance. The detailed and historical methods are comprehensive methods; the analytical and physiographic are intermediate; and the reconnaissance method is only approximate. Other than the reconnaissance method, each method requires determination of a T-year discharge (the peak rate of flow during a flood with long-term average recurrence interval of T years) and T-year profile and the development of a flood-boundary map. The procedure is different, however, for each method. Appraisal of the applicability of each method included consideration of its technical soundness, limitations and uncertainties, ease of use, and costs in time and money. Of the five methods, the detailed method is probably the most accurate, though most expensive. It is applicable to

  1. Review Article: Economic evaluation of flood damage to agriculture - review and analysis of existing methods

    NASA Astrophysics Data System (ADS)

    Brémond, P.; Grelot, F.; Agenais, A.-L.

    2013-10-01

    In Europe, economic evaluation of flood management projects is increasingly used to help decision making. At the same time, the management of flood risk is shifting towards new concepts such as giving more room to water by restoring floodplains. Agricultural areas are particularly targeted by projects following those concepts since they are frequently located in floodplain areas and since the potential damage to such areas is expected to be lower than to cities or industries for example. Additional or avoided damage to agriculture may have a major influence on decisions concerning these projects and the economic evaluation of flood damage to agriculture is thus an issue that needs to be tackled. The question of flood damage to agriculture can be addressed in different ways. This paper reviews and analyzes existing studies which have developed or used damage functions for agriculture in the framework of an economic appraisal of flood management projects. A conceptual framework of damage categories is proposed for the agricultural sector. The damage categories were used to structure the review. Then, a total of 42 studies are described, with a detailed review of 26 of them, based on the following criteria: types of damage considered, the influential flood parameters chosen, and monetized damage indicators used. The main recommendations resulting from this review are that even if existing methods have already focused on damage to crops, still some improvement is needed for crop damage functions. There is also a need to develop damage functions for other agricultural damage categories, including farm buildings and their contents. Finally, to cover all possible agricultural damage, and in particular loss of activity, a farm scale approach needs to be used.

  2. Feature selection methods for characterizing and classifying adaptive Sustainable Flood Retention Basins.

    PubMed

    Yang, Qinli; Shao, Junming; Scholz, Miklas; Plant, Claudia

    2011-01-01

    The European Union's Flood Directive 2007/60/EC requires member states to produce flood risk maps for all river basins and coastal areas at risk of flooding by 2013. As a result, flood risk assessments have become an urgent challenge requiring a range of rapid and effective tools and approaches. The Sustainable Flood Retention Basin (SFRB) concept has evolved to provide a rapid assessment technique for impoundments, which have a pre-defined or potential role in flood defense and diffuse pollution control. A previous version of the SFRB survey method developed by the co-author Scholz in 2006 recommends gathering of over 40 variables to characterize an SFRB. Collecting all these variables is relatively time-consuming and more importantly, these variables are often correlated with each other. Therefore, the objective is to explore the correlation among these variables and find the most important variables to represent an SFRB. Three feature selection techniques (Information Gain, Mutual Information and Relief) were applied on the SFRB data set to identify the importance of the variables in terms of classification accuracy. Four benchmark classifiers (Support Vector Machine, K-Nearest Neighbours, C4.5 Decision Tree and Naïve Bayes) were subsequently used to verify the effectiveness of the classification with the selected variables and automatically identify the optimal number of variables. Experimental results indicate that our proposed approach provides a simple, rapid and effective framework for variable selection and SFRB classification. Only nine important variables are sufficient to accurately classify SFRB. Finally, six typical cases were studied to verify the performance of the identified nine variables on different SFRB types. The findings provide a rapid scientific tool for SFRB assessment in practice. Moreover, the generic value of this tool allows also for its wide application in other areas.

  3. Development of Flood Forecasting Using Statistical Method in Four River Basins in Terengganu, Malaysia

    NASA Astrophysics Data System (ADS)

    Noor, M. S. F. M.; Sidek, L. M.; Basri, H.; Husni, M. M. M.; Jaafar, A. S.; Kamaluddin, M. H.; Majid, W. H. A. W. A.; Mohammad, A. H.; Osman, S.

    2016-03-01

    One of the critical regions in Malaysia is Terengganu which is located at east coast of Peninsular Malaysia. In Terengganu, flood is experienced regularly because of attributed topography and climate including northeast monsoon. Moreover, rainfall is with high intensity during the November to February in Terengganu as forcing factor to produce of flood. In this study, main objectives are water stage forecasting and deriving the related equations based on least squared method. For this study, it is used two methods which called inclusion of residual (Method A) and non-inclusion residual (Method B) respectively. Result depicts that Method B outperformed to forecast the water stage at selected case studies (Besut, Dungun, Kemaman, Terengganu).

  4. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    DOEpatents

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  5. Methods for estimating magnitude and frequency of floods in the southwestern United States

    USGS Publications Warehouse

    Thomas, B.E.; Hjalmarson, H.W.; Waltemeyer, S.D.

    1994-01-01

    Methods have been developed for estimating magni- tude and frequency of floods at gaged and ungaged sites on streams in the southwestern United States. Estimating equations for ungaged sites that apply to small drainage basins were developed by transferring information from ungaged sites using techniques such as multiple regression and a hybrid method developed during this study. Drainage area, mean basin elevation, mean annual precipitation, mean annual evaporation, latitude, and longitude are the basin and climatic charac- teristics needed to use the equations. Flood- frequency relations and selected basin and climatic characteristics, updated through 1986 water year, are tabulated for more than 1,300 gaging stations in the southwestern United States. The study area was divided into 16 flood regions. Generalized least-squares regression was used to define the regression models in 12 regions with a sufficient number of defined flood-frequency relations at gaged sites. Four regions had more than 30 percent of the gaged sites with no defined relations, thus the regression method was not used because of the large amount of missing infor- mation. The hybrid analysis was used in those 4 regions, because it does not require individual flood-frequency relations and thus can use data for all gaging stations in a region. Average standard error of prediction for the 12 regions with generalized least-squares models ranged from 39 to 95 percent for the 100-year peak discharge. The estimated average standard error of the four hybrid models ranged from 0.44 to 1.8 log units for the 100-year peak discharge.

  6. Mapping flood prone areas in southern Brazil: a combination of frequency analysis, HAND algorithm and remote sensing methods

    NASA Astrophysics Data System (ADS)

    Fabris Goerl, Roberto; Borges Chaffe, Pedro Luiz; Marcel Pellerin, Joel Robert; Altamirano Flores, Juan Antonio; Josina Abreu, Janete; Speckhann, Gustavo Andrei; Mattos Sanchez, Gerly

    2015-04-01

    Floods disaster damages several people around the world. There is a worldwide increasing trend of natural disasters frequency and their negative impacts related to the population growth and high urbanization in natural hazards zones. In Santa Catarina state, such as almost all southern Brazilian territory, floods are a frequent hydrological disaster. In this context, flood prone areas map is a important tool to avoid the construction of new settlements in non-urbanizations areas. The present work aimed to map flood prone areas in Palhoça City, Southern Brazil combining high resolution digital elevations data, remote sensing information, frequency analysis and High Above Nearest Drainage (HAND) algorithm. We used 17 years of daily discharge and stage data to calculate flood probability and return period. Remote Sensing (RS) with CBERS HRC image with 2,7m resolution was used. This image was taken one day after one flood occurrence and a band difference was used to extract the flood extent. HAND using DEM to calculate the altimetric difference between channel pixel and adjacent terrain values. All morphometric attributes used in HAND were extracted directly from the high resolution DEM (1m). Through CBERS image areas where flood level was higher than 0.5m were mapped. There is some kind of uncertain in establish HAND classes, since only distance to the channel was take in account. Thus, using other hydrological or spatial information can reduce this uncertain. To elaborate the final flood prone map, all this methods were combined. This map was classified in three main classes based on return period. It was notices that there is a strong spatial correlation between high susceptibility flood areas and geomorphological features like floodplains and Holocene beach ridges, places where water table emerges frequently. The final map was classified using three different colors (red, yellow and green) related to high, medium an law susceptibility flood areas. This mapping

  7. Sparsity-weighted outlier FLOODing (OFLOOD) method: Efficient rare event sampling method using sparsity of distribution.

    PubMed

    Harada, Ryuhei; Nakamura, Tomotake; Shigeta, Yasuteru

    2016-03-30

    As an extension of the Outlier FLOODing (OFLOOD) method [Harada et al., J. Comput. Chem. 2015, 36, 763], the sparsity of the outliers defined by a hierarchical clustering algorithm, FlexDice, was considered to achieve an efficient conformational search as sparsity-weighted "OFLOOD." In OFLOOD, FlexDice detects areas of sparse distribution as outliers. The outliers are regarded as candidates that have high potential to promote conformational transitions and are employed as initial structures for conformational resampling by restarting molecular dynamics simulations. When detecting outliers, FlexDice defines a rank in the hierarchy for each outlier, which relates to sparsity in the distribution. In this study, we define a lower rank (first ranked), a medium rank (second ranked), and the highest rank (third ranked) outliers, respectively. For instance, the first-ranked outliers are located in a given conformational space away from the clusters (highly sparse distribution), whereas those with the third-ranked outliers are nearby the clusters (a moderately sparse distribution). To achieve the conformational search efficiently, resampling from the outliers with a given rank is performed. As demonstrations, this method was applied to several model systems: Alanine dipeptide, Met-enkephalin, Trp-cage, T4 lysozyme, and glutamine binding protein. In each demonstration, the present method successfully reproduced transitions among metastable states. In particular, the first-ranked OFLOOD highly accelerated the exploration of conformational space by expanding the edges. In contrast, the third-ranked OFLOOD reproduced local transitions among neighboring metastable states intensively. For quantitatively evaluations of sampled snapshots, free energy calculations were performed with a combination of umbrella samplings, providing rigorous landscapes of the biomolecules.

  8. Flood Frequency Analyses Using a Modified Stochastic Storm Transposition Method

    NASA Astrophysics Data System (ADS)

    Fang, N. Z.; Kiani, M.

    2015-12-01

    Research shows that areas with similar topography and climatic environment have comparable precipitation occurrences. Reproduction and realization of historical rainfall events provide foundations for frequency analysis and the advancement of meteorological studies. Stochastic Storm Transposition (SST) is a method for such a purpose and enables us to perform hydrologic frequency analyses by transposing observed historical storm events to the sites of interest. However, many previous studies in SST reveal drawbacks from simplified Probability Density Functions (PDFs) without considering restrictions for transposing rainfalls. The goal of this study is to stochastically examine the impacts of extreme events on all locations in a homogeneity zone. Since storms with the same probability of occurrence on homogenous areas do not have the identical hydrologic impacts, the authors utilize detailed precipitation parameters including the probability of occurrence of certain depth and the number of occurrence of extreme events, which are both incorporated into a joint probability function. The new approach can reduce the bias from uniformly transposing storms which erroneously increases the probability of occurrence of storms in areas with higher rainfall depths. This procedure is iterated to simulate storm events for one thousand years as the basis for updating frequency analysis curves such as IDF and FFA. The study area is the Upper Trinity River watershed including the Dallas-Fort Worth metroplex with a total area of 6,500 mi2. It is the first time that SST method is examined in such a wide scale with 20 years of radar rainfall data.

  9. Adaptive finite volume methods with well-balanced Riemann solvers for modeling floods in rugged terrain: Application to the Malpasset dam-break flood (France, 1959)

    USGS Publications Warehouse

    George, D.L.

    2011-01-01

    The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.

  10. A multiple-method approach to flood assessment at a low-level radioactive waste site in southern Nevada

    SciTech Connect

    Miller, J.J.; Gustafson, D.L.; Schmeltzer, J.S.

    1994-12-31

    Flood hazard analysis on alluvial fans using Federal Emergency Management Agency (FEMA) method are not limited to the FEMA Alluvial Fan Methodology (FEMA AFM). Flood hazard delineations using a combination of methods provide a more thorough assessment that using only the FEMA AFM. Other FEMA-accepted methods, such as the HEC-2 model for shallow concentrated flow and the Manning Equation for sheetflow, may be more appropriate. A flood assessment using a multiple-method approach was performed to determine the 100-year flood hazard in this arid region. Understanding the limitations and assumptions of these methods is important to determine which method is applicable and when a method can provide reasonable results.

  11. Modeling and simulation of surfactant-polymer flooding using a new hybrid method

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Dutta, Sourav

    2017-04-01

    Chemical enhanced oil recovery by surfactant-polymer (SP) flooding has been studied in two space dimensions. A new global pressure for incompressible, immiscible, multicomponent two-phase porous media flow has been derived in the context of SP flooding. This has been used to formulate a system of flow equations that incorporates the effect of capillary pressure and also the effect of polymer and surfactant on viscosity, interfacial tension and relative permeabilities of the two phases. The coupled system of equations for pressure, water saturation, polymer concentration and surfactant concentration has been solved using a new hybrid method in which the elliptic global pressure equation is solved using a discontinuous finite element method and the transport equations for water saturation and concentrations of the components are solved by a Modified Method Of Characteristics (MMOC) in the multicomponent setting. Numerical simulations have been performed to validate the method, both qualitatively and quantitatively, and to evaluate the relative performance of the various flooding schemes for several different heterogeneous reservoirs.

  12. Understanding flood-induced water chemistry variability extracting temporal patterns with the LDA method

    NASA Astrophysics Data System (ADS)

    Aubert, A. H.; Tavenard, R.; Emonet, R.; De Lavenne, A.; Malinowski, S.; Guyet, T.; Quiniou, R.; Odobez, J.; Merot, P.; Gascuel-odoux, C.

    2013-12-01

    events. The patterns themselves are carefully studied, as well as their repartition along the year and along the 12 years of the dataset. We would recommend the use of such model to any study based on patterns or signature extraction. It could be well suited to compare different geographical locations and analyzing the resulting different pattern distributions. (1) Aubert, A.H., Gascuel-Odoux, C., Gruau, G., Akkal, N., Faucheux, M., Fauvel, Y., Grimaldi, C., Hamon, Y., Jaffrezic, A., Lecoz Boutnik, M., Molenat, J., Petitjean, P., Ruiz, L., Merot, Ph. (2013), Solute transport dynamics in small, shallow groundwater-dominated agricultural catchments: insights from a high-frequency, multisolute 10 yr-long monitoring study. Hydrol. Earth Syst. Sci., 17(4): 1379-1391. (2) Aubert, A.H., Tavenard, R, Emonet, R., de Lavenne, A., Malinowski, S., Guyet, T., Quiniou, R., Odobez, J.-M., Merot, Ph., Gascuel-Odoux, C., submitted to WRR. Clustering with a probabilistic method newly applied in hydrology: application on flood events from water quality time-series.

  13. Flood-frequency prediction methods for unregulated streams of Tennessee, 2000

    USGS Publications Warehouse

    Law, George S.; Tasker, Gary D.

    2003-01-01

    Up-to-date flood-frequency prediction methods for unregulated, ungaged rivers and streams of Tennessee have been developed. Prediction methods include the regional-regression method and the newer region-of-influence method. The prediction methods were developed using stream-gage records from unregulated streams draining basins having from 1 percent to about 30 percent total impervious area. These methods, however, should not be used in heavily developed or storm-sewered basins with impervious areas greater than 10 percent. The methods can be used to estimate 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence-interval floods of most unregulated rural streams in Tennessee. A computer application was developed that automates the calculation of flood frequency for unregulated, ungaged rivers and streams of Tennessee. Regional-regression equations were derived by using both single-variable and multivariable regional-regression analysis. Contributing drainage area is the explanatory variable used in the single-variable equations. Contributing drainage area, main-channel slope, and a climate factor are the explanatory variables used in the multivariable equations. Deleted-residual standard error for the single-variable equations ranged from 32 to 65 percent. Deleted-residual standard error for the multivariable equations ranged from 31 to 63 percent. These equations are included in the computer application to allow easy comparison of results produced by the different methods. The region-of-influence method calculates multivariable regression equations for each ungaged site and recurrence interval using basin characteristics from 60 similar sites selected from the study area. Explanatory variables that may be used in regression equations computed by the region-of-influence method include contributing drainage area, main-channel slope, a climate factor, and a physiographic-region factor. Deleted-residual standard error for the region-of-influence method tended to be only

  14. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  15. Stainless steel anodes for alkaline water electrolysis and methods of making

    SciTech Connect

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  16. New method for assessing the susceptibility of glacial lakes to outburst floods in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Emmer, A.; Vilímek, V.

    2014-09-01

    This paper presents a new and easily repeatable method for assessing the susceptibility of glacial lakes to outburst floods (GLOFs) within the Peruvian region of the Cordillera Blanca. The presented method was designed to: (a) be repeatable (from the point of view of the demands on input data), (b) be reproducible (to provide an instructive guide for different assessors), (c) provide multiple results for different GLOF scenarios and (d) be regionally focused on the lakes of the Cordillera Blanca. Based on the input data gained from remotely sensed images and digital terrain models/topographical maps, the susceptibility of glacial lakes to outburst floods is assessed using a combination of decision trees for clarity and numerical calculation for repeatability and reproducibility. A total of seventeen assessed characteristics are used, of which seven have not been used in this context before. Also, several ratios and calculations are defined for the first time. We assume that it is not relevant to represent the overall susceptibility of a particular lake to outburst floods by one result (number), thus it is described in the presented method by five separate results (representing five different GLOF scenarios). These are potentials for (a) dam overtopping resulting from a fast slope movement into the lake, (b) dam overtopping following the flood wave originating in a lake situated upstream, (c) dam failure resulting from a fast slope movement into the lake, (d) dam failure following the flood wave originating in a lake situated upstream and (e) dam failure following a strong earthquake. All of these potentials include two or three components and theoretically range from 0 to 1. The presented method was verified on the basis of assessing the pre-flood conditions of seven lakes which have produced ten glacial lake outburst floods in the past and ten lakes which have not. A comparison of these results showed that the presented method successfully identified lakes

  17. An improved method to represent DEM uncertainty in glacial lake outburst flood propagation using stochastic simulations

    NASA Astrophysics Data System (ADS)

    Watson, Cameron S.; Carrivick, Jonathan; Quincey, Duncan

    2015-10-01

    Modelling glacial lake outburst floods (GLOFs) or 'jökulhlaups', necessarily involves the propagation of large and often stochastic uncertainties throughout the source to impact process chain. Since flood routing is primarily a function of underlying topography, communication of digital elevation model (DEM) uncertainty should accompany such modelling efforts. Here, a new stochastic first-pass assessment technique was evaluated against an existing GIS-based model and an existing 1D hydrodynamic model, using three DEMs with different spatial resolution. The analysis revealed the effect of DEM uncertainty and model choice on several flood parameters and on the prediction of socio-economic impacts. Our new model, which we call MC-LCP (Monte Carlo Least Cost Path) and which is distributed in the supplementary information, demonstrated enhanced 'stability' when compared to the two existing methods, and this 'stability' was independent of DEM choice. The MC-LCP model outputs an uncertainty continuum within its extent, from which relative socio-economic risk can be evaluated. In a comparison of all DEM and model combinations, the Shuttle Radar Topography Mission (SRTM) DEM exhibited fewer artefacts compared to those with the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), and were comparable to those with a finer resolution Advanced Land Observing Satellite Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) derived DEM. Overall, we contend that the variability we find between flood routing model results suggests that consideration of DEM uncertainty and pre-processing methods is important when assessing flow routing and when evaluating potential socio-economic implications of a GLOF event. Incorporation of a stochastic variable provides an illustration of uncertainty that is important when modelling and communicating assessments of an inherently complex process.

  18. The role of local observations as evidence to inform effective mitigation methods for flood risk management

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; ODonnell, Greg; Owen, Gareth

    2014-05-01

    This poster presents a case study that highlights two crucial aspects of a catchment-based flood management project that were used to encourage uptake of an effective flood management strategy. Specifically, (1) the role of detailed local scale observations and (2) a modelling method informed by these observations. Within a 6km2 study catchment, Belford UK, a number of Runoff Attenuation Features (RAFs) have been constructed (including ponds, wetlands and woody debris structures) to address flooding issues in the downstream village. The storage capacity of the RAFs is typically small (200 to 500m3), hence there was skepticism as to whether they would work during large flood events. Monitoring was performed using a dense network of water level recorders installed both within the RAFs and within the stream network. Using adjacent upstream and downstream water levels in the stream network and observations within the actual ponds, a detailed understanding of the local performance of the RAFs was gained. However, despite understanding the local impacts of the features, the impact on the downstream hydrograph at the catchment scale could still not be ascertained with any certainty. The local observations revealed that the RAFs typically filled on the rising limb of the hydrograph; hence there was no available storage at the time of arrival of a large flow peak. However, it was also clear that an impact on the rising limb of the hydrograph was being observed. This knowledge of the functioning of individual features was used to create a catchment model, in which a network of RAFs could then be configured to examine the aggregated impacts. This Pond Network Model (PNM) was based on the observed local physical relationships and allowed a user specified sequence of ponds to be configured into a cascade structure. It was found that there was a minimum number of RAFs needed before an impact on peak flow was achieved for a large flood event. The number of RAFs required in the

  19. Thermal fluids for CSP systems: Alkaline nitrates/nitrites thermodynamics modelling method

    NASA Astrophysics Data System (ADS)

    Tizzoni, A. C.; Sau, S.; Corsaro, N.; Giaconia, A.; D'Ottavi, C.; Licoccia, S.

    2016-05-01

    Molten salt (MS) mixtures are used for the transport (HTF-heat transfer fluid) and storage of heat (HSM-heat storage material) in Concentration Solar Plants (CSP). In general, alkaline and earth-alkaline nitrate/nitrite mixtures are employed. Along with its upper stability temperature, the melting point (liquidus point) of a MS mixture is one of the main parameters which defines its usefulness as a HTF and HSM medium. As a result, we would like to develop a predictive model which will allow us to forecast freezing points for different MS mixture compositions; thus circumventing the need to determine experimentally the phase diagram for each MS mixture. To model ternary/quaternary phase diagram, parameters for the binary subsystems are to be determined, which is the purpose of the concerned work. In a binary system with components A and B, in phase equilibrium conditions (e.g. liquid and solid) the chemical potentials (partial molar Gibbs energy) for each component in each phase are equal. For an ideal solution it is possible to calculate the mixing (A+B) Gibbs energy:ΔG = ΔH - TΔS = RT(xAlnxA + xBlnxB) In case of non-ideal solid/liquid mixtures, such as the nitrates/nitrites compositions investigated in this work, the actual value will differ from the ideal one by an amount defined as the "mixing" (mix) Gibbs free energy. If the resulting mixtures is assumed, as indicated in the previous literature, to follow a "regular solution" model, where all the non-ideality is considered included in the enthalpy of mixing value and considering, for instance, the A component:Δ G ≡0 =(Δ HA-T Δ SA)+(ΔH¯ m i x AL-T ΔS¯ m i x AL)-(ΔH¯ m i x AS-T ΔS¯ m i x AS)where the molar partial amounts can be calculated from the total value by the Gibbs Duhem equation: (ΔH¯m i x AL=ΔHm i x-XB Ld/Δ Hm i x d XB L ) L;(ΔH¯m i x AS=ΔHm i x-XB Sd/Δ Hm i x d XB S ) S and, in general, it is possible to express the mixing enthalpy for solids and liquids as a function of the mol

  20. A robust and quick method to validate large scale flood inundation modelling with SAR remote sensing

    NASA Astrophysics Data System (ADS)

    Schumann, G. J.; Neal, J. C.; Bates, P. D.

    2011-12-01

    data but also a more robust and quick method to assess model skill than most existing model performance statistics. Existing fit statistics rely most often on fit statistics between a classified remotely sensed image and a model simulation, but this type of assessment becomes quickly impractical at very large scales. Therefore, we propose a quick and robust method to verify model skill based on computing differences between model and SAR image loadings of a principal component analysis for the period of image availability. Although the power of the method to discriminate between models of different hydraulic parameterizations is expected to be relatively limited, our findings show that it may be a quick and objective procedure to inform about model credibility over very large scales by separating out poorly performing models. [1] Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow water equations for efficient two dimensional flood inundation modelling. Journal of Hydrology, 387, 33-45.

  1. HPAEC-PAD method for the analysis of alkaline hydrolyzates of Haemophilus influenzae type b capsular polysaccharide.

    PubMed

    de Haan, Alex; van der Put, Robert M F; Beurret, Michel

    2013-09-01

    A gradient method has been devised for the rapid analysis of alkaline hydrolyzates of Haemophilus influenzae type b (Hib) capsular polysaccharide-based vaccines by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). As compared with published procedures, peak shape and sensitivity were significantly improved with this approach, analysis time was short and there was little interference from impurities. The limits of detection and quantification were established with a purified reference polysaccharide. We propose this method as a practical alternative for the analysis of minute amounts of Hib polysaccharide, which can be lower than with the conventional approaches.

  2. Improving electrochemical methods of producing hydrogen in alkaline media via ammonia and urea electrolysis

    NASA Astrophysics Data System (ADS)

    Boggs, Bryan Kenneth

    Theoretically, ammonia electrolysis consumes 95% less energy than its major competitor water electrolysis and offers an economical, environmental, and efficient means for reducing nitrate contaminations in ground and drinking water. Thermodynamically at standard conditions, ammonia electrolysis consumes 1.55 Wh to produce one gram of hydrogen. This same gram of hydrogen generates 33 Wh utilizing a proton exchange membrane fuel cell (PEMFC). There is a potential of 31.45 Wh of net energy when coupling an ammonia electrolytic cell (AEC) and a PEMFC. Considering that PEMFCs are 60% efficient, the actual energy output ranges between 18 and 20 Wh. Prior to the research shown here, ammonia electrolysis in alkaline media was requiring more than 20 Wh of energy input due to slow anode kinetics and poor electrochemical cell design thus making any chances of a self-sustaining energy generator unfeasible. This research focused on improving and optimizing anode electrocatalyst materials, electrode configurations, and cell designs, as well as demonstrating stationary and mobile applications of ammonia electrolysis. In addition to ammonia electrolysis, a novel electrochemical technique, urea electrolysis in alkaline media, was created and investigated. Similar to ammonia electrolysis, the anodic reaction, which is the oxidation of urea, was found to be the most rate-limiting half-cell reaction and required improvement. This research focused on fundamentally understanding the mechanism of urea electrolysis as well as investigating common electrocatalysts for small organic molecules. As a result, urea electrolysis in alkaline media proved to be a direct, economical, and environmental approach to producing hydrogen electrochemically with an inexpensive transition metal.

  3. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  4. Combining Neural Networks with Existing Methods to Estimate 1 in 100-Year Flood Event Magnitudes

    NASA Astrophysics Data System (ADS)

    Newson, A.; See, L.

    2005-12-01

    Over the last fifteen years artificial neural networks (ANN) have been shown to be advantageous for the solution of many hydrological modelling problems. The use of ANNs for flood magnitude estimation in ungauged catchments, however, is a relatively new and under researched area. In this paper ANNs are used to make estimates of the magnitude of the 100-year flood event (Q100) for a number of ungauged catchments. The data used in this study were provided by the Centre for Ecology and Hydrology's Flood Estimation Handbook (FEH), which contains information on catchments across the UK. Sixteen catchment descriptors for 719 catchments were used to train an ANN, which was split into a training, validation and test data set. The goodness-of-fit statistics on the test data set indicated good model performance, with an r-squared value of 0.8 and a coefficient of efficiency of 79 percent. Data for twelve ungauged catchments were then put through the trained ANN to produce estimates of Q100. Two other accepted methodologies were also employed: the FEH statistical method and the FSR (Flood Studies Report) design storm technique, both of which are used to produce flood frequency estimates. The advantage of developing an ANN model is that it provides a third figure to aid a hydrologist in making an accurate estimate. For six of the twelve catchments, there was a relatively low spread between estimates. In these instances, an estimate of Q100 could be made with a fair degree of certainty. Of the remaining six catchments, three had areas greater than 1000km2, which means the FSR design storm estimate cannot be used. Armed with the ANN model and the FEH statistical method the hydrologist still has two possible estimates to consider. For these three catchments, the estimates were also fairly similar, providing additional confidence to the estimation. In summary, the findings of this study have shown that an accurate estimation of Q100 can be made using the catchment descriptors of

  5. Advanced inorganic separators for alkaline batteries and method of making the same

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1983-01-01

    A flexible, porous battery separator includes a coating applied to a porous, flexible substrate. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte, (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group, and (3) a mixture of polar particulate filler materials which are unreactive with the electrode. The mixture comprises at least one first filler material having a surface area of greater than 25 sq meters/gram, at last one second filler material having a surface area of 10 to 25 sq meters/gram. The volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder. The filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle.

  6. A comparative study of thermal calcination and an alkaline hydrolysis method in the isolation of hydroxyapatite from Thunnus obesus bone.

    PubMed

    Venkatesan, Jayachandran; Qian, Zhong Ji; Ryu, BoMi; Thomas, Noel Vinay; Kim, Se Kwon

    2011-06-01

    In the present study, hydroxyapatite (HAp) was isolated from Thunnus obesus bone using alkaline hydrolysis and thermal calcination methods. The obtained ceramic has been characterized by thermal gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffraction analysis (XRD), field-emission scanning electron microscopy, energy-dispersive x-ray analysis, transmission electron microscopy (TEM), selected area diffraction analysis, cytotoxic analysis and cell proliferation analysis. The results indicate that there are significant differences between the ceramics and T. obesus bone. FT-IR and TGA results affirmed that the collagen and organic moieties have been eliminated by both the proposed methods. XRD results were in agreement with JCPDS data. TEM and selective area diffraction images have signified that the thermal calcination method produces good crystallinity with dimensions 0.3-1.0 µm, whereas the alkaline hydrolysis method produces nanostructured HAp crystals with 17-71 nm length and 5-10 nm width. Biocompatibility of HAp crystals was evaluated by cytotoxicity and cell proliferation with human osteoblast-like cell MG-63.

  7. Polymer flooding

    SciTech Connect

    Littmann, W.

    1988-01-01

    This book covers all aspects of polymer flooding, an enhanced oil recovery method using water soluble polymers to increase the viscosity of flood water, for the displacement of crude oil from porous reservoir rocks. Although this method is becoming increasingly important, there is very little literature available for the engineer wishing to embark on such a project. In the past, polymer flooding was mainly the subject of research. The results of this research are spread over a vast number of single publications, making it difficult for someone who has not kept up-to-date with developments during the last 10-15 years to judge the suitability of polymer flooding to a particular field case. This book tries to fill that gap. An indispensable book for reservoir engineers, production engineers and lab. technicians within the petroleum industry.

  8. Gelation properties of spent duck meat surimi-like material produced using acid-alkaline solubilization methods.

    PubMed

    Nurkhoeriyati, T; Huda, N; Ahmad, R

    2011-01-01

    The gelation properties of spent duck meat surimi-like material produced using acid solubilization (ACS) or alkaline solubilization (ALS) were studied and compared with conventionally processed (CON) surimi-like material. The ACS process yielded the highest protein recovery (P < 0.05). The ALS process generated the highest lipid reduction, and the CON process yielded the lowest reduction (P < 0.05). Surimi-like material produced by the CON process had the highest gel strength, salt extractable protein (SEP), and water holding capacity (WHC), followed by materials produced via the ALS and ACS processes and untreated duck meat (P < 0.05). The material produced by the CON process also had the highest cohesiveness, hardness, and gumminess values and the lowest springiness value. Material produced by the ACS and ALS processes had higher whiteness values than untreated duck meat gels and gels produced by the CON method (P < 0.05). Surimi-like material produced using the ACS and CON processes had significantly higher myoglobin removal (P < 0.05) than that produced by the ALS method and untreated duck meat. Among all surimi-like materials, the highest Ca(2+)-ATPase activity was found in conventionally produced gels (P < 0.05). This suggests that protein oxidation was induced by acid-alkaline solubilization. The gels produced by ALS had a significantly lower (P < 0.05) total SH content than the other samples. This result showed that the acid-alkaline solubilization clearly improved gelation and color properties of spent duck and possibly applied for other high fat raw material.

  9. A hybrid method for flood simulation in small catchments combining hydrodynamic and hydrological techniques

    NASA Astrophysics Data System (ADS)

    Bellos, Vasilis; Tsakiris, George

    2016-09-01

    The study presents a new hybrid method for the simulation of flood events in small catchments. It combines a physically-based two-dimensional hydrodynamic model and the hydrological unit hydrograph theory. Unit hydrographs are derived using the FLOW-R2D model which is based on the full form of two-dimensional Shallow Water Equations, solved by a modified McCormack numerical scheme. The method is tested at a small catchment in a suburb of Athens-Greece for a storm event which occurred in February 2013. The catchment is divided into three friction zones and unit hydrographs of 15 and 30 min are produced. The infiltration process is simulated by the empirical Kostiakov equation and the Green-Ampt model. The results from the implementation of the proposed hybrid method are compared with recorded data at the hydrometric station at the outlet of the catchment and the results derived from the fully hydrodynamic model FLOW-R2D. It is concluded that for the case studied, the proposed hybrid method produces results close to those of the fully hydrodynamic simulation at substantially shorter computational time. This finding, if further verified in a variety of case studies, can be useful in devising effective hybrid tools for the two-dimensional flood simulations, which are lead to accurate and considerably faster results than those achieved by the fully hydrodynamic simulations.

  10. A systemic method for evaluating the potential impacts of floods on network infrastructures

    NASA Astrophysics Data System (ADS)

    Eleutério, J.; Hattemer, C.; Rozan, A.

    2013-04-01

    Understanding network infrastructures and their operation under exceptional circumstances is fundamental for dealing with flood risks and improving the resilience of a territory. This work presents a method for evaluating potential network infrastructure dysfunctions and damage in cases of flooding. In contrast to existing approaches, this method analyses network infrastructures on an elementary scale, by considering networks as a group of elements with specific functions and individual vulnerabilities. Our analysis places assets at the centre of the evaluation process, resulting in the construction of damage-dysfunction matrices based on expert interviews. These matrices permit summarising the different vulnerabilities of network infrastructures, describing how the different components are linked to each other and how they can disrupt the operation of the network. They also identify the actions and resources needed to restore the system to operational status following damage and dysfunctions, an essential point when dealing with the question of resilience. The method promotes multi-network analyses and is illustrated by a French case study. Sixty network experts were interviewed during the analysis of the following networks: drinking water supply, waste water, public lighting, gas distribution and electricity supply.

  11. Development of a method for evaluating carbon dioxide miscible flooding prospects. Final report

    SciTech Connect

    Green, D.W.; Swift, G.W.

    1985-03-01

    Research was undertaken to develop a method of evaluating reservoirs as prospects for carbon dioxide flooding. Evaluation was to be based on a determination of miscibility pressure and displacement efficiency under idealized conditions. To reach the objective, project work was divided into five areas: (1) conducting of phase-equilibrium studies of carbon dioxide with synthetic oils; (2) application of an equation of state to simulate the phase behavior of carbon dioxide - oil systems; (3) conducting of linear displacements of crude oils and synthetic oils by carbon dioxide in a slim-tube apparatus; (4) application of the equation of state, the phase-behavior data and slim-tube data to develop a method of screening reservoirs for carbon dioxide flooding based on determination of minimum miscibility pressure and displacement efficiency; (5) development of a one-dimensional mathematical model, based on the equation of state, for application in conjunction with the results of Parts 1 to 4. The accomplishments for these five areas are discussed in five chapters. 44 references, 90 figures, 42 tables.

  12. Efficient dam break flood simulation methods for developing a preliminary evacuation plan after the Wenchuan Earthquake

    NASA Astrophysics Data System (ADS)

    Li, Y.; Gong, J. H.; Zhu, J.; Ye, L.; Song, Y. Q.; Yue, Y. J.

    2012-01-01

    The Xiaojiaqiao barrier lake, which was the second largest barrier lake formed by the Wenchuan Earthquake had seriously threatened the lives and property of the population downstream. The lake was finally dredged successfully on 7 June 2008. Because of the limited time available to conduct an inundation potential analysis and make an evacuation plan, barrier lake information extraction and real-time dam break flood simulation should be carried out quickly, integrating remote sensing and geographic information system (GIS) techniques with hydrologic/hydraulic analysis. In this paper, a technical framework and several key techniques for this real-time preliminary evacuation planning are introduced. An object-oriented method was used to extract hydrological information on the barrier lake from unmanned aerial vehicle (UAV) remote sensing images. The real-time flood routine was calculated by using shallow-water equations, which were solved by means of a finite volume scheme on multiblock structured grids. The results of the hydraulic computations are visualized and analyzed in a 3-D geographic information system for inundation potential analysis, and an emergency response plan is made. The results show that if either a full-break or a half-break situation had occurred for the Chapinghe barrier lake on 19 May 2008, then the Xiaoba Town region and the Sangzao Town region would have been affected, but the downstream towns would have been less influenced. Preliminary evacuation plans under different dam break situations can be effectively made using these methods.

  13. A Mixed Method to Evaluate Burden of Malaria Due to Flooding and Waterlogging in Mengcheng County, China: A Case Study

    PubMed Central

    Ding, Guoyong; Gao, Lu; Li, Xuewen; Zhou, Maigeng; Liu, Qiyong; Ren, Hongyan; Jiang, Baofa

    2014-01-01

    Background Malaria is a highly climate-sensitive vector-borne infectious disease that still represents a significant public health problem in Huaihe River Basin. However, little comprehensive information about the burden of malaria caused by flooding and waterlogging is available from this region. This study aims to quantitatively assess the impact of flooding and waterlogging on the burden of malaria in a county of Anhui Province, China. Methods A mixed method evaluation was conducted. A case-crossover study was firstly performed to evaluate the relationship between daily number of cases of malaria and flooding and waterlogging from May to October 2007 in Mengcheng County, China. Stratified Cox models were used to examine the lagged time and hazard ratios (HRs) of the risk of flooding and waterlogging on malaria. Years lived with disability (YLDs) of malaria attributable to flooding and waterlogging were then estimated based on the WHO framework of calculating potential impact fraction in the Global Burden of Disease study. Results A total of 3683 malaria were notified during the study period. The strongest effect was shown with a 25-day lag for flooding and a 7-day lag for waterlogging. Multivariable analysis showed that an increased risk of malaria was significantly associated with flooding alone [adjusted hazard ratio (AHR)  = 1.467, 95% CI = 1.257, 1.713], waterlogging alone (AHR = 1.879, 95% CI = 1.696, 2.121), and flooding and waterlogging together (AHR = 2.926, 95% CI = 2.576, 3.325). YLDs per 1000 of malaria attributable to flooding alone, waterlogging alone and flooding and waterlogging together were 0.009 per day, 0.019 per day and 0.022 per day, respectively. Conclusion Flooding and waterlogging can lead to higher burden of malaria in the study area. Public health action should be taken to avoid and control a potential risk of malaria epidemics after these two weather disasters. PMID:24830808

  14. New accelerated charge methods using early destratification applied on flooded lead acid batteries

    NASA Astrophysics Data System (ADS)

    Mamadou, K.; Nguyen, T. M. P.; Lemaire-Potteau, E.; Glaize, C.; Alzieu, J.

    A traditional charge process for flooded lead acid batteries (FLABs) lasts generally from 8 to 14 h. Nowadays, many applications of FLABs require reduction of the charge duration, for instance, a 4 h-charge for FLABs in grid energy storage or 1 h-charge for FLABs in electric buses. These are called accelerated charge and fast charge. Such reductions of charge time imply the use of a new charge process. One way to reduce the charge duration is to perform an early destratification step without waiting for the end of charge. The new charge method proposed in this paper (early destratification method - ED) focuses on the reduction of the charge time for FLABs using early destratification, which is performed and controlled using charge acceptance measurement during the charge. Laboratory experiments presented here aim first to develop charge acceptance measurements followed by an ED charge method compared to an IUi traditional charge process.

  15. Investigation on the co-precipitation of transuranium elements from alkaline solutions by the method of appearing reagents

    SciTech Connect

    Krot, N.; Shilov, V.; Bessonov, A.; Budantseva, N.; Charushnikova, I.; Perminov, V.; Astafurova, L.

    1996-06-06

    Highly alkaline radioactive waste solutions originating from production of plutonium for military purposes are stored in underground tanks at the U.S. Department of Energy Hanford Site. The purification of alkaline solutions from neptunium and plutonium is important in the treatment and disposal of these wastes. This report describes scoping tests with sodium hydroxide solutions, where precipitation techniques were investigated to perform the separation. Hydroxides of iron (III), manganese (II), cobalt (II, III), and chromium (III); manganese (IV) oxide, and sodium uranate were investigated as carriers. The report describes the optimum conditions that were identified to precipitate these carriers homogeneously throughout the solution by reductive, hydrolytic, or catalytic decomposition of alkali-soluble precursor compounds by a technique called the Method of Appearing Reagents. The coprecipitation of pentavalent and hexavalent neptunium and plutonium was investigated for the candidate agents under optimum conditions and is described in this report along with the following results. Plutonium coprecipitated well with all tested materials except manganese (IV) oxide. Neptunium only coprecipitated well with uranate. The report presents a hypothesis to explain these behaviors. Further tests with more complex solution matrices must be performed.

  16. Quantification and comparison of bone-specific alkaline phosphatase with two methods in normal and paget’s specimens

    PubMed Central

    Masrour Roudsari, Jila; Mahjoub, Soleiman

    2012-01-01

    Background: Bone-specific alkaline phosphatase (BAP) is synthesized by the osteoblasts and is presumed to be involved in the calcification of bone matrix, though its precise role in the formation process is unknown. The aim of the present study was to measure the BAP activity in Paget's and normal specimens by two different techniques. Methods: Total ALP (TAP) as well as BAP activity-measuring tests were repeatedly undertaken at different times during the day and different days on the serum samples (inter and intra assay). Precision and repeatability of the phenylalanine inhibition (PHI) and heat inactivation (HI) techniques were approved during ten times repetition of all the tests on two normal samples besides one sample from Paget's disease of bone. The measurement of TAP and BAP activities was also carried out on 50 serum samples from normal adults using the standard IFCC-AACC and the established methods, respectively. Results: Coefficients of Variation (CV) for intra-assay of BAP were 2.33% and 3.16% by HI and PHI methods, respectively. Also, the inter-assay CV of BAP was 2.87% and 3.49% for mentioned methods in Paget's sample, respectively. In addition, the correlation of HI and PHI methods was found to be r= +0.873 for bone-specific isoenzyme. Conclusion: Regarding the appropriate precision, repeatability and correlation of HI and PHI techniques, as well as their cost effectiveness can be of use in the quantification of bone alkaline phosphatase isoenzyme activity, especially when bone is involved. PMID:24009918

  17. A continuous-flow method for the determination of the activity of serum alkaline phosphatase in diethanolamine buffer.

    PubMed

    Viitala, A J; Jokela, H A; Penttilä, I M; Nummi, S

    1975-05-01

    A procedure for determination of serum alkaline phosphatase activity (EC 3.1.3.1) in diethanolamine (DEA) buffer with an AutoAnalyzer II apparatus was designed. The buffer used was 1.0 mol/l DEA-HC buffer, pH 9.8 at 37 degree C, containing 0.5 mmol/l of MgCl2 and 10 mmol/l of substrate 4-nitrophenyl-phosphate. The reaction time was about 3 min at 37 degree C. The enzyme activity (U/l) was calculated by determining the amount of 4-nitrophenol formed in reaction. A sampling rate of 70 samples per hour can be used with good linearity up to 1000 U/l. The results obtained by the new continuous-flow system were compared with those measured by the kinetic method according to the Scandinavian recommendation (10). A close correlation between the two methods was observed.

  18. Method Study of Flood Hazard Analysis for Plain River Network Area, Taihu Basin, China

    NASA Astrophysics Data System (ADS)

    HAN, C.; Liu, S.; Zhong, G.; Zhang, X.

    2015-12-01

    Flood is one of the most common and serious natural calamities. Taihu Basin is located in delta region of the Yangtze River in East China (see Fig. 1). Because of the abundant rainfall and low-lying terrain, the area frequently suffers from flood hazard which have caused serious casualty and economic loss. In order to reduce the severe impacts of floods events, numerous polder areas and hydraulic constructions (including pumps, water gates etc.) were constructed. Flood Hazard Map is an effective non-structural flood mitigation tool measures. Numerical simulation of flood propagation is one of the key technologies of flood hazard mapping. Because of the complexity of its underlying surface characteristics, numerical simulation of flood propagation was faced with some special problems for the plain river network area in Taihu Basin. In this paper, a coupled one and two dimensional hydrodynamic model was established. Densely covered and interconnected river networks, numerous polder areas and complex scheduling hydraulic constructions were generalized in the model. The model was proved to be believable and stable. Based on the results of the simulation of flood propagation, flood hazard map was compiled.

  19. Designing a Software for Flood Risk Assessment Based on Multi Criteria Desicion Analysis and Information Diffusion Methods

    NASA Astrophysics Data System (ADS)

    Musaoglu, N.; Saral, A.; Seker, D. Z.

    2012-12-01

    Flooding is one of the major natural disasters not only in Turkey but also in all over the world and it causes serious damage and harm. It is estimated that of the total economic loss caused by all kinds of disasters, 40% was due to floods. In July 1995, the Ayamama Creek in Istanbul was flooded, the insurance sector received around 1,200 claims notices during that period, insurance companies had to pay a total of $40 million for claims. In 2009, the same creek was flooded again and killed 31 people over two days and insurance firms paid for damages around cost €150 million for claims. To solve these kinds of problems modern tools such as GIS and Remote Sensing should be utilized. In this study, a software was designed for the flood risk analysis with Analytic Hierarchy Process (AHP) and Information Diffusion( InfoDif) methods.In the developed sofware, five evaluation criterias were taken into account, which were slope, aspect, elevation, geology and land use which were extracted from the satellite sensor data. The Digital Elevation Model (DEM) of the Ayamama River Basin was acquired from the SPOT 5 satellite image with 2.5 meter spatial resolution. Slope and aspect values of the study basin were extracted from this DEM. The land use of the Ayamama Creek was obtained by performing object-oriented nearest neighbor classification method by image segmentation on SPOT 5 image dated 2010. All produced data were used as an input for the part of Multi Criteria Desicion Analysis (MCDA) method of this software. Criterias and their each sub criteras were weighted and flood vulnerability was determined with MCDA-AHP. Also, daily flood data was collected from Florya Meteorological Station, between 1975 to 2009 years and the daily flood peak discharge was calculated with the method of Soil Conservation Service-Curve Number (SCS-CN) and were used as an input in the software for the part of InfoDif.Obtained results were verified using ground truth data and it has been clearly

  20. Climate-Related Hazards: A Method for Global Assessment of Urban and Rural Population Exposure to Cyclones, Droughts, and Floods

    PubMed Central

    Christenson, Elizabeth; Elliott, Mark; Banerjee, Ovik; Hamrick, Laura; Bartram, Jamie

    2014-01-01

    Global climate change (GCC) has led to increased focus on the occurrence of, and preparation for, climate-related extremes and hazards. Population exposure, the relative likelihood that a person in a given location was exposed to a given hazard event(s) in a given period of time, was the outcome for this analysis. Our objectives were to develop a method for estimating the population exposure at the country level to the climate-related hazards cyclone, drought, and flood; develop a method that readily allows the addition of better datasets to an automated model; differentiate population exposure of urban and rural populations; and calculate and present the results of exposure scores and ranking of countries based on the country-wide, urban, and rural population exposures to cyclone, drought, and flood. Gridded global datasets on cyclone, drought and flood occurrence as well as population density were combined and analysis was carried out using ArcGIS. Results presented include global maps of ranked country-level population exposure to cyclone, drought, flood and multiple hazards. Analyses by geography and human development index (HDI) are also included. The results and analyses of this exposure assessment have implications for country-level adaptation. It can also be used to help prioritize aid decisions and allocation of adaptation resources between countries and within a country. This model is designed to allow flexibility in applying cyclone, drought and flood exposure to a range of outcomes and adaptation measures. PMID:24566046

  1. Climate-related hazards: a method for global assessment of urban and rural population exposure to cyclones, droughts, and floods.

    PubMed

    Christenson, Elizabeth; Elliott, Mark; Banerjee, Ovik; Hamrick, Laura; Bartram, Jamie

    2014-02-21

    Global climate change (GCC) has led to increased focus on the occurrence of, and preparation for, climate-related extremes and hazards. Population exposure, the relative likelihood that a person in a given location was exposed to a given hazard event(s) in a given period of time, was the outcome for this analysis. Our objectives were to develop a method for estimating the population exposure at the country level to the climate-related hazards cyclone, drought, and flood; develop a method that readily allows the addition of better datasets to an automated model; differentiate population exposure of urban and rural populations; and calculate and present the results of exposure scores and ranking of countries based on the country-wide, urban, and rural population exposures to cyclone, drought, and flood. Gridded global datasets on cyclone, drought and flood occurrence as well as population density were combined and analysis was carried out using ArcGIS. Results presented include global maps of ranked country-level population exposure to cyclone, drought, flood and multiple hazards. Analyses by geography and human development index (HDI) are also included. The results and analyses of this exposure assessment have implications for country-level adaptation. It can also be used to help prioritize aid decisions and allocation of adaptation resources between countries and within a country. This model is designed to allow flexibility in applying cyclone, drought and flood exposure to a range of outcomes and adaptation measures.

  2. Automating Flood Hazard Mapping Methods for Near Real-time Storm Surge Inundation and Vulnerability Assessment

    NASA Astrophysics Data System (ADS)

    Weigel, A. M.; Griffin, R.; Gallagher, D.

    2015-12-01

    Storm surge has enough destructive power to damage buildings and infrastructure, erode beaches, and threaten human life across large geographic areas, hence posing the greatest threat of all the hurricane hazards. The United States Gulf of Mexico has proven vulnerable to hurricanes as it has been hit by some of the most destructive hurricanes on record. With projected rises in sea level and increases in hurricane activity, there is a need to better understand the associated risks for disaster mitigation, preparedness, and response. GIS has become a critical tool in enhancing disaster planning, risk assessment, and emergency response by communicating spatial information through a multi-layer approach. However, there is a need for a near real-time method of identifying areas with a high risk of being impacted by storm surge. Research was conducted alongside Baron, a private industry weather enterprise, to facilitate automated modeling and visualization of storm surge inundation and vulnerability on a near real-time basis. This research successfully automated current flood hazard mapping techniques using a GIS framework written in a Python programming environment, and displayed resulting data through an Application Program Interface (API). Data used for this methodology included high resolution topography, NOAA Probabilistic Surge model outputs parsed from Rich Site Summary (RSS) feeds, and the NOAA Census tract level Social Vulnerability Index (SoVI). The development process required extensive data processing and management to provide high resolution visualizations of potential flooding and population vulnerability in a timely manner. The accuracy of the developed methodology was assessed using Hurricane Isaac as a case study, which through a USGS and NOAA partnership, contained ample data for statistical analysis. This research successfully created a fully automated, near real-time method for mapping high resolution storm surge inundation and vulnerability for the

  3. Stability-indicating methods for the determination of famciclovir in the presence of its alkaline-induced degradation product.

    PubMed

    Lotfy, Hayam Mahmoud; Abd El-Moneim Abosen, Mona M; El-Bardicy, Mohamed Galal

    2010-04-01

    Five sensitive, selective and precise stability-indicating methods are presented for the determination of famciclovir (FCV) in the presence of its alkaline-induced degradation product. Method A utilizes the first derivative spectrophotometry at 321 nm. Method B depends on using the first derivative of the ratio spectrophotometry (DD(1)) by measurement of the amplitude at 256 nm. Method C is based on the reaction of FCV with hydroxylamine to form hydroxamic acid, causing the hydroxamic acid to react with triferric ion to form ferric hydroxamate that is measured at 503 nm. Method D is based on the separation of FCV from its degradation product followed by densitometric measurement of the bands at 304 nm. The separation was carried out on silica gel 60 F(254), using chloroform: methanol (70:30, v/v) as a mobile phase. Method E is based on a high performance liquid chromatographic (HPLC) separation of FCV from its degradation product using an ODS column with a mobile phase consisting of methanol-50 mM dipotassium hydrogen phosphate (25:75, v/v, pH 3.0)with UV detection at 304 nm. Regression analysis showed good correlation in the concentration ranges 16-72 microg/ml, 40-240 microg/ml, 40-240 microg/ml, 0.75-5.25 microg/band and 20-240 microg/ml with percentage recoveries of 99.65 +/- 0.85, 100.27 +/- 0.91, 99.72 +/- 0.84, 100.65 +/- 1.52 and 99.88 +/- 0.50 for methods A, B, C, D and E, respectively. These methods are suitable as stability-indicating methods for the determination of FCV in the presence of its degradation product either in bulk powder or in pharmaceutical formulation. Statistical analysis of the results has been carried out revealing high accuracy and good precision.

  4. Predictive Methods for Real-Time Control of Flood Operation of a Multireservoir System: Methodology and Comparative Study

    NASA Astrophysics Data System (ADS)

    Niewiadomska-Szynkiewicz, Ewa; Malinowski, Krzysztof; Karbowski, Andrzej

    1996-04-01

    Predictive methods for real-time flood operation of water systems consisting of reservoirs located in parallel on tributaries to the main river are presented and discussed. The aspect of conflicting individual goals of the local decision units and other objectives important from an overall point of view is taken into account. The particular attention is focused on hierarchical control structure which provides framework for organization of an on-line reservoir management problem. The important factor involved in flood control the uncertainty with respect to future inflows is taken into consideration. A case study of the upper Vistula river basin system in the southern part of Poland is presented. Simulation results based on 11 historical floods are briefly described and discussed.

  5. Effects of Phytophthora cinnamomi isolate, inoculum delivery method, flood, and drought on vigor, disease severity and mortality of blueberry plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four studies evaluated the effect of Phytophthora cinnamomi isolates, inoculum delivery methods, and flood and drought conditions on vigor, disease severity scores, and survival of blueberry plants grown in pots in the greenhouse. Phytophthora cinnamomi isolates were obtained from blueberry plants ...

  6. Effects of Phytophthora cinnamomi isolate, inoculum delivery method, flood, and drought on vigor, disease severity and mortality of blueberry plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four studies evaluated the effects of cultivar, inoculum delivery method, flood, and drought on plant vigor, disease severity, and mortality of blueberry plants grown in pots in the greenhouse. Phytophthora cinnamomi isolates were obtained from the root zone of blueberry plants displaying symptoms...

  7. Technical Note: Initial assessment of a multi-method approach to spring-flood forecasting in Sweden

    NASA Astrophysics Data System (ADS)

    Olsson, J.; Uvo, C. B.; Foster, K.; Yang, W.

    2016-02-01

    Hydropower is a major energy source in Sweden, and proper reservoir management prior to the spring-flood onset is crucial for optimal production. This requires accurate forecasts of the accumulated discharge in the spring-flood period (i.e. the spring-flood volume, SFV). Today's SFV forecasts are generated using a model-based climatological ensemble approach, where time series of precipitation and temperature from historical years are used to force a calibrated and initialized set-up of the HBV model. In this study, a number of new approaches to spring-flood forecasting that reflect the latest developments with respect to analysis and modelling on seasonal timescales are presented and evaluated. Three main approaches, represented by specific methods, are evaluated in SFV hindcasts for the Swedish river Vindelälven over a 10-year period with lead times between 0 and 4 months. In the first approach, historically analogue years with respect to the climate in the period preceding the spring flood are identified and used to compose a reduced ensemble. In the second, seasonal meteorological ensemble forecasts are used to drive the HBV model over the spring-flood period. In the third approach, statistical relationships between SFV and the large-sale atmospheric circulation are used to build forecast models. None of the new approaches consistently outperform the climatological ensemble approach, but for early forecasts improvements of up to 25 % are found. This potential is reasonably well realized in a multi-method system, which over all forecast dates reduced the error in SFV by ˜ 4 %. This improvement is limited but potentially significant for e.g. energy trading.

  8. Development of a national Flash flood warning system in France using the AIGA method: first results and main issues

    NASA Astrophysics Data System (ADS)

    Javelle, Pierre; Organde, Didier; Demargne, Julie; de Saint-Aubin, Céline; Garandeau, Léa; Janet, Bruno; Saint-Martin, Clotilde; Fouchier, Catherine

    2016-04-01

    Developing a national flash flood (FF) warning system is an ambitious and difficult task. On one hand it rises huge expectations from exposed populations and authorities since induced damages are considerable (ie 20 casualties in the recent October 2015 flood at the French Riviera). But on the other hand, many practical and scientific issues have to be addressed and limitations should be clearly stated. The FF warning system to be implemented by 2016 in France by the SCHAPI (French national service in charge of flood forecasting) will be based on a discharge-threshold flood warning method called AIGA (Javelle et al. 2014). The AIGA method has been experimented in real time in the south of France in the RHYTMME project (http://rhytmme.irstea.fr). It consists in comparing discharges generated by a simple conceptual hourly hydrologic model run at a 1-km² resolution to reference flood quantiles of different return periods, at any point along the river network. The hydrologic model ingests operational rainfall radar-gauge products from Météo-France. Model calibration was based on ~700 hydrometric stations over the 2002-2015 period and then hourly discharges were computed at ~76 000 catchment outlets, with areas ranging from 10 to 3 500 km², over the last 19 years. This product makes it possible to calculate reference flood quantiles at each outlet. The on-going evaluation of the FF warnings is currently made at two levels: in a 'classical' way, using discharges available at the hydrometric stations, but also in a more 'exploratory' way, by comparing past flood reports and warnings issued by the system over the 76 000 catchment outlets. The interest of the last method is that it better fit the system objectives since it is designed to monitor small ungauged catchments. Javelle, P., Demargne, J., Defrance, D, .Pansu, J, .Arnaud, P. (2014). Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system

  9. An alkaline oxidation method for determination of total arsenic and selenium in sewage sludges

    SciTech Connect

    Zhu, Baojin; Tabatabai, M.A.

    1995-07-01

    A simple and precise method was developed for determination of total As and Se in sewage sludges by using hydride-generation atomic absorption spectrometry (HGAAS). It involves boiling a 50-mg sample with sodium hypobromite (NaOBr) solution to dryness in a sand bath (260-280{degrees}C), extraction of the As and Se in the digest with 1.25 M H{sub 2}SO{sub 4}, and determination of these elements by HGAAS after reducing As(V) and Se(VI) to As(III) and Se(IV), respectively. The proposed method gives quantitative recovery of As and Se in standard reference materials (96-103%) and of these elements added to sewage sludges (95-100%). The average results of AS (9.8 mg/kg) and Se (7.5 mg/kg) in 12 sewage sludges determined by the proposed digestion method agreed closely with those obtained by the acid digestion methods recommended by USGS and USEPA. Tests with 13 metals indicated that, at the concentrations expected in sewage sludges, none of the metals interfered with determination of As and Se by the proposed method. A single operator can complete analysis of one of the elements in 40 samples in a normal working day, or both elements in 1.5 d.

  10. A quantitative evaluation method of flood risks in low-lying areas associated with increase of heavy rainfall in Japan

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2012-12-01

    An increase in flood risk, especially in low-lying areas, is predicted as a consequence of global climate change or other causes. Immediate measures such as strengthening of drainage capacity are needed to minimize the damage caused by more-frequent flooding. Typically, drainage pump capacities of in paddy areas are planned by using a result of drainage analysis with design rainfall (e.g. 3-day rainfall amount with a 10-year return period). However, the result depends on a hyetograph of input rainfall even if a total amount of rainfall is equal, and the flood risk may be different with rainfall patterns. Therefore, it is important to assume various patterns of heavy rainfall for flood risk assessment. On the other hand, a rainfall synthesis simulation is useful to generate many patterns of rainfall data for flood studies. We previously proposed a rainfall simulation method called diurnal rainfall pattern generator which can generate short-time step rainfall and internal pattern of them. This study discusses a quantitative evaluation method for detecting a relationship between flood damage risk and heavy rainfall scale by using the diurnal rainfall pattern generator. In addition, we also approached an estimation of flood damage which focused on rice yield. Our study area was in the Kaga three-lagoon basin in Ishikawa Prefecture, Japan. There are two lagoons in the study area, and the low-lying paddy areas extend over about 4,000 ha in the lower reaches of the basin. First, we developed a drainage analysis model that incorporates kinematic and diffusive runoff models for calculating water level on channels and paddies. Next, the heavy rainfall data for drainage analysis were generated. Here, the 3-day rainfalls amounts with 9 kinds of different return periods (2-, 3-, 5-, 8-, 10-, 15-, 50-, 100-, and 200-year) were derived, and three hundred hyetograph patterns were generated for each rainfall amount by using the diurnal rainfall pattern generator. Finally, all data

  11. A novel fluorescence detection method for in situ hybridization, based on the alkaline phosphatase-fast red reaction.

    PubMed

    Speel, E J; Schutte, B; Wiegant, J; Ramaekers, F C; Hopman, A H

    1992-09-01

    We have used naphthol-ASMX-phosphate and Fast Red TR in combination with alkaline phosphatase (APase) to produce fluorescent precipitated reaction products in a non-radioactive in situ hybridization (ISH) method. To obtain optimal and discrete localization of the strongly red fluorescent ISH signals, the enzyme precipitation procedure was optimized. The optimal reaction time and the concentrations of substrate and capture agent were determined. Furthermore, polyvinyl alcohol (PVA) was used to increase the viscosity of the reaction mixture and thus to reduce diffusion of the reaction product. Our results show that the APase-Fast Red detection method has at least the same sensitivity as currently observed in other immunofluorescent detection systems. A single copy DNA sequence of 15.8 KB could be localized with high efficiency in metaphase spreads and in interphase nuclei. Double labeling procedures, in which the FITC- and azo-dye fluorescence are combined, are also feasible. The red fluorescent ISH signals showed hardly any fading as compared with FITC fluorescence on exposure to either light from the mercury-arc lamp or laser light. Therefore, these red fluorescent signals with a virtually permanent character allow a better analysis and three-dimensional localization of such cytochemically detected genomic fractions by means of confocal scanning laser microscopy as compared with the use of FITC, TRITC, or Texas Red as label.

  12. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    SciTech Connect

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  13. Extreme flood estimation by the SCHADEX method in a snow-driven catchment: application to Atnasjø (Norway)

    NASA Astrophysics Data System (ADS)

    Paquet, Emmanuel; Lawrence, Deborah

    2013-04-01

    The SCHADEX method for extreme flood estimation was developed by Paquet et al. (2006, 2013), and since 2008, it is the reference method used by Electricité de France (EDF) for dam spillway design. SCHADEX is a so-called "semi-continuous" stochastic simulation method in that flood events are simulated on an event basis and are superimposed on a continuous simulation of the catchment saturation hazard usingrainfall-runoff modelling. The MORDOR hydrological model (Garçon, 1999) has thus far been used for the rainfall-runoff modelling. MORDOR is a conceptual, lumped, reservoir model with daily areal rainfall and air temperature as the driving input data. The principal hydrological processes represented are evapotranspiration, direct and indirect runoff, ground water, snow accumulation and melt, and routing. The model has been intensively used at EDF for more than 15 years, in particular for inflow forecasts for French mountainous catchments. SCHADEX has now also been applied to the Atnasjø catchment (463 km²), a well-documented inland catchment in south-central Norway, dominated by snowmelt flooding during spring/early summer. To support this application, a weather pattern classification based on extreme rainfall was first established for Norway (Fleig, 2012). This classification scheme was then used to build a Multi-Exponential Weather Pattern distribution (MEWP), as introduced by Garavaglia et al. (2010) for extreme rainfall estimation. The MORDOR model was then calibrated relative to daily discharge data for Atnasjø. Finally, a SCHADEX simulation was run to build a daily discharge distribution with a sufficient number of simulations for assessing the extreme quantiles. Detailed results are used to illustrate how SCHADEX handles the complex and interacting hydrological processes driving flood generation in this snow driven catchment. Seasonal and monthly distributions, as well as statistics for several thousand simulated events reaching a 1000 years return level

  14. Intercomparison of regional flood frequency estimation methods at ungauged sites for a Mexican case study

    NASA Astrophysics Data System (ADS)

    Ouarda, T. B. M. J.; Bâ, K. M.; Diaz-Delgado, C.; Cârsteanu, A.; Chokmani, K.; Gingras, H.; Quentin, E.; Trujillo, E.; Bobée, B.

    2008-01-01

    SummaryThis paper presents an adaptation of some regional estimation approaches to tropical climates and a comparison of their performance on the basis of their application to data from the Balsas, Lerma and Pánuco River Basins located in Mexico. Four approaches are used in this study for the delineation of homogeneous regions: The first one is the hierarchical cluster analysis approach which leads to fixed hydrologic regions. The second one is the canonical correlation analysis (CCA) which allows the determination of hydrologic neighborhoods that are specific to the site of interest. The third one is a revised version of the canonical correlation analysis approach that is free of parameter optimization and which can be automated easily. Finally, the fourth one is the technique of canonical kriging which consists in interpolating hydrological variables over the canonical physiographical space. The methods based on the canonical correlation analysis approach provide also the basis for identifying the explanatory variables to be used during the step of regional estimation. Regional estimation is carried out based on a multiple regression approach. A data set of 29 stations from several Mexican River Basins in and around the Balsas region is used to show the advantages and weaknesses of each method and to demonstrate their usefulness in the context of regional flood quantile estimation. This study allows also to test the robustness of these methods through their application to a real world case study with a relatively limited number of stations. While all methods performed quite adequately, results indicate clearly the advantages of the neighborhood type of approach and the superiority of the canonical correlation analysis based methods. Results demonstrate that CCA-based methods lead to best performances overall. While hierarchical clustering seems generally to lead to less biased quantile estimates, the lowest root mean square error values are almost consistently

  15. A Mixed-Method Study of Princeville's Rebuilding from the Flood of 1999: Lessons on the Importance of Invisible Community Assets

    ERIC Educational Resources Information Center

    Yoon, Intae

    2009-01-01

    Guided by previous studies and the community assets perspective, a concurrent mixed-method case study was conducted five years after a devastating flood to investigate how invisible community assets played a role in Princeville's rebuilding process from the flood of 1999. The independent variables in this study included retrospectively assessed…

  16. Fire flood method for recovering petroleum from oil reservoirs of low permeability and temperature

    DOEpatents

    Kamath, Krishna

    1984-08-14

    The present invention is directed to a method of enhanced oil recovery by fire flooding petroleum reservoirs characterized by a temperature of less than the critical temperature of carbon dioxide, a pore pressure greater than the saturated vapor pressure of carbon dioxide at said temperature (87.7.degree. F. at 1070 psia), and a permeability in the range of about 20 to 100 millidarcies. The in situ combustion of petroleum in the reservoir is provided by injecting into the reservoir a combustion supporting medium consisting essentially of oxygen, ozone, or a combination thereof. The heat of combustion and the products of this combustion which consist essentially of gaseous carbon dioxide and water vapor sufficiently decrease the viscosity of oil adjacent to fire front to form an oil bank which moves through the reservoir towards a recovery well ahead of the fire front. The gaseous carbon dioxide and the water vapor are driven into the reservoir ahead of the fire front by pressure at the injection well. As the gaseous carbon dioxide cools to less than about 88.degree. F. it is converted to liquid which is dissolved in the oil bank for further increasing the mobility thereof. By using essentially pure oxygen, ozone, or a combination thereof as the combustion supporting medium in these reservoirs the permeability requirements of the reservoirs are significantly decreased since the liquid carbon dioxide requires substantially less voidage volume than that required for gaseous combustion products.

  17. Flood hazard assessment in areas prone to flash flooding

    NASA Astrophysics Data System (ADS)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  18. Accuracy of the evaluation method for alkaline agents’ bactericidal efficacies in solid, and the required time of bacterial inactivation

    PubMed Central

    HAKIM, Hakimullah; TOYOFUKU, Chiharu; OTA, Mari; SUZUKI, Mayuko; KOMURA, Miyuki; YAMADA, Masashi; ALAM, Md. Shahin; SANGSRIRATANAKUL, Natthanan; SHOHAM, Dany; TAKEHARA, Kazuaki

    2016-01-01

    An alkaline agent, namely food additive grade calcium hydroxide (FdCa (OH)2) in the powder form, was evaluated for its bactericidal efficacies in chicken feces at pH 13. The point for this evaluation was neutralization of the alkaline agent’s pH at the time of bacterial recovery, since otherwise the results are substantially misleading. Without neutralization of the FdCa (OH)2 pH, the spiked bacteria were killed within min at the time of recovery in aqueous phase, but not in the solid form in feces, hence, it has been demonstrated that when bacteria were in solid, it took longer time than in liquid for the alkaline agent to inactivate them down to the acceptable level (≥3 log10 CFU/ml). PMID:27890906

  19. A fast method for optical simulation of flood maps of light-sharing detector modules

    NASA Astrophysics Data System (ADS)

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2015-12-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200-600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials.

  20. A fast method for optical simulation of flood maps of light-sharing detector modules

    PubMed Central

    Shi, Han; Du, Dong; Xu, JianFeng; Moses, William W.; Peng, Qiyu

    2016-01-01

    Optical simulation of the detector module level is highly desired for Position Emission Tomography (PET) system design. Commonly used simulation toolkits such as GATE are not efficient in the optical simulation of detector modules with complicated light-sharing configurations, where a vast amount of photons need to be tracked. We present a fast approach based on a simplified specular reflectance model and a structured light-tracking algorithm to speed up the photon tracking in detector modules constructed with polished finish and specular reflector materials. We simulated conventional block detector designs with different slotted light guide patterns using the new approach and compared the outcomes with those from GATE simulations. While the two approaches generated comparable flood maps, the new approach was more than 200–600 times faster. The new approach has also been validated by constructing a prototype detector and comparing the simulated flood map with the experimental flood map. The experimental flood map has nearly uniformly distributed spots similar to those in the simulated flood map. In conclusion, the new approach provides a fast and reliable simulation tool for assisting in the development of light-sharing-based detector modules with a polished surface finish and using specular reflector materials. PMID:27660376

  1. A time-series analysis framework for the flood-wave method to estimate groundwater model parameters

    NASA Astrophysics Data System (ADS)

    Obergfell, Christophe; Bakker, Mark; Maas, Kees

    2016-11-01

    The flood-wave method is implemented within the framework of time-series analysis to estimate aquifer parameters for use in a groundwater model. The resulting extended flood-wave method is applicable to situations where groundwater fluctuations are affected significantly by time-varying precipitation and evaporation. Response functions for time-series analysis are generated with an analytic groundwater model describing stream-aquifer interaction. Analytical response functions play the same role as the well function in a pumping test, which is to translate observed head variations into groundwater model parameters by means of a parsimonious model equation. An important difference as compared to the traditional flood-wave method and pumping tests is that aquifer parameters are inferred from the combined effects of precipitation, evaporation, and stream stage fluctuations. Naturally occurring fluctuations are separated in contributions from different stresses. The proposed method is illustrated with data collected near a lowland river in the Netherlands. Special emphasis is put on the interpretation of the streambed resistance. The resistance of the streambed is the result of stream-line contraction instead of a semi-pervious streambed, which is concluded through comparison with the head loss calculated with an analytical two-dimensional cross-section model.

  2. Ambient formic acid in southern California air: A comparison of two methods, Fourier transform infrared spectroscopy and alkaline trap-liquid chromatography with UV detection

    SciTech Connect

    Grosjean, D. ); Tuazon, E.C. ); Fujita, E. )

    1990-01-01

    Formic acid is an ubiquitous component of urban smog. Sources of formic acid in urban air include direct emissions from vehicles and in situ reaction of ozone with olefins. Ambient levels of formic acid in southern California air were first measured some 15 years ago by Hanst et al. using long-path Fourier transform infrared spectroscopy (FTIR). All subsequent studies of formic acid in the Los Angeles area have involved the use of two methods, either FTIR or collection on alkaline traps followed by gas chromatography, ion chromatography, or liquid chromatography analysis with UV detection, ATLC-UV. The Carbon Species Methods Comparison Study (CSMCS), a multilaboratory air quality study carried out in August 1986 at a southern California smog receptor site, provided an opportunity for direct field comparison of the FTIR and alkaline trap methods. The results of the comparison are presented in this brief report.

  3. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  4. Simultaneous HPTLC and RP-HPLC methods for determination of bumadizone in the presence of its alkaline-induced degradation product.

    PubMed

    Ali, Nouruddin W; ZaaZaa, Hala A; Abdelkawy, M; Magdy, Maimana A

    2012-10-01

    Accurate, selective, sensitive and precise HPTLC-densitometric and RP-HPLC methods were developed and validated for determination of bumadizone calcium semi-hydrate in the presence of its alkaline-induced degradation product and in pharmaceutical formulation. Method A uses HPTLC-densitometry, depending on separation and quantitation of bumadizone and its alkaline-induced degradation product on TLC silica gel 60 F(254) plates, using hexane-ethyl acetate-glacial acetic acid (8:2:0.2, v/v/v) as a mobile phase followed by densitometric measurement of the bands at 240 nm. Method B comprises RP-HPLC separation of bumadizone and its alkaline-induced degradation product using a mobile phase consisting of methanol-water-acetonitrile (20:30:50, v/v/v) on a Phenomenex C(18) column at a flow-rate of 2 mL/min and UV detection at 235 nm. The proposed methods were successfully applied to the analysis of bumadizone either in bulk powder or in pharmaceutical formulation without interference from other dosage form additives, and the results were statistically compared with the established method.

  5. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  6. Development of chemiluminescence method for determination of 10-hydroxycamptothecin based on luminol-[Ag(HIO₆)₂]⁵⁻ reaction in alkaline solution.

    PubMed

    Sun, Hanwen; Chen, Peiyun; Shi, Shasha; Li, Liqing

    2011-01-01

    A novel chemiluminescence (CL) method was developed for the determination of 10-hydroxycamptothecin(HCPT) based on the CL reaction between [Ag(HIO₆)₂]⁵⁻ and luminol in alkaline solution. CL emission of Ag(III) complex-luminol in alkaline medium was very different from that in acidic medium. A possible mechanism of enhanced CL emission was suggested. The enhanced effect of HCPT on CL emission of the [Ag(HIO₆)₂]⁵⁻-luminol system was found. The enhanced degree of CL emission was proportional to HCPT concentration. The effect of the reaction conditions on CL emission was examined. Under optimal conditions, the limit of detection was 6.5 × 10⁻⁹ g mL⁻¹. The proposed method was applied for the determination of HCPT in real samples with the recoveries of 93.2-109% with the RSD of 1.7-3.3%.

  7. Evaluation method to floodwater amount of difficult control and utilization in flood season for hyperconcentration rivers and its application

    NASA Astrophysics Data System (ADS)

    Li, X.

    2013-05-01

    The severe soil erosion in the Chinese Loess Plateau has resulted in high sediment concentration in runoff, which can cause tremendous pressure to the development and utilization of regional floodwater resources as well as the regional flood control and disaster mitigation. The floodwater amount of difficult control and utilization in flood season (FADCUFS) is an important part of the available amount of surface water resources. It also has a critical role in the sustainable development of water resources, especially for those hyperconcentration rivers (HRs) in the Loess Plateau. The evaluation of FADCUFS for HRs is an important issue in the field of hydrology and water resources. However, the understandings of its connotation, evaluation method, and nature are limited. Combined engineering measures with non-engineering ones, the evaluation method of FADCUFS for HRs was presented based on the angles of water quantity and quality. The method divides the FADCUFS into two parts in terms of the flood control operation characteristics of reservoir in HR and the relationship between water resources utilization and sediment in runoff, respectively. One is the amount of difficult regulation-control floodwater (DRCF), and the other is the volume of difficult utilization floodwater (DUF). A case study of the Bajiazui Reservoir, located in the typical Jinghe River (the second tributary of the Chinese Yellow River with high sediment concentration) was performed. Three typical years, wet year (1988), average year (1986), and dry years (1995 and 2000), were employed. According to the daily optimal operation model of Bajiazui Reservoir, the DRCF occurs for only the wet year instead of the average and the dry years. There are four times of DRCF with the amount of 26.74 m3/s (July 14), 14.58 m3/s (August 5), 10.27 m3/s (August 9), and 1.23 m3/s (August 12) in 1988, respectively, with a total amount of 4.56 million m3. A certain close relationship exists between the amount of DRCF

  8. A method to calibrate channel friction and bathymetry parameters of a Sub-Grid hydraulic model using SAR flood images

    NASA Astrophysics Data System (ADS)

    Wood, M.; Neal, J. C.; Hostache, R.; Corato, G.; Chini, M.; Giustarini, L.; Matgen, P.; Wagener, T.; Bates, P. D.

    2015-12-01

    Synthetic Aperture Radar (SAR) satellites are capable of all-weather day and night observations that can discriminate between land and smooth open water surfaces over large scales. Because of this there has been much interest in the use of SAR satellite data to improve our understanding of water processes, in particular for fluvial flood inundation mechanisms. Past studies prove that integrating SAR derived data with hydraulic models can improve simulations of flooding. However while much of this work focusses on improving model channel roughness values or inflows in ungauged catchments, improvement of model bathymetry is often overlooked. The provision of good bathymetric data is critical to the performance of hydraulic models but there are only a small number of ways to obtain bathymetry information where no direct measurements exist. Spatially distributed river depths are also rarely available. We present a methodology for calibration of model average channel depth and roughness parameters concurrently using SAR images of flood extent and a Sub-Grid model utilising hydraulic geometry concepts. The methodology uses real data from the European Space Agency's archive of ENVISAT[1] Wide Swath Mode images of the River Severn between Worcester and Tewkesbury during flood peaks between 2007 and 2010. Historic ENVISAT WSM images are currently free and easy to access from archive but the methodology can be applied with any available SAR data. The approach makes use of the SAR image processing algorithm of Giustarini[2] et al. (2013) to generate binary flood maps. A unique feature of the calibration methodology is to also use parameter 'identifiability' to locate the parameters with higher accuracy from a pre-assigned range (adopting the DYNIA method proposed by Wagener[3] et al., 2003). [1] https://gpod.eo.esa.int/services/ [2] Giustarini. 2013. 'A Change Detection Approach to Flood Mapping in Urban Areas Using TerraSAR-X'. IEEE Transactions on Geoscience and Remote

  9. Development of a capillary electrophoresis method for the analysis in alkaline media as polyoxoanions of two strategic metals: Niobium and tantalum.

    PubMed

    Deblonde, Gauthier J-P; Chagnes, Alexandre; Cote, Gérard; Vial, Jérôme; Rivals, Isabelle; Delaunay, Nathalie

    2016-03-11

    Tantalum (Ta) and niobium (Nb) are two strategic metals essential to several key sectors, like the aerospace, gas and oil, nuclear and electronic industries, but their separation is really difficult due to their almost identical chemical properties. Whereas they are currently produced by hydrometallurgical processes using fluoride-based solutions, efforts are being made to develop cleaner processes by replacing the fluoride media by alkaline ones. However, methods to analyze Nb and Ta simultaneously in alkaline samples are lacking. In this work, we developed a capillary zone electrophoresis (CE) method able to separate and quantify Nb and Ta directly in alkaline media. This method takes advantage of the hexaniobate and hexatantalate ions which are naturally formed at pH>9 and absorb in the UV domain. First, the detection conditions, the background electrolyte (BGE) pH, the nature of the BGE co-ion and the internal standard (IS) were optimized by a systematic approach. As the BGE counter-ion nature modified the speciation of both ions, sodium- and lithium-based BGE were tested. For each alkaline cation, the BGE ionic strength and separation temperature were optimized using experimental designs. Since changes in the migration order of IS, Nb and Ta were observed within the experimental domain, the resolution was not a monotonic function of ionic strength and separation temperature. This forced us to develop an original data treatment for the prediction of the optimum separation conditions. Depending on the consideration of either peak widths or peak symmetries, with or without additional robustness constraints, four optima were predicted for each tested alkaline cation. The eight predicted optima were tested experimentally and the best experimental optimum was selected considering analysis time, resolution and robustness. The best separation was obtained at 31.0°C and in a BGE containing 10mM LiOH and 35mM LiCH3COO.The separation voltage was finally optimized

  10. Methods for determining magnitude and frequency of floods in California, based on data through water year 2006

    USGS Publications Warehouse

    Gotvald, Anthony J.; Barth, Nancy A.; Veilleux, Andrea G.; Parrett, Charles

    2012-01-01

    Methods for estimating the magnitude and frequency of floods in California that are not substantially affected by regulation or diversions have been updated. Annual peak-flow data through water year 2006 were analyzed for 771 streamflow-gaging stations (streamgages) in California having 10 or more years of data. Flood-frequency estimates were computed for the streamgages by using the expected moments algorithm to fit a Pearson Type III distribution to logarithms of annual peak flows for each streamgage. Low-outlier and historic information were incorporated into the flood-frequency analysis, and a generalized Grubbs-Beck test was used to detect multiple potentially influential low outliers. Special methods for fitting the distribution were developed for streamgages in the desert region in southeastern California. Additionally, basin characteristics for the streamgages were computed by using a geographical information system. Regional regression analysis, using generalized least squares regression, was used to develop a set of equations for estimating flows with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities for ungaged basins in California that are outside of the southeastern desert region. Flood-frequency estimates and basin characteristics for 630 streamgages were combined to form the final database used in the regional regression analysis. Five hydrologic regions were developed for the area of California outside of the desert region. The final regional regression equations are functions of drainage area and mean annual precipitation for four of the five regions. In one region, the Sierra Nevada region, the final equations are functions of drainage area, mean basin elevation, and mean annual precipitation. Average standard errors of prediction for the regression equations in all five regions range from 42.7 to 161.9 percent. For the desert region of California, an analysis of 33 streamgages was used to develop regional estimates

  11. Are we preventing flood damage eco-efficiently? An integrated method applied to post-disaster emergency actions.

    PubMed

    Petit-Boix, Anna; Arahuetes, Ana; Josa, Alejandro; Rieradevall, Joan; Gabarrell, Xavier

    2017-02-15

    Flood damage results in economic and environmental losses in the society, but flood prevention also entails an initial investment in infrastructure. This study presents an integrated eco-efficiency approach for assessing flood prevention and avoided damage. We focused on ephemeral streams in the Maresme region (Catalonia, Spain), which is an urbanized area affected by damaging torrential events. Our goal was to determine the feasibility of post-disaster emergency actions implemented after a major event through an integrated hydrologic, environmental and economic approach. Life cycle assessment (LCA) and costing (LCC) were used to determine the eco-efficiency of these actions, and their net impact and payback were calculated by integrating avoided flood damage. Results showed that the actions effectively reduced damage generation when compared to the registered water flows and rainfall intensities. The eco-efficiency of the emergency actions resulted in 1.2kgCO2eq. per invested euro. When integrating the avoided damage into the initial investment, negative net impacts were obtained (e.g., -5.2E+05€ and -2.9E+04kgCO2eq. per event), which suggests that these interventions contributed with environmental and economic benefits to the society. The economic investment was recovered in two years, whereas the design could be improved to reduce their environmental footprint, which is recovered in 25years. Our method and results highlight the effects of integrating the environmental and economic consequences of decisions at an urban scale and might help the administration and insurance companies in the design of prevention plans and climate change adaptation.

  12. Molten metal reactor and method of forming hydrogen, carbon monoxide and carbon dioxide using the molten alkaline metal reactor

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Turner, Terry D.; Wilding, Bruce M.

    2012-11-13

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  13. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.

    PubMed

    Hassan, Saad S M; Sayour, Hossam E M; Kamel, Ayman H

    2009-04-27

    A novel poly(vinyl chloride) matrix membrane sensor responsive to 4-nitrophenylphosphate (4-NPP) substrate is described, characterized and used for the potentiometric assay of acid (ACP) and alkaline (ALP) phosphatase enzymes. The sensor is based on the use of the ion-association complex of 4-NPP anion with nickel(II)-bathophenanthroline cation as an electroactive material and nitrophenyloctyl ether (NPOE) as a solvent mediator. The sensor displays good selectivity and stability and demonstrates a near-Nernstian response for 4-NPP over the concentration range 9.6x10(-6) to 1.0x10(-2) M with an anionic slope of 28.6+/-0.3 mV decade(-1) and a detection limit of 6.3x10(-6) M over the pH range 4.5-10. The sensor is used to measure the decrease of a fixed concentration of 4-NPP substrate as a function of acid and alkaline phosphatase enzyme activities at optimized conditions of pH and temperature. A linear relationship between the initial rate of 4-NPP substrate hydrolysis and enzyme activity holds over 0.05-3.0 and 0.03-3.4 IU L(-1) of ACP and ALP enzymes, respectively. Validation of the method by measuring the lower detection limit, range, accuracy, precision, within-day repeatability and between-day-variability reveals good performance characteristics of the proposed sensor. The sensor is used for the determination of acid and alkaline phosphatase enzyme activities in biological fluids of some patients suffering from alcoholic cirrhosis, acute myelocytic leukemia, pre-eclampsia and prostatic cancer. The sensor is also utilized for assessment of alkaline phosphatase enzyme in milk and dairy products. The results obtained agree fairly well with data obtained by the standard spectrophotometric methods.

  14. Mobility of as, Cu, Cr, and Zn from tailings covered with sealing materials using alkaline industrial residues: a comparison between two leaching methods.

    PubMed

    Jia, Yu; Maurice, Christian; Öhlander, Björn

    2016-01-01

    Different alkaline residue materials (fly ash, green liquor dregs, and lime mud) generated from the pulp and paper industry as sealing materials were evaluated to cover aged mine waste tailings (<1% sulfur content, primarily pyrite). The mobility of four selected trace elements (Cr, Cu, Zn, and As) was compared based on batch and column leaching studies to assess the effectiveness of these alkaline materials as sealing agents. Based on the leaching results, Cr, Cu, and Zn were immobilized by the alkaline amendments. In the amended tailings in the batch system only As dramatically exceeded the limit values at L/S 10 L/kg. The leaching results showed similar patterns to the batch results, though leached Cr, Cu, and Zn showed higher levels in the column tests than in the batch tests. However, when the columns were compared with the batches, the trend for Cu was opposite for the unamended tailings. By contrast, both batch and column results showed that the amendment caused mobilization of As compared with the unamended tailings in the ash-amended tailings. The amount of As released was greatest in the ash column and decreased from the dregs to the lime columns. The leaching of As at high levels can be a potential problem whenever alkaline materials (especially for fly ash) are used as sealing materials over tailings. The column test was considered by the authors to be a more informative method in remediation of the aged tailings with low sulfur content, since it mimics better actual situation in a field.

  15. Methods for Estimating Magnitude and Frequency of Floods in Rural Basins in the Southeastern United States: South Carolina

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2009-01-01

    For more than 50 years, the U.S. Geological Survey (USGS) has been developing regional regression equations that can be used to estimate flood magnitude and frequency at ungaged sites. Flood magnitude relates to the volume of flow that occurs over some period of time and usually is presented in cubic feet per second. Flood frequency relates to the probability of occurrence of a flood; that is, on average, what is the likelihood that a flood with a specified magnitude will occur in any given year (1 percent chance, 10 percent chance, 50 percent chance, and so on). Such flood estimates are needed for the efficient design of bridges, highway embankments, levees, and other structures near streams. In addition, these estimates are needed for the effective planning and management of land and water resources, to protect lives and property in flood-prone areas, and to determine flood-insurance rates.

  16. Using dendrogeomorphological and hydraulic methods for peak discharge estimation of flash flood

    NASA Astrophysics Data System (ADS)

    Ballesteros, Juan Antonio; Eguibar, Miguel Angel; María Bodoque, Jose; Díez-Herrero, Andrés.; Gutierrez, Ignacio; Stoffel, Markus

    2010-05-01

    The study of processes such as flash floods in ungauged mountain basins often requires the combination of different techniques enabling numerical models to be developed in order to understand the processes. In this study, we have focused on the use of detailed topography obtained with Terrestrial Laser Scanner (TLS) and dendrogeomorphological evidences to reconstruct the peak discharge of an remarkable event that took place on December 18th 1997, in the stream Arroyo Cabrera (Gredos Mountain Range, Spanish Central System). The methodology was carried out on a river reach characterized for presenting a hydraulic jump on stable bed-rock and numerous scarred trees caused by the impact of rocks and woody debris during the event. Along a 500 m stretch, a high-resolution Digital Elevation Model (DEM) was built with an average precision of 5 mm based on more than 4 million points taken using a TLS. Subsequently, both topographic and dendrogeomorphological data were included in bidimensional hydraulic models.In addition, we propose a methodology to define scenarios based on the deviation between the PSI and the results of hydraulic model that allows convergence in the estimation of flow. The results obtained from the methodology developed allow the magnitude of the event studied concerning the transported flow of an unknown flash flood event. We also discuss the use of PSI from trees to future paleoflood studies. Knowing the advantages and disadvantages derived from each case provides useful information for producing future flash flood hazard maps in ungauged catchments, with exposed goods of great vulnerability. Keywords: Terrestrial Laser Scan, Dendrogeomorphology, Digital Elevation Model, ungauged basins, Spanish Central System.

  17. Contribution of an exposure indicator to better anticipate damages with the AIGA flood warning method: a case study in the South of France

    NASA Astrophysics Data System (ADS)

    Saint-Martin, Clotilde; Fouchier, Catherine; Douvinet, Johnny; Javelle, Pierre; Vinet, Freddy

    2016-04-01

    On the 3rd October 2015, heavy localized precipitations have occurred in South Eastern France leading to major flash floods on the Mediterranean coast. The severity of those floods has caused 20 fatalities and important damage in almost 50 municipalities in the French administrative area of Alpes-Maritimes. The local recording rain gauges have shown how fast the event has happened: 156 mm of rain were recorded in Mandelieu-la-Napoule and 145 mm in Cannes within 2 hours. As the affected rivers are not monitored, no anticipation was possible from the authorities in charge of risk management. In this case, forecasting floods is indeed complex because of the small size of the watersheds which implies a reduced catchment response time. In order to cope with the need of issuing flood warnings on un-monitored small catchments, Irstea and Météo-France have developed an alternative warning system for ungauged basins called the AIGA method. AIGA is a flood warning system based on a simple distributed hydrological model run at a 1 km² resolution using real time radar rainfall information (Javelle, Demargne, Defrance, Pansu, & Arnaud, 2014). The flood warnings, produced every 15 minutes, result of the comparison of the real time runoff data produced by the model with statistical runoff values. AIGA is running in real time in the South of France, within the RHYTMME project (https://rhytmme.irstea.fr/). Work is on-going in order to offer a similar service for the whole French territory. More than 200 impacts of the 3rd October floods have been located using media, social networks and fieldwork. The first comparisons between these impacts and the AIGA warning levels computed for this event show several discrepancies. However, these latter discrepancies appear to be explained by the land-use. An indicator of the exposure of territories to flooding has thus been created to weight the levels of the AIGA hydrological warnings with the land-use of the area surrounding the streams

  18. Evaluation of streams in selected communities for the application of limited-detail study methods for flood-insurance studies

    USGS Publications Warehouse

    Cobb, Ernest D.

    1986-01-01

    The U.S. Geological Survey evaluated 2,349 communities in 1984 for the application of limited-detail flood-insurance study methods, that is, methods with a reduced effort and cost compared to the detailed studies. Limited-detail study methods were found to be appropriate for 1,705 communities, while detailed studies were appropriate for 62 communities and no studies were appropriate for 582 communities. The total length of streams for which limited-detail studies are recommended is 9 ,327 miles with a corresponding cost of $23,007,000. This results in average estimated costs for conducting limited-detail studies of $2,500 per mile of studied stream length. The purpose of the report is to document the limited-detail study methods and the results of the evaluation. (USGS)

  19. Methods for estimating selected flow-duration and flood-frequency characteristics at ungaged sites in Central Idaho

    USGS Publications Warehouse

    Kjelstrom, L.C.

    1998-01-01

    Methods for estimating daily mean discharges for selected flow durations and flood discharge for selected recurrence intervals at ungaged sites in central Idaho were applied using data collected at streamflow-gaging stations in the area. The areal and seasonal variability of discharge from ungaged drainage basins may be described by estimating daily mean discharges that are exceeded 20, 50, and 80 percent of the time each month. At 73 gaging stations, mean monthly discharge was regressed with discharge at three points—20, 50, and 80—from daily mean flow-duration curves for each month. Regression results were improved by dividing the study area into six regions. Previously determined estimates of mean monthly discharge from about 1,200 ungaged drainage basins provided the basis for applying the developed techniques to the ungaged basins. Estimates of daily mean discharges that are exceeded 20, 50, and 80 percent of the time each month at ungaged drainage basins can be made by multiplying mean monthly discharges estimated at ungaged sites by a regression factor for the appropriate region. In general, the flow-duration data were less accurately estimated at discharges exceeded 80 percent of the time than at discharges exceeded 20 percent of the time. Curves drawn through the three points for each of the six regions were most similar in July and most different from December through March. Coefficients of determination of the regressions indicate that differences in mean monthly discharge largely explain differences in discharge at points on the daily mean flow-duration curve. Inherent in the method are errors in the technique used to estimate mean monthly discharge. Flood discharge estimates for selected recurrence intervals at ungaged sites upstream or downstream from gaging stations can be determined by a transfer technique. A weighted ratio of drainage area times flood discharge for selected recurrence intervals at the gaging station can be used to estimate

  20. Improved gas chromatographic method for determination of daminozide by alkaline hydrolysis and 2-nitrobenzaldehyde derivatization and survey results of daminozide in agricultural products.

    PubMed

    Steinbrecher, K; Saxton, W L; Oehler, G A

    1990-01-01

    An improved method was developed for the quantitative determination of daminozide. This new method combines the alkaline hydrolysis and distillation steps of the PAM II method for daminozide with the derivatization, cleanup, and gas chromatographic determination steps of the Wright method for unsymmetrical dimethyl hydrazine (UDMH). The minimum detectable level is 0.05 ppm. Recoveries range from 85 to 110% when daminozide is added at 0.1 to 1.0 ppm, and are generally 40% at the 0.05 ppm level. A variety of domestic and imported products were analyzed by this improved method and daminozide was detected in 33 of the 98 samples analyzed. Levels detected ranged from a trace amount to 0.80 ppm. The identity of UDMH hydrazone was confirmed by mass spectrometry in many samples, thus confirming the presence of daminozide. Two samples containing daminozide were analyzed independently by a second laboratory and the findings were closely duplicated.

  1. Spectroflourometric and spectrophotometric methods for the determination of sitagliptin in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product.

    PubMed

    El-Bagary, Ramzia I; Elkady, Ehab F; Ayoub, Bassam M

    2011-03-01

    Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL(-1). The first derivative spectrophotometric method was used for the determination of MET in the range of 2-12 μg mL(-1) and STG in the range of 50-300 μg mL(-1) by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2-12 μg mL(-1). The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL(-1). The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms.

  2. Spectroflourometric and Spectrophotometric Methods for the Determination of Sitagliptin in Binary Mixture with Metformin and Ternary Mixture with Metformin and Sitagliptin Alkaline Degradation Product

    PubMed Central

    El-Bagary, Ramzia I.; Elkady, Ehab F.; Ayoub, Bassam M.

    2011-01-01

    Simple, accurate and precise spectroflourometric and spectrophotometric methods have been developed and validated for the determination of sitagliptin phosphate monohydrate (STG) and metformin HCL (MET). Zero order, first derivative, ratio derivative spectrophotometric methods and flourometric methods have been developed. The zero order spectrophotometric method was used for the determination of STG in the range of 50-300 μg mL-1. The first derivative spectrophotometric method was used for the determination of MET in the range of 2–12 μg mL-1 and STG in the range of 50-300 μg mL-1 by measuring the peak amplitude at 246.5 nm and 275 nm, respectively. The first derivative of ratio spectra spectrophotometric method used the peak amplitudes at 232 nm and 239 nm for the determination of MET in the range of 2–12 μg mL-1. The flourometric method was used for the determination of STG in the range of 0.25-110 μg mL-1. The proposed methods used to determine each drug in binary mixture with metformin and ternary mixture with metformin and sitagliptin alkaline degradation product that is obtained after alkaline hydrolysis of sitagliptin. The results were statistically compared using one-way analysis of variance (ANOVA). The methods developed were satisfactorily applied to the analysis of the pharmaceutical formulations and proved to be specific and accurate for the quality control of the cited drugs in pharmaceutical dosage forms. PMID:23675222

  3. A finite volume method for a two-phase multicomponent polymer flooding

    NASA Astrophysics Data System (ADS)

    K, Sudarshan Kumar; C, Praveen; D Veerappa Gowda, G.

    2014-10-01

    Multicomponent polymer flooding used in enhanced oil recovery is governed by a system of coupled non-strictly hyperbolic conservation laws. In the presence of gravity, the flux functions need not be monotone and hence designing Godunov type upwind schemes is difficult and computationally expensive. To overcome this difficulty, we use the basic idea of discontinuous flux to reduce the coupled system into an uncoupled system of scalar conservation laws with discontinuous coefficients. For these scalar equations we use the DFLU flux developed in [5] to construct a second order scheme. The scheme is shown to satisfy a maximum principle and the performance of the scheme is shown on both one and two dimensional test problems.

  4. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas

    PubMed Central

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-01-01

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation. PMID:27527202

  5. A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas.

    PubMed

    Li, Chaochao; Cheng, Xiaotao; Li, Na; Du, Xiaohe; Yu, Qian; Kan, Guangyuan

    2016-08-05

    Flood risk analysis is more complex in urban areas than that in rural areas because of their closely packed buildings, different kinds of land uses, and large number of flood control works and drainage systems. The purpose of this paper is to propose a practical framework for flood risk analysis and benefit assessment of flood control measures in urban areas. Based on the concept of disaster risk triangle (hazard, vulnerability and exposure), a comprehensive analysis method and a general procedure were proposed for urban flood risk analysis. Urban Flood Simulation Model (UFSM) and Urban Flood Damage Assessment Model (UFDAM) were integrated to estimate the flood risk in the Pudong flood protection area (Shanghai, China). S-shaped functions were adopted to represent flood return period and damage (R-D) curves. The study results show that flood control works could significantly reduce the flood risk within the 66-year flood return period and the flood risk was reduced by 15.59%. However, the flood risk was only reduced by 7.06% when the flood return period exceeded 66-years. Hence, it is difficult to meet the increasing demands for flood control solely relying on structural measures. The R-D function is suitable to describe the changes of flood control capacity. This frame work can assess the flood risk reduction due to flood control measures, and provide crucial information for strategy development and planning adaptation.

  6. Flash flood warning in mountainaious areas: using damages reports to evaluate the method at small ungauged catchments

    NASA Astrophysics Data System (ADS)

    Defrance, Dimitri; Javelle, Pierre; Ecrepont, Stéphane; Andreassian, Vazken

    2013-04-01

    In Europe, flash floods mainly occur in the Mediterranean area on small catchments with a short concentration time. Anticipating this kind of events is a major issue in order to reduce the resulting damages. But for many of the impacted catchments, no data are available to calibrate and evaluate hydrological models. In this context, the aims of this study is to develop and evaluate a warning method for the Southern French Alps. This area is of particular interest, because it regroups different hydrological regimes, from purely Mediterranean to purely Alpine influences. Two main issues should be addressed: - How to define the hydrological model and its parameterization for an application in an ungauged context? - How to evaluate the final results on 'real' ungauged catchments? The first issue is a classic one. Using a 'observed' data set (154 streamflow stations with catchment areas ranging from 5 to 1000 km² and distributed rainfall available on the 1997-2006 period), we developed a regional model specifically for the studied area. For this purpose, the AIGA method, initially developed for Mediterranean catchments was adapted, in order to take into account snowmelt and to produce baseflows. Then, different parameterizations were tested, derived from different simple regionalisation techniques: - the same parameters set for the whole area defined as the median of the local calibrated parameters; - the same technique as the previous case, but by considering different sub-areas, defined as "hydro-climatically" homogeneous by previous studies; - and finally the neighbour's method. The second issue is more original. Indeed, in most studies the final evaluation is done using gauged stations as they were 'ungauged', ie keeping the at-site discharge data only for validation ant not for calibration. The main disadvantage of this approach is that the evaluation is made at the scale of the gauged catchments, which are in general greater than the catchments impacted by flash

  7. Purification of alkaline solutions and wastes from actinides and technetium by coprecipitation with some carriers using the method of appearing reagents: Final Report

    SciTech Connect

    Peretrukhin, V.F.; Silin, V.I.; Kareta, A.V.; Gelis, A.V.; Shilov, V.P.; German, K.E.; Firsova, E.V.; Maslennikov, A.G.; Trushina, V.E.

    1998-09-01

    The coprecipitation of transuranium elements (TRU) and technetium from alkaline solutions and from simulants of Hanford Site tank wastes has been studied in reducing and oxidizing conditions on uranium(IV,VI) hydroxocompounds, tetraalkylammonium perrhenate and perchlorate, and on hydroxides of Fe(III), Co(III), Mn(II), and Cr(III) using the method of appearing reagents (MAR). Coprecipitations in alkaline solution have been shown to give high decontamination factors (DF) at low content of carrier and in the presence of high salt concentrations. Uranium(IV) hydroxide in concentrations higher than 3 {times} 10{sup {minus}3} M coprecipitates Pu and Cm in any oxidation state from 0.2 to 4 M NaOH with DFs of 110 to 1000 and Np and Tc with DFs of 51 to 176. Technetium (VII) coprecipitates with (5 to 8) {times} 10{sup {minus}4} M tetrabutylammonium (TBA) perrhenate in 0.01 to 0.02 M TBA hydroxide from 0.5 to 1.5 M NaOH to give DFs of 150 to 200. Coprecipitations of Np and Pu with Co(OH){sub 3}, Fe(OH){sub 3}, Cr(OH){sub 3}, and Mn(OH){sub 2} obtained by the MAR from precursors in the range from pH 10.5 to 0.4 M NaOH give DFs from 80 to 400.

  8. Comparing selective H/sub 2/S removal methods in CO/sub 2/ floods

    SciTech Connect

    Laengrich, A.; Carlisle, K.; Harmon, C.

    1982-08-01

    Presents case studies of processes chosen for H/sub 2/S removal, focusing on decision-driving criteria. Emphasizes that the criteria (ethane recovery incentive, fuel gas cost, capital available, and use of existing NGL plant) are not the only important variables to be considered in determining process selections and overall facility designs. H/sub 2/S content of the associated gas stream is typically about 3% at the beginning of the project, and is projected to decrease to about 0.5% at some point in time during the flood. Processes chosen for study are Benfield or Sulfinol gas treating with MDEA selective H/sub 2/S removal from CO/sub 2/ product stream; sour NGL recovery pretreatment plus Selexol selective H/sub 2/S removal from processed gas stream; Ryan/Holmes cryogenic fractionation processes plus DEA NGL product treating; and Benfield gas treating followed by Selexol selective H/sub 2/S removal from CO/sub 2/ product stream. Concludes that the variables discussed here seem to be the decision-driving forces that change most frequently between projects in this area.

  9. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : evaluation of alkaline persulfate digestion as an alternative to Kjeldahl digestion for determination of total and dissolved nitrogen and phosphorus in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2003-01-01

    Alkaline persulfate digestion was evaluated and validated as a more sensitive, accurate, and less toxic alternative to Kjeldahl digestion for routine determination of nitrogen and phosphorus in surface- and ground-water samples in a large-scale and geographically diverse study conducted by U.S. Geological Survey (USGS) between October 1, 2001, and September 30, 2002. Data for this study were obtained from about 2,100 surface- and ground-water samples that were analyzed for Kjeldahl nitrogen and Kjeldahl phosphorus in the course of routine operations at the USGS National Water Quality Laboratory (NWQL). These samples were analyzed independently for total nitrogen and total phosphorus using an alkaline persulfate digestion method developed by the NWQL Methods Research and Development Program. About half of these samples were collected during nominally high-flow (April-June) conditions and the other half were collected during nominally low-flow (August-September) conditions. The number of filtered and whole-water samples analyzed from each flow regime was about equal.By operational definition, Kjeldahl nitrogen (ammonium + organic nitrogen) and alkaline persulfate digestion total nitrogen (ammonium + nitrite + nitrate + organic nitrogen) are not equivalent. It was necessary, therefore, to reconcile this operational difference by subtracting nitrate + nitrite concentra-tions from alkaline persulfate dissolved and total nitrogen concentrations prior to graphical and statistical comparisons with dissolved and total Kjeldahl nitrogen concentrations. On the basis of two-population paired t-test statistics, the means of all nitrate-corrected alkaline persulfate nitrogen and Kjeldahl nitrogen concentrations (2,066 paired results) were significantly different from zero at the p = 0.05 level. Statistically, the means of Kjeldahl nitrogen concentrations were greater than those of nitrate-corrected alkaline persulfate nitrogen concentrations. Experimental evidence strongly

  10. Structural master plan of flood mitigation measures

    NASA Astrophysics Data System (ADS)

    Heidari, A.

    2009-01-01

    Flood protection is one of the practical methods in damage reduction. Although it not possible to be completely protected from flood disaster but major part of damages can be reduced by mitigation plans. In this paper, the optimum flood mitigation master plan is determined by economic evaluation in trading off between the construction costs and expected value of damage reduction as the benefits. Size of the certain mitigation alternative is also be obtained by risk analysis by accepting possibility of flood overtopping. Different flood mitigation alternatives are investigated from various aspects in the Dez and Karun river floodplain areas as a case study in south west of IRAN. The results show that detention dam and flood diversion are the best alternatives of flood mitigation methods as well as enforcing the flood control purpose of upstream multipurpose reservoirs. Dyke and levees are not mostly justifiable because of negative impact on down stream by enhancing routed flood peak discharge magnitude and flood damages as well.

  11. Flood hazard energy in urban areas: a new integrated method for flood risk analysis in synthesizing interactions with urban boundary layer

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Schmidt, A.

    2015-12-01

    Since urban physical characteristics (such as morphology and land-use/land-cover) are different from those of nature, altered interactions between the surface and atmosphere (especially urban boundary layer, UBL) or surface and subsurface can affect the hydrologic behavior and hence the flood hazards. In this research we focus on three main aspects of the urban surface/atmosphere interactions that affect flood hazard: urban heat island (UHI) effect, increased surface roughness, and accumulated aerosols. These factors, along with the uncertainties in quantifying these components make risk analysis intractable. In order to perform a risk analysis, the impact of these components needs to be mapped to a variable that can be mathematically described in a risk-analysis framework. We propose defining hazard energy as a surrogate for the combined effect of these three components. Perturbations that can change the hazard energy come from diverse sources in the urban areas and these somewhat disconnected things can be combined by the energy concept to characterize the impacts of urban areas in risk assessment. This approach synthesizes across hydrological and hydraulic processes in UBL, land surface, subsurface, and sewer network with scrutinizing energy exchange across places. We can extend our understanding about not only the influence of cities on local climate in rural areas or larger scales but also the interaction of cities and nature affecting each other.

  12. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge.

    PubMed

    Zhao, Jianwei; Wang, Dongbo; Li, Xiaoming; Yang, Qi; Chen, Hongbo; Zhong, Yu; Zeng, Guangming

    2015-07-01

    Alkaline condition (especially pH 10) has been demonstrated to be a promising method for short-chain fatty acid (SCFA) production from waste activated sludge anaerobic fermentation, because it can effectively inhibit the activities of methanogens. However, due to the limit of sludge solubilization rate, long fermentation time is required but SCFA yield is still limited. This paper reports a new pretreatment method for alkaline fermentation, i.e., using free nitrous acid (FNA) to pretreat sludge for 2 d, by which the fermentation time is remarkably shortened and meanwhile the SCFA production is significantly enhanced. Experimental results showed the highest SCFA production of 370.1 mg COD/g VSS (volatile suspended solids) was achieved at 1.54 mg FNA/L pretreatment integration with 2 d of pH 10 fermentation, which was 4.7- and 1.5-fold of that in the blank (uncontrolled) and sole pH 10 systems, respectively. The total time of this integration system was only 4 d, whereas the corresponding time was 15 d in the blank and 8 d in the sole pH 10 systems. The mechanism study showed that compared with pH 10, FNA pretreatment accelerated disruption of both extracellular polymeric substances and cell envelope. After FNA pretreatment, pH 10 treatment (1 d) caused 38.0% higher substrate solubilization than the sole FNA, which indicated that FNA integration with pH 10 could cause positive synergy on sludge solubilization. It was also observed that this integration method benefited hydrolysis and acidification processes. Therefore, more SCFA was produced, but less fermentation time was required in the integrated system.

  13. Flood Classification Using Support Vector Machines

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Torfs, Paul J. J.; Brauer, Claudia C.

    2013-04-01

    Lowland floods are in general considered to be less extreme than mountainous floods. In order to investigate this, seven lowland floods in the Netherlands were selected and compared to mountainous floods from the study of Marchi et al. (2010). Both a 2D and 3D approach of the statistical two-group classification method support vector machines (Cortes and Vapnik, 1995) were used to find a statistical difference between the two flood types. Support vector machines were able to draw a decision plane between the two flood types, misclassifying one out of seven lowland floods, and one out of 67 mountainous floods. The main difference between the two flood types can be found in the runoff coefficient (with lowland floods having a lower runoff coefficient than mountainous floods), the cumulative precipitation causing the flood (which was lower for lowland floods), and, obviously, the relief ratio. Support vector machines have proved to be useful for flood classification and might be applicable in future classification studies. References Cortes, C., and V. Vapnik. "Support-Vector Networks." Machine Learning 20: (1995) 273-297. Marchi, L., M. Borga, E. Preciso, and E. Gaume. "Characterisation of selected extreme flash floods in Europe and implications for flood risk management." Journal of Hydrology 394: (2010) 118-133.

  14. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011

    USGS Publications Warehouse

    Feaster, Toby D.; Gotvald, Anthony J.; Weaver, J. Curtis

    2014-01-01

    Reliable estimates of the magnitude and frequency of floods are essential for the design of transportation and water-conveyance structures, flood-insurance studies, and flood-plain management. Such estimates are particularly important in densely populated urban areas. In order to increase the number of streamflow-gaging stations (streamgages) available for analysis, expand the geographical coverage that would allow for application of regional regression equations across State boundaries, and build on a previous flood-frequency investigation of rural U.S Geological Survey streamgages in the Southeast United States, a multistate approach was used to update methods for determining the magnitude and frequency of floods in urban and small, rural streams that are not substantially affected by regulation or tidal fluctuations in Georgia, South Carolina, and North Carolina. The at-site flood-frequency analysis of annual peak-flow data for urban and small, rural streams (through September 30, 2011) included 116 urban streamgages and 32 small, rural streamgages, defined in this report as basins draining less than 1 square mile. The regional regression analysis included annual peak-flow data from an additional 338 rural streamgages previously included in U.S. Geological Survey flood-frequency reports and 2 additional rural streamgages in North Carolina that were not included in the previous Southeast rural flood-frequency investigation for a total of 488 streamgages included in the urban and small, rural regression analysis. The at-site flood-frequency analyses for the urban and small, rural streamgages included the expected moments algorithm, which is a modification of the Bulletin 17B log-Pearson type III method for fitting the statistical distribution to the logarithms of the annual peak flows. Where applicable, the flood-frequency analysis also included low-outlier and historic information. Additionally, the application of a generalized Grubbs-Becks test allowed for the

  15. A low-cost method to measure the timing of post-fire flash floods and debris flows relative to rainfall

    USGS Publications Warehouse

    Kean, Jason W.; Staley, Dennis M.; Leeper, Robert J.; Schmidt, Kevin Michael; Gartner, Joseph E.

    2012-01-01

    Data on the specific timing of post-fire flash floods and debris flows are very limited. We describe a method to measure the response times of small burned watersheds to rainfall using a low-cost pressure transducer, which can be installed quickly after a fire. Although the pressure transducer is not designed for sustained sampling at the fast rates ({less than or equal to}2 sec) used at more advanced debris-flow monitoring sites, comparisons with high-data rate stage data show that measured spikes in pressure sampled at 1-min intervals are sufficient to detect the passage of most debris flows and floods. Post-event site visits are used to measure the peak stage and identify flow type based on deposit characteristics. The basin response timescale (tb) to generate flow at each site was determined from an analysis of the cross correlation between time series of flow pressure and 5-min rainfall intensity. This timescale was found to be less than 30 minutes for 40 post-fire floods and 11 post-fire debris flows recorded in 15 southern California watersheds ({less than or equal to} 1.4 km2). Including data from 24 other debris flows recorded at 5 more instrumentally advanced monitoring stations, we find there is not a substantial difference in the median tb for floods and debris flows (11 and 9 minutes, respectively); however, there are slight, statistically significant differences in the trends of flood and debris-flow tb with basin area, which are presumably related to differences in flow speed between floods and debris flows.

  16. Estimates of evapotranspiration in alkaline scrub and meadow communities of Owens Valley, California, using the Bowen-ratio, eddy-correlation, and Penman-combination methods

    USGS Publications Warehouse

    Duell, L. F. W.

    1988-01-01

    In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared to other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy budget measurements. Penman-combination potential ET estimates were determined to be unusable because they overestimated actual ET. Modification in the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 300 mm at a low-density scrub site to 1,100 mm at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied. (Author 's abstract)

  17. Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona

    USGS Publications Warehouse

    Kennedy, Jeffrey R.; Paretti, Nicholas V.; Veilleux, Andrea G.

    2014-01-01

    Regression equations, which allow predictions of n-day flood-duration flows for selected annual exceedance probabilities at ungaged sites, were developed using generalized least-squares regression and flood-duration flow frequency estimates at 56 streamgaging stations within a single, relatively uniform physiographic region in the central part of Arizona, between the Colorado Plateau and Basin and Range Province, called the Transition Zone. Drainage area explained most of the variation in the n-day flood-duration annual exceedance probabilities, but mean annual precipitation and mean elevation were also significant variables in the regression models. Standard error of prediction for the regression equations varies from 28 to 53 percent and generally decreases with increasing n-day duration. Outside the Transition Zone there are insufficient streamgaging stations to develop regression equations, but flood-duration flow frequency estimates are presented at select streamgaging stations.

  18. Method of using a lignosulfonate/carbohydrate system as a sacrificial agent for surfactant flooding

    SciTech Connect

    Kalfoglou, G.

    1986-12-09

    A method is described of recovering hydrocarbons from a subterranean hydrocarbon formation which is penetrated by at least one injection well and at least one production well wherein chemicals are injected into the formation to sweep oil through the formation to at least one production well. The method consists of: injecting into the formation a solution containing about 0.1% to about 10% by weight of a mixture of at least two sacrificial agents designed to prevent the loss to the formation of the injected chemicals, the mixture of at least two sacrificial agents comprised of one sacrificial agent which is a lignosulfonate and a second sacrificial agent selected from the group consisting of alkoxylated starch, esterified starch, oxidized starch, phosphated starch, alkoxylated cellulose, carboxyalkyl cellulose, carboxyalkylakoxylated cellulose, alkylakoxylated cellulose, cellulose sulfates, and cellulose acetate sulfates.

  19. A novel chemiluminescence quenching method for determination of sulfonamides in pharmaceutical and biological fluid based on luminol-Ag(III) complex reaction in alkaline solution.

    PubMed

    Sun, Hanwen; Chen, Peiyun; Li, Liqing; Cheng, Peng

    2011-05-01

    A novel chemiluminescence (CL) quenching method for the determination of sulfonamides is proposed. The CL reaction between Ag(III) complex [Ag(HIO₆)₂]⁵⁻ and luminol in alkaline solution was investigated. The quenching effect of sulfonamides on CL emission of [Ag(HIO₆)₂]⁵⁻-luminol system was found. Quenching degree of CL emission was proportional to sulfonamide concentration. The effects of the reaction conditions on CL emission and quenching were examined. Under optimal conditions, the detection limits (s/n = 3) were 7.2, 17 and 8.3 ng/mL for sulfadiazine, sulfameter, and sulfadimethoxine, respectively. The recoveries of the three drugs were in the range of 91.3-110% with RSDs of 1.9-2.7% for urine samples, and 106-112% with RSDs of 1.6-2.8% for serum samples. The proposed method was used for the determination of sulfadiazine at clinically relevant concentrations in real urine and serum samples with satisfactory results.

  20. Exploitation of phosphorescent labelling reagent of fullerol-fluorescein isothiocyanate and new method for the determination of trace alkaline phosphatase as well as forecast of human diseases.

    PubMed

    Liu, Jia-Ming; Huang, Xiao-Mei; Liu, Zhen-Bo; Lin, Shao-Qin; Li, Fei-Ming; Gao, Fei; Li, Zhi-Ming; Zeng, Li-Qing; Li, Lian-Ying; Ouyang, Ying

    2009-08-26

    A new phosphorescent labelling reagent consisting of fullerol, fluorescein isothiocyanate and N,N-dimethylaniline (F-ol-(FITC)(n)-DMA) was developed. The mode of action is based on the reactivity of the active -OH group in F-ol with the -COOH group of FITC to form an F-ol-(FITC)(n)-DMA complex containing several FITC molecules. F-ol-(FITC)(n)-DMA increased the number of luminescent molecules in the biological target of WGA-AP-WGA-F-ol-(FITC)(n)-DMA (WGA and AP are wheat germ agglutinin and alkaline phosphatase, respectively) which improved the sensitivity using solid substrate room temperature phosphorimetry (SSRTP) detection. The proposed method provided high sensitivity and strong specificity for WGA-AP. The limit of detection (LD) was 0.15 ag AP spot(-1) for F-ol and 0.097 ag AP spot(-1) for FITC in F-ol-(FITC)(n)-DMA, which was lower than the method using single luminescent molecules of F-ol-DMA and FITC-DMA to label WGA (0.20 ag AP spot(-1) for F-ol-DMA and 0.22 ag AP spot(-1) for FITC-DMA). Results for the determination of AP in human serum were in good agreement with those obtained by enzyme-linked immunosorbent assay. The mechanism of F-ol-(FITC)(n)-DMA labelling of WGA was discussed.

  1. Temporal clustering of floods in Germany: Do flood-rich and flood-poor periods exist?

    NASA Astrophysics Data System (ADS)

    Merz, Bruno; Nguyen, Viet Dung; Vorogushyn, Sergiy

    2016-10-01

    The repeated occurrence of exceptional floods within a few years, such as the Rhine floods in 1993 and 1995 and the Elbe and Danube floods in 2002 and 2013, suggests that floods in Central Europe may be organized in flood-rich and flood-poor periods. This hypothesis is studied by testing the significance of temporal clustering in flood occurrence (peak-over-threshold) time series for 68 catchments across Germany for the period 1932-2005. To assess the robustness of the results, different methods are used: Firstly, the index of dispersion, which quantifies the departure from a homogeneous Poisson process, is investigated. Further, the time-variation of the flood occurrence rate is derived by non-parametric kernel implementation and the significance of clustering is evaluated via parametric and non-parametric tests. Although the methods give consistent overall results, the specific results differ considerably. Hence, we recommend applying different methods when investigating flood clustering. For flood estimation and risk management, it is of relevance to understand whether clustering changes with flood severity and time scale. To this end, clustering is assessed for different thresholds and time scales. It is found that the majority of catchments show temporal clustering at the 5% significance level for low thresholds and time scales of one to a few years. However, clustering decreases substantially with increasing threshold and time scale. We hypothesize that flood clustering in Germany is mainly caused by catchment memory effects along with intra- to inter-annual climate variability, and that decadal climate variability plays a minor role.

  2. Flood regionalization: A hybrid geographic and predictor-variable region-of-influence regression method

    USGS Publications Warehouse

    Eng, K.; Milly, P.C.D.; Tasker, Gary D.

    2007-01-01

    To facilitate estimation of streamflow characteristics at an ungauged site, hydrologists often define a region of influence containing gauged sites hydrologically similar to the estimation site. This region can be defined either in geographic space or in the space of the variables that are used to predict streamflow (predictor variables). These approaches are complementary, and a combination of the two may be superior to either. Here we propose a hybrid region-of-influence (HRoI) regression method that combines the two approaches. The new method was applied with streamflow records from 1,091 gauges in the southeastern United States to estimate the 50-year peak flow (Q50). The HRoI approach yielded lower root-mean-square estimation errors and produced fewer extreme errors than either the predictor-variable or geographic region-of-influence approaches. It is concluded, for Q50 in the study region, that similarity with respect to the basin characteristics considered (area, slope, and annual precipitation) is important, but incomplete, and that the consideration of geographic proximity of stations provides a useful surrogate for characteristics that are not included in the analysis. ?? 2007 ASCE.

  3. Strange Floods: The Upper Tail of Flood Peaks in the Conterminous US

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Baeck, M. L.

    2015-12-01

    The strangest flood in US history is arguably the 14 June 1903 flood that devastated Heppner, Oregon. The notion of strange floods is based on the assumption that there are flood agents that dominate the upper tail of flood distributions for a region (severe thunderstorms in complex terrain in the case of the Heppner flood) and are exceedingly poorly characterized by conventional flood records. The orographic thunderstorm systems in the central Appalachians that dominate envelope curves of flood peaks in the eastern US for basin areas less than 1,000 sq. km. and control portions of the global envelope curve of rainfall accumulations at time scales shorter than 6 hours) provide a well-documented example of strange floods. Despite extensive evidence of their occurrence, principally from field-based case studies, they are poorly represented in conventional USGS flood records. We develop methods for examining strange floods based on analyses of the complete record of USGS annual peak observations and on hydrometeorological analyses of the most extreme floods in the US flood record. The methods we present are grounded in extreme value theory and designed to enhance our understanding of extreme floods and improve methods for estimating extreme flood magnitudes.

  4. Evaluation of a chemiluminescence method for measuring alkaline phosphatase activity in whole milk of multiple species and bovine dairy drinks: interlaboratory study.

    PubMed

    Salter, Robert S; Fitchen, John

    2006-01-01

    Alkaline phosphatase (ALP) is a ubiquitous enzyme in milk with time-temperature destruction similar to that of certain pathogens destroyed in pasteurization. Measurement of ALP to indicate proper pasteurization is a common practice. Recently the public health level for ALP was decreased to 350 mU/L, a level below the sensitivity of older colorimetric ALP methods. This study was conducted within the structure of the International Dairy Federation and the International Organization for Standardization to evaluate the reproducibility of the chemiluminescence method (Charm PasLite) for ALP at 50, 100, 350, and 500 mU/L in whole milk of multiple species to meet new regulations in the United States and proposed regulations in the European Union (EU). Fifteen laboratories from 8 countries evaluated bovine, goat, sheep, and buffalo milk, bovine skim milk, 20% fat cream, and 2% fat chocolate milk. At ALP levels of 350 and 500 mU/L, the average relative standard deviation for repeatability (RSDr) was 7.5%, and the average relative standard deviation of reproducibility was (RSDR) 15%. For ALP at 100 and 50 mU/L, the average RSDr values were 10.5 and 12.6%, respectively, and the average RSDR values were 18 and 25%, respectively. The limit of detection was 20 mU/L. Results are comparable to those obtained with other enzymatic photo-activated system methods such as the fluorometric method. Results indicate that the method is suitable for measuring ALP in the milk of multiple species and in dairy drinks at U.S. and proposed EU levels.

  5. Estimates of evapotranspiration in alkaline scrub and meadow communities of Owens Valley, California, using the Bowen-ratio, eddy-correlation, and penman-combination methods

    USGS Publications Warehouse

    Duell, Lowell F. W.

    1990-01-01

    In Owens Valley, evapotranspiration (ET) is one of the largest components of outflow in the hydrologic budget and the least understood. ET estimates for December 1983 through October 1985 were made for seven representative locations selected on the basis of geohydrology and the characteristics of phreatophytic alkaline scrub and meadow communities. The Bowen-ratio, eddy-correlation, and Penman-combination methods were used to estimate ET. The results of the analyses appear satisfactory when compared with other estimates of ET. Results by the eddy-correlation method are for a direct and a residual latent-heat flux that is based on sensible-heat flux and energy-budget measurements. Penman-combination potential-ET estimates were determined to be unusable because they overestimated actual ET. Modification of the psychrometer constant of this method to account for differences between heat-diffusion resistance and vapor-diffusion resistance permitted actual ET to be estimated. The methods described in this report may be used for studies in similar semiarid and arid rangeland areas in the Western United States. Meteorological data for three field sites are included in the appendix of this report. Simple linear regression analysis indicates that ET estimates are correlated to air temperature, vapor-density deficit, and net radiation. Estimates of annual ET range from 301 millimeters at a low-density scrub site to 1,137 millimeters at a high-density meadow site. The monthly percentage of annual ET was determined to be similar for all sites studied.

  6. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  7. Method for estimating the magnitude and frequency of floods at ungaged sites on unregulated rural streams in Iowa

    USGS Publications Warehouse

    Lara, O.G.

    1987-01-01

    This report provides techniques and procedures for estimating the probable magnitude and frequency of floods at ungaged sites on Iowa streams. Physiographic characteristics were used to define the boundaries of five hydrologic regions. Regional regression equations that relate the size of the drainage area to flood magnitude are defined for estimating peak discharges having specified recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Regional regression equations are applicable to sites on streams that have drainage areas ranging from 0.04- to 5,150 square miles provided that the streams are not affected significantly by regulation upstream from the sites and that the drainage areas upstream from the sites are not mostly urban areas. Flood-frequency characteristics for the mains terns of selected rivers are presented in graphs as a function of drainage area.

  8. LOWER COST METHODS FOR IMPROVED OIL RECOVERY (IOR) VIA SURFACTANT FLOODING

    SciTech Connect

    William A. Goddard III; Yongchun Tang; Patrick Shuler; Mario Blanco; Seung Soon Jang; Shiang-Tai Lin; Prabal Maiti; Yongfu Wu; Stefan Iglauer; Xiaohang Zhang

    2004-09-01

    This report provides a summary of the work performed in this 3-year project sponsored by DOE. The overall objective of this project is to identify new, potentially more cost-effective surfactant formulations for improved oil recovery (IOR). The general approach is to use an integrated experimental and computational chemistry effort to improve our understanding of the link between surfactant structure and performance, and from this knowledge, develop improved IOR surfactant formulations. Accomplishments for the project include: (1) completion of a literature review to assemble current and new surfactant IOR ideas, (2) Development of new atomistic-level MD (molecular dynamic) modeling methodologies to calculate IFT (interfacial tension) rigorously from first principles, (3) exploration of less computationally intensive mesoscale methods to estimate IFT, Quantitative Structure Property Relationship (QSPR), and cohesive energy density (CED) calculations, (4) experiments to screen many surfactant structures for desirable low IFT and solid adsorption behavior, and (5) further experimental characterization of the more promising new candidate formulations (based on alkyl polyglycosides (APG) and alkyl propoxy sulfate surfactants). Important findings from this project include: (1) the IFT between two pure substances may be calculated quantitatively from fundamental principles using Molecular Dynamics, the same approach can provide qualitative results for ternary systems containing a surfactant, (2) low concentrations of alkyl polyglycoside surfactants have potential for IOR (Improved Oil Recovery) applications from a technical standpoint (if formulated properly with a cosurfactant, they can create a low IFT at low concentration) and also are viable economically as they are available commercially, and (3) the alkylpropoxy sulfate surfactants have promising IFT performance also, plus these surfactants can have high optimal salinity and so may be attractive for use in higher

  9. Mitigating flood exposure

    PubMed Central

    Shultz, James M; McLean, Andrew; Herberman Mash, Holly B; Rosen, Alexa; Kelly, Fiona; Solo-Gabriele, Helena M; Youngs Jr, Georgia A; Jensen, Jessica; Bernal, Oscar; Neria, Yuval

    2013-01-01

    Introduction. In 2011, following heavy winter snowfall, two cities bordering two rivers in North Dakota, USA faced major flood threats. Flooding was foreseeable and predictable although the extent of risk was uncertain. One community, Fargo, situated in a shallow river basin, successfully mitigated and prevented flooding. For the other community, Minot, located in a deep river valley, prevention was not possible and downtown businesses and one-quarter of the homes were inundated, in the city’s worst flood on record. We aimed at contrasting the respective hazards, vulnerabilities, stressors, psychological risk factors, psychosocial consequences, and disaster risk reduction strategies under conditions where flood prevention was, and was not, possible. Methods. We applied the “trauma signature analysis” (TSIG) approach to compare the hazard profiles, identify salient disaster stressors, document the key components of disaster risk reduction response, and examine indicators of community resilience. Results. Two demographically-comparable communities, Fargo and Minot, faced challenging river flood threats and exhibited effective coordination across community sectors. We examined the implementation of disaster risk reduction strategies in situations where coordinated citizen action was able to prevent disaster impact (hazard avoidance) compared to the more common scenario when unpreventable disaster strikes, causing destruction, harm, and distress. Across a range of indicators, it is clear that successful mitigation diminishes both physical and psychological impact, thereby reducing the trauma signature of the event. Conclusion. In contrast to experience of historic flooding in Minot, the city of Fargo succeeded in reducing the trauma signature by way of reducing risk through mitigation. PMID:28228985

  10. Evolution of flood typology across Europe

    NASA Astrophysics Data System (ADS)

    Hundecha, Yeshewatesfa; Parajka, Juraj; Viglione, Alberto

    2016-04-01

    Following the frequent occurrence of severe flood events in different parts of Europe in the recent past, there has been a rise in interest in understanding the mechanisms by which the different events have been triggered and how they have been evolving over time. This study was carried out to establish the characteristics of observed flood events in the past across Europe in terms of their spatial extent and the processes leading up to the events using a process based hydrological model. To this end, daily discharge data from more than 750 stations of the Global Runoff Data Center were used to identify flood events at the stations based on a threshold method for the period 1961-2010. The identified events at the different stations were further analyzed to determine whether they form the same flood event, thereby delineating the spatial extent of the flood events. The pan-European hydrological model, E-HYPE, which runs at a daily time step, was employed to estimate a set of catchment hydrological and hydro-meteorological state variables that are relevant in the flood generating process for each of the identified spatially delineated flood events. A subsequent clustering of the events based on the simulated state variables, together with the spatial extent of the flood events, was used to identify the flood generating mechanism of each flood event. Four general flood generation mechanisms were identified: long-rain flood, short-rain flood, snowmelt flood, and rain-on-snow flood. A trend analysis was performed to investigate how the frequency of each of the flood types has changed over time. In order to investigate whether there is a regional and seasonal pattern in the dominant flood generating mechanisms, this analysis was performed separately for winter and summer seasons and three different regions of Europe: Northern, Western, and Eastern Europe. The results show a regional difference both in the dominant flood generating mechanism and the corresponding trends.

  11. Predicting Flood Hazards in Systems with Multiple Flooding Mechanisms

    NASA Astrophysics Data System (ADS)

    Luke, A.; Schubert, J.; Cheng, L.; AghaKouchak, A.; Sanders, B. F.

    2014-12-01

    Delineating flood zones in systems that are susceptible to flooding from a single mechanism (riverine flooding) is a relatively well defined procedure with specific guidance from agencies such as FEMA and USACE. However, there is little guidance in delineating flood zones in systems that are susceptible to flooding from multiple mechanisms such as storm surge, waves, tidal influence, and riverine flooding. In this study, a new flood mapping method which accounts for multiple extremes occurring simultaneously is developed and exemplified. The study site in which the method is employed is the Tijuana River Estuary (TRE) located in Southern California adjacent to the U.S./Mexico border. TRE is an intertidal coastal estuary that receives freshwater flows from the Tijuana River. Extreme discharge from the Tijuana River is the primary driver of flooding within TRE, however tide level and storm surge also play a significant role in flooding extent and depth. A comparison between measured flows at the Tijuana River and ocean levels revealed a correlation between extreme discharge and ocean height. Using a novel statistical method based upon extreme value theory, ocean heights were predicted conditioned up extreme discharge occurring within the Tijuana River. This statistical technique could also be applied to other systems in which different factors are identified as the primary drivers of flooding, such as significant wave height conditioned upon tide level, for example. Using the predicted ocean levels conditioned upon varying return levels of discharge as forcing parameters for the 2D hydraulic model BreZo, the 100, 50, 20, and 10 year floodplains were delineated. The results will then be compared to floodplains delineated using the standard methods recommended by FEMA for riverine zones with a downstream ocean boundary.

  12. Methods for estimating annual exceedance-probability discharges and largest recorded floods for unregulated streams in rural Missouri

    USGS Publications Warehouse

    Southard, Rodney E.; Veilleux, Andrea G.

    2014-01-01

    Regression analysis techniques were used to develop a set of equations for rural ungaged stream sites for estimating discharges with 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent annual exceedance probabilities, which are equivalent to annual flood-frequency recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years, respectively. Basin and climatic characteristics were computed using geographic information software and digital geospatial data. A total of 35 characteristics were computed for use in preliminary statewide and regional regression analyses. Annual exceedance-probability discharge estimates were computed for 278 streamgages by using the expected moments algorithm to fit a log-Pearson Type III distribution to the logarithms of annual peak discharges for each streamgage using annual peak-discharge data from water year 1844 to 2012. Low-outlier and historic information were incorporated into the annual exceedance-probability analyses, and a generalized multiple Grubbs-Beck test was used to detect potentially influential low floods. Annual peak flows less than a minimum recordable discharge at a streamgage were incorporated into the at-site station analyses. An updated regional skew coefficient was determined for the State of Missouri using Bayesian weighted least-squares/generalized least squares regression analyses. At-site skew estimates for 108 long-term streamgages with 30 or more years of record and the 35 basin characteristics defined for this study were used to estimate the regional variability in skew. However, a constant generalized-skew value of -0.30 and a mean square error of 0.14 were determined in this study. Previous flood studies indicated that the distinct physical features of the three physiographic provinces have a pronounced effect on the magnitude of flood peaks. Trends in the magnitudes of the residuals from preliminary statewide regression analyses from previous studies confirmed that regional analyses in this study were

  13. Analysis of an influence of the bias correction method on the projected changes of flood indices in the selected catchments in Poland

    NASA Astrophysics Data System (ADS)

    Osuch, Marzena; Lawrence, Deborah; Meresa, Hadush K.; Napiórkowski, Jaroslaw J.; Romanowicz, Renata J.

    2016-04-01

    The aim of the study is an estimation of the uncertainty in flood indices introduced by bias correction of climate model variables in ten catchments in Poland. A simulation approach is used to obtain daily flows in catchments under changing climatic conditions, following the RCP4.5 and RCP8.5 emission scenarios. Climate projections were obtained from the EURO-CORDEX initiative, and time series of precipitation and air temperature from different RCM/GCMs for the periods: 1971-2000, 2021-2050 and 2071-2100 were used. The climate model outputs in the Poland area are highly biased; therefore, additional post processing in the form of bias correction of precipitation and temperature is needed. In this work we used four versions of the quantile mapping method (empirical quantile mapping, and three distribution based mappings: double gamma, single gamma and Birnbaum-Sanders) for correction of the precipitation time series and one method for air temperature correction (empirical quantile method). The HBV rainfall-runoff catchment-based model is used to estimate future flow time series. The models are calibrated using the available precipitation, air temperature, and flow observations for the period 1971-2000. Model performance is evaluated using observed data for the period 2001-2010. We also verify performance using the EURO-CORDEX simulations for the reference period (1971-2000), both with and without bias correction of the RCM/GCM outputs. Finally, the models are run for the future climate simulated by the RCM/GCM models for the years: 2021-2050 and 2071-2100. Changes in the mean annual flood and in flood quantiles are analysed and the effect of bias correction on the estimated changes is also considered. The results indicate substantial differences between climate models and catchments. The regional variability has a close relationship with the flood regime type. Catchments where high flows are expected to increase have a rainfall-dominated flood regime in the current

  14. Flood information for flood-plain planning

    USGS Publications Warehouse

    Bue, Conrad D.

    1967-01-01

    Floods are natural and normal phenomena. They are catastrophic simply because man occupies the flood plain, the highwater channel of a river. Man occupies flood plains because it is convenient and profitable to do so, but he must purchase his occupancy at a price-either sustain flood damage, or provide flood-control facilities. Although large sums of money have been, and are being, spent for flood control, flood damage continues to mount. However, neither complete flood control nor abandonment of the flood plain is practicable. Flood plains are a valuable resource and will continue to be occupied, but the nature and degree of occupancy should be compatible with the risk involved and with the degree of protection that is practicable to provide. It is primarily to meet the needs for defining the risk that the flood-inundation maps of the U.S. Geological Survey are prepared.

  15. Evaluating flood potential with GRACE in the United States

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Molodtsov, S.; Kirilenko, A.; Zhang, X.; VanLooy, J.

    2015-11-01

    One of the Gravity Recovery and Climate Experiment (GRACE) products, the Terrestrial Water Storage Anomaly (TWSA), was used for assessing large-scale flood risk through Reager's Flood Potential Index (RFPI) by Reager and Famiglietti (2009). The efficacy of the proposed RFPI for flood risk assessment was evaluated over the continental US using multi-year flood observation data from 2003 to 2012 by the US Geological Survey and Dartmouth Flood Observatory. In general, the flood risk based on the RFPI agreed well with the observed floods on regional and even local scales. The method exhibits higher skill in predicting the large-area, long-duration floods, especially during the summer season.

  16. Instrumentation, methods of flood-data collection and transmission, and evaluation of streamflow-gaging network in Indiana

    USGS Publications Warehouse

    Glatfelter, D.R.; Butch, G.K.

    1994-01-01

    The study results indicate that installation of streamflow-gaging stations at 15 new sites would improve collection of flood data. Instrumenting the 15 new sites plus 26 existing streamflow-gaging stations with telemetry, preferably data-collection platforms with satellite transmitters, would improve transmission of data to users of the information.

  17. A novel cobalt tetranitrophthalocyanine/graphene composite assembled by an in situ solvothermal synthesis method as a highly efficient electrocatalyst for the oxygen reduction reaction in alkaline medium.

    PubMed

    Lv, Guojun; Cui, Lili; Wu, Yanying; Liu, Ying; Pu, Tao; He, Xingquan

    2013-08-21

    A novel micro/nano-composite, based on cobalt(II) tetranitrophthalocyanine (CoTNPc) grown on poly(sodium-p-styrenesulfonate) modified graphene (PGr), as a non-noble-metal catalyst for the oxygen reduction reaction (ORR), is fabricated by an in situ solvothermal synthesis method. The CoTNPc/PGr is characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. The electrocatalytic activity of the CoTNPc/PGr composite toward the ORR is evaluated using cyclic voltammetry and linear sweep voltammetry methods. The CoTNPc/PGr composite exhibits an unexpected, surprisingly high ORR activity compared to CoTNPc or PGr. The onset potential for ORR on CoTNPc/PGr is found to be around -0.10 V vs. SCE in 0.1 M NaOH solution, which is 30 mV and 70 mV more positive than that on PGr and CoTNPc, respectively. The peak current density on CoTNPc/PGr is about 2 times than that on PGr and CoTNPc, respectively. Rotating disk electrode (RDE) measurements reveal that the ORR mechanism is nearly via a four-electron pathway on CoTNPc/PGr. The current density for ORR on CoTNPc/PGr still remains 69.9% of its initial value after chronoamperometric measurements for 24 h. Pt/C catalyst, on the other hand, only retains 13.3% of its initial current. The peak potential shifts slightly and current barely changes when 3 M methanol is added. The fabricated composite catalyst for ORR displays high activity, good stability and excellent tolerance to the crossover effect, which may be used as a promising Pt-free catalyst in alkaline direct methanol fuel cells (DMFCs).

  18. Tsunami flooding

    USGS Publications Warehouse

    Geist, Eric; Jones, Henry; McBride, Mark; Fedors, Randy

    2013-01-01

    Panel 5 focused on tsunami flooding with an emphasis on Probabilistic Tsunami Hazard Analysis (PTHA) as derived from its counterpart, Probabilistic Seismic Hazard Analysis (PSHA) that determines seismic ground-motion hazards. The Panel reviewed current practices in PTHA and determined the viability of extending the analysis to extreme design probabilities (i.e., 10-4 to 10-6). In addition to earthquake sources for tsunamis, PTHA for extreme events necessitates the inclusion of tsunamis generated by submarine landslides, and treatment of the large attendant uncertainty in source characterization and recurrence rates. Tsunamis can be caused by local and distant earthquakes, landslides, volcanism, and asteroid/meteorite impacts. Coastal flooding caused by storm surges and seiches is covered in Panel 7. Tsunamis directly tied to earthquakes, the similarities with (and path forward offered by) the PSHA approach for PTHA, and especially submarine landslide tsunamis were a particular focus of Panel 5.

  19. Regionalisation of a distributed method for flood quantiles estimation: Revaluation of local calibration hypothesis to enhance the spatial structure of the optimised parameter

    NASA Astrophysics Data System (ADS)

    Odry, Jean; Arnaud, Patrick

    2016-04-01

    The SHYREG method (Aubert et al., 2014) associates a stochastic rainfall generator and a rainfall-runoff model to produce rainfall and flood quantiles on a 1 km2 mesh covering the whole French territory. The rainfall generator is based on the description of rainy events by descriptive variables following probability distributions and is characterised by a high stability. This stochastic generator is fully regionalised, and the rainfall-runoff transformation is calibrated with a single parameter. Thanks to the stability of the approach, calibration can be performed against only flood quantiles associated with observated frequencies which can be extracted from relatively short time series. The aggregation of SHYREG flood quantiles to the catchment scale is performed using an areal reduction factor technique unique on the whole territory. Past studies demonstrated the accuracy of SHYREG flood quantiles estimation for catchments where flow data are available (Arnaud et al., 2015). Nevertheless, the parameter of the rainfall-runoff model is independently calibrated for each target catchment. As a consequence, this parameter plays a corrective role and compensates approximations and modelling errors which makes difficult to identify its proper spatial pattern. It is an inherent objective of the SHYREG approach to be completely regionalised in order to provide a complete and accurate flood quantiles database throughout France. Consequently, it appears necessary to identify the model configuration in which the calibrated parameter could be regionalised with acceptable performances. The revaluation of some of the method hypothesis is a necessary step before the regionalisation. Especially the inclusion or the modification of the spatial variability of imposed parameters (like production and transfer reservoir size, base flow addition and quantiles aggregation function) should lead to more realistic values of the only calibrated parameter. The objective of the work presented

  20. Quantifying Floods of a Flood Regime in Space and Time

    NASA Astrophysics Data System (ADS)

    Whipple, A. A.; Fleenor, W. E.; Viers, J. H.

    2015-12-01

    Interaction between a flood hydrograph and floodplain topography results in spatially and temporally variable conditions important for ecosystem process and function. Individual floods whose frequency and dimensionality comprise a river's flood regime contribute to that variability and in aggregate are important drivers of floodplain ecosystems. Across the globe, water management actions, land use changes as well as hydroclimatic change associated with climate change have profoundly affected natural flood regimes and their expression within the floodplain landscape. Homogenization of riverscapes has degraded once highly diverse and productive ecosystems. Improved understanding of the range of flood conditions and spatial variability within floodplains, or hydrospatial conditions, is needed to improve water and land management and restoration activities to support the variable conditions under which species adapted. This research quantifies the flood regime of a floodplain site undergoing restoration through levee breaching along the lower Cosumnes River of California. One of the few lowland alluvial rivers of California with an unregulated hydrograph and regular floodplain connectivity, the Cosumnes River provides a useful test-bed for exploring river-floodplain interaction. Representative floods of the Cosumnes River are selected from previously-established flood types comprising the flood regime and applied within a 2D hydrodynamic model representing the floodplain restoration site. Model output is analyzed and synthesized to quantify and compare conditions in space and time, using metrics such as depth and velocity. This research establishes methods for quantifying a flood regime's floodplain inundation characteristics, illustrates the role of flow variability and landscape complexity in producing heterogeneous floodplain conditions, and suggests important implications for managing more ecologically functional floodplains.

  1. Regional flood probabilities

    USGS Publications Warehouse

    Troutman, B.M.; Karlinger, M.R.

    2003-01-01

    The T-year annual maximum flood at a site is defined to be that streamflow, that has probability 1/T of being exceeded in any given year, and for a group of sites the corresponding regional flood probability (RFP) is the probability that at least one site will experience a T-year flood in any given year. The RFP depends on the number of sites of interest and on the spatial correlation of flows among the sites. We present a Monte Carlo method for obtaining the RFP and demonstrate that spatial correlation estimates used in this method may be obtained with rank transformed data and therefore that knowledge of the at-site peak flow distribution is not necessary. We examine the extent to which the estimates depend on specification of a parametric form for the spatial correlation function, which is known to be nonstationary for peak flows. It is shown in a simulation study that use of a stationary correlation function to compute RFPs yields satisfactory estimates for certain nonstationary processes. Application of asymptotic extreme value theory is examined, and a methodology for separating channel network and rainfall effects on RFPs is suggested. A case study is presented using peak flow data from the state of Washington. For 193 sites in the Puget Sound region it is estimated that a 100-year flood will occur on the average every 4,5 years.

  2. Spatio-temporal characteristics of the extreme precipitation by L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chong-Yu; Xu, Wucheng; Chen, Changchun; Sun, Shanlei

    2016-05-01

    The regionalization methods, which "trade space for time" by pooling information from different locations in the frequency analysis, are efficient tools to enhance the reliability of extreme quantile estimates. This paper aims at improving the understanding of the regional frequency of extreme precipitation by using regionalization methods, and providing scientific background and practical assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region. To achieve the main goals, L-moment-based index-flood (LMIF) method, one of the most popular regionalization methods, is used in the regional frequency analysis of extreme precipitation with special attention paid to inter-site dependence and its influence on the accuracy of quantile estimates, which has not been considered by most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence, and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, generalized extreme-value (GEV) and generalized normal (GNO) distributions were identified as the best fitted distributions for most of the sub-regions, and estimated quantiles for each region were obtained. Monte Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root-mean-square errors (RMSEs) were bigger and the 90 % error bounds were wider with inter-site dependence than those without inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with a return period of 100 years were finally obtained which indicated that there are two regions with highest precipitation

  3. Flood Inundation Analysis Considering Mega Floods in PyeonChang River Basin of South Korea

    NASA Astrophysics Data System (ADS)

    Kim, D.; Han, D.; Choi, C.; Lee, J.; Kim, H. S.

    2015-12-01

    Recently, abnormal climate has frequently occurred around the world due to global warming. In South Korea, more than 90% of damage due to natural disasters has been caused by extreme events like strong wind and heavy rainfall. Most studies regarding the impact of extreme events on flood damage have focused on a single heavy rainfall event. But several heavy rainfall events can be occurred continuously and these events will affect occurring huge flood damage. This study explores the impact of the continuous extreme events on the flood damage. Here we call Mega flood for this type of flood which is caused by the continuous extreme events. Inter Event Time Definition (IETD) method is applied for making Mega flood scenarios depending on independent rainfall event scenarios. Flood inundations are estimated in each situation of the Mega flood scenarios and the flood damages are estimated using a Multi-Dimensional Flood Damage Analysis (MD-FDA) method. As a result, we expect that flood damage caused by Mega flood leads to much greater than damage driven by single rainfall event. The results of this study can be contributed for making a guideline and design criteria in order to reduce flood damage.This work was supported by the National Research Foundation of Korea (NRF) and grant funded by the Korean government (MEST; No. 2011-0028564).

  4. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  5. New petrophysical magnetic methods MACC and MAFM in permeability characterisation of petroleum reservoir rock cleaning, flooding modelling and determination of fines migration in formation damage

    NASA Astrophysics Data System (ADS)

    Ivakhnenko, O. P.

    2012-04-01

    Potential applications of magnetic techniques and methods in petroleum engineering and petrophysics (Ivakhnenko, 1999, 2006; Ivakhnenko & Potter, 2004) reveal their vast advantages for the petroleum reservoir characterisation and formation evaluation. In this work author proposes for the first time developed systematic methods of the Magnetic Analysis of Core Cleaning (MACC) and Magnetic Analysis of Fines Migration (MAFM) for characterisation of reservoir core cleaning and modelling estimations of fines migration for the petroleum reservoir formations. Using example of the one oil field we demonstrate results in application of these methods on the reservoir samples. Petroleum reservoir cores samples have been collected within reservoir using routine technique of reservoir sampling and preservation for PVT analysis. Immediately before the MACC and MAFM studies samples have been exposed to atmospheric air for a few days. The selected samples have been in detailed way characterised after fluid cleaning and core flooding by their mineralogical compositions and petrophysical parameters. Mineralogical composition has been estimated utilizing XRD techniques. The petrophysical parameters, such as permeability and porosity have been measured on the basis of total core analysis. The results demonstrate effectiveness and importance of the MACC and MAFM methods for the routine core analysis (RCAL) and the special core analysis (SCAL) in the reservoir characterisation, core flooding and formation damage analysis.

  6. Spatio-temporal analysis of the extreme precipitation by the L-moment-based index-flood method in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Yin, Yixing; Chen, Haishan; Xu, Chongyu; Xu, Wucheng; Chen, Changchun

    2014-05-01

    The regionalization methods which 'trade space for time' by including several at-site data records in the frequency analysis are an efficient tool to improve the reliability of extreme quantile estimates. With the main aims of improving the understanding of the regional frequency of extreme precipitation and providing scientific and practical background and assistance in formulating the regional development strategies for water resources management in one of the most developed and flood-prone regions in China, the Yangtze River Delta (YRD) region, in this paper, L-moment-based index-flood (LMIF) method, one of the popular regionalization methods, is used in the regional frequency analysis of extreme precipitation; attention was paid to inter-site dependence and its influence on the accuracy of quantile estimates, which hasn't been considered for most of the studies using LMIF method. Extensive data screening of stationarity, serial dependence and inter-site dependence was carried out first. The entire YRD region was then categorized into four homogeneous regions through cluster analysis and homogenous analysis. Based on goodness-of-fit statistic and L-moment ratio diagrams, Generalized extreme-value (GEV) and Generalized Normal (GNO) distributions were identified as the best-fit distributions for most of the sub regions. Estimated quantiles for each region were further obtained. Monte-Carlo simulation was used to evaluate the accuracy of the quantile estimates taking inter-site dependence into consideration. The results showed that the root mean square errors (RMSEs) were bigger and the 90% error bounds were wider with inter-site dependence than those with no inter-site dependence for both the regional growth curve and quantile curve. The spatial patterns of extreme precipitation with return period of 100 years were obtained which indicated that there are two regions with the highest precipitation extremes (southeastern coastal area of Zhejiang Province and the

  7. Development and Validation of an RP-HPLC Method for the Determination of Vinpocetine and Folic Acid in the Presence of a Vinpocetine Alkaline Degradation Product in Bulk and in Capsule Form.

    PubMed

    Elkady, Ehab F; Tammam, Marwa H; Mohamed, Ayman A

    2017-01-11

    An alkaline-forced degradation hydrolytic product of vinpocetine was prepared and characterized by 1H-NMR, FTIR spectroscopy, and MS. Subsequently, a simple, selective, and validated reversed-phase HPLC method was developed for the simultaneous estimation of vinpocetine and folic acid in the presence of a vinpocetine alkaline degradation product. Chromatographic separation was achieved using an isocratic mobile phase consisting of acetonitrile-0.02 M KH2PO4 [containing 0.2% (v/v) triethylamine and adjusted to pH 6 with orthophosphoric acid; (80 + 20, v/v)] at a flow rate of 0.9 mL/min at ambient temperature on a Eurospher II C18 (250 × 4.6 mm, 5 μm) column, with UV detection at 280 nm for folic acid and 230 nm for vinpocetine and its alkaline hydrolytic product. Linearity, accuracy, and precision were found to be acceptable over a concentration range of 12.5-200 μg/mL for vinpocetine and 1-16 μg/mL for folic acid. The proposed method was successfully applied for the determination of both drugs and a vinpocetine hydrolysis product in a laboratory-prepared mixture and in a capsule containing both drugs.

  8. Evaluation on an original resistivity inversion method of water flooding a conglomerate reservoir based on petrophysical analysis

    NASA Astrophysics Data System (ADS)

    Liu, Renqiang; Duan, Yonggang; Tan, Fengqi; Wang, Guochang; Qin, Jianhua; Neupane, Bhupati

    2015-10-01

    An accurate inversion of original reservoir resistivity is an important problem for waterflood development in oilfields in the middle-late development period. This paper describes the theoretical model of original resistivity recovery for a conglomerate reservoir established by petrophysical models, based on the stratigraphic model of reservoir vertical invasion of the conglomerate reservoir of an oilfield. Likewise two influencing factors of the resistivity change with a water-flooded reservoir were analyzed. The first one is the clay volume decrease due to an injected water wash argillaceous particle and the reservoir resistivity changes are influenced by it, and the other is to inject water to displace crude oil in the pore space leading to the increase of the water-bearing volume. Moreover the conductive ions of the injected water and the original formation water exchange and balance because of their salinity difference, and the reservoir resistivity changes are also influenced by them. Through the analysis of the above influential factors based on the fine identification of conglomerate lithologies the inversion models of three variables, including changes in the amount of clay, the resistivity of the irreducible water and the increase of the water bearing volume, were established by core analysis data, production performance and well logging curves information, and accurately recovered the original reservoir resistivity of the conglomerate. The original oil saturation of the reservoir was calculated according to multiple linear regression models. Finally, the produced index is defined as the difference of the original oil saturation and current oil saturation to the original oil saturation ratio, and it eliminates the effects of conglomerate lithologies and heterogeneity for the quantitative evaluation of flooded layers by the use of the principle of relative value. Compared with traditional flooding sensitive parameters which are oil saturation and water

  9. Developments of a flood inundation model based on the cellular automata approach: Testing different methods to improve model performance

    NASA Astrophysics Data System (ADS)

    Dottori, F.; Todini, E.

    2011-01-01

    Over the last decade, several flood inundation models based on a reduced complexity approach have been developed and successfully applied in a wide range of practical cases. In the present paper, a model based on the cellular automata approach is analyzed in detail and tested in several numerical cases, comparing the results both with analytical solutions and different hydraulic models. In order to improve the model’s performance, the original code based on the diffusive wave equations and a constant time step scheme is modified through the implementation of two techniques available in literature: an inertial formulation for the computation of discharges, originally developed for the LISFLOOD-FP model by Bates et al. (2010); and the incorporation of a local adaptive time step algorithm, based on a technique originally presented by Zhang et al. (1994). The analysis of the numerical cases showed that the proposed model can be a valuable tool for the simulation of flood inundation events. When applied to one-dimensional numerical cases, the model well reproduced the wave propagation, whereas it showed some limitations in reproducing two-dimensional flow dynamics in respect to a model based on the full shallow water equations. However, differences were found to be comparable with the uncertainty level related to available data for actual flood events. The use of the inertial formulation was very effective in all the cases, and reduced run time up to 97% as compared with the diffusive formulation, although it did not improve the overall accuracy of results. Finally, the incorporation of the local time step algorithm produced a speedup from 1.2 x to 4 x, depending on the simulation and the model version in use, with no loss of accuracy in the results.

  10. Nitrogen isotope evidence for alkaline lakes on late Archean continents

    NASA Astrophysics Data System (ADS)

    Stüeken, E. E.; Buick, R.; Schauer, A. J.

    2015-02-01

    Nitrogen isotope ratios in ancient sedimentary rocks are generally interpreted as a proxy for metabolic nitrogen pathways and the redox state of the water column. Fractionation processes occurring under anoxic, alkaline conditions during the dissociation of NH4+ to H+ and volatile NH3 are frequently overlooked, although this mechanism imparts large isotopic fractionations. Here we propose that NH3 volatilization is largely responsible for δ15N values of up to + 50 ‰ at high C/N ratios in the late Archean Tumbiana Formation. This sequence of sedimentary rocks represents a system of lakes that formed on subaerial flood basalts and were partly filled by basaltic volcanic ash. Aqueous alteration of volcanic glass followed by evaporative concentration of ions should have led to the development of high alkalinity with a pH of 9 or higher, as in modern analogues. In this sedimentologically unusual setting, nitrogen isotope ratios thus provide indirect evidence for the oldest alkaline lake system in the rock record. These very heavy lacustrine δ15N values contrast markedly with those of Archean marine sedimentary rocks, making a Precambrian "soda ocean" unlikely. Today, alkaline lakes are among the most productive ecosystems on Earth. Some nutrients, in particular molybdenum, are more soluble at high pH, and certain prebiotic reactions would likely have been favored under alkaline conditions in similar settings earlier in Earth's history. Hence alkaline lakes in the Archean could have been significant for the origin and early evolution of life.

  11. Preliminary report on a study to estimate flood volumes of small rural streams in Ohio; methods, site selection, and data base

    USGS Publications Warehouse

    Sherwood, J.M.

    1985-01-01

    In 1981, the U.S. Geological Survey, in cooperation with the Ohio Department of Transportation and the Federal Highway Administration, began a 7-year flood-volume study of small rural basins in Ohio. This report summarizes the methods of study and describes reconnaissance and site-selection procedures, locations and characteristics of the stations, instrumentation, and methods of collecting and storing data. The first phase of this study involved an intensive field reconnaissance of about 7,000 sites, of which 32 basins were selected for detailed analysis. Drainage areas for the basins varied from 0.13 to 6.45 square miles, and main-channel slopes ranged from 7.6 to 276 feet per mile. Five years of 5-minute rainfall-runoff data will be colledted for each study site. These data will be used to calibrate and verify a rainfall-runoff model for each basin. The calibrated model will be used in conjunction with 80 years of National Weather Service 5-minute precipitation data to synthesize a representative 80-year streamflow record at each site. A Log-Pearson Type III frequency distribution will be applied to each record to define the magnitudes and frequencies of flood volumes at each site. These data will be used to develop regionalized multiple regression models for estimating flood-volume magnitudes and frequencies at small rural ungaged sites in Ohio. The report also summarizes rainfall-runoff data collected from July 1981 through September 1983, but does not interpret the data. An average of eleven event periods per site were monitored where maximum 5-minute rainfall intensities varied from 0.02 to .067 inches and maximum peak discharges varied from 1 to 1,130 cubic feet per second.

  12. Local Flood Proofing Programs

    DTIC Science & Technology

    2005-02-01

    100-year flood. Selecting an appropriate flood protection level is discussed on page 63. Human Intervention: the need for one or more people to be...this publication, communities were asked “Why did your community select flood proofing as a damage reduction measure?” Six broad reasons were cited...Flood Proofing Programs – 10 – February 2005 External impact: Sometimes flood proofing is selected because the other flood protection measures

  13. Flood risk modelling based on tangible and intangible urban flood damage quantification.

    PubMed

    ten Veldhuis, J A E; Clemens, F H L R

    2010-01-01

    The usual way to quantify flood damage is by application stage-damage functions. Urban flood incidents in flat areas mostly result in intangible damages like traffic disturbance and inconvenience for pedestrians caused by pools at building entrances, on sidewalks and parking spaces. Stage-damage functions are not well suited to quantify damage for these floods. This paper presents an alternative method to quantify flood damage that uses data from a municipal call centre. The data cover a period of 10 years and contain detailed information on consequences of urban flood incidents. Call data are linked to individual flood incidents and then assigned to specific damage classes. The results are used to draw risk curves for a range of flood incidents of increasing damage severity. Risk curves for aggregated groups of damage classes show that total flood risk related to traffic disturbance is larger than risk of damage to private properties, which in turn is larger than flood risk related to human health. Risk curves for detailed damage classes show how distinctions can be made between flood risks related to many types of occupational use in urban areas. This information can be used to support prioritisation of actions for flood risk reduction. Since call data directly convey how citizens are affected by urban flood incidents, they provide valuable information that complements flood risk analysis based on hydraulic models.

  14. Storage and flood routing

    USGS Publications Warehouse

    Carter, R.W.; Godfrey, R.G.

    1960-01-01

    The basic equations used in flood routing are developed from the law of continuity. In each method the assumptions are discussed to enable the user to select an appropriate technique. In the stage-storage method the storage is related to the mean gage height in the reach under consideration. In the discharge-storage method the storage is determined, from weighted values of inflow and outflow discharge. In the reservoir-storage method the storage is considered as a function of outflow discharge alone. A detailed example is given for each method to illustrate that particular technique.

  15. Surfactant mixing rules applied to surfactant enhanced alkaline flooding

    SciTech Connect

    Taylor, K.C. )

    1992-01-01

    This paper discusses surfactant mixing rules which have been used to describe crude oil/alkali/surfactant phase behavior, using David Lloydminster crude oil and the surfactant Neodol 25-3S. It was found that at a fixed salinity and alkali concentration, a specific mole fraction of synthetic surfactant to petroleum soap was required to produce optimal phase behavior as the water-to-oil ratio varied. This methodology is useful in understanding the relationship between the variables of water-to-oil ratio and synthetic surfactant concentration in phase behavior systems that produce a petroleum soap.

  16. Cyber surveillance for flood disasters.

    PubMed

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-22

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective.

  17. Cyber Surveillance for Flood Disasters

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    Regional heavy rainfall is usually caused by the influence of extreme weather conditions. Instant heavy rainfall often results in the flooding of rivers and the neighboring low-lying areas, which is responsible for a large number of casualties and considerable property loss. The existing precipitation forecast systems mostly focus on the analysis and forecast of large-scale areas but do not provide precise instant automatic monitoring and alert feedback for individual river areas and sections. Therefore, in this paper, we propose an easy method to automatically monitor the flood object of a specific area, based on the currently widely used remote cyber surveillance systems and image processing methods, in order to obtain instant flooding and waterlogging event feedback. The intrusion detection mode of these surveillance systems is used in this study, wherein a flood is considered a possible invasion object. Through the detection and verification of flood objects, automatic flood risk-level monitoring of specific individual river segments, as well as the automatic urban inundation detection, has become possible. The proposed method can better meet the practical needs of disaster prevention than the method of large-area forecasting. It also has several other advantages, such as flexibility in location selection, no requirement of a standard water-level ruler, and a relatively large field of view, when compared with the traditional water-level measurements using video screens. The results can offer prompt reference for appropriate disaster warning actions in small areas, making them more accurate and effective. PMID:25621609

  18. Investigation on the coprecipitation of transuranium elements from alkaline solutions by the method of appearing reagents. Study of the effects of waste components on decontamination from Np(IV) and Pu(IV)

    SciTech Connect

    Bessonov, A.A.; Budantseva, N.A.; Gelis, A.V.; Nikonov, M.V.; Shilov, V.P.

    1997-09-01

    The third stage of the study on the homogeneous coprecipitation of neptunium and plutonium from alkaline high-level radioactive waste solutions by the Method of Appearing Reagents has been completed. Alkaline radioactive wastes exist at the U.S. Department of Energy Hanford Site. The recent studies investigated the effects of neptunium chemical reductants, plutonium(IV) concentration, and the presence of bulk tank waste solution components on the decontamination from tetravalent neptunium and plutonium achieved by homogeneous coprecipitation. Data on neptunium reduction to its tetravalent state in alkaline solution of different NaOH concentrations are given. Eleven reductants were tested to find those most suited to remove neptunium, through chemical reduction, from alkaline solution by homogeneous coprecipitation. Hydrazine, VOSO{sub 4}, and Na{sub 2}S{sub 2}O{sub 4} were found to be the most effective reductants. The rates of reduction with these reductants were comparable with the kinetics of carrier formation. Solution decontamination factors of about 400 were attained for 10{sup -6}M neptunium. Coprecipitation of plutonium(IV) with carriers obtained as products of thermal hydrolysis, redox transformations, and catalytic decomposition of [Co(NH{sub 3}){sub 6}]{sup 3+}, [Fe(CN){sub 5}NO]{sup 2-}, Cr(NO{sub 3}){sub 3}, KMnO{sub 4}, and Li{sub 4}UO{sub 2}(O{sub 2}){sub 3} was studied and results are described. Under optimum conditions, a 100-fold decrease of plutonium concentration was possible with each of these reagents.

  19. Floods, flood control, and bottomland vegetation

    USGS Publications Warehouse

    Friedman, Jonathan M.; Auble, Gregor T.

    2000-01-01

    Bottomland plant communities are typically dominated by the effects of floods. Floods create the surfaces on which plants become established, transport seeds and nutrients, and remove establish plants. Floods provide a moisture subsidy that allows development of bottomland forests in arid regions and produce anoxic soils, which can control bottomland plant distribution in humid regions. Repeated flooding produces a mosaic of patches of different age, sediment texture, and inundation duration; this mosaic fosters high species richness.

  20. Visual Sensing for Urban Flood Monitoring

    PubMed Central

    Lo, Shi-Wei; Wu, Jyh-Horng; Lin, Fang-Pang; Hsu, Ching-Han

    2015-01-01

    With the increasing climatic extremes, the frequency and severity of urban flood events have intensified worldwide. In this study, image-based automated monitoring of flood formation and analyses of water level fluctuation were proposed as value-added intelligent sensing applications to turn a passive monitoring camera into a visual sensor. Combined with the proposed visual sensing method, traditional hydrological monitoring cameras have the ability to sense and analyze the local situation of flood events. This can solve the current problem that image-based flood monitoring heavily relies on continuous manned monitoring. Conventional sensing networks can only offer one-dimensional physical parameters measured by gauge sensors, whereas visual sensors can acquire dynamic image information of monitored sites and provide disaster prevention agencies with actual field information for decision-making to relieve flood hazards. The visual sensing method established in this study provides spatiotemporal information that can be used for automated remote analysis for monitoring urban floods. This paper focuses on the determination of flood formation based on image-processing techniques. The experimental results suggest that the visual sensing approach may be a reliable way for determining the water fluctuation and measuring its elevation and flood intrusion with respect to real-world coordinates. The performance of the proposed method has been confirmed; it has the capability to monitor and analyze the flood status, and therefore, it can serve as an active flood warning system. PMID:26287201

  1. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  2. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  3. Estimating magnitude and frequency of floods in Wisconsin

    USGS Publications Warehouse

    Conger, Duane H.

    1971-01-01

    This report provides methods for estimating flood characteristics at most sites where flood information may be needed for planning and design and summatizes the significant flood data and related information available on Wisconsin streams. Individual equations are presented for estimating flood discharges for selected recurrence intervals up to a 25-year flood for drainage areas 0.5 square miles and larger, a 50-year flood for drainage areas 20 square miles and larger, and a 100-year flood for drainage areas 50 square miles and larger. A ratio method is used for estimating a 50-year flood for drainage areas 0.5 to 20 square miles. The equations were defined from multiple-regression analysis of flood peak records and basin characteristics for 119 continuous-record gaging stations and 114 crest-stage partial-record stations in Wisconsin and adjoining States. Of the severai basin characteristics used in this study, only drainage area, main-channel slope, lake and marsh area, and areal factors were found to be statistically significant at the 99 percent effectiveness level for all flood frequencies. Solution of a hypothetical problem is given for using the flood-frequency equations. Graphs are presented for solution of flood discharges on regulated streams where the formulas are not applicable. Flood-frequency characteristics, 2-year flood to 100-year flood, and drainage basin characteristics for stations used in the multiple regression are presented in the appendices of this report.

  4. Flooding and Schools

    ERIC Educational Resources Information Center

    National Clearinghouse for Educational Facilities, 2011

    2011-01-01

    According to the Federal Emergency Management Agency, flooding is the nation's most common natural disaster. Some floods develop slowly during an extended period of rain or in a warming trend following a heavy snow. Flash floods can occur quickly, without any visible sign of rain. Catastrophic floods are associated with burst dams and levees,…

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  6. Urban flood analysis in Oklahoma City, Oklahoma

    USGS Publications Warehouse

    Tortorelli, Robert L.; Huntzinger, T.L.; Bergman, D.L.; Patneaude, A.L.

    1983-01-01

    Flood insurance study information from the Federal Emergency Management Agency is utilized to estimate future flood hazard in Oklahoma City, Oklahoma. Techniques are described for estimating future urban runoff estimates. A method of developing stream cross section rating curves is explained. Future runoff estimates are used in conjuction with the rating curves to develop an estimate of 50- and 100- year flood profiles that would result from future urban development.

  7. Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework - Quantile Regression vs. Parameter Regression Technique

    NASA Astrophysics Data System (ADS)

    Haddad, Khaled; Rahman, Ataur

    2012-04-01

    SummaryIn this article, an approach using Bayesian Generalised Least Squares (BGLS) regression in a region-of-influence (ROI) framework is proposed for regional flood frequency analysis (RFFA) for ungauged catchments. Using the data from 399 catchments in eastern Australia, the BGLS-ROI is constructed to regionalise the flood quantiles (Quantile Regression Technique (QRT)) and the first three moments of the log-Pearson type 3 (LP3) distribution (Parameter Regression Technique (PRT)). This scheme firstly develops a fixed region model to select the best set of predictor variables for use in the subsequent regression analyses using an approach that minimises the model error variance while also satisfying a number of statistical selection criteria. The identified optimal regression equation is then used in the ROI experiment where the ROI is chosen for a site in question as the region that minimises the predictive uncertainty. To evaluate the overall performances of the quantiles estimated by the QRT and PRT, a one-at-a-time cross-validation procedure is applied. Results of the proposed method indicate that both the QRT and PRT in a BGLS-ROI framework lead to more accurate and reliable estimates of flood quantiles and moments of the LP3 distribution when compared to a fixed region approach. Also the BGLS-ROI can deal reasonably well with the heterogeneity in Australian catchments as evidenced by the regression diagnostics. Based on the evaluation statistics it was found that both BGLS-QRT and PRT-ROI perform similarly well, which suggests that the PRT is a viable alternative to QRT in RFFA. The RFFA methods developed in this paper is based on the database available in eastern Australia. It is expected that availability of a more comprehensive database (in terms of both quality and quantity) will further improve the predictive performance of both the fixed and ROI based RFFA methods presented in this study, which however needs to be investigated in future when such a

  8. A physically-based method for predicting peak discharge of floods caused by failure of natural and constructed earthen dams

    USGS Publications Warehouse

    Walder, J.S.; O'Connor, J. E.; Costa, J.E.; ,

    1997-01-01

    We analyse a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V.D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether < ??? 1 or < ??? 1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.We analyze a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V/D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a

  9. Drivers of flood damage on event level

    NASA Astrophysics Data System (ADS)

    Kreibich, Heidi

    2016-04-01

    Flood risk is dynamic and influenced by many processes related to hazard, exposure and vulnerability. Flood damage increased significantly over the past decades, however, resulting overall economic loss per event is an aggregated indicator and it is difficult to attribute causes to this increasing trend. Much has been learned about damaging processes during floods at the micro-scale, e.g. building level. However, little is known about the main factors determining the amount of flood damage on event level. Thus, we analyse and compare paired flood events, i.e. consecutive, similar damaging floods that occurred in the same area. In analogy to 'Paired catchment studies' - a well-established method in hydrology to understand how changes in land use affect streamflow - we will investigate how and why resulting flood damage in a region differed between the first and second consecutive flood events. One example are the 2002 and 2013 floods in the Elbe and Danube catchments in Germany. The 2002 flood caused the highest economic damage (EUR 11600 million) due to a natural hazard event in Germany. Damage was so high due to extreme flood hazard triggered by extreme precipitation and a high number of resulting dyke breaches. Additionally, exposure hotspots like the city of Dresden at the Elbe river as well as some smaller municipalities at the river Mulde (e.g. Grimma, Eilenburg, Bitterfeld, Dessau) were severely impacted. However, affected parties and authorities learned from the extreme flood in 2002, and many governmental flood risk programs and initiatives were launched. Considerable improvements since 2002 occurred on many levels that deal with flood risk reduction and disaster response, in particular in 1) increased flood prevention by improved spatial planning, 2) an increased number of property-level mitigation measures, 3) more effective early warning and improved coordination of disaster response and 4) a more targeted maintenance of flood defence systems and their

  10. Development of a novel chemiluminescence method for the determination of cefazolin sodium in injectable powder and human urine based on a luminol-Cu(III) complex reaction in alkaline medium.

    PubMed

    Sun, Hanwen; Wang, Juan; Wang, Ting

    2013-01-01

    A novel chemiluminescence (CL) method was developed for the determination of cefazolin sodium based on the CL reaction between the [Cu(HIO6)2](5-) Cu(III) complex and luminol in alkaline solution. Results showed that CL emission of Cu(III) complex-luminol in alkaline medium was significantly different from that in acidic medium. A possible mechanism of the enhanced effect of cefazolin on CL emission of the [Cu(HIO6)2](5-)-luminol system was proposed. The effect of the reaction conditions on CL emissions was examined. Under optimized conditions, a good linear relationship was obtained between CL intensity and concentrations of cefazolin sodium in the range of 2.0 x 10(-8) to 2.0 x 10(-6) g/mL with a correlation coefficient of R(2) = 0.9978. The limit of detection was 4.58 x 10(-9) g/mL. The proposed method was applied for the determination of cefazolin sodium in real samples with recoveries of 82.0-109% with an RSD of 0.7-2.1%. The proposed method was successfully used for the determination of cefazolin sodium in injectable powder preparations and human urine with satisfactory results.

  11. Passive flooding of paranasal sinuses and middle ears as a method of equalisation in extreme breath-hold diving.

    PubMed

    Germonpré, Peter; Balestra, Costantino; Musimu, Patrick

    2011-06-01

    Breath-hold diving is both a recreational activity, performed by thousands of enthusiasts in Europe, and a high-performance competitive sport. Several 'disciplines' exist, of which the 'no-limits' category is the most spectacular: using a specially designed heavy 'sled,' divers descend to extreme depths on a cable, and then reascend using an inflatable balloon, on a single breath. The current world record for un-assisted descent stands at more than 200 m of depth. Equalising air pressure in the paranasal sinuses and middle-ear cavities is a necessity during descent to avoid barotraumas. However, this requires active insufflations of precious air, which is thus unavailable in the pulmonary system. The authors describe a diver who, by training, is capable of allowing passive flooding of the sinuses and middle ear with (sea) water during descent, by suppressing protective (parasympathetic) reflexes during this process. Using this technique, he performed a series of extreme-depth breath-hold dives in June 2005, descending to 209 m of sea water on one breath of air.

  12. A physically-based method for predicting peak discharge of floods caused by failure of natural and constructed earthen dams

    USGS Publications Warehouse

    Walder, J.S.

    1997-01-01

    We analyse a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V/ D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether ?? > 1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.

  13. Low pH alkaline chemical formulations

    SciTech Connect

    French, T.R.; Peru, D.A.; Thornton, S.D.

    1989-01-01

    This report describes the development of a surfactant-enhanced alkaline flooding system that is applicable to specific reservoir conditions in Wilmington (California) field. The cost of the chemicals for an ASP (alkali/surfactant/polymer) flood is calculated to be $3.90/bbl of oil produced, with 78% of that cost attributable to polymer. This research included phase behavior tests, oil displacement tests, mineral dissolution tests, and adsorption measurements. It was discovered that consumption of low pH alkalis is low enough in the Wilmington field to be acceptable. In addition, alkali dramatically reduced surfactant adsorption and precipitation. A mixture of NaHCO3 and Na2CO3 was recommended for use as a preflush and in the ASP formulation. Research was also conducted on the synergistic effect that occurs when a mixture of alkali and synthetic surfactant contacts crude oil. It appears that very low IFT is predominantly a result of the activation of the natural surfactants present in the Wilmington oil, and the sustained low IFT is primarily the result of the synthetic surfactant. It also appears that removal of acids from the crude oil by the alkali renders the oil more interfacially reactive to synthetic surfactant. These phenomena help to explain the synergism that results from combining alkali and synthetic surfactant into a single oil recovery formulation. 19 refs., 24 figs., 10 tabs.

  14. Flood-frequency characteristics of Wisconsin streams

    USGS Publications Warehouse

    Walker, John F.; Krug, William R.

    2003-01-01

    Flood-frequency characteristics for 312 gaged sites on Wisconsin streams are presented for recurrence intervals of 2 to 100 years using flood-peak data collected through water year 2000. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of these equations. The state was divided into five areas with similar physiographic characteristics. The most significant basin characteristics are drainage area, main-channel slope, soil permeability, storage, rainfall intensity, and forest cover. The standard error of prediction for the equation for the 100-year flood discharge ranges from 22 to 44 percent in the state. A graphical method for estimating flood-frequency characteristics of regulated streams was developed from the relation of discharge and drainage area. Graphs for the major regulated streams are presented.

  15. Flood Resilient Systems and their Application for Flood Resilient Planning

    NASA Astrophysics Data System (ADS)

    Manojlovic, N.; Gabalda, V.; Antanaskovic, D.; Gershovich, I.; Pasche, E.

    2012-04-01

    Following the paradigm shift in flood management from traditional to more integrated approaches, and considering the uncertainties of future development due to drivers such as climate change, one of the main emerging tasks of flood managers becomes the development of (flood) resilient cities. It can be achieved by application of non-structural - flood resilience measures, summarised in the 4As: assistance, alleviation, awareness and avoidance (FIAC, 2007). As a part of this strategy, the key aspect of development of resilient cities - resilient built environment can be reached by efficient application of Flood Resilience Technology (FReT) and its meaningful combination into flood resilient systems (FRS). FRS are given as [an interconnecting network of FReT which facilitates resilience (including both restorative and adaptive capacity) to flooding, addressing physical and social systems and considering different flood typologies] (SMARTeST, http://www.floodresilience.eu/). Applying the system approach (e.g. Zevenbergen, 2008), FRS can be developed at different scales from the building to the city level. Still, a matter of research is a method to define and systematise different FRS crossing those scales. Further, the decision on which resilient system is to be applied for the given conditions and given scale is a complex task, calling for utilisation of decision support tools. This process of decision-making should follow the steps of flood risk assessment (1) and development of a flood resilience plan (2) (Manojlovic et al, 2009). The key problem in (2) is how to match the input parameters that describe physical&social system and flood typology to the appropriate flood resilient system. Additionally, an open issue is how to integrate the advances in FReT and findings on its efficiency into decision support tools. This paper presents a way to define, systematise and make decisions on FRS at different scales of an urban system developed within the 7th FP Project

  16. Building A Database Of Flood Extension Maps Using Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Roque, D.; Afonso, N.; Fonseca, A. M.; Heleno, S.

    2013-12-01

    Hydraulic flood models can be used to identify the regions prone to floods. In order to achieve reliable information, the models must be calibrated using data from past floods. In this study, a set of optical and Synthetic Aperture Radar (SAR) images are used to obtain flood extension maps in the lower River Tagus, Portugal, from 1992 to 2012. An object-based approach and thresholding operations are used to extract the flood boundaries. While for optical data two thresholding operations are enough, for SAR images, successive thresholding procedures are applied over different data types in order to identify flooded regions with distinct characteristics (smooth water, disturbed water and emerged elements). The proposed method allowed the extraction of flood boundaries for 25 flood dates, with an 88% of correctly detected flood area for both the optical and the SAR data.

  17. Satellite nighttime lights reveal increasing human exposure to floods worldwide

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Laio, Francesco; Montanari, Alberto

    2014-10-01

    River floods claim thousands of lives every year, but effective and high-resolution methods to map human exposure to floods at the global scale are still lacking. We use satellite nightlight data to prove that nocturnal lights close to rivers are consistently related to flood damages. We correlate global data of economic losses caused by flooding events with nighttime lights and find that increasing nightlights are associated to flood damage intensification. Then, we analyze the temporal evolution of nightlights along the river network all over the world from 1992 to 2012 and obtain a global map of nightlight trends, which we associate with increasing human exposure to floods, at 1 km2 resolution. An enhancement of exposure to floods worldwide, particularly in Africa and Asia, is revealed, which may exacerbate the projected effects of climate change on flood-related losses and therefore argues for the development of valuable flood preparedness and mitigation strategies.

  18. The effect of alkaline additives on the performance of surfactant systems designed to recover light oils

    SciTech Connect

    French, T.R.; Josephson, C.B.; Evans, D.B.

    1991-02-01

    Surfactant flooding is flexible because of the ability to optimize formulations for a wide range of reservoir conditions and crude oil types. The objective for this work was to determine if the addition of alkaline additives will allow the design of surfactant formulations that are effective for the recovery of crude oil, while, at the same time, maintaining the surfactant concentration at a much lower level than has previously been used for micellar flooding. Specifically, the focus of the work was on light, midcontinent crudes that typically have very low acid contents. These oils are typical of much of the midcontinent resource. The positive effect of alkaline additives on the phase behavior of the surfactant formulations and acidic crude oils is well known. The extension to nonacidic and slightly acidic oils is not obvious. Three crude oils, a variety of commercial surfactants, and several alkaline additives were tested. The oils had acid numbers that ranged from 0.13, which is quite low, to less than 0.01 mg KOH/g of oil. Alkaline additives were found to be very effective in recovering Delaware-Childers (OK) oil at elevated temperatures, but much less effective at reservoir temperatures. Alkaline additives were very effective with Teapot Dome (WY) oil. With Teapot Dome oil, surfactant/alkali systems produced ultralow IFT values and recovered 60% of the residual oil that remained after waterflooding. The effect of alkaline additives on recovering Hepler (KS) oil was minimal. The results of this work indicate that alkaline additives do have merit for use in surfactant flooding of low acid crude oils; however, no universal statement about applicability can be made. Each oil behaves differently, with this treatment, and the effect of alkaline additives must be determined (at reservoir conditions) for each oil. 23 refs., 13 figs., 3 tabs.

  19. Estimating urban flood-frequency characteristics

    USGS Publications Warehouse

    Jennings, M.E.; Atkins, J.B.; Inman, E.J.

    1989-01-01

    Methods in use by the U.S. Geological Survey to estimate flood-frequency characteristics for urban watersheds are compared with estimates based on the Soil Conservation Service TR-55 model. Data from four small urban watersheds in Georgia are used in the flood-peak and hydrograph comparisons.

  20. Flash flood awareness in southwest Virginia.

    PubMed

    Knocke, Ethan T; Kolivras, Korine N

    2007-02-01

    Flash floods are one of the most dangerous weather-related natural disasters in the world. These events develop less than six hours after a rainfall event and create hazardous situations for people and extensive damage to property. It is critical for flash flood conditions to be warned of in a timely manner to minimize impacts. There is currently a knowledge gap between flood experts and the general public about the level of perceived risk that the latter has toward the powerful flood waters and how events should be warned of, which affects the communication capabilities and efficiency of the warning process. Prior research has addressed risk perception of natural disasters, but there is little emphasis on flash floods within flood-prone regions of the United States. This research utilizes an online survey of 300 respondents to determine the current state of flash flood awareness and preparation in southwest Virginia. Analysis of trends involved the use of chi-squared tests (chi2) and simple frequency and percentage calculations. Results reveal that a knowledge base of flash floods does exist, but is not advanced enough for proper awareness. Young adults have a lower understanding and are not as concerned about flood impacts. Increased exposure and perceived risk play a key role in shaping the way a person approaches flash floods. People do monitor flood events, but they are unaware of essential guidance and communication mechanisms. Finally, results suggest that the current method of warning about flash floods is not provided at an appropriate level of detail for effective communication.

  1. Effect of heat-alkaline treatment as a pretreatment method on volatile fatty acid production and protein degradation in excess sludge, pure proteins and pure cultures.

    PubMed

    Tan, Reasmey; Miyanaga, Kazuhiko; Uy, Davin; Tanji, Yasunori

    2012-08-01

    This study investigated the effect of heat-alkaline treatment (HAT) at pH 11 and 60 °C on volatile fatty acid (VFA) production and protein degradation in excess sludge, soluble and insoluble proteins, and pure cultures. In addition, quantification of bacteria present in the sludge was also examined. Experimental results showed that following acid fermentation under pH 7 and 37 °C, HAT enhanced VFA production in excess sludge, albumin, and Gram-negative bacteria, but not in casein or Gram-positive bacteria. Protein solubility was therefore found not to be the main criteria for VFA production. In the protein analysis, it was shown that the outer membrane protein (OmpC) of Escherichia coli K12 was resistant to chemical and enzymatic hydrolysis. Gram staining revealed that Gram-negative bacteria were predominant in the activated sludge used in this study. In addition, the bacteria present in the activated sludge comprised only 10% of mixed liquor suspended solids (MLSS) by quantitative PCR.

  2. Enzymatic methods for the determination of pollution in seawater using salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius.

    PubMed

    Menzorova, Natalie I; Seitkalieva, Alexandra V; Rasskazov, Valerу A

    2014-02-15

    A new salt resistant alkaline phosphatase from eggs of the sea urchin Strongylocentrotus intermedius (StAP) has been shown to have a unique property to hydrolyze substrate in seawater without loss of enzymatic activity. The enzyme has pH optimum at 8.0-8.5. Model experiments showed various concentrations of copper, zinc, cadmium and lead added to seawater or a standard buffer mixture to inhibit completely the enzyme activity at the concentrations of 15-150 μg/l. StAP sensitivity to the presence in seawater of metals, pesticides, detergents and oil products appears to be considerably less. Samples of seawater taken from aquatic areas of the Troitsy Bay of the Peter the Great Bay, Japan Sea have been shown to inhibit the enzyme activity; the same was shown for the samples of fresh waters. The phosphatase inhibition assay developed proved to be highly sensitive, technically easy-to use allowing to test a great number of samples.

  3. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  4. Immunohistochemical detection of disease-associated prion protein in the intestine of cattle naturally affected with bovine spongiform encephalopathy by using an alkaline-based chemical antigen retrieval method.

    PubMed

    Okada, Hiroyuki; Iwamaru, Yoshihumi; Imamura, Morikazu; Masujin, Kentaro; Yokoyama, Takashi; Mohri, Shirou

    2010-11-01

    An alkaline-based chemical antigen retrieval pretreatment step was used to enhance immunolabeling of disease-associated prion protein (PrP(Sc)) in formalin-fixed and paraffin-embedded tissue sections from cattle naturally affected with bovine spongiform encephalopathy (BSE). The modified chemical method used in this study amplified the PrP(Sc) signal by unmasking PrP(Sc) compared with the normal cellular prion protein. In addition, this method reduced nonspecific background immunolabeling that resulted from the destruction of the residual normal cellular form of prion protein, and reduced the treatment time compared with the usual autoclave pretreatment step. Immunolabeled PrP(Sc) was thereby clearly detected in the myenteric plexus of the ileum in naturally occurring BSE cattle.

  5. Beyond 'flood hotspots': Modelling emergency service accessibility during flooding in York, UK

    NASA Astrophysics Data System (ADS)

    Coles, Daniel; Yu, Dapeng; Wilby, Robert L.; Green, Daniel; Herring, Zara

    2017-03-01

    This paper describes the development of a method that couples flood modelling with network analysis to evaluate the accessibility of city districts by emergency responders during flood events. We integrate numerical modelling of flood inundation with geographical analysis of service areas for the Ambulance Service and the Fire & Rescue Service. The method was demonstrated for two flood events in the City of York, UK to assess the vulnerability of care homes and sheltered accommodation. We determine the feasibility of emergency services gaining access within the statutory 8- and 10-min targets for high-priority, life-threatening incidents 75% of the time, during flood episodes. A hydrodynamic flood inundation model (FloodMap) simulates the 2014 pluvial and 2015 fluvial flood events. Predicted floods (with depth >25 cm and areas >100 m2) were overlain on the road network to identify sites with potentially restricted access. Accessibility of the city to emergency responders during flooding was quantified and mapped using; (i) spatial coverage from individual emergency nodes within the legislated timeframes, and; (ii) response times from individual emergency service nodes to vulnerable care homes and sheltered accommodation under flood and non-flood conditions. Results show that, during the 2015 fluvial flood, the area covered by two of the three Fire & Rescue Service stations reduced by 14% and 39% respectively, while the remaining station needed to increase its coverage by 39%. This amounts to an overall reduction of 6% and 20% for modelled and observed floods respectively. During the 2014 surface water flood, 7 out of 22 care homes (32%) and 15 out of 43 sheltered accommodation nodes (35%) had modelled response times above the 8-min threshold from any Ambulance station. Overall, modelled surface water flooding has a larger spatial footprint than fluvial flood events. Hence, accessibility of emergency services may be impacted differently depending on flood mechanism

  6. Frequency analyses for recent regional floods in the United States

    USGS Publications Warehouse

    Melcher, Nick B.; Martinez, Patsy G.; ,

    1996-01-01

    During 1993-95, significant floods that resulted in record-high river stages, loss of life, and significant property damage occurred in the United States. The floods were caused by unique global weather patterns that produced large amounts of rain over large areas. Standard methods for flood-frequency analyses may not adequately consider the probability of recurrence of these global weather patterns.

  7. Characterization of remarkable floods in France, a transdisciplinary approach applied on generalized floods of January 1910

    NASA Astrophysics Data System (ADS)

    Boudou, Martin; Lang, Michel; Vinet, Freddy; Coeur, Denis

    2014-05-01

    . The January 1910's flood is one of these remarkable floods. This event is foremost known for its aftermaths on the Seine basin, where the flood remains the strongest recorded in Paris since 1658. However, its impacts were also widespread to France's Eastern regions (Martin, 2001). To demonstrate the evaluation grid's interest, we propose a deep analysis of the 1910's river flood with the integration of historical documentation. The approach focus on eastern France where the flood remains the highest recorded for several rivers but were often neglected by scientists in favor of Paris's flood. Through a transdisciplinary research based on the evaluation grid method, we will describe the January 1910 flood event and define why it can be considered as a remarkable flood for these regions.

  8. Enhanced Photoelectrochemical Method for Sensitive Detection of Protein Kinase A Activity Using TiO2/g-C3N4, PAMAM Dendrimer, and Alkaline Phosphatase.

    PubMed

    Li, Xue; Zhu, Lusheng; Zhou, Yunlei; Yin, Huanshun; Ai, Shiyun

    2017-02-21

    A novel photoelectrochemical (PEC) assay is developed for sensitive detection of protein kinase A (PKA) activity based on PKA-catalyzed phosphorylation reaction in solution and signal amplification strategy triggered by PAMAM dendrimer and alkaline phosphatase (ALP). In this strategy, it is noteworthy at this point that PKA phosphorylation was achieved in solution instead of on the surface of the electrode, which has advantages of the good contact in reactants and simple experimental procedure. For immobilizing the phosphorylated peptide (P-peptide) on electrode surface, graphite-like carbon nitride (g-C3N4) and titanium dioxide (TiO2) complex is synthesized and characterized, which plays a significant role for TiO2 conjugating phosphate groups and g-C3N4 providing PEC signal. Subsequently, PAMAM dendrimer and ALP can be captured on P-peptide and TiO2/g-C3N4 modified ITO electrode via interaction between the -COOH groups on the surface of PAMAM dendrimer and the -NH2 groups of peptide and ALP, which can lead to the increase of ALP amount on the modified electrode surface assisted with the PAMAM dendrimer. As a result, the amount of ALP catalyzes of L-ascorbic acid 2-phosphate trisodium salt (AAP) to produce electron donor of ascorbic acid (AA), resulting in an increased photocurrent. The proposed detection assay displays high selectivity and low detection limit of 0.048 U/mL (S/N = 3) for PKA activity. This biosensor can also be applied for the evaluation of PKA inhibition and PKA activity assay in cell samples. Therefore, the fabricated PEC biosensor is potentionally well in PKA activity detection and inhibitor screening.

  9. Proposal for a quantitative index of flood disasters.

    PubMed

    Feng, Lihua; Luo, Gaoyuan

    2010-07-01

    Drawing on calculations of wind scale and earthquake magnitude, this paper develops a new quantitative method for measuring flood magnitude and disaster intensity. Flood magnitude is the quantitative index that describes the scale of a flood; the flood's disaster intensity is the quantitative index describing the losses caused. Both indices have numerous theoretical and practical advantages with definable concepts and simple applications, which lend them key practical significance.

  10. Physical parameters of Fluvisols on flooded and non-flooded terraces

    NASA Astrophysics Data System (ADS)

    Kercheva, Milena; Sokołowska, Zofia; Hajnos, Mieczysław; Skic, Kamil; Shishkov, Toma

    2017-01-01

    The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.

  11. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  12. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  13. Hydrologic versus geomorphic drivers of trends in flood hazard

    NASA Astrophysics Data System (ADS)

    Slater, Louise J.; Bliss Singer, Michael; Kirchner, James W.

    2016-04-01

    Flooding is a major threat to lives and infrastructure, yet trends in flood hazard are poorly understood. The capacity of river channels to convey flood flows is typically assumed to be stationary, so changes in flood frequency are thought to be driven primarily by trends in streamflow. However, changes in channel capacity will also modify flood hazard, even if the flow frequency distribution does not change. We developed new methods for separately quantifying how trends in both streamflow and channel capacity have affected flood frequency at gauging sites across the United States. Using daily discharge records and manual field measurements of channel cross-sectional geometry for USGS gauging stations that have defined flood stages (water levels), we present novel methods for measuring long-term trends in channel capacity of gauged rivers, and for quantifying how they affect overbank flood frequency. We apply these methods to 401 U.S. rivers and detect measurable trends in flood hazard linked to changes in channel capacity and/or the frequency of high flows. Flood frequency is generally nonstationary across these 401 U.S. rivers, with increasing flood hazard at a statistically significant majority of sites. Changes in flood hazard driven by channel capacity are smaller, but more numerous, than those driven by streamflow, with a slight tendency to compensate for streamflow changes. Our results demonstrate that accurately quantifying changes in flood hazard requires accounting separately for trends in both streamflow and channel capacity, or using water levels directly. They also show that channel capacity trends may have unforeseen consequences for flood management and for estimating flood insurance costs. Slater, L. J., M. B. Singer, and J. W. Kirchner (2015), Hydrologic versus geomorphic drivers of trends in flood hazard, Geophys. Res. Lett., 42, 370-376, doi:10.1002/2014GL062482.

  14. Social media for disaster response during floods

    NASA Astrophysics Data System (ADS)

    Eilander, D.; van de Vries, C.; Baart, F.; van Swol, R.; Wagemaker, J.; van Loenen, A.

    2015-12-01

    During floods it is difficult to obtain real-time accurate information about the extent and severity of the hazard. This information is very important for disaster risk reduction management and crisis relief organizations. Currently, real-time information is derived from few sources such as field reports, traffic camera's, satellite images and areal images. However, getting a real-time and accurate picture of the situation on the ground remains difficult. At the same time, people affected by natural hazards increasingly share their observations and their needs through digital media. Unlike conventional monitoring systems, Twitter data contains a relatively large number of real-time ground truth observations representing both physical hazard characteristics and hazard impacts. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at almost 900 tweets per minute during floods in early 2015. Flood events around the world in 2014/2015 yielded large numbers of flood related tweets: from Philippines (85.000) to Pakistan (82.000) to South-Korea (50.000) to Detroit (20.000). The challenge here is to filter out useful content from this cloud of data, validate these observations and convert them to readily usable information. In Jakarta, flood related tweets often contain information about the flood depth. In a pilot we showed that this type of information can be used for real-time mapping of the flood extent by plotting these observations on a Digital Elevation Model. Uncertainties in the observations were taken into account by assigning a probability to each observation indicating its likelihood to be correct based on statistical analysis of the total population of tweets. The resulting flood maps proved to be correct for about 75% of the neighborhoods in Jakarta. Further cross-validation of flood related tweets against (hydro-) meteorological data is to likely improve the skill of the method.

  15. Severe Flooding in India

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Floods devestated parts of eastern India along the Brahmaputra River in June 2000. In some tributaries of the Brahmaputra, the water reached more than 5 meters (16.5 feet) above flood stage. At least 40 residents died, and the flood waters destroyed a bridge linking the region to the rest of India. High water also threatened endangered Rhinos in Kaziranga National Park. Flooded areas are shown in red in the above image. The map was derived from Advanced Very High Resolution Radiometer (AVHRR) data taken on June 15, 2000. For more information on observing floods with satellites, see: Using Satellites to Keep our Head above Water and the Dartmouth Flood Observatory Image by the Dartmouth Flood Observatory

  16. Evaluation of methyl methanesulfonate, 2,6-diaminotoluene and 5-fluorouracil: Part of the Japanese center for the validation of alternative methods (JaCVAM) international validation study of the in vivo rat alkaline comet assay.

    PubMed

    Plappert-Helbig, Ulla; Junker-Walker, Ursula; Martus, Hans-Joerg

    2015-07-01

    As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay (comet assay), we examined methyl methanesulfonate, 2,6-diaminotoluene, and 5-fluorouracil under coded test conditions. Rats were treated orally with the maximum tolerated dose (MTD) and two additional descending doses of the respective compounds. In the MMS treated groups liver and stomach showed significantly elevated DNA damage at each dose level and a significant dose-response relationship. 2,6-diaminotoluene induced significantly elevated DNA damage in the liver at each dose and a statistically significant dose-response relationship whereas no DNA damage was obtained in the stomach. 5-fluorouracil did not induce DNA damage in either liver or stomach.

  17. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  18. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  19. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  20. Flood Hazard Mapping Assessment for Lebanon

    NASA Astrophysics Data System (ADS)

    Abdallah, Chadi; Darwich, Talal; Hamze, Mouin; Zaarour, Nathalie

    2014-05-01

    Of all natural disasters, floods affect the greatest number of people worldwide and have the greatest potential to cause damage. In fact, floods are responsible for over one third of people affected by natural disasters; almost 190 million people in more than 90 countries are exposed to catastrophic floods every year. Nowadays, with the emerging global warming phenomenon, this number is expected to increase, therefore, flood prediction and prevention has become a necessity in many places around the globe to decrease damages caused by flooding. Available evidence hints at an increasing frequency of flooding disasters being witnessed in the last 25 years in Lebanon. The consequences of such events are tragic including annual financial losses of around 15 million dollars. In this work, a hydrologic-hydraulic modeling framework for flood hazard mapping over Lebanon covering 19 watershed was introduced. Several empirical, statistical and stochastic methods to calculate the flood magnitude and its related return periods, where rainfall and river gauge data are neither continuous nor available on a long term basis with an absence of proper river sections that under estimate flows during flood events. TRMM weather satellite information, automated drainage networks, curve numbers and other geometrical characteristics for each basin was prepared using WMS-software and then exported into HMS files to implement the hydrologic modeling (rainfall-runoff) for single designed storm of uniformly distributed depth along each basin. The obtained flow hydrographs were implemented in the hydraulic model (HEC-RAS) where relative water surface profiles are calculated and flood plains are delineated. The model was calibrated using the last flood event of January 2013, field investigation, and high resolution satellite images. Flow results proved to have an accuracy ranging between 83-87% when compared to the computed statistical and stochastic methods. Results included the generation of

  1. Flash flood warning in mountaineous areas using X-band weather radars and the AIGA method in the framework of the RHYTMME project

    NASA Astrophysics Data System (ADS)

    Javelle, Pierre; Defrance, Dimitri; Ecrepont, Stéphane; Fouchier, Catherine; Mériaux, Patrice; Tolsa, Mathieu; Westrelin, Samuel

    2013-04-01

    The knowledge of precipitations still remains a tricky issue in mountaineous areas: the available rain-gauges are in a limited number and most often located in the valleys, and the radar rainfall estimates have to deal with a lot of problems due to the relief and the difficulty to distinguish the different types of hydrometeors (snow, hail, rain). In this context, the "RHYTMME" project deals with two main issues: - Providing an accurate radar rainfall information in mountainous areas. - Developing a real-time hazards warning system based on this information. To answer to the first issue, a X-band doppler dual polarized radar network is currently implemented in the French South Alps. At the end of the project (2013), three new radars will be installed, completing a pre-existing radar already installed on the Mont Vial top since 2008 (Hydrix® technology developed by the Novimet company, and tested in a previous project). The present communication focuses on the flash flood warning issue. It presents some results obtained by coupling the radar estimates to a simple distributed hydrological model (the AIGA method). Results are compared on damages observed by end-users, which were strongly involved into the project. The RHYTMME project is co-piloted by Meteo-France and the Cemagref and has the financial support of the European Union, the Provence-Alpes-Côte d'Azur Region and the French Ministry in charge of Ecology.

  2. Quantifying peak discharges for historical floods

    USGS Publications Warehouse

    Cook, J.L.

    1987-01-01

    It is usually advantageous to use information regarding historical floods, if available, to define the flood-frequency relation for a stream. Peak stages can sometimes be determined for outstanding floods that occurred many years ago before systematic gaging of streams began. In the United States, this information is usually not available for more than 100-200 years, but in countries with long cultural histories, such as China, historical flood data are available at some sites as far back as 2,000 years or more. It is important in flood studies to be able to assign a maximum discharge rate and an associated error range to the historical flood. This paper describes the significant characteristics and uncertainties of four commonly used methods for estimating the peak discharge of a flood. These methods are: (1) rating curve (stage-discharge relation) extension; (2) slope conveyance; (3) slope area; and (4) step backwater. Logarithmic extensions of rating curves are based on theoretical plotting techniques that results in straight line extensions provided that channel shape and roughness do not change significantly. The slope-conveyance and slope-area methods are based on the Manning equation, which requires specific data on channel size, shape and roughness, as well as the water-surface slope for one or more cross-sections in a relatively straight reach of channel. The slope-conveyance method is used primarily for shaping and extending rating curves, whereas the slope-area method is used for specific floods. The step-backwater method, also based on the Manning equation, requires more cross-section data than the slope-area ethod, but has a water-surface profile convergence characteristic that negates the need for known or estimated water-surface slope. Uncertainties in calculating peak discharge for historical floods may be quite large. Various investigations have shown that errors in calculating peak discharges by the slope-area method under ideal conditions for

  3. Floods in mountain environments: A synthesis

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Wyżga, Bartłomiej; Marston, Richard A.

    2016-11-01

    of mountain rivers, but morphological changes of rivers can also affect hydrological properties of floods and the associated risk for societies. This paper provides a review of research in the field of floods in mountain environments and puts the papers of this special issue dedicated to the same topic into context. It also provides insight into innovative studies, methods, or emerging aspects of the relations between environmental changes, geomorphic processes, and the occurrence of floods in mountain rivers.

  4. Floods in the Skagit River basin, Washington

    USGS Publications Warehouse

    Stewart, James E.; Bodhaine, George Lawrence

    1961-01-01

    According to Indian tradition, floods of unusually great magnitude harassed the Skagit River basin about 1815 and 1856. The heights of these floods were not recorded at the time; so they are called historical floods. Since the arrival of white men about 1863, a number of large and damaging floods have been witnessed and recorded. Data concerning and verifying the early floods, including those of 1815 and 1856, were collected prior to 1923 by James E. Stewart. He talked with many of the early settlers in the valley who had listened to Indians tell about the terrible floods. Some of these settlers had referenced the maximum stages of floods they had witnessed by cutting notches at or measuring to high-water marks on trees. In order to verify flood stages Stewart spent many weeks finding and levelling to high-water marks such as drift deposits, sand layers in coves, and silt in the bark of certain types of trees. Gaging stations have been in operation at various locations on the Skagit River and its tributaries since 1909, so recorded peak stages are available at certain sites for floods occurring since that date. All peak discharge data available for both historical and recorded floods have been listed in this report. The types of floods as to winter and summer, the duration of peaks, and the effect of reservoirs are discussed. In 1899 Sterling Dam was constructed at the head of Gages Slough near Sedro Woolley. This was the beginning of major diking in the lower reaches of the Skagit River. Maps included in the report show the location of most of the dike failures that have occurred during the last 73 years and the area probably inundated by major floods. The damage resulting from certain floods is briefly discussed. The report is concluded with a brief discussion of the U.S. Geological Survey method of computing flood-frequency curves as applied to the Skagit River basin. The treatment of single-station records and a means of combining these records for expressing

  5. Analysis of the flood extent extraction model and the natural flood influencing factors: A GIS-based and remote sensing analysis

    NASA Astrophysics Data System (ADS)

    Lawal, D. U.; Matori, A. N.; Yusuf, K. W.; Hashim, A. M.; Balogun, A. L.

    2014-02-01

    Serious floods have hit the State of Perlis in 2005, 2010, as well as 2011. Perlis is situated in the northern part of Peninsula Malaysia. The floods caused great damage to properties and human lives. There are various methods used in an attempt to provide the most reliable ways to reduce the flood risk and damage to the optimum level by identifying the flood vulnerable zones. The purpose of this paper is to develop a flood extent extraction model based on Minimum Distance Algorithm and to overlay with the natural flood influencing factors considered herein in order to examine the effect of each factor in flood generation. GIS spatial database was created from a geological map, SPOT satellite image, and the topographical map. An attribute database was equally created from field investigations and historical flood areas reports of the study area. The results show a great correlation between the flood extent extraction model and the flood factors.

  6. Flooding: A unique year

    USGS Publications Warehouse

    Putnam, A.L.

    1984-01-01

    Floods have been and continue to be one of the most destructive hazards facing the people of the United States. Of all the natural hazards, floods are the most widespread and the most ruinous to life and property. Today, floods are a greater menace to our welfare than ever before because we live in large numbers near water and have developed a complex reliance upon it. From large rivers to country creeks, from mountain rills to the trickles that occasionally dampen otherwise arid wastelands, every stream in the United States is subject to flooding at some time. Floods strike in myriad forms, including sea surges driven by wild winds or tsunamis churned into fury by seismic activity. By far the most frequent, however, standing in a class by themselves, are the inland, freshwater floods that are caused by rain, by melting snow and ice, or by the bursting of structures that man has erected to protect himself and his belongings from angry waters.

  7. Runoff models and flood frequency statistics for design flood estimation in Austria - Do they tell a consistent story?

    NASA Astrophysics Data System (ADS)

    Rogger, M.; Kohl, B.; Pirkl, H.; Viglione, A.; Komma, J.; Kirnbauer, R.; Merz, R.; Blöschl, G.

    2012-08-01

    SummaryDesign floods for a given location at a stream can be estimated by a number of approaches including flood frequency statistics and the design storm method. If applied to the same catchment the two methods often yield quite different results. The aim of this paper is to contribute to understanding the reasons for these differences. A case study is performed for 10 alpine catchments in Tyrol, Austria, where the 100-year floods are estimated by (a) flood frequency statistics and (b) an event based runoff model. To identify the sources of the differences of the two methods, the 100-year floods are also estimated by (c) Monte Carlo simulations using a continuous runoff model. The results show that, in most catchments, the event based model gives larger flood estimates than flood frequency statistics. The reasons for the differences depend on the catchment characteristics and different rainfall inputs that were applied. For catchments with a high storage capacity the Monte Carlo simulations indicate a step change in the flood frequency curve when a storage threshold is exceeded which is not captured by flood frequency statistics. Flood frequency statistics therefore tends to underestimate the floods in these catchments. For catchments with a low storage capacity or significant surface runoff, no step change occurs, but in three catchments the design storms used were larger than those read from the IDF (intensity duration frequency) curve leading to an overestimation of the design floods. Finally, also the correct representation of flood dominating runoff components was shown to influence design flood results. Geologic information on the catchments was essential for identifying the reasons for the mismatch of the flood estimates.

  8. Past and present floods in South Moravia

    NASA Astrophysics Data System (ADS)

    Brázdil, Rudolf; Chromá, Kateřina; Řezníčková, Ladislava; Valášek, Hubert; Dolák, Lukáš; Stachoň, Zdeněk; Soukalová, Eva; Dobrovolný, Petr

    2015-04-01

    Floods represent the most destructive natural phenomena in the Czech Republic, often causing great material damage or loss of human life. Systematic instrumental measurements of water levels in Moravia (the eastern part of the Czech Republic) started mainly in the 1880s-1890s, while for discharges it was in the 1910s-1920s. Different documentary evidence allows extension of our knowledge about floods prior the instrumental period. The paper presents long-term flood chronologies for four South Moravian rivers: the Jihlava, the Svratka, the Dyje and the Morava. Different documentary data are used to extract floods. Taxation records are of particular importance among them. Since the mid-17th century, damage to property and land (fields, meadows, pastures or gardens) entitled farmers and landowners to request a tax relief. Related documents of this administration process kept mainly in Moravian Land Archives in Brno allow to obtain detail information about floods and their impacts. Selection of floods in the instrumental period is based on calculation of N-year return period of peak water levels and/or peak discharges for selected hydrological stations of the corresponding rivers (with return period of two years and more). Final flood chronologies combine floods derived from both documentary data and hydrological measurements. Despite greater inter-decadal variability, periods of higher flood frequency are c. 1821-1850 and 1921-1950 for all four rivers; for the Dyje and Morava rivers also 1891-1900. Flood frequency fluctuations are further compared with other Central European rivers. Uncertainties in created chronologies with respect to data and methods used for compilation of long-term series and anthropogenic changes in river catchments are discussed. The study is a part of the research project "Hydrometeorological extremes in Southern Moravia derived from documentary evidence" supported by the Grant Agency of the Czech Republic, reg. no. 13-19831S.

  9. Technique for estimating depth of floods in Tennessee

    USGS Publications Warehouse

    Gamble, C.R.

    1983-01-01

    Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  11. Remediation of Former Manufactured Gas Plant Tars Using Alkaline Flushing

    NASA Astrophysics Data System (ADS)

    Hauswirth, S.; Rylander, S.; Birak, P. S.; Miller, C. T.

    2010-12-01

    The remediation of former manufactured gas plant (FMGP) tars in the subsurface is particularly difficult due to the wetting behavior and high viscosities of these dense non-aqueous liquids (DNAPLs). Alkaline flooding is a technique which has proven effective in improving the recovery of crude oils, which share some characteristics with FMGP tars. For this study, we measured the effect of NaOH solutions on interfacial tension and conducted column experiments to investigate the feasibility of applying this technique to FMGP tars. The pendant drop technique was used to measure interfacial tensions for solutions ranging from 0-1% NaOH. Column experiments were conducted by contaminating sands with tars recovered from a FMGP then flushing the columns with NaOH solutions. A final, 70% v/v ethanol cosolvent flush was conducted to investigate the effectiveness of a two-stage remediation approach. The mass removal of tar, as well as 26 individual PAHs, was measured, along with the aqueous phase mass flux of PAHs after each flushing stage. The interfacial tension was reduced from about 20 mN/m with pure water to a minimum of 0.05 mN/m at a concentration of 0.1% NaOH. In the column experiments, alkaline flushing resulted in a 50% reduction of the residual saturation. Aqueous phase PAH concentrations, however, were similar before and after the alkaline flushing stage. The combination of alkaline and cosolvent flushing resulted in an overall reduction of 95% of the total mass of the 16 EPA PAHs. Final aqueous phase concentrations were reduced significantly for lower molecular weight PAHs, but increased slightly for the higher molecular weight compounds, likely due to their increased mole fraction within the remaining tar. Additional work is being conducted to improve the effectiveness of the alkaline flushing through the use of surfactants and polymers.

  12. RASOR flood modelling

    NASA Astrophysics Data System (ADS)

    Beckers, Joost; Buckman, Lora; Bachmann, Daniel; Visser, Martijn; Tollenaar, Daniel; Vatvani, Deepak; Kramer, Nienke; Goorden, Neeltje

    2015-04-01

    Decision making in disaster management requires fast access to reliable and relevant information. We believe that online information and services will become increasingly important in disaster management. Within the EU FP7 project RASOR (Rapid Risk Assessment and Spatialisation of Risk) an online platform is being developed for rapid multi-hazard risk analyses to support disaster management anywhere in the world. The platform will provide access to a plethora of GIS data that are relevant to risk assessment. It will also enable the user to run numerical flood models to simulate historical and newly defined flooding scenarios. The results of these models are maps of flood extent, flood depths and flow velocities. The RASOR platform will enable to overlay historical event flood maps with observations and Earth Observation (EO) imagery to fill in gaps and assess the accuracy of the flood models. New flooding scenarios can be defined by the user and simulated to investigate the potential impact of future floods. A series of flood models have been developed within RASOR for selected case study areas around the globe that are subject to very different flood hazards: • The city of Bandung in Indonesia, which is prone to fluvial flooding induced by heavy rainfall. The flood hazard is exacerbated by land subsidence. • The port of Cilacap on the south coast of Java, subject to tsunami hazard from submarine earthquakes in the Sunda trench. • The area south of city of Rotterdam in the Netherlands, prone to coastal and/or riverine flooding. • The island of Santorini in Greece, which is subject to tsunamis induced by landslides. Flood models have been developed for each of these case studies using mostly EO data, augmented by local data where necessary. Particular use was made of the new TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement) product from the German Aerospace centre (DLR) and EADS Astrium. The presentation will describe the flood models and the

  13. Controlled synthesis of La{sub 1−x}Sr{sub x}CrO{sub 3} nanoparticles by hydrothermal method with nonionic surfactant and their ORR activity in alkaline medium

    SciTech Connect

    Choi, Bo Hyun; Park, Shin-Ae; Park, Bong Kyu; Chun, Ho Hwan; Kim, Yong-Tae

    2013-10-15

    Graphical abstract: We demonstrate that Sr-doped LaCrO{sub 3} nanoparticles were successfully prepared by the hydrothermal synthesis method using the nonionic surfactant Triton X-100 and the applicability of La{sub 1−x}Sr{sub x}CrO{sub 3} to oxygen reduction reaction (ORR) electrocatalysis in an alkaline medium. Compared with the nanoparticles synthesized by the coprecipitation method, they showed enhanced ORR activity. - Highlights: • Sr-doped LaCrO{sub 3} nanoparticles were successfully prepared by the hydrothermal method using the nonionic surfactant. • Homogeneously shaped and sized Sr-doped LaCrO{sub 3} nanoparticles were readily obtained. • Compared with the nanoparticles synthesized by the coprecipitation method, they showed an enhanced ORR activity. • The main origin was revealed to be the decreased particle size due to the nonionic surfactant. - Abstract: Sr-doped LaCrO{sub 3} nanoparticles were prepared by the hydrothermal method with the nonionic surfactant Triton X-100 followed by heat treatment at 1000 °C for 10 h. The obtained perovskite nanoparticles had smaller particle size (about 100 nm) and more uniform size distribution than those synthesized by the conventional coprecipitation method. On the other hand, it was identified with the material simulation that the electronic structure change by Sr doping was negligible, because the initially unfilled e{sub g}-band was not affected by the p-type doping. Finally, the perovskite nanoparticles synthesized by hydrothermal method showed much higher ORR activity by over 200% at 0.8 V vs. RHE than those by coprecipitation method.

  14. The chemistry and element fluxes of the July 2011 Múlakvísl and Kaldakvísl glacial floods, Iceland

    NASA Astrophysics Data System (ADS)

    Galeczka, Iwona; Oelkers, Eric H.; Gislason, Sigurdur R.

    2014-05-01

    The glacial floods, called 'jökulhlaups', are common in Iceland and are of interest to geologists for several reasons. Firstly, the heat source origin - subglacial volcanic eruption or/and subglacial geothermal activity - determines the potential environmental impact of the floods. For example, if the heat was sourced by a volcanic eruption, acid gas input might lead to acidic flood waters and toxic metal release from the host rock. In contrast, geothermal heat melts the ice slowly allowing long-term fluid-rock interaction to neutralize the flood waters, limiting their toxicity. The chemical composition of the flood waters is often the only indicator of the flood triggering mechanism in volcanic and geothermal areas. As such river water chemistry monitoring might be an effective method to predict an upcoming volcanic eruption. Secondly, glacial floods may play an important role in global cycle of elements. Due to high discharge during the events, flood waters can transport large amounts of particulate material. This particulate material has large surface areas, making it especially reactive once it arrives in estuaries. Slow dissolution of particulate material releases micro- and macronutrients which could enhance primary productivity along the coast and in lakes. In July 2011, two ~2000 m3/s glacial floods from the Icelandic Mördalsjökull and Vatnajökull glaciers emerged into the Múlakvísl and Kaldakvísl rivers, respectively. Water samples collected during both floods had neutral to alkaline pH and conductivity from 100 to 900 μS/cm. The total dissolved inorganic carbon (DIC), present mostly as HCO3-, was ~9 mmol/kg during the flood peak in the Múlakvísl river but stabilized at around 1 mmol/kg; a similar trend was observed in the Kaldakvísl river. Concentrations of most dissolved elements in the flood waters were comparable to those commonly observed in these rivers. The concentration of suspended particulate material however, increased dramatically

  15. Feedback on flood risk management

    NASA Astrophysics Data System (ADS)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    are responsible of the transmission of meteorological alert and of rescue actions. In the crossing of the géo-information stemming from the space technology, communication, meteorology, hydraulics and hydrology, Predict-services brings help to local communities in their mission of protection and information to the citizens, for flood problems and helps companies to limit and delete operating losses facing floods. The initiative, developped by BRL, EADS Astrium, in association with Meteo France, has been employed and is functioning on cities of south of France, notably on Montpellier, and also on the scale of catchment area ( BRL is a regional development company, a public private partnership controlled by the local gouvernments of the Languedoc-Roussillon Region). The initiative has to be coordinated with state services to secure continuity and coherence of information. This initiative is developped in dialogue with State services as Météo France, the Ministry for the interior, the Ministry for ecology and the durable development, the Regional Direction of the Environment (DIREN), the Central service of Hydrometeorology and Support to the Forecast of the Floods ( SCHAPI) and service of forecast of rising (SPC). It has been successfully functioning for 5 years with 300 southern cities from South West to South East of France and notably Montpellier and Sommières, famous for it's flood problems on the Vidourle river where no human loss was to regret and where the economic impacts were minimized. Actually developed in cities of South of France, this initiative is to be developed nationaly and very soon internationally. Thanks to the efficiency of it's method, this initiative is also developed in partnership with insurance company involved in prevention actions. After more than 100 events observed and analysed in South of France, the experience gained, allowed PREDICT Services to better anticipate phenomena and also to better manage them. The presentation will expose

  16. Real-time flood extent maps based on social media

    NASA Astrophysics Data System (ADS)

    Eilander, Dirk; van Loenen, Arnejan; Roskam, Ruud; Wagemaker, Jurjen

    2015-04-01

    During a flood event it is often difficult to get accurate information about the flood extent and the people affected. This information is very important for disaster risk reduction management and crisis relief organizations. In the post flood phase, information about the flood extent is needed for damage estimation and calibrating hydrodynamic models. Currently, flood extent maps are derived from a few sources such as satellite images, areal images and post-flooding flood marks. However, getting accurate real-time or maximum flood extent maps remains difficult. With the rise of social media, we now have a new source of information with large numbers of observations. In the city of Jakarta, Indonesia, the intensity of unique flood related tweets during a flood event, peaked at 8 tweets per second during floods in early 2014. A fair amount of these tweets also contains observations of water depth and location. Our hypothesis is that based on the large numbers of tweets it is possible to generate real-time flood extent maps. In this study we use tweets from the city of Jakarta, Indonesia, to generate these flood extent maps. The data-mining procedure looks for tweets with a mention of 'banjir', the Bahasa Indonesia word for flood. It then removes modified and retweeted messages in order to keep unique tweets only. Since tweets are not always sent directly from the location of observation, the geotag in the tweets is unreliable. We therefore extract location information using mentions of names of neighborhoods and points of interest. Finally, where encountered, a mention of a length measure is extracted as water depth. These tweets containing a location reference and a water level are considered to be flood observations. The strength of this method is that it can easily be extended to other regions and languages. Based on the intensity of tweets in Jakarta during a flood event we can provide a rough estimate of the flood extent. To provide more accurate flood extend

  17. Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peak-flow data through water year 2010

    USGS Publications Warehouse

    Paretti, Nicholas V.; Kennedy, Jeffrey R.; Turney, Lovina A.; Veilleux, Andrea G.

    2014-01-01

    The regional regression equations were integrated into the U.S. Geological Survey’s StreamStats program. The StreamStats program is a national map-based web application that allows the public to easily access published flood frequency and basin characteristic statistics. The interactive web application allows a user to select a point within a watershed (gaged or ungaged) and retrieve flood-frequency estimates derived from the current regional regression equations and geographic information system data within the selected basin. StreamStats provides users with an efficient and accurate means for retrieving the most up to date flood frequency and basin characteristic data. StreamStats is intended to provide consistent statistics, minimize user error, and reduce the need for large datasets and costly geographic information system software.

  18. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  19. Probability plotting position formulas for flood records with historical information

    NASA Astrophysics Data System (ADS)

    Hirsch, Robert M.

    1987-12-01

    For purposes of evaluating fitted flood frequency distributions or for purposes of estimating distributions directly from plots of flood peaks versus exceedance probabilities (either by subjective or objective techniques), one needs a probability plotting position formula which can be applied to all of the flood data available: both systematic and historic floods. Some of the formulas in use are simply extensions of existing formulas (such as Hazen and Weibull) used on systematic flood records. New plotting position formulas proposed by Hirsch and Stedinger (1986) and in this paper are based on a recognition that the flood data arises from partially censored sampling of the flood record. The theoretical appropriateness, bias in probability and bias in discharge of the various plotting position formulas are considered. The methods are compared in terms of their effects on flood frequency estimation when an objective curve-fitting method of estimation is employed. Consideration is also given to the correct interpretation of the historical record length and the effect of incorrectly assuming that record length equals the time since the first known historical flood. This assumption is employed in many flood frequency studies and may result in a substantial bias in estimated design flood magnitudes.

  20. Hydrologic and geomorphic drivers of changing flood hazard

    NASA Astrophysics Data System (ADS)

    Slater, L. J.; Singer, M. B.; Kirchner, J. W.

    2014-12-01

    Flooding is a major hazard to lives and infrastructure, but trends in flood hazard are poorly understood. In flood risk analysis and channel design engineering, channel capacity is generally assumed to be constant, and changes in flood frequency are assumed to be driven primarily by changes in streamflow. However, trends in channel capacity will also modify flood hazard, even if the flow frequency distribution does not change. Using daily discharge records and manual field measurements of channel cross-sectional geometry for USGS gauging stations that have defined flood stages (water levels), we present novel methods for measuring long-term trends in channel capacity of gauged rivers, and for quantifying how they affect flood frequency. We apply these methods to 401 U.S. rivers and detect measurable trends in flood hazard linked to changes in channel capacity or the frequency of high flows. We found increases in flood frequency at a statistically significant majority of sites. Trends in channel capacity were smaller, but more numerous, than those in streamflow, with a slight tendency to compensate for streamflow changes. Recognizing and quantifying the joint influence of trends in channel capacity and streamflow on flood frequency is necessary to determine changes in flood hazard accurately.

  1. Improving Gas Flooding Efficiency

    SciTech Connect

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability

  2. Assessment of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2013-12-01

    Flood is one of the most significant natural hazards in Japan. The Tokyo metropolitan area has been affected by several large flood disasters. Therefore, investigating potential flood risk in Tokyo metropolitan area is important for development of adaptation strategy for future climate change. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published 'Statistics of flood', which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. By using these flood data, we estimated damage by inundation inside a levee for each prefecture based on a statistical method. On the basis of estimated damage, we developed flood risk curves in the Tokyo metropolitan area, representing relationship between damage and exceedance probability of flood for the period 1976-2008 for each prefecture. Based on the flood risk curve, we attempted evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause for regional difference of flood risk. By analyzing flood risk curves, we found out regional differences of flood risk. We identified high flood risk in Tokyo and Saitama prefecture. On the other hand, flood risk was relatively low in Ibaraki and Chiba prefecture. We found that these regional differences of flood risk can be attributed to spatial distribution of entire property value and ratio of damaged housing units in each prefecture.We also attempted to evaluate influence of climate change on potential flood risk by considering variation of precipitation amount and precipitation intensity in the Tokyo metropolitan area. Results shows that we can evaluate potential impact of precipitation change on flood risk with high accuracy by using our methodology. Acknowledgments

  3. Climate change impacts on future flooding in Bangladesh

    NASA Astrophysics Data System (ADS)

    Mirza, M.

    2003-04-01

    Bangladesh is located at the tail end of the three large river systems- the Ganges, Brahmaputra and Meghna. About 92.5% of the basin area is located outside of its boundary. The country is frequently devastated by floods and can engulf up to 70% of the country. Economic damage could be as high as 10% of the GDP. Cross border and local precipitation plays a major role in generating floods in Bangladesh. However, precipitation over some cross border areas is really crucial for the flooding process. Any change in precipitation regime in those areas in future may aggravate flooding in Bangladesh. In this paper future flooding situation in Bangladesh has been assessed in a three-step procedure. First, stepwise regression method was applied to identify climatologically important regions those contribute to flooding. Second, precipitation scenarios were constructed. Third, the scenarios were applied in the regression models to determine future flood discharges in the Ganges, Brahmaputra and Meghna rivers in Bangladesh.

  4. Historic-flood evaluation and research needs in mountainous areas

    USGS Publications Warehouse

    Jarrett, Robert D.

    1994-01-01

    An evaluation of historic flood estimates in mountainous areas in Colorado was made to assess their accuracy. The purpose of this evaluation is to enhance awareness of the need to assess the accuracy of historic flood peaks, particularly floods of record, because they are such a critical factor in flood-plain management, design of hydraulic structures in flood plains, and related environmental studies. Research needs based on a proposed river-system-process approach are suggested. A critical need exists for interdisciplinary documentation of extreme-flood processes, particularly to improve methods to directly measure extreme floods and quantify total energy losses. Such research will benefit the public through improved engineering designs and environmental investigations.

  5. Increasing river floods: fiction or reality?

    PubMed

    Blöschl, Günter; Gaál, Ladislav; Hall, Julia; Kiss, Andrea; Komma, Jürgen; Nester, Thomas; Parajka, Juraj; Perdigão, Rui A P; Plavcová, Lenka; Rogger, Magdalena; Salinas, José Luis; Viglione, Alberto

    2015-01-01

    There has been a surprisingly large number of major floods in the last years around the world, which suggests that floods may have increased and will continue to increase in the next decades. However, the realism of such changes is still hotly discussed in the literature. This overview article examines whether floods have changed in the past and explores the driving processes of such changes in the atmosphere, the catchments and the river system based on examples from Europe. Methods are reviewed for assessing whether floods may increase in the future. Accounting for feedbacks within the human-water system is important when assessing flood changes over lead times of decades or centuries. It is argued that an integrated flood risk management approach is needed for dealing with future flood risk with a focus on reducing the vulnerability of the societal system. WIREs Water 2015, 2:329-344. doi: 10.1002/wat2.1079 For further resources related to this article, please visit the WIREs website.

  6. Flood inundation map library, Fort Kent, Maine

    USGS Publications Warehouse

    Lombard, Pamela J.

    2012-01-01

    Severe flooding occurred in northern Maine from April 28 to May 1, 2008, and damage was extensive in the town of Fort Kent (Lombard, 2010). Aroostook County was declared a Federal disaster area on May 9, 2008. The extent of flooding on both the Fish and St. John Rivers during this event showed that the current Federal Emergency Management Agency (FEMA) Flood Insurance Study (FIS) and Flood Insurance Rate Map (FIRM) (Federal Emergency Management Agency, 1979) were out of date. The U.S. Geological Survey (USGS) conducted a study to develop a flood inundation map library showing the areas and depths for a range of flood stages from bankfull to the flood of record for Fort Kent to complement an updated FIS (Federal Emergency Management Agency, in press). Hydrologic analyses that support the maps include computer models with and without the levee and with various depths of backwater on the Fish River. This fact sheet describes the methods used to develop the maps and describes how the maps can be accessed.

  7. Urban flood risk warning under rapid urbanization.

    PubMed

    Chen, Yangbo; Zhou, Haolan; Zhang, Hui; Du, Guoming; Zhou, Jinhui

    2015-05-01

    In the past decades, China has observed rapid urbanization, the nation's urban population reached 50% in 2000, and is still in steady increase. Rapid urbanization in China has an adverse impact on urban hydrological processes, particularly in increasing the urban flood risks and causing serious urban flooding losses. Urban flooding also increases health risks such as causing epidemic disease break out, polluting drinking water and damaging the living environment. In the highly urbanized area, non-engineering measurement is the main way for managing urban flood risk, such as flood risk warning. There is no mature method and pilot study for urban flood risk warning, the purpose of this study is to propose the urban flood risk warning method for the rapidly urbanized Chinese cities. This paper first presented an urban flood forecasting model, which produces urban flood inundation index for urban flood risk warning. The model has 5 modules. The drainage system and grid dividing module divides the whole city terrain into drainage systems according to its first-order river system, and delineates the drainage system into grids based on the spatial structure with irregular gridding technique; the precipitation assimilation module assimilates precipitation for every grids which is used as the model input, which could either be the radar based precipitation estimation or interpolated one from rain gauges; runoff production module classifies the surface into pervious and impervious surface, and employs different methods to calculate the runoff respectively; surface runoff routing module routes the surface runoff and determines the inundation index. The routing on surface grid is calculated according to the two dimensional shallow water unsteady flow algorithm, the routing on land channel and special channel is calculated according to the one dimensional unsteady flow algorithm. This paper then proposed the urban flood risk warning method that is called DPSIR model based

  8. Glacier generated floods

    USGS Publications Warehouse

    Walder, J.S.; Fountain, A.G.; ,

    1997-01-01

    Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.Destructive floods result from drainage of glacier-dammed lakes and sudden release of water stored within glaciers. There is a good basis - both empirical and theoretical - for predicting the magnitude of floods from ice-dammed lakes, although some aspects of flood initiation need to be better understood. In contrast, an understanding of floods resulting from release of internally stored water remains elusive, owing to lack of knowledge of how and where water is stored and to inadequate understanding of the complex physics of the temporally and spatially variable subglacial drainage system.

  9. Discover Floods Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Now available as a Download! This valuable resource helps educators teach students about both the risks and benefits of flooding through a series of engaging, hands-on activities. Acknowledging the different roles that floods play in both natural and urban communities, the book helps young people gain a global understanding of this common--and…

  10. The Spokane flood controversy

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1978-01-01

    An enormous plexus of proglacial channels that eroded into the loess and basalt of the Columbia Plateau, eastern Washington is studied. This channeled scabland contained erosional and depositional features that were unique among fluvial phenomena. Documentation of the field relationships of the region explains the landforms as the product of a relatively brief, but enormous flood, then so-called the Spokane flood.

  11. Flood management: prediction of microbial contamination in large-scale floods in urban environments.

    PubMed

    Taylor, Jonathon; Lai, Ka Man; Davies, Mike; Clifton, David; Ridley, Ian; Biddulph, Phillip

    2011-07-01

    With a changing climate and increased urbanisation, the occurrence and the impact of flooding is expected to increase significantly. Floods can bring pathogens into homes and cause lingering damp and microbial growth in buildings, with the level of growth and persistence dependent on the volume and chemical and biological content of the flood water, the properties of the contaminating microbes, and the surrounding environmental conditions, including the restoration time and methods, the heat and moisture transport properties of the envelope design, and the ability of the construction material to sustain the microbial growth. The public health risk will depend on the interaction of these complex processes and the vulnerability and susceptibility of occupants in the affected areas. After the 2007 floods in the UK, the Pitt review noted that there is lack of relevant scientific evidence and consistency with regard to the management and treatment of flooded homes, which not only put the local population at risk but also caused unnecessary delays in the restoration effort. Understanding the drying behaviour of flooded buildings in the UK building stock under different scenarios, and the ability of microbial contaminants to grow, persist, and produce toxins within these buildings can help inform recovery efforts. To contribute to future flood management, this paper proposes the use of building simulations and biological models to predict the risk of microbial contamination in typical UK buildings. We review the state of the art with regard to biological contamination following flooding, relevant building simulation, simulation-linked microbial modelling, and current practical considerations in flood remediation. Using the city of London as an example, a methodology is proposed that uses GIS as a platform to integrate drying models and microbial risk models with the local building stock and flood models. The integrated tool will help local governments, health authorities

  12. Comparison of methods and optimisation of the analysis of fumonisins B₁ and B₂ in masa flour, an alkaline cooked corn product.

    PubMed

    De Girolamo, A; Pascale, M; Visconti, A

    2011-05-01

    A comparison study of different extraction and clean-up procedures for the liquid chromatographic analysis of fumonisins B(1) (FB(1)) and B(2) (FB(2)) in corn masa flour was performed. The procedures included extraction (heat or room temperature) with acidic conditions or EDTA-containing solvents, and clean-up by immunoaffinity or C18 solid-phase extraction columns. Thereafter an analytical method was optimised using extraction with an acidic mixture of methanol-acetonitrile-citrate/phosphate buffer, clean-up through the immunoaffinity column and determination of fumonisins by liquid chromatography with automated pre-column derivatisation with o-phthaldialdehyde reagent. Recovery experiments performed on yellow, white and blue masa flours at spiking levels of 400, 800 and 1200 µg kg(-1) FB(1) and of 100, 200 and 300 µg kg(-1) FB(2) gave overall mean recoveries of 99% (±6%) for FB(1) and 88% (±6%) for FB(2). Good recoveries (higher than 90% for both FB(1) and FB(2)) were also obtained with corn tortilla chips. The limits of quantification of the method (signal-to-noise ratio of 10) were 25 µg kg(-1) for FB(1) and 17 µg kg(-1) for FB(2). The method was tested on different commercial corn masa flours as well as on white and yellow corn tortilla chips, showing fumonisin contamination levels (FB(1) + FB(2)) up to 1800 µg kg(-1) (FB(1) + FB(2)) in masa flour and 960 µg kg(-1) in tortilla chips. Over 30% of masa flours originating from Mexico exceeded the European Union maximum permitted level.

  13. An initial abstraction and constant loss model, and methods for estimating unit hydrographs, peak streamflows, and flood volumes for urban basins in Missouri

    USGS Publications Warehouse

    Huizinga, Richard J.

    2014-01-01

    The rainfall-runoff pairs from the storm-specific GUH analysis were further analyzed against various basin and rainfall characteristics to develop equations to estimate the peak streamflow and flood volume based on a quantity of rainfall on the basin.

  14. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  15. Feedback on flood risk management

    NASA Astrophysics Data System (ADS)

    Moreau, K.; Roumagnac, A.

    2009-09-01

    space technology, communication, meteorology, hydraulics and hydrology, Predict-services brings help to local communities in their mission of protection and information to the citizens, for flood problems and helps companies to limit and delete operating losses facing floods. The initiative, developped by BRL, EADS Astrium, in association with Meteo France, has been employed and is functioning on cities of south of France, notably on Montpellier, and also on the scale of catchment area( BRL is a regional development company, a public private partnership controlled by the local gouvernments of the Languedoc-Roussillon Region). The initiative has to be coordinated with state services to secure continuity and coherence of information. This initiative is developped in dialogue with State services as Météo France, the Ministry for the interior, the Ministry for ecology and the durable development, the Regional Direction of the Environment (DIREN), the Central service of Hydrometeorology and Support to the Forecast of the Floods ( SCHAPI) and service of forecast of rising (SPC). It has been successfully functioning for 5 years with 300 southern cities from South West to South East of France and notably Montpellier and Sommières, famous for it’s flood problems on the Vidourle river where no human loss was to regret and where the economic impacts were minimized. Actually developed in cities of South of France, this initiative is to be developed nationaly and very soon internationally. Thanks to the efficiency of it’s method, this initiative is also developed in partnership with insurance company involved in prevention actions. The presentation will expose the feedback of this initiative and lessons learned.

  16. ON EFFECT OF HAZARD MAP ON CONS CIOUSNESS OF FLOOD DISASTER PREVENSION OF RESIDENTS WHO EXPERIENCED FLOOD RECENTLY

    NASA Astrophysics Data System (ADS)

    Asai, Koji; Koga, Syota; Sakakibara, Hiroyuki

    In this paper, the effect of the flood hazard map distributed to the residents who experienced flood disasters recently and an effective method for improving consciousness of flood di saster prevention are discussed. The questionnaire surveys were conducted on the residents living in the middle basin of the Nishiki River, Iwakuni city, Yamaguchi Prefecture, before and after the distribution of the hazard map. It is found from this investigation that "knowledge", "att achment", and "crisis", are the main factors in the psychological process related to the flood prevention behavior. The effect of the distribution of the hazard map is judged from the probability of the flood prevention behavior. In addition, it is also found that "knowledge", "flood experiment of T0514", "crisis", "eff ectiveness", "load", and "easy reading of the hazard map", are keys to improve the cons ciousness of flood di saster prevention.

  17. Necessity of Flood Early Warning Systems in India

    NASA Astrophysics Data System (ADS)

    Kurian, C.; Natesan, U.; Durga Rao, K. H. V.

    2014-12-01

    India is one of the highly flood prone countries in the world. National flood commission has reported that 400,000 km² of geographical area is prone to floods, constituting to twelve percent of the country's geographical area. Despite the reoccurrences of floods, India still does not have a proper flood warning system. Probably this can be attributed to the lack of trained personnel in using advanced techniques. Frequent flood hazards results in damage to livelihood, infrastructure and public utilities. India has a potential to develop an early warning system since it is one of the few countries where satellite based inputs are regularly used for monitoring and mitigating floods. However, modeling of flood extent is difficult due to the complexity of hydraulic and hydrologic processes during flood events. It has been reported that numerical methods of simulations can be effectively used to simulate the processes correctly. Progress in computational resources, data collection and development of several numerical codes has enhanced the use of hydrodynamic modeling approaches to simulate the flood extent in the floodplains. In this study an attempt is made to simulate the flood in one of the sub basins of Godavari River in India using hydrodynamic modeling techniques. The modeling environment includes MIKE software, which simulates the water depth at every grid cell of the study area. The runoff contribution from the catchment was calculated using Nebdor Afstromnings model. With the hydrodynamic modeling approach, accuracy in discharge and water level computations are improved compared to the conventional methods. The results of the study are proming to develop effective flood management plans in the basin. Similar studies could be taken up in other flood prone areas of the country for continuous modernisation of flood forecasting techniques, early warning systems and strengthening decision support systems, which will help the policy makers in developing management

  18. Validation of a Global Hydrodynamic Flood Inundation Model

    NASA Astrophysics Data System (ADS)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  19. 78 FR 5821 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  20. 78 FR 21143 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  1. 78 FR 52953 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  2. 78 FR 52954 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  3. 78 FR 5820 - Final Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Final Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Final Notice. SUMMARY: Flood hazard determinations, which may include additions or modifications of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard...

  4. Evaluation of design flood estimates with respect to sample size

    NASA Astrophysics Data System (ADS)

    Kobierska, Florian; Engeland, Kolbjorn

    2016-04-01

    Estimation of design floods forms the basis for hazard management related to flood risk and is a legal obligation when building infrastructure such as dams, bridges and roads close to water bodies. Flood inundation maps used for land use planning are also produced based on design flood estimates. In Norway, the current guidelines for design flood estimates give recommendations on which data, probability distribution, and method to use dependent on length of the local record. If less than 30 years of local data is available, an index flood approach is recommended where the local observations are used for estimating the index flood and regional data are used for estimating the growth curve. For 30-50 years of data, a 2 parameter distribution is recommended, and for more than 50 years of data, a 3 parameter distribution should be used. Many countries have national guidelines for flood frequency estimation, and recommended distributions include the log Pearson II, generalized logistic and generalized extreme value distributions. For estimating distribution parameters, ordinary and linear moments, maximum likelihood and Bayesian methods are used. The aim of this study is to r-evaluate the guidelines for local flood frequency estimation. In particular, we wanted to answer the following questions: (i) Which distribution gives the best fit to the data? (ii) Which estimation method provides the best fit to the data? (iii) Does the answer to (i) and (ii) depend on local data availability? To answer these questions we set up a test bench for local flood frequency analysis using data based cross-validation methods. The criteria were based on indices describing stability and reliability of design flood estimates. Stability is used as a criterion since design flood estimates should not excessively depend on the data sample. The reliability indices describe to which degree design flood predictions can be trusted.

  5. Distillation Column Flooding Predictor

    SciTech Connect

    George E. Dzyacky

    2010-11-23

    The Flooding Predictor™ is a patented advanced control technology proven in research at the Separations Research Program, University of Texas at Austin, to increase distillation column throughput by over 6%, while also increasing energy efficiency by 10%. The research was conducted under a U. S. Department of Energy Cooperative Agreement awarded to George Dzyacky of 2ndpoint, LLC. The Flooding Predictor™ works by detecting the incipient flood point and controlling the column closer to its actual hydraulic limit than historical practices have allowed. Further, the technology uses existing column instrumentation, meaning no additional refining infrastructure is required. Refiners often push distillation columns to maximize throughput, improve separation, or simply to achieve day-to-day optimization. Attempting to achieve such operating objectives is a tricky undertaking that can result in flooding. Operators and advanced control strategies alike rely on the conventional use of delta-pressure instrumentation to approximate the column’s approach to flood. But column delta-pressure is more an inference of the column’s approach to flood than it is an actual measurement of it. As a consequence, delta pressure limits are established conservatively in order to operate in a regime where the column is never expected to flood. As a result, there is much “left on the table” when operating in such a regime, i.e. the capacity difference between controlling the column to an upper delta-pressure limit and controlling it to the actual hydraulic limit. The Flooding Predictor™, an innovative pattern recognition technology, controls columns at their actual hydraulic limit, which research shows leads to a throughput increase of over 6%. Controlling closer to the hydraulic limit also permits operation in a sweet spot of increased energy-efficiency. In this region of increased column loading, the Flooding Predictor is able to exploit the benefits of higher liquid

  6. Iowa Flood Information System

    NASA Astrophysics Data System (ADS)

    Demir, I.; Krajewski, W. F.; Goska, R.; Mantilla, R.; Weber, L. J.; Young, N.

    2011-12-01

    The Iowa Flood Information System (IFIS) is a web-based platform developed by the Iowa Flood Center (IFC) to provide access to flood inundation maps, real-time flood conditions, flood forecasts both short-term and seasonal, flood-related data, information and interactive visualizations for communities in Iowa. The key element of the system's architecture is the notion of community. Locations of the communities, those near streams and rivers, define basin boundaries. The IFIS provides community-centric watershed and river characteristics, weather (rainfall) conditions, and streamflow data and visualization tools. Interactive interfaces allow access to inundation maps for different stage and return period values, and flooding scenarios with contributions from multiple rivers. Real-time and historical data of water levels, gauge heights, and rainfall conditions are available in the IFIS by streaming data from automated IFC bridge sensors, USGS stream gauges, NEXRAD radars, and NWS forecasts. Simple 2D and 3D interactive visualizations in the IFIS make the data more understandable to general public. Users are able to filter data sources for their communities and selected rivers. The data and information on IFIS is also accessible through web services and mobile applications. The IFIS is optimized for various browsers and screen sizes to provide access through multiple platforms including tablets and mobile devices. The IFIS includes a rainfall-runoff forecast model to provide a five-day flood risk estimate for around 500 communities in Iowa. Multiple view modes in the IFIS accommodate different user types from general public to researchers and decision makers by providing different level of tools and details. River view mode allows users to visualize data from multiple IFC bridge sensors and USGS stream gauges to follow flooding condition along a river. The IFIS will help communities make better-informed decisions on the occurrence of floods, and will alert communities

  7. Clean method for the synthesis of reduced graphene oxide-supported PtPd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium.

    PubMed

    Ren, Fangfang; Wang, Huiwen; Zhai, Chunyang; Zhu, Mingshan; Yue, Ruirui; Du, Yukou; Yang, Ping; Xu, Jingkun; Lu, Wensheng

    2014-03-12

    In this article, a clean method for the synthesis of PtPd/reduced graphene oxide (RGO) catalysts with different Pt/Pd ratios is reported in which no additional components such as external energy (e.g., high temperature or high pressure), surfactants, or stabilizing agents are required. The obtained catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), induced coupled plasma atomic emission spectroscopy (ICP-AES), and electrochemical measurements. The HRTEM measurements showed that all of the metallic nanoparticles (NPs) exhibited well-defined crystalline structures. The composition of these Pt-Pd/RGO catalysts can be easily controlled by adjusting the molar ratio of the Pt and Pd precursors. Both cyclic voltammetry (CV) and chronoamperometry (CA) results demonstrate that bimetallic PtPd catalysts have superior catalytic activity for the ethanol oxidation reaction compared to the monometallic Pt or Pd catalyst, with the best performance found with the PtPd (1:3)/RGO catalyst. The present study may open a new approach for the synthesis of PtPd alloy catalysts, which is expected to have promising applications in fuel cells.

  8. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  9. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  10. Evaluation of 4,4'-diaminodiphenyl ether in the rat comet assay: Part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of in vivo rat alkaline comet assay.

    PubMed

    Priestley, Catherine C; Walker, Joanne S; O'Donovan, Michael R; Doherty, Ann T

    2015-07-01

    As a part of the Japanese Center for the Validation of Alternative Methods (JaCVAM)-initiative international validation study of the in vivo rat alkaline comet assay, 4,4'-diaminodiphenyl ether (DPE), a known rodent genotoxic carcinogen, was tested in this laboratory. Sprague Dawley rats (7-9 weeks of age) were given three oral doses of DPE, 24 and 21 h apart and liver or stomach sampled 3h after the final dose. Under the conditions of the test, no increases in DNA damage in liver and stomach were observed with DPE (up to 200 mg/kg/day). A dose-dependent decrease in DNA migration, compared to vehicle controls, was noted for DPE in rat stomach. Further analysis is required to elucidate fully whether this decrease is a consequence of the mode of action or due to the toxicity of DPE. What is perhaps surprising is the inability of the comet assay to detect a known rat genotoxic carcinogen in liver. Further investigation is needed to clarify whether this apparent lack of response results from limited tissue exposure or metabolic differences between species. This finding highlights a need for careful consideration of study design when evaluating assay performance as a measure of in vivo genotoxicity.

  11. Alkaline Waterflooding Demonstration Project, Ranger Zone, Long Beach Unit, Wilmington Field, California. Fourth annual report, June 1979-May 1980. Volume 3. Appendices II-XVII

    SciTech Connect

    Carmichael, J.D.

    1981-03-01

    Volume 3 contains Appendices II through XVII: mixing instructions for sodium orthosilicate; oil displacement studies using THUMS C-331 crude oil and extracted reservoir core material from well B-110; clay mineral analysis of B-827-A cores; sieve analysis of 4 Fo sand samples from B-110-IA and 4 Fo sand samples from B-827-A; core record; delayed secondary caustic consumption tests; long-term alkaline consumption in reservoir sands; demulsification study for THUMS Long Beach Company, Island White; operating plans and instructions for DOE injection demonstration project, alkaline injection; caustic pilot-produced water test graphs; well test irregularities (6/1/79-5/31/80); alkaline flood pump changes (6/1/79-5/31/80); monthly DOE pilot chemical waterflood injection reports (preflush injection, alkaline-salt injection, and alkaline injection without salt); and caustic safety procedures-alkaline chemicals.

  12. Magnitude and frequency of floods in Alabama

    USGS Publications Warehouse

    Atkins, J. Brian

    1996-01-01

    Methods of estimating flood magnitudes for recurrence intervals of 2, 5, 10, 25, 50, 100, 200, and 500 years are described for rural streams in Alabama that are not affected by regulation or urbanization. Flood-frequency characteristics are presented for 198 gaging stations in Alabama having 10 or more years of record through September 1991, that are used in the regional analysis. Regression relations were developed using generalized least-squares regression techniques to estimate flood magnitude and frequency on ungaged streams as a function of the drainage area of a basin. Sites on gaged streams should be weighted with gaging station data that are presented in the report. Graphical relations of peak discharges to drainage areas are also presented for sites along the Alabama, Black Warrior, Cahaba, Choctawhatchee, Conecub, and Tombigbee Rivers. Equations for estimating flood magnitudes on ungaged urban streams (taken from a previous report) that use drainage area and percentage of impervious cover as independent variables also are given.

  13. High resolution mapping of flood hazard for South Korea

    NASA Astrophysics Data System (ADS)

    Ghosh, Sourima; Nzerem, Kechi; Zovi, Francesco; Li, Shuangcai; Mei, Yi; Assteerawatt, Anongnart; Hilberts, Arno; Tillmanns, Stephan; Mitas, Christos

    2015-04-01

    Floods are one of primary natural hazards that affect South Korea. During the past 15 years, catastrophic flood events which mainly have occurred during the rainy and typhoon seasons - especially under condition where soils are already saturated, have triggered substantial property damage with an average annual loss of around US1.2 billion (determined from WAter Management Information System's flood damage database for years 2002-2011) in South Korea. According to Seoul Metropolitan Government, over 16,000 households in the capital city Seoul were inundated during 2010 flood events. More than 10,000 households in Seoul were apparently flooded during one major flood event due to torrential rain in July 2011. Recently in August 2014, a serious flood event due to heavy rainfall hit the Busan region in the south east of South Korea. Addressing the growing needs, RMS has recently released country-wide high resolution combined flood return period maps for post-drainage local "pluvial" inundation and undefended large-scale "fluvial" inundation to aid the government and the insurance industry in the evaluation of comprehensive flood risk. RMS has developed a flood hazard model for South Korea to generate inundation depths and extents for a range of flood return periods. The model is initiated with 30 years of historical meteorological forcing data and calibrated to daily observations at over 100 river gauges across the country. Simulations of hydrologic processes are subsequently performed based on a 2000 year set of stochastic forcing. Floodplain inundation processes are modelled by numerically solving the shallow water equations using finite volume method on GPUs. Taking into account the existing stormwater drainage standards, economic exposure densities, etc., reasonable flood maps are created from inundation model output. Final hazard maps at one arcsec grid resolution can be the basis for both evaluating and managing flood risk, its economic impacts, and insured flood

  14. Paleohydrologic techniques used to define the spatial occurrence of floods

    NASA Astrophysics Data System (ADS)

    Jarrett, Robert D.

    1990-06-01

    Defining the cause and spatial characteristics of floods may be difficult because of limited streamflow and precipitation data. New paleohydrologic techniques that incorporate information from geomorphic, sedimentologic, and botanic studies provide important supplemental information to define homogeneous hydrologic regions. These techniques also help to define the spatial structure of rainstorms and floods and improve regional flood-frequency estimates. The occurrence and the non-occurrence of paleohydrologic evidence of floods, such as flood bars, alluvial fans, and tree scars, provide valuable hydrologic information. The paleohydrologic research to define the spatial characteristics of floods improves the understanding of flood hydrometeorology. This research was used to define the areal extent and contributing drainage area of flash floods in Colorado. Also, paleohydrologic evidence was used to define the spatial boundaries for the Colorado foothills region in terms of the meteorologic cause of flooding and elevation. In general, above 2300 m, peak flows are caused by snowmelt. Below 2300 m, peak flows primarily are caused by rainfall. The foothills region has an upper elevation limit of about 2300 m and a lower elevation limit of about 1500 m. Regional flood-frequency estimates that incorporate the paleohydrologic information indicate that the Big Thompson River flash flood of 1976 had a recurrence interval of approximately 10,000 years. This contrasts markedly with 100 to 300 years determined by using conventional hydrologic analyses. Flood-discharge estimates based on rainfall-runoff methods in the foothills of Colorado result in larger values than those estimated with regional flood-frequency relations, which are based on long-term streamflow data. Preliminary hydrologic and paleohydrologic research indicates that intense rainfall does not occur at higher elevations in other Rocky Mountain states and that the highest elevations for rainfall-producing floods

  15. Paleohydrologic techniques used to define the spatial occurrence of floods

    USGS Publications Warehouse

    Jarrett, R.D.

    1990-01-01

    Defining the cause and spatial characteristics of floods may be difficult because of limited streamflow and precipitation data. New paleohydrologic techniques that incorporate information from geomorphic, sedimentologic, and botanic studies provide important supplemental information to define homogeneous hydrologic regions. These techniques also help to define the spatial structure of rainstorms and floods and improve regional flood-frequency estimates. The occurrence and the non-occurrence of paleohydrologic evidence of floods, such as flood bars, alluvial fans, and tree scars, provide valuable hydrologic information. The paleohydrologic research to define the spatial characteristics of floods improves the understanding of flood hydrometeorology. This research was used to define the areal extent and contributing drainage area of flash floods in Colorado. Also, paleohydrologic evidence was used to define the spatial boundaries for the Colorado foothills region in terms of the meteorologic cause of flooding and elevation. In general, above 2300 m, peak flows are caused by snowmelt. Below 2300 m, peak flows primarily are caused by rainfall. The foothills region has an upper elevation limit of about 2300 m and a lower elevation limit of about 1500 m. Regional flood-frequency estimates that incorporate the paleohydrologic information indicate that the Big Thompson River flash flood of 1976 had a recurrence interval of approximately 10,000 years. This contrasts markedly with 100 to 300 years determined by using conventional hydrologic analyses. Flood-discharge estimates based on rainfall-runoff methods in the foothills of Colorado result in larger values than those estimated with regional flood-frequency relations, which are based on long-term streamflow data. Preliminary hydrologic and paleohydrologic research indicates that intense rainfall does not occur at higher elevations in other Rocky Mountain states and that the highest elevations for rainfall-producing floods

  16. Flood Insurance in Canada: Implications for Flood Management and Residential Vulnerability to Flood Hazards

    NASA Astrophysics Data System (ADS)

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  17. Flood insurance in Canada: implications for flood management and residential vulnerability to flood hazards.

    PubMed

    Oulahen, Greg

    2015-03-01

    Insurance coverage of damage caused by overland flooding is currently not available to Canadian homeowners. As flood disaster losses and water damage claims both trend upward, insurers in Canada are considering offering residential flood coverage in order to properly underwrite the risk and extend their business. If private flood insurance is introduced in Canada, it will have implications for the current regime of public flood management and for residential vulnerability to flood hazards. This paper engages many of the competing issues surrounding the privatization of flood risk by addressing questions about whether flood insurance can be an effective tool in limiting exposure to the hazard and how it would exacerbate already unequal vulnerability. A case study investigates willingness to pay for flood insurance among residents in Metro Vancouver and how attitudes about insurance relate to other factors that determine residential vulnerability to flood hazards. Findings indicate that demand for flood insurance is part of a complex, dialectical set of determinants of vulnerability.

  18. Development of flood index by characterisation of flood hydrographs

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Biswa; Suman, Asadusjjaman

    2015-04-01

    In recent years the world has experienced deaths, large-scale displacement of people, billions of Euros of economic damage, mental stress and ecosystem impacts due to flooding. Global changes (climate change, population and economic growth, and urbanisation) are exacerbating the severity of flooding. The 2010 floods in Pakistan and the 2011 floods in Australia and Thailand demonstrate the need for concerted action in the face of global societal and environmental changes to strengthen resilience against flooding. Due to climatological characteristics there are catchments where flood forecasting may have a relatively limited role and flood event management may have to be trusted upon. For example, in flash flood catchments, which often may be tiny and un-gauged, flood event management often depends on approximate prediction tools such as flash flood guidance (FFG). There are catchments fed largely by flood waters coming from upstream catchments, which are un-gauged or due to data sharing issues in transboundary catchments the flow of information from upstream catchment is limited. Hydrological and hydraulic modelling of these downstream catchments will never be sufficient to provide any required forecasting lead time and alternative tools to support flood event management will be required. In FFG, or similar approaches, the primary motif is to provide guidance by synthesising the historical data. We follow a similar approach to characterise past flood hydrographs to determine a flood index (FI), which varies in space and time with flood magnitude and its propagation. By studying the variation of the index the pockets of high flood risk, requiring attention, can be earmarked beforehand. This approach can be very useful in flood risk management of catchments where information about hydro-meteorological variables is inadequate for any forecasting system. This paper presents the development of FI and its application to several catchments including in Kentucky in the USA

  19. Nogales flood detention study

    USGS Publications Warehouse

    Norman, Laura M.; Levick, Lainie; Guertin, D. Phillip; Callegary, James; Guadarrama, Jesus Quintanar; Anaya, Claudia Zulema Gil; Prichard, Andrea; Gray, Floyd; Castellanos, Edgar; Tepezano, Edgar; Huth, Hans; Vandervoet, Prescott; Rodriguez, Saul; Nunez, Jose; Atwood, Donald; Granillo, Gilberto Patricio Olivero; Ceballos, Francisco Octavio Gastellum

    2010-01-01

    Flooding in Ambos Nogales often exceeds the capacity of the channel and adjacent land areas, endangering many people. The Nogales Wash is being studied to prevent future flood disasters and detention features are being installed in tributaries of the wash. This paper describes the application of the KINEROS2 model and efforts to understand the capacity of these detention features under various flood and urbanization scenarios. Results depict a reduction in peak flow for the 10-year, 1-hour event based on current land use in tributaries with detention features. However, model results also demonstrate that larger storm events and increasing urbanization will put a strain on the features and limit their effectiveness.

  20. Estimating Non-stationary Flood Risk in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Yu, X.; Cohn, T. A.; Stedinger, J. R.

    2015-12-01

    Flood risk is usually described by a probability distribution for annual maximum streamflow which is assumed not to change with time. Federal, state and local governments in the United States are demanding guidance on flood frequency estimates that account for climate change. If a trend exists in peak flow series, ignoring it could result in large quantile estimator bias, while trying to estimate a trend will increase the flood quantile estimator's variance. Thus the issue is, what bias-variance tradeoff should we accept? This paper discusses approaches to flood frequency analysis (FFA) when flood series have trends. GCMs describe how annual runoff might vary over sub-continental scales, but this information is nearly useless for FFA in small watersheds. A LP3 Monte Carlo analysis and a re-sampling study of 100-year flood estimation (25- and 50-year projections) compares the performance of five methods: FFA as prescribed in national guidelines (Bulletin 17B), assumes the flood series is stationary and follows a log-Pearson type III (LP3) distribution; Fitting a LP3 distribution with time-varying parameters that include future trends in mean and perhaps variance, where slopes are assumed known; Fitting a LP3 distribution with time-varying parameters that capture future trends in mean and perhaps variance, where slopes are estimated from annual peak flow series; Employing only the most recent 30 years of flood records to fit a LP3 distribution; Applying a safety factor to the 100-year flood estimator (e.g. 25% increase). The 100-year flood estimator of method 2 has the smallest log-space mean squared error, though it is unlikely that the true trend would be known. Method 3 is only recommended over method 1 for large trends (≥ 0.5% per year). The 100-year flood estimators of method 1, 4, and 5 often have poor accuracy. Clearly, flood risk assessment will be a challenge in an uncertain world.

  1. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  2. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  3. Real Time Monitoring of Flooding from Microwave Satellite Observations

    NASA Technical Reports Server (NTRS)

    Galantowicz, John F.; Frey, Herb (Technical Monitor)

    2002-01-01

    We have developed a new method for making high-resolution flood extent maps (e.g., at the 30-100 m scale of digital elevation models) in real-time from low-resolution (20-70 km) passive microwave observations. The method builds a "flood-potential" database from elevations and historic flood imagery and uses it to create a flood-extent map consistent with the observed open water fraction. Microwave radiometric measurements are useful for flood monitoring because they sense surface water in clear-or-cloudy conditions and can provide more timely data (e.g., compared to radars) from relatively wide swath widths and an increasing number of available platforms (DMSP, ADEOS-II, Terra, NPOESS, GPM). The chief disadvantages for flood mapping are the radiometers' low resolution and the need for local calibration of the relationship between radiances and open-water fraction. We present our method for transforming microwave sensor-scale open water fraction estimates into high-resolution flood extent maps and describe 30-day flood map sequences generated during a retrospective study of the 1993 Great Midwest Flood. We discuss the method's potential improvement through as yet unimplemented algorithm enhancements and expected advancements in microwave radiometry (e.g., improved resolution and atmospheric correction).

  4. Flooding the market

    NASA Astrophysics Data System (ADS)

    Horn, Diane; McShane, Michael

    2013-11-01

    A flood insurance market with risk-based prices in the UK will only stimulate climate change adaptation if it is part of a wider strategy that includes land-use planning, building regulations and water management.

  5. Floods and Mold Growth

    EPA Pesticide Factsheets

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  6. Localized Flood Management

    EPA Pesticide Factsheets

    practitioners will cover a range of practices that can help communities build flood resilience, from small scale interventions such as rain gardens and permeable pavement to coordinated open space and floodplain preservation

  7. Japan: Tsunami Flooding

    Atmospheric Science Data Center

    2013-04-16

    ... article title:  Lingering Floods from Tohoku-oki Earthquake Tsunami     View Larger Image The March 11, 2011 Tohoku-oki earthquake triggered a deadly and destructive tsunami whose impacts were felt ...

  8. Framework for probabilistic flood risk assessment in an Alpine region

    NASA Astrophysics Data System (ADS)

    Schneeberger, Klaus; Huttenlau, Matthias; Steinberger, Thomas; Achleitner, Stefan; Stötter, Johann

    2014-05-01

    Flooding is among the natural hazards that regularly cause significant losses to property and human lives. The assessment of flood risk delivers crucial information for all participants involved in flood risk management and especially for local authorities and insurance companies in order to estimate the possible flood losses. Therefore a framework for assessing flood risk has been developed and is introduced with the presented contribution. Flood risk is thereby defined as combination of the probability of flood events and of potential flood damages. The probability of occurrence is described through the spatial and temporal characterisation of flood. The potential flood damages are determined in the course of vulnerability assessment, whereas, the exposure and the vulnerability of the elements at risks are considered. Direct costs caused by flooding with the focus on residential building are analysed. The innovative part of this contribution lies on the development of a framework which takes the probability of flood events and their spatio-temporal characteristic into account. Usually the probability of flooding will be determined by means of recurrence intervals for an entire catchment without any spatial variation. This may lead to a misinterpretation of the flood risk. Within the presented framework the probabilistic flood risk assessment is based on analysis of a large number of spatial correlated flood events. Since the number of historic flood events is relatively small additional events have to be generated synthetically. This temporal extrapolation is realised by means of the method proposed by Heffernan and Tawn (2004). It is used to generate a large number of possible spatial correlated flood events within a larger catchment. The approach is based on the modelling of multivariate extremes considering the spatial dependence structure of flood events. The input for this approach are time series derived from river gauging stations. In a next step the

  9. Alkalinity Enrichment Enhances Net Calcification of a Coral Reef Flat

    NASA Astrophysics Data System (ADS)

    Albright, R.; Caldeira, K.

    2015-12-01

    Ocean acidification is projected to shift reefs from a state of net accretion to one of net dissolution sometime this century. While retrospective studies show large-scale changes in coral calcification over the last several decades, it is not possible to unequivocally link these results to ocean acidification due to confounding factors of temperature and other environmental parameters. Here, we quantified the calcification response of a coral reef flat to alkalinity enrichment to test whether reef calcification increases when ocean chemistry is restored to near pre-industrial conditions. We used sodium hydroxide (NaOH) to increase the total alkalinity of seawater flowing over a reef flat, with the aim of increasing carbonate ion concentrations [CO32-] and the aragonite saturation state (Ωarag) to values that would have been attained under pre-industrial atmospheric pCO2 levels. We developed a dual tracer regression method to estimate alkalinity uptake (i.e., calcification) in response to alkalinity enrichment. This approach uses the change in ratios between a non-conservative tracer (alkalinity) and a conservative tracer (a non-reactive dye, Rhodamine WT) to assess the fraction of added alkalinity that is taken up by the reef as a result of an induced increase in calcification rate. Using this method, we estimate that an average of 17.3% ± 2.3% of the added alkalinity was taken up by the reef community. In providing results from the first seawater chemistry manipulation experiment performed on a natural coral reef community (without artificial confinement), we demonstrate that, upon increase of [CO32-] and Ωarag to near pre-industrial values, reef calcification increases. Thus, we conclude that, the impacts of ocean acidification are already being felt by coral reefs. This work is the culmination of years of work in the Caldeira lab at the Carnegie Institution for Science, involving many people including Jack Silverman, Kenny Schneider, and Jana Maclaren.

  10. Surface water connectivity dynamics of a large scale extreme flood

    NASA Astrophysics Data System (ADS)

    Trigg, Mark A.; Michaelides, Katerina; Neal, Jeffrey C.; Bates, Paul D.

    2013-11-01

    Uses the MODIS surface water product observations of the 2011 Bangkok flood.A data gap filling method is developed to better preserve the dynamics of the event.We quantify surface water connectivity geostatistically to give new flood insights.There is a clear structure to the connectivity of the event through time and space.Changes and thresholds in the connectivity are linked to major flood mechanisms.

  11. Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies

    NASA Astrophysics Data System (ADS)

    Oshiba, Yuhei; Hiura, Junya; Suzuki, Yuto; Yamaguchi, Takeo

    2017-03-01

    In solid-state alkaline fuel cells (SAFCs), water is generated at the anode and is reacted at the cathode; as such, flooding occurs much more easily at the anode than it does in proton-exchange membrane fuel cells (PEMFCs). Anode flooding is a reason for the low performance of SAFCs, and so it is important that this flooding phenomenon is mitigated. In this study, we control water transport to suppress anode flooding. We do this through two approaches: changing the thickness of the anion exchange membrane (AEM) and changing the anode flow rate. Among two AEMs with two different thicknesses (27 μm and 6 μm) prepared, thinner AEM shows improved fuel cell performance. Increasing the anode flow rate also improved the performance of SAFCs. To find out what caused this, the water transport inside the membrane electrode assembly (MEA) was analyzed. The flooding region was estimated using calculated relative humidity at anode outlet. On the basis of our experimental and calculation approaches, flooding can be suppressed by using thin AEMs and increasing the anode flow rate.

  12. [Research on compatibility chemistry of acid-alkaline pair medicines in formulas of traditional Chinese medicine].

    PubMed

    Pei, Miaorong; Duan, Xiujun; Pei, Xiangping; Xuan, Chunsheng; Wang, Xiaoying; Zhao, Lina; Zhang, Shurong; Liu, Bingchen; Wang, Shimin

    2009-08-01

    Compatibility chemistry of acid-alkaline pair medicines in formulas of traditional Chinese medicine (TCM) is an important research field which should merit to pay attention. The ideas and methods in prescription compatibility research on formulas containing alkaline-acid pair medicines were summarized from the aspect of chemical groups of alkaline and acid ingredients; the research results were introduced and analyzed; the research meaning was elaborated; and the expectation of the field was viewed.

  13. Development of evaluation metod of flood risk in Tokyo metropolitan area

    NASA Astrophysics Data System (ADS)

    Hirano, J.; Dairaku, K.

    2012-12-01

    Flood is one of the most significant natural hazards in Japan. In particular, the Tokyo metropolitan area has been affected by several large flood disasters. Investigating potential flood risk in Tokyo metropolitan area is important for development of climate change adaptation strategy. We aim to develop a method for evaluating flood risk in Tokyo Metropolitan area by considering effect of historical land use and land cover change, socio-economic change, and climatic change. Ministry of land, infrastructure, transport and tourism in Japan published "Statistics of flood", which contains data for flood causes, number of damaged houses, area of wetted surface, and total amount of damage for each flood at small municipal level. Based on these flood data, we constructed a flood database system for Tokyo metropolitan area for the period from 1961 to 2008 by using ArcGIS software.Based on these flood data , we created flood risk curve, representing the relation ship between damage and exceedbability of flood for the period 1976-2008. Based on the flood risk cruve, we aim to evaluate potential flood risk in the Tokyo metropolitan area and clarify the cause of regional difference in flood risk at Tokyo metropolitan area by considering effect of socio-economic change and climate change

  14. Urban flood simulation based on the SWMM model

    NASA Astrophysics Data System (ADS)

    Jiang, L.; Chen, Y.; Wang, H.

    2015-05-01

    China is the nation with the fastest urbanization in the past decades which has caused serious urban flooding. Flood forecasting is regarded as one of the important flood mitigation methods, and is widely used in catchment flood mitigation, but is not widely used in urban flooding mitigation. This paper, employing the SWMM model, one of the widely used urban flood planning and management models, simulates the urban flooding of Dongguan City in the rapidly urbanized southern China. SWMM is first set up based on the DEM, digital map and underground pipeline network, then parameters are derived based on the properties of the subcatchment and the storm sewer conduits; the parameter sensitivity analysis shows the parameter robustness. The simulated results show that with the 1-year return period precipitation, the studied area will have no flooding, but for the 2-, 5-, 10- and 20-year return period precipitation, the studied area will be inundated. The results show the SWMM model is promising for urban flood forecasting, but as it has no surface runoff routing, the urban flooding could not be forecast precisely.

  15. Satellite nighttime lights reveal increasing human exposure to floods worldwide

    NASA Astrophysics Data System (ADS)

    Ceola, Serena; Laio, Francesco; Montanari, Alberto

    2015-04-01

    River floods are the first cause of human fatalities and economic losses among natural disasters. Floods claim thousands of lives every year, but effective and high-resolution methods to provide a spatially and temporally detailed analysis of the human exposure to floods at the global scale are still lacking. To this aim, we use satellite nightlight data to prove that nocturnal lights close to rivers are consistently related to flood damages. First, we analyse the temporal evolution of nightlights along the river network all over the world from 1992 to 2012 and obtain a global map of nightlight trends, which we associate with increasing human exposure to floods, at 1 km2 resolution. Then, we correlate global data of economic losses caused by flooding events with nighttime lights and find that increasing nightlights are associated to flood damage intensification. Our results show an enhancement of exposure to floods worldwide, particularly in Africa and Asia. Therefore our analysis argues for the development of valuable flood preparedness and mitigation strategies, also associated to the projected effects of climate change on flood-related losses.

  16. An automated approach to flood mapping

    NASA Astrophysics Data System (ADS)

    Sun, Weihua; Mckeown, Donald M.; Messinger, David W.

    2012-10-01

    Heavy rain from Tropical Storm Lee resulted in a major flood event for the southern tier of New York State in early September 2011 causing evacuation of approximately 20,000 people in and around the city of Binghamton. In support of the New York State Office of Emergency Management, a high resolution multispectral airborne sensor (WASP) developed by RIT was deployed over the flooded area to collect aerial images. One of the key benefits of these images is their provision for flood inundation area mapping. However, these images require a significant amount of storage space and the inundation mapping process is conventionally carried out using manual digitization. In this paper, we design an automated approach for flood inundation mapping from the WASP airborne images. This method employs Spectral Angle Mapper (SAM) for color RGB or multispectral aerial images to extract the flood binary map; then it uses a set of morphological processing and a boundary vectorization technique to convert the binary map into a shapefile. This technique is relatively fast and only requires the operator to select one pixel on the image. The generated shapefile is much smaller than the original image and can be imported to most GIS software packages. This enables critical flood information to be shared with and by disaster response managers very rapidly, even over cellular phone networks.

  17. Preparing for floods: flood forecasting and early warning

    NASA Astrophysics Data System (ADS)

    Cloke, Hannah

    2016-04-01

    Flood forecasting and early warning has continued to stride ahead in strengthening the preparedness phases of disaster risk management, saving lives and property and reducing the overall impact of severe flood events. For example, continental and global scale flood forecasting systems such as the European Flood Awareness System and the Global Flood Awareness System provide early information about upcoming floods in real time to various decisionmakers. Studies have found that there are monetary benefits to implementing these early flood warning systems, and with the science also in place to provide evidence of benefit and hydrometeorological institutional outlooks warming to the use of probabilistic forecasts, the uptake over the last decade has been rapid and sustained. However, there are many further challenges that lie ahead to improve the science supporting flood early warning and to ensure that appropriate decisions are made to maximise flood preparedness.

  18. Flood resilience and uncertainty in flood risk assessment

    NASA Astrophysics Data System (ADS)

    Beven, K.; Leedal, D.; Neal, J.; Bates, P.; Hunter, N.; Lamb, R.; Keef, C.

    2012-04-01

    Flood risk assessments do not normally take account of the uncertainty in assessing flood risk. There is no requirement in the EU Floods Directive to do so. But given the generally short series (and potential non-stationarity) of flood discharges, the extrapolation to smaller exceedance potentials may be highly uncertain. This means that flood risk mapping may also be highly uncertainty, with additional uncertainties introduced by the representation of flood plain and channel geometry, conveyance and infrastructure. This suggests that decisions about flood plain management should be based on exceedance probability of risk rather than the deterministic hazard maps that are common in most EU countries. Some examples are given from 2 case studies in the UK where a framework for good practice in assessing uncertainty in flood risk mapping has been produced as part of the Flood Risk Management Research Consortium and Catchment Change Network Projects. This framework provides a structure for the communication and audit of assumptions about uncertainties.

  19. A Methodology For Flood Vulnerability Analysis In Complex Flood Scenarios

    NASA Astrophysics Data System (ADS)

    Figueiredo, R.; Martina, M. L. V.; Dottori, F.

    2015-12-01

    Nowadays, flood risk management is gaining importance in order to mitigate and prevent flood disasters, and consequently the analysis of flood vulnerability is becoming a key research topic. In this paper, we propose a methodology for large-scale analysis of flood vulnerability. The methodology is based on a GIS-based index, which considers local topography, terrain roughness and basic information about the flood scenario to reproduce the diffusive behaviour of floodplain flow. The methodology synthetizes the spatial distribution of index values into maps and curves, used to represent the vulnerability in the area of interest. Its application allows for considering different levels of complexity of flood scenarios, from localized flood defence failures to complex hazard scenarios involving river reaches. The components of the methodology are applied and tested in two floodplain areas in Northern Italy recently affected by floods. The results show that the methodology can provide an original and valuable insight of flood vulnerability variables and processes.

  20. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  1. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  2. Predicting floods with Flickr tags.

    PubMed

    Tkachenko, Nataliya; Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags '#Sandy' or '#flooding'), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak.

  3. Climatic and geomorphic controls on flash flood response in Europe

    NASA Astrophysics Data System (ADS)

    Marchi, Lorenzo; Borga, Marco; Preciso, Emanuele; Gaume, Eric

    2010-05-01

    High-resolution data enabling identification and analysis of the hydrometeorological causative processes of flash floods have been collected and analysed for 25 extreme flash floods (60 drainage basins) across Europe. Criteria for flood selection were high intensity of triggering rainfall and flood response and availability of reliable high-resolution data. Hydrometeorological data collected for each event were checked by using a hydrological model. The derivation and analysis of summarising variables has made it possible to outline some characteristics of flash floods in various morphoclimatic regions of Europe. Peak discharge data for more than 50% of the studied watersheds derive from post-flood surveys in ungauged streams. This stresses both the significance of post-flood surveys in building and extending flash flood databases, and the need to develop new methods for flash-flood hazard assessment able to take into account data from post-event analysis. Catchments do not need to be particularly steep to favour flash flooding. However, relief is important since it may affect flash flood occurrence in specific catchments by combination of two main mechanisms: orographic effects augmenting precipitation and anchoring convection, and topographic relief promoting rapid concentration of streamflow. Examination of data shows a peculiar seasonality effect on flash flood occurrence, with events in the Mediterranean and Alpine-Mediterranean regions mostly occurring in autumn, whereas events in the inland Continental region commonly occur in summer, revealing different climatic forcing. Consistently with this seasonality effect, spatial extent and duration of the events is generally smaller for the Continental events with respect to those occurring in the Mediterranean region. Furthermore, the flash flood regime is usually more intense in the Mediterranean Region than in the Continental areas. The runoff coefficients of the studied flash floods are usually rather low (mean

  4. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    PubMed

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies.

  5. Validation of a global hydrodynamic flood inundation model against high resolution observation data of urban flooding

    NASA Astrophysics Data System (ADS)

    Bates, Paul; Sampson, Chris; Smith, Andy; Neal, Jeff

    2015-04-01

    In this work we present further validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model that uses highly efficient numerical algorithms (LISFLOOD-FP) to simulate flood inundation at ~1km resolution globally and then use downscaling algorithms to determine flood extent and water depth at 3 seconds of arc spatial resolution (~90m at the equator). The global model has ~150 million cells and requires ~180 hours of CPU time for a 10 year simulation period. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. This method has already been show to compare well to return period flood hazard maps derived from models built with high resolution and accuracy local data (Sampson et al., submitted), yet the output from the global flood model has not yet been compared to real flood observations. Whilst the spatial resolution of the global model is high given the size of the model domain, ~1km resolution is still coarse compared to the models typically used to simulate urban flooding and the data typically used to validate these (~25m or less). Comparison of the global model to real-world observations or urban flooding therefore represents an exceptionally stringent test of model skill. In this paper we therefore

  6. Global terrestrial water storage capacity and flood potential using GRACE

    NASA Astrophysics Data System (ADS)

    Reager, J. T.; Famiglietti, J. S.

    2009-12-01

    Terrestrial water storage anomaly from the Gravity Recovery and Climate Experiment (GRACE) and precipitation observations from the Global Precipitation Climatology Project (GPCP) are applied at the regional scale to show the usefulness of a remotely sensed, storage-based flood potential method. Over the GRACE record length, instances of repeated maxima in water storage anomaly that fall short of variable maxima in cumulative precipitation suggest an effective storage capacity for a given region, beyond which additional precipitation must be met by marked increases in runoff or evaporation. These saturation periods indicate the possible transition to a flood-prone situation. To investigate spatially and temporally variable storage overflow, a monthly storage deficit variable is created and a global map of effective storage capacity is presented for possible use in land surface models. To highlight a flood-potential application, we design a monthly global flood index and compare with Dartmouth Flood Observatory flood maps.

  7. The Protection of China's Ancient Cities from Flood Damage.

    PubMed

    Qingzhou, W

    1989-09-01

    Over many centuries, the repeated and serious flooding of many of China's ancient cities has led to the development of various measures to mitigate the impact of floods. These have included structural measures, such as the construction of walls, dams and dykes, with tree planting for soil consolidation; installation of drainage systems and water storage capacity; the raising of settlement levels and the strengthening of building materials. Non-structural measures include warning systems and planning for emergency evacuation. Urban planning and architectural design have evolved to reduce flood damage, and government officials have been appointed with specific responsibilities for managing the flood control systems. In view of the serious consequences of modern neglect of these well-tried methods, this paper examines China's historical experience of flooding and demonstrates its continuing relevance for today. A brief historical survey is followed by a detailed discussion of various flood prevention measures. The paper is illustrated by city plans from ancient local chronicles.

  8. Flood Hazard in Barpeta District, Assam: Environmental Perspectives

    NASA Astrophysics Data System (ADS)

    Talukdar, Naba Kumar

    The study deals with various aspects of flood hazard in Barpeta district of Assam, Northeast India. It is broadly confined to three basic themes - general perspectives, environmental perspectives and flood hazard mitigation. The first theme includes the study on flow characteristics of the major rivers of the district during rainy season and zoning of flood prone areas. The second theme deals with some environmental aspects of floods in the district, such as river water quality during floods, effects of floods on soil quality, human health and socioeconomic losses. Flood mitigation study includes discussion on measures adopted for flood mitigation in the district and suggested management strategies. The study covers a wide range of database generated from both primary and secondary sources. Primary data on relevant parameters of soil and water are generated by using proper sampling procedures and standard laboratory methods. Suitable graphical and statistical methods have been used to analyze and interpret different kinds of data. All the relevant data and surveyed information on the perspective of the flood plain dwellers of the district are integrated together in formulating flood management strategies. The Barpeta District of Assam covers an area of 3245 sq. km. comprising 4.2% of the total area of the state. The district has fascinating diversified landscape sloping from north to south which includes highlands covered by forests, plain fertile lands suitable for agricultural activities and low lying areas containing-water bodies and swamps. Flood is a perennial problem and all kinds of common flood damages prevail in the district. Floods cause large-scale damages to the socio-economic life of the people as well as to the ecology and environment of the district to a certain extent. The rivers Manas, Beki, Pahumara and Kaldia and their tributaries, which emerge from Eastern Himalaya, create flood havocs in the district. During monsoon period, these rivers are

  9. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  10. Nonstationary decision model for flood risk decision scaling

    NASA Astrophysics Data System (ADS)

    Spence, Caitlin M.; Brown, Casey M.

    2016-11-01

    Hydroclimatic stationarity is increasingly questioned as a default assumption in flood risk management (FRM), but successor methods are not yet established. Some potential successors depend on estimates of future flood quantiles, but methods for estimating future design storms are subject to high levels of uncertainty. Here we apply a Nonstationary Decision Model (NDM) to flood risk planning within the decision scaling framework. The NDM combines a nonstationary probability distribution of annual peak flow with optimal selection of flood management alternatives using robustness measures. The NDM incorporates structural and nonstructural FRM interventions and valuation of flows supporting ecosystem services to calculate expected cost of a given FRM strategy. A search for the minimum-cost strategy under incrementally varied representative scenarios extending across the plausible range of flood trend and value of the natural flow regime discovers candidate FRM strategies that are evaluated and compared through a decision scaling analysis (DSA). The DSA selects a management strategy that is optimal or close to optimal across the broadest range of scenarios or across the set of scenarios deemed most likely to occur according to estimates of future flood hazard. We illustrate the decision framework using a stylized example flood management decision based on the Iowa City flood management system, which has experienced recent unprecedented high flow episodes. The DSA indicates a preference for combining infrastructural and nonstructural adaptation measures to manage flood risk and makes clear that options-based approaches cannot be assumed to be "no" or "low regret."

  11. Probabilistic modelling of flood events using the entropy copula

    NASA Astrophysics Data System (ADS)

    Li, Fan; Zheng, Qian

    2016-11-01

    The estimation of flood frequency is vital for the flood control strategies and hydraulic structure design. Generating synthetic flood events according to statistical properties of observations is one of plausible methods to analyze the flood frequency. Due to the statistical dependence among the flood event variables (i.e. the flood peak, volume and duration), a multidimensional joint probability estimation is required. Recently, the copula method is widely used for multivariable dependent structure construction, however, the copula family should be chosen before application and the choice process is sometimes rather subjective. The entropy copula, a new copula family, employed in this research proposed a way to avoid the relatively subjective process by combining the theories of copula and entropy. The analysis shows the effectiveness of the entropy copula for probabilistic modelling the flood events of two hydrological gauges, and a comparison of accuracy with the popular copulas was made. The Gibbs sampling technique was applied for trivariate flood events simulation in order to mitigate the calculation difficulties of extending to three dimension directly. The simulation results indicate that the entropy copula is a simple and effective copula family for trivariate flood simulation.

  12. Method for estimating potential wetland extent by utilizing streamflow statistics and flood-inundation mapping techniques: Pilot study for land along the Wabash River near Terre Haute, Indiana

    USGS Publications Warehouse

    Kim, Moon H.; Ritz, Christian T.; Arvin, Donald V.

    2012-01-01

    Potential wetland extents were estimated for a 14-mile reach of the Wabash River near Terre Haute, Indiana. This pilot study was completed by the U.S. Geological Survey in cooperation with the U.S. Department of Agriculture, Natural Resources Conservation Service (NRCS). The study showed that potential wetland extents can be estimated by analyzing streamflow statistics with the available streamgage data, calculating the approximate water-surface elevation along the river, and generating maps by use of flood-inundation mapping techniques. Planning successful restorations for Wetland Reserve Program (WRP) easements requires a determination of areas that show evidence of being in a zone prone to sustained or frequent flooding. Zone determinations of this type are used by WRP planners to define the actively inundated area and make decisions on restoration-practice installation. According to WRP planning guidelines, a site needs to show evidence of being in an "inundation zone" that is prone to sustained or frequent flooding for a period of 7 consecutive days at least once every 2 years on average in order to meet the planning criteria for determining a wetland for a restoration in agricultural land. By calculating the annual highest 7-consecutive-day mean discharge with a 2-year recurrence interval (7MQ2) at a streamgage on the basis of available streamflow data, one can determine the water-surface elevation corresponding to the calculated flow that defines the estimated inundation zone along the river. By using the estimated water-surface elevation ("inundation elevation") along the river, an approximate extent of potential wetland for a restoration in agricultural land can be mapped. As part of the pilot study, a set of maps representing the estimated potential wetland extents was generated in a geographic information system (GIS) application by combining (1) a digital water-surface plane representing the surface of inundation elevation that sloped in the downstream

  13. Assessing Flood Mitigation Alternatives in Brezovička Village in Slovakia

    NASA Astrophysics Data System (ADS)

    Zvijáková, Lenka; Zeleňáková, Martina

    2013-06-01

    Flooding due to extreme rain events in urban environments is a problem and a growing concern. There is an increasing demand for a new paradigm to improve flood-mitigation decision processes that calls for riskreduction strategies at several levels. Therefore is a challenge in assessing and comparing different flood mitigation measures. The aim of this paper is to explore a new method to improve an environmental impact assessment of flood-mitigation measures in decision processes by risk analysis method.

  14. Slope-Area Computation Program Graphical User Interface 1.0—A Preprocessing and Postprocessing Tool for Estimating Peak Flood Discharge Using the Slope-Area Method

    USGS Publications Warehouse

    Bradley, D. Nathan

    2012-01-01

    The slope-area method is a technique for estimating the peak discharge of a flood after the water has receded (Dalrymple and Benson, 1967). This type of discharge estimate is called an “indirect measurement” because it relies on evidence left behind by the flood, such as high-water marks (HWMs) on trees or buildings. These indicators of flood stage are combined with measurements of the cross-sectional geometry of the stream, estimates of channel roughness, and a mathematical model that balances the total energy of the flow between cross sections. This is in contrast to a “direct” measurement of discharge during the flood where cross-sectional area is measured and a current meter or acoustic equipment is used to measure the water velocity. When a direct discharge measurement cannot be made at a gage during high flows because of logistics or safety reasons, an indirect measurement of a peak discharge is useful for defining the high-flow section of the stage-discharge relation (rating curve) at the stream gage, resulting in more accurate computation of high flows. The Slope-Area Computation program (SAC; Fulford, 1994) is an implementation of the slope-area method that computes a peak-discharge estimate from inputs of water-surface slope (from surveyed HWMs), channel geometry, and estimated channel roughness. SAC is a command line program written in Fortran that reads input data from a formatted text file and prints results to another formatted text file. Preparing the input file can be time-consuming and prone to errors. This document describes the SAC graphical user interface (GUI), a crossplatform “wrapper” application that prepares the SAC input file, executes the program, and helps the user interpret the output. The SAC GUI is an update and enhancement of the slope-area method (SAM; Hortness, 2004; Berenbrock, 1996), an earlier spreadsheet tool used to aid field personnel in the completion of a slope-area measurement. The SAC GUI reads survey data

  15. Crowdsourcing detailed flood data

    NASA Astrophysics Data System (ADS)

    Walliman, Nicholas; Ogden, Ray; Amouzad*, Shahrzhad

    2015-04-01

    Over the last decade the average annual loss across the European Union due to flooding has been 4.5bn Euros, but increasingly intense rainfall, as well as population growth, urbanisation and the rising costs of asset replacements, may see this rise to 23bn Euros a year by 2050. Equally disturbing are the profound social costs to individuals, families and communities which in addition to loss of lives include: loss of livelihoods, decreased purchasing and production power, relocation and migration, adverse psychosocial effects, and hindrance of economic growth and development. Flood prediction, management and defence strategies rely on the availability of accurate information and flood modelling. Whilst automated data gathering (by measurement and satellite) of the extent of flooding is already advanced it is least reliable in urban and physically complex geographies where often the need for precise estimation is most acute. Crowdsourced data of actual flood events is a potentially critical component of this allowing improved accuracy in situations and identifying the effects of local landscape and topography where the height of a simple kerb, or discontinuity in a boundary wall can have profound importance. Mobile 'App' based data acquisition using crowdsourcing in critical areas can combine camera records with GPS positional data and time, as well as descriptive data relating to the event. This will automatically produce a dataset, managed in ArcView GIS, with the potential for follow up calls to get more information through structured scripts for each strand. Through this local residents can provide highly detailed information that can be reflected in sophisticated flood protection models and be core to framing urban resilience strategies and optimising the effectiveness of investment. This paper will describe this pioneering approach that will develop flood event data in support of systems that will advance existing approaches such as developed in the in the UK

  16. Floods in Colorado

    USGS Publications Warehouse

    Follansbee, Robert; Sawyer, Leon R.

    1948-01-01

    The first records of floods in Colorado antedated the settlement of the State by about 30 years. These were records of floods on the Arkansas and Republican Rivers in 1826. Other floods noted by traders, hunters and emigrants, some of whom were on their way to the Far West, occurred in 1844 on the Arkansas River, and by inference on the South Platte River. Other early floods were those on the Purgatoire, the Lower Arkansas, and the San Juan Rivers about 1859. The most serious flood since settlement began was that on the Arkansas River during June 1921, which caused the loss of about 100 lives and an estimated property loss of $19,000,000. Many floods of lesser magnitude have occurred, and some of these have caused loss of life and very considerable property damage. Topography is the chief factor in determining the location of storms and resulting floods. These occur most frequently on the eastern slope of the Front Range. In the mountains farther west precipitation is insufficient to cause floods except during periods of melting snow, in June. In the southwestern part of the State, where precipitation during periods of melting snow is insufficient to cause floods, the severest floods yet experienced resulted from heavy rains in September 1909 and October 1911. In the eastern foothills region, usually below an altitude of about 7,500 feet and extending for a distance of about 50 miles east of the mountains, is a zone subject to rainfalls of great intensity known as cloudbursts. These cloudbursts are of short duration and are confined to very small areas. At times the intensity is so great as to make breathing difficult for those exposed to a storm. The areas of intense rainfall are so small that Weather Bureau precipitation stations have not been located in them. Local residents, being cloudburst conscious, frequently measure the rainfall in receptacles in their yards, and such records constitute the only source of information regarding the intensity. A flood

  17. Multifractal Flood Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2007-12-01

    Hydrology and more generally sciences involved in water resources management, researches and technological or operational development face a fundamental difficulty: the extreme variability of hydrological fields. It clearly appears today that this variability is a function of the observation scale and yield natural hazards such as floods or droughts. The estimation of return periods for extreme precipitation and flooding events requires a model of the natural (unperturbed) statistical behaviour of the probability tails and the possible clustering (including possible long-range dependencies) of the extremes. Appropriate approaches for handling such non classical variability over wide ranges of time and space scale do exist. They are based on a fundamental property of the non-linear equations: scale invariance. Its specific framework is that of multifractals. In this framework hydrological variability builds up scale by scale leading to non-classical statistics; this provides the key element needed to better understand and predict floods. Scaling is a verifiable physical principle which can be exploited to model hydrological processes and estimate their statistics over wide ranges of space-time scales. We first present the Multifractal Flood Frequency Analysis (MFFA) tool and illustrate some results of its application to a large database (for more than 16000 selected stations over USA and Canada). We then discuss its efficiency by showing how the mean flow information - coupled with universal multifractal parametrizations with power law tails - can be used to estimate return times for extreme flood events.

  18. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  19. Dynamic Flood Vulnerability Mapping with Google Earth Engine

    NASA Astrophysics Data System (ADS)

    Tellman, B.; Kuhn, C.; Max, S. A.; Sullivan, J.

    2015-12-01

    Satellites capture the rate and character of environmental change from local to global levels, yet integrating these changes into flood exposure models can be cost or time prohibitive. We explore an approach to global flood modeling by leveraging satellite data with computing power in Google Earth Engine to dynamically map flood hazards. Our research harnesses satellite imagery in two main ways: first to generate a globally consistent flood inundation layer and second to dynamically model flood vulnerability. Accurate and relevant hazard maps rely on high quality observation data. Advances in publicly available spatial, spectral, and radar data together with cloud computing allow us to improve existing efforts to develop a comprehensive flood extent database to support model training and calibration. This talk will demonstrate the classification results of algorithms developed in Earth Engine designed to detect flood events by combining observations from MODIS, Landsat 8, and Sentinel-1. Our method to derive flood footprints increases the number, resolution, and precision of spatial observations for flood events both in the US, recorded in the NCDC (National Climatic Data Center) storm events database, and globally, as recorded events from the Colorado Flood Observatory database. This improved dataset can then be used to train machine learning models that relate spatial temporal flood observations to satellite derived spatial temporal predictor variables such as precipitation, antecedent soil moisture, and impervious surface. This modeling approach allows us to rapidly update models with each new flood observation, providing near real time vulnerability maps. We will share the water detection algorithms used with each satellite and discuss flood detection results with examples from Bihar, India and the state of New York. We will also demonstrate how these flood observations are used to train machine learning models and estimate flood exposure. The final stage of

  20. Estimation of flood losses to agricultural crops using remote sensing

    NASA Astrophysics Data System (ADS)

    Tapia-Silva, Felipe-Omar; Itzerott, Sibylle; Foerster, Saskia; Kuhlmann, Bernd; Kreibich, Heidi

    2011-01-01

    The estimation of flood damage is an important component of risk-oriented flood design, risk mapping, financial appraisals and comparative risk analyses. However, research on flood loss modelling, especially in the agricultural sector, has not yet gained much attention. Agricultural losses strongly depend on the crops affected, which need to be predicted accurately. Therefore, three different methods to predict flood-affected crops using remote sensing and ancillary data were developed, applied and validated. These methods are: (a) a hierarchical classification based on standard curves of spectral response using satellite images, (b) disaggregation of crop statistics using a Monte Carlo simulation and probabilities of crops to be cultivated on specific soils and (c) analysis of crop rotation with data mining Net Bayesian Classifiers (NBC) using soil data and crop data derived from a multi-year satellite image analysis. A flood loss estimation model for crops was applied and validated in flood detention areas (polders) at the Havel River (Untere Havelniederung) in Germany. The polders were used for temporary storage of flood water during the extreme flood event in August 2002. The flood loss to crops during the extreme flood event in August 2002 was estimated based on the results of the three crop prediction methods. The loss estimates were then compared with official loss data for validation purposes. The analysis of crop rotation with NBC obtained the best result, with 66% of crops correctly classified. The accuracy of the other methods reached 34% with identification using Normalized Difference Vegetation Index (NDVI) standard curves and 19% using disaggregation of crop statistics. The results were confirmed by evaluating the loss estimation procedure, in which the damage model using affected crops estimated by NBC showed the smallest overall deviation (1%) when compared to the official losses. Remote sensing offers various possibilities for the improvement of

  1. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions.

  2. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  3. Benchmarking an operational procedure for rapid flood mapping and risk assessment in Europe

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Salamon, Peter; Kalas, Milan; Bianchi, Alessandra; Feyen, Luc

    2016-04-01

    The development of real-time methods for rapid flood mapping and risk assessment is crucial to improve emergency response and mitigate flood impacts. This work describes the benchmarking of an operational procedure for rapid flood risk assessment based on the flood predictions issued by the European Flood Awareness System (EFAS). The daily forecasts produced for the major European river networks are translated into event-based flood hazard maps using a large map catalogue derived from high-resolution hydrodynamic simulations, based on the hydro-meteorological dataset of EFAS. Flood hazard maps are then combined with exposure and vulnerability information, and the impacts of the forecasted flood events are evaluated in near real-time in terms of flood prone areas, potential economic damage, affected population, infrastructures and cities. An extensive testing of the operational procedure is carried out using the catastrophic floods of May 2014 in Bosnia-Herzegovina, Croatia and Serbia. The reliability of the flood mapping methodology is tested against satellite-derived flood footprints, while ground-based estimations of economic damage and affected population is compared against modelled estimates. We evaluated the skill of flood hazard and risk estimations derived from EFAS flood forecasts with different lead times and combinations. The assessment includes a comparison of several alternative approaches to produce and present the information content, in order to meet the requests of EFAS users. The tests provided good results and showed the potential of the developed real-time operational procedure in helping emergency response and management.

  4. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    SciTech Connect

    Burns, Lyle D.

    2009-04-14

    The problem in CO{sub 2} flooding lies with its higher mobility causing low conformance or sweep efficiency. This is an issue in oilfield applications where an injected fluid or gas used to mobilize and produce the oil in a marginal field has substantially higher mobility (function of viscosity and density and relative permeability) relative to the crude oil promoting fingering and early breakthrough. Conformance is particularly critical in CO{sub 2} oilfield floods where the end result is less oil recovered and substantially higher costs related to the CO{sub 2}. The SPI-CO{sub 2} (here after called “SPI”) gel system is a unique silicate based gel system that offers a technically effective solution to the conformance problem with CO{sub 2} floods. This SPI gel system remains a low viscosity fluid until an external initiator (CO{sub 2}) triggers gelation. This is a clear improvement over current technologies where the gels set up as a function of time, regardless of where it is placed in the reservoir. In those current systems, the internal initiator is included in the injected fluid for water shut off applications. In this new research effort, the CO{sub 2} is an external initiator contacted after SPI gel solution placement. This concept ensures in the proper water wet reservoir environment that the SPI gel sets up in the precise high permeability path followed by the CO{sub 2}, therefore improving sweep efficiency to a greater degree than conventional systems. In addition, the final SPI product in commercial quantities is expected to be low cost over the competing systems. This Phase I research effort provided “proof of concept” that SPI gels possess strength and may be formed in a sand pack reducing the permeability to brine and CO{sub 2} flow. This SPI technology is a natural extension of prior R & D and the Phase I effort that together show a high potential for success in a Phase II follow-on project. Carbon dioxide (CO{sub 2}) is a major by-product of

  5. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  6. Assessment of flash flood warning procedures

    NASA Astrophysics Data System (ADS)

    Johnson, Lynn E.

    2000-01-01

    Assessment of four alternate flash flood warning procedures was conducted to ascertain their suitability for forecast operations using radar-rainfall imagery. The procedures include (1) areal mean basin effective rainfall, (2) unit hydrograph, (3) time-area, and (4) 2-D numerical modeling. The Buffalo Creek flash flood of July 12, 1996, was used as a case study for application of each of the procedures. A significant feature of the Buffalo Creek event was a forest fire that occurred a few months before the flood and significantly affected watershed runoff characteristics. Objectives were to assess the applicability of the procedures for watersheds having spatial and temporal scale similarities to Buffalo Creek, to compare their technical characteristics, and to consider forecaster usability. Geographic information system techniques for hydrologic database development and flash flood potential computations are illustrated. Generalizations of the case study results are offered relative to their suitability for flash flood forecasting operations. Although all four methods have relative advantages, their application to the Buffalo Creek event resulted in mixed performance. Failure of any method was due primarily to uncertainties of the land surface response (i.e., burn area imperviousness). Results underscore the need for model calibration; a difficult requirement for real-time forecasting.

  7. Accounting for rainfall systematic spatial variability in flash flood forecasting

    NASA Astrophysics Data System (ADS)

    Douinot, Audrey; Roux, Hélène; Garambois, Pierre-André; Larnier, Kévin; Labat, David; Dartus, Denis

    2016-10-01

    Just as with the storms that cause them, flash floods are highly variable and non-linear phenomena in both time and space; hence understanding and anticipating the genesis of flash floods is far from straightforward. There is therefore a huge requirement for tools with the potential to provide advance warning of situations likely to lead to flash floods, and thus provide additional time for the flood forecasting services. The Flash Flood Guidance (FFG) method is used on US catchments to estimate the average number of inches of rainfall for given durations required to produce flash flooding. This rainfall amount is used afterwards as a flood warning threshold. In Europe, flash floods often occur on small catchments (approximately 100 km2) and it has already been shown that the spatial variability of rainfall has a great impact on the catchment response (Le Lay and Saulnier, 2007). Therefore, in this study, an improved FFG method which accounts for rainfall spatial variability is proposed. The objectives of this paper are (i) to assess the FFG method applicability on French Mediterranean catchments with a distributed process-oriented hydrological model and (ii) to assess the effect of the rainfall spatial variability on this method. The results confirm the influence of the spatial variability of rainfall events in relation with its interaction with soil properties.

  8. Was Global Warming at the Paleocene-Eocene Boundary Terminated by Flood Volcanism?

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Larsen, R. B.

    2008-12-01

    The Paleocene-Eocene thermal maximum (PETM) has recently been attributed to greenhouse gases released from sedimentary basins in the Northeast Atlantic due to interaction with continental flood basalt magmatism. In the marine section in Denmark the alkaline Ash-17 has been dated at 55.1 plus minus 0.1 Ma and the PETM at 55.6-55.4 Ma. A similar alkaline tephra deposit in the uppermost part of the East Greenland flood basalt succession has also been dated at 55.1 plus minus 0.1 Ma and provides a linkage to Ash-17. Our recent results on the pressure of the coeval Skaergaard intrusion indicate that the majority of flood basalts erupted in less than 300,000 years. It is therefore possible to correlate the main flood basalt event with the interval immediately postdating PETM (55.4-55.1 Ma). This is consistent with a report of a small dinoflagellate cyst assemblage with a high proportion of Apectodinium homomorphum in one productive sample from sediments within the lower volcanics underlying the main flood basalt succession. The Apectodinium genus is usually abundant in the PETM interval. A scarcity of ash layers within the PETM interval also supports a correlation of the main flood basalt event with the overlying marine section including more abundant ash layers. The high eruption rate of the main flood basalts is likely to have resulted in atmospheric cooling caused by sulfuric acid aerosols produced from volcanic sulfur dioxide. Available estimates for volume and composition of the Northeast Atlantic flood basalts indicate that at least 36 teratonnes of sulfur dioxide was pumped into the atmosphere. This average 120 megatonnes per year over 300,000 years. For comparison, the historic Laki eruption in Iceland is estimated to have released 120 megatonnes sulfur dioxide over 5 months. We suggest that flood volcanism of the Northeast Atlantic terminated the global warming event at the Paleocene-Eocene boundary.

  9. 77 FR 18842 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  10. 78 FR 5824 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  11. 77 FR 18846 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  12. 78 FR 21143 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  13. 77 FR 18839 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  14. 77 FR 18844 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  15. 78 FR 48701 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  16. 77 FR 18835 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  17. 78 FR 5822 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  18. 77 FR 74859 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-18

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  19. 78 FR 5826 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  20. 78 FR 49277 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  1. 78 FR 49278 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  2. 77 FR 18841 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... SECURITY Federal Emergency Management Agency Proposed Flood Hazard Determinations AGENCY: Federal Emergency Management Agency, DHS. ACTION: Notice. SUMMARY: Comments are requested on proposed flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood...

  3. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  4. Alkaline pulping of some eucalypts from Sudan.

    PubMed

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.

  5. Documentary evidence of past floods in Europe and their utility in flood frequency estimation

    NASA Astrophysics Data System (ADS)

    Kjeldsen, T. R.; Macdonald, N.; Lang, M.; Mediero, L.; Albuquerque, T.; Bogdanowicz, E.; Brázdil, R.; Castellarin, A.; David, V.; Fleig, A.; Gül, G. O.; Kriauciuniene, J.; Kohnová, S.; Merz, B.; Nicholson, O.; Roald, L. A.; Salinas, J. L.; Sarauskiene, D.; Šraj, M.; Strupczewski, W.; Szolgay, J.; Toumazis, A.; Vanneuville, W.; Veijalainen, N.; Wilson, D.

    2014-09-01

    This review outlines the use of documentary evidence of historical flood events in contemporary flood frequency estimation in European countries. The study shows that despite widespread consensus in the scientific literature on the utility of documentary evidence, the actual migration from academic to practical application has been limited. A detailed review of flood frequency estimation guidelines from different countries showed that the value of historical data is generally recognised, but practical methods for systematic and routine inclusion of this type of data into risk analysis are in most cases not available. Studies of historical events were identified in most countries, and good examples of national databases attempting to collate the available information were identified. The conclusion is that there is considerable potential for improving the reliability of the current flood risk assessments by harvesting the valuable information on past extreme events contained in the historical data sets.

  6. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  7. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    -rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

  8. The Global Flood Model

    NASA Astrophysics Data System (ADS)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  9. Alkalinity and hardness: Critical but elusive concepts in aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Total alkalinity and total hardness are familiar variables to those involved in aquatic animal production. Aquaculturists – both scientists and practitioners alike – tend to have some understanding of the two variables and of methods for adjusting their concentrations. The chemistry and the biolog...

  10. Multivariate pluvial flood damage models

    SciTech Connect

    Van Ootegem, Luc; Verhofstadt, Elsy; Van Herck, Kristine; Creten, Tom

    2015-09-15

    Depth–damage-functions, relating the monetary flood damage to the depth of the inundation, are commonly used in the case of fluvial floods (floods caused by a river overflowing). We construct four multivariate damage models for pluvial floods (caused by extreme rainfall) by differentiating on the one hand between ground floor floods and basement floods and on the other hand between damage to residential buildings and damage to housing contents. We do not only take into account the effect of flood-depth on damage, but also incorporate the effects of non-hazard indicators (building characteristics, behavioural indicators and socio-economic variables). By using a Tobit-estimation technique on identified victims of pluvial floods in Flanders (Belgium), we take into account the effect of cases of reported zero damage. Our results show that the flood depth is an important predictor of damage, but with a diverging impact between ground floor floods and basement floods. Also non-hazard indicators are important. For example being aware of the risk just before the water enters the building reduces content damage considerably, underlining the importance of warning systems and policy in this case of pluvial floods. - Highlights: • Prediction of damage of pluvial floods using also non-hazard information • We include ‘no damage cases’ using a Tobit model. • The damage of flood depth is stronger for ground floor than for basement floods. • Non-hazard indicators are especially important for content damage. • Potential gain of policies that increase awareness of flood risks.

  11. Epic Flooding in Georgia, 2009

    USGS Publications Warehouse

    Gotvald, Anthony J.; McCallum, Brian E.

    2010-01-01

    Metropolitan Atlanta-September 2009 Floods The epic floods experienced in the Atlanta area in September 2009 were extremely rare. Eighteen streamgages in the Metropolitan Atlanta area had flood magnitudes much greater than the estimated 0.2-percent (500-year) annual exceedance probability. The Federal Emergency Management Agency (FEMA) reported that 23 counties in Georgia were declared disaster areas due to this flood and that 16,981 homes and 3,482 businesses were affected by floodwaters. Ten lives were lost in the flood. The total estimated damages exceed $193 million (H.E. Longenecker, Federal Emergency Management Agency, written commun., November 2009). On Sweetwater Creek near Austell, Ga., just north of Interstate 20, the peak stage was more than 6 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. Flood magnitudes in Cobb County on Sweetwater, Butler, and Powder Springs Creeks greatly exceeded the estimated 0.2-percent (500-year) floods for these streams. In Douglas County, the Dog River at Ga. Highway 5 near Fairplay had a peak stage nearly 20 feet higher than the estimated peak stage of the 0.2-percent (500-year) flood. On the Chattahoochee River, the U.S. Geological Survey (USGS) gage at Vinings reached the highest level recorded in the past 81 years. Gwinnett, De Kalb, Fulton, and Rockdale Counties also had record flooding.South Georgia March and April 2009 FloodsThe March and April 2009 floods in South Georgia were smaller in magnitude than the September floods but still caused significant damage. No lives were lost in this flood. Approximately $60 million in public infrastructure damage occurred to roads, culverts, bridges and a water treatment facility (Joseph T. McKinney, Federal Emergency Management Agency, written commun., July 2009). Flow at the Satilla River near Waycross, exceeded the 0.5-percent (200-year) flood. Flows at seven other stations in South Georgia exceeded the 1-percent (100-year) flood.

  12. Estimating flood hydrographs and volumes for Alabama streams

    USGS Publications Warehouse

    Olin, D.A.; Atkins, J.B.

    1988-01-01

    The hydraulic design of highway drainage structures involves an evaluation of the effect of the proposed highway structures on lives, property, and stream stability. Flood hydrographs and associated flood volumes are useful tools in evaluating these effects. For design purposes, the Alabama Highway Department needs information on flood hydrographs and volumes associated with flood peaks of specific recurrence intervals (design floods) at proposed or existing bridge crossings. This report will provide the engineer with a method to estimate flood hydrographs, volumes, and lagtimes for rural and urban streams in Alabama with drainage areas less than 500 sq mi. Existing computer programs and methods to estimate flood hydrographs and volumes for ungaged streams have been developed in Georgia. These computer programs and methods were applied to streams in Alabama. The report gives detailed instructions on how to estimate flood hydrographs for ungaged rural or urban streams in Alabama with drainage areas less than 500 sq mi, without significant in-channel storage or regulations. (USGS)

  13. Evaluation of flood hazard maps in print and web mapping services as information tools in flood risk communication

    NASA Astrophysics Data System (ADS)

    Hagemeier-Klose, M.; Wagner, K.

    2009-04-01

    Flood risk communication with the general public and the population at risk is getting increasingly important for flood risk management, especially as a precautionary measure. This is also underlined by the EU Flood Directive. The flood related authorities therefore have to develop adjusted information tools which meet the demands of different user groups. This article presents the formative evaluation of flood hazard maps and web mapping services according to the specific requirements and needs of the general public using the dynamic-transactional approach as a theoretical framework. The evaluation was done by a mixture of different methods; an analysis of existing tools, a creative workshop with experts and laymen and an online survey. The currently existing flood hazard maps or web mapping services or web GIS still lack a good balance between simplicity and complexity with adequate readability and usability for the public. Well designed and associative maps (e.g. using blue colours for water depths) which can be compared with past local flood events and which can create empathy in viewers, can help to raise awareness, to heighten the activity and knowledge level or can lead to further information seeking. Concerning web mapping services, a linkage between general flood information like flood extents of different scenarios and corresponding water depths and real time information like gauge levels is an important demand by users. Gauge levels of these scenarios are easier to understand than the scientifically correct return periods or annualities. The recently developed Bavarian web mapping service tries to integrate these requirements.

  14. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  15. Comparison of flood regionalisation techniques in Lower Saxony.

    NASA Astrophysics Data System (ADS)

    Plötner, Stefan; Haberlandt, Uwe

    2016-04-01

    The index-flood method has become the standard method for peak flow regionalisation of given return periods at ungauged basins. Moreover grouping stations into regions of homogeneous flood characteristics increases the sample size and thus reduces the uncertainty of estimated peak flows even at gauged basins. At this context, this study investigates the performance of the index-flood method with regards to other regionalisation techniques and evaluates the influence of station density and data quality on the performance of the index-flood method. For this purpose 338 runoff stations in Lower Saxony with observed monthly peak flows and record lengths of annual peak flows between 10 and 75 years are analysed. Catchment descriptors of topography, soil, vegetation and climate are derived to group them into homogeneous regions. The regions are separated using 5 classification methods with 2 to 40 classes for selected catchment descriptors. The most suitable catchment descriptors are selected by their impact on classifying the mean annual peak flow and the variance of annual peak flows using random forest. Muliple linear regression, ordinary and external drift kriging, the standard and an extended index-flood method are compared with the at-site estimation as reference using cross-validation. Three station scenarios based on e.g. record length, known station specific experience and hydrological catchment complexity are used to evaluate the influence of station density and quality on the performance of the index-flood method. The results show the applicability of the index-flood method in Lower Saxony and the benefit of using regional samples for more robust estimations. Combining the index-flood method and geostatistics can improve the estimation of peak flows. The performance of the index-flood method is affected by the used sample respectively the selection of stations.

  16. The pattern of spatial flood disaster region in DKI Jakarta

    NASA Astrophysics Data System (ADS)

    Tambunan, M. P.

    2017-02-01

    The study of disaster flood area was conducted in DKI Jakarta Province, Indonesia. The aim of this research is: to study the spatial distribution of potential and actual of flood area The flood was studied from the geographic point of view using spatial approach, while the study of the location, the distribution, the depth and the duration of flooding was conducted using geomorphologic approach and emphasize on the detailed landform unit as analysis unit. In this study the landforms in DKI Jakarta have been a diversity, as well as spatial and temporal pattern of the actual and potential flood area. Landform at DKI Jakarta has been largely used as built up area for settlement and it facilities, thus affecting the distribution pattern of flooding area. The collection of the physical condition of landform in DKI Jakarta data prone were conducted through interpretation of the topographic map / RBI map and geological map. The flood data were obtained by survey and secondary data from Kimpraswil (Public Work) of DKI Jakarta Province for 3 years (1996, 2002, and 2007). Data of rainfall were obtained from BMKG and land use data were obtained from BPN DKI Jakarta. The analysis of the causal factors and distribution of flooding was made spatially and temporally using geographic information system. This study used survey method with a pragmatic approach. In this study landform as result from the analytical survey was settlement land use as result the synthetic survey. The primary data consist of landform, and the flood characteristic obtained by survey. The samples were using purposive sampling. Landform map was composed by relief, structure and material stone, and process data Landform map was overlay with flood map the flood prone area in DKI Jakarta Province in scale 1:50,000 to show. Descriptive analysis was used the spatial distribute of the flood prone area. The result of the study show that actual of flood prone area in the north, west and east of Jakarta lowland both

  17. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  18. Rethinking the relationship between flood risk perception and flood management.

    PubMed

    Birkholz, S; Muro, M; Jeffrey, P; Smith, H M

    2014-04-15

    Although flood risk perceptions and their concomitant motivations for behaviour have long been recognised as significant features of community resilience in the face of flooding events, there has, for some time now, been a poorly appreciated fissure in the accompanying literature. Specifically, rationalist and constructivist paradigms in the broader domain of risk perception provide different (though not always conflicting) contexts for interpreting evidence and developing theory. This contribution reviews the major constructs that have been applied to understanding flood risk perceptions and contextualises these within broader conceptual developments around risk perception theory and contemporary thinking around flood risk management. We argue that there is a need to re-examine and re-invigorate flood risk perception research, in a manner that is comprehensively underpinned by more constructivist thinking around flood risk management as well as by developments in broader risk perception research. We draw attention to an historical over-emphasis on the cognitive perceptions of those at risk to the detriment of a richer understanding of a wider range of flood risk perceptions such as those of policy-makers or of tax-payers who live outside flood affected areas as well as the linkages between these perspectives and protective measures such as state-supported flood insurance schemes. Conclusions challenge existing understandings of the relationship between risk perception and flood management, particularly where the latter relates to communication strategies and the extent to which those at risk from flooding feel responsible for taking protective actions.

  19. The Stanford Flood.

    ERIC Educational Resources Information Center

    Leighton, Philip D.

    1979-01-01

    Describes, from the flood to the start of freeze-drying operations, the preservation efforts of Stanford University regarding books damaged by water in the Green Library in November 1978. Planning, action, and mopping-up activities are chronicled, and 20 suggestions are offered as guidance in future similar situations. (JD)

  20. After the Flood

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2007-01-01

    When floodwater swept through the McVities biscuit factory in Carlisle in January 2005 few were confident that it would reopen. The factory, in the Caldewgate area of the city, was one of the first casualties of the flood, as water, nine feet deep in places, coursed trough the food preparation areas, destroying equipment and covering everything in…

  1. Flooding on Elbe River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Heavy rains in Central Europe over the past few weeks have led to some of the worst flooding the region has witnessed in more than a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary, and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Elbe River and its tributaries was taken on August 20, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. The floodwaters that inundated Dresden, Germany, earlier this week have moved north. As can be seen, the river resembles a fairly large lake in the center of the image just south of the town of Wittenberg. Flooding was also bad further downriver in the towns of Maqgdeburge and Hitzacker. Roughly 20,000 people were evacuated from their homes in northern Germany. Fifty thousand troops, border police, and technical assistance workers were called in to combat the floods along with 100,000 volunteers. The floodwaters are not expected to badly affect Hamburg, which sits on the mouth of the river on the North Sea. Credit:Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  2. Hydrologic Flood Routing.

    ERIC Educational Resources Information Center

    Heggen, Richard J.

    1982-01-01

    Discusses a short classroom-based BASIC program which routes stream flow through a system of channels and reservoirs. The program is suitable for analyses of open channel conveyance systems, flood detention reservoirs, and combinations of the two. (Author/JN)

  3. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  4. Understanding cratonic flood basalts

    NASA Astrophysics Data System (ADS)

    Silver, Paul G.; Behn, Mark D.; Kelley, Katherine; Schmitz, Mark; Savage, Brian

    2006-05-01

    The origin of continental flood basalts has been debated for decades. These eruptions often produce millions of cubic kilometers of basalt on timescales of only a million years. Although flood basalts are found in a variety of settings, no locale is more puzzling than cratonic areas such as southern Africa or the Siberian craton, where strong, thick lithosphere is breached by these large basaltic outpourings. Conventionally, flood basalts have been interpreted as melting events produced by one of two processes: 1) elevated temperatures associated with mantle plumes and/or 2) adiabatic-decompression melting associated with lithospheric thinning. In southern Africa, however, there are severe problems with both of these mechanisms. First, the rifting circumstances of several well-known basaltic outpourings clearly reflect lithospheric control rather than the influence of a deep-seated plume. Specifically, rift timing and magmatism are correlated with stress perturbations to the lithosphere associated with the formation of collisional rifts. Second, the substantial lithospheric thinning required for adiabatic decompression melting is inconsistent with xenolith evidence for the continued survival of thick lithosphere beneath flood basalt domains. As an alternative to these models, we propose a new two-stage model that interprets cratonic flood basalts not as melting events, but as short-duration drainage events that tap previously created sublithospheric reservoirs of molten basalt formed over a longer time scale. Reservoir creation/existence (Stage I) requires long-term (e.g. ≫ 1 Ma) supersolidus conditions in the sublithospheric mantle that could be maintained by an elevated equilibrium geotherm (appropriate for the Archean), a slow thermal perturbation (e.g. thermal blanketing or large-scale mantle upwelling), or a subduction-related increase in volatile content. The drainage event (Stage II) occurs in response to an abrupt stress change in the lithosphere, which

  5. - and Cloud-Supported Geospatial Service Aggregation for Flood Response

    NASA Astrophysics Data System (ADS)

    Tan, X.; Di, L.; Deng, M.; Chen, A.; Sun, Z.; Huang, C.; Shao, Y.; Ye, X.

    2015-07-01

    Flooding caused serious losses in China in the past two decades; therefore, responding to and mitigating the impact of flooding is a task of critical importance. The traditional flood response process is usually very time-consuming and labor-intensive. The Service-Oriented Architecture SOA-based flood response is a method with low efficiency due to the large volume of geospatial data transfer, and this method cannot meet the real-time requirement of a rapid response to flooding. This paper presents an Agent- and Cloud-supported geospatial service aggregation to obtain a more efficient geospatial service system for the response to flooding. The architecture of this method is designed and deployed on the Cloud environment, and the flooding response prototype system is built on the Amazon AWS Cloud to demonstrate that the proposed method can avoid transferring large volumes of geospatial data or Big Spatial Data. Consequently, this method is able to achieve better performance than that of the SOA-based method.

  6. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  7. Development of an alkaline fuel cell subsystem

    NASA Astrophysics Data System (ADS)

    1987-03-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  8. Acylglucuronide in alkaline conditions: migration vs. hydrolysis.

    PubMed

    Di Meo, Florent; Steel, Michele; Nicolas, Picard; Marquet, Pierre; Duroux, Jean-Luc; Trouillas, Patrick

    2013-06-01

    This work rationalizes the glucuronidation process (one of the reactions of the phase II metabolism) for drugs having a carboxylic acid moiety. At this stage, acylglucuronides (AG) metabolites are produced, that have largely been reported in the literature for various drugs (e.g., mycophenolic acid (MPA), diclofenac, ibuprofen, phenylacetic acids). The competition between migration and hydrolysis is rationalized by adequate quantum calculations, combing MP2 and density functional theory (DFT) methods. At the molecular scale, the former process is a real rotation of the drug around the glucuconic acid. This chemical-engine provides four different metabolites with various toxicities. Migration definitely appears feasible under alkaline conditions, making proton release from the OH groups. The latter reaction (hydrolysis) releases the free drug, so the competition is of crucial importance to tackle drug action and elimination. From the theoretical data, both migration and hydrolysis appear kinetically and thermodynamically favored, respectively.

  9. The Alkaline Dissolution Rate of Calcite.

    PubMed

    Colombani, Jean

    2016-07-07

    Due to the widespread presence of calcium carbonate on Earth, several geochemical systems, among which is the global CO2 cycle, are controlled to a large extent by the dissolution and precipitation of this mineral. For this reason, the dissolution of calcite has been thoroughly investigated for decades. Despite this intense activity, a consensual value of the dissolution rate of calcite has not been found yet. We show here that the inconsistency between the reported values stems mainly from the variability of the chemical and hydrodynamic conditions of measurement. The spreading of the values, when compared in identical conditions, is much less than expected and is interpreted in terms of sample surface topography. This analysis leads us to propose benchmark values of the alkaline dissolution rate of calcite compatible with all the published values, and a method to use them in various chemical and hydrodynamic contexts.

  10. Nest sites and conservation of endangered Interior Least Terns Sterna antillarum athalassos on an alkaline flat in the south-central Great Plains (USA)

    USGS Publications Warehouse

    Winton, Brian R.; Leslie, David M.

    2003-01-01

    We monitored nest sites of endangered Interior Least Terns on a 5 095 ha alkaline flat in north-central Oklahoma, USA. After nest loss, Least Terns commonly renested and experienced 30% apparent nest success in 1995-1996 (n = 233 nests). Nest success and predation differed by location on the alkaline flat in 1995 and overall, but nest success and flooding did not differ by microhabitat type. Predation was highest at nests ??? 5 cm from debris (driftwood/hay) in 1995. No differences in nesting success, flooding, or predation were observed on comparing nests inside and outside electrified enclosures. Coyotes and Striped Skunks were confirmed nest predators, and Ring-billed Gulls were suspected nest predators. We identified one location on the alkaline flat of about 1 000 ha with consistently lower nest losses attributable to flooding and predation and the highest hatching success compared with other parts of the alkaline flat; it was typified by open ground and bisected by several creeks. Management activities that minimize flooding and predation in this area could further enhance nest success and theoretically increase overall productivity of this population of Least Terns. However, the efficacy of electrified enclosures and nest-site enhancements, as currently undertaken, is questionable because of considerable annual variation in use by and protection of Least Terns.

  11. Regional flood quantile estimation for a Weibull Model

    NASA Astrophysics Data System (ADS)

    Boes, Duane C.; Heo, Jun-Haeng; Salas, Jose D.

    1989-05-01

    Estimation of annual flood quantiles at a given site, based on a regional Weibull model with independence in space and time, is considered. A common shape parameter over sites, motivated by an index flood assumption, was assumed. An exact simple formula for the Cramer-Rao lower bound for the variance of unbiased estimators of the quantile is obtained, and the gain of regional flood frequency analysis over single-site analysis can be quantified via this formula. The estimation techniques of the method of moments, the method of probability-weighted moments, and the method of maximum likelihood are compared.

  12. Fuel cell flooding detection and correction

    DOEpatents

    DiPierno Bosco, Andrew; Fronk, Matthew Howard

    2000-08-15

    Method and apparatus for monitoring an H.sub.2 -O.sub.2 PEM fuel cells to detect and correct flooding. The pressure drop across a given H.sub.2 or O.sub.2 flow field is monitored and compared to predetermined thresholds of unacceptability. If the pressure drop exists a threshold of unacceptability corrective measures are automatically initiated.

  13. Flood Heterogeneity as a Tool for Exploring Flood Frequency-Climate Linkages from a Watershed Perspective

    NASA Astrophysics Data System (ADS)

    Zamora-Reyes, D.; Hirschboeck, K. K.; Valdes, J. B.

    2013-12-01

    Accurate discharge estimates derived from flood frequency analysis (FFA) are needed for real-world applications to reduce or eliminate flood hazard impacts. In the US, these estimates are currently calculated following the FFA method described in the 1982 Bulletin 17b (B17b) of the Hydrology Subcommittee of the Interagency Advisory Committee on Water Data. Although it has proven to be efficient over the past 30 years, the authors and the hydrologic community agree that it's time for an update. An assumption made in B17b is that all floods come from the same homogeneous population when in reality heterogeneity may exist. For such cases, incorporation of the driving atmospheric mechanisms into the analysis is encouraged even if it becomes a statistically challenging problem. Moreover, watersheds that currently exhibit heterogeneity can benefit from this alternative analysis since climate change might not affect the prevalence of all flood types similarly. Arizona's geographic location and complex terrain are associated with three different types of flood-generating atmospheric processes: summer convective thunderstorms, tropical cyclone-enhanced convective activity, and winter synoptic-scale storms. In an earlier study, regional patterns of flood heterogeneity in Arizona were found to influence flood frequency discharge estimates in individual watersheds. In this study we build on these watershed-based climate-flood linkages by exploring the temporal relationship between flood heterogeneity and climatic variability. US Geological Survey partial duration series (PDS) peak flow discharge records from stations across Arizona were compiled and classified according to meteorological cause. Subsequently, the PDS for each station was analyzed for the prevalence of each flood type by counting the number of peaks-over-threshold in each classification per water year. The observed record revealed distinct periods of temporal dominance by different flood producing mechanisms, e

  14. An algorithm for computing moments-based flood quantile estimates when historical flood information is available

    NASA Astrophysics Data System (ADS)

    Cohn, T. A.; Lane, W. L.; Baier, W. G.

    This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record; information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters, of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.

  15. An algorithm for computing moments-based flood quantile estimates when historical flood information is available

    USGS Publications Warehouse

    Cohn, T.A.; Lane, W.L.; Baier, W.G.

    1997-01-01

    This paper presents the expected moments algorithm (EMA), a simple and efficient method for incorporating historical and paleoflood information into flood frequency studies. EMA can utilize three types of at-site flood information: systematic stream gage record: information about the magnitude of historical floods; and knowledge of the number of years in the historical period when no large flood occurred. EMA employs an iterative procedure to compute method-of-moments parameter estimates. Initial parameter estimates are calculated from systematic stream gage data. These moments are then updated by including the measured historical peaks and the expected moments, given the previously estimated parameters of the below-threshold floods from the historical period. The updated moments result in new parameter estimates, and the last two steps are repeated until the algorithm converges. Monte Carlo simulations compare EMA, Bulletin 17B's [United States Water Resources Council, 1982] historically weighted moments adjustment, and maximum likelihood estimators when fitting the three parameters of the log-Pearson type III distribution. These simulations demonstrate that EMA is more efficient than the Bulletin 17B method, and that it is nearly as efficient as maximum likelihood estimation (MLE). The experiments also suggest that EMA has two advantages over MLE when dealing with the log-Pearson type III distribution: It appears that EMA estimates always exist and that they are unique, although neither result has been proven. EMA can be used with binomial or interval-censored data and with any distributional family amenable to method-of-moments estimation.

  16. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  17. Based on GIS technology flood disaster assessment study of Fuhe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Dingding; Zhao, Xinyu; Chen, Jing

    2014-01-01

    Flood protection of Fuhe river basin has been payed high attention after Changkai-levee crevasse in 2010. This paper constructions a model of flood disaster lose calculation considering flood disaster and social economic developing based on GIS. Firstly social economic indexes have been selected according to characteristics of the urban and the rural. Secondly a mathematical model of flood routing using Finite Volume Method has been made in spacial information grids, the data of inundated depth and flood duration can be extracted from the grids. In the end ,wo calculate the loss by flood disaster losses calculation process model. This paper solves the stacking problem of flood characteristic and administrative boundaries effectively, which makes a development on accuracy of flood disaster assessment.

  18. Floods at Mount Clemens, Michigan

    USGS Publications Warehouse

    Wiitala, S.W.; Ash, Arlington D.

    1962-01-01

    The approximate areas inundated during the flood of April 5-6, 1947, by Clinton River, North Branch and Middle Branch of Clinton River, and Harrington Drain, in Clinton Township, Macomb County, Mich., are shown on a topographic map base to record the flood hazard in graphical form. The flood of April 1947 is the highest known since 1934 and probably since 1902. Greater floods are possible, but no attempt was made to define their probable overflow limits.The Clinton River Cut-Off Canal, a flood-relief channel which diverts flow directly into Lake St. Clair from a point about 1500 feet downstream from Gratiot Avenue (about 9 miles upstream from the mouth) has been in operation since October 1951. The approximate limits of overflow that would results from a flood equivalent in discharge to that of April 1947, and occurring with the Cut-Off Canal in operation, are also shown. Although the Cut-Off Canal may reduce the frequency and depth of flooding it will not necessarily eliminate future flooding in the area. Improvements and additions to the drainage systems in the basin, expanding urbanization, new highways, and other cultural changes may influence the inundation pattern of future floods.The preparation of this flood inundation map was financed through a cooperative agreement between Clinton Township, Macomb County, Mich., and the U.S. Geological Survey.Backwater curves used to define the profile for a hypothetical flood on the Clinton River downstream from Moravian Drive, equivalent in discharge to the 1947 flood, but occurring with the present Cut-Off Canal in operation; flood stage established at the gaging station on Clinton River at Mount Clemens; and supplementary floodmark elevations were furnished by the Corps of Engineers.Bench-mark elevations and field survey data, used in the analysis of floods on Harrington Drain, were furnished by the Macomb County Drain Commission.

  19. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  20. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  1. Mapping a flood before it happens

    USGS Publications Warehouse

    Jones, Joseph L.

    2004-01-01

    What's missing from flood forecasts? Maps—The only maps generally available today are maps used for planning. They are maps of theoretical floods, not maps of flooding forecast for an approaching storm. The U.S. Geological Survey (USGS) and the National Weather Service (NWS) have developed a way to bring flood forecasting and flood mapping together, producing flood maps for tomorrow's flood today...and getting them on the Internet in time for those in harm's way to react.

  2. Study of Beijiang catchment flash-flood forecasting model

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Huang, S.; Dong, Y.

    2015-05-01

    Beijiang catchment is a small catchment in southern China locating in the centre of the storm areas of the Pearl River Basin. Flash flooding in Beijiang catchment is a frequently observed disaster that caused direct damages to human beings and their properties. Flood forecasting is the most effective method for mitigating flash floods, the goal of this paper is to develop the flash flood forecasting model for Beijiang catchment. The catchment property data, including DEM, land cover types and soil types, which will be used for model construction and parameter determination, are downloaded from the website freely. Based on the Liuxihe Model, a physically based distributed hydrological model, a model for flash flood forecasting of Beijiang catchment is set up. The model derives the model parameters from the terrain properties, and further optimized with the observed flooding process, which improves the model performance. The model is validated with a few observed floods occurred in recent years, and the results show that the model is reliable and is promising for flash flood forecasting.

  3. The credibility challenge for global fluvial flood risk analysis

    NASA Astrophysics Data System (ADS)

    Trigg, M. A.; Birch, C. E.; Neal, J. C.; Bates, P. D.; Smith, A.; Sampson, C. C.; Yamazaki, D.; Hirabayashi, Y.; Pappenberger, F.; Dutra, E.; Ward, P. J.; Winsemius, H. C.; Salamon, P.; Dottori, F.; Rudari, R.; Kappes, M. S.; Simpson, A. L.; Hadzilacos, G.; Fewtrell, T. J.

    2016-09-01

    Quantifying flood hazard is an essential component of resilience planning, emergency response, and mitigation, including insurance. Traditionally undertaken at catchment and national scales, recently, efforts have intensified to estimate flood risk globally to better allow consistent and equitable decision making. Global flood hazard models are now a practical reality, thanks to improvements in numerical algorithms, global datasets, computing power, and coupled modelling frameworks. Outputs of these models are vital for consistent quantification of global flood risk and in projecting the impacts of climate change. However, the urgency of these tasks means that outputs are being used as soon as they are made available and before such methods have been adequately tested. To address this, we compare multi-probability flood hazard maps for Africa from six global models and show wide variation in their flood hazard, economic loss and exposed population estimates, which has serious implications for model credibility. While there is around 30%-40% agreement in flood extent, our results show that even at continental scales, there are significant differences in hazard magnitude and spatial pattern between models, notably in deltas, arid/semi-arid zones and wetlands. This study is an important step towards a better understanding of modelling global flood hazard, which is urgently required for both current risk and climate change projections.

  4. Intelligent Real-Time Reservoir Operation for Flood Control

    NASA Astrophysics Data System (ADS)

    Chang, L.; Hsu, H.

    2008-12-01

    Real-time flood control of a multi-purpose reservoir should consider decreasing the flood peak stage downstream and storing floodwaters for future usage during typhoon seasons. It is a continuous and instant decision-making process based on relevant operating rules, policy and water laws, in addition the immediate rainfall and the hydrology information; however, it is difficult to learn the intelligent experience from the elder operators. The main purpose of this study is to establish the automatic reservoir flood control model to achieve the goal of a reservoir operation during flood periods. In this study, we propose an intelligent reservoir operating methodology for real-time flood control. First, the genetic algorithm is used to search the optimal solutions, which can be considered as extracting the knowledge of reservoir operation strategies. Then, the adaptive network-based fuzzy inference system (ANFIS), which uses a hybrid learning procedure for extracting knowledge in the form of fuzzy if-then rules, is used to learn the input-output patterns and then to estimate the optimal flood operation. The Shihmen reservoir in Northern Taiwan was used as a case study, where its 26 typhoon events are investigated by the proposed method. The results demonstrate that the proposed control model can perform much better than the original reservoir operator in 26 flood events and effectively achieve decreasing peak flood stage downstream and storing floodwaters for future usage.

  5. Predicting floods with Flickr tags

    PubMed Central

    Jarvis, Stephen; Procter, Rob

    2017-01-01

    Increasingly, user generated content (UGC) in social media postings and their associated metadata such as time and location stamps are being used to provide useful operational information during natural hazard events such as hurricanes, storms and floods. The main advantage of these new sources of data are twofold. First, in a purely additive sense, they can provide much denser geographical coverage of the hazard as compared to traditional sensor networks. Second, they provide what physical sensors are not able to do: By documenting personal observations and experiences, they directly record the impact of a hazard on the human environment. For this reason interpretation of the content (e.g., hashtags, images, text, emojis, etc) and metadata (e.g., keywords, tags, geolocation) have been a focus of much research into social media analytics. However, as choices of semantic tags in the current methods are usually reduced to the exact name or type of the event (e.g., hashtags ‘#Sandy’ or ‘#flooding’), the main limitation of such approaches remains their mere nowcasting capacity. In this study we make use of polysemous tags of images posted during several recent flood events and demonstrate how such volunteered geographic data can be used to provide early warning of an event before its outbreak. PMID:28235035

  6. Proper estimation of hydrological parameters from flood forecasting aspects

    NASA Astrophysics Data System (ADS)

    Miyamoto, Mamoru; Matsumoto, Kazuhiro; Tsuda, Morimasa; Yamakage, Yuzuru; Iwami, Yoichi; Yanami, Hitoshi; Anai, Hirokazu

    2016-04-01

    The hydrological parameters of a flood forecasting model are normally calibrated based on an entire hydrograph of past flood events by means of an error assessment function such as mean square error and relative error. However, the specific parts of a hydrograph, i.e., maximum discharge and rising parts, are particularly important for practical flood forecasting in the sense that underestimation may lead to a more dangerous situation due to delay in flood prevention and evacuation activities. We conducted numerical experiments to find the most proper parameter set for practical flood forecasting without underestimation in order to develop an error assessment method for calibration appropriate for flood forecasting. A distributed hydrological model developed in Public Works Research Institute (PWRI) in Japan was applied to fifteen past floods in the Gokase River basin of 1,820km2 in Japan. The model with gridded two-layer tanks for the entire target river basin included hydrological parameters, such as hydraulic conductivity, surface roughness and runoff coefficient, which were set according to land-use and soil-type distributions. Global data sets, e.g., Global Map and Digital Soil Map of the World (DSMW), were employed as input data for elevation, land use and soil type. The values of fourteen types of parameters were evenly sampled with 10,001 patterns of parameter sets determined by the Latin Hypercube Sampling within the search range of each parameter. Although the best reproduced case showed a high Nash-Sutcliffe Efficiency of 0.9 for all flood events, the maximum discharge was underestimated in many flood cases. Therefore, two conditions, which were non-underestimation in the maximum discharge and rising parts of a hydrograph, were added in calibration as the flood forecasting aptitudes. The cases with non-underestimation in the maximum discharge and rising parts of the hydrograph also showed a high Nash-Sutcliffe Efficiency of 0.9 except two flood cases

  7. Flooding in Central China

    NASA Technical Reports Server (NTRS)

    2002-01-01

    During the summer of 2002, frequent, heavy rains gave rise to floods and landslides throughout China that have killed over 1,000 people and affected millions. This false-color image of the western Yangtze River and Dongting Lake in central China was acquired on August 21, 2002, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. (right) The latest flooding crisis in China centers on Dingtong Lake in the center of the image. Heavy rains have caused it to swell over its banks and swamp lakefront towns in the province of Hunan. As of August 23, 2002, more than 250,000 people have been evacuated, and over one million people have been brought in to fortify the dikes around the lake. Normally the lake would appear much smaller and more defined in the MODIS image. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.

  8. Flood Risk Assessments of Architectural Heritage - Case of Changgyeonggung Palace

    NASA Astrophysics Data System (ADS)

    Lee, Hyosang; Kim, Ji-sung; Lee, Ho-jin

    2014-05-01

    The risk of natural disasters such as flood and earthquake has increased due to recent extreme weather events. Therefore, the necessity of the risk management system to protect architectural properties, a cultural heritage of humanity, from natural disasters has been consistently felt. The solutions for managing flood risk focusing on architectural heritage are suggested and applied to protect Changgyeonggung Palace, a major palace heritage in Seoul. After the probable rainfall scenario for risk assessment (frequency: 100 years, 200 years, and 500 years) and the scenario of a probable maximum precipitation (PMP) are made and a previous rainfall event (from July 26th to 28th in 2011) is identified, they are used for the model (HEC-HMS, SWMM) to assess flood risk of certain areas covering Changgyeonggung Palace to do flood amount. Such flood amount makes it possible to identify inundation risks based on GIS models to assess flood risk of individual architectural heritage. The results of assessing such risk are used to establish the disaster risk management system that managers of architectural properties can utilize. According to the results of assessing flood risk of Changgyeonggung Palace, inundation occurs near outlets of Changgyeonggung Palace and sections of river channel for all scenarios of flood risk but the inundation risk of major architectural properties was estimated low. The methods for assessing flood risk of architectural heritage proposed in this study and the risk management system for Changgyeonggung Palace using the methods show thorough solutions for flood risk management and the possibility of using the solutions seems high. A comprehensive management system for architectural heritage will be established in the future through the review on diverse factors for disasters.

  9. Identification of flood-rich and flood-poor periods in flood series

    NASA Astrophysics Data System (ADS)

    Mediero, Luis; Santillán, David; Garrote, Luis

    2015-04-01

    Recently, a general concern about non-stationarity of flood series has arisen, as changes in catchment response can be driven by several factors, such as climatic and land-use changes. Several studies to detect trends in flood series at either national or trans-national scales have been conducted. Trends are usually detected by the Mann-Kendall test. However, the results of this test depend on the starting and ending year of the series, which can lead to different results in terms of the period considered. The results can be conditioned to flood-poor and flood-rich periods located at the beginning or end of the series. A methodology to identify statistically significant flood-rich and flood-poor periods is developed, based on the comparison between the expected sampling variability of floods when stationarity is assumed and the observed variability of floods in a given series. The methodology is applied to a set of long series of annual maximum floods, peaks over threshold and counts of annual occurrences in peaks over threshold series observed in Spain in the period 1942-2009. Mediero et al. (2014) found a general decreasing trend in flood series in some parts of Spain that could be caused by a flood-rich period observed in 1950-1970, placed at the beginning of the flood series. The results of this study support the findings of Mediero et al. (2014), as a flood-rich period in 1950-1970 was identified in most of the selected sites. References: Mediero, L., Santillán, D., Garrote, L., Granados, A. Detection and attribution of trends in magnitude, frequency and timing of floods in Spain, Journal of Hydrology, 517, 1072-1088, 2014.

  10. Cerberus Flood Features

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 October 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows streamlined landforms carved by catastrophic floods that occurred in the eastern Cerberus region, some time in the distant martian past.

    Location near: 15.1oN, 193.5oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  11. [Granulocyte alkaline phosphatase--a biomarker of chronic benzene exposure].

    PubMed

    Khristeva, V; Meshkov, T

    1994-01-01

    In tracing the cellular population status in the peripheral blood of workers, exposed to benzene, was included and cytochemical determination of the alkaline phosphatase activity in leucocytes. This enzyme is accepted as marker of the neutrophilic granulocytes, as maturation of the cells and their antibacterial activity are parallel to the cytochemical activity of the enzyme. 78 workers from the coke-chemical production from state firm "Kremikovtsi" and 41 workers from the production "Benzene" and "Isopropylbenzene"--Oil Chemical Plant, Burgas are included. The benzene concentrations in the air of the working places in all productions are in the range of 5 to 50 mg/m3. For cytochemical determination of the alkaline phosphatase activity is used the method of L. Kaplow and phosphatase index was calculated. It was established that in 98.4% of all examined the alkaline phosphatase activity is inhibited to different rate, as from 46.5% [61 workers] it is zero. In considerably lower percentage of workers were established and other deviations: leucocytosis or leucopenia, neutropenia, increased percent of band neutrophils and toxic granules. The results of the investigation of the granulocyte population show that from all indices, the activity of granulocyte alkaline phosphatase demonstrates most convincing the early myelotoxic effect of benzene.

  12. Release of bound procyanidins from cranberry pomace by alkaline hydrolysis.

    PubMed

    White, Brittany L; Howard, Luke R; Prior, Ronald L

    2010-07-14

    Procyanidins in plant products are present as extractable or unextractable/bound forms. We optimized alkaline hydrolysis conditions to liberate procyanidins and depolymerize polymers from dried cranberry pomace. Alkaline extracts were neutralized (pH 6-7) and then procyanidins were extracted with ethyl acetate and analyzed by normal phase high performance liquid chromatography. Alkaline hydrolysis resulted in an increase in low molecular weight procyanidins, and the increase was greater at higher temperature, short time combinations. The most procyanidins (DP1-DP3) were extracted at 60 degrees C for 15 min with each concentration of NaOH. When compared to conventional extraction using homogenization with acetone/water/acetic acid (70:29.5:0.5 v/v/v), treatment with NaOH increased procyanidin oligomer extraction by 3.8-14.9-fold, with the greatest increase being DP1 (14.9x) and A-type DP2 (8.4x) procyanidins. Alkaline treatment of the residue remaining after conventional extraction resulted in further procyanidin extraction, indicating that procyanidins are not fully extracted by conventional extraction methods.

  13. Improvement of water resources management through the use of satellites flood plain delineation

    NASA Technical Reports Server (NTRS)

    Castruccio, P. A.; Rango, A.

    1974-01-01

    The delineation of flood-prone areas is an important activity in several parts of the world. Conventional methods map the topography surrounding the river via ground surveys and supplementary aerophotography. The conventional method costs approximately $2,000 per river-kilometer, is laborious and time-consuming. ERTS information can supplement this method by two complementary techniques: (1) the dynamic method images the floods as they occur, exploiting the fact that visible evidence of inundation remains for a substantial period after the high waters have receded; (2) the static method utilizes the fact that several flood plains have been found recognizable on ERTS imagery from distinctive, permanent indicators left by previous floods. For areas whose full development is still in the future, the dynamic method allows the gradual buildup with time of a flood plain map, by simply correlating existing ERTS imagery. The static method allows in several areas, a first-cut indication, of proneness to floods.

  14. Magnitude and frequency of floods in Arkansas

    USGS Publications Warehouse

    Hodge, Scott A.; Tasker, Gary D.

    1995-01-01

    Methods are presented for estimating the magnitude and frequency of peak discharges of streams in Arkansas. Regression analyses were developed in which a stream's physical and flood characteristics were related. Four sets of regional regression equations were derived to predict peak discharges with selected recurrence intervals of 2, 5, 10, 25, 50, 100, and 500 years on streams draining less than 7,770 square kilometers. The regression analyses indicate that size of drainage area, main channel slope, mean basin elevation, and the basin shape factor were the most significant basin characteristics that affect magnitude and frequency of floods. The region of influence method is included in this report. This method is still being improved and is to be considered only as a second alternative to the standard method of producing regional regression equations. This method estimates unique regression equations for each recurrence interval for each ungaged site. The regression analyses indicate that size of drainage area, main channel slope, mean annual precipitation, mean basin elevation, and the basin shape factor were the most significant basin and climatic characteristics that affect magnitude and frequency of floods for this method. Certain recommendations on the use of this method are provided. A method is described for estimating the magnitude and frequency of peak discharges of streams for urban areas in Arkansas. The method is from a nationwide U.S. Geeological Survey flood frequency report which uses urban basin characteristics combined with rural discharges to estimate urban discharges. Annual peak discharges from 204 gaging stations, with drainage areas less than 7,770 square kilometers and at least 10 years of unregulated record, were used in the analysis. These data provide the basis for this analysis and are published in the Appendix of this report as supplemental data. Large rivers such as the Red, Arkansas, White, Black, St. Francis, Mississippi, and

  15. Flood of October 1986 at Seward, Alaska

    USGS Publications Warehouse

    Jones, S.H.; Zenone, Chester

    1988-01-01

    Broad areas along the lower Resurrection River and Salmon Creek as well as the surfaces of several adjacent alluvial fans in the Seward area were flooded as a result of the intensive rainstorm of October 9-11, 1986. Severe erosion took place through the steep gradient, mountain canyons and near the apex of the fans, while rock and debris were deposited on the distal parts of the fans. In Godwin, Lost, Box Canyon, Japanese, and Spruce Creek basins, and perhaps others, landslides or debris avalanches dammed the streams temporarily. Subsequent failure or overtopping of these dams led to ' surge-release ' flooding; peak discharge of such a flood at Spruce Creek was 13,600 cu ft/sec, four times as great as any previously known maximum discharge from the basin and 2.5 times as great as the runoff rate from the debris dam. Flood discharges were determined indirectly--using the slope-area method--at ten high-gradient reaches on nine streams. Computed peak discharges for several small basins were the largest since records began in 1963. The largest rainfall-runoff rate unaffected by surge-release was 1 ,020 cu ft per sec per sq mi at Rudolph Creek, which has a drainage area of 1.00 sq mi. The 15.05 inches of rain that fell in one 24-hour period during the storm was assigned a recurrence interval of 100 years or greater. The length of the streamflow record available for most Seward area streams-25 years or less-is inadequate to reliably define flood frequency relations for recurrence intervals as great as 100 years. However, the slope-area determined discharge of Spruce Creek above the debris avalanche indicates a recurrence interval of a 100 years or greater. In addition, conventional flood-frequency analysis techniques are not applicable to peak discharges that are affected by surge-release phenomena. Large, damaging floods have repeatedly caused major damage in the Seward area, and the potential for catastrophic, debris-laden floods is an ever-present threat to areas

  16. Flood Extent Mapping for Namibia Using Change Detection and Thresholding with SAR

    NASA Technical Reports Server (NTRS)

    Long, Stephanie; Fatoyinbo, Temilola E.; Policelli, Frederick

    2014-01-01

    A new method for flood detection change detection and thresholding (CDAT) was used with synthetic aperture radar (SAR) imagery to delineate the extent of flooding for the Chobe floodplain in the Caprivi region of Namibia. This region experiences annual seasonal flooding and has seen a recent renewal of severe flooding after a long dry period in the 1990s. Flooding in this area has caused loss of life and livelihoods for the surrounding communities and has caught the attention of disaster relief agencies. There is a need for flood extent mapping techniques that can be used to process images quickly, providing near real-time flooding information to relief agencies. ENVISAT/ASAR and Radarsat-2 images were acquired for several flooding seasons from February 2008 to March 2013. The CDAT method was used to determine flooding from these images and includes the use of image subtraction, decision based classification with threshold values, and segmentation of SAR images. The total extent of flooding determined for 2009, 2011 and 2012 was about 542 km2, 720 km2, and 673 km2 respectively. Pixels determined to be flooded in vegetation were typically <0.5 % of the entire scene, with the exception of 2009 where the detection of flooding in vegetation was much greater (almost one third of the total flooded area). The time to maximum flooding for the 2013 flood season was determined to be about 27 days. Landsat water classification was used to compare the results from the new CDAT with SAR method; the results show good spatial agreement with Landsat scenes.

  17. Flood Deposition Analysis of Northern California's Eel River (Flood- DANCER)

    NASA Astrophysics Data System (ADS)

    Ahlgren, S.; Bauman, P. D.; Dillon, R. J.; Gallagher, N.; Jamison, M. E.; King, A.; Lee, J.; Siwicke, K. A.; Harris, C. K.; Wheatcroft, R. A.; Borgeld, J. C.; Goldthwait, S. A.

    2006-12-01

    Characterizing and quantifying the fate of river born sediment is critical to our understanding of sediment supply and erosion in impacted coastal areas. Strata deposited in coastal zones provide an invaluable record of recent and historical environmental events. The Eel River in northern California has one of the highest sediment yields of any North American river and has preserved evidence of the impact of recent flood events. Previous research has documented sediment deposits associated with Eel River flood events in January 1995, March 1995, and January 1997. These deposits were found north of the river mouth on the mid shelf in water depths from 50-100 m. Sediment strata were up to 5-10 cm thick and were composed of fine to very fine grained silts and clays. Until recently, no model had been able to correctly reproduce the sediment deposits associated with these floods. In 2005, Harris et al. developed a model that accurately represents the volume and location of the flood deposit associated with the January 1997 event. However, rigorous assessment of the predictive capability of this model requires that a new flood of the Eel River be used as a test case. During the winter of 2005-06 the Eel River rose above flood stage reaching discharge similar to the flood of January 1995 which resulted in flood sedimentation on the Eel River shelf. A flood-related deposit 1-5 cm thick was found in water depths of 60-90 m approximately 20-35 km north of the river mouth. Flood deposits were recognized in box cores collected in the months following the flood. As in previously studied events, flood- related strata near the sediment surface were recognized in core x-radiographs, resistivity and porosity profiles, and were composed of fine to very fine grained silts and clays. In addition, surface flood sediments were associated with lower concentrations of benthic foraminifera compared with deeper sediments. The January 2006 flood deposit was similar in thickness to the

  18. The role of Natural Flood Management in managing floods in large scale basins during extreme events

    NASA Astrophysics Data System (ADS)

    Quinn, Paul; Owen, Gareth; ODonnell, Greg; Nicholson, Alex; Hetherington, David

    2016-04-01

    There is a strong evidence database showing the negative impacts of land use intensification and soil degradation in NW European river basins on hydrological response and to flood impact downstream. However, the ability to target zones of high runoff production and the extent to which we can manage flood risk using nature-based flood management solution are less known. A move to planting more trees and having less intense farmed landscapes is part of natural flood management (NFM) solutions and these methods suggest that flood risk can be managed in alternative and more holistic ways. So what local NFM management methods should be used, where in large scale basin should they be deployed and how does flow is propagate to any point downstream? Generally, how much intervention is needed and will it compromise food production systems? If we are observing record levels of rainfall and flow, for example during Storm Desmond in Dec 2015 in the North West of England, what other flood management options are really needed to complement our traditional defences in large basins for the future? In this paper we will show examples of NFM interventions in the UK that have impacted at local scale sites. We will demonstrate the impact of interventions at local, sub-catchment (meso-scale) and finally at the large scale. These tools include observations, process based models and more generalised Flood Impact Models. Issues of synchronisation and the design level of protection will be debated. By reworking observed rainfall and discharge (runoff) for observed extreme events in the River Eden and River Tyne, during Storm Desmond, we will show how much flood protection is needed in large scale basins. The research will thus pose a number of key questions as to how floods may have to be managed in large scale basins in the future. We will seek to support a method of catchment systems engineering that holds water back across the whole landscape as a major opportunity to management water

  19. Flooding and Mental Health: A Systematic Mapping Review

    PubMed Central

    Fernandez, Ana; Black, John; Jones, Mairwen; Wilson, Leigh; Salvador-Carulla, Luis; Astell-Burt, Thomas; Black, Deborah

    2015-01-01

    Background Floods are the most common type of global natural disaster. Floods have a negative impact on mental health. Comprehensive evaluation and review of the literature are lacking. Objective To systematically map and review available scientific evidence on mental health impacts of floods caused by extended periods of heavy rain in river catchments. Methods We performed a systematic mapping review of published scientific literature in five languages for mixed studies on floods and mental health. PUBMED and Web of Science were searched to identify all relevant articles from 1994 to May 2014 (no restrictions). Results The electronic search strategy identified 1331 potentially relevant papers. Finally, 83 papers met the inclusion criteria. Four broad areas are identified: i) the main mental health disorders—post-traumatic stress disorder, depression and anxiety; ii] the factors associated with mental health among those affected by floods; iii) the narratives associated with flooding, which focuses on the long-term impacts of flooding on mental health as a consequence of the secondary stressors; and iv) the management actions identified. The quantitative and qualitative studies have consistent findings. However, very few studies have used mixed methods to quantify the size of the mental health burden as well as exploration of in-depth narratives. Methodological limitations include control of potential confounders and short-term follow up. Limitations Floods following extreme events were excluded from our review. Conclusions Although the level of exposure to floods has been systematically associated with mental health problems, the paucity of longitudinal studies and lack of confounding controls precludes strong conclusions. Implications We recommend that future research in this area include mixed-method studies that are purposefully designed, using more rigorous methods. Studies should also focus on vulnerable groups and include analyses of policy and practical

  20. Generating precipitation ensembles for flood alert and risk management

    NASA Astrophysics Data System (ADS)

    Caseri, Angelica; Javelle, Pierre; Ramos, Maria-Helena; Leblois, Etienne

    2015-04-01

    Floods represent one of the major natural disasters that are often responsible for fatalities and economic losses. Flood warning systems are needed to anticipate the arrival of severe events and mitigate their impacts. Flood alerts are particularly important for risk management and response in the nowcasting of flash floods. In this case, precipitation fields observed in real time play a crucial role and observational uncertainties must be taken into account. In this study, we investigate the potential of a framework which combines a geostatistical conditional simulation method that considers information from precipitation radar and rain gauges, and a distributed rainfall-runoff model to generate an ensemble of precipitation fields and produce probabilistic flood alert maps. We adapted the simulation method proposed by Leblois and Creutin (2013), based on the Turning Band Method (TBM) and a conditional simulation approach, to consider the temporal and spatial characteristics of radar data and rain gauge measurements altogether and generate precipitation ensembles. The AIGA system developed by Irstea and Météo-France for predicting flash floods in the French Mediterranean region (Javelle et al., 2014) was used to transform the generated precipitation ensembles into ensembles of discharge at the outlet of the studied catchments. Finally, discharge ensembles were translated into maps providing information on the probability of exceeding a given flood threshold. A total of 19 events that occurred between 2009 and 2013 in the Var region (southeastern France), a region prone to flash floods, was used to illustrate the approach. Results show that the proposed method is able to simulate an ensemble of realistic precipitation fields and capture peak flows of flash floods. This was shown to be particularly useful at ungauged catchments, where uncertainties on the evaluation of flood peaks are high. The results obtained also show that the approach developed can be used to

  1. Flood Hazards - A National Threat

    USGS Publications Warehouse

    ,

    2006-01-01

    In the late summer of 2005, the remarkable flooding brought by Hurricane Katrina, which caused more than $200 billion in losses, constituted the costliest natural disaster in U.S. history. However, even in typical years, flooding causes billions of dollars in damage and threatens lives and property in every State. Natural processes, such as hurricanes, weather systems, and snowmelt, can cause floods. Failure of levees and dams and inadequate drainage in urban areas can also result in flooding. On average, floods kill about 140 people each year and cause $6 billion in property damage. Although loss of life to floods during the past half-century has declined, mostly because of improved warning systems, economic losses have continued to rise due to increased urbanization and coastal development.

  2. Alkaline Waterflooding Demonstration Project, Ranger Zone, Long Beach Unit, Wilmington Field, California. Fourth annual report, June 1979-May 1980. Volume 1. Body of report

    SciTech Connect

    Carmichael, J.D.

    1981-03-01

    Comparative core flood testing of preserved Ranger Zone core rock samples was completed; the past year's results were discouraging. In contrast, Ranger sand pack alkaline flood tests gave encouraging results. New insights were gained on in-situ alkaline consumption. Dehydration of sodium orthosilicate water-produced water-crude oil systems does not appear to create any operational problems. The alkaline injection facilities were completed and placed in operation on March 27, 1980. The preflush injection, which was composed of 11.5 million barrels of softened fresh water with an average 0.96% of salt, was completed at that time. The total preflush amounted to approximately 10 pore volume percent. The 0.4% sodium orthosilicate-1.0% salt-soft fresh water injection started at the end of the preflush. A loss of injectivity began at the same time as alkaline injection, which is attributed to divalent ions in the salt brine. Salt was removed temporarily from the system on May 30, 1980. No injection wells were redrilled during the year. Other than plug back of one injector and one producer because of bad liners and repair of one injection well with an inner liner, well work was routine and minor in nature. Dual injection strings were transferred from one well to another. One of the injection wells whose injectivity was damaged by the alkaline-salt injection was successfully stimulated. The pilot was self certified under the tertiary incentive program and cost recoupments obtained. Preparations are underway for making the alkaline flood simulator performance prediction for the pilot. Laboratory testing is actively underway in an attempt to quickly find a remedy for the floc formation that occurs on mixing the salt brine and dilute alkaline solution. Volume 1 describes the activities for this period. Volumes 2 and 3 contain appendices.

  3. 76 FR 16722 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    .... Specifically, it addresses the following flooding sources: Deener Creek, Gum Creek Flooding Effects, Little Red... following flooding sources: Gum Creek Flooding Effects, Little Red River, Overflow Creek Tributary, Red Cut... Rocky Branch confluence. Gum Creek Flooding Effects Just upstream of None +213 Unincorporated Areas...

  4. 77 FR 29678 - Proposed Flood Hazard Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-18

    ... FEMA-2012-0003: Internal Agency Docket No. FEMA-B-1251] Proposed Flood Hazard Determinations AGENCY... flood hazard determinations, which may include additions or modifications of any Base Flood Elevation (BFE), base flood depth, Special Flood Hazard Area (SFHA) boundary or zone designation, or...

  5. Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS

    NASA Astrophysics Data System (ADS)

    Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun

    2015-12-01

    Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.

  6. A vulnerability function for Mediterranean flash flood risk assessment

    NASA Astrophysics Data System (ADS)

    Karagiorgos, Konstantinos; Hübl, Johannes; Thaler, Thomas; Fuchs, Sven

    2014-05-01

    Flood risk is a major type of environmental hazard jeopardizing human development, and is usually defined as a functional relation between the hazard, such as the physical and statistical aspects of flooding (e.g. return period of a certain flow height, spatial extend of inundation), and the associated vulnerability, i.e. the exposure of people and assets to floods and the susceptibility of the elements at risk to suffer from flood damage. The assessment of vulnerability -from the quantitative point of view- expresses vulnerability as the expected degree of loss for a given element at risk as a consequence of a certain event. It is ranges on a scale from 0 (no damage) to 1 (complete destruction) and focuses on direct flood loss which is estimated by damage or loss functions. A methodology for the development of a vulnerability curve for Mediterranean flash flood risk assessment is presented. This curve is based on a relationship between the intensity of the process and the associated degree of loss of elements at risk. The computation procedure is based on a method combining spatially explicit loss data, data on the value of exposed elements at risk and data on flood intensities on an individual building scale (local scale). The developed methodology is applied for the district of East Attica in Greece, a Mediterranean region influenced by mountain and coastal characteristics of land development. The aim of the study is to provide a valuable tool for the local authorities and the decision makers, a necessary implementation of flood risk management emerging from the requirements laid down in the European Flood Directive, as well as for an assessment of potential costs emerging from future flood events in order to protect individual households.

  7. Flood Water Level Mapping and Prediction Due to Dam Failures

    NASA Astrophysics Data System (ADS)

    Musa, S.; Adnan, M. S.; Ahmad, N. A.; Ayob, S.

    2016-07-01

    Sembrong dam has undergone overflow failure. Flooding has been reported to hit the town, covering an area of up to Parit Raja, located in the district of Batu Pahat. This study aims to identify the areas that will be affected by flood in the event of a dam failure in Sembrong Dam, Kluang, Johor at a maximum level. To grasp the extent, the flood inundation maps have been generated by using the InfoWorks ICM and GIS software. By using these maps, information such as the depth and extent of floods can be identified the main ares flooded. The flood map was created starting with the collection of relevant data such as measuring the depth of the river and a maximum flow rate for Sembrong Dam. The data were obtained from the Drainage and Irrigation Department Malaysia and the Department of Survey and Mapping and HLA Associates Sdn. Bhd. Then, the data were analyzed according to the established Info Works ICM method. The results found that the flooded area were listed at Sri Lalang, Parit Sagil, Parit Sonto, Sri Paya, Parit Raja, Parit Sempadan, Talang Bunut, Asam Bubok, Tanjung Sembrong, Sungai Rambut and Parit Haji Talib. Flood depth obtained for the related area started from 0.5 m up to 1.2 m. As a conclusion, the flood emanating from this study include the area around the town of Ayer Hitam up to Parit Raja approximately of more than 20 km distance. This may give bad implication to residents around these areas. In future studies, other rivers such as Sungai Batu Pahat should be considered for this study to predict and reduce the yearly flood victims for this area.

  8. The effects of floodplain forest restoration and logjams on flood risk and flood hydrology

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Sear, David A.; Sykes, Tim; Odoni, Nicholas

    2015-04-01

    Flooding is the most common natural catastrophe, accounting for around half of all natural disaster related deaths and causing economic losses in Europe estimated at over € 2bn per year. In addition flooding is expected to increase in magnitude and frequency with climate change, effectively shortening the return period for a given magnitude flood. Increasing the height and extent of hard engineered defences in response to increased risk is both unsustainable and undesirable. Thus alternative approaches to flood mitigation are needed such as harnessing vegetation processes to slow the passage of flood waves and increase local flood storage. However, our understanding of these effects at the catchment scale is limited. In this presentation we demonstrate the effects of two river restoration approaches upon catchment scale flood hydrology. The addition of large wood to river channels during river restoration projects is a popular method of attempting to improve physical and biological conditions in degraded river systems. Projects utilising large wood can involve the installation of engineered logjams (ELJs), the planting and enhancement of riparian forests, or a combination of both. Altering the wood loading of a channel through installation of ELJs and increasing floodplain surface complexity through encouraging mature woodland could be expected to increase the local hydraulic resistance, increasing the timing and duration of overbank events locally and therefore increasing the travel time of a flood wave through a reach. This reach-scale effect has been documented in models and the field; however the impacts of these local changes at a catchment scale remains to be illustrated. Furthermore there is limited knowledge of how changing successional stages of a restored riparian forest through time may affect its influence on hydromorphic processes. We present results of a novel paired numerical modelling study. We model changes in flood hydrology based on a 98km

  9. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  10. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  11. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  12. Flood hazard maps from SAR data and global hydrodynamic models

    NASA Astrophysics Data System (ADS)

    Giustarini, Laura; Chini, Marci; Hostache, Renaud; Matgen, Patrick; Pappenberger, Florian; Bally, Phillippe

    2015-04-01

    With flood consequences likely to amplify because of growing population and ongoing accumulation of assets in flood-prone areas, global flood hazard and risk maps are greatly needed for improving flood preparedness at large scale. At the same time, with the rapidly growing archives of SAR images of floods, there is a high potential of making use of these images for global and regional flood management. In this framework, an original method is presented to integrate global flood inundation modeling and microwave remote sensing. It takes advantage of the combination of the time and space continuity of a global inundation model with the high spatial resolution of satellite observations. The availability of model simulations over a long time period offers the opportunity to estimate flood non-exceedance probabilities in a robust way. The probabilities can later be attributed to historical satellite observations. SAR-derived flood extent maps with their associated non-exceedance probabilities are then combined to generate flood hazard maps with a spatial resolution equal to that of the satellite images, which is most of the time higher than that of a global inundation model. The method can be applied to any area of interest in the world, provided that a sufficient number of relevant remote sensing images are available. We applied the method on the Severn River (UK) and on the Zambezi River (Mozambique), where large archives of Envisat flood images can be exploited. The global ECMWF flood inundation model is considered for computing the statistics of extreme events. A comparison with flood hazard maps estimated with in situ measured discharge is carried out. An additional analysis has been performed on the Severn River, using high resolution SAR data from the COSMO-SkyMed SAR constellation, acquired for a single flood event (one flood map per day between 27/11/2012 and 4/12/2012). The results showed that it is vital to observe the peak of the flood. However, a single

  13. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed