Sample records for alkaline hydrothermal solutions

  1. Evaluating Growth of Zeolites on Fly Ash in Hydro-Thermally Heated Low Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Jha, Bhagwanjee; Singh, D. N.

    2017-12-01

    Fly ash has been well established materials for synthesis of zeolites, under hydrothermally heated aqueous NaOH solution. Efficacy of such technique is reported to be improved when high molarity of NaOH is used. Consequently, highly alkaline waste solution, as by-product, is generally disposed of in the surrounding, which may contaminate the environment. In this context, less alkaline NaOH solution may become a safer option, which has not been tried in the past as per the literature. With this in view, the present study demonstrates effectiveness of the 0.5 M NaOH solution and critically monitors transition on the fly ash after hydrothermal treatment. As an enhancement over previous researchers, such activation of the fly ash finally results in remarkable morphological and mineralogical growth on the bulk material (the residue), which comprises of new nano-sized crystals (the zeolites Na-P1 and natrolite), after 24 h of activation of the fly ash.

  2. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H2 and CO2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  3. Prebiotic Synthesis of Glycine from Ethanolamine in Simulated Archean Alkaline Hydrothermal Vents.

    PubMed

    Zhang, Xianlong; Tian, Ge; Gao, Jing; Han, Mei; Su, Rui; Wang, Yanxiang; Feng, Shouhua

    2017-12-01

    Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. In recent years, a novel hydrothermal system in Archean subseafloor has been proposed. In this model, highly alkaline and high temperature hydrothermal fluids were generated in basalt-hosted hydrothermal vents, where H 2 and CO 2 could be abundantly provided. These extreme conditions could have played an irreplaceable role in the early evolution of life. Nevertheless, sufficient information has not yet been obtained for the abiotic synthesis of amino acids, which are indispensable components of life, at high temperature and alkaline condition. This study aims to propose a new method for the synthesis of glycine in simulated Archean submarine alkaline vent systems. We investigated the formation of glycine from ethanolamine under conditions of high temperature (80-160 °C) and highly alkaline solutions (pH = 9.70). Experiments were performed in an anaerobic environment under mild pressure (0.1-8.0 MPa) at the same time. The results suggested that the formation of glycine from ethanolamine occurred rapidly and efficiently in the presence of metal powders, and was favored by high temperatures and high pressures. The experiment provides a new pathway for prebiotic glycine formation and points out the phenomenal influence of high-temperature alkaline hydrothermal vents in origin of life in the early ocean.

  4. Hydrothermal Alkalinity in Central Nepal Rivers

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Derry, L. A.

    2002-12-01

    Numerous hot springs flow along the base of the Himalayan front, at or near the Main Central Thrust, in the Narayani drainage of central Nepal. The springs are found in a narrow zone characterized by rapid uplift and high incision rates. In this zone, hot rocks are brought to the near-surface where they interact with meteoric waters to produce the hydrothermal system. Water-rock interaction produces springs with high solute loads (TDS up to 8000 mg/L.) The springs drive significant chemical anomalies (e.g. Cl, Na, K and Ge) in the rivers that flow through the hydrothermal zone In order to quantify the impact the springs have on the river chemistry, the spring discharge must be estimated. Direct measurement of the spring discharge is difficult, as the springs often flow within the stream bed itself or are inaccessible. We take advantage of the wide disparity in stream vs. hydrothermal [Ge] to calculate spring discharge by chemical mass balance. The hot springs have [Ge] up to 684 nmol/kg and Ge/Si ratios from 200 to 1000 μmol/mol while river waters have [Ge] near 0.15 nmol/kg and Ge/Si ratios near 0.5 μmol/mol, typical of non-polluted rivers. The discharge calculated from the Ge mass balance for individual springs ranges from 0.03 x 106 to 5.6 x 106 m3/yr, and accounts for a small percentage of the total river discharge (0.03% to 1.9%). The hot spring discharge for all of central Nepal is around 1.5x108 m3/yr, 0.5% of the Narayani river discharge. Distinguishing between silicate and carbonate sources is important to assessing the role of weathering on atmospheric CO2 levels and the relative contributions of silicate and carbonate alkalinity in central Nepal rivers are still not well resolved. The hot springs derive up to 100% of their alkalinity from silicate sources. Using the discharge estimates for the springs, we find that the sum of the silicate alkalinity fluxes from all the spring systems is 2.8 x 108 mol/yr. This implies that the hot springs deliver around

  5. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  6. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  7. The origin of life in alkaline hydrothermal vents

    NASA Astrophysics Data System (ADS)

    Sojo, V.; Herschy, B.; Whicher, A.; Camprubí, E.; Lane, N.

    2016-12-01

    The origin of life remains one of Science's greatest unresolved questions. The answer will no doubt involve almost all the basic disciplines, including Physics, Chemistry, Astronomy, Geology, and Biology. Chiefly, it is the link between the latter two that must be elucidated: how geochemistry gave rise to biochemistry. Serpentinizing systems such as alkaline hydrothermal vents offer the most robust combination of conditions to have hosted the origin of life on the early Earth, while bearing many parallels to modern living cells. Stark gradients of concentration, pH, oxidation/reduction, and temperature provided the ability to synthesise and concentrate organic products, drive polymerisation reactions, and develop an autotrophic lifestyle independent of foreign sources of organics. In the oxygen-depleted waters of the Hadean, alkaline vents would have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with the relatively acidic CO2-rich waters of the ocean, through interconnected micropores made of thin inorganic walls containing catalytic Fe(Ni)S minerals. Perhaps not coincidentally, the unit cells of these Fe(Ni)S minerals closely resemble the active sites of crucial ancestral bioenergetic enzymes. Meanwhile, differences in pH across the thin barriers produced natural proton gradients similar to those used for carbon fixation in modern archaea and bacteria. At the earliest stages, the problem of the origin of life is the problem of the origin of carbon fixation. I will discuss work over the last decade that suggests several possible hypotheses for how simple one-carbon molecules could have given rise to more complex organics, particularly within a serpentinizing alkaline hydrothermal vent. I will discuss the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria, thought to be the earliest representatives of each domain, to propose a possible ancestral mechanism of CO2 reduction in

  8. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  9. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    PubMed

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea.

  11. From Geochemistry to Biochemistry: Simulating Prebiotic Chemistry Driven by Geochemical Gradients in Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Barge, Laurie

    2016-07-01

    Planetary water-rock interfaces generate energy in the form of redox, pH, and thermal gradients, and these disequilibria are particularly focused in hydrothermal vent systems where the reducing, heated hydrothermal fluid feeds back into the more oxidizing ocean. Alkaline hydrothermal vents have been proposed as a likely location for the origin of life on the early Earth due to various factors: including the hydrothermal pH / Eh gradients that resemble the ubiquitous electrical / proton gradients in biology, the catalytic hydrothermal precipitates that resemble inorganic catalysts in enzymes, and the presence of electron donors and acceptors in hydrothermal systems (e.g. H2 + CH4 and CO2) that are thought to have been utilized in the earliest metabolisms. Of particular importance for the emergence of metabolism are the mineral "chimneys" that precipitate at the vent fluid / seawater interface. Hydrothermal chimneys are flow-through chemical reactors that form porous and permeable inorganic membranes transecting geochemical gradients; in some ways similar to biological membranes that transect proton / ion gradients and harness these disequilibria to drive metabolism. These emergent chimney structures in the far-from-equilibrium system of the alkaline vent have many properties of interest to the origin of life that can be simulated in the laboratory: for example, they can generate electrical energy and drive redox reactions, and produce catalytic minerals (in particular the metal sulfides and iron oxyhydroxides - "green rust") that can facilitate chemical reactions towards proto-metabolic cycles and biosynthesis. Many of the factors prompting interest in alkaline hydrothermal vents on Earth may also have been present on early Mars, or even presently within icy worlds such as Europa or Enceladus - thus, understanding the disequilibria and resulting prebiotic chemistry in these systems can be of great use in assessing the potential for other environments in the Solar

  12. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    PubMed

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one

  13. Alkaline Hydrothermal Vents as Electrochemical Reactors Driving an Auto-Trophic Origin of Life

    NASA Astrophysics Data System (ADS)

    Camprubi, E.; Lane, N.

    2017-07-01

    We report the reduction of CO2 to formaldehyde under simulated alkaline hydrothermal conditions. Formaldehyde is transformed into relevant sugars via the formose reaction. Acetyl phosphate can also be synthesised and phosphorylates organic molecules.

  14. An Approach to Mimicking Abiotic Hydrogenation of Carbon Dioxide in Alkaline Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Wade, L. A.; Fraser, S.; Haile, S.; Collier, P.

    2010-04-01

    A microfludic approach is considered to determine whether the natural proton-motive and chemiosmotic forces seen in alkaline hydrothermal vents were purely coincidental or if they had a real bearing on how life emerged.

  15. Technetium recovery from high alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  16. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  17. n-Type Conductivity of Cu2O Thin Film Prepared in Basic Aqueous Solution Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel; Miclau, Nicolae; Miclau, Marinela

    2018-03-01

    We report for the first time in situ hydrothermal synthesis of n-type Cu2O thin film using strong alkaline solution. The use of copper foil as substrate and precursor material, low synthesis temperature and short reaction time represent the arguments of a new, simple, inexpensive and high field synthesis method for the preparation of n-type Cu2O thin film. The donor concentration of n-type Cu2O thin film obtained at 2 h of reaction time has increased two orders of magnitude than previous reported values. We have demonstrated n-type conduction in Cu2O thin film prepared in strong alkaline solution, in the contradiction with the previous works. Based on experimental results, the synthesis mechanism and the origin of n-type photo-responsive behavior of Cu2O thin film were discussed. We have proposed that the unexpected n-type character could be explained by H doping of Cu2O thin film in during of the hydrothermal synthesis that caused the p-to-n conductivity-type conversion. Also, this work raises new questions about the origin of n-type conduction in Cu2O thin film, the influence of the synthesis method on the nature of the intrinsic defects and the electrical conduction behavior.

  18. Fabrication of hydroxyapatite and TiO 2 nanorods on microarc-oxidized titanium surface using hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Song, Ho-Jun; Kim, Ji-Woo; Kook, Min-Suk; Moon, Won-Jin; Park, Yeong-Joon

    2010-09-01

    AC-type microarc oxidation (MAO) and hydrothermal treatment techniques were used to enhance the bioactivity of commercially pure titanium (CP-Ti). The porous TiO 2 layer fabricated by the MAO treatment had a dominant anatase structure and contained Ca and P ions. The MAO-treated specimens were treated hydrothermally to form HAp crystallites on the titanium oxide layer in an alkaline aqueous solution (OH-solution) or phosphorous-containing alkaline solution (POH-solution). A small number of micro-sized hydroxyapatite (HAp) crystallites and a thin layer composed of nano-sized HAps were formed on the Ti-MAO-OH group treated hydrothermally in an OH-solution, whereas a large number of micro-sized HAp crystallites and dense anatase TiO 2 nanorods were formed on the Ti-MAO-POH group treated hydrothermally in a POH-solution. The layer of bone-like apatite that formed on the surface of the POH-treated sample after soaking in a modified simulated body fluid was thicker than that on the OH-treated samples.

  19. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    PubMed

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys.

  20. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Ji-Lu, E-mail: triace@163.com; Zhu, Ming-Qiang; Wu, Hai-tang

    Highlights: • Swine carcasses can be converted to bio-oil by alkaline hydrothermal liquefaction. • It seems that the use of the bio-oil for heat or CHP is technically suitable. • Some valuable chemicals were found in the bio-oils. • The bio-oil and the solid residue constituted an energy efficiency of 93.63% for the feedstock. • The solid residue can be used as a soil amendment, to sequester C and for preparing activated carbon. - Abstract: It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, themore » effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2 wt% bio-oil, having a high heating value of 32.35 MJ/kg and a viscosity of 305cp, and 22 wt% solid residue were realized at a liquefaction temperature of 250 °C, a reaction time of 60 min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels.« less

  1. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edalati, Khatereh, E-mail: kh_ed834@stu.um.ac.ir; Shakiba, Atefeh; Vahdati-Khaki, Jalil

    2016-02-15

    Highlights: • We synthesized ZnO nanorods by a simple hydrothermal process at 60 °C. • Effects of zinc salt concentration, solvent and alkaline mineralizer was studied. • Increasing concentration of zinc salt changed ZnO nucleation system. • NaOH yielded better results in the production of nanorods in both solvents. • Methanol performed better in the formation of nanorods using the two mineralizers. - Abstract: ZnO has been produced using various methods in the solid, gaseous, and liquid states, and the hydrothermal synthesis at low temperatures has been shown to be an environmentally-friendly one. The current work utilizes a low reactionmore » temperature (60 °C) for the simple hydrothermal synthesis of ZnO nanorod morphologies. Furthermore, the effects of zinc salt concentration, solvent type and alkaline mineralizer type on ZnO nanorods synthesis at a low reaction temperature by hydrothermal processing was studied. Obtained samples were analyzed using X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). Increasing the concentration of the starting zinc salt from 0.02 to 0.2 M changed ZnO nucleation system from the homogeneous to the heterogeneous state. The XRD results confirmed the production hexagonal ZnO nanostructures of with a crystallite size of 40.4 nm. Varying the experimental parameters (mineralizer and solvent) yielded ZnO nanorods with diameters ranging from 90–250 nm and lengths of 1–2 μm.« less

  2. Removal of plutonium and americium from alkaline waste solutions

    DOEpatents

    Schulz, Wallace W.

    1979-01-01

    High salt content, alkaline waste solutions containing plutonium and americium are contacted with a sodium titanate compound to effect removal of the plutonium and americium from the alkaline waste solution onto the sodium titanate and provide an effluent having a radiation level of less than 10 nCi per gram alpha emitters.

  3. Conventional hydrothermal synthesis of Na-A zeolite from cupola slag and aluminum sludge.

    PubMed

    Anuwattana, Rewadee; Khummongkol, Pojanie

    2009-07-15

    Na-A type zeolites were prepared from two industrial wastes: the solid by-product of cupola slag and aluminum sludge from an aluminum plating plant. Two preparation methods using the same starting material compositions were carried out. In the first method, alkaline fusion was introduced, followed by the hydrothermal treatment to obtain sodium aluminosilicate which was then crystallized in NaOH solution under the condition of 90+/-3 degrees C for 1-9h with different H(2)O/SiO2 ratios. The result shows that higher H(2)O/SiO2 ratio increases the rate of crystallization. The largest amount of crystallinity for Na-A was found at 3h. In the second method, alkaline hydrothermal treatment without fusion was carried out in the same condition as the first method. No Na-A zeolite was obtained by this method. The changes of the dissolved amounts of Si(4+) and Al(3+) in 3M NaOH were investigated during the hydrothermal reaction.

  4. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  5. Electrochemical Behavior of Sulfur in Aqueous Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Mamyrbekova, Aigul; Mamitova, A. D.; Mamyrbekova, Aizhan

    2018-03-01

    The kinetics and mechanism of the electrode oxidation-reduction of sulfur on an electrically conductive sulfur-graphite electrode in an alkaline solution was studied by the potentiodynamic method. To examine the mechanism of electrode processes occurring during AC polarization on a sulfur-graphite electrode, the cyclic polarization in both directions and anodic polarization curves were recorded. The kinetic parameters: charge transfer coefficients (α), diffusion coefficients ( D), heterogeneous rate constants of electrode process ( k s), and effective activation energies of the process ( E a) were calculated from the results of polarization measurements. An analysis of the results and calculated kinetic parameters of electrode processes showed that discharge ionization of sulfur in alkaline solutions occurs as a sequence of two stages and is a quasireversible process.

  6. Enhancing boron rejection in FO using alkaline draw solutions.

    PubMed

    Wang, Yi-Ning; Li, Weiyi; Wang, Rong; Tang, Chuyang Y

    2017-07-01

    This study provides a novel method to enhance boron removal in a forward osmosis (FO) process. It utilizes the reverse solute diffusion (RSD) of ions from alkaline draw solutions (DSs) and the concentration polarization of the hydroxyl ions to create a highly alkaline environment near the membrane active surface. The results show that boron rejection can be significantly enhanced by increasing the pH of NaCl DS to 12.5 in the active-layer-facing-feed-solution (AL-FS) orientation. The effect of RSD enhanced boron rejection was further promoted in the presence of concentration polarization (e.g., in the active-layer-facing-draw-solution (AL-DS) orientation). The current study opens a new dimension for controlling contaminant removal by FO using tailored DS chemistry, where the RSD-induced localized water chemistry change is taken advantage in contrast to the conventional method of chemical dosing to the bulk feed water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Mechanism of alcohol-enhanced lucigenin chemiluminescence in alkaline solution.

    PubMed

    Chi, Quan; Chen, Wanying; He, Zhike

    2015-11-01

    The chemiluminescence (CL) of lucigenin (Luc(2+)) can be enhanced by different alcohols in alkaline solution. The effect of different fatty alcohols on the CL of lucigenin was related to the carbon chain length and the number of hydroxyl groups. Glycerol provides the greatest enhancement. UV/Vis absorption spectra and fluorescence spectra showed that N-methylacridone (NMA) was produced in the CL reaction in the presence of different alcohols. The peak of the CL spectrum was located at 470 nm in all cases, indicating that the luminophore was always the excited-state NMA. The quenching of lucigenin CL by superoxide dismutase (SOD) and the electron spin resonance (ESR) results with the spin trap of 5,5-dimethyl-1-pyrroline N-oxide (DMPO) demonstrated that superoxide anions (O2 (•-)) were generated from dissolved oxygen in the CL reaction and that glycerol and dihydroxyacetone (DHA) can promote O2 (•-) production by the reduction of dissolved oxygen in alkaline solution. It was assumed that the enhancement provided by different alcohols was related to the solvent effect and reducing capacity. Glycerol and DHA can also reduce Luc(2+) into lucigenin cation radicals (Luc(•+) ), which react with O2 (•-) to produce CL, and glycerol can slowly transform into DHA, which is oxidized quickly in alkaline solution. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Kinetics of the Fading of Phenolphthalein in Alkaline Solution.

    ERIC Educational Resources Information Center

    Nicholson, Lois

    1989-01-01

    Described is an experiment which illustrates pseudo-first-order kinetics in the fading of a common indicator in an alkaline solution. Included are background information, details of materials used, laboratory procedures, and sample results. (CW)

  9. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  10. In vitro biocompatibility of magnesium-incorporated submicro-porous titanium oxide surface produced by hydrothermal treatment

    NASA Astrophysics Data System (ADS)

    Park, Jin-Woo; Kim, Youn-Jeong; Jang, Je-Hee; An, Chang-Hyeon

    2010-11-01

    This study investigated the surface characteristics and in vitro biocompatibility of titanium (Ti) oxide surface incorporating magnesium ions (Mg), produced by hydrothermal treatment using an alkaline Mg-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and optical profilometry. Mouse calvaria-derived osteoblastic cell (MC3T3-E1) attachment, spreading, proliferation, alkaline phosphatase (ALP) activity, and osteoblastic gene expression on Mg-containing surfaces were compared with untreated Ti surfaces. Hydrothermal treatment resulted in Mg-incorporated Ti oxide layer with submicro-porous surface structures approximately 2 μm in thickness. ICP-AES analysis revealed Mg ions release from treated surfaces into the solution. The Mg-incorporated surface displayed significantly increased cellular attachment and ALP activity compared with untreated surface ( p < 0.05), and supported better cell spreading. Real-time polymerase chain reaction analysis showed notably higher mRNA expression of the osteoblast transcription factor genes (Dlx5, Runx2) and the osteoblast phenotype genes (ALP, bone sialoprotein and osteocalcin) in cells grown on the Mg-incorporated surfaces than untreated surfaces. These results demonstrate that the Mg-incorporated submicro-porous Ti oxide surface produced by hydrothermal treatment may improve implant osseointegration by enhancing the attachment, spreading and differentiation of osteoblastic cells.

  11. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil.

    PubMed

    Zheng, Ji-Lu; Zhu, Ming-Qiang; Wu, Hai-tang

    2015-09-01

    It is imperative that swine carcasses are disposed of safely, practically and economically. Alkaline hydrothermal liquefaction of swine carcasses to bio-oil was performed. Firstly, the effects of temperature, reaction time and pH value on the yield of each liquefaction product were determined. Secondly, liquefaction products, including bio-oil and solid residue, were characterized. Finally, the energy recovery ratio (ERR), which was defined as the energy of the resultant products compared to the energy input of the material, was investigated. Our experiment shows that reaction time had certain influence on the yield of liquefaction products, but temperature and pH value had bigger influence on the yield of liquefaction products. Yields of 62.2wt% bio-oil, having a high heating value of 32.35MJ/kg and a viscosity of 305cp, and 22wt% solid residue were realized at a liquefaction temperature of 250°C, a reaction time of 60min and a pH value of 9.0. The bio-oil contained up to hundreds of different chemical components that may be classified according to functional groups. Typical compound classes in the bio-oil were hydrocarbons, organic acids, esters, ketones and heterocyclics. The energy recovery ratio (ERR) reached 93.63%. The bio-oil is expected to contribute to fossil fuel replacement in stationary applications, including boilers and furnaces, and upgrading processes for the bio-oil may be used to obtain liquid transport fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Assessment of integrated process based on hydrothermal and alkaline treatments for enzymatic saccharification of sweet sorghum stems.

    PubMed

    Sun, Shao-Long; Sun, Shao-Ni; Wen, Jia-Long; Zhang, Xue-Ming; Peng, Feng; Sun, Run-Cang

    2015-01-01

    In this study, sweet sorghum stem was subjected to hydrothermal pretreatment (HTP) and alkaline post-treatment to enhance its saccharification ratio by reducing its recalcitrance. The results showed that the HTP (110-210°C, 0.5-2.0h) significantly degraded hemicelluloses, and the pretreatment at the temperature higher than 190°C led to the partial degradation of the cellulose. As compared to the sole HTP, the integrated process removed most of lignin and hemicelluloses, which incurred a higher cellulose saccharification ratio. Under an optimum condition evaluated (HTP at 170°C for 0.5h and subsequent 2% NaOH treatment), 77.5% saccharification ratio was achieved, which was 1.8, 2.0 and 5.5 times as compared to the only HTP pretreated substrates, alkaline treated substrates alone and the raw material without pretreatment, respectively. Clearly, the integrated process can be considered as a promising approach to achieve an efficient conversion of lignocellulose to fermentable glucose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Alkaline hydrothermal conversion of fly ash filtrates into zeolites 2: utilization in wastewater treatment.

    PubMed

    Somerset, Vernon; Petrik, Leslie; Iwuoha, Emmanuel

    2005-01-01

    Filtrates were collected using a codisposal reaction wherein fly ash was reacted with acid mine drainage. These codisposal filtrates were then analyzed by X-ray Fluorescence spectrometry for quantitative determination of the SiO2 and Al2O3 content. Alkaline hydrothermal zeolite synthesis was then applied to the filtrates to convert the fly ash material into zeolites. The zeolites formed under the experimental conditions were faujasite, sodalite, and zeolite A. The use of the fly ash-derived zeolites and a commercial zeolite was explored in wastewater decontamination experiments as it was applied to acid mine drainage in different dosages. The concentrations of Ni, Zn, Cd, As, and Pb metal ions in the treated wastewater were investigated. The results of the treatment of the acid mine drainage with the prepared fly ash zeolites showed that the concentrations of Ni, Zn, Cd, and Hg were decreased as the zeolite dosages of the fly ash zeolite (FAZ1) increased.

  14. Structural elucidation of sorghum lignins from an integrated biorefinery process based on hydrothermal and alkaline treatments.

    PubMed

    Sun, Shao-Long; Wen, Jia-Long; Ma, Ming-Guo; Sun, Run-Cang

    2014-08-13

    An integrated process based on hydrothermal pretreatment (HTP) (i.e., 110-230 °C, 0.5-2.0 h) and alkaline post-treatment (2% NaOH at 90 °C for 2.0 h) has been performed for the production of xylooligosaccharide, lignin, and digestible substrate from sweet sorghum stems. The yield, purity, dissociation mechanisms, structural features, and structural transformations of alkali lignins obtained from the integrated process were investigated. It was found that the HTP process facilitated the subsequent alkaline delignification, releasing lignin with the highest yield (79.3%) and purity from the HTP residue obtained at 190 °C for 0.5 h. All of the results indicated that the cleavage of the β-O-4 linkages and degradation of β-β and β-5 linkages occurred under the harsh HTP conditions. Depolymerization and condensation reactions simultaneously occurred at higher temperatures (≥ 170 °C). Moreover, the thermostability of lignin was positively related to its molecular weight, but was also affected by the inherent structures, such as β-O-4 linkages and condensed units. These findings will enhance the understanding of structural transformations of the lignins during the integrated process and maximize the potential utilizations of the lignins in a current biorefinery process.

  15. Spontaneous Ignition of Hydrothermal Flames in Supercritical Ethanol Water Solutions

    NASA Technical Reports Server (NTRS)

    Hicks, Michael C.; Hegde, Uday G.; Kojima, Jun J.

    2017-01-01

    Results are reported from recent tests where hydrothermal flames spontaneously ignited in a Supercritical Water Oxidation (SCWO) Test Cell. Hydrothermal flames are generally categorized as flames that occur when appropriate concentrations of fuel and oxidizer are present in supercritical water (SCW); i.e., water at conditions above its critical point (218 atm and 374 C). A co-flow injector was used to inject fuel, comprising an aqueous solution of 30-vol to 50-vol ethanol, and air into a reactor held at constant pressure and filled with supercritical water at approximately 240 atm and 425 C. Hydrothermal flames auto-ignited and quickly stabilized as either laminar or turbulent diffusion flames, depending on the injection velocities and test cell conditions. Two orthogonal views, one of which provided a backlit shadowgraphic image, provided visual observations. Optical emission measurements of the steady state flame were made over a spectral range spanning the ultraviolet (UV) to the near infrared (NIR) using a high-resolution, high-dynamic-range spectrometer. Depending on the fuel air flow ratios varying degrees of sooting were observed and are qualitatively compared using light absorption comparisons from backlit images.

  16. A Hydrothermal Origin for the Sulfate-rich Ocean of Europa

    NASA Technical Reports Server (NTRS)

    Zolotov, M. Yu.; Shock, E. L.

    2001-01-01

    Thermodynamic calculations show that formation of a sulfate-rich ocean on Europa might require high-temperature alkaline hydrothermal processes in the oxidized silicate mantle. The ocean on Europa could be thought of as a cooled hydrothermal fluid. Additional information is contained in the original extended abstract.

  17. Calixarene crown ether solvent composition and use thereof for extraction of cesium from alkaline waste solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.; Presley, Derek J.

    2001-01-01

    A solvent composition and corresponding method for extracting cesium (Cs) from aqueous neutral and alkaline solutions containing Cs and perhaps other competing metal ions is described. The method entails contacting an aqueous Cs-containing solution with a solvent consisting of a specific class of lipophilic calix[4]arene-crown ether extractants dissolved in a hydrocarbon-based diluent containing a specific class of alkyl-aromatic ether alcohols as modifiers. The cesium values are subsequently recovered from the extractant, and the solvent subsequently recycled, by contacting the Cs-containing organic solution with an aqueous stripping solution. This combined extraction and stripping method is especially useful as a process for removal of the radionuclide cesium-137 from highly alkaline waste solutions which are also very concentrated in sodium and potassium. No pre-treatment of the waste solution is necessary, and the cesium can be recovered using a safe and inexpensive stripping process using water, dilute (millimolar) acid solutions, or dilute (millimolar) salt solutions. An important application for this invention would be treatment of alkaline nuclear tank wastes. Alternatively, the invention could be applied to decontamination of acidic reprocessing wastes containing cesium-137.

  18. Effects of NaOH Concentration on CO2 Reduction via Hydrothermal Water

    NASA Astrophysics Data System (ADS)

    Onoki, Takamasa; Takahashi, Hiro; Kori, Toshinari; Yamasaki, Nakamichi; Hashida, Toshiyuki

    2006-05-01

    The reductions of CO2 under hydrothermal conditions were investigated by using the micro autoclave (45cm3) lined with Hastelloy-C alloy. Sodium hydrogen carbonate (NaHCO3) was used as a starting material. H2 gas was used as reducing agents. NaHCO3 powder, H2 gas and water put into the autoclave simultaneously. The autoclave was heated upto 300°C by induction heater. In this study, effects of pH value of the NaOH solution in the autoclave are investigated. Reaction products were analyzed with gas chromatographs (GC), liquid chromatographs (LC), X-ray diffractometor (XRD) and Scanning electron microscopy (SEM). The following things were showed in this research: CO2 was reducted to HCOO- and CH4 at high conversion ratio under hydrothermal conditions. HCOO- was formed at high selectivity using Hastelloy-C reactor in the alkaline solution with Raney Ni catalyst. Raney Ni was exellent methanation catalyst, and CH4 formation progressed via HCO3-, not via CO. It is cleared that the NaOH solution in the autoclave should be kept pH value 11.0 for the highest conversion ratio from CO2 to useful carbonic compounds (CH4, HCOO-).

  19. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions.

    PubMed

    Mahmood, Nasir; Yao, Yunduo; Zhang, Jing-Wen; Pan, Lun; Zhang, Xiangwen; Zou, Ji-Jun

    2018-02-01

    Hydrogen evolution reaction (HER) in alkaline medium is currently a point of focus for sustainable development of hydrogen as an alternative clean fuel for various energy systems, but suffers from sluggish reaction kinetics due to additional water dissociation step. So, the state-of-the-art catalysts performing well in acidic media lose considerable catalytic performance in alkaline media. This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER. It first explains the fundamentals and electrochemistry of HER and then outlines the requirements for an efficient and stable catalyst in alkaline medium. The challenges with alkaline HER and limitation with the electrocatalysts along with prospective solutions are then highlighted. It further describes the synthesis methods of advanced nanostructures based on carbon, noble, and inexpensive metals and their heterogeneous structures. These heterogeneous structures provide some ideal systems for analyzing the role of structure and synergy on alkaline HER catalysis. At the end, it provides the concluding remarks and future perspectives that can be helpful for tuning the catalysts active-sites with improved electrochemical efficiencies in future.

  20. Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions

    PubMed Central

    Mahmood, Nasir; Yao, Yunduo; Zhang, Jing‐Wen; Pan, Lun; Zhang, Xiangwen

    2017-01-01

    Abstract Hydrogen evolution reaction (HER) in alkaline medium is currently a point of focus for sustainable development of hydrogen as an alternative clean fuel for various energy systems, but suffers from sluggish reaction kinetics due to additional water dissociation step. So, the state‐of‐the‐art catalysts performing well in acidic media lose considerable catalytic performance in alkaline media. This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER. It first explains the fundamentals and electrochemistry of HER and then outlines the requirements for an efficient and stable catalyst in alkaline medium. The challenges with alkaline HER and limitation with the electrocatalysts along with prospective solutions are then highlighted. It further describes the synthesis methods of advanced nanostructures based on carbon, noble, and inexpensive metals and their heterogeneous structures. These heterogeneous structures provide some ideal systems for analyzing the role of structure and synergy on alkaline HER catalysis. At the end, it provides the concluding remarks and future perspectives that can be helpful for tuning the catalysts active‐sites with improved electrochemical efficiencies in future. PMID:29610722

  1. Hydrothermal synthesis of pollucite, analcime and their solid solutions and analysis of their properties

    NASA Astrophysics Data System (ADS)

    Jing, Zhenzi; Cai, Kunchuan; Li, Yan; Fan, Junjie; Zhang, Yi; Miao, Jiajun; Chen, Yuqian; Jin, Fangming

    2017-05-01

    Pollucite, as a perfect long-term potential host for radioactive Cs immobilization, barely exists in pure form naturally but in an isomorphism form between pollucite and analcime due to coexistence of Cs and Na. Pollucite could be hydrothermally synthesized with Cs-polluted soil or clay minerals which contain Cs and Na, and it is necessary to study the properties of the synthesis if Cs and Na contained. Pure pollucite, analcime and their solid solutions were hydrothermally synthesized with chemicals, and it was found that the most formed pollucite analcime solid solutions with Cs/(Cs + Na) ratios of 2/6-5/6 had very similar properties in mineral composition, morphology and size, structural water (Cs cations) and coordination environment to pollucite. This also suggests that even coexistence of Cs and Na in nature, pollucite favors to form due to site preference for Cs over Na, which leads to the property and the structure of the most solid solutions similar to that of pollucite.

  2. Metabolic effect of alkaline additives and guanosine/gluconate in storage solutions for red blood cells.

    PubMed

    D'Alessandro, Angelo; Reisz, Julie A; Culp-Hill, Rachel; Korsten, Herbert; van Bruggen, Robin; de Korte, Dirk

    2018-04-06

    Over a century of advancements in the field of additive solutions for red blood cell (RBC) storage has made transfusion therapy a safe and effective practice for millions of recipients worldwide. Still, storage in the blood bank results in the progressive accumulation of metabolic alterations, a phenomenon that is mitigated by storage in novel storage additives, such as alkaline additive solutions. While novel alkaline additive formulations have been proposed, no metabolomics characterization has been performed to date. We performed UHPLC-MS metabolomics analyses of red blood cells stored in SAGM (standard additive in Europe), (PAGGSM), or alkaline additives SOLX, E-SOL 5 and PAG3M for either 1, 21, 35 (end of shelf-life in the Netherlands), or 56 days. Alkaline additives (especially PAG3M) better preserved 2,3-diphosphoglycerate and adenosine triphosphate (ATP). Deaminated purines such as hypoxanthine were predictive of hemolysis and morphological alterations. Guanosine supplementation in PAGGSM and PAG3M fueled ATP generation by feeding into the nonoxidative pentose phosphate pathway via phosphoribolysis. Decreased urate to hypoxanthine ratios were observed in alkaline additives, suggestive of decreased generation of urate and hydrogen peroxide. Despite the many benefits observed in purine and redox metabolism, alkaline additives did not prevent accumulation of free fatty acids and oxidized byproducts, opening a window for future alkaline formulations including (lipophilic) antioxidants. Alkalinization via different strategies (replacement of chloride anions with either high bicarbonate, high citrate/phosphate, or membrane impermeant gluconate) results in different metabolic outcomes, which are superior to current canonical additives in all cases. © 2018 AABB.

  3. Femtosecond laser fabricating black silicon in alkaline solution

    NASA Astrophysics Data System (ADS)

    Meng, Jiao; Song, Haiying; Li, Xiaoli; Liu, Shibing

    2015-03-01

    An efficient approach for enhancing the surface antireflection is proposed, in which a black silicon is fabricated by a femtosecond laser in alkaline solution. In the experiment, 2 wt% NaOH solution is formulated at room temperature (22 ± 1 °C). Then, a polished silicon is scanned via femtosecond laser irradiation in 2 wt% NaOH solution. Jungle-like microstructures on the black silicon surface are characterized using an atomic force microscopy. The reflectance of the black silicon is measured at the wavelengths ranging from 400 to 750 nm. Compared to the polished silicon, the black silicon can significantly suppress the optical reflection throughout the visible region (<5 %). Meanwhile, we also investigated the factors of the black silicon, including the femtosecond laser pulse energy and the scanning speed. This method is simple and effective to acquire the black silicon, which probably has a large advantage in fast and cost-effective black silicon fabrication.

  4. A hydrothermal atomic force microscope for imaging in aqueous solution up to 150 °C

    NASA Astrophysics Data System (ADS)

    Higgins, Steven R.; Eggleston, Carrick M.; Knauss, Kevin G.; Boro, Carl O.

    1998-08-01

    We present the design of a contact atomic force microscope (AFM) that can be used to image solid surfaces in aqueous solution up to 150 °C and 6 atm. The main features of this unique AFM are: (1) an inert gas pressurized microscope base containing stepper motor for coarse advance and the piezoelectric tube scanner; (2) a chemically inert membrane separating these parts from the fluid cell; (3) a titanium fluid cell with fluid inlet-outlet ports, a thermocouple port, and a sapphire optical window; (4) a resistively heated ceramic booster heater for the fluid cell to maintain the temperature of solutions sourced from a hydrothermal bomb; and (5) mass flow control. The design overcomes current limitations on the temperature and pressure range accessible to AFM imaging in aqueous solutions. Images taken at temperature and pressure are presented, demonstrating the unit-cell scale (<1 nm) vertical resolution of the AFM under hydrothermal conditions.

  5. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    EPA Science Inventory

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  6. Multiscale Alterations in Sugar Cane Bagasse and Straw Submitted to Alkaline Deacetylation

    DOE PAGES

    Lima, Cleilton S.; Rabelo, Sarita C.; Ciesielski, Peter N.; ...

    2018-01-31

    Alkaline deacetylation has emerged as a promising chemistry for pretreatments performed prior to enzymatic saccharification of lignocellulosic biomass. This process avoids complex pressurized reactors and opens new opportunities for lignin covalorization. In this work, we evaluate the chemical and morphological response of sugar cane bagasse and straw submitted to alkaline treatments. Alkaline solutions for deacetylation (0.4% w/w NaOH, 70 degrees C, 3 h) as well as proximal conditions (0.1-0.7% NaOH, 55-85 degrees C, 1-5 h) chosen by 23 experimental design were evaluated. The deacetylation treatment removes ~90% of the acetyl groups and 20-30% of the lignin from both bagasse andmore » straw, while removal of ~20% of the xylan and glucan is observed in straw, but not in bagasse. Considering nanoscale structural alterations, neither cellulose cocrystallization (evaluated by X-ray diffraction) nor formation of lignin aggregates (evaluated by thermoporometric signature) are observed after the alkaline conditions, in contrast to observations after hydrothermal treatments. Furthermore, calorimetric thermoporometry as well as scanning and transmission electron microscopies show substantial introduction of nanoscale porosity and loosening of the tissue and cell wall structures, indicating desirable mechanical weakening and gains in enzyme accessibility. These results provide fundamental and practical knowledge for biorefineries based on alkaline deacetylation of sugar cane bagasse and straw.« less

  7. Multiscale Alterations in Sugar Cane Bagasse and Straw Submitted to Alkaline Deacetylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Cleilton S.; Rabelo, Sarita C.; Ciesielski, Peter N.

    Alkaline deacetylation has emerged as a promising chemistry for pretreatments performed prior to enzymatic saccharification of lignocellulosic biomass. This process avoids complex pressurized reactors and opens new opportunities for lignin covalorization. In this work, we evaluate the chemical and morphological response of sugar cane bagasse and straw submitted to alkaline treatments. Alkaline solutions for deacetylation (0.4% w/w NaOH, 70 degrees C, 3 h) as well as proximal conditions (0.1-0.7% NaOH, 55-85 degrees C, 1-5 h) chosen by 23 experimental design were evaluated. The deacetylation treatment removes ~90% of the acetyl groups and 20-30% of the lignin from both bagasse andmore » straw, while removal of ~20% of the xylan and glucan is observed in straw, but not in bagasse. Considering nanoscale structural alterations, neither cellulose cocrystallization (evaluated by X-ray diffraction) nor formation of lignin aggregates (evaluated by thermoporometric signature) are observed after the alkaline conditions, in contrast to observations after hydrothermal treatments. Furthermore, calorimetric thermoporometry as well as scanning and transmission electron microscopies show substantial introduction of nanoscale porosity and loosening of the tissue and cell wall structures, indicating desirable mechanical weakening and gains in enzyme accessibility. These results provide fundamental and practical knowledge for biorefineries based on alkaline deacetylation of sugar cane bagasse and straw.« less

  8. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  9. Evaluation of alkaline electrolyzed water to replace traditional phosphate enhancement solutions: Effects on water holding capacity, tenderness, and sensory characteristics.

    PubMed

    Rigdon, Macc; Hung, Yen-Con; Stelzleni, Alexander M

    2017-01-01

    Sixty-four pork loins were randomly assigned to one of four treatments to evaluate the use of alkaline electrolyzed reduced water as a replacement for traditional enhancement solutions. Treatments included: alkaline electrolyzed reduced water (EOH; pH≈11.5), EOH plus 2.5% potassium-lactate (EOK), industry standard (IS; 0.35% sodium tri-polyphosphate, 0.14% sodium chloride, 2.5% potassium-lactate), and no enhancement (CON). After enhancement (targeting 110%) and rest period, chops were cut (2.54-cm) to test treatment effects on water holding capacity, Warner-Bratzler shear force (WBSF), and sensory attributes. Despite its alkaline nature EOH chops exuded more water (P<0.05) than EOK, IS, or CON chops. Control chops were similar (P>0.05) to EOK, however CON and EOK both lost more moisture (P<0.05) than IS. The use of alkaline electrolyzed reduced water did not improve WBSF or sensory characteristics compared to IS treated chops. As a stand-alone enhancement solution alkaline electrolyzed reduced water was not a suitable replacement for industry standard solutions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. [Surface-enhanced raman spectra studies on roughened Zn electrode in alkaline solutions].

    PubMed

    Shen, Xiao-ying; Liu, Guo-kun; Gu, Ren-ao; Tian, Zhong-qun

    2005-09-01

    Electrochemical oxidation-reduction method was employed to roughen Zn electrode for obtaining SERS, and potential dependent surface enhanced Raman spectra (SERS) of roughened Zn electrode in KOH solution of different concentration wereobserved. The spectra of Zn electrode in various solutions had obvious differences which indicated the concentration of OH- had a great effect on the dissolution and passivation of zinc. Based on our experimental results, the authors attempt to analyse the behavior of zinc in alkaline and give the mechanism of its passivation.

  11. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: I. The origin of thiosulfate in hot spring waters

    USGS Publications Warehouse

    Xu, Y.; Schoonen, M.A.A.; Nordstrom, D. Kirk; Cunningham, K.M.; Ball, J.W.

    1998-01-01

    Thiosulfate (S2O2-3), polythionate (SxO2-6), dissolved sulfide (H2S), and sulfate (SO2-4) concentrations in thirty-nine alkaline and acidic springs in Yellowstone National Park (YNP) were determined. The analyses were conducted on site, using ion chromatography for thiosulfate, polythionate, and sulfate, and using colorimetry for dissolved sulfide. Thiosulfate was detected at concentrations typically less than 2 ??mol/L in neutral and alkaline chloride springs with low sulfate concentrations (C1-/SO2-4 > 25). The thiosulfate concentration levels are about one to two orders of magnitude lower than the concentration of dissolved sulfide in these springs. In most acid sulfate and acid sulfate-chloride springs (Cl-/SO2-4 < 10), thiosulfate concentrations were also typically lower than 2 ??mol/L. However, in some chloride springs enriched with sulfate (Cl-/SO2-4 between 10 to 25), thiosulfate was found at concentrations ranging from 9 to 95 ??mol/L, higher than the concentrations of dissolved sulfide in these waters. Polythionate was detected only in Cinder Pool, Norris Geyser basin, at concentrations up to 8 ??mol/L, with an average S-chain-length from 4.1 to 4.9 sulfur atoms. The results indicate that no thiosulfate occurs in the deeper parts of the hydrothermal system. Thiosulfate may form, however, from (1) hydrolysis of native sulfur by hydrothermal solutions in the shallower parts (<50 m) of the system, (2) oxidation of dissolved sulfide upon mixing of a deep hydrothermal water with aerated shallow groundwater, and (3) the oxidation of dissolved sulfide by dissolved oxygen upon discharge of the hot spring. Upon discharge of a sulfide-containing hydrothermal water, oxidation proceeds rapidly as atmospheric oxygen enters the water. The transfer of oxygen is particularly effective if the hydrothermal discharge is turbulent and has a large surface area.

  12. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions.

  13. Major- and minor-metal composition of three distinct solid material fractions associated with Juan de Fuca hydrothermal fluids (northeast Pacific), and calculation of dilution fluid samples

    USGS Publications Warehouse

    Hinkley, T.K.; Seeley, J.L.; Tatsumoto, M.

    1988-01-01

    Three distinct types of solid material are associated with each sample of the hydrothermal fluid that was collected from the vents of the Southern Juan de Fuca Ridge. The solid materials appear to be representative of deposits on ocean floors near mid-ocean ridges, and interpretation of the chemistry of the hydrothermal solutions requires understanding of them. Sr isotopic evidence indicates that at least two and probably all three of these solid materials were removed from the solution with which they are associated, by precipitation or adsorption. This occurred after the "pure" hydrothermal fluid was diluted and thoroughly mixed with ambient seawater. The three types of solid materials, are, respectively, a coarse Zn- and Fe-rich material with small amounts of Na and Ca; a finer material also rich in Zn and Fe, but with alkali and alkaline-earth metals; and a scum composed of Ba or Zn, with either considerable Fe or Si, and Sr. Mineral identification is uncertain because of uncertain anion composition. Only in the cases of Ba and Zn were metal masses greater in solid materials than in the associated fluids. For all other metals measured, masses in fluids dwarf those in solids. The fluids themselves contain greater concentrations of all metals measured, except Mg, than seawater. We discuss in detail the relative merits of two methods of determining the mixing proportions of "pure" hydrothermal solution and seawater in the fluids, one based on Sr isotopes, and another previously used method based on Mg concentrations. Comparison of solute concentrations in the several samples shows that degree of dilution of "pure" hydrothermal solutions by seawater, and amounts of original solutes that were removed from it as solid materials, are not related. There is no clear evidence that appreciable amounts of solid materials were not conserved (lost) either during or prior to sample collection. ?? 1988.

  14. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    NASA Astrophysics Data System (ADS)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate

  15. Zeolite A synthesized from alkaline assisted pre-activated halloysite for efficient heavy metal removal in polluted river water and industrial wastewater.

    PubMed

    Meng, Qingpeng; Chen, Hong; Lin, Junzhong; Lin, Zhang; Sun, Junliang

    2017-06-01

    High quality zeolite A was synthesized through a hydrothermal process using alkaline-assisted pre-activated halloysite mineral as the alumina and silica source. The synthesis conditions employed in this study were finely tuned by varying the activating temperature, sodium hydroxide content, water content and Si/Al ratio. The obtained zeolite A showed excellent adsorption properties for both single metal cation solutions and mixed cation solutions when the concentrations of the mixed cations were comparable with those in polluted natural river water and industrial wastewater. High adsorptive capacities for Ag + (123.05mg/g) and Pb 2+ (227.70mg/g) were achieved using the synthesized zeolite A. This observation indicates that the zeolite A synthesized from alkaline-assisted pre-activated halloysite can be used as a low-cost and relatively effective adsorbent to purify heavy metal cation polluted natural river water and industrial wastewater. Copyright © 2016. Published by Elsevier B.V.

  16. Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1

    NASA Astrophysics Data System (ADS)

    Munhoven, G.

    2013-08-01

    The total alkalinity-pH equation, which relates total alkalinity and pH for a given set of total concentrations of the acid-base systems that contribute to total alkalinity in a given water sample, is reviewed and its mathematical properties established. We prove that the equation function is strictly monotone and always has exactly one positive root. Different commonly used approximations are discussed and compared. An original method to derive appropriate initial values for the iterative solution of the cubic polynomial equation based upon carbonate-borate-alkalinity is presented. We then review different methods that have been used to solve the total alkalinity-pH equation, with a main focus on biogeochemical models. The shortcomings and limitations of these methods are made out and discussed. We then present two variants of a new, robust and universally convergent algorithm to solve the total alkalinity-pH equation. This algorithm does not require any a priori knowledge of the solution. SolveSAPHE (Solver Suite for Alkalinity-PH Equations) provides reference implementations of several variants of the new algorithm in Fortran 90, together with new implementations of other, previously published solvers. The new iterative procedure is shown to converge from any starting value to the physical solution. The extra computational cost for the convergence security is only 10-15% compared to the fastest algorithm in our test series.

  17. Spatial and temporal geochemical trends in the hydrothermal system of Yellowstone National Park: Inferences from river solute fluxes

    USGS Publications Warehouse

    Hurwitz, S.; Lowenstern, J. B.; Heasler, H.

    2007-01-01

    We present and analyze a chemical dataset that includes the concentrations and fluxes of HCO3-, SO42-, Cl-, and F- in the major rivers draining Yellowstone National Park (YNP) for the 2002-2004 water years (1 October 2001 - 30 September 2004). The total (molar) flux in all rivers decreases in the following order, HCO3- > Cl- > SO42- > F-, but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display non-uniform temporal trends; whereas solute concentrations and fluxes are nearly constant during base-flow conditions, concentrations decrease, solute fluxes increase, and HCO3-/Cl-, and SO42-/Cl- increase during the late-spring high-flow period. HCO3-/SO42- decreases with increasing discharge in the Madison and Falls Rivers, but increases with discharge in the Yellowstone and Snake Rivers. The non-linear relations between solute concentrations and river discharge and the change in anion ratios associated with spring runoff are explained by mixing between two components: (1) a component that is discharged during base-flow conditions and (2) a component associated with snow-melt runoff characterized by higher HCO3-/Cl- and SO42-/Cl-. The fraction of the second component is greater in the Yellowstone and Snake Rivers, which host lakes in their drainage basins and where a large fraction of the solute flux follows thaw of ice cover in the spring months. Although the total river HCO3- flux is larger than the flux of other solutes (HCO3-/Cl- ??? 3), the CO2 equivalent flux is only ??? 1% of the estimated emission of magmatic CO2 soil emissions from Yellowstone. No anomalous solute flux in response to perturbations in the hydrothermal system was observed, possibly because gage locations are too distant from areas of disturbance, or because of the relatively low sampling frequency. In order to detect changes in river hydrothermal solute fluxes, sampling at higher

  18. Mechanism of oxygen reduction reaction on Pt(111) in alkaline solution: Importance of chemisorbed water on surface

    DOE PAGES

    Liu, Shizhong; White, Michael G.; Liu, Ping

    2016-06-30

    Here, we report a detailed mechanistic study of the oxygen reduction reaction (ORR) on Pt(111) in alkaline solution, combining density functional theory and kinetic Monte Carlo simulations. A complex reaction network including four possible pathways via either 2e – or 4e – transfer is established and is able to reproduce the experimental measured polarization curve at both low- and high-potential regions. Our results show that it is essential to account for solvation by water and the dynamic coverage of *OH to describe the reaction kinetics well. In addition, a chemisorbed water (*H 2O)-mediated mechanism including 4e – transfers is identified,more » where the reduction steps via *H 2O on the surface are potential-independent and only the final removal of *OH from the surface in the form of OH –(aq) contributes to the current. For the ORR in alkaline solutions, such a mechanism is more competitive than the associative and dissociative mechanisms typically used to describe the ORR in acid solution. Finally, *OH and **O 2 intermediates are found to be critically important for tuning the ORR activity of Pt in alkaline solution. To enhance the activity, the binding of Pt should be tuned in such a way that *OH binding is weak enough to release more surface sites under working conditions, while **O 2 binding is strong enough to enable the ORR via the 4e – transfer mechanism.« less

  19. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langton, C. A.

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastesmore » were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.« less

  20. Energetics of amino acid synthesis in hydrothermal ecosystems

    NASA Technical Reports Server (NTRS)

    Amend, J. P.; Shock, E. L.

    1998-01-01

    Thermodynamic calculations showed that the autotrophic synthesis of all 20 protein-forming amino acids was energetically favored in hot (100 degrees C), moderately reduced, submarine hydrothermal solutions relative to the synthesis in cold (18 degrees C), oxidized, surface seawater. The net synthesis reactions of 11 amino acids were exergonic in the hydrothermal solution, but all were endergonic in surface seawater. The synthesis of the requisite amino acids of nine thermophilic and hyperthermophilic proteins in a 100 degreesC hydrothermal solution yielded between 600 and 8000 kilojoules per mole of protein, which is energy that is available to drive the intracellular synthesis of enzymes and other biopolymers in hyperthermophiles thriving in these ecosystems.

  1. The alkaline solution to the emergence of life: energy, entropy and early evolution.

    PubMed

    Russell, Michael J

    2007-01-01

    The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through

  2. Early containment of high-alkaline solution simulating low-level radioactive waste stream in clay-bearing blended cement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A.A.; Olson, R.A.; Tennis, P.D.

    1995-04-01

    Portland cement blended with fly ash and attapulgite clay was mixed with high-alkaline solution simulating low-level radioactive waste stream at a one-to-one weight ratio. Mixtures were adiabatically and isothermally cured at various temperatures and analyzed for phase composition, total alkalinity, pore solution chemistry, and transport properties as measured by impedance spectroscopy. Total alkalinity is characterized by two main drops. The early one corresponds to a rapid removal of phosphorous, aluminum, sodium, and to a lesser extent potassium solution. The second drop from about 10 h to 3 days is mainly associated with the removal of aluminum, silicon, and sodium. Thereafter,more » the total alkalinity continues descending, but at a lower rate. All pastes display a rapid flow loss that is attributed to an early precipitation of hydrated products. Hemicarbonate appears as early as one hour after mixing and is probably followed by apatite precipitation. However, the former is unstable and decomposes at a rate that is inversely related to the curing temperature. At high temperatures, zeolite appears at about 10 h after mixing. At 30 days, the stabilized crystalline composition Includes zeolite, apatite and other minor amounts of CaCO{sub 3}, quartz, and monosulfate Impedance spectra conform with the chemical and mineralogical data. The normalized conductivity of the pastes shows an early drop, which is followed by a main decrease from about 12 h to three days. At three days, the permeability of the cement-based waste as calculated by Katz-Thompson equation is over three orders of magnitude lower than that of ordinary portland cement paste. However, a further decrease in the calculated permeability is questionable. Chemical stabilization is favorable through incorporation of waste species into apatite and zeolite.« less

  3. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes weremore » evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg

  4. Interactions of N,N'-dimethylaminoethanol with steel surfaces in alkaline and chlorine containing solutions

    NASA Astrophysics Data System (ADS)

    Welle, A.; Liao, J. D.; Kaiser, K.; Grunze, M.; Mäder, U.; Blank, N.

    1997-10-01

    Formulations based on dilute aqueous solutions of N,N'-dimethylethanolamine (DMEA) are used to protect reinforcement steel bars ('rebar') in concrete from corrosion. In a previous paper we discussed the usefulness of X-ray photoelectron spectroscopy (XPS) to detect DMEA adsorbed from solution and the application of secondary neutral mass spectrometry (SNMS) to study migration of DMEA through a cement matrix. In this report we present XPS data of DMEA adsorbed on steel surfaces from alkaline and chlorine containing solutions of variable concentration range and discuss models for the interaction of DMEA with the oxidized steel surface and the mechanism of corrosion inhibition of DMEA. DMEA is strongly bonded to the steel surface and displaces ionic species from the substrate/solution interface hence protecting the ironoxide surface from ionic attack.

  5. Arsenic removal from alkaline leaching solution using Fe (III) precipitation.

    PubMed

    Wang, Yongliang; Lv, Cuicui; Xiao, Li; Fu, Guoyan; Liu, Ya; Ye, Shufeng; Chen, Yunfa

    2018-02-02

    The alkaline leaching solution from arsenic-containing gold concentrate contains a large amount of arsenate ions, which should be removed because it is harmful to the production process and to the environment. In this study, conventional Fe (III) precipitation was used to remove arsenic from the leaching solution. The precipitation reaction was carried out at the normal temperature, and the effects of pH value and Fe/As ratio on the arsenic removal were investigated. The results show that the removal rate of arsenic is distinctive at different pH values, and the effect is best within the pH range of 5.25-5.96. The removal rate can be further increased by increasing the ratio of Fe/As. When the pH = 5.25-5.96 and Fe/As > 1.8, the arsenic in the solution can be reduced to below 5 mg/L. However, the crystallinity of ferric arsenate is poor, and the particle size is small, most of which is about 1 μm. The leaching toxicity test shows the leaching toxicity of precipitates gradually decreased by the increase of Fe/As. The precipitates can be stored safely as the ratio of Fe/As exceeded 2.5.

  6. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator.

    PubMed

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  7. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    PubMed Central

    Lee, Kuan-Yi

    2017-01-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal–oxide–semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air. PMID:29308260

  8. Hydrothermally synthesized PZT film grown in highly concentrated KOH solution with large electromechanical coupling coefficient for resonator

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Hua; Lee, Kuan-Yi

    2017-12-01

    This paper presents a study of lead zirconate titanate (PZT) films hydrothermally grown on a dome-shaped titanium diaphragm. Few articles in the literature address the implementation of hydrothermal PZT films on curved-diaphragm substrates for resonators. In this study, a 50-μm-thick titanium sheet is embossed using balls of designed dimensions to shape a dome-shaped cavity array. Through single-process hydrothermal synthesis, PZT films are grown on both sides of the processed titanium diaphragm with good adhesion and uniformity. The hydrothermal synthesis process involves a high concentration of potassium hydroxide solution and excess amounts of lead acetate and zirconium oxychloride octahydrate. Varied deposition times and temperatures of PZT films are investigated. The grown films are characterized by X-ray diffraction and scanning electron microscopy. The 10-μm-thick PZT dome-shaped resonators with 60- and 20-μm-thick supporting layers are implemented and further tested. Results for both resonators indicate that large electromechanical coupling coefficients and a series resonance of 95 MHz from 14 MHz can be attained. The device is connected to a complementary metal-oxide-semiconductor integrated circuit for analysis of oscillator applications. The oscillator reaches a Q value of 6300 in air. The resonator exhibits a better sensing stability when loaded with water when compared with air.

  9. Hydrothermal Synthesis of Nanostructured Vanadium Oxides

    PubMed Central

    Livage, Jacques

    2010-01-01

    A wide range of vanadium oxides have been obtained via the hydrothermal treatment of aqueous V(V) solutions. They exhibit a large variety of nanostructures ranging from molecular clusters to 1D and 2D layered compounds. Nanotubes are obtained via a self-rolling process while amazing morphologies such as nano-spheres, nano-flowers and even nano-urchins are formed via the self-assembling of nano-particles. This paper provides some correlation between the molecular structure of precursors in the solution and the nanostructure of the solid phases obtained by hydrothermal treatment. PMID:28883325

  10. Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability

    NASA Astrophysics Data System (ADS)

    Sokol, E. V.; Gaskova, O. L.; Kozmenko, O. A.; Kokh, S. N.; Vapnik, E. A.; Novikova, S. A.; Nigmatulina, E. N.

    2014-11-01

    This study shows that the mineral assemblages from clastic dikes in areas adjacent to the Dead Sea graben may be considered as natural analogues of alkaline concretes. The main infilling material of the clastic dikes is composed of well-sorted and well-rounded quartz sand. The cement of these hard rocks contains hydroxylapophyllite, tacharanite, calcium silicate hydrates, opal, calcite, and zeolite-like phases, which is indicative of a similarity of the natural cementation processes and industrial alkaline concrete production from quartz sands and industrial alkaline cements. The quartz grains exhibit a variety of reaction textures reflecting the interaction with alkaline solutions (opal and calcium hydrosilicate overgrowths; full replacement with apophyllite or thomsonite + apophyllite). The physicochemical analysis and reconstruction of the chemical composition of peralkaline Ca, Na, and K solutions that formed these assemblages reveal that the solutions evolved toward a more stable composition of zeolite-like phases, which are more resistant to long-term chemical weathering and atmospheric corrosion. The 40Ar/39Ar age of 6.2 ± 0.7 Ma obtained for apophyllite provides conclusive evidence for the high corrosion resistance of the assemblages consisting of apophyllite and zeolite-like phases.

  11. Lead recovery from scrap cathode ray tube funnel glass by hydrothermal sulphidisation.

    PubMed

    Yuan, Wenyi; Meng, Wen; Li, Jinhui; Zhang, Chenglong; Song, Qingbin; Bai, Jianfeng; Wang, Jingwei; Li, Yingshun

    2015-10-01

    This research focused on the application of the hydrothermal sulphidisation method to separate lead from scrap cathode ray tube funnel glass. Prior to hydrothermal treatment, the cathode ray tube funnel glass was pretreated by mechanical activation. Under hydrothermal conditions, hydroxyl ions (OH(-)) were generated through an ion exchange reaction between metal ions in mechanically activated funnel glass and water, to accelerate sulphur disproportionation; no additional alkaline compound was needed. Lead contained in funnel glass was converted to lead sulphide with high efficiency. Temperature had a significant effect on the sulphidisation rate of lead in funnel glass, which increased from 25% to 90% as the temperature increased from 100 °C to 300 °C. A sulphidisation rate of 100% was achieved at a duration of 8 h at 300 °C. This process of mechanical activation and hydrothermal sulphidisation is efficient and promising for the treatment of leaded glass. © The Author(s) 2015.

  12. Refractory Organic Compounds in Enceladus' Ice Grains and Hydrothermal Activity

    NASA Astrophysics Data System (ADS)

    Postberg, F.; Khawaja, N.; Hsu, H. W.; Sekine, Y.; Shibuya, T.

    2015-12-01

    Cassini's Cosmic Dust Analyzer (CDA) generates time-of-flight mass spectra of individual grains impinging on the instruments target-plate. Following the analysis of salt rich ice grains emitted by Enceladus that indicated a salt-water ocean in contact with the moon's rocky core [1,2] a recent CDA analysis of nano-phase silica particles pointed at hydrothermal activity at the moon's rock/water interface [3]. The results imply temperatures above 80 - 90°C and alkaline pH values around 10 reminiscent of alkaline hydrothermal vents on Earth like the Lost City Hydrothermal Field. In this context the compositional analysis of organic components in CDA mass spectra of the ejected ice grains is of particular relevance. A multitude of volatile organic species has already been identified in the gas component of the plume [4]. As expected, we find more complex organic molecules in ice grains than in the gas indicating aromatic species, amines, and carbonyl group species. The composition of organic-bearing ice grains displays a great diversity indicating a variety of different organic species in varying concentrations. Recent spatially resolved CDA in situ measurements inside Enceladus' plume indicate that these organic compounds are especially frequent in 'young' ice grains that have just been ejected by high velocity jets. We investigate the implications of our findings with respect to ice grain formation at the water surface and inside the icy vents. We constrain the generation of organic compounds at the rock/water interface in the light of hydrothermal activity and the potential for the formation of life precursor molecules in Enceladus' ocean. Ref:[1] Postberg et al., Nature 459, 1098-1101 (2009). [2] Postberg et al., Nature 474, 620-622 (2011). [3]. Hsu, Postberg, Sekine et al., Nature, 519, 207-210 (2015). [4] Waite et al., Nature 460, 487-490 (2009).

  13. Durability of template-free Fe-N-C foams for electrochemical oxygen reduction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Mufundirwa, Albert; Harrington, George F.; Smid, Břetislav; Cunning, Benjamin V.; Sasaki, Kazunari; Lyth, Stephen M.

    2018-01-01

    Due to the high cost and limited availability of platinum, the development of non-platinum-group metals (non-PGM) catalysts is of paramount importance. A promising alternative to Pt are Fe-N-C-based materials. Here we present the synthesis, characterization and electrochemistry of a template-free nitrogen-doped carbon foam, impregnated with iron. This low-cost and gram-scale method results in materials with micron-scale pore size and large surface area (1600 m2g-1). When applied as an oxygen reduction reaction (ORR) electrocatalyst in alkaline solution, the Fe-N-C foams display extremely high initial activity, slightly out-performing commercially available non-PGM catalysts (NCP-2000, Pajarito Powder). The load-cycle durability in alkaline solution is investigated, and the performance steadily degrades over 60,000 potential cycles, whilst the commercial catalyst is remarkably stable. The post-operation catalyst microstructure is elucidated by transmission electron microscopy (TEM), to provide insight into the degradation processes. The resulting images suggest that potential cycling leads to leaching of atomically dispersed Fe-N2/4 sites in all the catalysts, whereas encapsulated iron nanoparticles are protected.

  14. Decreasing Bio-Degradation Rate of the Hydrothermal-Synthesizing Coated Mg Alloy via Pre-Solid-Solution Treatment

    PubMed Central

    Song, Dan; Li, Cheng; Zhang, Liwen; Ma, Xiaolong; Guo, Guanghui; Zhang, Fan; Jiang, Jinghua; Ma, Aibin

    2017-01-01

    In this study, we report an effective approach, pre-solid solution (SS) treatment, to reduce the in-vitro bio-degradation rate of the hydrothermal-synthesizing coated Mg–2Zn–Mn–Ca–Ce alloy in Hanks’ solution. Pre-SS treatment alters the microstructure of alloys, which benefits the corrosion resistances of the substrate itself and the formed coating as well. The micro-galvanic corrosion between the secondary phase (cathode) and the α-Mg phase (anode) is relieved due to the reduction of the secondary phase. Meanwhile, coating formed on the SS-treated alloy was compacter than that on as-cast alloy, which provides better protection against initial corrosion. PMID:28773223

  15. Influence of acidic and alkaline waste solution properties on uranium migration in subsurface sediments.

    PubMed

    Szecsody, Jim E; Truex, Mike J; Qafoku, Nikolla P; Wellman, Dawn M; Resch, Tom; Zhong, Lirong

    2013-08-01

    This study shows that acidic and alkaline wastes co-disposed with uranium into subsurface sediments have significant impact on changes in uranium retardation, concentration, and mass during downward migration. For uranium co-disposal with acidic wastes, significant rapid (i.e., hours) carbonate and slow (i.e., 100 s of hours) clay dissolution resulted, releasing significant sediment-associated uranium, but the extent of uranium release and mobility change was controlled by the acid mass added relative to the sediment proton adsorption capacity. Mineral dissolution in acidic solutions (pH2) resulted in a rapid (<10 h) increase in aqueous carbonate (with Ca(2+), Mg(2+)) and phosphate and a slow (100 s of hours) increase in silica, Al(3+), and K(+), likely from 2:1 clay dissolution. Infiltration of uranium with a strong acid resulted in significant shallow uranium mineral dissolution and deeper uranium precipitation (likely as phosphates and carbonates) with downward uranium migration of three times greater mass at a faster velocity relative to uranium infiltration in pH neutral groundwater. In contrast, mineral dissolution in an alkaline environment (pH13) resulted in a rapid (<10h) increase in carbonate, followed by a slow (10 s to 100 s of hours) increase in silica concentration, likely from montmorillonite, muscovite, and kaolinite dissolution. Infiltration of uranium with a strong base resulted in not only uranium-silicate precipitation (presumed Na-boltwoodite) but also desorption of natural uranium on the sediment due to the high ionic strength solution, or 60% greater mass with greater retardation compared with groundwater. Overall, these results show that acidic or alkaline co-contaminant disposal with uranium can result in complex depth- and time-dependent changes in uranium dissolution/precipitation reactions and uranium sorption, which alter the uranium migration mass, concentration, and velocity. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Influence of ionic strength and OH(-) ion concentration on the Cu(II) complex formation with EDTA in alkaline solutions.

    PubMed

    Norkus, E; Vaskelis, A; Zakaite, I

    1996-03-01

    D.c. polarographic data show that the complex formation of copper ions with EDTA depends markedly on the ionic strength of the solution at pH 8-10. This is primarily associated with the dependence of the fourth deprotonization constant of EDTA on the solution ionic strength: when it increases from 0.4 to 3.4, the pK(a4) value decreases from 9.5 to 8.2. According to polarographic and spectrophotometric data the degree of Cu(II) complexation increases at pH>10 due to transformation of the complex CuY(2-) to the more stable CuY(OH)(3-) (Y(4-), a fully deprotonized anion of EDTA), but it decreases with increase in alkalinity in a highly alkaline solution (pH>13.5). The latter result could be explained by the decrease in the EDTA anion activity. The calculated values of the activity coefficient are lower than 0.05 at pH>14.

  17. Development of silver nanoparticle-doped adsorbents for the separation and recovery of radioactive iodine from alkaline solutions.

    PubMed

    Kim, Taewoon; Lee, Seung-Kon; Lee, Suseung; Lee, Jun Sig; Kim, Sang Wook

    2017-11-01

    Removing radioactive iodine from solutions containing fission products is essential for nuclear facility decontamination, radioactive waste treatment, and medical isotope production. For example, the production of high-purity fission 99 Mo by irradiation of 235 U with neutrons involves the removal of iodine from an alkaline solution of the irradiated target (which contains numerous fission products and a large quantity of aluminate ions) using silver-based materials or anion-exchange resins. To be practically applicable, the utilized iodine adsorbent should exhibit a decontamination factor of at least 200. Herein, the separation of radioactive iodine from alkaline solutions was achieved using alumina doped with silver nanoparticles (Ag NPs). Ag NPs have a larger surface area than Ag powder/wires and can thus adsorb iodine more effectively and economically, whereas alumina is a suitable inert support that does not adsorb 99 Mo and is stable under basic conditions. The developed adsorbents with less impurities achieved iodine removal and recovery efficiencies of 99.7 and 62%, respectively, thus being useful for the production of 131 I, a useful medical isotope. Copyright © 2017. Published by Elsevier Ltd.

  18. Hydrothermal Growth of Polyscale Crystals

    NASA Astrophysics Data System (ADS)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  19. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS.

    PubMed

    Brdicka, R

    1936-07-20

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions.

  20. Hydrothermal germanium over the southern East pacific rise.

    PubMed

    Mortlock, R A; Froelich, P N

    1986-01-03

    Germanium enrichment in the oceanic water column above the southern axis of the East Pacific Rise results from hydrothermal solutions emanating from hot springs along the rise crest. This plume signature provides a new oceanic tracer of reactions between seawater and sea floor basalts during hydrothermal alteration. In contrast to the sharp plumes of (3)He and manganese, the germanium plume is broad and diffuse, suggesting the existence of pervasive venting of low-temperature solutions off the ridge axis.

  1. Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions.

    PubMed

    Vijselaar, Wouter; Tiggelaar, Roald M; Gardeniers, Han; Huskens, Jurriaan

    2018-05-11

    Most photoanodes commonly applied in solar fuel research (e.g., of Fe 2 O 3 , BiVO 4 , TiO 2 , or WO 3 ) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%.

  2. Peptide synthesis under Enceladus hydrothermal condition

    NASA Astrophysics Data System (ADS)

    Fujishima, Kosuke; Takano, Yoshinori; Takai, Ken; Takahagi, Wataru; Adachi, Keito; Shibuya, Takazo; Tomita, Masaru

    2016-07-01

    Enceladus is one of the moons of Saturn, and it has been known to harbor interior ocean beneath the icy crust. The mass spectrometry data obtained by Cassini spacecraft indicates the presence of salty, and most likely alkaline ocean containing various organic compounds. While geochemical and other radiation related processes for in situ production of organics remain elusive, thermally unaltered carbonaceous chondrites, consisting the main body of Enceladus are known to be enriched with organic matters potentially including the building blocks of life (e.g., amino acids and amino acid precursors). Assuming that abiotic amino acids exist in the Enceladus alkaline seawater, we hypothesized that water-rock interaction may contribute to condensation of localized amino acids leading to peptide formation. In order to test this hypothesis, we have developed the Enceladus hydrothermal reactor based on the chemical constraints obtained through previous experimental and theoretical studies. We have added six different amino acids and introduced a thermal fluctuation system simulating the periodic tidal heating of the interior chondritic core. Total, eight sea water samples were obtained over the course of 147 days of experiment. While detection of peptide using Capillary Electrophoresis Time-of-Flight Mass Spectrometry (CE-TOF/MS) is still at the preliminary stage, so far pH monitoring and H2 and CO2 Gas Chromatography Mass Spectrometry (GC-MS) data clearly indicated the occurrence of serpentinization/carbonation reaction. Here, we discuss the interaction between aqueous alteration reactions and thermal cycling processes for the role of abiotic peptide formation under the Enceladus hydrothermal condition.

  3. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  4. THE KINETICS OF SAPONIFICATION OF IODOACETIC ACID BY SODIUM HYDROXIDE AND BY CERTAIN ALKALINE BUFFER SOLUTIONS

    PubMed Central

    Brdička, R.

    1936-01-01

    1. The rate of the saponification of iodoacetic acid in sodium hydroxide and alkaline buffer solutions yielding glycollic acid was measured by means of Heyrovský's polarographic method. 2. From the bimolecular velocity constants, increasing with the ionic strength of the solution, the Brönsted factor, F, which characterizes the primary salt effect, was calculated. 3. In the borate buffer solutions the monomolecular constants of the saponification were determined which, at values above the pH of neutralization of boric acid, show a proportionality to the concentration of hydroxyl anions. Below the pH of neutralization of boric acid, they are proportional to the concentration of borate anions. PMID:19872968

  5. Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fang; Zhang, Yu; Liu, Shizhong

    Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less

  6. Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution

    DOE PAGES

    Lu, Fang; Zhang, Yu; Liu, Shizhong; ...

    2017-05-11

    Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less

  7. Hydrothermal diamond anvil cell for XAFS studies of first-row transition elements in aqueous solutions up to supercritical conditions

    USGS Publications Warehouse

    Bassett, William A.; Anderson, Alan J.; Mayanovic, Robert A.; Chou, I.-Ming

    2000-01-01

    A hydrothermal diamond anvil cell (HDAC) has been modified by drilling holes with a laser to within 150 ??m of the anvil face to minimize the loss of X-rays due to absorption and scatter by diamond. This modification enables acquisition of K-edge X-ray absorption fine structure (XAFS) spectra from first-row transition metal ions in aqueous solutions at temperatures ranging from 25??C to 660??C and pressures up to 800 MPa. These pressure-temperature (P-T) conditions are more than sufficient for carrying out experimental measurements that can provide data valuable in the interpretation of fluid inclusions in minerals found in ore-forming hydrothermal systems as well as other important lithospheric processes involving water. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. Cysteine as a green corrosion inhibitor for Cu37Zn brass in neutral and weakly alkaline sulphate solutions.

    PubMed

    Radovanović, Milan B; Petrović, Marija B; Simonović, Ana T; Milić, Snežana M; Antonijević, Milan M

    2013-07-01

    The aim of this study was to investigate electrochemical properties of brass in neutral and weakly alkaline solutions in the presence of cysteine as a nontoxic and ecological corrosion inhibitor. Potentiodynamic measurements, open circuit potential measurements, as well as chronoamperometric measurements were the methods used during investigation of the inhibitory effect of cysteine on the corrosion behaviour of brass. Potentiodynamic measurements showed that cysteine behaves as a mixed-type inhibitor in the investigated media. Based on polarization curves for brass in a weakly alkaline solution of sodium sulphate at varying cysteine concentrations, an interaction occurs between Cu(+) ions and the inhibitor, resulting in the formation of a protective complex on the electrode surface. The results of chronoamperometric measurements confirm the results obtained by potentiodynamic measurements. Optical microphotography of the brass surface also confirms the formation of a protective film in the presence of a 1 × 10(-4) mol/dm(3) cysteine. Adsorption of cysteine on the brass surface proceeds according to the Langmuir adsorption isotherm.

  9. Optical characterization of synthetic faceted gem materials grown from hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Lu, Taijin; Shigley, James E.

    1998-10-01

    Various non-destructive optical characterization techniques have been used to characterize and identify synthetic gem materials grown from hydrothermal solutions, to include ruby, sapphire, emerald, amethyst and ametrine (amethyst-citrine), from their natural counterparts. The ability to observe internal features, such as inclusions, dislocations, twins, color bands, and growth zoning in gem materials is strongly dependent on the observation techniques and conditions, since faceted gemstones have many polished surfaces which can reflect and scatter light in various directions which can make observation difficult. However, diagnostic gemological properties of these faceted synthetic gem materials can be obtained by choosing effective optical characterization methods, and by modifying optical instruments. Examples of some of the distinctive features of synthetic amethyst, ametrine, pink quartz, ruby and emerald are presented to illustrate means of optical characterization of gemstones. The ability to observe defects by light scattering techniques is discussed.

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  11. Hydrothermal Reactivity of Amines

    NASA Astrophysics Data System (ADS)

    Robinson, K.; Shock, E.; Hartnett, H. E.; Williams, L. B.; Gould, I.

    2013-12-01

    The reactivity of aqueous amines depends on temperature, pH, and redox state [1], all of which are highly variable in hydrothermal systems. Temperature and pH affect the ratio of protonated to unprotonated amines (R-NH2 + H+ = R-NH3+), which act as nucleophiles and electrophiles, respectively. We hypothesize that this dual nature can explain the pH dependence of reaction rates, and predict that rates will approach a maximum at pH = pKa where the ratio of protonated and unprotonated amines approaches one and the two compounds are poised to react with one another. Higher temperatures in hydrothermal systems allow for more rapid reaction rates, readily reversible reactions, and unique carbon-nitrogen chemistry in which water acts as a reagent in addition to being the solvent. In this study, aqueous benzylamine was used as a model compound to explore the reaction mechanisms, kinetics, and equilibria of amines under hydrothermal conditions. Experiments were carried out in anoxic silica glass tubes at 250°C (Psat) using phosphate-buffered solutions to observe changes in reaction rates and product distributions as a function of pH. The rate of decomposition of benzylamine was much faster at pH 4 than at pH 9, consistent with the prediction that benzylamine acts as both nucleophile and an electrophile, and our estimate that the pKa of benzylamine is ~5 at 250°C and Psat. Accordingly, dibenzylamine is the primary product of the reaction of two benzylamine molecules, and this reaction is readily reversible under hydrothermal conditions. Extremely acidic or basic pH can be used to suppress dibenzylamine production, which also suppresses the formation of all other major products, including toluene, benzyl alcohol, dibenzylimine, and tribenzylamine. This suggests that dibenzylamine is the lone primary product that then itself reacts as a precursor to produce the above compounds. Analog experiments performed with ring-substituted benzylamine derivatives and chiral

  12. Thiols in Hydrothermal Solution: Standard Partial Molal Properties and Their Role in the Organic Geochemistry of Hydrothermal Environments

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell D.; Rogers, Karyn L.; DeVincenzi, D. (Technical Monitor)

    2001-01-01

    Modern seafloor hydrothermal systems are locations where great varieties of geochemistry occur due to the enormous disequilibrium between vent fluids and seawater. The disequilibrium geochemistry has been hypothesized to include reactions to synthesize organic compounds. Despite the incomplete understanding of the carbon budget in hydrothermal systems, the organic geochemistry of these sites has received little attention. Experimental simulations of these environments, however, indicate that organic compounds may have difficulty forming in a purely aqueous environment. On the other hand, thiols, thioesters and disulfides have been implicated as reaction intermediates between CO or CO2 in experiments of carbon reduction in hydrothermal environments, as well as in a variety of biological processes and other abiotic reactions. The reduction of CO2 to thesis, for example, is observed using the FeS-H2S/FeS2 couple to provide the reducing power. We have used recent advances in theoretical geochemistry to estimate the standard partial moral thermodynamic properties and parameters for the revised Helgeson-Kirkham-Flowers equation of state for aqueous straight-chain alkyl thesis. With these data and parameters we have evaluated the role that organic sulfur compounds may play as reaction intermediates during organic compound synthesis. We conclude that organic sulfur compounds may hold the key to the organic chemistry leading to the origin of life in hydrothermal settings. These results may also explain the presence of sulfur in a number of biomolecules present in ancient thermophilic microorganisms.

  13. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions

  14. Similar influence of stabilized alkaline and neutral sodium hypochlorite solutions on the fracture resistance of root canal-treated bovine teeth.

    PubMed

    Souza, Erick Miranda; Calixto, Amanda Martins; Lima, Camila Nara E; Pappen, Fernanda Geraldo; De-Deus, Gustavo

    2014-10-01

    Stabilizing sodium hypochlorite (NaOCl) at an alkaline pH is proposed to increase solution stability and tissue dissolution ability; however, a reduction on the flexural strength of dentin discs has been found to be a side effect. This study sought to determine whether a stabilized alkaline NaOCl reduces the fracture resistance of root canal-treated bovine teeth after root canal preparation compared with a neutral solution counterpart. The 4 anterior incisors were removed from 20 mandibular bovine jaws, and each 1 was randomly assigned to 1 of 4 groups (20 teeth each). Teeth were prepared with a sequence of 6 K-type files. The following experimental groups received a different irrigation regimen: G1: distilled water (negative control), G2: 5% NaOCl at a pH of 7.2, and G3: 5% NaOCl at a pH of 12.8; in the positive control group (G4), teeth remained untreated. The time of contact and volume of solution were carefully standardized. After bone and periodontal ligament simulation, teeth were subjected to a fracture resistance test. A significant difference was observed among the 4 groups tested (analysis of variance, P < .05). The 5% NaOCl groups (G2 and G3) presented significantly lower resistance to fracture than the control (G1 and G4) (Tukey test, P < .05). Both NaOCl solutions similarly reduced the fracture resistance at approximately 30% (Tukey test, P > .05). No differences were observed between positive and negative control groups (Tukey test, P > .05). Stabilized alkaline and neutral NaOCl solutions similarly reduced the fracture resistance of root canal-treated bovine teeth by about 30%. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Efficient and Stable Silicon Microwire Photocathodes with a Nickel Silicide Interlayer for Operation in Strongly Alkaline Solutions

    PubMed Central

    2018-01-01

    Most photoanodes commonly applied in solar fuel research (e.g., of Fe2O3, BiVO4, TiO2, or WO3) are only active and stable in alkaline electrolytes. Silicon (Si)-based photocathodes on the other hand are mainly studied under acidic conditions due to their instability in alkaline electrolytes. Here, we show that the in-diffusion of nickel into a 3D Si structure, upon thermal annealing, yields a thin (sub-100 nm), defect-free nickel silicide (NiSi) layer. This has allowed us to design and fabricate a Si microwire photocathode with a NiSi interlayer between the catalyst and the Si microwires. Upon electrodeposition of the catalyst (here, nickel molybdenum) on top of the NiSi layer, an efficient, Si-based photocathode was obtained that is stable in strongly alkaline solutions (1 M KOH). The best-performing, all-earth-abundant microwire array devices exhibited, under AM 1.5G simulated solar illumination, an ideal regenerative cell efficiency of 10.1%. PMID:29780886

  16. River solute fluxes reflecting active hydrothermal chemical weathering of the Yellowstone Plateau Volcanic Field, USA

    USGS Publications Warehouse

    Hurwitz, S.; Evans, William C.; Lowenstern, J. B.

    2010-01-01

    In the past few decades numerous studies have quantified the load of dissolved solids in large rivers to determine chemical weathering rates in orogenic belts and volcanic areas, mainly motivated by the notion that over timescales greater than ~100kyr, silicate hydrolysis may be the dominant sink for atmospheric CO2, thus creating a feedback between climate and weathering. Here, we report the results of a detailed study during water year 2007 (October 1, 2006 to September 30, 2007) in the major rivers of the Yellowstone Plateau Volcanic Field (YPVF) which hosts Earth's largest "restless" caldera and over 10,000 thermal features. The chemical compositions of rivers that drain thermal areas in the YPVF differ significantly from the compositions of rivers that drain non-thermal areas. There are large seasonal variations in river chemistry and solute flux, which increases with increasing water discharge. The river chemistry and discharge data collected periodically over an entire year allow us to constrain the annual solute fluxes and to distinguish between low-temperature weathering and hydrothermal flux components. The TDS flux from Yellowstone Caldera in water year 2007 was 93t/km2/year. Extensive magma degassing and hydrothermal interaction with rocks accounts for at least 82% of this TDS flux, 83% of the cation flux and 72% of the HCO3- flux. The low-temperature chemical weathering rate (17t/km2/year), calculated on the assumption that all the Cl- is of thermal origin, could include a component from low-temperature hydrolysis reactions induced by CO2 ascending from depth rather than by atmospheric CO2. Although this uncertainty remains, the calculated low-temperature weathering rate of the young rhyolitic rocks in the Yellowstone Caldera is comparable to the world average of large watersheds that drain also more soluble carbonates and evaporates but is slightly lower than calculated rates in other, less-silicic volcanic regions. Long-term average fluxes at

  17. Differing responses of zircon, chevkinite-(Ce), monazite-(Ce) and fergusonite-(Y) to hydrothermal alteration: Evidence from the Keivy alkaline province, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Macdonald, Ray; Bagiński, Bogusław; Zozulya, Dmitry

    2017-09-01

    A quartzolite from the Rova occurrence, Keivy alkali granite province, Kola Peninsula, Russia, is used to examine the differing responses of certain rare-metal minerals during interaction with hydrothermal fluids. The minerals are two silicates [chevkinite-(Ce) and zircon], a phosphate [monazite-(Ce)] and an oxide [fergusonite-(Y)]. Textural evidence is taken to show that the dominant alteration mechanism was interface-coupled dissolution-reprecipitation. Zircon was the most pervasively altered, possibly by broadening of cleavage planes or fractures; the other minerals were altered mainly on their rims and along cracks. The importance of cracks in promoting fluid access is stressed. The compositional effects of the alteration of each phase are documented. The hydrothermal fluids carried few ligands capable of transporting significant amounts of rare-earth elements (REE), high field strength elements (HFSE) and actinides; alteration is inferred to have been promoted by mildly alkaline, Ca-bearing fluids. Expansion cracks emanating from fergusonite-(Y) are filled with unidentified material containing up to 35 wt% UO2 and 25 wt% REE2O3, indicating late-stage, short-distance mobility of these elements. Electron microprobe chemical dating of monazite yielded an age of 1665 ± 22 Ma, much younger than the formation age of the Keivy province (2.65-2.67 Ga) but comparable to that of the Svecofennian metamorphic event which affected the area (1.9-1.7 Ga) or during fluid-thermal activation of the region during rapakivi granite magmatism (1.66-1.56 Ga). Dates for altered monazite range from 2592 ± 244 Ma to 773 ± 88 Ma and reflect disturbance of the U-Th-Pb system during alteration.

  18. Controlled synthesis of BiVO{sub 4} with multiple morphologies via an ethylenediamine-assisted hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xuemei, E-mail: qixuemei@shiep.edu.cn; School of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090; Zhu, Xinyuan

    2014-11-15

    Graphical abstract: BiVO{sub 4} samples with various morphologies were synthesized via a simple ethylenediamine (EN) assisted hydrothermal route. One of the mixed crystal phase with spherical and porous morphology showed excellent photocatalytic activity and about 90% Rhodamine B was degraded after 140 min visible light irradiation. - Highlights: • BiVO{sub 4} samples with various morphologies were synthesized by hydrothermal method. • Ethylenediamine mainly acts as alkaline source to adjust pH values of precursor. • BiVO{sub 4} with spherical morphology has excellent photocatalytic activity. - Abstract: In this work, BiVO{sub 4} particles with different crystal structures and morphologies including hexahedral, sphericalmore » porous and hyperbranched ones were fabricated in the presence of ethylenediamine by hydrothermal process. The as-fabricated samples were well characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy and ultraviolet–visible absorption spectroscopy. The results showed that the morphology and crystal structure of BiVO{sub 4} particles could be well controlled by only changing the ethylenediamine content in the deionized water solution. Photocatalytic activity of the samples was evaluated by the degradation of Rhodamine B under visible-light irradiation. It was shown that BiVO{sub 4} sample with spherical porous morphology and mixed crystal phase exhibited the best photocatalytic performance after optimizing the ethylenediamine content. The best degradation ratio of Rhodamine B could reach about 87% after 140 min visible-light irradiation.« less

  19. Difference in anisotropic etching characteristics of alkaline and copper based acid solutions for single-crystalline Si.

    PubMed

    Chen, Wei; Liu, Yaoping; Yang, Lixia; Wu, Juntao; Chen, Quansheng; Zhao, Yan; Wang, Yan; Du, Xiaolong

    2018-02-21

    The so called inverted pyramid arrays, outperforming conventional upright pyramid textures, have been successfully achieved by one-step Cu assisted chemical etching (CACE) for light reflection minimization in silicon solar cells. Due to the lower reduction potential of Cu 2+ /Cu and different electronic properties of different Si planes, the etching of Si substrate shows orientation-dependent. Different from the upright pyramid obtained by alkaline solutions, the formation of inverted pyramid results from the coexistence of anisotropic etching and localized etching process. The obtained structure is bounded by Si {111} planes which have the lowest etching rate, no matter what orientation of Si substrate is. The Si etching rate and (100)/(111) etching ratio are quantitatively analyzed. The different behaviors of anisotropic etching of Si by alkaline and Cu based acid etchant have been systematically investigated.

  20. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge.

    PubMed

    Schrenk, Matthew O; Kelley, Deborah S; Bolton, Sheryl A; Baross, John A

    2004-10-01

    The recently discovered Lost City Hydrothermal Field (LCHF) represents a new type of submarine hydrothermal system driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline hydrothermal environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we report the first analyses of microbial communities inhabiting carbonate chimneys awash in warm, high pH fluids at the LCHF and the predominance of a single group of methane-metabolizing Archaea. The predominant phylotype, related to the Methanosarcinales, formed tens of micrometre-thick biofilms in regions adjacent to hydrothermal flow. Exterior portions of active structures harboured a diverse microbial community composed primarily of filamentous Eubacteria that resembled sulphide-oxidizing species. Inactive samples, away from regions of hydrothermal flow, contained phylotypes related to pelagic microorganisms. The abundance of organisms linked to the volatile chemistry at the LCHF hints that similar metabolic processes may operate in the subseafloor. These results expand the range of known geological settings that support biological activity to include submarine hydrothermal systems that are not dependent upon magmatic heat sources.

  1. Coordination chemistry of vitamin C. Part I. Interaction of L-ascorbic acid with alkaline earth metal ions in the crystalline solid and aqueous solution.

    PubMed

    Tajmir-Riahi, H A

    1990-10-01

    The interaction of L-ascorbic acid with alkaline earth metal ions has been investigated in aqueous solution at pH 6-7. The solid salts of the type Mg(L-ascorbate)2.4H2O, Ca(L-ascorbate)2.2H2O, Sr(L-ascorbate)2.2H2O and Ba(L-ascorbate)2.2H2O were isolated and characterized by means of 13C NMR and FT-IR spectroscopy. Spectroscopic and other evidence suggested that in aqueous solution, the binding of the alkaline earth metal ions is through the O-3 atom of the ascorbate anion, while in the solid state the binding of the Mg(II) is different from those of the other alkaline earth metal ion salts. The Mg(II) ion binds to the O-3, O-1 atom of the two ascorbate anions and to two H2O molecules, while the eight-coordination around the Ca(II), Sr(II), and Ba(II) ions would be completed by the coordination of three acid anions, through O-5, O-6 of the first, O-3, O-5, O-6 of the second and O-1 of the third anion as well as to two H2O molecules. The structural properties of the alkaline earth metal-ascorbate salts are different in the solid and aqueous solution.

  2. Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Blundy, Jonathan D.; Wood, Bernard J.

    1991-01-01

    The isothermal (750°C) experiments of LAGACHE and DUJON (1987) reveal that the partitioning of Sr between plagioclase feldspar and hydrothermal solutions is a funtion of the anorthite (An) content of the plagioclase, indicating that crystal chemistry may exert a powerful influence on trace element partitioning. In order to compare these results with those on trace element partitioning between plagioclase and silicate melts we have compiled from the literature a large dataset of experimental and volcanic distribution coefficients ( D's) for Sr (and Ba). These data, which span a compositional range from lunar basalt to high silica rhyolite and a temperature range of over 650°C, show a relationship between DSr (and DBa) and mole fraction An ( XAn) which is similar to that exhibited by the hydrothermal results obtained at constant temperature. Plots of In DSr and In DBa versus XAn are linear with negative slope, indicating that both elements are more compatible in albite than anorthite. In terms of molar distribution coefficients ( D Sr∗) the hydrothermal and silicate melt data display an identical linear relationship between RT In D Sr∗ (where T is the absolute temperature in K and R is the gas constant, 8.314 JK -1 mol -1) and XAn. We conclude therefore that crystal chemistry provides the dominant control on partitioning of Sr and Ba into plagioclase and that the effects of temperature, pressure, and fluid composition are minor. Apparent relationships between DSr (and DBa) and the reciprocal temperature (1/ T) are artefacts of the linear relationships between XAn and 1/ T in the experimental studies. By defining a Henry's law standard state for the silicate melts and hydrothermal solutions, and considering plagioclases to be ternary regular solutions, we are able to relate the observed relationships between RT In D i∗ (where i is Ba or Sr) and XAn to the excess free energies of the trace element partitioning reactions between plagioclase and melt or

  3. Effects of pH and Redox Gradients on Prebiotic Organic Synthesis and the Generation of Free Energy in Simulated Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Barge, L. M.; Flores, E.; Abedian, Y.; Maltais, T.; Cameron, R.; Hermis, N.; Chin, K.; Russell, M. J.; Baum, M. M.

    2017-07-01

    Hydrothermal minerals in alkaline vents can promote phosphorus and organic concentration, redox reactions driven by catalytic metal sulfides, and the ambient pH and redox gradients can affect the synthesis of organics.

  4. A model for Nb-Zr-REE-Ga enrichment in Lopingian altered alkaline volcanic ashes: Key evidence of H-O isotopes

    NASA Astrophysics Data System (ADS)

    Dai, Shifeng; Nechaev, Victor P.; Chekryzhov, Igor Yu.; Zhao, Lixin; Vysotskiy, Sergei V.; Graham, Ian; Ward, Colin R.; Ignatiev, Alexander V.; Velivetskaya, Tatyana A.; Zhao, Lei; French, David; Hower, James C.

    2018-03-01

    Clay-altered volcanic ash with highly-elevated concentrations of Nb(Ta), Zr(Hf), rare earth elements (REE), and Ga, is a new type of critical metal deposit with high commercial prospects that has been discovered in Yunnan Province, southwest China. Previous studies showed that the volcanic ashes had been subjected to hydrothermal fluids, the nature of which, however, is not clear. Here we show that the volcanic ashes were originated from alkaline magmatism, followed by a continuous hydrothermal-weathering process. Heated meteoric waters, which were sourced from acidic rains and mixed with CO2 from degassing of the Emeishan plume, have caused partial, but widespread, acidic leaching of Nb, Ta, Zr, Hf, REE, and Ga into ground water and residual enrichment of these elements, along with Al and Ti, in the deeply altered rocks. Subsequent alteration occurring under cooler, neutral or alkaline conditions, caused by water-rock interaction, resulted in precipitation of the leached critical metals in the deposit. Polymetallic mineralization of similar origin may be found in other continental regions subjected to explosive alkaline volcanism associated with deep weathering in humid conditions.

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A priormore » fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to

  6. Chemically and compositionally modified solid solution disordered multiphase nickel hydroxide positive electrode for alkaline rechargeable electrochemical cells

    DOEpatents

    Ovshinsky, Stanford R.; Corrigan, Dennis; Venkatesan, Srini; Young, Rosa; Fierro, Christian; Fetcenko, Michael A.

    1994-01-01

    A high capacity, long cycle life positive electrode for use in an alkaline rechargeable electrochemical cell comprising: a solid solution nickel hydroxide material having a multiphase structure that comprises at least one polycrystalline .gamma.-phase including a polycrystalline .gamma.-phase unit cell comprising spacedly disposed plates with at least one chemical modifier incorporated around the plates, the plates having a range of stable intersheet distances corresponding to a 2.sup.+ oxidation state and a 3.5.sup.+, or greater, oxidation state; and at least one compositional modifier incorporated into the solid solution nickel hydroxide material to promote the multiphase structure.

  7. Adsorptive separation and photocatalytic degradation of methylene blue dye on titanate nanotube powders prepared by hydrothermal process using metal Ti particles as a precursor.

    PubMed

    Hu, Keshui; Xiao, Xin; Cao, Xiufang; Hao, Rong; Zuo, Xiaoxi; Zhang, Xiaojing; Nan, Junmin

    2011-08-30

    Titanate nanotube powders (TNTPs) with the twofold removal ability, i.e. adsorptive separation and photocatalytic degradation, are synthesized under hydrothermal conditions using metal Ti particles as a precursor in the concentrated alkaline solution, and their morphology, structure, adsorptive and photocatalytic properties are investigated. Under hydrothermal conditions, the titanate nanotubes (TNTs) with pore diameter of 3-4nm are produced on the surface of metal Ti particles, and stacked together to form three-dimensional (3D) network with porous structure. The TNTPs synthesized in the autoclave at 130°C for 24h exhibits a maximum adsorption capability of about 197mg g(-1) in the neutral methylene blue (MB) solution (40mg L(-1)) within 90min, the adsorption process can be described by pseudo second-order kinetics model. Especially, in comparison with the adsorptive and the photocatalytic processes are performed in turn, about 50min can be saved through synchronously utilizing the double removal ability of TNTPs when the removal ratio of MB approaches 95% in MB solution (40mg L(-1)) at a solid-liquid (S/L) ratio of 1:8 under ultraviolet (UV) light irradiation. These 3D TNTPs with the twofold removal properties and easier separation ability for recycling use show promising prospect for the treatment of dye pollutants from wastewaters in future industrial application. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. A study on the mechanism of stress corrosion cracking of duplex stainless steels in hot alkaline-sulfide solution

    NASA Astrophysics Data System (ADS)

    Chasse, Kevin Robert

    Duplex stainless steels (DSS) generally have superior strength and corrosion resistance as compared to most standard austenitic and ferritic stainless grades owing to a balanced microstructure of austenite and ferrite. As a result of having favorable properties, DSS have been selected for the construction of equipment in pulp and paper, chemical processing, nuclear, oil and gas as well as other industries. The use of DSS has been restricted in some cases because of stress corrosion cracking (SCC), which can initiate and grow in either the ferrite or austenite phase depending on the environment. Thorough understanding of SCC mechanisms of DSS in chloride- and hydrogen sulfide-containing solutions has been useful for material selection in many environments. However, understanding of SCC mechanisms of DSS in sulfide-containing caustic solutions is limited, which has restricted the capacity to optimize process and equipment design in pulp and paper environments. Process environments may contain different concentrations of hydroxide, sulfide, and chloride, altering corrosion and SCC susceptibility of each phase. Crack initiation and growth behavior will also change depending on the relative phase distribution and properties of austenite and ferrite. The role of microstructure and environment on the SCC of standard grade UNS S32205 and lean grade UNS S32101 in hot alkaline-sulfide solution were evaluated in this work using electrochemical, film characterization, mechanical testing, X-ray diffraction, and microscopy techniques. Microstructural aspects, which included residual stress state, phase distribution, phase ratio, and microhardness, were related to the propensity for SCC crack initiation in different simulated alkaline pulping liquors at 170 °C. Other grades of DSS and reference austenitic and superferritic grades of stainless steel were studied using exposure coupons for comparison to understand compositional effects and individual phase susceptibility

  9. Numerical simulation of magmatic hydrothermal systems

    USGS Publications Warehouse

    Ingebritsen, S.E.; Geiger, S.; Hurwitz, S.; Driesner, T.

    2010-01-01

    The dynamic behavior of magmatic hydrothermal systems entails coupled and nonlinear multiphase flow, heat and solute transport, and deformation in highly heterogeneous media. Thus, quantitative analysis of these systems depends mainly on numerical solution of coupled partial differential equations and complementary equations of state (EOS). The past 2 decades have seen steady growth of computational power and the development of numerical models that have eliminated or minimized the need for various simplifying assumptions. Considerable heuristic insight has been gained from process-oriented numerical modeling. Recent modeling efforts employing relatively complete EOS and accurate transport calculations have revealed dynamic behavior that was damped by linearized, less accurate models, including fluid property control of hydrothermal plume temperatures and three-dimensional geometries. Other recent modeling results have further elucidated the controlling role of permeability structure and revealed the potential for significant hydrothermally driven deformation. Key areas for future reSearch include incorporation of accurate EOS for the complete H2O-NaCl-CO2 system, more realistic treatment of material heterogeneity in space and time, realistic description of large-scale relative permeability behavior, and intercode benchmarking comparisons. Copyright 2010 by the American Geophysical Union.

  10. Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials

    NASA Astrophysics Data System (ADS)

    Xu, Huiwen

    Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.

  11. A ubiquitous thermoacidophilic archaeon from deep-sea hydrothermal vents

    USGS Publications Warehouse

    Reysenbach, A.-L.; Liu, Yajing; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, Karen L.; Voytek, M.A.

    2006-01-01

    Deep-sea hydrothermal vents are important in global biogeochemical cycles, providing biological oases at the sea floor that are supported by the thermal and chemical flux from the Earth's interior. As hot, acidic and reduced hydrothermal fluids mix with cold, alkaline and oxygenated sea water, minerals precipitate to form porous sulphide-sulphate deposits. These structures provide microhabitats for a diversity of prokaryotes that exploit the geochemical and physical gradients in this dynamic ecosystem. It has been proposed that fluid pH in the actively venting sulphide structures is generally low (pH < 4.5), yet no extreme thermoacidophile has been isolated from vent deposits. Culture-independent surveys based on ribosomal RNA genes from deep-sea hydrothermal deposits have identified a widespread euryarchaeotal lineage, DHVE2 (deep-sea hydrothermal vent euryarchaeotic 2). Despite the ubiquity and apparent deep-sea endemism of DHVE2, cultivation of this group has been unsuccessful and thus its metabolism remains a mystery. Here we report the isolation and cultivation of a member of the DHVE2 group, which is an obligate thermoacidophilic sulphur- or iron-reducing heterotroph capable of growing from pH 3.3 to 5.8 and between 55 and 75??C. In addition, we demonstrate that this isolate constitutes up to 15% of the archaeal population, providing evidence that thermoacidophiles may be key players in the sulphur and iron cycling at deep-sea vents. ?? 2006 Nature Publishing Group.

  12. Evolution of interstellar organic compounds under asteroidal hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Vinogradoff, V.; Bernard, S.; Le Guillou, C.; Remusat, L.

    2018-05-01

    Carbonaceous chondrites (CC) contain a diversity of organic compounds. No definitive evidence for a genetic relationship between these complex organic molecules and the simple organic molecules detected in the interstellar medium (ISM) has yet been reported. One of the many difficulties arises from the transformations of organic compounds during accretion and hydrothermal alteration on asteroids. Here, we report results of hydrothermal alteration experiments conducted on a common constituent of interstellar ice analogs, Hexamethylenetetramine (HMT - C6H12N4). We submitted HMT to asteroidal hydrothermal conditions at 150 °C, for various durations (up to 31 days) and under alkaline pH. Organic products were characterized by gas chromatography mass spectrometry, infrared spectroscopy and synchrotron-based X-ray absorption near edge structure spectroscopy. Results show that, within a few days, HMT has evolved into (1) a very diverse suite of soluble compounds dominated by N-bearing aromatic compounds (> 150 species after 31 days), including for instance formamide, pyridine, pyrrole and their polymers (2) an aromatic and N-rich insoluble material that forms after only 7 days of experiment and then remains stable through time. The reaction pathways leading to the soluble compounds likely include HMT dissociation, formose and Maillard-type reactions, e.g. reactions of sugar derivatives with amines. The present study demonstrates that, if interstellar organic compounds such as HMT had been accreted by chondrite parent bodies, they would have undergone chemical transformations during hydrothermal alteration, potentially leading to the formation of high molecular weight insoluble organic molecules. Some of the diversity of soluble and insoluble organic compounds found in CC may thus result from asteroidal hydrothermal alteration.

  13. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    USGS Publications Warehouse

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  14. Alkaline modified oil shale fly ash: optimal synthesis conditions and preliminary tests on CO2 adsorption.

    PubMed

    Reinik, Janek; Heinmaa, Ivo; Kirso, Uuve; Kallaste, Toivo; Ritamäki, Johannes; Boström, Dan; Pongrácz, Eva; Huuhtanen, Mika; Larsson, William; Keiski, Riitta; Kordás, Krisztián; Mikkola, Jyri-Pekka

    2011-11-30

    Environmentally friendly product, calcium-silica-aluminum hydrate, was synthesized from oil shale fly ash, which is rendered so far partly as an industrial waste. Reaction conditions were: temperature 130 and 160°C, NaOH concentrations 1, 3, 5 and 8M and synthesis time 24h. Optimal conditions were found to be 5M at 130°C at given parameter range. Original and activated ash samples were characterized by XRD, XRF, SEM, EFTEM, (29)Si MAS-NMR, BET and TGA. Semi-quantitative XRD and MAS-NMR showed that mainly tobermorites and katoite are formed during alkaline hydrothermal treatment. Physical adsorption of CO(2) on the surface of the original and activated ash samples was measured with thermo-gravimetric analysis. TGA showed that the physical adsorption of CO(2) on the oil shale fly ash sample increases from 0.06 to 3-4 mass% after alkaline hydrothermal activation with NaOH. The activated product has a potential to be used in industrial processes for physical adsorption of CO(2) emissions. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE PAGES

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin; ...

    2017-12-07

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  16. Hydrothermal Synthesis of Platinum-Group-Metal-Free Catalysts: Structural Elucidation and Oxygen Reduction Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokhale, Rohan; Tsui, Lok-Kun; Roach, Kristin

    In this paper, a hydrothermal approach to generate a platinum-group-metal-free (PGM-free) Fe-N-C catalyst for the oxygen reduction reaction (ORR) is introduced. The process involves partial carbonization by hydrothermal means followed by thermal treatment to obtain the final catalysts. Detailed X-ray scattering analysis of the glucose-imidazole catalysts (termed as GLU-IMID-C catalysts), obtained for the first time with the use of CarbonXS GUI program, reveals the presence of face-centered cubic (FCC) iron nanoparticles embedded in partially graphitic carbon in all catalyst variations. We also report the physical characterization of these catalysts by using X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface area analysis, and transmissionmore » electron microscopy. The electrocatalytic behavior of the catalysts towards oxygen reduction is studied separately in acidic and alkaline electrolytes by rotating ring disk electrode measurements. The catalysts exhibit high ORR activity in acidic (0.5 M H 2SO 4) and alkaline (0.1 M KOH) electrolytes. Lastly, a precursor structure-performance relationship of these catalysts and their performance trends in both electrolytes has been discussed in this work.« less

  17. Abiotic Organic Chemistry in Hydrothermal Systems.

    NASA Astrophysics Data System (ADS)

    Simoneit, B. R.; Rushdi, A. I.

    2004-12-01

    Abiotic organic chemistry in hydrothermal systems is of interest to biologists, geochemists and oceanographers. This chemistry consists of thermal alteration of organic matter and minor prebiotic synthesis of organic compounds. Thermal alteration has been extensively documented to yield petroleum and heavy bitumen products from contemporary organic detritus. Carbon dioxide, carbon monoxide, ammonia and sulfur species have been used as precursors in prebiotic synthesis experiments to organic compounds. These inorganic species are common components of hot spring gases and marine hydrothermal systems. It is of interest to further test their reactivities in reductive aqueous thermolysis. We have synthesized organic compounds (lipids) in aqueous solutions of oxalic acid, and with carbon disulfide or ammonium bicarbonate at temperatures from 175-400° C. The synthetic lipids from oxalic acid solutions consisted of n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, n-alkenes and n-alkanes, typically to C30 with no carbon number preferences. The products from CS2 in acidic aqueous solutions yielded cyclic thioalkanes, alkyl polysulfides, and thioesters with other numerous minor compounds. The synthesis products from oxalic acid and ammonium bicarbonate solutions were homologous series of n-alkyl amides, n-alkyl amines, n-alkanes and n-alkanoic acids, also to C30 with no carbon number predominance. Condensation (dehydration) reactions also occur under elevated temperatures in aqueous medium as tested by model reactions to form amide, ester and nitrile bonds. It is concluded that the abiotic formation of aliphatic lipids, condensation products (amides, esters, nitriles, and CS2 derivatives (alkyl polysulfides, cyclic polysulfides) is possible under hydrothermal conditions and warrants further studies.

  18. Hydrothermal activity lowers trophic diversity in Antarctic hydrothermal sediments

    NASA Astrophysics Data System (ADS)

    Bell, James B.; Reid, William D. K.; Pearce, David A.; Glover, Adrian G.; Sweeting, Christopher J.; Newton, Jason; Woulds, Clare

    2017-12-01

    Hydrothermal sediments are those in which hydrothermal fluid is discharged through sediments and are one of the least studied deep-sea ecosystems. We present a combination of microbial and biochemical data to assess trophodynamics between and within hydrothermal and background areas of the Bransfield Strait (1050-1647 m of depth). Microbial composition, biomass, and fatty acid signatures varied widely between and within hydrothermally active and background sites, providing evidence of diverse metabolic activity. Several species had different feeding strategies and trophic positions between hydrothermally active and inactive areas, and the stable isotope values of consumers were not consistent with feeding morphology. Niche area and the diversity of microbial fatty acids was lowest at the most hydrothermally active site, reflecting trends in species diversity. Faunal uptake of chemosynthetically produced organics was relatively limited but was detected at both hydrothermal and non-hydrothermal sites, potentially suggesting that hydrothermal activity can affect trophodynamics over a much wider area than previously thought.

  19. Hydrothermal Synthesis of Nanostructured Manganese Oxide as Cathodic Catalyst in a Microbial Fuel Cell Fed with Leachate

    PubMed Central

    Haoran, Yuan; Lifang, Deng; Tao, Lu; Yong, Chen

    2014-01-01

    Much effort has been devoted to the synthesis of novel nanostructured MnO2 materials because of their unique properties and potential applications as cathode catalyst in Microbial fuel cell. Hybrid MnO2 nanostructures were fabricated by a simple hydrothermal method in this study. Their crystal structures, morphology, and electrochemical characters were carried out by FESEM, N2-adsorption-desorption, and CV, indicating that the hydrothermally synthesized MnO2 (HSM) was structured by nanorods of high aspect ratio and multivalve nanoflowers and more positive than the naturally synthesized MnO2 (NSM), accompanied by a noticeable increase in oxygen reduction peak current. When the HSM was employed as the cathode catalyst in air-cathode MFC which fed with leachate, a maximum power density of 119.07 mW/m2 was delivered, 64.68% higher than that with the NSM as cathode catalyst. Furthermore, the HSM via a 4-e pathway, but the NSM via a 2-e pathway in alkaline solution, and as 4-e pathway is a more efficient oxygen reduction reaction, the HSM was more positive than NSM. Our study provides useful information on facile preparation of cost-effective cathodic catalyst in air-cathode MFC for wastewater treatment. PMID:24723824

  20. A method for making an alkaline battery electrode plate

    NASA Technical Reports Server (NTRS)

    Chida, K.; Ezaki, T.

    1983-01-01

    A method is described for making an alkaline battery electrode plate where the desired active substances are filled into a nickel foam substrate. In this substrate an electrolytic oxidation reduction occurs in an alkaline solution containing lithium hydroxide.

  1. Useful Ingredients Recovery from Sewage Sludge by using Hydrothermal Reaction

    NASA Astrophysics Data System (ADS)

    Suzuki, Koichi; Moriyama, Mika; Yamasaki, Yuki; Takahashi, Yui; Inoue, Chihiro

    2006-05-01

    Hydrothermal treatment of sludge from a sewage treatment plant was conducted to obtain useful ingredients for culture of specific microbes which can reduce polysulfide ion into sulfide ion and/or hydrogen sulfide. Several additives such as acid, base, and oxidizer were added to the hydrothermal reaction of excess sludge to promote the production of useful materials. After hydrothermal treatment, reaction solution and precipitation were qualitatively and quantitatively analyzed and estimated the availability as nutrition in cultural medium. From the results of product analysis, most of organic solid in sewage was basically decomposed by hydrothermal hydrolysis and transformed into oily or water-soluble compounds. Bacterial culture of sulfate-reducing bacteria (SRB) showed the good results in multiplication with medium which was obtained from hydrothermal treatment of sewage sludge with magnesium or calcium hydroxide and hydrogen peroxide.

  2. Hydrothermal Cold Sintering

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyu

    Solid state sintering transforms particle compact to a physically robust and dense polycrystalline monolith driven by reduction of surface energy and curvature. Since bulk diffusion is required for neck formation and pore elimination, sintering temperature about 2/3 of melting point is needed. It thus places limitations for materials synthesis and integration, and contributes to significant energy consumption in ceramic processing. Furthermore, since surface transport requires lower temperature than bulk processes, grain growth is often rapid and can be undesired for physical properties. For these reasons, several techniques have been developed including Liquid Phase Sintering (LPS), Hot Pressing (HP) and Field Assisted Sintering Technique (FAST), which introduce either viscous melt, external pressure or electric field to speed up densification rates at lower temperature. However, because of their inherent reliability on bulk diffusion, temperatures required are often too high for integrating polymers and non-noble metals. Reduction of sintering temperature below 400 °C would require a different densification mechanism that is based on surface transport with external forces to drive volume shrinkage. Densification method combining uniaxial pressure and solution under hydrothermal condition was first demonstrated by Kanahara's group at Kochi University in 1986 and was brought to our attention by the work of Kahari, etc, from University of Oulu on densification of Li2MoO 4 in 2015. This relatively new process showed promising ultra-low densification temperature below 300 °C, however little was known about its fundamental mechanism and scope of applications, which became the main focus of this dissertation. In this work, a uniaxial hydraulic press, a standard stainless steel 1/2 inch diameter die with heating band were utilized in densifying metal oxides. Applied pressure and sintering temperature were between 100 MPa and 700 MPa and from room temperature to 300

  3. Effects of iron-containing minerals on hydrothermal reactions of ketones

    NASA Astrophysics Data System (ADS)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  4. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw.

    PubMed

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-12-16

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4', β-β', β-5' linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.

  5. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  6. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N.

    PubMed

    Kelley, D S; Karson, J A; Blackman, D K; Früh-Green, G L; Butterfield, D A; Lilley, M D; Olson, E J; Schrenk, M O; Roe, K K; Lebon, G T; Rivizzigno, P

    2001-07-12

    Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.

  7. Hydrothermal Synthesis of PbTiO3 Nanocrystals with a pH-Adjusting Agent of Ammonia Solution

    NASA Astrophysics Data System (ADS)

    Li, Xinyi; Huang, Zhixiong; Zhang, Lianmeng; Guo, Dongyun

    2018-05-01

    The PbTiO3 nanocrystals were synthesized by a hydrothermal method, and ammonia solution was firstly used as a pH-adjusting agent. The effect of ammonia concentration on formation and morphologies of PbTiO3 nanocrystals was investigated. At low ammonia concentration (0-2.2 mol/L), no perovskite PbTiO3 phase was formed. When the ammonia concentration was 4.4 mol/L, the rod-like PbTiO3 nanocrystals with highly crystalline were successfully synthesized. As the ammonia concentration further increased to 13.2 mol/L, the flake-like PbTiO3 nanocrystals were formed.

  8. Microwave-Hydrothermal Treated Grape Peel as an Efficient Biosorbent for Methylene Blue Removal

    PubMed Central

    Ma, Lin; Jiang, Chunhai; Lin, Zhenyu; Zou, Zhimin

    2018-01-01

    Biosorption using agricultural wastes has been proven as a low cost and efficient way for wastewater treatment. Herein, grape peel treated by microwave- and conventional-hydrothermal processes was used as low cost biosorbent to remove methylene blue (MB) from aqueous solutions. The adsorption parameters including the initial pH value, dosage of biosorbents, contact time, and initial MB concentration were investigated to find the optimum adsorption conditions. The biosorbent obtained by microwave-hydrothermal treatment only for 3 min at 180 °C (microwave-hydrothermal treated grape peel, MGP) showed faster kinetics and higher adsorption capability than that produced by a conventional-hydrothermal process (hydrothermal treated grape peel, HGP) with a duration time of 16 h. The maximum adsorption capability of MGP under the optimum conditions (pH = 11, a dosage of 2.50 g/L) as determined with the Langmuir model reached 215.7 mg/g, which was among the best values achieved so far on biosorbents. These results demonstrated that the grape peel treated by a quick microwave-hydrothermal process can be a very promising low cost and efficient biosorbent for organic dye removal from aqueous solutions. PMID:29385041

  9. Experimental constraints on hydrothermal activities in Enceladus

    NASA Astrophysics Data System (ADS)

    Sekine, Y.; Shibuya, T.; Suzuki, K.; Kuwatani, T.

    2012-12-01

    One of the most remarkable findings by the Cassini-Huygens mission is perhaps water-rich plumes erupting from the south-pole region of Enceladus [1]. Given such geological activity and the detection of sodium salts in the plume, the interior of Enceladus is highly likely to contain an interior ocean interacting with the rock core [2]. A primary question regarding astrobiology and planetary science is whether Enceladus has (or had) hydrothermal activities in the interior ocean. Because N2 might be formed by thermal dissociation of primordial NH3 [3], the presence of N2 in the plume may be a possible indicator for the presence of hydrothermal activities in Enceladus. However, the Cassini UVIS revealed that the plumes do not contain large amounts of N2 [4]. Although these observations may not support the presence of hydrothermal activities, whether NH3 dissociation proceeds strongly depends on the kinetics of hydrothermal reactions and interactions with the rock components, which remain largely unknown. Furthermore, the Cassini CDA recently showed that small amounts of SiO2 might have been included in the plume dusts [5]. Formation of amorphous SiO2 usually occurs when high-temperature and/or high-pH solution with high concentrations of dissolved SiO2 cools and/or is neutralized. Thus, the presence of SiO2 in the plume dusts may suggest the presence of a temperature and/or pH gradient in the ocean. However, no laboratory experiments have investigated what processes control pH and SiO2 concentrations in hydrothermal fluids possibly existing in Enceladus. Here, we show the results of laboratory experiments simulating hydrothermal systems on Enceladus. As the initial conditions, we used both aqueous solution of high concentrations (0.01-2%) of NH3 and NaHCO3 and powdered olivine as an analog for the rock components. Our experimental results show that formation of N2 from NH3 is kinetically and thermodynamically inhibited even under high temperature conditions (< 400

  10. Specific mineral associations of hydrothermal shale (South Kamchatka)

    NASA Astrophysics Data System (ADS)

    Rychagov, S. N.; Sergeeva, A. V.; Chernov, M. S.

    2017-11-01

    The sequence of hydrothermal shale from the East Pauzhet thermal field within the Pauzhet hydrothermal system (South Kamchatka) was studied in detail. It was established that the formation of shale resulted from argillization of an andesitic lava flow under the influence of an acidic sulfate vapor condensate. The horizons with radically different compositions and physical properties compared to those of the overlying homogeneous plastic shale were distinguished at the base of the sequence. These horizons are characterized by high (up to two orders of magnitude in comparison with average values in hydrothermal shale) concentrations of F, P, Na, Mg, K, Ca, Sc, Ti, V, Cr, Cu, and Zn. We suggested a geological-geochemical model, according to which a deep metal-bearing chloride-hydrocarbonate solution infiltrated into the permeable zone formed at the root of the andesitic lava flow beneath plastic shale at a certain stage of evolution of the hydrothermal system.

  11. Scanning electron microscopic and X-ray micro analysis on tooth enamel exposed to alkaline agents.

    PubMed

    Taubee, Fabian; Steiniger, Frank; Nietzsche, Sandor; Norén, Jörgen G

    2010-01-01

    The background of this study comprises two clinical cases, where patients exposed to aerosols of an alkaline and surface active cleaning agent developed loss of enamel substance on their teeth, further resulting in loss of teeth and partially destroyed soft tissues. The alkaline cleaning agent consisted of potassium hydroxide and various surfactants. The purpose of this study was to investigate possible changes in morphology and composition in human teeth enamel exposed to alkaline solutions, by means of X-ray micro analysis (XRMA), FTIR-spectroscopic analyses and scanning electron microscopy (SEM). Extracted premolars, exposed to potassium hydroxide solutions and alkaline cleaning solution,were analyzed by means of XRMA and SEM. Enamel powder, exposed to cleaning solution, was analyzed by means of FTIR. The SEM analysis revealed an increased porosity of the enamel surface and partially loss of enamel substance after exposure to alkaline solutions. The XRMA analyses revealed a decrease in carbon concentration while phosphorous and calcium showed no marked changes. The FTIR analyses showed no significant changes in peak heights or peak positions for phosphate, carbonate or hydroxide. It was concluded that human teeth enamel exposed to alkaline solutions showed loss of organic substance, marked pores in enamel surface and loss of substance in the enamel surface.

  12. Hydrothermal Carbonization: a feasible solution to convert biomass to soil?

    NASA Astrophysics Data System (ADS)

    Tesch, Walter; Tesch, Petra; Pfeifer, Christoph

    2013-04-01

    The erosion of fertile soil is a severe problem arising right after peak oil (Myers 1996). That this issue is not only a problem of arid countries is shown by the fact that even the European Commission defined certain milestones to address the problem of soil erosion in Europe (European Commission 2011). The application of bio-char produced by torrefaction or pyrolysis for the remediation, revegetation and restoration of depleted soils started to gain momentum recently (Rillig 2010, Lehmann 2011, Beesley 2011). Hydrothermal carbonization (HTC) is a promising thermo-chemical process that can be applied to convert organic feedstock into fertile soil and water, two resources which are of high value in regions being vulnerable to erosion. The great advantage of HTC is that organic feedstock (e.g. organic waste) can be used without any special pretreatment (e.g. drying) and so far no restrictions have been found regarding the composition of the organic matter. By applying HTC the organic material is processed along a defined pathway in the Van Krevelen plot (Behrendt 2006). By stopping the process at an early stage a nutritious rich material can be obtained, which is known to be similar to terra preta. Considering that HTC-coal is rich in functional groups and can be derived from the process under "wet" conditions, it can be expected that it shall allow soil bacteria to settle more easily compared to the bio-char derived by torrefaction or pyrolysis. In addition, up to 10 tons process water per ton organic waste can be gained (Vorlop 2009). Thus, as organic waste, loss of fertile soil and water scarcity becomes a serious issue within the European Union, hydrothermal carbonization can provide a feasible solution to address these issues of our near future. The presentation reviews the different types of feedstock investigated for the HTC-Process so far and gives an overview on the current stage of development of this technology. References Beesley L., Moreno-Jiménez E

  13. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lassinantti Gualtieri, Magdalena, E-mail: magdalena.gualtieri@unimore.it; Romagnoli, Marcello; Pollastri, Simone

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for constructionmore » purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.« less

  14. Geothermal activity and hydrothermal mineral deposits at southern Lake Bogoria, Kenya Rift Valley: Impact of lake level changes

    NASA Astrophysics Data System (ADS)

    Renaut, Robin W.; Owen, R. Bernhart; Ego, John K.

    2017-05-01

    Lake Bogoria, a saline alkaline closed-lake in a drainage basin of Neogene volcanic rocks in the central Kenya Rift, is fed partly by ∼200 hot alkaline springs located in three groups along its margins. Hot springs along the midwest shoreline (Loburu, Chemurkeu) and their travertine deposits have been studied, but little is known about the geothermal activity at southern Lake Bogoria. Observations, field measurements and analyses (geochemical and mineralogical) of the spring waters and deposits, spanning three decades, show that the southern spring waters are more saline, the hydrothermal alteration there is more intense, and that most hot spring deposits are siliceous. Geothermal activity at southern Lake Bogoria (Ng'wasis, Koibobei, Losaramat) includes littoral boiling springs and geysers, with fumaroles at slightly higher elevations. Modern spring deposits are ephemeral sodium carbonates, opal-A crusts and silica gels. Local fossil spring deposits include diatomaceous silica-cemented conglomerates that formed subaqueously when the lake was then dilute and higher than today, and outlying calcite tufa deposits. In contrast, mineral deposits around neighbouring fumarole vents and sites of hydrothermal alteration include clays (kaolinite), sulfate minerals (jarosite, alunite), and Fe-oxyhydroxides linked to rising acidic fluids. When lake level falls, the zone of acidity moves downwards and may overprint older alkaline spring deposits. In contrast, rising lake level leads to lake water dilution and vents in the lower parts of the acidic zone may become dilute alkaline springs. The new evidence at Lake Bogoria shows the potential for using the mineralogy of geothermal sediments to indicate former changes in lake level.

  15. Effect of hydrothermal pretreatment on solubility and formation of kenaf cellulose membrane and hydrogel.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Padzil, Farah Nadia Mohammad; Ng, Peivun

    2015-01-22

    The hydrothermal pretreatment on kenaf core pulp (KCP) was carried out using an autoclave heated in a oil bath at 140°C for 0.5/1/3/5h. The hydrothermal pretreated kenaf (HPK) was dissolved in a LiOH/urea aqueous solution and subsequently used to produce cellulose membrane and hydrogel. The effects of hydrothermal pretreatment time on solubility, viscosity, crystallinity and morphology of the cellulose membrane and hydrogel were investigated. The hydrothermal pretreatment leads to higher cellulose solubility and higher viscosity of the cellulose solution. The formation of cellulose II and crystallinity index of the cellulose membrane and hydrogel were examined by X-ray diffraction (XRD). The pore size of the cellulose membrane and hydrogel displayed an upward trend with respect to the hydrothermal pretreatment period observed under a field emission scanning electron microscope (FESEM). This finding provides an efficient procedure to improve the solubility, viscosity and properties of regenerated cellulose products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Spectrophotometric determination of copper in alkaline solutions and evaluation of some hydroxy-substituted 1,10-phenanthrolines as chromogenic reagents.

    PubMed

    Dunbar, W E; Schilt, A A

    1972-09-01

    Seven new hydroxy-substituted 1,10-phenanthroline derivatives have been evaluated as chromogenic reagents for the determination of copper in strongly alkaline solution. The most sensitive of these, 2,9-dimethyl-4,7-dihydroxy-1,10-phenanthroline, has proven to be highly effective in a simple, rapid procedure for determining trace amounts of copper in sodium hydroxide, potassium carbonate, sodium phosphate or ammonium hydroxide.

  17. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    PubMed

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g -1 ) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Cation exchange properties of zeolites in hyper alkaline aqueous media.

    PubMed

    Van Tendeloo, Leen; de Blochouse, Benny; Dom, Dirk; Vancluysen, Jacqueline; Snellings, Ruben; Martens, Johan A; Kirschhock, Christine E A; Maes, André; Breynaert, Eric

    2015-02-03

    Construction of multibarrier concrete based waste disposal sites and management of alkaline mine drainage water requires cation exchangers combining excellent sorption properties with a high stability and predictable performance in hyper alkaline media. Though highly selective organic cation exchange resins have been developed for most pollutants, they can serve as a growth medium for bacterial proliferation, impairing their long-term stability and introducing unpredictable parameters into the evolution of the system. Zeolites represent a family of inorganic cation exchangers, which naturally occur in hyper alkaline conditions and cannot serve as an electron donor or carbon source for microbial proliferation. Despite their successful application as industrial cation exchangers under near neutral conditions, their performance in hyper alkaline, saline water remains highly undocumented. Using Cs(+) as a benchmark element, this study aims to assess the long-term cation exchange performance of zeolites in concrete derived aqueous solutions. Comparison of their exchange properties in alkaline media with data obtained in near neutral solutions demonstrated that the cation exchange selectivity remains unaffected by the increased hydroxyl concentration; the cation exchange capacity did however show an unexpected increase in hyper alkaline media.

  19. Versatile hydrothermal synthesis of one-dimensional composite structures

    NASA Astrophysics Data System (ADS)

    Luo, Yonglan

    2008-12-01

    In this paper we report on a versatile hydrothermal approach developed to fabricate one-dimensional (1D) composite structures. Sulfur and selenium formed liquid and adsorbed onto microrods as droplets and subsequently reacted with metallic ion in solution to produce nanoparticles-decorated composite microrods. 1D composites including ZnO/CdS, ZnO/MnS, ZnO/CuS, ZnO/CdSe, and FeOOH/CdS were successfully made using this hydrothermal strategy and the growth mechanism was also discussed. This hydrothermal strategy is simple and green, and can be extended to the synthesis of various 1D composite structures. Moreover, the interaction between the shell nanoparticles and the one-dimensional nanomaterials were confirmed by photoluminescence investigation of ZnO/CdS.

  20. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    PubMed Central

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-01-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120–200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4′, β-β′, β-5′ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature. PMID:27982101

  1. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-12-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4‧, β-β‧, β-5‧ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.

  2. Organic matter in hydrothermal metal ores and hydrothermal fluids

    USGS Publications Warehouse

    Orem, W.H.; Spiker, E. C.; Kotra, R.K.

    1990-01-01

    Massive polymetallic sulfides are currently being deposited around active submarine hydrothermal vents associated with spreading centers. Chemoautolithotrophic bacteria are responsible for the high production of organic matter also associated with modern submarine hydrothermal activity. Thus, there is a significant potential for organic matter/metal interactions in these systems. We have studied modern and ancient hydrothermal metal ores and modern hydrothermal fluids in order to establish the amounts and origin of the organic matter associated with the metal ores. Twenty-six samples from modern and ancient hydrothermal systems were surveyed for their total organic C contents. Organic C values ranged from 0.01% to nearly 4.0% in these samples. Metal ores from modern and ancient sediment-covered hydrothermal systems had higher organic C values than those from modern and ancient hydrothermal systems lacking appreciable sedimentary cover. One massive pyrite sample from the Galapagos spreading center (3% organic C) had stable isotope values of -27.4% (??13C) and 2.1% (??15N), similar to those in benthic siphonophors from active vents and distinct from seep sea sedimentary organic matter. This result coupled with other analyses (e.g. 13C NMR, pyrolysis/GC, SEM) of this and other samples suggests that much of the organic matter may originate from chemoautolithotrophic bacteria at the vents. However, the organic matter in hydrothermal metal ores from sediment covered vents probably arises from complex sedimentary organic matter by hydrothermal pyrolysis. The dissolved organic C concentrations of hydrothermal fluids from one site (Juan de Fuca Ridge) were found to be the same as that of background seawater. This result may indicate that dissolved organic C is effectively scavenged from hydrothermal fluids by biological activity or by co-precipitation with metal ores. ?? 1990.

  3. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.

    PubMed

    Resing, Joseph A; Sedwick, Peter N; German, Christopher R; Jenkins, William J; Moffett, James W; Sohst, Bettina M; Tagliabue, Alessandro

    2015-07-09

    Hydrothermal venting along mid-ocean ridges exerts an important control on the chemical composition of sea water by serving as a major source or sink for a number of trace elements in the ocean. Of these, iron has received considerable attention because of its role as an essential and often limiting nutrient for primary production in regions of the ocean that are of critical importance for the global carbon cycle. It has been thought that most of the dissolved iron discharged by hydrothermal vents is lost from solution close to ridge-axis sources and is thus of limited importance for ocean biogeochemistry. This long-standing view is challenged by recent studies which suggest that stabilization of hydrothermal dissolved iron may facilitate its long-range oceanic transport. Such transport has been subsequently inferred from spatially limited oceanographic observations. Here we report data from the US GEOTRACES Eastern Pacific Zonal Transect (EPZT) that demonstrate lateral transport of hydrothermal dissolved iron, manganese, and aluminium from the southern East Pacific Rise (SEPR) several thousand kilometres westward across the South Pacific Ocean. Dissolved iron exhibits nearly conservative (that is, no loss from solution during transport and mixing) behaviour in this hydrothermal plume, implying a greater longevity in the deep ocean than previously assumed. Based on our observations, we estimate a global hydrothermal dissolved iron input of three to four gigamoles per year to the ocean interior, which is more than fourfold higher than previous estimates. Complementary simulations with a global-scale ocean biogeochemical model suggest that the observed transport of hydrothermal dissolved iron requires some means of physicochemical stabilization and indicate that hydrothermally derived iron sustains a large fraction of Southern Ocean export production.

  4. The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Boehnstedt, W.

    1980-09-01

    The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.

  5. Hydrothermal Synthesis and Biocompatibility Study of Highly Crystalline Carbonated Hydroxyapatite Nanorods

    NASA Astrophysics Data System (ADS)

    Xue, Caibao; Chen, Yingzhi; Huang, Yongzhuo; Zhu, Peizhi

    2015-08-01

    Highly crystalline carbonated hydroxyapatite (CHA) nanorods with different carbonate contents were synthesized by a novel hydrothermal method. The crystallinity and chemical structure of synthesized nanorods were studied by Fourier transform infrared spectroscopy (FTIR), X-ray photo-electronic spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The biocompatibility of synthesized CHA nanorods was evaluated by cell viability and alkaline phosphatase (ALP) activity of MG-63 cell line. The biocompatibility evaluation results show that these CHA nanorods are biologically active apatites and potentially promising bone-substitute biomaterials for orthopedic application.

  6. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  7. Enhancement of valve metal osteoconductivity by one-step hydrothermal treatment.

    PubMed

    Zuldesmi, Mansjur; Waki, Atsushi; Kuroda, Kensuke; Okido, Masazumi

    2014-09-01

    In this study, we produced super-hydrophilic surfaces of valve metals (Ti, Nb, Ta and Zr) by one-step hydrothermal treatment. Their surface characteristics and osteoconductivity using an in vivo test were then assessed. These data were compared with that of as-polished, as-anodized and both anodized+hydrothermally treated samples. Changes in surface chemistry, surface morphology and structure were investigated by X-ray photoelectron spectroscopy, scanning electron microscopy, and X-ray diffractometry. The results revealed that the water contact angles of valve metals were decreased by hydrothermal treatment and continued to reduce dramatically until lower than 10° after being immersed in phosphate buffered solution. By producing super-hydrophilic surfaces, the osteoconductivity of these hydrothermally treated valve metals was enhanced by up to 55%. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Reductive atmospheric acid leaching of spent alkaline batteries in H2SO4/Na2SO3 solutions

    NASA Astrophysics Data System (ADS)

    Morcali, Mehmet Hakan

    2015-07-01

    This work studies the optimum reductive leaching process for manganese and zinc recovery from spent alkaline battery paste. The effects of reducing agents, acid concentration, pulp density, reaction temperature, and leaching time on the dissolution of manganese and zinc were investigated in detail. Manganese dissolution by reductive acidic media is an intermediate-controlled process with an activation energy of 12.28 kJ·mol-1. After being leached, manganese and zinc were selectively precipitated with sodium hydroxide. The zinc was entirely converted into zincate (Zn(OH){4/2-}) ions and thus did not co-precipitate with manganese hydroxide during this treatment (2.0 M NaOH, 90 min, 200 r/min, pH > 13). After the manganese was removed from the solution, the Zn(OH){4/2-} was precipitated as zinc sulfate in the presence of sulfuric acid. The results indicated that this process could be effective in recovering manganese and zinc from alkaline batteries.

  9. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aqua and chloro complexes

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    Synchrotron X-ray spectroscopy experiments were made on the Gd(III) aqua and chloro complexes in low pH aqueous solutions at temperatures ranging from 25 to 500????C and at pressures up to 480??MPa using a hydrothermal diamond anvil cell. Analysis of fluorescence Gd L3-edge X-ray absorption fine structure (XAFS) spectra measured from a 0.006m Gd/0.16m HNO3 aqueous solution at temperatures up to 500????C and at pressures up to 260??MPa shows that the Gd-O distance of the Gd3+ aqua ion decreases steadily at a rate of ??? 0.007??A??/100????C whereas the number of coordinated H2O molecules decreases from 9.0 ?? 0.5 to 7.0 ?? 0.4. The loss of water molecules in the Gd3+ aqua ion inner hydration shell over this temperature range (a 22% reduction) is smaller than exhibited by the Yb3+ aqua ion (42% reduction) indicating that the former is significantly more stable than the later. We conjecture that the anomalous enrichment of Gd reported from measurement of REE concentrations in ocean waters may be attributed to the enhanced stability of the Gd3+ aqua ion relative to other REEs. Gd L3-edge XAFS measurements of 0.006m and 0.1m GdCl3 aqueous solutions at temperatures up to 500????C and pressures up to 480??MPa reveal that the onset of significant Gd3+-Cl- association occurs around 300????C. Partially-hydrated stepwise inner-sphere complexes most likely of the type Gd(H2O)??-nCln+3-n occur in the chloride solutions at higher temperatures, where ?? ??? 8 at 300????C decreasing slightly to an intermediate value between 7 and 8 upon approaching 500????C. This is the first direct evidence for the occurrence of partially-hydrated REE Gd (this study) and Yb [Mayanovic, R.A., Jayanetti, S., Anderson, A.J., Bassett, W.A., Chou, I-M., 2002a. The structure of Yb3+ aquo ion and chloro complexes in aqueous solutions at up to 500 ??C and 270 MPa. J. Phys. Chem. A 106, 6591-6599.] chloro complexes in hydrothermal solutions. The number of chlorides (n) of the partially-hydrated Gd

  10. Effects of Aging on PuO2∙xH2O Particle Size in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delegard, Calvin H.

    Between 1944 and 1989, 54.5 metric tons of the United States’ weapons-grade plutonium and an additional 12.9 metric tons of fuel-grade plutonium were produced and separated from irradiated fuel at the Hanford Site. Acidic high-activity wastes containing around 600 kg of plutonium were made alkaline and discharged to underground storage tanks from separations, isolation, and recycle processes to yield average plutonium concentration of about 0.003 grams per liter (or ~0.0002 wt%) in the ~200 million liter tank waste volume. The plutonium is largely associated with low-solubility metal hydroxide/oxide sludges where its low concentration and intimate mixture with neutron-absorbing elements (e.g.,more » iron) are credited in nuclear criticality safety. However, concerns have been expressed that plutonium, in the form of plutonium hydrous oxide, PuO2∙xH2O, could undergo sufficient crystal growth through dissolution and reprecipitation in the alkaline tank waste to potentially become separable from neutron absorbing constituents by settling or sedimentation. Thermodynamic considerations and laboratory studies of systems chemically analogous to tank waste show that the plutonium formed in the alkaline tank waste by precipitation through neutralization from acid solution probably entered as 2–4-nm PuO2∙xH2O crystallite particles that, because of their low solubility and opposition from radiolytic processes, grow from that point at exceedingly slow rates, thus posing no risk of physical segregation.« less

  11. Metal concentrations in the tissues of the hydrothermal vent mussel Bathymodiolus: reflection of different metal sources.

    PubMed

    Koschinsky, Andrea; Kausch, Matteo; Borowski, Christian

    2014-04-01

    Hydrothermal vent mussels of the genus Bathymodiolus are ideally positioned for the use of recording hydrothermal fluxes at the hydrothermal vent sites they inhabit. Barium, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Pb, Sr, and U concentrations in tissue sections of Bathymodiolus mussels from several hydrothermal fields between 15°N and 9°S at the Mid-Atlantic Ridge were determined and compared to the surrounding fluids and solid substrates in the habitats. Elements generally enriched in hydrothermal fluids, such as Fe, Cu, Zn, Pb and Cd, were significantly enriched in the gills and digestive glands of the hydrothermal mussels. The rather small variability of Zn (and Mn) and positive correlation with K and earth alkaline metals may indicate a biological regulation of accumulation. Enrichments of Mo and U in many tissue samples indicate that particulate matter such as hydrothermal mineral particles from the plumes can play a more important role as a metal source than dissolved metals. Highest enrichments of Cu in mussels from the Golden Valley site indicate a relation to the ≥400 °C hot heavy-metal rich fluids emanating in the vicinity. In contrast, mussels from the low-temperature Lilliput field are affected by the Fe oxyhydroxide sediment of their habitat. In a comparison of two different sites within the Logatchev field metal distributions in the tissues reflected small-scale local variations in the metal content of the fluids and the particulate material. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Behaviour of elements in soils developed from nephelinites at Mount Etinde (Cameroon): Impact of hydrothermal versus weathering processes

    NASA Astrophysics Data System (ADS)

    Etame, J.; Gerard, M.; Bilong, P.; Suh, C. E.

    2009-05-01

    The progressive weathering of 0.65 Ma nephelinites from Mount Etinde (South Western Cameroon) in a humid tropical setting has resulted in the formation of a 150 cm thick weathering crust. The soil profiles consist of three horizons: Ah/Bw/C. A major differentiation of the chemical and mineralogical parameters is related to the complexity of the saprolites, some of which were hydrothermally altered. Bulk geochemical and microgeochemical analyses were performed on selected minerals from the different horizons of two reference profiles, of which one (E 4) was developed from unaltered nephelinite (nephelinite U) while the other (BO 1) formed from hydrothermally altered nephelinite (nephelinite H). The results show that the primary minerals (clinopyroxene, nepheline, leucite, haüyne, titanomagnetite, perovskite, apatite and sphene) experienced differential weathering rates with primary minerals rich in rare earth elements (titanomagnetite, perovskite, apatite and sphene) surviving in the saprolite and the Bw horizons. The weathering of the primary minerals is reflected in the leaching of alkaline and alkaline-earth elements, except for Ba and Rb in the hydrothermalised nephelinite soil. The order of mobility is influenced by hydrothermal processes: Na > K > Rb > Ca > Cs > Sr in nephelinite U soil , Na > K > Sr > Ca > Mg in nephelinite H soil; Rb/Sr and Sr/Mg can be used as indicators of the kinetic of the weathering on nephelinite U and on nephelinite H. Barium enrichment is related to variable concentrations in the nephelinites, to the formation of crandallites and the leaching of surface horizons. The content of metallic elements is higher in nephelinite H soil than in the nephelinite U soil. Results show that hydrothermal alteration leads to an enrichment of light (La, Ce, Nd) and intermediate (Sm, Eu, Dy) rare earth elements. The enrichment in Cr and Pb in the surface horizons is discussed in relation to organic matter activity, the dissolution of magnetites, and

  13. Synchrotron x-ray spectroscopy of EuHN O3 aqueous solutions at high temperatures and pressures and Nb-bearing silicate melt phases coexisting with hydrothermal fluids using a modified hydrothermal diamond anvil cell and rail assembly

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2007-01-01

    A modified hydrothermal diamond anvil cell (HDAC) rail assembly has been constructed for making synchrotron x-ray absorption spectroscopy, x-ray fluorescence, and x-ray mapping measurements on fluids or solid phases in contact with hydrothermal fluids up to ???900??C and 700 MPa. The diamond anvils of the HDAC are modified by laser milling grooves or holes, for the reduction of attenuation of incident and fluorescent x rays and sample cavities. The modified HDAC rail assembly has flexibility in design for measurement of light elements at low concentrations or heavy elements at trace levels in the sample and the capability to probe minute individual phases of a multiphase fluid-based system using focused x-ray microbeam. The supporting rail allows for uniform translation of the HDAC, rotation and tilt stages, and a focusing mirror, which is used to illuminate the sample for visual observation using a microscope, relative to the direction of the incident x-ray beam. A structure study of Eu(III) aqua ion behavior in high-temperature aqueous solutions and a study of Nb partitioning and coordination in a silicate melt in contact with a hydrothermal fluid are described as applications utilizing the modified HDAC rail assembly. ?? 2007 American Institute of Physics.

  14. Acidity and alkalinity in mine drainage: Theoretical considerations

    USGS Publications Warehouse

    Kirby, Carl S.; Cravotta,, Charles A.

    2004-01-01

    Acidity, net acidity, and net alkalinity are widely used parameters for the characterization of mine drainage, but these terms are not well defined and are often misunderstood. Incorrect interpretation of acidity, alkalinity, and derivative terms can lead to inadequate treatment design or poor regulatory decisions. We briefly explain derivations of theoretical expressions of three types of alkalinities (caustic, phenolphthalein, and total) and acidities (mineral, CO2, and total). Theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined “CO2- acidity” is closely related to most standard titration methods used for mine drainage with an endpoint pH of 8.3, but it presents numerous interpretation problems, and it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/massaction approach and employing graphs for visualization, we explore the concept of principal components and how to assign acidity contributions to solution species, including aqueous complexes, commonly found in mine drainage. We define a comprehensive theoretical definition of acidity in mine drainage on the basis of aqueous speciation at the sample pH and the capacity of these species to undergo hydrolysis to pH 8.3. This definition indicates the computed acidity in milligrams per liter (mg L-1 ) as CaCO3 (based on pH and analytical concentrations of dissolved FeIII , FeII , Mn, and Al in mg L-1 ): Aciditycomputed = 50. (10(3-pH) + 3.CFeIII/55.8 + 2.CFeII/55.8 + 2.CMn/54.9 + 3.CAl/27.0) underestimates contributions from HSO4 - and H+ , but overestimates the acidity due to Fe3+. These errors tend to approximately cancel each other. We demonstrate that “net alkalinity” is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. We demonstrate that, for most mine-drainage solutions, a

  15. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  16. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  17. Insights From Magnesium Isotopic Compositions on the Oceanic Hydrothermal Circulation: Is Seamount Weathering the Solution?

    NASA Astrophysics Data System (ADS)

    Galy, A.; Carder, E.; Elderfield, H.

    2006-12-01

    It has been long recognised that the input of Mg in the ocean by river is removed by precipitation of Mg-rich bearing phases, either directly from the ocean such as dolomite or through hydrothermal circulation in the oceanic crust. The sampling of hydrothermal fluids demonstrated the efficiency of Mg consumption by the alteration of the oceanic crust, even at temperatures as low as 15°. For high-temperature fluids vented through black or white smokers in the vicinity of the ridge, the Mg concentration is up to 50 time lower than in seawater, and the close relationship between chlorine and Mg led to the idea that seawater was feeding the hydrothermal system and that Mg is quantitatively removed from it during high-T° alteration, the so called zero Mg hypothesis. Despite some hint for a non zero Mg hydrothermal end-member for a handful sites, the low concentration of Mg in oceanic hydrothermal fluids (around 1 mmol/l) has been mainly attributed to contamination by seawater during the sampling. Here we present Mg isotopic composition of 14 seawater samples from the Atlantic, Pacific and Indian Oceans and the Mediterranean and Red Seas and covering a range of depth of almost 5km and 26 hydrothermal fluids from 7 sites in the Atlantic and Pacific Oceans with temperature from 15° to 380°C. We find the magnesium isotope composition of seawater to be constant, with a δ^{26}Mg = -0.82±0.10 ‰ relative to the DSM3 standard. This value is consistent with a long residence time for Mg in seawater. In addition, out of the 26 hydrothermal fluids studied, more than 58% differ from seawater for their Mg isotopic composition by more than 2σ. This number rises up to 88% at 2σmean level and the shift is systematic with the fluids being either indistinguishable from seawater or enriched in light isotopes by up to 2.4‰ in δ^{26}Mg. This clearly demonstrates that fluids having low Mg concentrations are not solely bearing Mg added by contamination during sampling. The isotopic

  18. Hydrothermal synthesis of PEDOT/rGO composite for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Ahmed, Sultan; Rafat, M.

    2018-01-01

    In this study, PEDOT/rGO composite has been successfully synthesized using hydrothermal method. Precursor solution of EDOT monomer was mixed with a predetermined solution of graphene oxide (GO). The resultant mixture was then hydrothermally treated. Surface morphology, crystal structure vibrational response and thermal stability have been studied using standard characterization techniques: field-emission scanning electron microscopy, X-ray diffraction, Raman spectroscopy and thermo-gravimetric analysis. The observed results confirm that the required composite of PEDOT/rGO has indeed been synthesized. Electrochemical properties of the synthesized product were studied in 6 M KOH aqueous solution, using characterization techniques such as: cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge measurements. The results show a high value of specific capacitance (102.8 F g-1) at 10 mV s-1, indicating that the composite can be profitably used for energy storage devices.

  19. Hydrothermal Solute Flux from Ebeko Volcanic Center, Paramushir, Kuril Islands

    NASA Astrophysics Data System (ADS)

    Taran, Y.; Kalacheva, E.; Kotenko, T.; Chaplygin, I.

    2014-12-01

    Ebeko volcano on the northern part of Paramushir Island, Northern Kurils, is characterized by frequent phreatic eruptions, a strong low-temperature fumarolic activity at the summit and was the object of comprehensive volcanological and geochemical studies during the last half a century. The volcanic center is composed of several Pleistocene volcanic structures aadjacent to Ebeko and hosts a hydrothermal system with a high outflow rate of hot SO4-Cl acidic water (Upper Yurieva springs) with the current maximum temperature of ~85oC, pH 1.3 and TDS ~ 10 g/L. All discharging thermal waters are drained by the Yurieva River to the Sea of Okhotsk. The hot springs have been changing in time, generally decreasing their activity from near boiling in 1960s, with TDS ~ 20 g/L and the presence of a small steaming field at the upper part of the ~ 700 m long discharging area, to a much lower discharge rate of main vents, lower temperature and the absence of the steaming ground. The spring chemistry did not react to the Ebeko volcanic activity (14 strong phreato-magmatic events during the last 60 years).The total measured outputs of chloride and sulfur from the system last time (2006-2010) were estimated on average as 730 g/s and 980 g/s, respectively, which corresponds to the equivalent fluxes of 64 t/d of HCl and 169 t/d of SO2. These values are higher than the fumarolic volatile output from Ebeko. The estimated discharge rate of hot (85oC) water from the system with ~ 3500 ppm of chloride is about 0.3 m3/s which is much higher than the thermal water discharge from El Chichon or Copahue volcano-hydrothermal systems and among the highest hot water natural outputs ever measured for a volcano-hydrothermal system. We also report the chemical composition (major and ~ 60 trace elements including REE) of water from the main hot spring vents and the Yurieva river mouth.

  20. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of Alkaline Solution with Varying Mix Proportion on Geopolymer Mortar

    NASA Astrophysics Data System (ADS)

    Karuppuchamy, K.; Ananthkumar, M.; Raghavapriya, S. M.

    2018-02-01

    Cement production is attributed by emission of carbon dioxide which causes severe environmental impacts. This has led to the invention of special construction materials which can replace cement. On the other hand, these construction materials (like Fly ash, Metakaolin) also need to be inexpensive and should possess all the characteristics of cementitious materials. In this project, the effect of geopolymerization on the properties of the end product were studied with varying distillation of NaOH solution (10M, 12M and 15M) for different mix proportion (1:1, 1:2 and 1:3). Curing was done for 1 day at a temperature of 60°C and 80°C respectively. The densities, compressive strength, alkalinity, co-efficient of absorption were determined. As a result, the experiments showed the effect of factors such as mix proportion, curing temperature and curing day on the physical and mechanical properties such as mix proportion of the geopolymer concrete. Results of NaOH concentration of 12M concentration cured for 24 hours at 80°C and 60°C showed better mechanical performance than the rest of the concentrations.

  2. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  3. Antimicrobial and other properties of a new stabilized alkaline glutaraldehyde disinfectant/sterilizer.

    PubMed

    Miner, N A; McDowell, J W; Willcockson, G W; Bruckner, N I; Stark, R L; Whitmore, E J

    1977-04-01

    The properties of stabilized alkaline 2% glutaraldehyde solution (SGS) are discussed. SGS is discussed with regard to its chemistry, antimicrobial properties, organic soil resistance, toxicity, corrosivity and chemical stability. SGS retains the maximum antimicrobial activity of alkaline glutaraldehyde solutions and the chemical stability heretofore observed only with acidic glutaraldehyde solutions. These improvements, along with the inherent resistance of glutaraldehyde to neutralization by organic soil, allow SGS to be continuously used for 14 days in situations of high dilution, or 28 days in situations of low dilution.

  4. Removal of dissolved actinides from alkaline solutions by the method of appearing reagents

    DOEpatents

    Krot, Nikolai N.; Charushnikova, Iraida A.

    1997-01-01

    A method of reducing the concentration of neptunium and plutonium from alkaline radwastes containing plutonium and neptunium values along with other transuranic values produced during the course of plutonium production. The OH.sup.- concentration of the alkaline radwaste is adjusted to between about 0.1M and about 4M. [UO.sub.2 (O.sub.2).sub.3 ].sup.4- ion is added to the radwastes in the presence of catalytic amounts of Cu.sup.+2, Co.sup.+2 or Fe.sup.+2 with heating to a temperature in excess of about 60.degree. C. or 85.degree. C., depending on the catalyst, to coprecipitate plutonium and neptunium from the radwaste. Thereafter, the coprecipitate is separated from the alkaline radwaste.

  5. Synchronized chaotic targeting and acceleration of surface chemistry in prebiotic hydrothermal microenvironments

    PubMed Central

    Priye, Aashish; Yu, Yuncheng; Hassan, Yassin A.; Ugaz, Victor M.

    2017-01-01

    Porous mineral formations near subsea alkaline hydrothermal vents embed microenvironments that make them potential hot spots for prebiotic biochemistry. But, synthesis of long-chain macromolecules needed to support higher-order functions in living systems (e.g., polypeptides, proteins, and nucleic acids) cannot occur without enrichment of chemical precursors before initiating polymerization, and identifying a suitable mechanism has become a key unanswered question in the origin of life. Here, we apply simulations and in situ experiments to show how 3D chaotic thermal convection—flows that naturally permeate hydrothermal pore networks—supplies a robust mechanism for focused accumulation at discrete targeted surface sites. This interfacial enrichment is synchronized with bulk homogenization of chemical species, yielding two distinct processes that are seemingly opposed yet synergistically combine to accelerate surface reaction kinetics by several orders of magnitude. Our results suggest that chaotic thermal convection may play a previously unappreciated role in mediating surface-catalyzed synthesis in the prebiotic milieu. PMID:28119504

  6. Primary Formation Path of Formaldehyde in Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Inaba, Satoshi

    2018-03-01

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H2 and (2) the reduction of HCOOH by H2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H2, followed by the dehydration of methanediol.

  7. Primary Formation Path of Formaldehyde in Hydrothermal Vents.

    PubMed

    Inaba, Satoshi

    2018-03-01

    Formaldehyde is abundant in the universe and one of the fundamental molecules for life. Hydrothermal vents produce a substantial amount of hydrogen molecules by serpentinization and promote reductive reactions of single carbon compounds. The abundance of formaldehyde is expected to be low due to the high Gibbs free energy in hydrothermal vents. We consider two competing formation pathways of formaldehyde: (1) the reduction of CO by H 2 and (2) the reduction of HCOOH by H 2 to form a methanediol, followed by the dehydration of the methanediol. We performed a number of quantum chemical simulations to examine the formation of formaldehyde in the gas phase as well as in aqueous solution. The energy barrier is significantly reduced by the catalytic effect of water molecules in aqueous solution and becomes lowest when a water cluster consisted of 5 water molecules catalyzes the reduction. The energy barrier to form a methanediol by the reduction of HCOOH is lower by 17.5 kcal/mol than that to form a formaldehyde by the reduction of CO. Considering the low energy barrier to dehydrate methanediol, the primary pathway to form formaldehyde in hydrothermal vents is concluded to be the reduction of HCOOH by H 2 , followed by the dehydration of methanediol.

  8. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOEpatents

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  9. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOEpatents

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  10. Characterization of alkaline hydroxide-preserved whole poultry as a dry byproduct meal.

    PubMed

    Shafer, D J; Burgess, R P; Conrad, K A; Prochaska, J F; Carey, J B

    2001-11-01

    Studies were conducted to examine the chemical preservation of whole broiler carcasses by using aqueous alkaline hydroxide solutions. Conversion of the preserved carcasses and solutions into an acceptable poultry byproduct meal was examined. Carcasses and alkaline solutions at a 1:1 ratio were blended and freeze-dried to produce a high fat whole poultry byproduct meal. The dry meal was analyzed for nutrient composition, true metabolizable energy, and amino acid content. Viable bacteria were not recovered after inoculation of the experimental meal with Salmonella enteritidis. The meal was incorporated at 5 and 10% of chick starter diets. Chicks found the meal-containing diets acceptable. Feed consumption, water consumption, BW, and mortality were not significantly different among the dietary treatments in either of the two feeding trials. Necropsy samples revealed no pathological or histological differences attributable to consumption of the alkaline poultry byproduct and blood serum evaluation found no variation in blood chemistry. Alkaline treatment of whole broiler carcasses was an effective preservation method and acceptable as a dry poultry byproduct meal.

  11. Corrosion of Cu-xZn alloys in slightly alkaline chloride solutions studied by stripping voltammetry and microanalysis.

    PubMed

    Milosev, I; Minović, A

    2001-01-01

    The mechanism of corrosion of Cu-xZn alloys (x = 10-40 wt %) in slightly alkaline chloride solutions was investigated by analysing solid reaction products by energy dispersive X-ray analysis (EDS) and dissolved reaction products by differential anodic pulse stripping (DAPS) voltammetry. The corrosion process was studied under open circuit and under potentiostatic conditions at selected potentials. Pure metals were studied comparatively so that an interacting effect of particular metal components in the alloy could be determined. All four Cu-xZn alloys show an improved behaviour compared to pure metals. Under open-circuit condition both components dissolve simultaneously in the solution. With increasing immersion time the preferential, dissolution of zinc in the solution becomes pronounced. It is the highest for Cu-10Zn and the lowest for Cu-30Zn alloy. Under potentiostatic control the dissolution mechanism depends on the electrode potential and changes from exclusive dissolution of zinc to simultaneous dissolution of both components with preferential dissolution of zinc. The latter decreases, as the electrode potential becomes more positive.

  12. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    PubMed

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  13. Characterization of lignins isolated with alkali from the hydrothermal or dilute-acid pretreated rapeseed straw during bioethanol production.

    PubMed

    Chen, Bo-Yang; Zhao, Bao-Cheng; Li, Ming-Fei; Sun, Run-Cang

    2018-01-01

    A better understanding of the lignin in the straw of rapeseed, Brassica campestris L., is a prerequisite for promoting the biorefinery industry of rapeseed. Two different methods for fractionating lignin from rapeseed straw were proposed in this study. Lignin in the raw material was isolated with alkaline solution and recovered by acid precipitation. A comparison between two lignin preparations obtained from two different methods has been made in terms of yield and purity. The structural features were investigated by gel permeation chromatography, FT-IR spectroscopy, 2D-HSQC NMR and 31 P NMR. Taking into consideration of the yield and purity, the proposed methods are effective for extracting lignin. NMR results showed that syringyl (S) was the predominant unit over guaiacyl (G) or p-hydroxyphenyl (H) units in the lignin preparations, and linkages β-O-4', β-β' and β-5' were also identified and quantified by NMR techniques. This study demonstrated that the combination of hydrothermal or dilute-acid pretreatment and alkaline process could efficiently isolate the lignins from the rapeseed straw to further applications for industries. It was found that the enzymatic hydrolysis of the two-step pretreated rapeseed straw increased 5.9 times than the straw without treatment, which is benefit for bioethanol production from rapeseed straw. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Hydrolysis of alkaline pretreated banana peel

    NASA Astrophysics Data System (ADS)

    Fatmawati, A.; Gunawan, K. Y.; Hadiwijaya, F. A.

    2017-11-01

    Banana peel is one of food wastes that are rich in carbohydrate. This shows its potential as fermentation substrate including bio-ethanol. This paper presented banana peel alkaline pretreatment and enzymatic hydrolysis. The pretreatment was intended to prepare banana peel in order to increase hydrolysis performance. The alkaline pretreatment used 10, 20, and 30% w/v NaOH solution and was done at 60, 70 and 80°C for 1 hour. The hydrolysis reaction was conducted using two commercial cellulose enzymes. The reaction time was varied for 3, 5, and 7 days. The best condition for pretreatment process was one conducted using 30% NaOH solution and at 80°C. This condition resulted in cellulose content of 90.27% and acid insoluble lignin content of 2.88%. Seven-day hydrolysis time had exhibited the highest reducing sugar concentration, which was7.2869 g/L.

  15. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  16. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  17. Sodium Sulfate Separation from Aqueous Alkaline Solutions via Crystalline Urea-Functionalized Capsules: Thermodynamics and Kinetics of Crystallization

    DOE PAGES

    Custelcean, Radu; Sloop, Frederick V.; Rajbanshi, Arbin; ...

    2014-12-04

    We measured the thermodynamics and kinetics of crystallization of sodium sulfate with a tripodal tris-urea receptor (L1) from aqueous alkaline solutions in the 15 55 C temperature range, with the goal of identifying the optimal conditions for efficient and quick sulfate removal from nuclear wastes. The use of radiolabeled Na 2 35SO 4 provided a practical way to monitor the sulfate concentration in solution by liquid scintillation counting. Our results are consistent with a two-step crystallization mechanism, involving relatively quick dissolution of crystalline L1 followed by the rate-limiting crystallization of the Na 2SO 4(L1) 2(H 2O) 4 capsules. We foundmore » that temperature exerted relatively little influence over the equilibrium sulfate concentration, which ranged between 0.004 and 0.011 M. Moreover, this corresponds to 77 91% removal of sulfate from a solution containing 0.0475 M initial sulfate concentration, as found in a typical Hanford waste tank. The apparent pseudo-first-order rate constant for sulfate removal increased 20-fold from 15 to 55 C, corresponding to an activation energy of 14.1 kcal/mol. At the highest measured temperature of 55 C, 63% and 75% of sulfate was removed from solution within 8 h and 24 h, respectively.« less

  18. Uranium mobility during interaction of rhyolitic glass with alkaline solutions: dissolution of glass

    USGS Publications Warehouse

    Zielinski, Robert A.

    1977-01-01

    This report concerns investigations designed to identify the important physical and chemical parameters influencing the rate of release of uranium from glass shards of rhyolitic air-fall ash. Oxidizing, silica undersaturated, alkaline solutions are eluted through a column of rhyolitic glass shards at a carefully controlled temperature, pressure, and flow rate. The solutions are monitored for the concentration of uranium and selected additional elements (Si, K, Li, F), and the glass is recovered and examined for physical and/or chemical evidence of attack. The flushing mode is designed to mimic leaching of glass shards by intermittent, near-surface waters with which the glass is not in equilibrium. Reported rates are applicable only to the experimental conditions (120?C, 7,000 psi), but it is assumed that the reaction mechanisms and the relative importance of rate-influencing parameters remain unchanged, at reduced temperature and pressure. Results of the above experiment indicate that silica and uranium are released from glass shards at comparable rates, while lithium and potassium are released faster and fluorine slower than either Si or U. Rates of release of silica and uranium correlate positively with the surface area of the shards. Rhyolitic shards release uranium at faster rates than rhyodacitic shards of comparable surface area. Changes in the shards resulting from experimental treatment and observed in the original glass separates from an Oligocene ash (compared to a Pleistocene ash) include; surface pitting, increased surface area, devitrification rinds (<1l micron wide) and reduced lithium contents. Future investigations will study the effect of temperature, pressure, solution composition, and flow rate on the relative mobility of U, Si, Li, F, and K.

  19. Speciation and Structural Properties of Hydrothermal Solutions of Sodium and Potassium Sulfate Studied by Molecular Dynamics Simulations.

    PubMed

    Reimer, Joachim; Vogel, Frédéric; Steele-MacInnis, Matthew

    2016-05-18

    Aqueous solutions of salts at elevated pressures and temperatures play a key role in geochemical processes and in applications of supercritical water in waste and biomass treatment, for which salt management is crucial for performance. A major question in predicting salt behavior in such processes is how different salts affect the phase equilibria. Herein, molecular dynamics (MD) simulations are used to investigate molecular-scale structures of solutions of sodium and/or potassium sulfate, which show contrasting macroscopic behavior. Solutions of Na-SO4 exhibit a tendency towards forming large ionic clusters with increasing temperature, whereas solutions of K-SO4 show significantly less clustering under equivalent conditions. In mixed systems (Nax K2-x SO4 ), cluster formation is dramatically reduced with decreasing Na/(K+Na) ratio; this indicates a structure-breaking role of K. MD results allow these phenomena to be related to the characteristics of electrostatic interactions between K(+) and SO4 (2-) , compared with the analogous Na(+) -SO4 (2-) interactions. The results suggest a mechanism underlying the experimentally observed increasing solubility in ternary mixtures of solutions of Na-K-SO4 . Specifically, the propensity of sodium to associate with sulfate, versus that of potassium to break up the sodium-sulfate clusters, may affect the contrasting behavior of these salts. Thus, mutual salting-in in ternary hydrothermal solutions of Na-K-SO4 reflects the opposing, but complementary, natures of Na-SO4 versus K-SO4 interactions. The results also provide clues towards the reported liquid immiscibility in this ternary system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A preliminary study of the electro-oxidation of L-ascorbic acid on polycrystalline silver in alkaline solution

    NASA Astrophysics Data System (ADS)

    Majari Kasmaee, L.; Gobal, F.

    Electrochemical oxidation of L-ascorbic acid on polycrystalline silver in alkaline aqueous solutions is studied by cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (IS). The anodic electro-oxidation starts at -500 mV versus SCE and shows continued anodic oxidation in the cathodic half cycle in the CV regime signifying slowly oxidizing adsorbates. Diffusion coefficient of ascorbate ion measured under both voltammetric regimes is around 1.4 × 10 -5 cm 2 s -1. Impedance spectroscopy measures the capacitances associated with double layer and adsorption around 50 μF cm -2 and 4 mF cm -2 as well as the adsorption and decomposition resistances (rates).

  1. CHARACTERIZATION OF ACTINIDES IN SIMULATED ALKALINE TANK WASTE SLUDGES AND LEACHATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, Kenneth L.

    In this project, both the fundamental chemistry of actinides in alkaline solutions (relevant to those present in Hanford-style waste storage tanks), and their dissolution from sludge simulants (and interactions with supernatants) have been investigated under representative sludge leaching procedures. The leaching protocols were designed to go beyond conventional alkaline sludge leaching limits, including the application of acidic leachants, oxidants and complexing agents. The simulant leaching studies confirm in most cases the basic premise that actinides will remain in the sludge during leaching with 2-3 M NaOH caustic leach solutions. However, they also confirm significant chances for increased mobility of actinidesmore » under oxidative leaching conditions. Thermodynamic data generated improves the general level of experiemental information available to predict actinide speciation in leach solutions. Additional information indicates that improved Al removal can be achieved with even dilute acid leaching and that acidic Al(NO3)3 solutions can be decontaminated of co-mobilized actinides using conventional separations methods. Both complexing agents and acidic leaching solutions have significant potential to improve the effectiveness of conventional alkaline leaching protocols. The prime objective of this program was to provide adequate insight into actinide behavior under these conditions to enable prudent decision making as tank waste treatment protocols develop.« less

  2. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment

    PubMed Central

    Dutournié, Patrick; Limousy, Lionel; Anquetil, Jérôme

    2017-01-01

    This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na2SO4 remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude) with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission. PMID:29160802

  3. Modification of the Selectivity Properties of Tubular Ceramic Membranes after Alkaline Treatment.

    PubMed

    Dutournié, Patrick; Limousy, Lionel; Anquetil, Jérôme; Déon, Sébastien

    2017-11-21

    This work focuses on the selectivity modification of ceramic membranes after a mild alkaline treatment. Filtration of pure salt-water solutions was carried out with commercial titania membranes before and after the treatment. After treatment, the rejection of NaF significantly decreased, while the rejection of NaCl and NaBr increased. Additionally, NaI and Na₂SO₄ remained close to zero. Pore size and electrical charge being almost unchanged, only significant modifications in the dielectric effects can explain this modification of selectivity. Therefore, the surface chemistry and the interaction (nature and magnitude) with the solvent and with the species present in the solution appear to be modified by the alkaline treatment. This trend is also illustrated by discussing the electric and the dielectric properties that were numerically identified before and after treatment. The alkaline treatment significantly decreased the apparent dielectric constant of NaCl-water solution in the pore, highlighting the rejection of sodium chloride. Contrariwise, the modification of the surface chemistry increased the apparent dielectric constant of NaF-water solution by promoting fluoride transmission.

  4. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems.

    PubMed

    Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco

    2017-01-07

    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.

  5. Influence of solution viscosity on hydrothermally grown ZnO thin films for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.

    2016-10-01

    Zinc oxide (ZnO) nanowire arrays (NWAs) were grown onto zinc oxide-titanium dioxide (ZnO-TiO2) seeded fluorine doped tin oxide (FTO) conductive substrate by hydrothermal technique. X-ray diffraction (XRD) patterns depict that ZnO thin films are preferentially oriented along the (002) plane with hexagonal wurtzite structure. Viscosity measurements reveal that viscosity of the solutions linearly increases as the concentrations of the polyvinyl alcohol (PVA) increase in the growth solution. Field emission scanning electron microscope (FE-SEM) images show that the NWAs are vertically grown to seeded FTO substrate with hexagonal structure, and the growth of NWAs decreases as the concentration of the PVA increases. Stylus profilometer and atomic force microscopic (AFM) studies predict that the thickness and roughness of the films decrease with increasing the PVA concentrations. The NWAs prepared at 0.1% of PVA exhibits a lower transmittance and higher absorbance than that of the other films. The band gap of the optimized films prepared at 0.0 and 0.1% of PVA is found to be 3.270 and 3.268 eV, respectively. The photo to current conversion efficiency of the DSSC based on photoanodes prepared at 0.0 and 0.1% of PVA exhibits about 0.64 and 0.82%, respectively. Electrochemical impedance spectra reveal that the DSSC based on photoanode prepared at 0.1% of PVA has the highest charge transfer recombination resistance.

  6. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate.

    PubMed

    Gan, Sinyee; Zakaria, Sarani; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V; Kaco, Hatika

    2017-01-01

    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.

  7. Highly porous regenerated cellulose hydrogel and aerogel prepared from hydrothermal synthesized cellulose carbamate

    PubMed Central

    Gan, Sinyee; Chia, Chin Hua; Chen, Ruey Shan; Ellis, Amanda V.; Kaco, Hatika

    2017-01-01

    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet–visible (UV–Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products. PMID:28296977

  8. Investigating surface chemistry-controlled dolomite precipitation in saline, alkaline, and dilute waters

    NASA Astrophysics Data System (ADS)

    Yoerg, A.; Roberts, J. A.

    2017-12-01

    Previous experiments have shown carboxylated organic matter facilitates dolomite precipitation at low temperature (< 80°C) in both modern and ancient seawater geochemistries. The efficacy of this mechanism in alternative chemical environments, particularly those typical of modern dolomitic environments, remains unclear. We investigated this question using a series of batch laboratory experiments ranging in duration from hours to several months. Experiments were conducted using fluids representative of environments where dolomite is found/thought to form in the modern, such as evaporative, alkaline lakes, sabkhas, and dilute mixing zones. Results indicate that while carboxylated organic matter promotes mineral precipitation in a variety of chemistries, the resultant mineralogy is primarily a function solution chemistry (i.e. saturation state). Specifically, our results suggest elevated alkalinity may be required to produce a high-Mg phase. In solutions where alkalinity is scarce, only amorphous carbonate phases form in association with organic matter, contrasting the Mg-bearing crystalline phases that result from highly alkaline solutions. Results of high-alkalinity, short-term experiments suggest that initially amorphous material is rapidly transformed into high and low-Mg phases in the presence of carboxylated organic matter, but that within days this mineralogy evolves. Longer timescales or elevated temperature may be necessary to produce an ordered dolomite phase. Additional results from longer term, steady-state experiments and additional analyses (Raman spectroscopy and tender energy spectroscopy) will shed further light on resultant mineralogy and this mechanism of dolomite precipitation.

  9. Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors.

    PubMed

    Chen, Ya; Qin, Wenqing; Fan, Ruijuan; Wang, Jiawei; Chen, Baizhen

    2015-12-01

    In the present work, spherical α-MnO2 with a high specific capacitance was synthesized by a two-step hydrothermal route. MnCO3 precursors were first prepared by a common hydrothermal method, and then converted to α-MnO2 via a hydrothermal reaction between the precursors and KMnO4 solutions. The effects of hydrothermal temperature on the morphology, crystal structure and specific area of the MnO2 were investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD) and BET measurements. The electrochemical capacitive properties of the manganese dioxides with different morphologies and structures were evaluated by cyclic voltammetry and galvonostatic charge-discharge tests. The results showed that the temperature in the second hydrothermal step had prominent impact on the capacitive properties of a-MnO2. The MnO2 synthesized at 150 *C exhibited a highest specific capacitance of 328.4 Fx g(-1) at a charge-discharge current density of 100 mA x g(-1).

  10. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification

    USGS Publications Warehouse

    Stets, Edward G.; Kelly, Valerie J.; Crawford, Charles G.

    2014-01-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate + sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen–Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate + sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state.

  11. Long-term trends in alkalinity in large rivers of the conterminous US in relation to acidification, agriculture, and hydrologic modification.

    PubMed

    Stets, E G; Kelly, V J; Crawford, C G

    2014-08-01

    Alkalinity increases in large rivers of the conterminous US are well known, but less is understood about the processes leading to these trends as compared with headwater systems more intensively examined in conjunction with acid deposition studies. Nevertheless, large rivers are important conduits of inorganic carbon and other solutes to coastal areas and may have substantial influence on coastal calcium carbonate saturation dynamics. We examined long-term (mid-20th to early 21st century) trends in alkalinity and other weathering products in 23 rivers of the conterminous US. We used a rigorous flow-weighting technique which allowed greater focus on solute trends occurring independently of changes in flow. Increasing alkalinity concentrations and yield were widespread, occurring at 14 and 13 stations, respectively. Analysis of trends in other weathering products suggested that the causes of alkalinity trends were diverse, but at many stations alkalinity increases coincided with decreasing nitrate+sulfate and decreasing cation:alkalinity ratios, which is consistent with recovery from acidification. A positive correlation between the Sen-Thiel slopes of alkalinity increases and agricultural lime usage indicated that agricultural lime contributed to increasing solute concentration in some areas. However, several stations including the Altamaha, Upper Mississippi, and San Joaquin Rivers exhibited solute trends, such as increasing cation:alkalinity ratios and increasing nitrate+sulfate, more consistent with increasing acidity, emphasizing that multiple processes affect alkalinity trends in large rivers. This study was unique in its examination of alkalinity trends in large rivers covering a wide range of climate and land use types, but more detailed analyses will help to better elucidate temporal changes to river solutes and especially the effects they may have on coastal calcium carbonate saturation state. Published by Elsevier B.V.

  12. A magmatic-hydrothermal lacustrine exhalite from the Permian Lucaogou Formation, Santanghu Basin, NW China - The volcanogenic origin of fine-grained clastic sedimentary rocks

    NASA Astrophysics Data System (ADS)

    Jiao, Xin; Liu, Yiqun; Yang, Wan; Zhou, Dingwu; Li, Hong; Nan, Yun; Jin, Mengqi

    2018-05-01

    Shales in the middle Permian Lucaogou Formation in the intracontinental Santanghu rift basin have been considered as "typical" organic-rich profundal shales for decades. Our study of well cores using petrographic microscope and scanning electron microscopy suggests an otherwise complex hydrovolcanic and hydrothermal origin. This paper describes characteristics of a particular type of the shales, composed of fine-grained detrital minerals and lithic grains. Some of them are orthopyroxene, calcite, peralkaline feldspars, and analcime that are interpreted as derived from peralkaline-alkaline carbonatite, pyroxenite, analcime phonolite, and andesite, whereas others are quartz, dolomite, ankerite, serpentine, and calcite that were precipitated from syndepositional or penecontemporary hydrothermal fluids. Grain size ranges from 0.001 to 2 mm, mostly 0.01-0.1 mm. Well-developed laminae are mostly 0.5-3 mm thick and alternate with tuffaceous dolomicrite. The rocks are interpreted as sublacustrine hydrovolcanic deposits, which had been altered by syndepositional hydrothermal fluids. The interpretation is substantiated by abundant cone-shaped stratigraphic buildups on seismic sections in the basin. This study shows an ancient example of volcanic-hydrothermal deposits in a rift basin.

  13. Hydrothermal synthesis of nanostructured SnO particles through crystal growth in the presence of gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchiyama, Hiroaki, E-mail: h_uchi@kansai-u.ac.jp; Nakanishi, Shunsuke; Kozuka, Hiromitsu

    2014-09-15

    Crystalline SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in aqueous solutions containing gelatin at 150 °C for 24 h, where the morphologies of the SnO products changed from blocks to layered disks, stacked plates and unshaped aggregates with increasing amount of gelatin in the solutions. Such morphological changes of SnO particles were thought to be attributed to the suppression of the growth of SnO crystals by the adsorbed gelatin. - Graphical abstract: Nanostructured SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in gelatin solutions. - Highlights: • SnO particlesmore » were prepared from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment. • The adsorption of gelatin suppressed the growth of SnO crystals. • The shape of SnO particles depends on the amount of gelatin. • Blocks, disks, stacked plates and unshaped aggregates were obtained.« less

  14. Vapor-rich Hydrothermal Fluid Migration Within Pumiceous Sediment in the Iheya North Knoll, Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Ishibashi, J.; Suzuki, R.; Hamasaki, H.; Yamanaka, T.; Chiba, H.; Tsunogai, U.; Ijiri, A.; Nakagawa, S.; Nunoura, T.; Takai, K.; Kinoshita, M.; Ashi, J.

    2007-12-01

    The newly developed ROV NSS (Navigable Sampling System) enabled pin-point piston core sampling from the active hydrothermal field. In the Iheya North hydrothermal field in the mid-Okinawa Trough (27°47.5'N, 126°53.8'E, depth = 1000m), animal colonies are observed not only around the central mound structure (named as NBC) which discharges vigrously high temperature (T=311°C) clear fluid, but also as Calyptogena colony at 200m east from the NBC mound and as tube-worm colony at 250m southeast from the NBC mound. During Leg 3 of KY05-14 cruise (R/V Kaiyo of JAMSTEC) in Jan. 2005, fourn piston cores were successfully recovered with length from 65cm to 250cm. Surface sediments from the Calyptogena colony and the tube-worm colony were revealed as mainly composed of pumiceous sediment. Pore fluids from the Calyptogena Field showed unusual chemistry characterized as very low salinity (Cl=420mM), low Mg concentration, significantly lower Na/Cl ratio than seawater and high methane concentration, which suggests contribution of a vapor-rich hydrothermal component migrating within the pumice layer from the activity center. Moreover, decrease of SO4 accompanied by increase of alkalinity is notable even less than one meter depth below the seafloor. In situ sulfate reduction in the surface sediment caused by entrainment of the hydrothermal component would be a source of hydrogen sulfide that supports Calyptogena colony.

  15. Amine-Modulated/Engineered Interfaces of NiMo Electrocatalysts for Improved Hydrogen Evolution Reaction in Alkaline Solutions.

    PubMed

    Gao, Wei; Gou, Wangyan; Zhou, Xuemei; Ho, Johnny C; Ma, Yuanyuan; Qu, Yongquan

    2018-01-17

    The interface between electrolytes and electrocatalysts would largely determine their corresponding activity and stability. Herein, modulating the surface characteristics of NiMo nanoparticles by various adsorbed amines gives the tunability on their interfacial properties and subsequently improves their catalytic performance for hydrogen evolution reaction (HER) in alkaline solutions. Diamines can significantly improve their HER activity by decreasing the charge-transfer resistance and modulating the electronic structures of interfacial active sites. Importantly, among various amines, ethylenediamine facilitates the HER activity of NiMo with a remarkable decrease of 268 mV in the overpotential to reach 10 mA cm -2 as compared with that of the unmodified NiMo in 1.0 M KOH. This method provides a novel strategy of regulating the interfacial properties to strengthen the catalytic performance of electrocatalysts.

  16. Deciphering the protective role of spermidine against saline-alkaline stress at physiological and proteomic levels in tomato.

    PubMed

    Zhang, Yi; Zhang, Hao; Zou, Zhi-Rong; Liu, Yi; Hu, Xiao-Hui

    2015-02-01

    In this research, the protective effect of spermidine (Spd) in mitigating saline-alkaline stress in tomato (Solanum lycopersicum L.) at physiological and proteomic levels were examined. The results showed that saline-alkaline stress induced accumulation of H2O2 and O2(-*), and increased the activities of antioxidase (SOD, CAT, and POD). Spermidine efficiently alleviated the inhibitory role of saline-alkaline on plant growth and inhibited saline-alkaline stress-induced H2O2 and O2(-*) accumulation. Proteomics investigations of the leaves of tomato seedlings, responding to a 75 mM saline-alkaline solution and 0.25 mM Spd, were performed. Maps of the proteome of leaf extracts were obtained by two-dimensional gel electrophoresis. An average of 49, 47 and 34 spots, which appeared repeatedly and that significantly altered the relative amounts of polypeptides by more than twofold, were detected for seedlings treated with saline-alkaline solution (S) compared to normal solution (CK), saline-alkaline plus spermidine (MS) compared to CK, or S versus MS, respectively. Thirty-nine of these proteins were identified by matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry and were classified into five functional categories, including energy and metabolism, signal transduction, amino acid metabolism, protein metabolism, and stress-defense response. Proteomics analysis coupled with bioinformatics indicated that Spd treatment helps tomato seedlings combat saline-alkaline stress by modulating the defense mechanism of plants and activating cellular detoxification, which protect plants from oxidative damage induced by saline-alkaline stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Optimization of Large-Scale Daily Hydrothermal System Operations With Multiple Objectives

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Cheng, Chuntian; Shen, Jianjian; Cao, Rui; Yeh, William W.-G.

    2018-04-01

    This paper proposes a practical procedure for optimizing the daily operation of a large-scale hydrothermal system. The overall procedure optimizes a monthly model over a period of 1 year and a daily model over a period of up to 1 month. The outputs from the monthly model are used as inputs and boundary conditions for the daily model. The models iterate and update when new information becomes available. The monthly hydrothermal model uses nonlinear programing (NLP) to minimize fuel costs, while maximizing hydropower production. The daily model consists of a hydro model, a thermal model, and a combined hydrothermal model. The hydro model and thermal model generate the initial feasible solutions for the hydrothermal model. The two competing objectives considered in the daily hydrothermal model are minimizing fuel costs and minimizing thermal emissions. We use the constraint method to develop the trade-off curve (Pareto front) between these two objectives. We apply the proposed methodology on the Yunnan hydrothermal system in China. The system consists of 163 individual hydropower plants with an installed capacity of 48,477 MW and 11 individual thermal plants with an installed capacity of 12,400 MW. We use historical operational records to verify the correctness of the model and to test the robustness of the methodology. The results demonstrate the practicability and validity of the proposed procedure.

  18. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  19. Methanethiol abundance in high-temperature hydrothermal fluids from the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    Reeves, E.; Seewald, J. S.; Saccocia, P.; van der Meer, M.

    2008-12-01

    metabolism in highly-reducing alkaline hydrothermal environments invoke CH3SH as a key reactant leading to Acetyl CoA-based (Wood-Ljungdahl) carbon fixation pathways. Results of this study challenge the notion that high-pH, reducing fluids emanating from serpentinite-hosted hydrothermal systems like Lost City were favorable for the production of CH3SH, the establishment of a primitive metabolic cycle and the emergence of microbial life on Earth.

  20. Hydrothermal Processes

    NASA Astrophysics Data System (ADS)

    German, C. R.; von Damm, K. L.

    2003-12-01

    What is Hydrothermal Circulation?Hydrothermal circulation occurs when seawater percolates downward through fractured ocean crust along the volcanic mid-ocean ridge (MOR) system. The seawater is first heated and then undergoes chemical modification through reaction with the host rock as it continues downward, reaching maximum temperatures that can exceed 400 °C. At these temperatures the fluids become extremely buoyant and rise rapidly back to the seafloor where they are expelled into the overlying water column. Seafloor hydrothermal circulation plays a significant role in the cycling of energy and mass between the solid earth and the oceans; the first identification of submarine hydrothermal venting and their accompanying chemosynthetically based communities in the late 1970s remains one of the most exciting discoveries in modern science. The existence of some form of hydrothermal circulation had been predicted almost as soon as the significance of ridges themselves was first recognized, with the emergence of plate tectonic theory. Magma wells up from the Earth's interior along "spreading centers" or "MORs" to produce fresh ocean crust at a rate of ˜20 km3 yr-1, forming new seafloor at a rate of ˜3.3 km2 yr-1 (Parsons, 1981; White et al., 1992). The young oceanic lithosphere formed in this way cools as it moves away from the ridge crest. Although much of this cooling occurs by upward conduction of heat through the lithosphere, early heat-flow studies quickly established that a significant proportion of the total heat flux must also occur via some additional convective process (Figure 1), i.e., through circulation of cold seawater within the upper ocean crust (Anderson and Silbeck, 1981). (2K)Figure 1. Oceanic heat flow versus age of ocean crust. Data from the Pacific, Atlantic, and Indian oceans, averaged over 2 Ma intervals (circles) depart from the theoretical cooling curve (solid line) indicating convective cooling of young ocean crust by circulating seawater

  1. Geochemical Tracers of Processes Affecting the Formation of Seafloor Hydrothermal Fluids and Deposits in the Manus Back-Arc Basin

    DTIC Science & Technology

    2009-02-01

    21 ° N East Pacific Rise . In Hydrothermal Processes at Seafloor Spreading Centers (ed. P. Rona, K. Boström, L. Laubier, and K. L. Smith), pp... hydrothermal fluids ( 21 ° N East Pacific Rise ) are taken from Mitra et al (1994) and Klinkhammer et al. (1994). The chemical composition...Measures C. I., Walden B., and Weiss R. F. (1985) Chemistry of submarine hydrothermal solutions at 21 ° N , East

  2. Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Phumying, Santi; Labuayai, Sarawuth; Thomas, Chunpen; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan; Maensiri, Santi

    2013-06-01

    Magnetite (Fe3O4) nanoparticles have been successfully synthesized by a novel hydrothermal method using ferric acetylacetonate (Fe(C5H8O2)3) and aloe vera plant-extracted solution. The influences of different reaction temperatures and times on the structure and magnetic properties of the synthesized Fe3O4 nanoparticles were investigated. The synthesized nanoparticles are crystalline and have particle sizes of ˜6-30 nm, as revealed by transmission electron microscopy (TEM). The results of X-ray diffraction (XRD), High resolution TEM (HRTEM) and selected area electron diffraction (SAED) indicate that the synthesized Fe3O4 nanoparticles have the inverse cubic spinel structure without the presence of any other phase impurities. The hysteresis loops of the Fe3O4 nanoparticles at room temperature show superparamagnetic behavior and the saturation magnetization of the Fe3O4 samples increases with increasing reaction temperature and time.

  3. Highly efficient fluoride adsorption from aqueous solution by nepheline prepared from kaolinite through alkali-hydrothermal process.

    PubMed

    Wang, Hao; Feng, Qiming; Liu, Kun; Li, Zishun; Tang, Xuekun; Li, Guangze

    2017-07-01

    A direct alkali-hydrothermal induced transformation process was adopted to prepare nepheline from raw kaolinite (shortened form RK in this paper) and NaOH solution in this paper. Structure and morphology characterizations of the synthetic product showed that the nepheline possessed high degree of crystallinity and uniform surface morphology. Specific surface area of nepheline is 18 m 2 /g, with a point of zero charge at around pH 5.0-5.5. The fluoride (F - ions) adsorption by the synthetic nepheline (shortened form SN in this paper) from aqueous solution was also investigated under different experimental conditions. The adsorption process well matched the Langmuir isotherm model with an amazing maximum adsorption capacity of 183 mg/g at 323 K. The thermodynamic parameters (ΔG 0 , ΔH 0 , and ΔS 0 ) for adsorption on SN were also determined from the temperature dependence. The adsorption capacities of fluoride on SN increased with increasing of temperature and initial concentration. Initial pH value also had influence on adsorption process. Adsorption of fluoride was rapidly increased in 5-60 min and thereafter increased slowly to reach the equilibrium in about 90-180 min under all conditions. The adsorption followed a pseudo-second order rate law. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    PubMed

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki

    2011-01-01

    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  5. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  6. Hydrothermal systems of the Karymsky Volcanic Centre, Kamchatka: Geochemistry, time evolution and solute fluxes

    NASA Astrophysics Data System (ADS)

    Taran, Yuri; Kalacheva, Elena; Inguaggiato, Salvatore; Cardellini, Carlo; Karpov, Gennady

    2017-10-01

    Karymsky Volcanic Centre (KVC) at the middle of the frontal volcanic chain of the Kamchatka arc consists of two joined calderas (Akademii Nauk and Karymsky volcano) and hosts two hydrothermal systems: Akademii Nauk (AN) and Karymsky (K). The AN is a typical boiling system, with Na-Cl waters (TDS 1 g/l), low gas content (CO2-N2), with deep calculated temperatures of 200 °C. In contrast, springs of the K system have lower temperatures (up to 42 °C), strong gas bubbling, TDS 2.5 g/l, and are enriched in HCO3- and SO42 -, with Mg2 + as the main cation. There are two intriguing characteristics of the K field: (i) their CO2-rich gas (> 97 mol%) has the highest 3He/4He ratios ever measured for hydrothermal systems in Kamchatka of 8 Ra (where Ra = 1.4 × 10- 6) and (ii) their thermal waters have an unusual cation composition (Mg > Na > Ca). After the 1996 sublimnic eruption within AN caldera, new hot springs appeared close to the eruption site. In this paper we synthesize all published and new geochemical data sets. The Karymsky Lake and post-1996 new thermal springs demonstrate exponential decreases in their main dissolved species, with a characteristic time of 5 to 8 years. The chemistry of AN and K springs did not change after the eruption. However, the concentration of chloride in the lake water approached 35 mg/l, compared with a background of 8-11 mg/l revealing a possible new source of hot water within the Karymsky Lake. All thermal fields of the KVC are drained by the Karymsky River with an outflow rate at the source of 2 m3/s (flowing out from Karymsky Lake) and at the exit from the Karymsky caldera of 4.5 m3/s. Using the measured solute fluxes at the source (AN springs) and at the exit (AN + K springs) the natural heat flux from the two systems can be estimated as 67 MW and 120 MW, respectively, and ≥ 20 t/d for the chloride output from both systems.

  7. Relationship between enhanced dewaterability and structural properties of hydrothermal sludge after hydrothermal treatment of excess sludge.

    PubMed

    Wang, Liping; Li, Aimin; Chang, Yuzhi

    2017-04-01

    Hydrothermal treatment is an effective method to enhance the deep dewaterability of excess sludge with low energy consumption. In this study, an insight into the relationship between enhanced dewaterability and structural properties of the produced hydrothermal sludge was presented, aiming at better understanding the effect of hydrothermal process on excess sludge dewatering performance. The results indicated that hydrothermal effect induced the transformation of surface water to interstitial and free water by lowering the binding strength between adjacent water and solid particles and that free water became the main form for moisture existence in hydrothermal sludge as temperature was higher than 180 °C. Increase in temperature of hydrothermal treatment generated a significant size reduction of sludge flocs but treated sludge with a higher rigidity, which not only strengthened the network of hydrothermal sludge but also destroyed the binding of EPS with water. Hydrothermal process caused crevice and pore structures of excess sludge to disappear gradually, which was a main driving force of water removal as temperature was below 150 °C. With the temperature of hydrothermal treatment exceeding 180 °C, the morphology of hydrothermal sludge became rough which linked closely to the solid precipitation of condensation polymerization, and further became smooth at higher temperature (210 °C) due to the coal-like structures with higher aromaticities, indicating that hydrothermal reaction pathways began to play a main role in enhanced dewaterability. Hydrothermal treatment led to more alkyl and aromatic carbon, but lower O-alkyl, carboxyl and carbonyl carbon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Hydrothermal nontronite formation at Eolo Seamount (Aeolian volcanic arc, Tyrrhenian Sea)

    USGS Publications Warehouse

    Dekov, V.M.; Kamenov, George D.; Stummeyer, Jens; Thiry, M.; Savelli, C.; Shanks, Wayne C.; Fortin, D.; Kuzmann, E.; Vertes, A.

    2007-01-01

    A sediment core containing a yellowish-green clay bed was recovered from an area of extensive hydrothermal deposition at the SE slope of the Eolo Seamount, Tyrrhenian Sea. The clay bed is composed of pure nontronite (described for the first time in the Tyrrhenian Sea), which appears to be the most aluminous nontronite ever found among the seafloor hydrothermal deposits. The high Al content suggests precipitation from Al-containing hydrothermal solutions. The REE distribution of the Eolo nontronite has a V-shape pattern. The heavy REE enrichment is in part due to their preferential partitioning in the nontronite structure. This enrichment was possibly further enhanced by the HREE preferential sorption on bacterial cell walls. The light REE enrichment is the result of scavenging uptake by one of the nontronite precursors, i.e., poorly-ordered Fe-oxyhydroxides, from the hydrothermal fluids. Oxygen isotopic composition of the nontronite yields a formation temperature of 30????C, consistent with a low-temperature hydrothermal origin. The relatively radiogenic Nd isotopic signature of the nontronite compared to the present-day Mediterranean seawater indicates that approximately half of Nd, and presumably the rest of the LREE, are derived from local volcanic sources. On the other hand, 87Sr/86Sr is dominated by present-day seawater Sr. Scanning electron microscopy investigation revealed that the nontronite is composed of aggregates of lepispheres and tube-like filaments, which are indicative of bacteria assisted precipitation. Bacteria inhabiting this hydrothermal site likely acted as reactive geochemical surfaces on which poorly-ordered hydrothermal Fe-oxyhydroxides and silica precipitated. Upon aging, the interactions of these primary hydrothermal precipitates coating bacterial filaments and cell walls likely led to the formation of nontronite. Finally, the well-balanced interlayer and layer charges of the crystal lattice of seafloor hydrothermal nontronite decrease its

  9. Hydrothermal Venting at Hinepuia Submarine Volcano, Kermadec Arc: Understanding Magmatic-Hydrothermal Fluid Chemistry

    NASA Astrophysics Data System (ADS)

    Stucker, Valerie K.; Walker, Sharon L.; de Ronde, Cornel E. J.; Caratori Tontini, Fabio; Tsuchida, Shinji

    2017-10-01

    The Hinepuia volcanic center is made up of two distinct edifices aligned northwest to southeast, with an active cone complex in the SE. Hinepuia is one of several active volcanoes in the northern segment of the Kermadec arc. Regional magnetic data show no evidence for large-scale hydrothermal alteration at Hinepuia, yet plume data confirm present-day hydrothermal discharge, suggesting that the hydrothermal system may be too young to have altered the host rocks with respect to measurable changes in magnetic signal. Gravity data are consistent with crustal thinning and shallow mantle under the volcanic center. Following the discovery of hydrothermal plumes over Hinepuia, the submersible Shinkai 6500 was used to explore the SE cone and sample hydrothermal fluids. The chemistry of hydrothermal fluids from submarine arc and backarc volcanoes is typically dominated by water-rock interactions and/or magmatic degassing. Chemical analyses of vent fluids show that Hinepuia does not quite fit either traditional model. Moreover, the Hinepuia samples fall between those typically ascribed to both end-member fluid types when plotted on a K-Mg-SO4 ternary diagram. Due to evidence of strong degassing, abundant native sulfur deposition, and H2S presence, the vent sampled at Hinepuia is ultimately classified as a magmatic-hydrothermal system with a water-rock influence. This vent is releasing water vapor and magmatic volatiles with a notable lack of salinity due to subcritical boiling and phase separation. Magmatic-hydrothermal fluid chemistry appears to be controlled by a combination of gas flux, phase separation processes, and volcano evolution and/or distance from the magma source.

  10. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A.

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  11. Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia.

    PubMed

    Quéméneur, Marianne; Bes, Méline; Postec, Anne; Mei, Nan; Hamelin, Jérôme; Monnin, Christophe; Chavagnac, Valérie; Payri, Claude; Pelletier, Bernard; Guentas-Dombrowsky, Linda; Gérard, Martine; Pisapia, Céline; Gérard, Emmanuelle; Ménez, Bénédicte; Ollivier, Bernard; Erauso, Gaël

    2014-12-01

    The shallow submarine hydrothermal field of the Prony Bay (New Caledonia) discharges hydrogen- and methane-rich fluids with low salinity, temperature (< 40°C) and high pH (11) produced by the serpentinization reactions of the ultramafic basement into the lagoon seawater. They are responsible for the formation of carbonate chimneys at the lagoon seafloor. Capillary electrophoresis single-strand conformation polymorphism fingerprinting, quantitative polymerase chain reaction and sequence analysis of 16S rRNA genes revealed changes in microbial community structure, abundance and diversity depending on the location, water depth, and structure of the carbonate chimneys. The low archaeal diversity was dominated by few uncultured Methanosarcinales similar to those found in other serpentinization-driven submarine and subterrestrial ecosystems (e.g. Lost City, The Cedars). The most abundant and diverse bacterial communities were mainly composed of Chloroflexi, Deinococcus-Thermus, Firmicutes and Proteobacteria. Functional gene analysis revealed similar abundance and diversity of both Methanosarcinales methanoarchaea, and Desulfovibrionales and Desulfobacterales sulfate-reducers in the studied sites. Molecular studies suggest that redox reactions involving hydrogen, methane and sulfur compounds (e.g. sulfate) are the energy driving forces of the microbial communities inhabiting the Prony hydrothermal system.

  12. Two new frameworks of potassium saccharate obtained from acidic and alkaline solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lv, Yao-Kang; Feng, Yun-Long, E-mail: sky37@zjnu.edu.c; Liu, Ji-Wei

    2011-05-15

    Two chiral K(I) complexes based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained from acidic and alkaline solution. The 3D framework of 1 includes K(I) polyhedral rods and typical pairwise coaxial right- and left-handed helical chains, and displays binodal 6-connected pcu topology. 2 contains 2D polyhedral sheets consisting of left-handed helical chains, and generates 3D network with an unprecedented (7,11)-connected net. Cyclic voltammetry tests and charge-discharge tests indicate that the addition of complex 2 to the electrolyte could improve the electrochemical properties of the nickel hydroxide electrode. -- Graphical abstract: Two K(I) complexesmore » based on D-saccharic acid (H{sub 2}sac), [K(Hsac)]{sub n} (1) and [K{sub 2}(sac)]{sub n} (2) were obtained and characterized. Electrochemical studies indicate the potential use of 2 in Ni-MH battery. Display Omitted highlights: > Two novel chiral K(I) frameworks based on D-saccharic acid were obtained. > The structure of 1 includes K(I) polyhedral rods and typical helical chains. > 2 contains 2D polyhedral sheets and generates an unprecedented (7,11)-connected net. > Addition of 2 to electrolyte could improve the nickel hydroxide electrode's property.« less

  13. High-resolution simulations of multi-phase flow in magmatic-hydrothermal systems with realistic fluid properties

    NASA Astrophysics Data System (ADS)

    Geiger, S.; Driesner, T.; Matthai, S.; Heinrich, C.

    2002-12-01

    Cl. Dynamic viscosities are currently approximated by the approach of Palliser and McKibbin [4]. The numerical solutions of the governing equations and the equation of state are embedded in our object-oriented C++ code CSP3D4.0 [6]. Comparisons of the numerical solutions carried out with CSP for solute transport with analytical solutions and classical test cases for density dependent flow (i.e., Elder problem [1]) show very good agreement. The numerical solutions carried out with CSP and the established United States Geological Survey code HYDROTHERM [3] for multi-phase flow and energy transport also yield a very good agreement. Fluid inclusion data can be used to constrain the PTX properties of the hydrothermal fluids in numerical solutions. [1] Journal of Fluid Mechanics 27, 609-623 [2] ANU Mathematical Research Report, MRR01-023 [3] USGS Water Investigations Report 94-4045 [4] Transport in Porous Media 33, 155-171 [5] AAPG Bulletin 80, 1763-1779 [6] CSP User's Guide, Dept. of Earth Sciences ETH Zurich

  14. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology.

    PubMed

    Jin, Jian; Li, Xiaodong; Chi, Yong; Yan, Jianhua

    2010-12-01

    This study investigated the process of aluminosilicate formation in medical waste incinerator fly ash containing large amounts of heavy metals and treated with alkaline compounds at 375 degrees C and examined how this process affected the mobility and availability of the metals. As a consequence of the treatments, the amount of dissolved heavy metals, and thus their mobility, was greatly reduced, and the metal leaching concentration was below the legislative regulations for metal leachability. Moreover, this process did not produce a high concentration of heavy metals in the effluent. The addition of alkaline compounds such as sodium hydroxide and sodium carbonate can prevent certain heavy metal ions dissolving in water. In comparison with the alkaline-free condition, the extracted concentrations of As, Mn, Pb, Sr and Zn were decreased by about 51.08, 97.22, 58.33, 96.77 and 86.89% by the addition of sodium hydroxide and 66.18, 86.11, 58.33, 83.87 and 81.91% by the addition of sodium carbonate. A mechanism for how the formation of aluminosilicate occurred in supercritical water and affected the mobility and availability of the heavy metals is discussed. The reported results could be useful as basic knowledge for planning new technologies for the hydrothermal stabilization of heavy metals in fly ash.

  15. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro

    2012-01-01

    The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.

  16. Alkalinity of non-industrial cleaning products and the likelihood of producing significant esophageal burns.

    PubMed

    Howell, J M

    1991-11-01

    Alkaline cleaning products are a cause of serious esophageal injury. Over time, legislation has diminished the concentration of many such non-industrial solutions and solids; however several products presently do not list either the pH or relative concentrations of alkaline constituents. This study measures the pHs of several non-industrial cleaning products containing either ammonium chloride, sodium hydroxide, or potassium hydroxide. Three pH measurements were performed on each of 10 non-industrial alkaline cleaning products (eight liquid, two solid). Two 0.1% ammonium chloride solutions had pHs of 12.06 +/- 0.00 and 12.06 +/- 0.01, whereas a pH of 12.43 +/- 0.00 was recorded in a 0.2% ammonium chloride solution. Concentrations of sodium hydroxide and potassium hydroxide were listed on only one of five liquid cleaning product labels. The pHs for these five products varied between 12.83 +/- 0.009 and 13.5 +/- .0.2. The pHs of three sodium hydroxide solutions differed from values reported in Micromedex (Micromedex Inc, Denver CO) by up to 0.32 pH units. Ten percent (v/v) solutions of two solid lye products had pHs of 13.62 +/- 0.008 and 13.74 +/- 0.02. The investigator found that selected non-industrial cleaning products, including ammonia solutions, retain the ability to cause clinically important esophageal damage.

  17. Efficient removal of recalcitrant deep-ocean dissolved organic matter during hydrothermal circulation

    NASA Astrophysics Data System (ADS)

    Hawkes, Jeffrey A.; Rossel, Pamela E.; Stubbins, Aron; Butterfield, David; Connelly, Douglas P.; Achterberg, Eric P.; Koschinsky, Andrea; Chavagnac, Valérie; Hansen, Christian T.; Bach, Wolfgang; Dittmar, Thorsten

    2015-11-01

    Oceanic dissolved organic carbon (DOC) is an important carbon pool, similar in magnitude to atmospheric CO2, but the fate of its oldest forms is not well understood. Hot hydrothermal circulation may facilitate the degradation of otherwise un-reactive dissolved organic matter, playing an important role in the long-term global carbon cycle. The oldest, most recalcitrant forms of DOC, which make up most of oceanic DOC, can be recovered by solid-phase extraction. Here we present measurements of solid-phase extractable DOC from samples collected between 2009 and 2013 at seven vent sites in the Atlantic, Pacific and Southern oceans, along with magnesium concentrations, a conservative tracer of water circulation through hydrothermal systems. We find that magnesium and solid-phase extractable DOC concentrations are correlated, suggesting that solid-phase extractable DOC is almost entirely lost from solution through mineralization or deposition during circulation through hydrothermal vents with fluid temperatures of 212-401 °C. In laboratory experiments, where we heated samples to 380 °C for four days, we found a similar removal efficiency. We conclude that thermal degradation alone can account for the loss of solid-phase extractable DOC in natural hydrothermal systems, and that its maximum lifetime is constrained by the timescale of hydrothermal cycling, at about 40 million years.

  18. Mechano-hydrothermal preparation of Li-Al-OH layered double hydroxides

    NASA Astrophysics Data System (ADS)

    Zhang, Fengrong; Hou, Wanguo

    2018-05-01

    A mechano-hydrothermal (MHT) method was used to synthesize Li-Al-OH layered double hydroxides (LDHs) from LiOH·H2O, Al(OH)3 and H2O as starting materials. A two-step synthesis was conducted, that is, Al(OH)3 was milled for 1 h, followed by hydrothermal treatment with LiOH·H2O solution. Effects of the LiOH/Al(OH)3 molar ratio (RLi/Al) and hydrothermal temperature (Tht) on the crystallinity, morphology, and composition of the product were examined. The resulting LDHs were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared, and elemental analyses. The results showed that pre-milling plays a key role in the LDH formation during subsequent hydrothermal treatment. The Li/Al molar ratio of the obtained LDHs keeps constant at 0.5, independent from theRLi/Al (0.5-5.0) in the starting materials. An increase in the Tht (20-80 °C) can enhance the crystallinity and morphology regularity of the products. The so-obtained Li-Al-OH LDHs exhibit high crystallinity and well-dispersity, which may have wider applications than the aggregate ones obtained using conventional mechanochemical and Li+-imbibition methods.

  19. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Ritter, G.; Simoneit, B. R.

    1999-01-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  20. Lipid Synthesis Under Hydrothermal Conditions by Fischer- Tropsch-Type Reactions

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Ritter, Gilles; Simoneit, Bernd R. T.

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated on Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 °C for 2-3 days and produces lipid compounds ranging from C2 to >C35 which consist of n-alkanols, n- alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  1. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    PubMed

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  2. Chemical, isotopic, and dissolved gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho

    USGS Publications Warehouse

    Mariner, R.H.; Young, H.W.; Evans, W. E.; Parliman, D.J.

    1991-01-01

    The chemical, isotopic, and gas compositions of the hydrothermal system in Twin Falls and Jerome counties, Idaho, change systematically as the water moves northward from the Idaho-Nevada boundary toward the Snake River. Sodium, chloride, fluoride, alkalinity, dissolved helium, and carbon-13 increase as calcium and carbon-14 decrease. Water-rock reactions may result in dissolution of plagioclase or volcanic glass and calcite, followed by precipitation of zeolites and clays. On the basis of carbon-14 age dating, apparent water ages range from 2,000 to more than 26,000 years; most apparent ages range from about 4,000 to 10,000 years. The older waters, north of the Snake River, are isotopically depleted in deuterium and are enriched in chloride relative to waters to the south. Thermal waters flowing northward beneath the Snake River may join a westward flow of older thermal water slightly north of the river. The direction of flow in the hydrothermal system seems to parallel the surface drainage.

  3. Growth of tourmaline single crystals containing transition metal elements in hydrothermal solutions

    NASA Astrophysics Data System (ADS)

    Setkova, Tatiana; Shapovalov, Yury; Balitsky, Vladimir

    2011-03-01

    Interest in the growth of tourmaline single crystals is based on the promising piezoelectric and pyroelectric properties of this material compared to quartz crystals currently in use. Moreover, synthetic tourmaline can be used as a substitute for the natural stone in the jewelry industry similar to other synthetic analogues of gemstones. Single crystals of colored Co-, Ni-, Fe-, (Ni,Cr)-, (Ni,Fe)-, and (Co,Ni,Cr)-containing tourmalines with concentration of transition metal elements up to 16 wt% on a seed have been grown from complex boron-containing hydrothermal solutions at a range of temperatures 400-750 °C and pressures 100 MPa. Experiments were conducted under conditions of a thermal gradient in titanium and chromium-nickel autoclaves. Tourmaline growth on a seed crystal occurs only if separate tourmaline-forming components (monocrystalline corundum and quartz bars) are used as charge. All tourmalines specified above grow in analogous (+) direction of the optical axis with a speed of 0.05 mm/day by faces of the trigonal pyramid, except tourmalines containing chromium. They grow in analogous (+0001) direction with a speed 0.05 mm/day, and in antilogous (-0001) direction with a speed of 0.01 mm/day by faces of the trigonal pyramid and in prism direction with a speed of 0.001 mm/day. Along with the large single crystals, a great amount of finest (30-150 μm in size) tourmaline crystals was formed during the runs by spontaneous nucleation both on the surface of the seed crystals and in the charge.

  4. Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands

    NASA Astrophysics Data System (ADS)

    Kalacheva, Elena; Taran, Yuri; Kotenko, Tatiana

    2015-04-01

    Shiashkotan Island belongs to the Northern Kuril island arc and consists of two joined volcanoes, Sinarka and Kuntomintar, with about 18 km of distance between the summits. Both volcanoes are active, with historic eruptions, and both emit fumarolic gases. Sinarka volcano is degassing through the extrusive dome with inaccessible strong and hot (> 400 °C) fumaroles. A large fumarolic field of the Kuntomintar volcano situated in a wide eroded caldera-like crater hosts many fumarolic vents with temperatures from boiling point to 480 °C. Both volcanoes are characterized by intense hydrothermal activity discharging acid SO4-Cl waters, which are drained to the Sea of Okhotsk by streams. At least 4 groups of near-neutral Na-Mg-Ca-Cl-SO4 springs with temperatures in the range of 50-80 °C are located at the sea level, within tide zones and discharge slightly altered diluted seawater. Volcanic gas of Kuntomintar as well as all types of hydrothermal manifestations of both volcanoes were collected and analyzed for major and trace elements and water isotopes. Volcanic gases are typical for arc volcanoes with 3He/4He corrected for air contamination up to 6.4 Ra (Ra = 1.4 × 10- 6, the air ratio) and δ13C (CO2) within - 10‰ to - 8 ‰ VPDB. Using a saturation indices approach it is shown that acid volcanic waters are formed at a shallow level, whereas waters of the coastal springs are partially equilibrated with rocks at ~ 180 °C. Trace element distribution and concentrations and the total REE depend on the water type, acidity and Al + Fe concentration. The REE pattern for acidic waters is unusual but similar to that found in some acidic crater lake waters. The total hydrothermal discharge of Cl and S from the island associated with volcanic activity is estimated at ca. 20 t/d and 40 t/d, respectively, based on the measurements of flow rates of the draining streams and their chemistry. The chemical erosion of the island by surface and thermal waters is estimated at 27 and

  5. An experimental parametric study of VOC from flooring systems exposed to alkaline solutions.

    PubMed

    Sjöberg, A; Ramnäs, O

    2007-12-01

    This study outlined the influence of a number of parameters affecting the emission rate from one of the largest sources of VOC in the building stock in the Nordic countries. This source is flooring systems of polyvinyl chloride or linoleum attached to a substrate of moisture damaged or insufficiently dried concrete. The secondary emission rate of degradation products was measured, with the Field and Laboratory Emission Cell, on different flooring systems consisting of three different floorings and three adhesives, exposed to three different aqueous solutions in the range of 11-13.1 pH. The conclusion drawn in this study is that the great majority of the secondary emission originates from the floor adhesive. The occurrence of adhesive and the amount of adhesive used have a significant influence on the emission rate. A critical pH value for degradation of the adhesive seems to lie somewhere between 11 and 13 pH. When designing a floor system or a renovation of a damaged flooring system, it is important to bear in mind the influence of parameters that may drastically shorten the service life. Flooring adhesive may decompose in a moist alkaline environment and give rise to unacceptable secondary emission rates.

  6. Niobium oxide synthesized via etching agent - assisted hydrothermal process: A films with low reflectance properties

    NASA Astrophysics Data System (ADS)

    Rani, Rozina Abdul; Zoolfakar, Ahmad Sabirin; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    In this paper, synthesis of the hydrothermal based etching process of niobium oxide (Nb2O5) films and their reflectance properties are presented. The concentration of etching agent, which is ammonium fluoride (NH4F) in the hydrothermal solution as well as the grain size and the annealing condition have significantly affected the reflectance properties of Nb2O5 films. Films that synthesized in 1.65M of NH4F solution showed the lowest percentage of reflectance value of 3.22% at 222 nm. The obtained reflectance results have shown that this kind of Nb2O5 films is very suitable for anti-reflective coating layer and UV sensor application.

  7. Tested Demonstrations. The Stepwise Reduction of Permanganate in Alkaline Conditions: A Lecture Demonstration.

    ERIC Educational Resources Information Center

    Ruoff, Peter; Riley, Megan

    1987-01-01

    Describes a chemistry experiment where an alkaline ice-cold permanganate solution is reduced by adding dropwise a cold diluted hydrogen peroxide solution. Outlines the course of the reduction through the various oxidation states of manganese with their characteristic colors. (TW)

  8. Study on optimizing ultrasonic irradiation period for thick polycrystalline PZT film by hydrothermal method.

    PubMed

    Ohta, Kanako; Isobe, Gaku; Bornmann, Peter; Hemsel, Tobias; Morita, Takeshi

    2013-04-01

    The hydrothermal method utilizes a solution-based chemical reaction to synthesize piezoelectric thin films and powders. This method has a number of advantages, such as low-temperature synthesis, and high purity and high quality of the product. In order to promote hydrothermal reactions, we developed an ultrasonic assisted hydrothermal method and confirmed that it produces dense and thick lead-zirconate-titanate (PZT) films. In the hydrothermal method, a crystal growth process follows the nucleation process. In this study, we verified that ultrasonic irradiation is effective for the nucleation process, and there is an optimum irradiation period to obtain thicker PZT films. With this optimization, a 9.2-μm-thick PZT polycrystalline film was obtained in a single deposition process. For this film, ultrasonic irradiation was carried out from the beginning of the reaction for 18 h, followed by a 6 h deposition without ultrasonic irradiation. These results indicate that the ultrasonic irradiation mainly promotes the nucleation process. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Alkaline extraction of phenolic compounds from intact sorghum kernels

    USDA-ARS?s Scientific Manuscript database

    An aqueous sodium hydroxide solution was employed to extract phenolic compounds from whole grain sorghum without decortication or grinding as determined by Oxygen Radical Absorbance Capacity (ORAC). The alkaline extract ORAC values were more stable over 32 days compared to neutralized and freeze dri...

  10. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    NASA Astrophysics Data System (ADS)

    Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting

    2017-05-01

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles ( 90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  11. Prophylactic treatment with alkaline phosphatase in cardiac surgery induces endogenous alkaline phosphatase release.

    PubMed

    Kats, Suzanne; Brands, Ruud; Hamad, Mohamed A Soliman; Seinen, Willem; Scharnhorst, Volkher; Wulkan, Raymond W; Schönberger, Jacques P; Oeveren, Wim van

    2012-02-01

    Laboratory and clinical data have implicated endotoxin as an important factor in the inflammatory response to cardiopulmonary bypass. We assessed the effects of the administration of bovine intestinal alkaline phosphatase (bIAP), an endotoxin detoxifier, on alkaline phosphatase levels in patients undergoing coronary artery bypass grafting. A total of 63 patients undergoing coronary artery bypass grafting were enrolled and prospectively randomized. Bovine intestinal alkaline phosphatase (n=32) or placebo (n=31) was administered as an intravenous bolus followed by continuous infusion for 36 hours. The primary endpoint was to evaluate alkaline phosphatase levels in both groups and to find out if administration of bIAP to patients undergoing CABG would lead to endogenous alkaline phosphatase release. No significant adverse effects were identified in either group. In all the 32 patients of the bIAP-treated group, we found an initial rise of plasma alkaline phosphatase levels due to bolus administration (464.27±176.17 IU/L). A significant increase of plasma alkaline phosphatase at 4-6 hours postoperatively was observed (354.97±95.00 IU/L) as well. Using LHA inhibition, it was shown that this second peak was caused by the generation of tissue non specific alkaline phosphatase (TNSALP-type alkaline phosphatase). Intravenous bolus administration plus 8 hours continuous infusion of alkaline phosphatase in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass results in endogenous alkaline phosphatase release. This endogenous alkaline phosphatase may play a role in the immune defense system.

  12. Hydrothermal synthesis of bismuth germanium oxide

    DOEpatents

    Boyle, Timothy J.

    2016-12-13

    A method for the hydrothermal synthesis of bismuth germanium oxide comprises dissolving a bismuth precursor (e.g., bismuth nitrate pentahydrate) and a germanium precursor (e.g., germanium dioxide) in water and heating the aqueous solution to an elevated reaction temperature for a length of time sufficient to produce the eulytite phase of bismuth germanium oxide (E-BGO) with high yield. The E-BGO produced can be used as a scintillator material. For example, the air stability and radioluminescence response suggest that the E-BGO can be employed for medical applications.

  13. Hydrothermal mineralization at seafloor spreading centers

    NASA Astrophysics Data System (ADS)

    Rona, Peter A.

    1984-01-01

    The recent recognition that metallic mineral deposits are concentrated by hydrothermal processes at seafloor spreading centers constitutes a scientific breakthrough that opens active sites at seafloor spreading centers as natural laboratories to investigate ore-forming processes of such economically useful deposits as massive sulfides in volcanogenic rocks on land, and that enhances the metallic mineral potential of oceanic crust covering two-thirds of the Earth both beneath ocean basins and exposed on land in ophiolite belts. This paper reviews our knowledge of processes of hydrothermal mineralization and the occurrence and distribution of hydrothermal mineral deposits at the global oceanic ridge-rift system. Sub-seafloor hydrothermal convection involving circulation of seawater through fractured rocks of oceanic crust driven by heat supplied by generation of new lithosphere is nearly ubiquitous at seafloor spreading centers. However, ore-forming hydrothermal systems are extremely localized where conditions of anomalously high thermal gradients and permeability increase hydrothermal activity from the ubiquitous low-intensity background level (⩽ 200°C) to high-intensity characterized by high temperatures ( > 200-c.400°C), and a rate and volume of flow sufficient to sustain chemical reactions that produce acid, reducing, metal-rich primary hydrothermal solutions. A series of mineral phases with sulfides and oxides as high- and low-temperature end members, respectively, are precipitated along the upwelling limb and in the discharge zone of single-phase systems as a function of increasing admixture of normal seawater. The occurrence of hydrothermal mineral deposits is considered in terms of spatial and temporal frames of reference. Spatial frames of reference comprise structural features along-axis (linear sections that are the loci of seafloor spreading alternating with transform faults) and perpendicular to axis (axial zone of volcanic extrusion and marginal

  14. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa

    NASA Astrophysics Data System (ADS)

    Zolotov, Mikhail Y.; Shock, Everett L.

    2003-04-01

    Formation of a sulfate-bearing ocean on Jupiter's satellite Europa by quenched hydrothermal fluids provides a source of metabolic energy for low-temperature sulfate-reducing organisms that use dissolved H2 as an electron donor. Inhibition of thermodynamically favorable sulfate reduction in cooled hydrothermal fluids creates the potential for biologic reduction. Both high temperature and reduced conditions of ocean-forming hydrothermal solutions favor sulfate reduction in quenched fluids. The maximum amount of energy available to support autotrophic sulfate reduction is on the order of a few kilojoules per kilogram of water and is limited by the low abundances of either H2 or sulfate in ocean-forming fluids. Although this irreplaceable energy source might have supported early life on Europa, maintenance of biologic sulfate reduction throughout the ocean's history would require a supply of organic compounds from endogenic sources or from the satellite's surface.

  15. Peptide and RNA contributions to iron-sulphur chemical gardens as life's first inorganic compartments, catalysts, capacitors and condensers.

    PubMed

    McGlynn, Shawn E; Kanik, Isik; Russell, Michael J

    2012-06-28

    Hydrothermal chimneys and compartments comprising transition metal sulphides and associated minerals have been proposed as likely locations for the beginnings of life. In laboratory simulations of off-axis alkaline springs, it is shown that the interaction of a simulated alkaline sulphide-bearing submarine vent solution with a primeval anoxic iron-bearing ocean leads to the formation of chimney structures reminiscent of chemical gardens. These chimneys display periodicity in their deposition and exhibit diverse morphologies and mineralogies, affording the possibilities of catalysis and molecular sequestration. The addition of peptides and RNA to the alkaline solution modifies the elemental stoichiometry of the chimneys-perhaps indicating the very initial stage of the organic takeover on the way to living cells by charged organic polymers potentially synthesized in this same environment.

  16. The Effect of Alkaline Activator Ratio on the Compressive Strength of Fly Ash-Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Lăzărescu, A. V.; Szilagyi, H.; Baeră, C.; Ioani, A.

    2017-06-01

    Alkaline activation of fly ash is a particular procedure in which ash resulting from a power plant combined with a specific alkaline activator creates a solid material when dried at a certain temperature. In order to obtain desirable compressive strengths, the mix design of fly ash based geopolymer pastes should be explored comprehensively. To determine the preliminary compressive strength for fly ash based geopolymer paste using Romanian material source, various ratios of Na2SiO3 solution/ NaOH solution were produced, keeping the fly ash/alkaline activator ratio constant. All the mixes were then cured at 70 °C for 24 hours and tested at 2 and 7 days, respectively. The aim of this paper is to present the preliminary compressive strength results for producing fly ash based geopolymer paste using Romanian material sources, the effect of alkaline activators ratio on the compressive strength and studying the directions for future research.

  17. Study of hydrothermal channels based on near-bottom magnetic prospecting: Application to Longqi hydrothermal area

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tao, C.; Li, H.; Zhaocai, W.; Jinhui, Z.; Qinzhu, C.; Shili, L.

    2014-12-01

    Mid-ocean ridges, largely present far from the continental plates, are characterized by complex geological structures and numerous hydrothermal systems with complex controlling factors. Exploring seafloor sulfide resources for industrial and scientific applications is a challenge. With the advent of geophysical surveys for seabed investigation, near-bottom magnetic prospecting, which yields shallow geological structure, is an efficient method for investigating active and inactive hydrothermal fields and for researching the structure of hydrothermal systems (Tivey et al., 1993, 1996;German et al., 2008). We collected near-bottom magnetic data in the Longqi hydrothermal area, located in the southwest Indian ridge (49.6° E; Zhu et al., 2010; Tao et al., 2014), using the autonomous benthic explorer, an autonomous underwater vehicle, during the second leg of the Chinese cruise DY115-19 on board R/V DaYangYiHao. Based on the results of the intensity of the spatial differential vector method (Seaman et al., 1993), we outline the hydrothermal alternation zone. By building models, we subsequently infer a fault along the discovered hydrothermal vents; this fault line may be connected to a detachment fault (Zhao et al., 2013). In addition, we discuss the channels of the hydrothermal circulation system (Figure 1), and presume that heat was conducted to the sea subsurface by the detachment fault; the aqueous fluid that infiltrated the fault is heated and conveyed to the seafloor, promoting the circulation of the hydrothermal system.

  18. Dissolved gases in hydrothermal (phreatic) and geyser eruptions at Yellowstone National Park, USA

    USGS Publications Warehouse

    Hurwitz, Shaul; Clor, Laura; McCleskey, R. Blaine; Nordstrom, D. Kirk; Hunt, Andrew G.; Evans, William C.

    2016-01-01

    Multiphase and multicomponent fluid flow in the shallow continental crust plays a significant role in a variety of processes over a broad range of temperatures and pressures. The presence of dissolved gases in aqueous fluids reduces the liquid stability field toward lower temperatures and enhances the explosivity potential with respect to pure water. Therefore, in areas where magma is actively degassing into a hydrothermal system, gas-rich aqueous fluids can exert a major control on geothermal energy production, can be propellants in hazardous hydrothermal (phreatic) eruptions, and can modulate the dynamics of geyser eruptions. We collected pressurized samples of thermal water that preserved dissolved gases in conjunction with precise temperature measurements with depth in research well Y-7 (maximum depth of 70.1 m; casing to 31 m) and five thermal pools (maximum depth of 11.3 m) in the Upper Geyser Basin of Yellowstone National Park, USA. Based on the dissolved gas concentrations, we demonstrate that CO2 mainly derived from magma and N2 from air-saturated meteoric water reduce the near-surface saturation temperature, consistent with some previous observations in geyser conduits. Thermodynamic calculations suggest that the dissolved CO2 and N2 modulate the dynamics of geyser eruptions and are likely triggers of hydrothermal eruptions when recharged into shallow reservoirs at high concentrations. Therefore, monitoring changes in gas emission rate and composition in areas with neutral and alkaline chlorine thermal features could provide important information on the natural resources (geysers) and hazards (eruptions) in these areas.

  19. Electrocatalysis of the HER in acid and alkaline media

    DOE PAGES

    Danilovic, Nemanja; Subbaraman, Ram; Strmcnik, Dusan; ...

    2013-01-01

    Trends in the HER are studied on selected metals (M= Cu, Ag, Au, Pt, Ru, Ir, Ti) in acid and alkaline environments. Here, we found that with the exception of Pt, Ir and Au, due to high coverage by spectator species on non-noble metal catalysts, experimentally established positions of Cu , Ag, Ru and Ti in the observed volcano relations are still uncertain. We also found that while in acidic solutions the M-Hupd binding energy most likely is controlling the activity trends, the trends in activity in alkaline solutions are controlled by a delicate balance between two descriptors: the M-Hadmore » interaction as well as the energetics required to dissociate water molecules. We confirm the importance of the second descriptor by introducing bifunctional catalysts such as M modified by Ni(OH); e.g. while the latter serves to enhance catalytic decomposition of water, the metal sites are required for collecting and recombining the produced hydrogen intermediates.« less

  20. Hydrophilic cobalt sulfide nanosheets as a bifunctional catalyst for oxygen and hydrogen evolution in electrolysis of alkaline aqueous solution.

    PubMed

    Zhu, Mingchao; Zhang, Zhongyi; Zhang, Hu; Zhang, Hui; Zhang, Xiaodong; Zhang, Lixue; Wang, Shicai

    2018-01-01

    Hydrophilic medium and precursors were used to synthesize a hydrophilic electro-catalyst for overall water splitting. The cobalt sulfide (Co 3 S 4 ) catalyst exhibits a layered nanosheet structure with a hydrophilic surface, which can facilitate the diffusion of aqueous substrates into the electrode pores and towards the active sites. The Co 3 S 4 catalyst shows excellent bifunctional catalytic activity for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline solution. The assembled water electrolyzer based on Co 3 S 4 exhibits better performance and stability than that of Pt/C-RuO 2 catalyst. Thereforce the hydrophilic Co 3 S 4 is a highly promising bifunctional catalyst for the overall water splitting reaction. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Selective leaching of Zn from spent alkaline batteries using environmentally friendly approaches.

    PubMed

    Maryam Sadeghi, S; Vanpeteghem, Guillaumme; Neto, Isabel F F; Soares, Helena M V M

    2017-02-01

    The main aim of this work was to evaluate the possibility of using microwave or ultrasound to assist the efficient and selective leaching of Zn from spent alkaline batteries and compare the results with those obtained using the conventional method. Two different strategies were applied: acid leaching of a washed residue and alkaline leaching of the original residue. In both (acid and alkaline) approaches, the use of microwave- or ultrasound-assisted leaching increased the extraction of Zn compared with the best results obtained using conventional leaching [acid leaching (1.5mol/L H 2 SO 4 , 3h, 80°C), 90% of Zn extracted; alkaline leaching (6mol/L NaOH, 3h, 80°C), 42% of Zn extracted]. With acid leaching, 94% of the Zn was extracted using microwave-assisted leaching (1 cycle, 30s, 1mol/L H 2 SO 4 ), and 92% of the Zn was extracted using ultrasound-assisted leaching (2min, 0.1p, 20% amplitude, 1mol/L H 2 SO 4 ). Ultrasound-assisted leaching resulted in a more selective (Zn/Mn ratio of 5.1) Zn extraction than microwave-assisted leaching (Zn/Mn ratio of 3.5); both processes generated a concentrated Zn solution (⩾18.7g/L) with a purity (83.3% and 77.7%, respectively) that was suitable for electrowinning. With alkaline leaching, microwave- (1 cycle, 3 min, 4mol/L NaOH) and ultrasound-assisted (14min, 0.1p, 20% amplitude, 4mol/L NaOH) leaching extracted about 80% of the Zn and less than 0.01% of the Mn, which resulted in lesser concentrated Zn solutions (approximately 16.5g/L) but with high purity (>99.5%) that was suitable for the recovery of Zn by precipitation. The microwave- and ultrasound-assisted leaching strategies used in this work proved to be efficient and environmentally-friendly approaches for the extraction of Zn from spent alkaline residues since a concentrated Zn solution with adequate purity for subsequent Zn recovery was obtained using significantly decreased leaching times and concentrations of chemicals. Copyright © 2017 Elsevier Ltd. All rights

  2. Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates.

    PubMed

    Suchanek, Katarzyna; Bartkowiak, Amanda; Gdowik, Agnieszka; Perzanowski, Marcin; Kąc, Sławomir; Szaraniec, Barbara; Suchanek, Mateusz; Marszałek, Marta

    2015-06-01

    Hydroxyapatite coatings were successfully produced on modified titanium substrates via hydrothermal synthesis in a Ca(EDTA)(2-) and (NH4)2HPO4 solution. The morphology of modified titanium substrates as well as hydroxyapatite coatings was studied using scanning electron microcopy and phase identification by X-ray diffraction, and Raman and FTIR spectroscopy. The results show that the nucleation and growth of hydroxyapatite needle-like crystals with hexagonal symmetry occurred only on titanium substrates both chemically and thermally treated. No hydroxyapatite phase was detected on only acid etched Ti metal. This finding demonstrates that only a particular titanium surface treatment can effectively induce the apatite nucleation under hydrothermal conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Experimental evidence for Nd-Sr decoupling during low-temperature (20-170oC) hydrothermal alteration of olivine and clinopyroxene

    NASA Astrophysics Data System (ADS)

    Frisby, C. P.; Bizimis, M.; Foustoukos, D.

    2011-12-01

    Serpentinization of abyssal peridotites represents a major reaction front between the hydrosphere and the mantle. While several studies have investigated the phase equilibria relationships that describe seawater - peridotite interaction at high temperature hydrothermal conditions (~400oC), there is limited data on the elemental mass exchange between seawater and ultramafic lithologies at temperatures similar to those expected at the flanks of hydrothermal vent sites. To better constrain seawater - peridotite elemental exchange alteration processes at low-temperatures, a series of experiments were conducted involving natural mantle olivine (Fo=90) and clinopyroxene coexisting with synthetic seawater enriched in elemental or isotopically enriched Sr, Ba, Nd, Sm, Gd, Dy, Yb, Pb, and U. The experiments were performed at temperatures from ambient to 170oC (at saturation vapor pressure), ranging from 15 minutes to 8 weeks and at water/rock mass ratios ~20. Our data shows strong decoupling between alkaline earth elements (Sr, Ba) and rare earth elements (REE). Overall, the REE are quantitatively removed from the solution to the mineral surface while Sr and Ba invariably remain in solution. In detail, we find that the rate of REE removal is proportional to temperature and inversely proportional to particle size distribution. For example at the 350-200um olivine grain size experiments 60% of REE removal occurred in 7 days at ambient temperature and in 6 hours at 100oC. No difference was observed on the removal rates between clinopyroxene and olivine. Additionally, we observe a fractionation of REE in solution where the HREE were removed at a faster rate than the LREE. The calculated apparent kDs for the experiments that approached steady state are similar to Fe-hydroxide scavenging experiments, and importantly show the tetrad effect in REE. We note in the experiments run with clinopyroxene and isotopically enriched seawater at 170oC, results indicate a simultaneous REE

  4. Hydrothermal monitoring in a quiescent volcanic arc: Cascade Range, northwestern United States

    USGS Publications Warehouse

    Ingebritsen, S.E.; Randolph-Flagg, N. G.; Gelwick, K.D.; Lundstrom, E.A.; Crankshaw, I.M.; Murveit, A.M.; Schmidt, M.E.; Bergfeld, D.; Spicer, K.R.; Tucker, D.S.; Mariner, R.H.; Evans, William C.

    2014-01-01

    Ongoing (1996–present) volcanic unrest near South Sister, Oregon, is accompanied by a striking set of hydrothermal anomalies, including elevated temperatures, elevated major ion concentrations, and 3He/4He ratios as large as 8.6 RA in slightly thermal springs. These observations prompted the US Geological Survey to begin a systematic hydrothermal-monitoring effort encompassing 25 sites and 10 of the highest-risk volcanoes in the Cascade volcanic arc, from Mount Baker near the Canadian border to Lassen Peak in northern California. A concerted effort was made to develop hourly, multiyear records of temperature and/or hydrothermal solute flux, suitable for retrospective comparison with other continuous geophysical monitoring data. Targets included summit fumarole groups and springs/streams that show clear evidence of magmatic influence in the form of high 3He/4He ratios and/or anomalous fluxes of magmatic CO2 or heat. As of 2009–2012, summit fumarole temperatures in the Cascade Range were generally near or below the local pure water boiling point; the maximum observed superheat was 3 during periods of hourly record. Hydrothermal responses to these small seismic stimuli were generally undetectable or ambiguous. Evaluation of multiyear to multidecadal trends indicates that whereas the hydrothermal system at Mount St. Helens is still fast-evolving in response to the 1980–present eruptive cycle, there is no clear evidence of ongoing long-term trends in hydrothermal activity at other Cascade Range volcanoes that have been active or restless during the past century (Baker, South Sister, and Lassen). Experience gained during the Cascade Range hydrothermal-monitoring experiment informs ongoing efforts to capture entire unrest cycles at more active but generally less accessible volcanoes such as those in the Aleutian arc.

  5. Ca, Sr, O and D isotope approach to defining the chemical evolution of hydrothermal fluids: example from Long Valley, CA, USA

    USGS Publications Warehouse

    Brown, Shaun T.; Kennedy, B. Mack; DePaolo, Donald J.; Hurwitz, Shaul; Evans, William C.

    2013-01-01

    We present chemical and isotopic data for fluids, minerals and rocks from the Long Valley meteoric-hydrothermal system. The samples encompass the presumed hydrothermal upwelling zone in the west moat of the caldera, the Casa Diablo geothermal field, and a series of wells defining a nearly linear, ∼16 km long, west-to-east trend along the likely fluid flow path. Fluid samples were analyzed for the isotopes of water, Sr, and Ca, the concentrations of major cations and anions, alkalinity, and total CO2. Water isotope data conform to trends documented in earlier studies, interpreted as indicating a single hydrothermal fluid mixing with local groundwater. Sr isotopes show subtle changes along the flow path, which requires rapid fluid flow and minimal reaction between the channelized fluids and the wallrocks. Sr and O isotopes are used to calculate fracture spacing using a dual porosity model. Calculated fracture spacing and temperature data for hydrothermal fluids indicate the system is (approximately) at steady-state. Correlated variations among total CO2, and the concentration and isotopic composition of Ca suggest progressive fluid degassing (loss of CO2), which drives calcite precipitation as the fluid flows west-to-east and cools. The shifts in Ca isotopes require that calcite precipitated at temperatures of 150–180 °C is fractionated by ca. −0.3‰ to −0.5‰ relative to aqueous species. Our data are the first evidence that Ca isotopes undergo kinetic fractionation at high temperatures (>100 °C) and can be used to trace calcite precipitation along hydrothermal fluid flow paths.

  6. A study on lithium/air secondary batteries-Stability of the NASICON-type lithium ion conducting solid electrolyte in alkaline aqueous solutions

    NASA Astrophysics Data System (ADS)

    Shimonishi, Yuta; Zhang, Tao; Imanishi, Nobuyuki; Im, Dongmin; Lee, Dong Joon; Hirano, Atsushi; Takeda, Yasuo; Yamamoto, Osamu; Sammes, Nigel

    The stability of the high lithium ion conducting glass ceramics, Li 1+ x+ yTi 2- xAl xSi yP 3- yO 12 (LTAP) in alkaline aqueous solutions with and without LiCl has been examined. A significant conductivity decrease of the LTAP plate immersed in 0.057 M LiOH aqueous solution at 50 °C for 3 weeks was observed. However, no conductivity change of the LTAP plate immersed in LiCl saturated LiOH aqueous solutions at 50 °C for 3 weeks was observed. The pH value of the LiCl-LiOH-H 2O solution with saturated LiCl was in a range of 7-9. The molarity of LiOH and LiCl in the LiOH and LiCl saturated aqueous solution were estimated to be 5.12 and 11.57 M, respectively, by analysis of Li + and OH -. The high concentration of LiOH and the low pH value of 8.14 in this solution suggested that the dissociation of LiOH into Li + and OH - is too low in the solution with a high concentration of Li +. These results suggest that the water stable LTAP could be used as a protect layer of the lithium metal anode in the lithium/air cell with LiCl saturated aqueous solution as the electrolyte, because the content of OH - ions in the LiCl saturated aqueous solution does not increase via the cell reaction of Li + 1/2O 2 + H 2O → 2LiOH, and LTAP is stable under a deep discharge state.

  7. Artificial Bee Colony Optimization for Short-Term Hydrothermal Scheduling

    NASA Astrophysics Data System (ADS)

    Basu, M.

    2014-12-01

    Artificial bee colony optimization is applied to determine the optimal hourly schedule of power generation in a hydrothermal system. Artificial bee colony optimization is a swarm-based algorithm inspired by the food foraging behavior of honey bees. The algorithm is tested on a multi-reservoir cascaded hydroelectric system having prohibited operating zones and thermal units with valve point loading. The ramp-rate limits of thermal generators are taken into consideration. The transmission losses are also accounted for through the use of loss coefficients. The algorithm is tested on two hydrothermal multi-reservoir cascaded hydroelectric test systems. The results of the proposed approach are compared with those of differential evolution, evolutionary programming and particle swarm optimization. From numerical results, it is found that the proposed artificial bee colony optimization based approach is able to provide better solution.

  8. Microbiology of ancient and modern hydrothermal systems.

    PubMed

    Reysenbach, A L; Cady, S L

    2001-02-01

    Hydrothermal systems have prevailed throughout geological history on earth, and ancient ARCHAEAN hydrothermal deposits could provide clues to understanding earth's earliest biosphere. Modern hydrothermal systems support a plethora of microorganisms and macroorganisms, and provide good comparisons for paleontological interpretation of ancient hydrothermal systems. However, all of the microfossils associated with ancient hydrothermal deposits reported to date are filamentous, and limited STABLE ISOTOPE analysis suggests that these microfossils were probably autotrophs. Therefore, the morphology and mode of carbon metabolism are attributes of microorganisms from modern hydrothermal systems that provide valuable information for interpreting the geological record using morphological and isotopic signatures.

  9. Synthesis of Silver-Strontium Titanate Hybrid Nanoparticles by Sol-Gel-Hydrothermal Method.

    PubMed

    Ueno, Shintaro; Nakashima, Kouichi; Sakamoto, Yasunao; Wada, Satoshi

    2015-03-24

    Silver (Ag) nanoparticle-loaded strontium titanate (SrTiO₃) nanoparticles were attempted to be synthesized by a sol-gel-hydrothermal method. We prepared the titanium oxide precursor gels incorporated with Ag⁺ and Sr 2+ ions with various molar ratios, and they were successfully converted into the Ag-SrTiO₃ hybrid nanoparticles by the hydrothermal treatment at 230 °C in strontium hydroxide aqueous solutions. The morphology of the SrTiO₃ nanoparticles is dendritic in the presence and absence of Ag⁺ ions. The precursor gels, which act as the high reactive precursor, give rise to high nucleation and growth rates under the hydrothermal conditions, and the resultant diffusion-limited aggregation phenomena facilitate the dendritic growth of SrTiO₃. From the field-emission transmission electron microscope observation of these Ag-SrTiO₃ hybrid nanoparticles, the Ag nanoparticles with a size of a few tens of nanometers are distributed without severe agglomeration, owing to the competitive formation reactions of Ag and SrTiO₃.

  10. Seismological evidence for an along-axis hydrothermal flow at the Lucky Strike hydrothermal vents site

    NASA Astrophysics Data System (ADS)

    Rai, A.; Wang, H.; Singh, S. C.; Crawford, W. C.; Escartin, J.; Cannat, M.

    2010-12-01

    Hydrothermal circulation at ocean spreading centres plays fundamental role in crustal accretion process, heat extraction from the earth and helps to maintain very rich ecosystem in deep Ocean. Recently, it has been suggested that hydrothermal circulation is mainly along the ridge axis at fast spreading centres above along axis melt lens (AMC). Using a combination of micro-earthquake and seismic reflection data, we show that the hydrothermal circulation at the Lucky Strike segment of slow spreading Mid-Atlantic Ridge is also along axis in a narrow (~1 km) zone above a wide (2-3 km) AMC. We find that the seismicity mainly lies above the seismically imaged 3 km wide 7 km long melt lens at 3.2 km depth. We observe a vertical plume of seismicity above a weak AMC reflection just north of the hydrothermal vent fields that initiates just above the AMC and continues to the seafloor. This zone is collocated with active rifting of the seafloor in the neo-volcanic zone. Beneath the hydrothermal vents sites, where a strong melt lens is imaged, the seismicity initiates at 500 m above the AMC and continues to the seafloor. Just south of the hydrothermal field, where the AMC is widest and strongest, the seismicity band lies 500 m above the melt lens in a 800 m thick zone, which does not continue to the seafloor. The presence the weak melt lens reflection could be due to a cooled and crystallised AMC (mush) that permits the penetration of hydrothermal fluids down to the top of the AMC indicated by seismicity plume and might be the in-flow zone for hydrothermal circulation. The strong AMC reflection could be due to fresh supply of melt in the AMC (pure melt), which has pushed the cracking front 500 m above the AMC. Beneath the hydrothermal fields, the strong AMC reflection and seismicity 500 above the AMC to the seafloor could represent cracking along the up-flow zone. The 800 m thick zone of seismicity above the pure melt zone could be the zone of hydrothermal cracking zone. We do

  11. Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates

    NASA Astrophysics Data System (ADS)

    Kasioptas, Argyrios; Geisler, Thorsten; Perdikouri, Christina; Trepmann, Claudia; Gussone, Nikolaus; Putnis, Andrew

    2011-06-01

    Aragonite and calcite single crystals can be readily transformed into polycrystalline hydroxyapatite pseudomorphs by hydrothermal treatment in a (NH 4) 2HPO 4 solution. Scanning electron microscopy of the reaction products showed that the transformation of aragonite to apatite is characterised by the formation of a sharp interface between the two phases and by the development of intracrystalline porosity in the hydroxyapatite phase. In addition, electron backscattered diffraction (EBSD) imaging showed that the c-axis of apatite is predominantly oriented perpendicular to the reaction front with no crystallographic relationship to the aragonite lattice. However, the Ca isotopic composition of the parent aragonite, measured by thermal ionization mass spectrometry was inherited by the apatite product. Hydrothermal experiments conducted with use of phosphate solutions prepared with water enriched in 18O (97%) further revealed that the 18O from the solution is incorporated in the product apatite, as measured by micro-Raman spectroscopy. Monitoring the distribution of 18O with Raman spectroscopy was possible because the incorporation of 18O in the PO 4 group of apatite generates four new Raman bands at 945.8, 932, 919.7 and 908.8 cm -1, in addition to the ν1(PO 4) symmetric stretching band of apatite located at 962 cm -1, which can be assigned to four 18O-bearing PO 4 species. The relative intensities of these bands reflect the 18O content in the PO 4 group of the apatite product. By using equilibrated and non-equilibrated solutions, with respect to the 18O distribution between aqueous phosphate and water, we could show that the concentration of 18O in the apatite product is linked to the degree of 18O equilibration in the solution. The textural and chemical observations are indicative of a coupled mechanism of aragonite dissolution and apatite precipitation taking place at a moving reaction interface.

  12. Evaluating Experimental Artifacts in Hydrothermal Prebiotic Synthesis Experiments

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexander; Schoonen, Martin A. A.

    2003-04-01

    Control experiments with ultra pure deionized water were conducted to evaluate the organic contamination in hydrothermal prebiotic experiments. Different combinations of reaction vessel material, sampling tubing and stirring were tested and the amounts of organic contaminants determined. All tested types of polymer tubing were proven to introduce organic contaminants (formate, acetate and propionate ions) into the reacting solution. Stainless steel has a catalytic effect on the decomposition of formate, consistent with earlier work at high temperatures and pressures.

  13. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    NASA Astrophysics Data System (ADS)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  14. On the early fate of hydrothermal iron at deep-sea vents: A reassessment after in situ filtration

    NASA Astrophysics Data System (ADS)

    Waeles, M.; Cotte, L.; Pernet-Coudrier, B.; Chavagnac, V.; Cathalot, C.; Leleu, T.; Laës-Huon, A.; Perhirin, A.; Riso, R. D.; Sarradin, P.-M.

    2017-05-01

    Deep-sea hydrothermal venting is now recognized as a major source of iron (Fe), an essential trace element that controls marine productivity. However, the reactions occurring during dispersal from buoyant plumes to neutrally buoyant hydrothermal plumes are still poorly constrained. Here we report for the first time on the dissolved-particulate partition of Fe after in situ filtration at the early stage of mixing at different hydrothermal discharges, i.e., Lucky Strike (37°N), TAG (26°N), and Snakepit (23°N) on the Mid-Atlantic Ridge. We found that hydrothermal iron is almost completely preserved (>90%) in the dissolved fraction, arguing for low iron-bearing sulfide precipitation of iron in basalt-hosted systems with low Fe:H2S ratios. This result can only be explained by a kinetically limited formation of pyrite. The small part of Fe being precipitated as sulfides in the mixing gradient (<10%) is restricted to the inclusion of Fe in minerals of high Cu and Zn content. We also show that secondary venting is a source of Fe-depleted hydrothermal solutions. These results provide new constrains on Fe fluxes from hydrothermal venting.

  15. The Effect of Alkaline Concentration on Coconut Husk Crystallinity and the Yield of Sugars Released

    NASA Astrophysics Data System (ADS)

    Sangian, H. F.; Widjaja, A.

    2018-02-01

    This work was to analyze the effect of alkaline concentration on coconut coir husk crystallinity and sugar liberated enzymatically. The data showed that the employing of alkaline on lignocellulose transformed the crystallinity. The XRD peaks increased highly which indicated that cellulose was more opened and exposed. After pretreatment, the chemical compositions (cellulose, hemicellulose, and lignin) were changed significantly. The employing 1% alkaline, the cellulosic content inclined if compared to that of non-pretreatment. When the alkaline concentration was added to 4%, the cellulose was decreased slightly which indicated that a part of cellulose and hemicellulose was dissolved into solution. It was found the alkaline pretreatment influenced by the biochemical reaction of treated substrates in producing the reducing sugars. The amounts of sugar liberated enzymatically of coconut husk treated by 1% and 4% alkaline increased to 0.26, and 0.24 g sugar/g (cellulose+hemicellulose), respectively, compared to that of native solid recorded at 0.18 g sugar/g (cellulose+hemicellulose).

  16. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Yang, Weifang; Tao, Chunhui; Li, Huaiming; Liang, Jin; Liao, Shili; Long, Jiangping; Ma, Zhibang; Wang, Lisheng

    2017-06-01

    Duanqiao hydrothermal field is located between the Indomed and Gallieni fracture zones at the central volcano, at 50°28'E in the ultraslow-spreading Southwest Indian Ridge (SWIR). Twenty-eight subsamples from a relict chimney and massive sulfides were dated using the 230Th/238U method. Four main episodes of hydrothermal activity were determined according to the restricted results: 68.9-84.3, 43.9-48.4, 25.3-34.8, and 0.7-17.3 kyrs. Hydrothermal activity of Duanqiao probably started about 84.3 (±0.5) kyrs ago and ceased about 0.737 (±0.023) kyrs ago. The periodic character of hydrothermal activity may be related to the heat source provided by the interaction of local magmatism and tectonism. The estimated mean growth rate of the sulfide chimney is <0.02 mm/yr. This study is the first to estimate the growth rate of chimneys in the SWIR. The maximum age of the relict chimney in Duanqiao hydrothermal filed is close to that of the chimneys from Mt. Jourdanne (70 kyrs). The hydrothermal activity in Dragon Flag field is much more recent than that of Duanqiao or Mt. Jourdanne fields. The massive sulfides are younger than the sulfides from other hydrothermal fields such as Rainbow, Sonne and Ashadze-2. The preliminarily estimated reserves of sulfide ores of Duanqiao are approximately 0.5-2.9 million tons.

  17. Impact of alkaline alterations to a Brazilian soil on cesium retention under low temperature conditions.

    PubMed

    Calábria, Jaqueline Alves de Almeida; Cota, Stela Dalva Santos; de Morais, Gustavo Ferrari; Ladeira, Ana Cláudia Queiroz

    2017-11-01

    To be used as backfilling materials in radioactive waste disposal facilities, a natural material must have a suitable permeability, mechanical properties and a high sorption capacity for radionuclides. Also important when considering a material as a backfill is the effect of its interaction with the alkaline solution generated from concrete degradation. This solution promotes mineralogical alterations that result in significant changes in the material key properties influencing its performance as a safety component of the repository. This paper presents results of an investigation on the effect of alkaline interaction under a low temperature on cesium retention properties of a local soil being considered suitable as a backfill for the Brazilian near surface disposal facility. A sample of the Brazilian soil was mixed with an alkaline solution, simulating the pore water leached in the first stage of cement degradation, during 1, 7, 14 and 28 days. The experiments were conducted under low temperature (25 °C) aiming to evaluate similar conditions found on a low and intermediate level radioactive waste disposal installation. A non-classical isotherm sorption model was fitted to sorption data obtained from batch experiments, for unaltered and altered samples, providing parameters that allowed us to assess the effect of the interaction on material quality as Cs sorbent. The sorption parameters obtained from the data-fitted isotherm were used then to estimate the corresponding retardation factor (R). Alkaline interaction significantly modified the soil sorption properties for Cs. The parameter Q, related to the maximum sorption capacity, as well as the affinity parameter (K) and the retardation coefficients became significantly smaller (about 1000 times for the R coefficient) after pretreatment with the simulated alkaline solutions. Moreover, the increase in n-values, which is related with the energy distribution width and heterogeneity of surface site energies

  18. The ubiquitous nature of accessory calcite in granitoid rocks: Implications for weathering, solute evolution, and petrogenesis

    USGS Publications Warehouse

    White, A.F.; Schulz, M.S.; Lowenstern, J. B.; Vivit, D.V.; Bullen, T.D.

    2005-01-01

    Calcite is frequently cited as a source of excess Ca, Sr and alkalinity in solutes discharging from silicate terrains yet, no previous effort has been made to assess systematically the overall abundance, composition and petrogenesis of accessory calcite in granitoid rocks. This study addresses this issue by analyzing a worldwide distribution of more than 100 granitoid rocks. Calcite is found to be universally present in a concentration range between 0.028 to 18.8 g kg-1 (mean = 2.52 g kg-1). Calcite occurrences include small to large isolated anhedral grains, fracture and cavity infillings, and sericitized cores of plagioclase. No correlation exists between the amount of calcite present and major rock oxide compositions, including CaO. Ion microprobe analyses of in situ calcite grains indicate relatively low Sr (120 to 660 ppm), negligible Rb and 87Sr/86Sr ratios equal to or higher than those of coexisting plagioclase. Solutes, including Ca and alkalinity produced by batch leaching of the granitoid rocks (5% CO2 in DI water for 75 d at 25??C), are dominated by the dissolution of calcite relative to silicate minerals. The correlation of these parameters with higher calcite concentrations decreases as leachates approach thermodynamic saturation. In longer term column experiments (1.5 yr), reactive calcite becomes exhausted, solute Ca and Sr become controlled by feldspar dissolution and 87Sr/ 86Sr by biotite oxidation. Some accessory calcite in granitoid rocks is related to intrusion into carbonate wall rock or produced by later hydrothermal alteration. However, the ubiquitous occurrence of calcite also suggests formation during late stage (subsolidus) magmatic processes. This conclusion is supported by petrographic observations and 87Sr/86Sr analyses. A review of thermodynamic data indicates that at moderate pressures and reasonable CO2 fugacities, calcite is a stable phase at temperatures of 400 to 700??C. Copyright ?? 2005 Elsevier Ltd.

  19. X-ray absorption spectroscopy and imaging of heterogeneous hydrothermal mixtures using a diamond microreactor cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fulton, John L.; Darab, John G.; Hoffmann, Markus M.

    2001-04-01

    Hydrothermal synthesis is an important route to novel materials. Hydrothermal chemistry is also an important aspect of geochemistry and a variety of waste remediation technologies. There is a significant lack of information about the speciation of inorganic compounds under hydrothermal conditions. For these reasons we describe a high-temperature, high-pressure cell that allows one to acquire both x-ray absorption fine structure (XAFS) spectra and x-ray transmission and absorption images of heterogeneous hydrothermal mixtures. We demonstrate the utility of the method by measuring the Cu(I) speciation in a solution containing both solid and dissolved Cu phases at temperatures up to 325{sup o}C.more » X-ray imaging of the various hydrothermal phases allows micro-XAFS to be collected from different phases within the heterogeneous mixture. The complete structural characterization of a soluble bichloro-cuprous species was determined. In situ XAFS measurements were used to define the oxidation state and the first-shell coordination structure. The Cu--Cl distance was determined to be 2.12 Aa for the CuCl{sub 2}{sup -} species and the complete loss of tightly bound waters of hydration in the first shell was observed. The microreactor cell described here can be used to test thermodynamic models of solubility and redox chemistry of a variety of different hydrothermal mixtures.« less

  20. Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia

    NASA Astrophysics Data System (ADS)

    Joseph, E. P.; Barrett, T. J.

    2017-12-01

    Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and

  1. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications

    NASA Astrophysics Data System (ADS)

    Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair

    2015-07-01

    The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.

  2. The Lassen hydrothermal system

    USGS Publications Warehouse

    Ingebritsen, Steven E.; Bergfeld, Deborah; Clor, Laura; Evans, William C.

    2016-01-01

    The active Lassen hydrothermal system includes a central vapor-dominated zone or zones beneath the Lassen highlands underlain by ~240 °C high-chloride waters that discharge at lower elevations. It is the best-exposed and largest hydrothermal system in the Cascade Range, discharging 41 ± 10 kg/s of steam (~115 MW) and 23 ± 2 kg/s of high-chloride waters (~27 MW). The Lassen system accounts for a full 1/3 of the total high-temperature hydrothermal heat discharge in the U.S. Cascades (140/400 MW). Hydrothermal heat discharge of ~140 MW can be supported by crystallization and cooling of silicic magma at a rate of ~2400 km3/Ma, and the ongoing rates of heat and magmatic CO2 discharge are broadly consistent with a petrologic model for basalt-driven magmatic evolution. The clustering of observed seismicity at ~4–5 km depth may define zones of thermal cracking where the hydrothermal system mines heat from near-plastic rock. If so, the combined areal extent of the primary heat-transfer zones is ~5 km2, the average conductive heat flux over that area is >25 W/m2, and the conductive-boundary length <50 m. Observational records of hydrothermal discharge are likely too short to document long-term transients, whether they are intrinsic to the system or owe to various geologic events such as the eruption of Lassen Peak at 27 ka, deglaciation beginning ~18 ka, the eruptions of Chaos Crags at 1.1 ka, or the minor 1914–1917 eruption at the summit of Lassen Peak. However, there is a rich record of intermittent hydrothermal measurement over the past several decades and more-frequent measurement 2009–present. These data reveal sensitivity to climate and weather conditions, seasonal variability that owes to interaction with the shallow hydrologic system, and a transient 1.5- to twofold increase in high-chloride discharge in response to an earthquake swarm in mid-November 2014.

  3. Porosity evolution in Icelandic hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  4. Hydrothermal transport, deposition, and fractionation of the REE: Experimental data and thermodynamic calculations

    DOE PAGES

    Migdisov, Artaches; Williams-Jones, A. E.; Brugger, J.; ...

    2016-06-11

    For many years, our understanding of the behavior of the REE in hydrothermal systems was based on semi-empirical estimates involving extrapolation of thermodynamic data obtained at 25 °C. Since then, a substantial body of experimental data has accumulated on the stability of aqueous complexes of the REE. These data have shown that some of the predictions of Haas et al. (1995) are accurate, but others may be in error by several orders of magnitude. However, application of the data in modeling hydrothermal transport and deposition of the REE has been severely hampered by the lack of data on the thermodynamicmore » properties of even the most common REE minerals. The discrepancies between the predictions and experimental determinations of the thermodynamic properties of aqueous REE species, together with the paucity of data on the stability of REE minerals, raise serious questions about the reliability of some models that have been proposed for the hydrothermal mobility of these critical metals. In this contribution, we review a body of high-temperature experimental data collected over the past 15 years on the stability of REE aqueous species and minerals. Using this new thermodynamic dataset, we re-evaluate the mechanisms responsible for hydrothermal transport and deposition of the REE. We also discuss the mechanisms that can result in REE fractionation during their hydrothermal transport and deposition. Here, our calculations suggest that in hydrothermal solutions, the main REE transporting ligands are chloride and sulfate, whereas fluoride, carbonate, and phosphate likely play an important role as depositional ligands. In addition to crystallographic fractionation, which is based on the differing affinity of mineral structures for the REE, our models suggest that the REE can be fractionated hydrothermally due to the differences in the stability of the LREE and HREE as aqueous chloride complexes.« less

  5. Advanced oxidation of acridine orange by aqueous alkaline iodine.

    PubMed

    Azmat, Rafia; Qamar, Noshab; Naz, Raheela; Khursheed, Anum

    2016-11-01

    The advanced oxidation process is certainly used for the dye waste water treatment. In this continuation a new advanced oxidation via aqueous alkaline iodine was developed for the oxidation of acridine orange (AO) {3, 6 -bis (dimethylamino) acridine zinc chloride double salt}. Oxidation Kinetics of AO by alkaline solution of iodine was investigated spectrophotometrically at λ max 491 nm. The reaction was monitored at various operational parameters like several concentrations of dye and iodine, pH, salt electrolyte and temperature. The initial steps of oxidation kinetics followed fractional order reaction with respect to the dye while depend upon the incremental amount of iodine to certain extent whereas maximum oxidation of AO was achieved at high pH. Decline in the reaction rate in the presence of salt electrolyte suggested the presence of oppositely charged species in the rate determining step. Kinetic data revealed that the de-colorization mechanism involves triodate (I 3 - ) species, instead of hypoidate (OI - ) and hypiodous acid (HOI), in alkaline medium during the photo-excitation of hydrolyzed AO. Alleviated concentration of alkali result in decreasing of rate of reaction, clearly indicate that the iodine species are active oxidizing species instead of OH radical. Activation parameters at elevated temperatures were determined which revealed that highly solvated state of dye complex existed into solution. Reaction mixture was subjected to UV/Visible and GC mass spectrum analysis that proves the secondary consecutive reaction was operative in rate determining step and finally dye complex end into smaller fragments.

  6. Hydrothermal Detoxization of Slate Containing Asbestos and the Possibility of Application for Fertilizer of its Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myojin, Sachi; Yamasaki, Chizuko; Yamasaki, Nakamichi

    Hydrothermal decomposition of slate (building materials) containing asbestos has been attempted by using a NH{sub 4}H{sub 2}PO{sub 4} solution. Firstly, the alteration of chrysotile as a starting material was investigated under hydrothermal conditions of 200 deg. C, 12 hrs of reaction time and with a phosphate solution. It was confirmed that the original fibrous form of chrysotile had been perfectly collapsed by the SEM observation. The chrysotile (asbestos) disappeared to form Mg-Ca-Silicate (Ca{sub 7}Mg{sub 2}P{sub 6}O{sup 24}) estimated by XRD. The composition and chemical form of reaction products (Mg-Ca-Silicate) was predicted to application as a fertilizer. Fertilizer effect of thesemore » resulted product on cultivations of Japanese radish (leaves), soybeans and tomatoes, was examined by using a special medium of mixed soil with a low content of N, P, K and a thermal-treated zeolite one. The fertilizer effects of the product were compared to commercial fertilizers such as N, N-K-P and P types. In order to estimate the fertilizer effect, the size of crops, number of fruits and number of leaves were measured everyday. As a result, these hydrothermal products of slate containing asbestos were as good as commercial fertilizers on the market. Fruits groups especially had a good crop using the hydrothermal slate product. These results show that the main components of hydrothermal treatments slate are calcium silicate and magnesium phosphate. Its decomposition reaction products may have the possibility of application for fertilization of crops which require nucleic acid--phosphorus.« less

  7. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  8. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  9. Interfacial activity in alkaline flooding enhanced oil recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.K.

    1981-01-01

    The ionization of long-chained organic acids in the crude oil to form soaps was shown to be primarily responsible for the lowering of oil-water interfacial tension at alkaline pH. These active acids can be concentrated by silica gel chromatography into a minor polar fraction. An equilibrium chemical model was proposed based on 2 competing reactions: the ionization of acids to form active anions, and the formation of undissociated soap between acid anions and sodium ions. It correlates the interfacial activity with the interfacial concentration of active acid anions which is expressed in terms of the concentrations of the chemical speciesmore » in the system. The model successfully predicts the observed oil-alkaline solution interfacial phenomenon, including its dependence on pH, alkali and salt concentrations, type of acid present and type of soap formed. Flooding at different alkali concentrations to activate different acid species present in the crude was shown to give better recovery than flooding at a single high alkali concentration. Treating the crude oil with a dilute solution of mineral acids liberates additional free active acids and yields better interfacial activity during subsequent alkali contact.« less

  10. Stable isotopes in seafloor hydrothermal systems: Vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes

    USGS Publications Warehouse

    Shanks, Wayne C.

    2001-01-01

    The recognition of abundant and widespread hydrothermal activity and associated unique life-forms on the ocean floor is one of the great scientific discoveries of the latter half of the twentieth century. Studies of seafloor hydrothermal processes have led to revolutions in understanding fluid convection and the cooling of the ocean crust, the chemical and isotopic mass balance of the oceans, the origin of stratiform and statabound massive-sulfide ore-deposits, the origin of greenstones and serpentinites, and the potential importance of the subseafloor biosphere. Stable isotope geochemistry has been a critical and definitive tool from the very beginning of the modern era of seafloor exploration.

  11. Application of graphite as a geothermometer in hydrothermally altered metamorphic rocks of the Merelani-Lelatema area, Mozambique Belt, northeastern Tanzania

    NASA Astrophysics Data System (ADS)

    Malisa, Elias Pausen

    1998-02-01

    Upper Precambrian pelitic and psammitic gneisses in the Mozambique Belt are usually graphite rich. The determination of crystallisation temperatures around and in the hydrothermally altered rocks of the Merelani-Lelatema mining areas, northeastern Tanzania, were made by studying the lattice parameter C of graphite. In this way, the migration of the chromophore elements giving colour to the gemstones, e.g. tanzanite, green garnet and green tourmaline in the area, can be studied. Within the hydrothermally altered zone graphite gives temperatures that range from 523°C to 880°C. These temperatures are much higher than the 390-440°C obtained through fluid inclusion studies of tanzanite, which indicates that the graphite was not hydrothermally introduced. Furthermore the hydrothermal solutions are post-metamorphic.

  12. Crystallization stabilization mechanism of yttria-doped zirconia by hydrothermal treatment of mechanical mixtures of zirconia xerogel and crystalline yttria

    NASA Astrophysics Data System (ADS)

    Dell'Agli, G.; Mascolo, G.; Mascolo, M. C.; Pagliuca, C.

    2005-06-01

    Mechanical mixtures of zirconia xerogel and crystalline Y 2O 3 were hydrothermally treated by microwave and traditional route, respectively. Some mixtures were used either as powders form or as cylindrical compacts isostatically pressed at 150 MPa. The microwave-hydrothermal treatments were performed at 110, 150 and 200 °C for reaction times up to 2 h, whereas the traditional hydrothermal treatments were performed at 110 °C at increasing reaction times up to 7 days. All the treatments were performed in the presence of diluted (0.2 M) or concentrated (2.0 M) solution of (K 2CO 3+KOH) mineralizer. The crystallization-stabilization mechanism of synthesized Y-based zirconia powders and the reaction times for the full crystallization at the low temperature of hydrothermal treatments are discussed.

  13. Aluminum anode for aluminum-air battery - Part II: Influence of In addition on the electrochemical characteristics of Al-Zn alloy in alkaline solution

    NASA Astrophysics Data System (ADS)

    Park, In-Jun; Choi, Seok-Ryul; Kim, Jung-Gu

    2017-07-01

    Effects of Zn and In additions on the aluminum anode for Al-air battery in alkaline solution are examined by the self-corrosion rate, cell voltage, current-voltage characteristics, anodic polarization, discharge performance and AC impedance measurements. The passivation behavior of Zn-added anode during anodic polarization decreases the discharge performance of Al-air battery. The addition of In to Al-Zn anode reduces the formation of Zn passivation film by repeated adsorption and desorption behavior of In ion onto anode surface. The attenuated Zn passive layer by In ion attack leads to the improvement of discharge performance of Al-air battery.

  14. The viability of MCM-41 as separator in secondary alkaline cells

    NASA Astrophysics Data System (ADS)

    Meskon, S. R.; Othman, R.; Ani, M. H.

    2018-01-01

    The viability of MCM-41 membrane as a separator material in secondary alkaline cell is investigated. The inorganic membrane was employed in an alkaline nickel-zinc system. MCM-41 mesoporous material consists of arrays of hexagonal nano-pore channels. The membrane was synthesized using sol-gel route from parent solution comprising of quarternary ammonium surfactant, cethyltrimethylammonium bromide C16H33(CH3)3NBr (CTAB), hydrochloric acid (HCl), deionized water (H2O), ethanol (C2H5OH), and tetraethylortosilicate (TEOS). Both the anodic zinc/zinc oxide and cathodic nickel hydroxide electrodeposited film were coated with MCM-41 membrane. The Ni/MCM-41/Zn alkaline cell was then subjected to 100-cycle durability test and the structural stability of MCM-41 separator throughout the progression of the charge-discharge cycles is studied. X-ray diffraction (XRD) analysis on the dismantled cell shows that MCM-41 began to transform to lamellar MCM-50 on the 5th cycle and transformed almost completely on the 25th cycle. The phase transformation of MCM-41 hexagonal structure into gel-like MCM-50 prevents the mesoporous cell separator from diminished in the caustic alkaline surround. This work has hence demonstrated MCM-41 membrane is viable to be employed in secondary alkaline cells.

  15. Millimeter-scale alkalinity measurement in marine sediment using DET probes and colorimetric determination.

    PubMed

    Metzger, E; Viollier, E; Simonucci, C; Prévot, F; Langlet, D; Jézéquel, D

    2013-10-01

    Constrained DET (Diffusive Equilibration in Thin films) probes equipped with 75 sampling layers of agarose gel (DGT Research(©)) were used to sample bottom and pore waters in marine sediment with a 2 mm vertical resolution. After retrieval, each piece of hydrogel, corresponding to 25 μL, was introduced into 1 mL of colorimetric reagent (CR) solution consisting of formic acid and bromophenol blue. After the elution/reaction time, absorbance of the latter mixture was read at 590 nm and compared to a calibration curve obtained with the same protocol applied to mini DET probes soaked in sodium hydrogen carbonate standard solutions. This method allows rapid alkalinity determinations for the small volumes of anoxic pore water entrapped into the gel. The method was assessed on organic-rich coastal marine sediments from Thau lagoon (France). Alkalinity values in the overlying waters were in agreement with data obtained by classical sampling techniques. Pore water data showed a progressive increase of alkalinity in the sediment from 2 to 10 mmol kg(-1), corresponding to anaerobic respiration in organic-rich sediments. Moreover, replicates of high-resolution DET profiles showed important lateral heterogeneity at a decimeter scale. This underlines the importance of high-resolution spatial methods for alkalinity profiling in coastal marine systems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic.

    PubMed

    Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Meng, Ronghua; Guo, Songling; Xing, Zhimin; Tan, Shengnan

    2010-03-01

    L-Histidine capped single-crystalline gold nanoparticles have been synthesized by a hydrothermal process under a basic condition at temperature between 65 and 150 degrees C. The produced gold nanoparticles were spherical with average diameter of 11.5+/-2.9nm. The synthesized gold colloidal solution was very stable and can be stored at room temperature for more than 6 months. The color of the colloidal solution can change from wine red to mauve, purple and blue during the acidifying process. This color changing phenomenon is attributed to the aggregation of gold nanoparticles resulted from hydrogen bond formation between the histidines adsorbed on the gold nanoparticles surfaces. This hydrothermal synthetic method is expected to be used for synthesizing some other amino acid functionalized gold nanomaterials.

  17. Effect of alkalinity on nitrite accumulation in treatment of coal chemical industry wastewater using moving bed biofilm reactor.

    PubMed

    Hou, Baolin; Han, Hongjun; Jia, Shengyong; Zhuang, Haifeng; Zhao, Qian; Xu, Peng

    2014-05-01

    Nitrogen removal via nitrite (the nitrite pathway) is more suitable for carbon-limited industrial wastewater. Partial nitrification to nitrite is the primary step to achieve nitrogen removal via nitrite. The effect of alkalinity on nitrite accumulation in a continuous process was investigated by progressively increasing the alkalinity dosage ratio (amount of alkalinity to ammonia ratio, mol/mol). There is a close relationship among alkalinity, pH and the state of matter present in aqueous solution. When alkalinity was insufficient (compared to the theoretical alkalinity amount), ammonia removal efficiency increased first and then decreased at each alkalinity dosage ratio, with an abrupt removal efficiency peak. Generally, ammonia removal efficiency rose with increasing alkalinity dosage ratio. Ammonia removal efficiency reached to 88% from 23% when alkalinity addition was sufficient. Nitrite accumulation could be achieved by inhibiting nitrite oxidizing bacteria (NOB) by free ammonia (FA) in the early period and free nitrous acid in the later period of nitrification when alkalinity was not adequate. Only FA worked to inhibit the activity of NOB when alkalinity addition was sufficient. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Precipitation of Secondary Phases from the Dissolution of Silicate Glasses

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.

    2004-01-01

    Basaltic and anorthositic glasses were subjected to aqueous weathering conditions in the laboratory where the variables were pH, temperature, glass composition, solution composition, and time. Leached layers formed at the surfaces of glasses followed by the precipitation of X-ray amorphous iron and titanium oxides in acidic and neutral solutions at 25 C over time. Glass under oxidative hydrothermal treatments at 150 C yielded a three-layered surface; which included an outer smectite layer, a Fe-Ti oxide layer and an innermost thin leached layer. The introduction of Mg into solutions facilitated the formation of phyllosilicates. Aqueous hydrothermal treatment of anorthositic glasses (high Ca, low Ti) at 200 C readily formed smectite, whereas, the basaltic glasses (high Ti) were more resistant to alteration and smectite was not observed. Alkaline hydrothermal treatment at 2000e produced zeolites and smectites; only smectites formed at 200 C in neutral solutions. These mineralogical changes, although observed under controlled conditions, have direct applications in interpreting planetary (e.g., meteorite parent bodies) and terrestrial aqueous alteration processes.

  19. The role of hydrothermally prepared supported photocatalytic composite in organic micro-pollutants removal from the water.

    PubMed

    Shivaraju, H P; Byrappa, K

    2012-07-01

    This work deals with the non-biodegradable micro-pollutants degradation by supported photocatalyst based heterogeneous photocatalytic reaction. TiO2 based supported photocatalyst was prepared by the hydrothermal technique to improve the photocatalytic performance along with easy recovery of suspended photocatalyst from aqueous medium after photoreaction. TO2 deposited calcium alumino-silicate beads (CASB) supports were prepared under mild hydrothermal conditions (Temparature-200 degrees C, Duration-24 h). In the present study, industrial dyes such as Amaranth and Brilliant Yellow were used as model micro-pollutants in aqueous solution. A real time pesticide industrial effluent was tested for its photocatalytic removal of organic pollutants using TO2 deposited CASB supported photocatalytic composite as an effective photocatalyst. Photocatalytic degradation of micro-pollutants present in aqueous medium was carried out in a batch photoreactor, at atmospheric pressure and temperature (28 degrees C). The influence of different light sources, irradiation time, catalyst load and catalytic performance is discussed. The photocatalytic degradation of micro-pollutants in aqueous medium was evaluated by determination of COD and %T. Easy separation and recovery of suspended photocatalysts from aqueous solution is the major advantage of hydrothermally prepared supported photocatalytic composite.

  20. Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Xiangli; Jiangsu Key Laboratory of Advanced Metallic Materials, Nanjing 211189; Xing, Tiantian

    2016-03-15

    Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from various cobalt sources and 2-methylimidazolate (Hmim) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co{sup 2+} molar ratios and experimental condition. Using Co(NO{sub 3}){sub 2} as cobalt source, small-sized ZIF-67 crystals with agglomeration were formed. For CoCl{sub 2}, small-sized rhombic dodecahedron were obtained. While large-sized crystals of rhombic dodecahedron structure were obtained from CoSO{sub 4} and Co(OAc){sub 2}. Under hydrothermal condition, the size of ZIF-67 crystals tended to be moremore » uniform and the morphology were more regular comparing to non-hydrothermal condition. This study provides a simple way to control the size and morphology of ZIF-67 crystals prepared in aqueous solution. - Graphical abstract: Zeolitic imidazolate frameworks ZIF-67 were prepared under hydrothermal (120 °C) and non-hydrothermal (room temperature) from four different cobalt sources (Co(NO{sub 3}){sub 2}, CoCl{sub 2}, CoSO{sub 4} and Co(OAc){sub 2}) in aqueous solution within 30 min. The particle size and morphology were found to be related to the reactivity of the cobalt salt, Hmim/Co{sup 2+} molar ratios and experimental condition. - Highlights: • The particle size and morphology were determined by the reactivity of cobalt salt. • ZIF-67 could be prepared from CoSO{sub 4} and Co(OAc){sub 2} at Hmim/Co{sup 2+} molar ratio of 10. • Uniform and regular particles were obtained under hydrothermal condition.« less

  1. Inactivation of Escherichia coli Endotoxin by Soft Hydrothermal Processing▿

    PubMed Central

    Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki

    2009-01-01

    Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250°C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft hydrothermal processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft hydrothermal processing at 130°C for 60 min or at 140°C for 30 min in the presence of a high steam saturation ratio or with a flow system. Moreover, it is easy to remove endotoxins from water by soft hydrothermal processing similarly at 130°C for 60 min or at 140°C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft hydrothermal processing, applied in the presence of a high steam saturation ratio or with a flow system, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435

  2. Condensation Reactions and Formation of Amides, Esters, and Nitriles Under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Rushdi, Ahmed I.; Simoneit, Bernd R. T.

    2004-06-01

    Hydrothermal pyrolysis experiments were performed to assess condensation (dehydration) reactions to amide, ester, and nitrile functionalities from lipid precursors. Beside product formation, organic compound alteration and stability were also evaluated. Mixtures of nonadecanoic acid, hexadecanedioic acid, or hexadecanamide with water, ammonium bicarbonate, and oxalic acid were heated at 300°C for 72 h. In addition, mixtures of ammonium bicarbonate and oxalic acid solutions were used to test the abiotic formation of organic nitrogen compounds at the same temperature. The resulting products were condensation compounds such as amides, nitriles, and minor quantities of N-methylalkyl amides, alkanols, and esters. Mixtures of alkyl amide in water or oxalic acid yielded mainly hydrolysis and dehydration products, and with ammonium bicarbonate and oxalic acid the yield of condensation products was enhanced. The synthesis experiments with oxalic acid and ammonium bicarbonate solutions yielded homologous series of alkyl amides, alkyl amines, alkanes, and alkanoic acids, all with no carbon number predominances. These organic nitrogen compounds are stable and survive under the elevated temperatures of hydrothermal fluids.

  3. On the development of the calc-alkaline and tholeiitic magma series: A deep crustal cumulate perspective

    NASA Astrophysics Data System (ADS)

    Chin, Emily J.; Shimizu, Kei; Bybee, Grant M.; Erdman, Monica E.

    2018-01-01

    Two distinct igneous differentiation trends - the tholeiitic and calc-alkaline - give rise to Earth's oceanic and continental crust, respectively. Mantle melting at mid-ocean ridges produces dry magmas that differentiate at low-pressure conditions, resulting in early plagioclase saturation, late oxide precipitation, and Fe-enrichment in mid-ocean ridge basalts (MORBs). In contrast, magmas formed above subduction zones are Fe-depleted, have elevated water contents and are more oxidized relative to MORBs. It is widely thought that subduction of hydrothermally altered, oxidized oceanic crust at convergent margins oxidizes the mantle source of arc magmas, resulting in erupted lavas that inherit this oxidized signature. Yet, because our understanding of the calc-alkaline and tholeiitic trends largely comes from studies of erupted melts, the signals from shallow crustal contamination by potentially oxidized, Si-rich, Fe-poor materials, which may also generate calc-alkaline rocks, are obscured. Here, we use deep crustal cumulates to "see through" the effects of shallow crustal processes. We find that the tholeiitic and calc-alkaline trends are indeed reflected in Fe-poor mid-ocean ridge cumulates and Fe-rich arc cumulates, respectively. A key finding is that with increasing crustal thickness, arc cumulates become more Fe-enriched. We propose that the thickness of the overlying crustal column modulates the melting degree of the mantle wedge (lower F beneath thick arcs and vice versa) and thus water and Fe3+ contents in primary melts, which subsequently controls the onset and extent of oxide fractionation. Deep crustal cumulates beneath thick, mature continental arcs are the most Fe-enriched, and therefore may be the "missing" Fe-rich reservoir required to balance the Fe-depleted upper continental crust.

  4. Alkalinity production in intertidal sands intensified by lugworm bioirrigation.

    PubMed

    Rao, Alexandra M F; Malkin, Sairah Y; Montserrat, Francesc; Meysman, Filip J R

    2014-07-05

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O 2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO 3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer.

  5. Experimental investigation of As, Sb and Cs behavior during olivine serpentinization in hydrothermal alkaline systems

    NASA Astrophysics Data System (ADS)

    Lafay, Romain; Montes-Hernandez, German; Janots, Emilie; Munoz, Manuel; Auzende, Anne Line; Gehin, Antoine; Chiriac, Rodica; Proux, Olivier

    2016-04-01

    While Fluid-Mobile Elements (FMEs) such as B, Sb, Li, As or Cs are particularly concentrated in serpentinites, data on FME fluid-serpentine partitioning, distribution, and sequestration mechanisms are missing. In the present experimental study, the behavior of Sb, As and Cs during San Carlos olivine serpentinization was investigated using accurate mineralogical, geochemical, and spectroscopic characterization. Static-batch experiments were conducted at 200 °C, under saturated vapor pressure (≈1.6 MPa), for initial olivine grain sizes of <30 μm (As), 30-56 μm (As, Cs, Sb) and 56-150 μm (Cs) and for periods comprised between 3 and 90 days. High-hydroxyl-alkaline fluid enriched with 200 mg L-1 of a single FME was used and a fluid/solid weight ratio of 15. For these particular conditions, olivine is favorably replaced by a mixture of chrysotile, polygonal serpentine and brucite. Arsenic, Cs or Sb reaction product content was determined as a function of reaction advancement for the different initial olivine grain sizes investigated. The results confirm that serpentinization products have a high FME uptake capacity with the partitioning coefficient increasing such as CsDp/fl = 1.5-1.6 < AsDp/fl = 3.5-4.5 < SbDp/fl = 28 after complete reaction of the 30-56 μm grain-sized olivine. The sequestration pathways of the three elements are however substantially different. While the As partition coefficient remains constant throughout the serpentinization reaction, the Cs partition coefficient decreases abruptly in the first stages of the reaction to reach a constant value after the reaction is 40-60% complete. Both As and Cs partitioning appear to decrease with increasing initial olivine grain size, but there is no significant difference in the partitioning coefficient between the 30-56 and 56-150 μm grain size after complete serpentinization. X-ray absorption spectroscopy (XAS) measurements combined with X-ray chemical measurements reveal that the As(V) is mainly

  6. Layered double hydroxide using hydrothermal treatment: morphology evolution, intercalation and release kinetics of diclofenac sodium

    NASA Astrophysics Data System (ADS)

    Joy, Mathew; Iyengar, Srividhya J.; Chakraborty, Jui; Ghosh, Swapankumar

    2017-12-01

    The present work demonstrates the possibilities of hydrothermal transformation of Zn-Al layered double hydroxide (LDH) nanostructure by varying the synthetic conditions. The manipulation in washing step before hydrothermal treatment allows control over crystal morphologies, size and stability of their aqueous solutions. We examined the crystal growth process in the presence and the absence of extra ions during hydrothermal treatment and its dependence on the drug (diclofenac sodium (Dic-Na)) loading and release processes. Hexagonal plate-like crystals show sustained release with ˜90% of the drug from the matrix in a week, suggesting the applicability of LDH nanohybrids in sustained drug delivery systems. The fits to the release kinetics data indicated the drug release as a diffusion-controlled release process. LDH with rod-like morphology shows excellent colloidal stability in aqueous suspension, as studied by photon correlation spectroscopy.

  7. Chemical environments of submarine hydrothermal systems

    NASA Technical Reports Server (NTRS)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  8. Development of an alkaline/surfactant/polymer compositional reservoir simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuyan, D.

    1989-01-01

    The mathematical formulation of a generalized three-dimensional compositional reservoir simulator for high-pH chemical flooding processes is presented in this work. The model assumes local thermodynamic equilibrium with respect to both reaction chemistry and phase behavior and calculates equilibrium electrolyte and phase compositions as a function of time and position. The reaction chemistry considers aqueous electrolytic chemistry, precipitation/dissolution of minerals, ion exchange reactions on matrix surface, reaction of acidic components of crude oil with the bases in the aqueous solution and cation exchange reactions with the micelles. The simulator combines this detailed reaction chemistry associated with these processes with the extensivemore » physical and flow property modeling schemes of an existing chemical flood simulator (UTCHEM) to model the multiphase, multidimensional displacement processes. The formulation of the chemical equilibrium model is quite general and is adaptable to simulate a variety of chemical descriptions. In addition to its use in the simulation of high-pH chemical flooding processes, the model will find application in the simulation of other reactive flow problems like the ground water contamination, reinjection of produced water, chemical waste disposal, etc. in one, two or three dimensions and under multiphase flow conditions. In this work, the model is used to simulate several hypothetical cases of high-pH chemical floods, which include cases from a simple alkaline preflush of a micellar/polymer flood to surfactant enhanced alkaline-polymer flooding and the results are analyzed. Finally, a few published alkaline, alkaline-polymer and surfactant-alkaline-polymer corefloods are simulated and compared with the experimental results.« less

  9. H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Changchao; Wan, Jiafeng; Yang, Juan; Qu, Shanshan; Jin, Tieyu; Ma, Fangwei; Shao, Jinqiu

    2018-06-01

    In this work, argy wormwood-based porous carbon electrode materials for high-performance supercapacitors are prepared through H3PO4 solution hydrothermal carbonization and subsequent KOH activation. The obtained carbon has a specific surface area (SSA) of 927 m2 g-1, a total pore volume of 0.56 cm3 g-1, and a high oxygen (9.38%) content. In three-electrode system, it exhibits specific capacitance of 344 F g-1 at 1 A g-1. Moreover, the symmetric supercapacitor shows an excellent rate capability of 87% retention from 1 A g-1 to 10 A g-1, and a good cycling performance with 91.6% retention over 5000 cycles in 6 M KOH. Therefore, the sample activated by H3PO4 & KOH exhibits an excellent future in energy storage.

  10. Fish debris record the hydrothermal activity in the Atlantis II deep sediments (Red Sea)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oudin, E.; Cocherie, A.

    1988-01-01

    The REE and U, Th, Zr, Hf, Sc have been analyzed in samples from Atlantis II and Shaban/Jean Charcot Deeps in the Red Sea. The high Zr/Hf ratio in some sediments indicates the presence of fish debris or of finely crystallized apatite. The positive ..sigma..REE vs P/sub 2/O/sub 5/ and ..sigma..REE vs Zr/Hf correlations show that fish debris and finely crystallized apatite are the main REE sink in Atlantis II Deep sediments as in other marine environments. The hydrothermal sediments and the fish debris concentrates have similar REE patterns, characterized by a LREE enrichment and a large positive Eu anomaly.more » This REE pattern is also observed in E.P.R. hydrothermal solutions. Fish debris from marine environments acquire their REE content and signature mostly from sea water during early diagenesis. The hydrothermal REE signature of Atlantis II Deep fish debris indicate that they probably record the REE signature of their hydrothermal sedimentation and diagenetic environment. The different REE signatures of the Shaban/Jean Charcot and Atlantis II Deep hydrothermal sediments suggest a sea water-dominated brine in the Shaban/Jean Charcot Deep as opposed to the predominantly hydrothermal brine in Atlantis II Deep. Atlantis II Deep fish debris are also characterized by their high U but low Th contents. Their low Th contents probably reflect the low Th content of the various possible sources (sea water, brine, sediments). Their U contents are probably controlled by the redox conditions of sedimentation.« less

  11. Chicxulub: testing for post-impact hydrothermal inputs into the Tertiary ocean

    NASA Astrophysics Data System (ADS)

    Rowe, A.; Wilkinson, J.; Morgan, J.

    2003-04-01

    Large terrestrial impacts produce intense fracturing of the crust and large melt sheets, providing ideal conditions for extensive hydrothermal circulation. In marine settings, such as Chicxulub, there is the potential for downward penetration of cold seawater, heating by the thermal anomaly at the impact site and leaching of metals, prior to buoyancy driven flow back to the surface. There, fluids may undergo venting into the water column. A large proportion of the metals in such vent fluids precipitate close to the site of discharge; however, a proportion of the fluid is dispersed as a hydrothermal plume. Dissolved and particulate materials (in particular manganese and iron oxyhydroxides) can be carried for several hundreds of kilometers, before falling out to form metal-rich sediments. A series of Tertiary core samples has been obtained from the International Continental Drilling Program at Chicxulub (CSDP). These comprise fine-grained cream coloured carbonate sediments with fine laminations. Transmitted light and cathodoluminescence petrography have been used to carry out a preliminary characterization of the samples. Multi-element analysis has also been undertaken by ICP-AES. Samples were reduced to powder and digested using a nitric-perchloric-hydrofluoric acid attack. Rare earth elements (REE) have been analysed by ICP-MS and solutions were prepared using a modified nitric-perchloric-hydrofluoric acid attack. Geochemical analyses have been carried out to test for characteristic signals of hydrothermal input, such as enrichments in Mn, Fe, Cu, Zn, Pb, Mg, Ba, Co, Cr and Ni. The REE are scavenged from seawater onto iron oxide surfaces in the plume; hence anomalous REE concentrations are also indicative of hydrothermal addition. Furthermore, the type of anomaly can differentiate between sediments proximal (+ve Eu) distal (-ve Ce) to the vent site. The stratigraphic extent of any anomalies can be used to constrain the duration of any post-impact circulation. The

  12. Chemiluminescence-based pesticide biosensor utilizing the intelligent evolved properties of the enzyme alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, M.; Kamtekar, S.; Pande, R.

    A methodology is described for immobilizing the enzyme alkaline phosphatase onto a glass surface using a novel biotinylated copolymer, poly(3-undecylthiophene-co-3- methanoithiophene). A streptavidin conjugate of alkaline phosphatase is used in this study. The biotinylated polymer is attached to the silanized glass surface via hydrophobic interactions and the enzyme is interfaced with the polymer through the classical biotin- streptavidin interaction. Alkaline phosphatase catalyzes the dephosphorylation of a macrocyclic compound, chloro-3-(4-methoxy spiro) (1,2 dioxetane-3-2`-tricyclo-) (3.3.1.1 )-(decani-4-yl) phenyl phosphate, to a species which emits energy by chemiluminescence. This chemiluminescence signal can be detected with a photomultiplier tube for enzymatic catalysis with the biocatalystmore » both in solution and immobilized on a glass surface. The signal generation is inhibited by the organophosphorus based insecticides such as paraoxon as well as nerve agents. We demonstrate in this study that a number of organophosphorus based insecticides inhibit the enzyme-mediated generation of chemiluminescence signal. This is true for the enzyme conjugate both free in solution and immobilized on a glass surface. In solution, the inhibition resembles the case of a partially uncompetitive system. By this type of inhibition we are able to detect pesticides down to about 50 ppb for the enzyme in solution. The pesticide detection limit of immobilized enzyme is currently being investigated. The enzyme is capable of a number of measurement cycles without significant loss of signal level.« less

  13. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. The characteristics of hydrothermal plumes observed in the Precious Stone Mountain hydrothermal field, the Galapagos spreading center

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Li, H.; Zhou, J.; Deng, X.; Tao, W.; Zhang, G.; Liu, W.; He, Y.

    2014-12-01

    The Precious Stone Mountain hydrothermal field (PSMHF) is located on the southern rim of the Galapagos Microplate. It was found at the 3rd leg of the 2009 Chinese DY115-21 expedition on board R/V Dayangyihao. It is efficient to learn the distribution of hydrothermal plumes and locate the hydrothermal vents by detecting the anomalies of turbidity and temperature. Detecting seawater turbidity by MAPR based on deep-tow technology is established and improved during our cruises. We collected data recorded by MAPR and information from geological sampling, yielding the following results: (1)Strong hydrothermal turbidity and temperature anomalies were recorded at 1.23°N, southeast and northwest of PSMHF. According to the CTD data on the mooring system, significant temperature anomalies were observed over PSMHF at the depth of 1,470 m, with anomalies range from 0.2℃ to 0.4℃, which gave another evidence of the existence of hydrothermal plume. (2)At 1.23°N (101.4802°W/1.2305°N), the nose-shaped particle plume was concentrated at a depth interval of 1,400-1,600 m, with 200 m thickness and an east-west diffusion range of 500 m. The maximum turbidity anomaly (0.045 △NTU) was recorded at the depth of 1,500 m, while the background anomaly was about 0.01△NTU. A distinct temperature anomaly was also detected at the seafloor near 1.23°N. Deep-tow camera showed the area was piled up by hydrothermal sulfide sediments. (3) In the southeast (101.49°W/1.21°N), the thickness of hydrothermal plume was 300 m and it was spreading laterally at a depth of 1,500-1,800 m, for a distance about 800 m. The maximum turbidity anomaly of nose-shaped plume is about 0.04 △NTU at the depth of 1,600 m. Distinct temperature anomaly was also detected in the northwest (101.515°W/1.235°N). (4) Terrain and bottom current were the main factors controlling the distribution of hydrothermal plume. Different from the distribution of hydrothermal plumes on the mid-ocean ridges, which was mostly

  15. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    NASA Astrophysics Data System (ADS)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  16. Enceladus as a hydrothermal water world

    NASA Astrophysics Data System (ADS)

    Postberg, Frank; Hsu, Hsiang-Wen; Sekine, Yasuhito

    2014-05-01

    The composition of both salty ice grains and nanometer-sized stream particles emitted from Enceladus and measured by Cassini-CDA require require liquid water as a source. Moreover, they provide strong geochemical constraints for their origin inside the active moon. Most stream particles are composed of silica, a unique indicator as nano-silica would only form under quite specific conditions. With high probability on-going or geological recent hydrothermal activity at Enceladus is required to generate these particles. Inferred reaction temperatures at Enceladus ocean floor lie between 100 and 350 °C in a slightly alkaline environment (pH 7.5 - 10.5). The inferred high temperatures at great depth might require heat sources other than tides alone, such as remaining primordial heat and/or serpentinization of a probably porous rocky core. Long-term laboratory experiments were carried out to simulate the conditions at the Enceladus rock/water interface using the constraints derived from CDA measurements. These experiments allow insights into a rock/water chemistry which severely constrains the formation history of the moon and substantially enhances its astrobiological potential. Together with recent results from other Cassini instruments a conclusive picture of Enceladus as an active water world seems to be in reach.

  17. Positron Spectroscopy of Hydrothermally Grown Actinide Oxides

    DTIC Science & Technology

    2014-03-27

    POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS Edward C. Schneider...United States Government. AFIT-ENP-14-M-33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES THESIS...33 POSITRON SPECTROSCOPY OF HYDROTHERMALLY GROWN ACTINIDE OXIDES Edward C. Schneider, BS Captain, USAF Approved

  18. Reduction of nitrobenzene with alkaline ascorbic acid: Kinetics and pathways.

    PubMed

    Liang, Chenju; Lin, Ya-Ting; Shiu, Jia-Wei

    2016-01-25

    Alkaline ascorbic acid (AA) exhibits the potential to reductively degrade nitrobenzene (NB), which is the simplest of the nitroaromatic compounds. The nitro group (NO2(-)) of NB has a +III oxidation state of the N atom and tends to gain electrons. The effect of alkaline pH ranging from 9 to 13 was initially assessed and the results demonstrated that the solution pH, when approaching or above the pKa2 of AA (11.79), would increase reductive electron transfer to NB. The rate equation for the reactions between NB and AA at pH 12 can be described as r=((0.89±0.11)×10(-4) mM(1-(a+b))h(-1))×[NB](a=1.35±0.10)[AA](b=0.89±0.01). The GC/MS analytical method identified nitrosobenzene, azoxybenzene, and azobenzene as NB reduction intermediates, and aniline (AN) as a final product. These experimental results indicate that the alkaline AA reduction of NB to AN mainly proceeds via the direct route, consisting of a series of two-electron or four-electron transfers, and the condensation reaction plays a minor route. Preliminary evaluation of the remediation of spiked NB contaminated soils revealed that maintenance of alkaline pH and a higher water to soil ratio are essential for a successful alkaline AA application. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Dynamics of the Yellowstone hydrothermal system

    USGS Publications Warehouse

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  20. HCl, KCl and KOH solvation resolved solute-solvent interactions and solution surface stress

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Xu, Yan; Zhou, Yong; Gong, Yinyan; Huang, Yongli; Sun, Chang Q.

    2017-11-01

    An incorporation of the hydrogen bond (O:Hsbnd O or HB) cooperativity notion, contact angle detection, and the differential phonon spectrometrics (DPS) has enabled us to gain refined information on the HCl, KCl and KOH solvation resolved solute-solvent molecular interactions and the solution surface stresses. Results show that ionic polarization stiffens the solvent Hsbnd O bond phonon from 3200 to 3480 cm-1 in the hydration shells. The HO- in alkaline solution, however, shares not only the same Hsbnd O phonon redshift of compressed water from 3200 to < 3100 cm-1 but also the dangling bonds of H2O surface featured at 3610 cm-1. Salt and alkaline solvation enhances the solution surface stress by K+ and Cl- ionic polarization. The excessive H+ proton in acid solution forms a H↔H anti-HB that depresses the solution surface stress, instead. The solute capability of transforming the fraction of the O:Hsbnd O bonds of the solvent matrix is featured by: fH = 0 and fx ∝ 1-exp(-C/C0) (x = HO-, K+ and Cl-) towards saturation. Exercises not only confirm the presence of the H↔H anti-HB point fragilization, the O:⇔:O super-HB point compression, and ionic polarization dominating the performance of the respective HCl, KOH, and KCl solutions, but also demonstrate the power of the DPS that enables high resolution of solute-solute-solvent interactions and correlation between HB relaxation and solution surface stress.

  1. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  2. Hydrothermal fluoride and chloride complexation of indium: an EXAFS study

    NASA Astrophysics Data System (ADS)

    Loges, Anselm; Testemale, Denis; Huotari, Simo; Honkanen, Ari-Pekka; Potapkin, Vasily; Wagner, Thomas

    2017-04-01

    Indium (In) is one of the geochemically lesser studied ore metals, and the factors that control the hydrothermal transport and deposition are largely unknown. It has no ore deposits of its own and is commonly mined as a by-product of Zn ores, and there are very few minerals that contain In as an essential structural component. Recently, industrial application of In in touch screen devices has drastically increased demand, which is projected to exceed supply from the current sources in the near future. Since the most relevant In sources are hydrothermal sphalerite ores and to a lesser extent hydrothermal greisen-type deposits in evolved granitic plutons, the aqueous geochemistry of In is of particular interest for understanding its ore forming processes. As a first step towards a comprehensive model for hydrothermal In solubility and speciation, we have studied In speciation in fluoride and chloride bearing solutions at 30-400˚ C and 500 bar using X-Ray Absorption Spectroscopy (XAS) measurements. The experiments were conducted in a unique hydrothermal autoclave setup at beamline BM30B-FAME at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Our results show that the complexation of In changes dramatically between 30 and 400˚ C. Below ca. 200˚ C, fluoride complexes are the most stable ones, but they break down at higher temperatures. Chloride complexes on the other hand become increasingly stable with increasing temperature. This behavior has interesting consequences for natural ore forming systems. In Cl-rich systems (e.g. massive sulfide ores formed in sea floor environments), cooling can be an effective precipitating mechanism. In F-rich systems, fluoride complexation can extend In mobility to low temperatures and In will only precipitate when F is effectively removed from the fluid, e.g. by mixing with a Ca-rich fluid and precipitation of fluorite (CaF2) as is commonly observed in skarn or greisen-type deposits. Due to In complexing with

  3. Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst

    NASA Astrophysics Data System (ADS)

    Tian, Hongjing; Guo, Qingjie; Xu, Dongyan

    An attapulgite clay-supported cobalt-boride (Co-B) catalyst used in portable fuel cell fields is prepared in this paper by impregnation-chemical reduction method. The cost of attapulgite clay is much lower compared with some other inert carriers, such as activated carbon and carbon nanotube. Its microstructure and catalytic activity are analyzed in this paper. The effects of NaOH concentration, NaBH 4 concentration, reacting temperature, catalyst loadings and recycle times on the performance of the catalysts in hydrogen production from alkaline NaBH 4 solutions are investigated. Furthermore, characteristics of these catalysts are carried out in SEM, XRD and TEM analysis. The high catalytic activity of the catalyst indicates that it is a promising and practical catalyst. Activation energy of hydrogen generation using such catalysts is estimated to be 56.32 kJ mol -1. In the cycle test, from the 1st cycle to the 9th cycle, the average hydrogen generation rate decreases gradually from 1.27 l min -1 g -1 Co-B to 0.87 l min -1 g -1 Co-B.

  4. Porous boron doped diamonds as metal-free catalysts for the oxygen reduction reaction in alkaline solution

    NASA Astrophysics Data System (ADS)

    Suo, Ni; Huang, Hao; Wu, Aimin; Cao, Guozhong; Hou, Xiaoduo; Zhang, Guifeng

    2018-05-01

    Porous boron doped diamonds (BDDs) were obtained on foam nickel substrates with a porosity of 80%, 85%, 90% and 95% respectively by hot filament chemical vapor deposition (HFCVD) technology. Scanning electron microscopy (SEM) reveals that uniform and compact BDDs with a cauliflower-like morphology have covered the overall frame of the foam nickel substrates. Raman spectroscopy shows that the BDDs have a poor crystallinity due to heavily doping boron. X-ray photoelectron spectroscopy (XPS) analysis effectively demonstrates that boron atoms can be successfully incorporated into the crystal lattice of diamonds. Electrochemical measurements indicate that the oxygen reduction potential is unaffected by the specific surface area (SSA), and both the onset potential and the limiting diffusion current density are enhanced with increasing SSA. It is also found that the durability and methanol tolerance of the boron doped diamond catalysts are attenuated as the increasing of SSA. The SSA of the catalyst is directly proportional to the oxygen reduction activity and inversely to the durability and methanol resistance. These results provide a reference to the application of porous boron doped diamonds as potential cathodic catalysts for the oxygen reduction reaction in alkaline solution by adjusting the SSA.

  5. Kinetics of reduction of plutonium(VI) and neptunium(VI) by sulfide in neutral and alkaline solutions

    USGS Publications Warehouse

    Nash, K.L.; Cleveland, J.M.; Sullivan, J.C.; Woods, M.

    1986-01-01

    The rate of reduction of plutonium(VI) and neptunium(VI) by bisulfide ion in neutral and mildly alkaline solutions has been investigated by the stopped-flow technique. The reduction of both of these ions to the pentavalent oxidation state appears to occur in an intramolecular reaction involving an unusual actinide(VI)-hydroxide-bisulfide complex. For plutonium the rate of reduction is 27.4 (??4.1) s-1 at 25??C with ??H* = +33.2 (??1.0) kJ/mol and ??S* = -106 (??4) J/(mol K). The apparent stability constant for the transient complex is 4.66 (??0.94) ?? 103 M-1 at 25??C with associated thermodynamic parameters of ??Hc = +27.7 (??0.4) kJ/mol and ??Sc = +163 (??2) J/(mol K). The corresponding rate and stability constants are determined for the neptunium system at 25??C (k3 = 139 (??30) s-1, Kc. = 1.31 (??0.32) ?? 103 M-1), but equivalent parameters cannot be determined at reduced temperatures. The reaction rate is decreased by bicarbonate ion. At pH > 10.5, a second reaction mechanism, also involving a sulfide complex, is indicated. ?? 1986 American Chemical Society.

  6. Germanium precipitation from collecting-mains liquor with tannin extract in an alkaline medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, K.P.; Mikhailov, N.F.; Petrapol'skaya, V.M.

    1976-01-01

    It is proposed to precipitate germanium in a slightly alkaline medium, with a neutral solution of tannin extract in aqueous alkali. The effects of various factors on germanium recovery from collecting-mains liquors have been studied.

  7. Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall

    NASA Astrophysics Data System (ADS)

    LaRowe, Douglas E.; Dale, Andrew W.; Aguilera, David R.; L'Heureux, Ivan; Amend, Jan P.; Regnier, Pierre

    2014-01-01

    The fluids emanating from active submarine hydrothermal vent chimneys provide a window into subseafloor processes and, through mixing with seawater, are responsible for steep thermal and compositional gradients that provide the energetic basis for diverse biological communities. Although several models have been developed to better understand the dynamic interplay of seawater, hydrothermal fluid, minerals and microorganisms inside chimney walls, none provide a fully integrated approach to quantifying the biogeochemistry of these hydrothermal systems. In an effort to remedy this, a fully coupled biogeochemical reaction-transport model of a hydrothermal vent chimney has been developed that explicitly quantifies the rates of microbial catalysis while taking into account geochemical processes such as fluid flow, solute transport and oxidation-reduction reactions associated with fluid mixing as a function of temperature. The metabolisms included in the reaction network are methanogenesis, aerobic oxidation of hydrogen, sulfide and methane and sulfate reduction by hydrogen and methane. Model results indicate that microbial catalysis is generally fastest in the hottest habitable portion of the vent chimney (77-102 °C), and methane and sulfide oxidation peak near the seawater-side of the chimney. The fastest metabolisms are aerobic oxidation of H2 and sulfide and reduction of sulfate by H2 with maximum rates of 140, 900 and 800 pmol cm-3 d-1, respectively. The maximum rate of hydrogenotrophic methanogenesis is just under 0.03 pmol cm-3 d-1, the slowest of the metabolisms considered. Due to thermodynamic inhibition, there is no anaerobic oxidation of methane by sulfate (AOM). These simulations are consistent with vent chimney metabolic activity inferred from phylogenetic data reported in the literature. The model developed here provides a quantitative approach to describing the rates of biogeochemical transformations in hydrothermal systems and can be used to constrain the

  8. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    NASA Astrophysics Data System (ADS)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  9. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress.

    PubMed

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  10. De Novo Transcriptional Analysis of Alfalfa in Response to Saline-Alkaline Stress

    PubMed Central

    An, Yi-Min; Song, Li-Li; Liu, Ying-Rui; Shu, Yong-Jun; Guo, Chang-Hong

    2016-01-01

    Saline-alkaline stress, caused by high levels of harmful carbonate salts and high soil pH, is a major abiotic stress that affects crop productivity. Alfalfa is a widely cultivated perennial forage legume with some tolerance to biotic and abiotic stresses, especially to saline-alkaline stress. To elucidate the mechanism underlying plant saline-alkaline tolerance, we conducted transcriptome analysis of whole alfalfa seedlings treated with saline-alkaline solutions for 0 day (control), 1 day (short-term treatment), and 7 days (long-term treatment) using ion torrent sequencing technology. A transcriptome database dataset of 53,853 unigenes was generated, and 2,286 and 2,233 genes were differentially expressed in the short-term and long-term treatment, respectively. Gene ontology analysis revealed 14 highly enriched pathways and demonstrated the differential response of metabolic pathways between the short-term and long-term treatment. The expression levels of 109 and 96 transcription factors were significantly altered significantly after 1 day and 7 days of treatment, respectively. Specific responses of peroxidase, flavonoids, and the light pathway component indicated that the antioxidant capacity was one of the central mechanisms of saline-alkaline stress tolerance response in alfalfa. Among the 18 differentially expressed genes examined by real time PCR, the expression levels of eight genes, including inositol transporter, DNA binding protein, raffinose synthase, ferritin, aldo/keto reductase, glutathione S-transferase, xyloglucan endotrans glucosylase, and a NAC transcription factor, exhibited different patterns in response to saline and alkaline stress. The expression levels of the NAC transcription factor and glutathione S-transferase were altered significantly under saline stress and saline-alkaline stress; they were upregulated under saline-alkaline stress and downregulated under salt stress. Physiology assays showed an increased concentration of reactive oxygen

  11. Controllable preparation of flower-like brookite TiO{sub 2} nanostructures via one-step hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Yunling; College of Science, Civil Aviation University of China, Tianjin 300300; Tan, Xin

    Highlights: • Flower-like brookite TiO{sub 2} structures were prepared by hydrothermal method. • PVP not only acted as a dispersant but also stabilized the layered structure. • The resulted brookite TiO{sub 2} showed high photocatalytic activity under UV irradiation. - Abstract: Flower-like brookite TiO{sub 2} nanostructures were controllable prepared by a one-step hydrothermal method by changing experimental conditions, such as hydrothermal temperature, reaction time and the amount of polyvinylpyrrolidone. The photocatalytic activities of the samples were investigated by degradation of methylene blue (MB) in aqueous solution under UV light irradiation. It was found that the formation of brookite TiO{sub 2}more » nanostructures with various morphologies could be well controlled by the adjustment of hydrothermal temperature, reaction time and the amount of surfactant, and the morphology of the products changed from spindle-like structures to flower-like structures with the increase of hydrothermal temperature, reaction time and the amount of surfactant. The photocatalytic tests indicate that the flower-like brookite TiO{sub 2} nanostructures shows high photocatalytic activity in degradation of methylene blue (MB) under UV light irradiation. The formation mechanism of flower-like brookite TiO{sub 2} nanostructures was also discussed in detail based on the above investigations.« less

  12. Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil

    NASA Astrophysics Data System (ADS)

    Morbidelli, L.; Gomes, C. B.; Beccaluva, L.; Brotzu, P.; Conte, A. M.; Ruberti, E.; Traversa, G.

    1995-12-01

    A general description of Mesozoic and Tertiary (Fortaleza) Brazilian alkaline and alkaline-carbonatite districts is presented with reference to mineralogy, petrology, geochemistry and geochronology. It mainly refers to scientific results obtained during the last decade by an Italo-Brazilian research team. Alkaline occurrences are distributed across Brazilian territory from the southern (Piratini, Rio Grande do Sul State) to the northeastern (Fortaleza, Ceará State) regions and are mainly concentrated along the borders of the Paraná Basin generally coinciding with important tectonic lineaments. The most noteworthy characteristics of these alkaline and alkaline-carbonatite suites are: (i) prevalence of intrusive forms; (ii) abundance of cumulate assemblages (minor dunites, frequent clinopyroxenites and members of the ijolite series) and (iii) abundance of evolved rock-types. Many data demonstrate that crystal fractionation was the main process responsible for magma evolution of all Brazilian alkaline rocks. A hypothesis is proposed for the genesis of carbonatite liquids by immiscibility processes. The incidence of REE and trace elements for different major groups of lithotypes, belonging both to carbonatite-bearing and carbonatite-free districts, are documented. Sr and preliminary Nd isotopic data are indicative of a mantle origin for the least evolved magmas of all the studied occurrences. Mantle source material and melting models for the generation of the Brazilian alkaline magma types are also discussed.

  13. Mineral textures in Serpentine-hosted Alkaline Springs from the Oman ophiolite

    NASA Astrophysics Data System (ADS)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Bach, Wolfgang; Garrido, Carlos J.; Los, Karin; Fussmann, Dario; Monien, Monien

    2017-04-01

    Meteoric water infiltration in ultramafic rocks leads to serpentinization and the formation of subaerial, low temperature, hydrothermal alkaline springs. Here, we present a detailed investigation of the mineral precipitation mechanisms and textural features of mineral precipitates, along as the geochemical and hydrological characterization, of two alkaline spring systems in the Semail ophiolite (Nasif and Khafifah sites, Wadi Tayin massif). The main aim of the study is to provide new insights into mineral and textural variations in active, on-land, alkaline vents of the Oman ophiolite. Discharge of circulating fluids forms small-scale, localized hydrological catchments consisting in unevenly interconnected ponds. Three different types of waters can be distinguished within the pond systems: i) Mg-type; alkaline (7.9 < pH < 9.5), Mg-HCO3-rich waters; ii) Ca-type; hyper-alkaline (pH > 11.6), Ca-OH-rich waters; and iii) Mix-type waters arising from the mixing of Mg-type and Ca-type waters (9.6 < pH < 11.5). Phreeqc geochemical speciation software was used to determine the saturation state and the relationship between the theoretical supersaturation (S) and rate of supersaturation (S˚ ) of solid phases. Simple mixing models using Phreeqc MIX_code revealed good mixing correlation (R2 ≥0.93) between measured and predicted values for K, Na, Cl, Mg and sulphate. Al, Ca, Si, Ba, Sr and TIC showed poorer correlations. Mineral and textural characterization from different types of water and individual ponds were carried out by X-ray diffraction (XRD), Raman spectroscopy and field-emission scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Aragonite and calcite are the dominant minerals (95 vol.%) of the total mineralogical index in all sites. Mg-type waters host hydrated magnesium carbonates (nesquehonite) and magnesium hydroxycarbonate hydrates (artinite) due to evaporation. Brucite, hydromagnesite and dypingite presence in Mix-type waters

  14. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and…

  15. Evidence for high-temperature in situ nifH transcription in an alkaline hot spring of Lower Geyser Basin, Yellowstone National Park.

    PubMed

    Loiacono, Sara T; Meyer-Dombard, D'Arcy R; Havig, Jeff R; Poret-Peterson, Amisha T; Hartnett, Hilairy E; Shock, Everett L

    2012-05-01

    Genes encoding nitrogenase (nifH) were amplified from sediment and photosynthetic mat samples collected in the outflow channel of Mound Spring, an alkaline thermal feature in Yellowstone National Park. Results indicate the genetic capacity for nitrogen fixation over the entire range of temperatures sampled (57.2°C to 80.2°C). Amplification of environmental nifH transcripts revealed in situ expression of nifH genes at temperatures up to 72.7°C. However, we were unable to amplify transcripts of nifH at the higher-temperature locations (> 72.7°C). These results indicate that microbes at the highest temperature sites contain the genetic capacity to fix nitrogen, yet either do not express nifH or do so only transiently. Field measurements of nitrate and ammonium show fixed nitrogen limitation as temperature decreases along the outflow channel, suggesting nifH expression in response to the downstream decrease in bioavailable nitrogen. Nitrogen stable isotope values of Mound Spring sediment communities further support geochemical and genetic data. DNA and cDNA nifH amplicons form several unique phylogenetic clades, some of which appear to represent novel nifH sequences in both photosynthetic and chemosynthetic microbial communities. This is the first report of in situ nifH expression in strictly chemosynthetic zones of terrestrial (non-marine) hydrothermal systems, and sets a new upper temperature limit (72.7°C) for nitrogen fixation in alkaline, terrestrial hydrothermal environments. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  16. Hydrothermal Signatures at Gale Crater, Mars, and Possible In-Situ Formation of Tridymite

    NASA Astrophysics Data System (ADS)

    Yen, A. S.; Morris, R. V.; Gellert, R.; Berger, J. A.; Sutter, B.; Downs, R. T.; Bristow, T.; Treiman, A. H.; Ming, D. W.; Achilles, C.; Blake, D. F.; Chipera, S.; Clark, B. C.; Craig, P.; Morrison, S. M.; Rampe, E. B.; Schmidt, M. E.; Schwenzer, S. P.; Thompson, L. M.; Vaniman, D.

    2017-12-01

    The occurrence of tridymite, a high temperature SiO2 polymorph definitively identified by the Curiosity rover in the Buckskin mudstone sample at Gale crater, Mars, has been attributed to detrital accumulation of rhyolitic material. This interpretation of a detrital origin is revisited in light of the observation that the tridymite-hosting sediments appear to have interacted with the same fluids that produced alteration halos in the overlying sandstone. The alteration halos in the Stimson sandstone are light-toned, elevated silica zones within 50 cm of a central fracture. They have likely experienced chemical leaching under acidic conditions resulting in depletion of metals (including Al), retention of Ti, formation of amorphous iron sulfates, 50% reduction of the pyroxene:plagioclase ratio, a factor of two increase in the Fe/Mn ratio, and passive enrichment of Si. This alteration is not constrained (nor precluded) to have occurred at elevated temperatures, but there are abundant indicators of hydrothermal activity within Gale crater. High concentrations of Ge, Zn, Ni, Pb, Cu, Se and Ga in a variety of samples analyzed by the Alpha Particle X-ray Spectrometer are indicative of mobility in hydrothermal solutions. Mineralogy of Gale crater samples determined by the CheMin X-ray diffraction instrument includes phases which may be associated with hydrothermal activity (smectites, anhydrite, hematite), but definitive detections of mineral assemblages that are necessarily hydrothermal in origin remain absent. The nearly identical patterns of enriched and depleted elements of the Stimson alteration halos (relative to parent rocks) and the tridymite-bearing unit (relative to typical mudstone samples) require the consideration of co-genetic origins. Cristobalite, a SiO2 polymorph stable above 1470°C found in the Buckskin sample, is known to form in hydrothermal solutions at temperatures well below its stability field (Henderson et al., 1971). Formation of well

  17. Alkaline sodium borohydride gel as a hydrogen source for PEMFC or an energy carrier for NaBH 4-air battery

    NASA Astrophysics Data System (ADS)

    Liu, B. H.; Li, Z. P.; Chen, L. L.

    In this preliminary study, we tried to use sodium polyacrylate as the super absorbent polymer to form alkaline NaBH 4 gel and explored its possibilities for borohydride hydrolysis and borohydride electro-oxidation. It was found that the absorption capacity of sodium polyacrylate decreased with increasing NaBH 4 concentration. The formed gel was rather stable in the sealed vessel but tended to slowly decompose in open air. Hydrogen generation from the gel was carried out using CoCl 2 catalyst precursor solutions. Hydrogen generation rate from the alkaline NaBH 4 gel was found to be higher and impurities in hydrogen were less than that from the alkaline NaBH 4 solution. The NaBH 4 gel also successfully powered a NaBH 4-air battery.

  18. The Guaymas Basin Hiking Guide to Hydrothermal Mounds, Chimneys, and Microbial Mats: Complex Seafloor Expressions of Subsurface Hydrothermal Circulation

    PubMed Central

    Teske, Andreas; de Beer, Dirk; McKay, Luke J.; Tivey, Margaret K.; Biddle, Jennifer F.; Hoer, Daniel; Lloyd, Karen G.; Lever, Mark A.; Røy, Hans; Albert, Daniel B.; Mendlovitz, Howard P.; MacGregor, Barbara J.

    2016-01-01

    The hydrothermal mats, mounds, and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview, we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heat flow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for comprehensive surveys of the wider spreading region. PMID:26925032

  19. Transcriptome analysis of genes involved in defense against alkaline stress in roots of wild jujube (Ziziphus acidojujuba)

    PubMed Central

    Tian, Shan; Wang, Bei; Zhao, Xusheng

    2017-01-01

    Wild jujube (Ziziphus acidojujuba Mill.) is highly tolerant to alkaline, saline and drought stress; however, no studies have performed transcriptome profiling to study the response of wild jujube to these and other abiotic stresses. In this study, we examined the tolerance of wild jujube to NaHCO3-NaOH solution and analyzed gene expression profiles in response to alkaline stress. Physiological experiments revealed that H2O2 content in leaves increased significantly and root activity decreased quickly during alkaline of pH 9.5 treatment. For transcriptome analysis, wild jujube plants grown hydroponically were treated with NaHCO3-NaOH solution for 0, 1, and 12 h and six transcriptomes from roots were built. In total, 32,758 genes were generated, and 3,604 differentially expressed genes (DEGs) were identified. After 1 h, 853 genes showed significantly different expression between control and treated plants; after 12 h, expression of 2,856 genes was significantly different. The expression pattern of nine genes was validated by quantitative real-time PCR. After gene annotation and gene ontology enrichment analysis, the genes encoding transcriptional factors, serine/threonine-protein kinases, heat shock proteins, cysteine-like kinases, calmodulin-like proteins, and reactive oxygen species (ROS) scavengers were found to be closely involved in alkaline stress response. These results will provide useful insights for elucidating the mechanisms underlying alkaline tolerance in wild jujube. PMID:28976994

  20. Overestimation of organic phosphorus in wetland soils by alkaline extraction and molybdate colorimetry.

    PubMed

    Turner, Benjamin L; Newman, Susan; Reddy, K Ramesh

    2006-05-15

    Accurate information on the chemical nature of soil phosphorus is essential for understanding its bioavailability and fate in wetland ecosystems. Solution phosphorus-31 nuclear magnetic resonance (31P NMR) spectroscopy was used to assess the conventional colorimetric procedure for phosphorus speciation in alkaline extracts of organic soils from the Florida Everglades. Molybdate colorimetry markedly overestimated organic phosphorus by between 30 and 54% compared to NMR spectroscopy. This was due in large part to the association of inorganic phosphate with organic matter, although the error was exacerbated in some samples by the presence of pyrophosphate, an inorganic polyphosphate that is not detected by colorimetry. The results have important implications for our understanding of phosphorus biogeochemistry in wetlands and suggest that alkaline extraction and solution 31p NMR spectroscopy is the only accurate method for quantifying organic phosphorus in wetland soils.

  1. Improved spectrophotometric cell for hydrothermal solutions

    USGS Publications Warehouse

    Susak, N.J.; Crerar, D.A.; Forseman, T.C.; Haas, J.L.

    1981-01-01

    A simple, inexpensive spectrophotometric cell was designed for use with aqueous solutions for which temperature is a maximum of 325??C and pressure, 28 MPa. The cell has an internal volume of 5 ml and a path length of 1.31 cm. Each furnace assembly is 120 mm in diameter ?? 150 mm high and will fit into most commercial spectrophotometers. Temperature is controlled by a standard set-point controller and a balancing circuit that is used to maintain the temperature of the sample and reference cell within 1??C of each other at any temperature.

  2. The Effects of an Alkaline Treatment on the Ferroelectric Properties of Poly(vinylidene fluoride trifluoroethylene) Films

    DOE PAGES

    Kim, Yeontae; Hong, Seungbum; Oh, Sehoon; ...

    2015-06-30

    The effects of an alkaline treatment on the ferroelectric properties of poly(vinylidene fluoride trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated. The alkaline treatment resulted in a small change in the surface roughness but no significant change in the grain shape or size of P(VDF-TrFE) copolymer films, as evidenced by both scanning electron microscopy and atomic force microscopy images. However, x-ray photoelectron spectroscopy results indicated that the alkaline etchant of a KOH solution reacted with P(VDF-TrFE) films to decrease the number of C-F bonds while creating new carbon conjugated double bonds, which decreased the remanent polarization of the P(VDF-TrFE) films. These resultsmore » can improve our understanding of the degradation mechanism of an alkaline treatment.« less

  3. Unravelling the sulphur isotope systematics of an alkaline magmatic province: implications for REE mineralization and exploration

    NASA Astrophysics Data System (ADS)

    Hutchison, W.; Finch, A.; Boyce, A.; Friis, H.; Borst, A. M.; Horsburgh, N. J.

    2017-12-01

    Some of the world's best alkaline rare earth element (REE) deposits are formed in magmatic systems that are sealed (i.e., those that are autometasomatised and maintain reducing conditions). Conversely, in open systems where oxidizing fluids infiltrate, it is commonly assumed that REE are redistributed over a wider (less concentrated) zone. Sulphur isotope fractionation is sensitive to variations in temperature and redox, and, although sulphide minerals are relatively abundant in alkaline systems, there have been few attempts to test these hypotheses and develop a sulphur isotope proxy for alkaline metasomatism and formation of associated REE deposits. The Gardar Rift Province in southern Greenland was volcanically active in two periods between 1300 and 1100 Ma and is an ideal natural laboratory to explore sulphur isotope systematics because a near-complete alkaline magmatic lineage is exposed. We present new δ34S from across the province with a particular focus on three alkaline systems (Ilímaussaq, Motzfeldt and Ivigtût) that also host major REE deposits. Primitive mafic rocks from regional Gardar dykes and lavas have a restricted range of δ34S between 0 and 3 ‰ and fractional crystallization imparts no observable change in δ34S. In a few cases high-δ34S rocks (>15 ‰) occur when intrusive units have assimilated local sedimentary crust (δ34S = 25 ‰). Most δ34S variation takes place in the roof zones of alkaline intrusions during late-magmatic and hydrothermal stages, and we identify clear differences between the complexes. At Ilímaussaq, where the magmatic series is exceptionally reduced (below QFM buffer), roof zone δ34S remains narrow (0-3 ‰). At Motzfeldt, a more open oxidizing roof zone (MH buffer), δ34S ranges from -12 ‰ in late-stage fluorite veins to +12 ‰ where local crust has been assimilated. Ivigtût is intermediate between these end-members varying between -5 to +5 ‰. The δ34S variations primarily relate to temperature and

  4. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil.

    PubMed

    Barbiero, Laurent; Berger, Gilles; Rezende Filho, Ary T; Meunier, Jean-François; Martins-Silva, Elisângela R; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  5. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil

    PubMed Central

    Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  6. Hydrous pyrolysis of polycyclic aromatic hydrocarbons and implications for the origin of PAH in hydrothermal petroleum

    NASA Technical Reports Server (NTRS)

    McCollom, T. M.; Simoneit, B. R.; Shock, E. L.

    1999-01-01

    Polycyclic aromatic hydrocarbons (PAH) are found at high concentrations in thermally altered organic matter and hydrothermally generated petroleum from sediment-covered seafloor hydro-thermal systems. To better understand the factors controlling the occurrence of PAH in thermally altered environments, the reactivities of two PAH, phenanthrene and anthracene, were investigated in hydrothermal experiments. The compounds were heated with water at 330 degrees C in sealed reaction vessels for durations ranging from 1 to 17 days. Iron oxide and sulfide minerals, formic acid, or sodium for-mate were included in some experiments to vary conditions within the reaction vessel. Phenanthrene was unreactive both in water alone and in the presence of minerals for up to 17 days, while anthracene was partially hydrogenated (5-10%) to di- and tetrahydroanthracene. In the presence of 6-21 vol % formic acid, both phenanthrene and anthracene reacted extensively to form hydrogenated and minor methylated derivatives, with the degree of hydrogenation and methylation increasing with the amount of formic acid. Phenanthrene was slightly hydrogenated in sodium formate solutions. The hydrogenation reactions could be readily reversed; heating a mixture of polysaturated phenanthrenes resulted in extensive dehydrogenation (aromatization) after 3 days at 330 degrees C. While the experiments demonstrate that reaction pathways for the hydrogenation of PAH under hydrothermal conditions exist, the reactions apparently require higher concentrations of H2 than are typical of geologic settings. The experiments provide additional evidence that PAH may be generated in hydrothermal systems from progressive aromatization and dealkylation of biologically derived polycyclic precursors such as steroids and terpenoids. Furthermore, the results indicate that PAH initially present in sediments or formed within hydrothermal systems are resistant to further thermal degradation during hydrothermal alteration.

  7. Prebiotic organic synthesis under hydrothermal conditions: an overview

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.

    Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150 °C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100 to 400 °C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250 °C. The compounds range from C6 to >C33, including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a

  8. Prebiotic Organic Synthesis under Hydrothermal Conditions - An Overview

    NASA Astrophysics Data System (ADS)

    Simoneit, B.

    Organic compounds which are obviously synthesized from inorganic precursors (e.g., CO) by hydrothermal activity are currently a research topic in prebiotic chemistry leading to the origin of life. However, such de novo products would be overwhelmed in present Earth environments, by an excess of thermal alteration (pyrolysis) products formed from contemporary life (e.g., hydrocarbons, alkanoic acids, etc.). Thus, organic syntheses must be demonstrated and distinguished from organic matter alteration initially in the laboratory and then in the field. Organic synthesis under hydrothermal conditions is theoretically possible and various established industrial processes are used to synthesize organic compounds from inorganic substrates with the aid of catalysts. A set of Strecker-type synthesis experiments has been carried out under hydrothermal conditions (150°C), producing various amino acids. The formation of lipid compounds during an aqueous organic synthesis (Fischer-Tropsch-type) reaction was reported, using solutions of oxalic acid (also formic acid) as the carbon and hydrogen sources, and heating at discrete temperatures (50° intervals) from 100- 400°C. The maximum lipid yield, especially for oxygenated compounds was in the window of 150-250°C. The compounds range from C6 to >C3 3 , including n-alkanols, n-alkanoic acids, n-alkyl formates, n-alkanones, and n-alkanes, all with no carbon number preferences. These lipid compounds, especially the acids, can form lipid bilayers or micelles, potential precursors for membranes. Reductive condensation (i.e., dehydration) reactions also occur under simulated hydrothermal conditions and form amide, nitrile and ester bonds. The chemistry and kinetics of the condensation reactions are under further study and have the potential for oligomerization of acid-amides in aqueous medium. Abiotic organic compounds are not biomarkers per se because they do not originate from biosynthesis. Thus, they should be regarded as a

  9. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils.

    PubMed

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An 'anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems.

  10. An inorganic CO2 diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils

    PubMed Central

    Ma, Jie; Wang, Zhong-Yuan; Stevenson, Bryan A.; Zheng, Xin-Jun; Li, Yan

    2013-01-01

    An ‘anomalous' negative flux, in which carbon dioxide (CO2) enters rather than is released from the ground, was studied in a saline/alkaline soil. Soil sterilization disclosed an inorganic process of CO2 dissolution into (during the night) and out of (during the day) the soil solution, driven by variation in soil temperature. Experimental and modeling analysis revealed that pH and soil moisture were the most important determinants of the magnitude of this inorganic CO2 flux. In the extreme cases of air-dried saline/alkaline soils, this inorganic process was predominant. While the diurnal flux measured was zero sum, leaching of the dissolved inorganic carbon in the soil solution could potentially effect net carbon ecosystem exchange. This finding implies that an inorganic module should be incorporated when dealing with the CO2 flux of saline/alkaline land. Neglecting this inorganic flux may induce erroneous or misleading conclusions in interpreting CO2 fluxes of these ecosystems. PMID:23778238

  11. Organic compounds in hydrothermal systems on the Russian Far East: relevance to the origin of life

    NASA Astrophysics Data System (ADS)

    Kompanichenko, Vladimir

    In 70th of the last century L. Mukhin with co-authors (1) explored amino acids in the hot springs and water-steam mixture from the boreholes in Kamchatka peninsula of eastern Rus-sia. According to their results, 12 amino acids of biological origination were detected in hot springs inhabited by thermophiles and hyperthermophiles. Only a single amino acid -glycine -was found in the lifeless condensate of water-steam mixture. These authors proposed its abiotic genesis. Our research is devoted to exploration of moderately volatile organic com-pounds in the hot springs and water-steam mixture in Kamchatka peninsula, Kuriles and intracontinental part of eastern Russia. Samples were taken from hot springs far from poten-tial sources of contamination by human populations, and from boreholes 60 to 1200 meters in depth. The temperature ranged from 175C (sterile water-steam mixture) to 55C (hot water with thermophile populations). The samples were analyzed by the gas chromatomass-spectrometer Shimatsu (GCMS-QP20105). Lifeless condensate of water-steam mixture (t = 108-175C) con-tains aromatic hydrocarbons (naphthalene, 1,2-methylnaphtaline biphenyl, phenathrene, fluo-rene,squalene, 1,3-diethylbenzene, and trichlorobenzene)., n-alkanes (decane, dodecane, tride-cane, tetradecane, pentadecane, hexadecane, and geptadecane), aldehyde (oktadekanal), ketone (2-geptadekanon), and alcohol (2-undetsenol-1). 10 homologous series have been found in hot solutions (t = 55-99C) inhabited by thermophilic and hyperthermophilic microorganisms hav-ing low concentrations: aromatic hydrocarbons, n-alkanes, alkenes, aldehydes, dietoxyalkanes, naphthenes, fatty acids, methyl ethers of fatty acids, monoglycerides, and steroids. Especially diverse organic substance is detected in alkaline lower-temperature solutions (pH 9-9.5, t up to 72C). The source of these compounds is not yet established. They may represent pre-existing organic material that has been chemically degraded by pyrolysis. For

  12. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    USGS Publications Warehouse

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  13. Oxygen Reduction Reaction on Ag(111) in Alkaline Solution: A Combined Density Functional Theory and Kinetic Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shizhong; White, Michael G.; Liu, Ping

    We reported a detailed mechanistic study of the oxygen reduction reaction (ORR) on the model Ag(111) surface in alkaline solution by using density functional theory (DFT) and Kinetic Monte Carlo (KMC) simulations, in which multiple pathways involving either 2 e - or 4 e - mechanisms were included. The theoretical modelling presented here is able to reproduce the experimentally measured polarization curves in both low and high potential regions. An electrochemical 4 e - network including both a chemisorbed water (*H 2O)-mediated 4 e - associative pathway and the conventional associative pathway was identified to dominate the ORR mechanism. Onmore » the basis of the mechanistic understanding derived from these calculations, the ways to promote the ORR on Ag(111) were provided, including facilitating *OH removal, **O 2 reduction by *H 2O, and suppressing **O 2 desorption. Finally, the origin of the different ORR behaviors of Ag(111) and Pt(111) was also discussed in detail.« less

  14. Oxygen Reduction Reaction on Ag(111) in Alkaline Solution: A Combined Density Functional Theory and Kinetic Monte Carlo Study

    DOE PAGES

    Liu, Shizhong; White, Michael G.; Liu, Ping

    2018-01-25

    We reported a detailed mechanistic study of the oxygen reduction reaction (ORR) on the model Ag(111) surface in alkaline solution by using density functional theory (DFT) and Kinetic Monte Carlo (KMC) simulations, in which multiple pathways involving either 2 e - or 4 e - mechanisms were included. The theoretical modelling presented here is able to reproduce the experimentally measured polarization curves in both low and high potential regions. An electrochemical 4 e - network including both a chemisorbed water (*H 2O)-mediated 4 e - associative pathway and the conventional associative pathway was identified to dominate the ORR mechanism. Onmore » the basis of the mechanistic understanding derived from these calculations, the ways to promote the ORR on Ag(111) were provided, including facilitating *OH removal, **O 2 reduction by *H 2O, and suppressing **O 2 desorption. Finally, the origin of the different ORR behaviors of Ag(111) and Pt(111) was also discussed in detail.« less

  15. Elucidating the alkaline oxygen evolution reaction mechanism on platinum

    DOE PAGES

    Favaro, M.; Valero-Vidal, C.; Eichhorn, J.; ...

    2017-03-07

    Understanding the interplay between surface chemistry, electronic structure, and reaction mechanism of the catalyst at the electrified solid/liquid interface will enable the design of more efficient materials systems for sustainable energy production. The substantial progress in operando characterization, particularly using synchrotron based X-ray spectroscopies, provides the unprecedented opportunity to uncover surface chemical and structural transformations under various (electro)chemical reaction environments. In this work, we study a polycrystalline platinum surface under oxygen evolution conditions in an alkaline electrolyte by means of ambient pressure X-ray photoelectron spectroscopy performed at the electrified solid/liquid interface. We elucidate previously inaccessible aspects of the surface chemistrymore » and structure as a function of the applied potential, allowing us to propose a reaction mechanism for oxygen evolution on a platinum electrode in alkaline solutions.« less

  16. Biogeochemistry of hydrothermally and adjacent non-altered soils

    USDA-ARS?s Scientific Manuscript database

    As a field/lab project, students in the Soil Biogeochemistry class of the University of Nevada, Reno described and characterized seven pedons, developed in hydrothermally and adjacent non-hydrothermally altered andesitic parent material near Reno, NV. Hydrothermally altered soils had considerably lo...

  17. Organic synthesis during fluid mixing in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Shock, Everett L.; Schulte, Mitchell D.

    1998-12-01

    Hydrothermal circulation can lead to fluid mixing on any planet with liquid water and a source of heat. Aqueous fluids with differing compositions, especially different oxidation states, are likely to be far from thermodynamic equilibrium when they mix, and provide a source of free energy that can drive organic synthesis from CO2 and H2, and/or supply a source of geochemical energy to chemolithoautotrophic organisms. Results are presented that quantify the potential for organic synthesis during unbuffered fluid mixing in present submarine hydrothermal systems, as well as hypothetical systems that may have existed on the early Earth and Mars. Dissolved hydrogen, present in submarine hydrothermal fluids owing to the high-temperature reduction of H2O as seawater reacts with oceanic crustal rocks, provides the reduction potential and the thermodynamic drive for organic synthesis from CO2 (or bicarbonate) as hydrothermal fluids mix with seawater. The potential for organic synthesis is a strong function of the H2 content of the hydrothermal fluid, which is, in turn, a function of the prevailing oxidation state controlled by the composition of the rock that hosts the hydrothermal system. Hydrothermal fluids with initial oxidation states at or below those set by the fayalite-magnetite-quartz mineral assemblage show the greatest potential for driving organic synthesis. These calculations show that it is thermodynamically possible for 100% of the carbon in the mixed fluid to be reduced to a mixture of carboxylic acids, alcohols, and ketones in the range 250-50°C as cold seawater mixes with the hydrothermal fluid. As the temperature drops, larger organic molecules are favored, which implies that fluid mixing could drive the geochemical equivalent of a metabolic system. This enormous reduction potential probably drives a large portion of the primary productivity around present seafloor hydrothermal vents and would have been present in hydrothermal systems on the early Earth

  18. Behavior of ellagitannins, gallic acid, and ellagic acid under alkaline conditions

    Treesearch

    Richard W. Hemingway; W.E. Hillis

    1971-01-01

    Examination of the rates of hydrolysis of different ellagitannins under conditions comparable with cold soda and alkaline-groundwood pulping processes showed that some ellagitannins are notably resistant to hydrolysis. The rate of hydrolysis was dependent upon the pH and tempemture of the solution and particularly upon the structure of the compound. Decarboxylation of...

  19. Characteristics of Hydrothermal Mineralization in Ultraslow Spreading Ridges

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Yang, Q.; Ji, F.; Dick, H. J.

    2014-12-01

    Hydrothermal activity is a major component of the processes that shape the composition and structure of the ocean crust, providing a major pathway for the exchange of heat and elements between the Earth's crust and oceans, and a locus for intense biological activity on the seafloor and underlying crust. In other hand, the structure and composition of hydrothermal systems are the result of complex interactions between heat sources, fluids, wall rocks, tectonic controls and even biological processes. Ultraslow spreading ridges, including the Southwest Indian Ridge, the Gakkel Ridge, are most remarkable end member in plate-boundary structures (Dick et al., 2003), featured with extensive tectonic amagmatic spreading and frequent exposure of peridotite and gabbro. With intensive surveys in last decades, it is suggested that ultraslow ridges are several times more effective than faster-spreading ridges in sustaining hydrothermal activities. This increased efficiency could attributed to deep mining of heat and even exothermic serpentinisation (Baker et al., 2004). Distinct from in faster spreading ridges, one characteristics of hydrothermal mineralization on seafloor in ultraslow spreading ridges, including the active Dragon Flag hydrothermal field at 49.6 degree of the Southwest Indian Ridge, is abundant and pervasive distribution of lower temperature precipitated minerals ( such as Fe-silica or silica, Mn (Fe) oxides, sepiolite, pyrite, marcasite etc. ) in hydrothermal fields. Structures formed by lower temperature activities in active and dead hydrothermal fields are also obviously. High temperature precipitated minerals such as chalcopyrite etc. are rare or very limited in hydrothermal chimneys. Distribution of diverse low temperature hydrothermal activities is consistence with the deep heating mechanisms and hydrothermal circulations in the complex background of ultraslow spreading tectonics. Meanwhile, deeper and larger mineralization at certain locations along the

  20. Power ultrasound irradiation during the alkaline etching process of the 2024 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Moutarlier, V.; Viennet, R.; Rolet, J.; Gigandet, M. P.; Hihn, J. Y.

    2015-11-01

    Prior to any surface treatment on an aluminum alloy, a surface preparation is necessary. This commonly consists in performing an alkaline etching followed by acid deoxidizing. In this work, the use of power ultrasound irradiation during the etching step on the 2024 aluminum alloy was studied. The etching rate was estimated by weight loss, and the alkaline film formed during the etching step was characterized by glow discharge optical emission spectrometry (GDOES) and scanning electron microscope (SEM). The benefit of power ultrasound during the etching step was confirmed by pitting potential measurement in NaCl solution after a post-treatment (anodizing).

  1. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    NASA Astrophysics Data System (ADS)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    Mount Rainier is the result of episodic stages of edifice growth during periods of high eruptive activity and edifice destruction during periods of relative magmatic quiescence over the past 500 kyr. Edifice destruction occurred both by slow erosion and by catastrophic collapses, some of which were strongly influenced by hydrothermal alteration. Several large-volume Holocene debris-flow deposits contain abundant clasts of hydrothermally altered rocks, most notably the 4-km3 clay-rich Osceola Mudflow which formed by collapse of the northeast side and upper 1000+ m of the edifice about 5600 ya and flowed >120 km downstream into Puget Sound. Mineral assemblages and stable isotope data of hydrothermal alteration products in Holocene debris-flow deposits indicate formation in distinct hydrothermal environments, including magmatic-hydrothermal, steam-heated (including a large fumarolic component), magmatic steam (including a possible fumarolic component), and supergene. The Osceola Mudflow and phreatic components of coeval tephras contain the highest-temperature and inferred most deeply formed alteration minerals; assemblages include magmatic-hydrothermal quartz-alunite, quartz-topaz, quartz-pyrophyllite and quartz-illite (all +pyrite), in addition to steam-heated opal-alunite-kaolinite and abundant smectite-pyrite. In contrast, the Paradise lahar, which formed by a collapse of the surficial upper south side of the edifice, contains only steam-heated assemblages including those formed largely above the water table from condensation of fumarolic vapor (opal-alunite-jarosite). Younger debris-flow deposits on the west side of the volcano (Round Pass lahar and Electron Mudflow) contain only smectite-pyrite alteration, whereas an early 20th century rock avalanche on Tahoma Glacier also contains magmatic-hydrothermal alteration that is exposed in the avalanche headwall of Sunset Amphitheater. Mineralogy and isotopic composition of the alteration phases, geologic and

  2. In-situ Raman spectroscopic study of aluminate speciation in H2O-KOH solutions at high pressures and temperatures

    NASA Astrophysics Data System (ADS)

    Mookherjee, M.; Keppler, H.; Manning, C. E.

    2009-12-01

    The solubility of corundum in H2O is low even at high pressure and temperatures. Therefore, it is commonly assumed that alumina remains essentially immobile during fluid-rock interaction. However, field and experimental evidence suggests that alumina solubility is strongly enhanced in the presence of silica as well as in alkaline solutions. In order to understand what controls the alumina solubility and how it is enhanced as a function of fluid composition, we conducted Raman-spectroscopic study of Al speciation in aqueous fluids at high pressure and temperature. Experiments were carried out in an externally heated hydrothermal diamond-anvil cell equipped with low-fluorescence diamonds and iridium gaskets. Raman spectra were collected with a Horiba Jobin-Yvon Labram HR spectrometer using the 514 nm line of an argon laser for excitation. In a first series of experiments, the speciation of alumina was studied in a 1 M KOH solution in equilibrium with corundum up to 700 oC and ~1 GPa. The Raman spectra show a prominent band at 618 cm-1 interpreted to arise from Al-O stretching vibrations associated with the tetrahedral [Al(OH)4]1- species. At higher pressure and temperature, an additional vibrational mode appears in the spectra at 374 cm-1 (full width at half maximum ~ 20 cm-1). This feature is tentatively attributed to [(OH)3Al-O-Al(OH)3]2- (Moolenaar et al. 1970, Jour. Phys. Chem., 74, 3629-3636). No evidence for KAl(OH)4 was observed, consistent with piston cylinder experiments at 700 oC and 1 GPa (Wohlers & Manning, 2009, Chem. Geol., 262, 310). Upon cooling from high-pressure and high temperature, slow kinetics of corundum regrowth lead to oversaturation in the solutions, as evidenced by sharp peaks at 930 and 1066 cm-1 observed upon cooling. These features are probably due to colloidal aluminum hydroxide. The results provide the first evidence for aluminate polymerization at high pressure and temperature, and offer insights into the causes for enhancement of

  3. Uniformity and diversity in the composition of mineralizing fluids from hydrothermal vents on the southern Juan de Fuca Ridge.

    USGS Publications Warehouse

    Philpotts, J.A.; Aruscavage, P. J.; Von Damm, Karen L.

    1987-01-01

    Abundances of Li, Na, K, Rb, Ca, Sr, Ba, Mn, Fe, Zn, and Si have been determined in fluid samples from 7 vents located in three areas on the southern Juan de Fuca Ridge. The hydrothermal component estimated from the Mg contents of the samples ranges from 7% to 76%. Concentrations of Fe and Si, among other elements, in acid-stabilized solutions appear to be generally representative of the parental hydrothermal fluids, but some Zn determinations and most Ba values appear to be too low.-from Authors

  4. Diversity of Rare and Abundant Prokaryotic Phylotypes in the Prony Hydrothermal Field and Comparison with Other Serpentinite-Hosted Ecosystems.

    PubMed

    Frouin, Eléonore; Bes, Méline; Ollivier, Bernard; Quéméneur, Marianne; Postec, Anne; Debroas, Didier; Armougom, Fabrice; Erauso, Gaël

    2018-01-01

    The Bay of Prony, South of New Caledonia, represents a unique serpentinite-hosted hydrothermal field due to its coastal situation. It harbors both submarine and intertidal active sites, discharging hydrogen- and methane-rich alkaline fluids of low salinity and mild temperature through porous carbonate edifices. In this study, we have extensively investigated the bacterial and archaeal communities inhabiting the hydrothermal chimneys from one intertidal and three submarine sites by 16S rRNA gene amplicon sequencing. We show that the bacterial community of the intertidal site is clearly distinct from that of the submarine sites with species distribution patterns driven by only a few abundant populations, affiliated to the Chloroflexi and Proteobacteria phyla. In contrast, the distribution of archaeal taxa seems less site-dependent, as exemplified by the co-occurrence, in both submarine and intertidal sites, of two dominant phylotypes of Methanosarcinales previously thought to be restricted to serpentinizing systems, either marine (Lost City Hydrothermal Field) or terrestrial (The Cedars ultrabasic springs). Over 70% of the phylotypes were rare and included, among others, all those affiliated to candidate divisions. We finally compared the distribution of bacterial and archaeal phylotypes of Prony Hydrothermal Field with those of five previously studied serpentinizing systems of geographically distant sites. Although sensu stricto no core microbial community was identified, a few uncultivated lineages, notably within the archaeal order Methanosarcinales and the bacterial class Dehalococcoidia (the candidate division MSBL5) were exclusively found in a few serpentinizing systems while other operational taxonomic units belonging to the orders Clostridiales, Thermoanaerobacterales , or the genus Hydrogenophaga , were abundantly distributed in several sites. These lineages may represent taxonomic signatures of serpentinizing ecosystems. These findings extend our current

  5. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE PAGES

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    2017-10-05

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  6. Copper Sensing in Alkaline Electrolyte Using Anodic Stripping Voltammetry by Means of a Lead Mediator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duay, Jonathon; Ortiz-Santiago, Joed E.; Lambert, Timothy N.

    Anodic stripping voltammetry (ASV) is an analysis technique that permits the selective and quantitative analysis of metal ion species in solution. It is most commonly applied in neutral to acidic electrolyte largely due to inherent metal ion solubility. Bismuth (Bi) is a common film used for ASV due to its good sensitivity, overall stability and insensitivity to O2. ASV, utilizing a Bi film, along with cadmium (Cd) and lead (Pb) as the plating mediators, has recently been adapted to determine zinc (Zn) concentrations in highly alkaline environments (30 % NaOH or 35 % M KOH). Successful analysis of Zn inmore » alkaline relies on the ability of the hydroxide to form soluble metal anion species, such as Bi(OH) 4 – and Zn(OH) 4 2–. Here, we look to extend this technique to detect and quantify copper (Cu) ions in these highly basic electrolytes. However, in general, the use of ASV to detect and quantify Cu ion concentrations is notoriously difficult as the Cu stripping peak potential overlays with that of Bi from the common Bi film electrode. Here, an ASV method for determining Cu concentration in alkaline solutions is developed utilizing Pb as a deposition mediator. As such, it was found that when analyzing Cu solutions in the presence of Pb, the stripping voltammetry curves present separate and defined Cu stripping peaks. Different analyzes were made to find the best stripping voltammetry performance conditions. As such, an accumulation time of 5 minutes, an accumulation potential of ≤–1.45 V vs. Hg/HgO, and a concentration of 35 wt% KOH were determined to be the conditions that presented the best ASV results. Utilizing these conditions, calibration curves in the presence of 5.0 ppm Pb showed the best linear stripping signal correlation with an r-squared value of 0.991 and a limit of detection (LOD) of 0.67 ppm. Lastly, these results give way to evaluating Cu concentrations using ASV in aqueous alkaline solutions.« less

  7. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    NASA Astrophysics Data System (ADS)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  8. Fungal colonization of an Ordovician impact-induced hydrothermal system

    PubMed Central

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-01-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life. PMID:24336641

  9. Fungal colonization of an Ordovician impact-induced hydrothermal system

    NASA Astrophysics Data System (ADS)

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-01

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  10. Fungal colonization of an Ordovician impact-induced hydrothermal system.

    PubMed

    Ivarsson, Magnus; Broman, Curt; Sturkell, Erik; Ormö, Jens; Siljeström, Sandra; van Zuilen, Mark; Bengtson, Stefan

    2013-12-16

    Impacts are common geologic features on the terrestrial planets throughout the solar system, and on at least Earth and Mars impacts have induced hydrothermal convection. Impact-generated hydrothermal systems have been suggested to possess the same life supporting capability as hydrothermal systems associated with volcanic activity. However, evidence of fossil microbial colonization in impact-generated hydrothermal systems is scarce in the literature. Here we report of fossilized microorganisms in association with cavity-grown hydrothermal minerals from the 458 Ma Lockne impact structure, Sweden. Based on morphological characteristics the fossilized microorganisms are interpreted as fungi. We further infer the kerogenization of the microfossils, and thus the life span of the fungi, to be contemporaneous with the hydrothermal activity and migration of hydrocarbons in the system. Our results from the Lockne impact structure show that hydrothermal systems associated with impact structures can support colonization by microbial life.

  11. Distribution, structure and temporal variability of hydrothermal outflow at a slow-spreading hydrothermal field from seafloor image mosaics.

    NASA Astrophysics Data System (ADS)

    Barreyre, Thibaut; Escartin, Javier; Cannat, Mathilde; Garcia, Rafael; Science Party, Momar'08; Science Party, Bathyluck'09

    2010-05-01

    The Lucky Strike hydrothermal site, located South of the Azores along the Mid-Atlantic Ridge, is one of the largest and best-known active hydrothermal fields along the ridge system. This site within the MoMAR area is also the target for the installation in 2010 of a pilot deep-sea observatory with direct telemetry to land, to be part of the European Seafloor Observatory Network (ESONET). The Lucky Strike hydrothermal site has seen extensive high-resolution, near-bottom geophysical surveys in 1996 (Lustre'96), 2006 (Momareto06), 2008 (MOMAR08) and 2009 (Bathyluck09). Vertically acquired black-and-white electronic still camera images have been projected and georeferenced to obtain 3 image mosaics covering the zone of active venting, extending ~ 700x800 m2, and with full image resolution (~10 mm pixels). These data allow us to study how hydrothermal outflow is structured, including the relationships between the zones of active high-temperature venting, areas of diffuse outflow, and the geological structure (nature of the substrate, faults and fissures, sediments, etc.). Hydrothermal outflow is systematically associated with bacterial mats that are easily identified in the imagery, allowing us to study temporal variability at two different scales. Over the 13-year period we can potentially track changes in both the geometry and intensity of hydrothermal activity throughout the system; our preliminary study of the Eiffel Tower, White Castle and Mt Segur indicate that activity has been sustained in recent times, with small changes in the detailed geometry of the diffuse outflow and its intensity. At longer times scales (hundreds to 1000 years?) imagery also shows evidence of areas of venting that are no longer active, often associated with the active structures. In combination with the high-resolution bathymetry, the imagery data thus allow us to characterize the shallow structure of hydrothermal outflow at depth, the structural and volcanic control, and ultimately

  12. Geochemistry driven trends in microbial diversity and function across a temperature transect of a shallow water hydrothermal system off Milos (Greece)

    NASA Astrophysics Data System (ADS)

    Bühring, Solveig I.; Amend, Jan P.; Gómez Sáez, Gonzalo V.; Häusler, Stefan; Hinrichs, Kai-Uwe; Pichler, Thomas; Pop Ristova, Petra; Price, Roy E.; Santi, Ioulia; Sollich, Miriam

    2014-05-01

    The shallow water hydrothermal vents off Milos Island, Greece, discharge hot, slightly acidic, reduced fluids into colder, slightly alkaline, oxygenated seawater. Gradients in temperature, pH, and geochemistry are established as the two fluids mix, leading to the formation of various microbial microniches. In contrast to deep-sea hydrothermal systems, the availability of sun light allows for a combination of photo- and chemotrophic carbon fixation. Despite the comparably easy accessibility of shallow water hydrothermal systems, little is known about their microbial diversity and functioning. We present data from a shallow hydrothermal system off Milos Island, one of the most hydrothermally active regions in the Mediterranean Sea. The physico-chemical changes from ambient seafloor to hydrothermal area were investigated and documented by in situ microsensor profiling of temperature, pH, total reduced sulfur and dissolved oxygen alongside porewater geochemistry. The spatial microbial diversity was determined using a combination of gene- and lipid-based approaches, whereas microbial functioning was assessed by stable isotope probing experiments targeting lipid biomarkers. In situ microprofiles indicated an extreme environment with steep gradients, offering a variety of microniches for metabolically diverse microbial communities. We sampled a transect along a hydrothermal patch, following an increase in sediment surface temperature from background to 90°C, including five sampling points up to 20 cm sediment depth. Investigation of the bacterial diversity using ARISA revealed differences in the community structure along the geochemical gradients, with the least similarity between the ambient and highly hydrothermally impacted sites. Furthermore, using multivariate statistical analyses it was shown that variations in the community structure could be attributed to differences in the sediment geochemistry and especially the sulfide content, and only indirectly to shifts in

  13. Hydrothermal pretreatment of palm oil empty fruit bunch

    NASA Astrophysics Data System (ADS)

    Simanungkalit, Sabar Pangihutan; Mansur, Dieni; Nurhakim, Boby; Agustin, Astrid; Rinaldi, Nino; Muryanto, Fitriady, Muhammad Ariffudin

    2017-01-01

    Hydrothermal pretreatment methods in 2nd generation bioethanol production more profitable to be developed, since the conventional pretreatment, by using acids or alkalis, is associated with the serious economic and environmental constraints. The current studies investigate hydrothermal pretreatment of palm oil empty fruit bunch (EFB) in a batch tube reactor system with temperature and time range from 160 to 240 C and 15 to 30 min, respectively. The EFB were grinded and separated into 3 different particles sizes i.e. 10 mesh, 18 mesh and 40 mesh, prior to hydrothermal pretreatment. Solid yield and pH of the treated EFB slurries changed over treatment severities. The chemical composition of EFB was greatly affected by the hydrothermal pretreatment especially hemicellulose which decreased at higher severity factor as determined by HPLC. Both partial removal of hemicellulose and migration of lignin during hydrothermal pretreatment caused negatively affect for enzymatic hydrolysis. This studies provided important factors for maximizing hydrothermal pretreatment of EFB.

  14. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range. © 2015 Wiley Periodicals, Inc.

  15. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  16. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  17. In-Situ Formed Hydroxide Accelerating Water Dissociation Kinetics on Co3N for Hydrogen Production in Alkaline Solution.

    PubMed

    Xu, Zhe; Li, Wenchao; Yan, Yadong; Wang, HongXu; Zhu, Heng; Zhao, Meiming; Yan, Shicheng; Zou, Zhigang

    2018-06-21

    Sluggish water dissociation kinetics on nonprecious metal electrocatalysts limits the development of economical hydrogen production from water-alkali electrolyzers. Here, using Co 3 N electrocatalyst as a prototype, we find that during water splitting in alkaline electrolyte a cobalt-containing hydroxide formed on the surface of Co 3 N, which greatly decreased the activation energy of water dissociation (Volmer step, a main rate-determining step for water splitting in alkaline electrolytes). Combining the cobalt ion poisoning test and theoretical calculations, the efficient hydrogen production on Co 3 N electrocatalysts would benefit from favorable water dissociation on in-situ formed cobalt-containing hydroxide and low hydrogen production barrier on the nitrogen sites of Co 3 N. As a result, the Co 3 N catalyst exhibits a low water-splitting activation energy (26.57 kJ mol -1 ) that approaches the value of platinum electrodes (11.69 kJ mol -1 ). Our findings offer new insight into understanding the catalytic mechanism of nitride electrocatalysts, thus contributing to the development of economical hydrogen production in alkaline electrolytes.

  18. Hydrothermal mineralization along submarine rift zones, Hawaii

    USGS Publications Warehouse

    Hein, J.R.; Gibbs, A.E.; Clague, D.A.; Torresan, M.

    1996-01-01

    Describes mineralization of midplate submarine rift zones and hydrothermal manganese oxide mineralization of midplate volcanic edifices. Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks; both deposit types are composed of todorokite and birnessite. Unlike most other hydrothermal Mn oxide deposits, those from Hawaiian rift zones are enriched in the trace metals Zn, Co, Ba, Mo, Sr, V, and especially Ni. Metals are derived from three sources: mafic and ultramafic rocks leached by circulating hydrothermal fluids, clastic material (in Mn-cemented sandstone), and seawater that mixed with the hydrothermal fluids. Precipitation of Mn oxide below the seafloor is indicated by its occurrence as cement, growth textures that show mineralizing fluids were introduced from below, and pervasive replacement of original matrix of clastic rocks.Hydrothermal Mn oxides were recovered from submarine extensions of two Hawaiian rift zones, along Haleakala and Puna Ridges. These Mn oxides form two types of deposits, metallic stratiform layers in volcaniclastic rocks and cement for clastic rocks. Both deposit types are composed of todorokite and birnessite. This article describes in detail the specific characteristics of these Mn oxides.

  19. Synthesis and growth mechanism of sponge-like nickel using a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Shao, Bin; Yin, Xueguo; Hua, Weidong; Ma, Yilong; Sun, Jianchun; Li, Chunhong; Chen, Dengming; Guo, Donglin; Li, Kejian

    2018-05-01

    Sponge-like nickel composed of micro-chains with a diameter of 1-5 μm was selectively synthesized by the hydrothermal method, using sodium hydroxide (NaOH) as the alkaline reagent, aqueous hydrazine as reducing agent and citric acid as a coordination agent. The time-dependent samples prepared at different NaOH concentrations were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometer (FTIR). The results showed that the agglomerates of nickel citrate hydrazine complex nanoplates were first precipitated and then reduced to prickly nickel micro-chains at a lower NaOH concentration, which played a role in the further formation of sponge-like nickel. Also, the probable growth mechanism of the sponge-like nickel was proposed. The magnetic properties of sponge-like nickel were studied using a vibrating sample magnetometer. The sponge-like nickel exhibited a ferromagnetic behavior with a saturation magnetization value of 43.8 emu g-1 and a coercivity value of 120.7 Oe.

  20. Effects of hydrothermal treatment on the pyrolysis behavior of Chinese fan palm.

    PubMed

    Yao, Zhongliang; Ma, Xiaoqian

    2018-01-01

    The effect of hydrothermal treatment (HTT) on Chinese fan palm pyrolysis was investigated. It indicated that HTT could effectively remove a large portion of alkali/alkaline earth metals and disrupt the chemical structure to a certain extent. HTT delayed the initial decomposition temperature but accelerated the pyrolysis process completely. HTT also increased the relative contents of both sugars and hydrocarbons in pyrolysis. At 210°C, HTT had the most significant promotion effect on the sugars formation with the relative content of 30.58%. While, The relative content of phenols, acids, furans, aldehydes, esters and CO 2 decreased more or less after HTT. With increasing pyrolysis temperature, the relative content of most groups of chemicals except hydrocarbons decreased. Response contours were analyzed to find the optimal reaction conditions for generating acids, phenols, sugars and hydrocarbons, respectively. The results indicated both pyrolysis temperature and HTT temperature had distinct influence on relative contents of products. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Gas discharges from the Kueishantao hydrothermal vents, offshore northeast Taiwan: Implications for drastic variations of magmatic/hydrothermal activities

    NASA Astrophysics Data System (ADS)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Zhang, Ping-Ping; Yu, Ming-Zhen; Chen, Chen-Tung Arthur; Chen, Yun-Jie; Li, Xiaohu; Jin, Aimin; Zhang, Hai-Yan; Duan, Wei; Ye, Ying

    2018-03-01

    The chemical compositions of gas discharges from the Kueishantao (KST) hydrothermal field changed dramatically from 2000 to 2014. In this study, we established a gas mixing model for the KST gases. The N2, Ar, and CO2 contents were mixed from a magmatic endmember with CO2 of about 990 mmol/mol, a hydrothermal and an atmospheric endmember enriched in N2 and Ar. More than 71% KST gas components were mantle-derived/magmatic. The calculated endmember N2/Ar ratio and Ar contents of the hydrothermal endmember (percolated fluid) are about 140 and 5.28-5.52 mmol/mol, respectively. This relatively elevated N2/Ar ratio was probably caused by the thermogenic addition of N2. The log(CH4/CO2) values of the KST gas samples correlate well with the mixing temperature that estimated from the mixing ratio between the percolated fluid and the magmatic endmember. It is indicated that the KST CH4 and CO2 may have attained chemical equilibrium. The temporal variations of the KST gas compositions are determined by the mixing ratio, which is dependent on the magmatic activity underneath the KST field. With the decreasing of magmatic activity since 2005, the proportion of the hydrothermal endmember increased, along with the increasing of N2, Ar, and CH4 contents. This study proposed an effective model to quantitatively assess the sources of gas components discharged from submarine hydrothermal vents. In addition, it is suggested that the mixing between a magmatic and a hydrothermal endmember may play an important role in the concentrations of CO2 and CH4 in hydrothermal gas discharges.

  2. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jilin; Shi Jianxin, E-mail: chemshijx@163.co; Gong Menglian

    2009-08-15

    Nickel ferrite nanospheres were successfully synthesized by a reverse emulsion-assisted hydrothermal method. The reverse emulsion was composed of water, cetyltrimethyl ammonium bromide, polyoxyethylene(10)nonyl phenyl ether, iso-amyl alcohol and hexane. During the hydrothermal process, beta-FeO(OH) and Ni{sub 0.75}Fe{sub 0.25}(CO{sub 3}){sub 0.125}(OH){sub 2}.0.38H{sub 2}O (INCHH) nanorods formed first and then transformed into nickel spinel ferrite nanospheres. The phase transformation mechanism is proposed based on the results of X-ray powder diffraction, transmission electron microscopy and energy-dispersive X-ray spectroscopy, etc. Nickel ferrite may form at the end of the INCHH nanorods or from the solution accompanied by the dissolution of beta-FeO(OH) and INCHH nanorods.more » The X-ray photoelectron spectroscopy analysis shows that a few Fe{sup 3+} ions have been reduced to Fe{sup 2+} ions during the formation of nickel ferrite. The maximum magnetization of the nickel ferrite nanospheres obtained after hydrothermal reaction for 30 h is 55.01 emu/g, which is close to that of bulk NiFe{sub 2}O{sub 4}. - Graphical abstract: Nickel ferrite nanospheres were obtained through a reverse emulsion-assisted hydrothermal process. The phase transformation as a function of reaction time was studied based on the XRD, TEM and EDS analyses.« less

  3. A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate.

    PubMed

    Gu, X N; Zheng, W; Cheng, Y; Zheng, Y F

    2009-09-01

    To reduce the biocorrosion rate by surface modification, Mg-Ca alloy (1.4wt.% Ca content) was soaked in three alkaline solutions (Na(2)HPO(4), Na(2)CO(3) and NaHCO(3)) for 24h, respectively, and subsequently heat treated at 773K for 12h. Scanning electron microscopy and energy-dispersive spectroscopy results revealed that magnesium oxide layers with the thickness of about 13, 9 and 26microm were formed on the surfaces of Mg-Ca alloy after the above different alkaline heat treatments. Atomic force microscopy showed that the surfaces of Mg-Ca alloy samples became rough after three alkaline heat treatments. The in vitro corrosion tests in simulated body fluid indicated that the corrosion rates of Mg-Ca alloy were effectively decreased after alkaline heat treatments, with the following sequence: NaHCO(3) heatedalkaline heat treated Mg-Ca alloy samples induced toxicity to L-929 cells during 7days culture.

  4. Uranium mobility during interaction of rhyolitic obsidian, perlite and felsite with alkaline carbonate solution: T = 120° C, P = 210 kg/cm2

    USGS Publications Warehouse

    Zielinski, Robert A.

    1979-01-01

    Well-characterized samples of rhyolitic obsidian, perlite and felsite from a single lava flow are leached of U by alkaline oxidizing solutions under open-system conditions. Pressure, temperature, flow rate and solution composition are held constant in order to evaluate the relative importance of differences in surface area and crystallinity. Under the experimental conditions U removal from crushed glassy samples proceeds by a mechanism of glass dissolution in which U and silica are dissolved in approximately equal weight fractions. The rate of U removal from crushed glassy samples increases with decreasing average grain size (surface area). Initial rapid loss of a small component (≈ 2.5%) of the total U from crushed felsite. followed by much slower U loss, reflects variable rates of attack of numerous uranium sites. The fractions of U removed during the experiment ranged from 3.2% (felsite) to 27% (perlite). An empirical method for evaluating the relative rate of U loss from contemporaneous volcanic rocks is presented which incorporates leaching results and rock permeability data.

  5. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    PubMed

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Sample Return from Ancient Hydrothermal Springs

    NASA Technical Reports Server (NTRS)

    Allen, Carlton C.; Oehler, Dorothy Z.

    2008-01-01

    Hydrothermal spring deposits on Mars would make excellent candidates for sample return. Molecular phylogeny suggests that that life on Earth may have arisen in hydrothermal settings [1-3], and on Mars, such settings not only would have supplied energy-rich waters in which martian life may have evolved [4-7] but also would have provided warm, liquid water to martian life forms as the climate became colder and drier [8]. Since silica, sulfates, and clays associated with hydrothermal settings are known to preserve geochemical and morphological remains of ancient terrestrial life [9-11], such settings on Mars might similarly preserve evidence of martian life. Finally, because formation of hydrothermal springs includes surface and subsurface processes, martian spring deposits would offer the potential to assess astrobiological potential and hydrological history in a variety of settings, including surface mineralized terraces, associated stream deposits, and subsurface environments where organic remains may have been well protected from oxidation. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data [12-14]. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel, and based on these new data, we have interpreted several features in Vernal Crater, Arabia Terra as ancient hydrothermal springs [15, 16].

  7. First hydrothermal active vent discovered on the Galapagos Microplate

    NASA Astrophysics Data System (ADS)

    Tao, C.; Li, H.; Wu, G.; Su, X.; Zhang, G.; Chinese DY115-21 Leg 3 Scientific Party

    2011-12-01

    The Galapagos Microplate (GM) lies on the western Gaplapagos Spreading Center (GSC), representing one of the classic Ridge-Ridge-Ridge (R-R-R) plate boundaries of the Nazca, Cocos, and Pacific plates. The presence of the 'black smoke' and hydrothermal vent community were firstly confirmed on the GSC. Lots of hydrothermal fields were discovered on the center and eastern GSC, while the western GSC has not been well investigated. During 17th Oct. to 9th Nov. 2009, the 3rd leg of Chinese DY115-21 cruise with R/V Dayangyihao has been launched along 2°N-5°S near equatorial East Pacific Rise (EPR). Two new hydrothermal fields were confirmed. One is named 'Precious Stone Mountain', which is the first hydrothermal field on the GM. The other is found at 101.47°W, 0.84°S EPR. The 'Precious Stone Mountain' hydrothermal field (at 101.49°W, 1.22°N) is located at an off-axial seamount on the southern GM boundary, with a depth from 1,450 to 1,700m. Hydrothermal fluids emitting from the fissures and hydrothermal fauna were captured by deep-tow video. Few mineral clasts of pyrite and chalcopyrite were separated from one sediment sample, but no sulfide chimney was found yet. Hydrothermal fauna such as alive mussels, crabs, shrimps, tubeworms, giant clams, as well as rock samples were collected by TV-Grab. The study of the seafloor classification with Simrad EM120 multi-beam echosounder has been conducted on the 'Precious Stone Mountain' hydrothermal field. The result indicates that seafloor materials around the hydrothermal field can be characterized into three types, such as the fresh lava, hydrothermal sediment, and altered rock.

  8. In vitro assessment of genotoxic effects of electric arc furnace dust on human lymphocytes using the alkaline comet assay.

    PubMed

    Garaj-Vrhovac, Vera; Orescanin, Visnja; Ruk, Damir; Gajski, Goran

    2009-02-15

    In vitro genotoxic effects of leachates of electric arc furnace dust (EAFD) on human peripheral lymphocytes, assessed prior and following the treatment with a strong alkaline solution were investigated using the alkaline comet assay. Prior and following the treatment, lymphocytes were incubated with leachate of EAFD for 6 and 24 hours at 37 degrees C. Negative controls were also included. Mean values of the tail lengths established in the samples treated with the leachate stemming from the original dust for 6 and 24 hours, were 15.70 microm and 16.78 microm, respectively, as compared to 12.33 microm found in the control sample. Slight, but significant increase in the tail length was also found with the dust treated with a strong alkaline solution (13.37 microm and 13.60 microm). In case of high heavy metal concentrations (the extract of the original furnace dust), the incubation period was revealed to be of significance as well. The obtained results lead to the conclusion that alkaline comet assay could be used as a rapid, sensitive and low-cost tool when assessing genotoxicity of various waste materials, such as leachates of the electric arc furnace dust.

  9. Evaluation of a Particulate Filtration System for an Alkaline Paint Stripper at Letterkenny Army Depot

    DTIC Science & Technology

    1991-08-01

    hydroxide 66.0 17.5 1 Mineral seal oil 1.00 0.26 1.00 Fluorochemical surfactant 0.02 0.005 0.02 Sodiun carbonate 1.62 0.43 5.00 Sulfunated oleic acid ...specified rejuvenating additive is currently not added to the solution at LEAD. d Sodium salt of N-hydroxyethylethylenediamine triacetic acid , dihydrate...methylene chloride) and formic acid or I abrasive blasting. Aluminum parts are not stripped in alkaline solutions because these solutions chemically attack

  10. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review.

    PubMed

    Yousefifar, Azadeh; Baroutian, Saeid; Farid, Mohammed M; Gapes, Daniel J; Young, Brent R

    2017-10-15

    The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Hydrothermal Alteration of the Mt Unzen Conduit (Shimabara/Japan)

    NASA Astrophysics Data System (ADS)

    Yilmaz, T. I.; Mayer, K.; Hess, K. U.; Janots, E.; Gilg, H. A.; Dingwell, D. B.

    2016-12-01

    Investigations were carried out on hydrothermally altered coherent dacitic dykes samples from (USDP-4) drill core at Mt Unzen stratovolcano (Shimabara/Japan). XRF, XRD, EMPA, and C-O-isotope analysis led to insights concerning chemistry, mineralogy, and intensity of alteration as well as the origin of carbonate-precipitating fluids. Additionally a textural characterization of the occurring replacement features in the magma conduit zone was performed. The occurrence of the main secondary phases such as chlorite, pyrite, carbonates, and R1 (Reichweite parameter) illite-smectite indicate a weak to moderate propylitic to phyllic hydrothermal alteration. The dacitic samples of the dykes show different hydrothermal alteration features: (i) carbonate pseudomorphs after hornblende as well as core and zonal textures due to replacement of plagioclase by R1 illite-smectite, (ii) colloform banded fracture fillings and fillings in dissolution vugs, and (iii) chlorite and R1 illite-smectite in the groundmass. Carbonates in fractures comprise iron-rich dolomite solid solutions ("ankerite") and calcite. Isotopic values of d13Cvpdb = -4.59 ± 0.6‰ and d18Ovpdb = -21.73 ± 0.5‰ indicate a hydrothermal-magmatic origin for the carbonate formation. The chlorite-carbonate-pyrite index (CCPI) and the Ishikawa alteration index (AI), applied to the investigated samples show significant differences (CCPI=52.7-57.8; AI=36.1-40.6) indicating their different degree of alteration. According to Nakada et al., 2005, the C13 to C16 dykes represent the feeder dyke from the latest eruption (1991-1995) whereas C8 represents an earlier dyke feeder dyke from an older eruption. Weakest conduit alteration, which was obtained in samples C16-1-5 and C13-2-5, correlates with the alteration degree of the pristine dome rocks. Highest CCPI value was determined for sample C14-1-5 and the highest AI value was determined for sample C15-2-6. The degrees of alteration do not indicate highest alteration of the

  12. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev [Latham, NY

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  13. Silicon isotopes fractionation in meteoric chemical weathering and hydrothermal alteration systems of volcanic rocks (Mayotte)

    NASA Astrophysics Data System (ADS)

    Basile-Doelsch, Isabelle; Puyraveau, Romain-Arnaud; Guihou, Abel; Haurine, Frederic; Deschamps, Pierre; rad, Setareh; Nehlig, Pierre

    2017-04-01

    Low temperature chemical weathering fractionates silicon (Si) isotopes while forming secondary silicates. The Si fractionation ranges of high temperature secondary phyllosilicates formed in hydrothermal alteration environments have not been investigated to date. Several parameters, including temperature, reaction rates, pH, ionic concentrations in solution, precipitation/dissolution series or kinetic versus equilibrium regime are not the same in hydrothermal alteration and surface weathering systems and may lead to different fractionation factors. In this work, we analyzed Si isotopes in these two types of alteration conditions in two profiles sampled on the volcanic island of Mayotte. In both profiles, Si-bearing secondary mineral was kaolinite. Both profiles showed 30Si depletion as a function of the degree of alteration but each with a distinct pattern. In the meteoric weathering profile, from the bottom to the top, a gradual decrease of the δ30Si from parent rock (-0.29 ± 0.13 ‰) towards the most weathered product (-2.05 ± 0.13 ‰) was observed. In the hydrothermal alteration profile, in which meteoric weathering was also superimposed at the top of the profile, an abrupt transition of the δ30Si was measured at the interface between parent-rock (-0.21 ± 0.11 ‰) and the altered products, with a minimum value of -3.06 ± 0.16 ‰˙ At the scale of Si-bearing secondary minerals, in the chemical weathering system, a Δ30Sikaol-parentrock of -1.9 ‰ was observed, in agreement with results in the literature. A low temperature kinetic fractionation 30ɛ of -2.29 ‰ was calculated using a simple steady state model. However, an unexpected Δ30Sikaol-parentrock of -2.85 ‰ was measured in the hydrothermal alteration site, pointing to possible mechanisms linked to dissolution/precipitation series and/or to ionic composition of the solution as the main controlling factors of fractionation in hydrothermal conditions. At the scale of the profiles, both δ30Si

  14. Peptide synthesis in early earth hydrothermal systems

    USGS Publications Warehouse

    Lemke, K.H.; Rosenbauer, R.J.; Bird, D.K.

    2009-01-01

    We report here results from experiments and thermodynamic calculations that demonstrate a rapid, temperature-enhanced synthesis of oligopeptides from the condensation of aqueous glycine. Experiments were conducted in custom-made hydrothermal reactors, and organic compounds were characterized with ultraviolet-visible procedures. A comparison of peptide yields at 260??C with those obtained at more moderate temperatures (160??C) gives evidence of a significant (13 kJ ?? mol-1) exergonic shift. In contrast to previous hydrothermal studies, we demonstrate that peptide synthesis is favored in hydrothermal fluids and that rates of peptide hydrolysis are controlled by the stability of the parent amino acid, with a critical dependence on reactor surface composition. From our study, we predict that rapid recycling of product peptides from cool into near-supercritical fluids in mid-ocean ridge hydrothermal systems will enhance peptide chain elongation. It is anticipated that the abundant hydrothermal systems on early Earth could have provided a substantial source of biomolecules required for the origin of life. Astrobiology 9, 141-146. ?? 2009 Mary Ann Liebert, Inc. 2009.

  15. Environmental Characteristics of Carbonatite and Alkaline Intrusion-related Rare Earth Element (REE) Deposits

    NASA Astrophysics Data System (ADS)

    Seal, R. R., II; Piatak, N. M.

    2017-12-01

    Carbonatites and alkaline intrusions are important sources of REEs. Environmental risks related to these deposit types have been assessed through literature review and evaluation of the geochemical properties of representative samples of mill tailings and their leachates. The main ore mineral in carbonatite deposits is bastnasite [(Ce,La)(CO3)F], which is found with dolomite and calcite ( 65 %), barite (20 - 25 %), plus a number of minor accessory minerals including sulfides such as galena and pyrite. Generally, alkaline intrusion-related REE deposits either occur in layered complexes or with dikes and veins cutting alkaline intrusions. Such intrusions have a more diverse group of REE ore minerals that include fluorcarbonates, oxides, silicates, and phosphates. Ore also can include minor calcite and iron (Fe), lead (Pb), and zinc (Zn) sulfides. The acid-generating potential of both deposit types is low because of a predominance of carbonate minerals in the carbonatite deposits, the presence of feldspars and minor calcite in alkaline intrusion-related deposits, and to only minor to trace occurrence of potentially acid-generating sulfide minerals. Both deposit types, however, are produced by igneous and hydrothermal processes that enrich high-field strength, incompatible elements, which typically are excluded from common rock-forming minerals. Elements such as yttrium (Y), niobium Nb), zirconium (Zr), hafnium (Hf), tungsten (W), titanium (Ti), tantalum (Ta), scandium (Sc), thorium (Th), and uranium (U) can be characteristic of these deposits and may be of environmental concern. Most of these elements, including the REEs, but with the exception of U, have low solubilities in water at the near-neutral pH values expected around these deposits. Mill tailings from carbonatite deposits can exceed residential soil and sediment criteria for Pb, and leachates from mill tailings can exceed drinking water guidelines for Pb. The greatest environmental challenges, however, are

  16. The characteristics of hydrothermal plumes observed at the Zouyu-1 and Zouyu-2 hydrothermal fields in the Southern Mid-Atlantic Ridges

    NASA Astrophysics Data System (ADS)

    Chen, S.; Tao, C.; Baker, E. T.; Li, H.

    2016-12-01

    The Zouyu-1 (14.41°W, 13.25°S) and Zouyu-2 (14.41°W, 13.28°S) hydrothermal fields are located on the neovolcanic Zouyu ridge on axis of a symmetrical spreading ridge, which is on the eastern side of the S14 segment on the southern Mid-Atlantic ridge (the ridge segments were numbered by Chunhui Tao (2016) ). The two hydrothermal fields were found during Chinese 22nd cruise in 2011 and 21st cruise in 2009 on board R/V Dayang YiHao, respectively. We collected data recorded by light-scattering and temperature sensors (Miniature Autonomous Plume Recorder, short for MAPR), and H2S and ORP sensors (Electro-chemical sensor, short for ECS) in multiple years (2009, 2011), yielding the following results: (1) The turbidity anomalies were widely distributed in the Zouyu-1 and Zouyu-2 hydrothermal fields. And the highest turbidity anomalies were concentrated around Zouyu-2 hydrothermal field, with a maximum value of 0.094 △NTU south of Zouyu-2 vent. The horizontal scale of hydrothermal plume maximum was 2.5 km. The plume maximum is offset 500 m east of the Zouyu-2 vent location. (2) ORP anomalies were detected near Zouyu-2 in 2011. Sharp and substantial ORP ( 80 mV) and H2S (2.5 nmol/L) anomalies occurred near 14.412°W,13.28°S for 300 m along the track line 22II-L07. (3)Temperature along the track line 21IV-L04 in the Zouyu-2 field increased by as much as 0.03 ° even as the depth of MAPR was largely unchanged. With the evidence of concomitant fluctuations in turbidity, it showed the temperature increases were hydrothermally induced. Keywords: hydrothermal plume, Zouyu-1 hydrothermal field, Zouyu-2 hydrothermal field

  17. Tracing the history of submarine hydrothermal inputs and the significance of hydrothermal hafnium for the seawater budget - A combined Pb-Hf-Nd isotope approach

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2004-01-01

    Secular variations in the Pb isotopic composition of a mixed hydrogenous-hydrothermal ferromanganese crust from the Bauer Basin in the eastern Equatorial Pacific provide clear evidence for changes in hydrothermal contributions during the past 7 Myr. The nearby Galapagos Rise spreading center provided a strong hydrothermal flux prior to 6.5 Ma. After 6.5 Ma, the Pb became stepwise more radiogenic and more similar to Equatorial Pacific seawater, reflecting the westward shift of spreading to the presently active East Pacific Rise (EPR). A second, previously unrecognized enhanced hydrothermal period occurred between 4.4 and 2.9 Ma, which reflects either off-axis hydrothermal activity in the Bauer Basin or a late-stage pulse of hydrothermal Pb from the then active, but waning Galapagos Rise spreading center. Hafnium isotope time-series of the same mixed hydrogenous-hydrothermal crust show invariant values over the past 7 Myr. Hafnium isotope ratios, as well as Nd isotope ratios obtained for this crust, are identical to that of hydrogenous Equatorial Pacific deep water crusts and clearly indicate that hydrothermal Hf, similar to Nd, does not travel far from submarine vents. Therefore, we suggest that hydrothermal Hf fluxes do not contribute significantly to the global marine Hf budget. ?? 2004 Elsevier B.V. All rights reserved.

  18. Enhanced decomposition of 1,4-dioxane in water by ozonation under alkaline condition.

    PubMed

    Tian, Gui-Peng; Wu, Qian-Yuan; Li, Ang; Wang, Wen-Long; Hu, Hong-Ying

    2014-01-01

    1,4-Dioxane is a probable human carcinogenic and refractory substance that is widely detected in aquatic environments. Traditional wastewater treatment processes, including activated sludge, cannot remove 1,4-dioxane. Removing 1,4-dioxane with a reaction kinetic constant of 0.32 L/(mol·s) by using ozone, a strong oxidant, is difficult. However, under alkaline environment, ozone generates a hydroxyl radical (•OH) that exhibits strong oxidative potential. Thus, the ozonation of 1,4-dioxane in water under different pH conditions was investigated in this study. In neutral solution, with an inlet ozone feed rate of 0.19 mmol/(L·min), the removal efficiency of 1,4-dioxane was 7.6% at 0.5 h, whereas that in alkaline solution was higher (16.3-94.5%) within a pH range of 9-12. However, the removal efficiency of dissolved organic carbon was considerably lower than that of 1,4-dioxane. This result indicates that several persistent intermediates were generated during 1,4-dioxane ozonation. The pseudo first-order reaction further depicted the reaction of 1,4-dioxane. The obvious kinetic constants (kobs) at pH 9, 10, 11 and 12 were 0.94, 2.41, 24.88 and 2610 L/(mol·s), respectively. Scavenger experiments on radical species indicated that •OH played a key role in removing 1,4-dioxane during ozonation under alkaline condition.

  19. Two-Dimensional MoS2 Confined Co(OH)2 Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes.

    PubMed

    Luo, Yuting; Li, Xu; Cai, Xingke; Zou, Xiaolong; Kang, Feiyu; Cheng, Hui-Ming; Liu, Bilu

    2018-05-22

    The development of abundant and cheap electrocatalysts for the hydrogen evolution reaction (HER) has attracted increasing attention over recent years. However, to achieve low-cost HER electrocatalysis, especially in alkaline media, is still a big challenge due to the sluggish water dissociation kinetics as well as the poor long-term stability of catalysts. In this paper we report the design and synthesis of a two-dimensional (2D) MoS 2 confined Co(OH) 2 nanoparticle electrocatalyst, which accelerates water dissociation and exhibits good durability in alkaline solutions, leading to significant improvement in HER performance. A two-step method was used to synthesize the electrocatalyst, starting with the lithium intercalation of exfoliated MoS 2 nanosheets followed by Co 2+ exchange in alkaline media to form MoS 2 intercalated with Co(OH) 2 nanoparticles (denoted Co-Ex-MoS 2 ), which was fully characterized by spectroscopic studies. Electrochemical tests indicated that the electrocatalyst exhibits superior HER activity and excellent stability, with an onset overpotential and Tafel slope as low as 15 mV and 53 mV dec -1 , respectively, which are among the best values reported so far for the Pt-free HER in alkaline media. Furthermore, density functional theory calculations show that the cojoint roles of Co(OH) 2 nanoparticles and MoS 2 nanosheets result in the excellent activity of the Co-Ex-MoS 2 electrocatalyst, and the good stability is attributed to the confinement of the Co(OH) 2 nanoparticles. This work provides an imporant strategy for designing HER electrocatalysts in alkaline solutions, and can, in principle, be expanded to other materials besides the Co(OH) 2 and MoS 2 used here.

  20. Field guide to hydrothermal alteration in the White River altered area and in the Osceola Mudflow, Washington

    USGS Publications Warehouse

    John, David A.; Rytuba, James J.; Ashley, Roger P.; Blakely, Richard J.; Vallance, James W.; Newport, Grant R.; Heinemeyer, Gary R.

    2003-01-01

    The Cenozoic Cascades arcs of southwestern Washington are the product of long-lived, but discontinuous, magmatism beginning in the Eocene and continuing to the present (for example, Christiansen and Yeats, 1992). This magmatism is the result of subduction of oceanic crust beneath the North American continent. The magmatic rocks are divided into two subparallel, north-trending continental-margin arcs, the Eocene to Pliocene Western Cascades, and the Quaternary High Cascades, which overlies, and is east of, the Western Cascades. Both arcs are calc-alkaline and are characterized by voluminous mafic lava flows (mostly basalt to basaltic andesite compositions) and scattered large stratovolcanoes of mafic andesite to dacite compositions. Silicic volcanism is relatively uncommon. Quartz diorite to granite plutons are exposed in more deeply eroded parts of the Western Cascades Arc (for example, Mount Rainier area and just north of Mt. St. Helens). Hydrothermal alteration is widespread in both Tertiary and Quaternary igneous rocks of the Cascades arcs. Most alteration in the Tertiary Western Cascades Arc resulted from hydrothermal systems associated with small plutons, some of which formed porphyry copper and related deposits, including copper-rich breccia pipes, polymetallic veins, and epithermal gold-silver deposits. Hydrothermal alteration also is present on many Quaternary stratovolcanoes of the High Cascades Arc. On some High Cascades volcanoes, this alteration resulted in severely weakened volcanic edifices that were susceptible to failure and catastrophic landslides. Most notable is the sector collapse of the northeast side of Mount Rainier that occurred about 5,600 yr. B.P. This collapse resulted in formation of the clay-rich Osceola Mudflow that traveled 120 km down valley from Mount Rainier to Puget Sound covering more than 200 km2. This field trip examines several styles and features of hydrothermal alteration related to Cenozoic magmatism in the Cascades arcs

  1. Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties.

    PubMed

    Wang, Liang; Wang, Yanli; Xu, Tao; Liao, Haobo; Yao, Chenjie; Liu, Yuan; Li, Zhen; Chen, Zhiwen; Pan, Dengyu; Sun, Litao; Wu, Minghong

    2014-10-28

    Graphene quantum dots (GQDs) have various alluring properties and potential applications, but their large-scale applications are limited by current synthetic methods that commonly produce GQDs in small amounts. Moreover, GQDs usually exhibit polycrystalline or highly defective structures and thus poor optical properties. Here we report the gram-scale synthesis of single-crystalline GQDs by a facile molecular fusion route under mild and green hydrothermal conditions. The synthesis involves the nitration of pyrene followed by hydrothermal treatment in alkaline aqueous solutions, where alkaline species play a crucial role in tuning their size, functionalization and optical properties. The single-crystalline GQDs are bestowed with excellent optical properties such as bright excitonic fluorescence, strong excitonic absorption bands extending to the visible region, large molar extinction coefficients and long-term photostability. These high-quality GQDs can find a large array of novel applications in bioimaging, biosensing, light emitting diodes, solar cells, hydrogen production, fuel cells and supercapacitors.

  2. Surfactant-enhanced alkaline flooding: Buffering at intermediate alkaline pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, J.; Wasan, D.T.

    1993-11-01

    The alkaline flooding process involves injecting alkaline agents into the reservoir to produce more oil than is produced through conventional waterflooding. The interaction of the alkali in the flood water with the naturally occurring acids in the reservoir oil results in in-situ formation of soaps, which are partially responsible for lowering IFT and improving oil recovery. The extent to which IFT is lowered depends on the specific oil and injection water properties. Numerous investigators have attempted to clarify the relationship between system chemical composition and IFT. An experimental investigation of buffered alkaline flooding system chemistry was undertaken to determine themore » influence of various species present on interfacial tension (IFT) as a function of pH and ionic strength. IFT was found to go through an ultralow minimum in certain pH ranges. This synergism results from simultaneous adsorption of un-ionized and ionized acid species on the interface.« less

  3. Comparison of enteral and parenteral methods of urine alkalinization in patients receiving high-dose methotrexate.

    PubMed

    Rouch, Jamie A; Burton, Bradley; Dabb, Alix; Brown, Vicky; Seung, Amy H; Kinsman, Katharine; Holdhoff, Matthias

    2017-01-01

    Purpose Hyperhydration and urinary alkalinization is implemented with all high-dose (HD)-methotrexate infusions to promote excretion and prevent precipitation of methotrexate in the renal tubules. Our institution utilized enteral alkalinizing agents (sodium bicarbonate tablets and sodium citrate/citric acid solution) to alkalinize the urine of patients receiving HD-methotrexate during a parenteral sodium bicarbonate and sodium acetate shortage. The purpose of this study is to establish the safety and efficacy of the enteral route for urine alkalinization. Methods A single-center, retrospective, cohort study was conducted comparing cycles of HD-methotrexate using enteral alkalinizing agents to parenteral sodium bicarbonate. The primary objective was to compare the time, in hours, from administration of first inpatient administered dose of alkalinizing agent to time of achieving goal urine pH. Secondary objectives evaluated total dose of sodium bicarbonate required to achieve goal urine pH, time from start of urine alkalinizing agent until time of achieving methotrexate level safe for discharge, and toxicities associated with methotrexate and the alkalinizing agents. Results A total of 118 patients were included in this study, equally divided into two cohorts based on parenteral versus enteral routes of administration. No statistical difference was determined between the two cohorts regarding time to goal urine pH (6.5 h versus 7.9 h, P = 0.051) or regarding time to methotrexate level deemed safe for discharge (63.5 h versus 62.5 h, p = 0.835). There were no significant differences in methotrexate-induced toxicities. Conclusion Our study found enteral routes of urine alkalinization to be a viable alternative to the traditional parenteral sodium bicarbonate, especially during parenteral sodium bicarbonate and acetate shortages.

  4. Direct measurement of CO2 solubility and pH in NaCl hydrothermal solutions by combining in-situ potentiometry and Raman spectroscopy up to 280 °C and 150 bar

    NASA Astrophysics Data System (ADS)

    Truche, Laurent; Bazarkina, Elena F.; Berger, Gilles; Caumon, Marie-Camille; Bessaque, Gilles; Dubessy, Jean

    2016-03-01

    The in-situ monitoring of aqueous solution chemistry at elevated temperatures and pressures is a major challenge in geochemistry. Here, we combined for the first time in-situ Raman spectroscopy for concentration measurements and potentiometry for pH measurement in a single hydrothermal cell equipped with sampling systems and operating under controlled conditions of temperature and pressure. Dissolved CO2 concentration and pH were measured at temperatures up to 280 °C and pressures up to 150 bar in the H2O-CO2 and H2O-CO2-NaCl systems. A Pitzer specific-ion-interaction aqueous model was developed and confirmed the accuracy and consistency of the measurements, at least up to 250 °C. The revised Pitzer parameters for the H2O-CO2-NaCl system were formatted for the Phreeqc geochemical software. Significant changes with respect to the Pitzer.dat database currently associated with Phreeqc were observed. The new model parameters are now available for further applications. The Raman and pH probes tested here may also be applied to field monitoring of hydrothermal springs, geothermal wells, and oil and gas boreholes.

  5. Adverse effects of mineral-alkali reactions in alkaline flooding: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, S.D.

    1988-01-01

    Two slim-tube experiments and supporting bottle tests were performed for a study of sandstone-alkali reactions. The two samples of reservoir sandstone used are from oilfields in the People's Republic of China. The first sandstone contains 16 percent clay and is from the Gu-Dao oilfield. The second sandstone contains 12 percent clay and is from the Liao-He oilfield. These two sandstones were allowed to react with alkaline solutions in 6-month bottle tests. Each sandstone consumed the most alkali from 0.5 N NaOH solution, an intermediate amount of alkali from 0.5 N Na/sub 2/SiO/sub 3/ solution, and the least amount of alkalimore » from 0.5 N Na/sub 2/CO/sub 3/ solution. 59 refs., 14 figs., 20 tabs.« less

  6. Hydrothermal synthesis of ammonium illite

    USGS Publications Warehouse

    Šucha, Vladimír; Elsass, F.; Eberl, D.D.; Kuchta, L'.; Madejova, J.; Gates, W.P.; Komadel, P.

    1998-01-01

    Synthetic gel and glass of illitic composition, natural kaolinite, and mixed-layer illite-smectite were used as starting materials for hydrothermal synthesis of ammonium illite. Ammonium illite was prepared from synthetic gel by hydrothermal treatment at 300??C. The onset of crystallization began within 3 h, and well-crystallized ammonium illite appeared at 24 h. Increasing reaction time (up to four weeks) led to many illite layers per crystal. In the presence of equivalent proportions of potassium and ammonium, the gel was transformed to illite with equimolar contents of K and NH4. In contrast, synthesis using glass under the same conditions resulted in a mixture of mixed-layer ammonium illite-smectite with large expandability and discrete illite. Hydrothermal treatments of the fine fractions of natural kaolinite and illite-smectite produced ammonium illite from kaolinite but the illite-smectite remained unchanged.

  7. CO2 adsorption on modified carbon coated monolith: effect of surface modification by using alkaline solutions

    NASA Astrophysics Data System (ADS)

    Hosseini, Soraya; Marahel, Ehsan; Bayesti, Iman; Abbasi, Ali; Chuah Abdullah, L.; Choong, Thomas S. Y.

    2015-01-01

    A monolithic column was used to study the feasibility of modified carbon-coated monolith for recovery of CO2 from gaseous mixtures (He/CO2) in a variety of operating conditions. Carbon-coated monolith was prepared by dip-coating method and modified by two alkaline solutions, i.e. NH3 and KOH. The surface properties of the carbon-coated monolith were altered by functional groups via KOH and NH3 treatments. The comparative study of CO2 uptake by two different adsorbents, i.e. unmodified and modified carbon-coated monolith, demonstrated that the applied modification process had improved CO2 adsorption. The presence of nitrogen- and oxygen-containing functional groups on the surface of the carbon led to an improved level of microporosity on the synthesized carbon-coated monolith. The physical parameters such as higher surface area, lower pore diameter, and larger micropore volume of modified monoliths indicated direct influence on the adsorbed amount of CO2. In the present study, the Deactivation Model is applied to analyze the breakthrough curves. The adsorption capacity increased with an increase in pressure and concentration, while a reduction of CO2 adsorption capacity was occurred with increase in temperature. Ammonia (NH3) and potassium hydroxide (KOH)-modified carbon-coated monolith showed an increase of approximately 12 and 27% in CO2 adsorption, respectively, as compared to unmodified carbon-coated monolith.

  8. Biofilm function and variability in a hydrothermal ecosystem: insights from environmental genomes

    NASA Astrophysics Data System (ADS)

    Meyer-Dombard, D. R.; Raymond, J.; Shock, E. L.

    2007-12-01

    The ability to adapt to variable environmental conditions is key to survival for all organisms, but may be especially crucial to microorganisms in extreme environments such as hydrothermal systems. Streamer biofilm communities (SBCs) made up of thermophilic chemotrophic microorganisms are common in alkaline-chloride geothermal environments worldwide, but the in situ physiochemical growth parameters and requirements of SBCs are largely unknown [1]. Hot springs in Yellowstone National Park's alkaline geyser basins support SBC growth. However, despite the relative geochemical homogeneity of source pools and widespread ecosystem suitability in these regions (as indicated by energetic profiling [2]), SBCs are not ubiquitous in these ecosystems. The ability of hydrothermal systems to support the growth of SBCs, the relationship between these geochemically driven environments and the microbes that live there, and the function of individuals in these communities are aspects that are adressed here by applying environmental genomics. Analysis of 16S rRNA and total membrane lipid extracts have revealed that community composition of SBCs in "Bison Pool" varies as a function of changing environmental conditions along the outflow channel. In addition, a significant crenarchaeal component was discovered in the "Bison Pool" SBCs. In general, the SBC bacterial diversity triples while the archaeal component varies little (from 3 to 2 genera) in a 5-10°C gradient with distance from the source. While these SBCs are low in overall diversity, the majority of the taxa identified represent uncultured groups of Bacteria and Archaea. As a result, the community function of these taxa and their role in the formation of the biofilms is unknown. However, recent genomic analysis from environmental DNA affords insight into the roles of specific organisms within SBCs at "Bison Pool," and integration of these data with an extensive corresponding geochemical dataset may indicate shifting community

  9. Hydrothermal systems as environments for the emergence of life

    NASA Technical Reports Server (NTRS)

    Shock, E. L.

    1996-01-01

    Analysis of the chemical disequilibrium provided by the mixing of hydrothermal fluids and seawater in present-day systems indicates that organic synthesis from CO2 or carbonic acid is thermodynamically favoured in the conditions in which hyperthermophilic microorganisms are known to live. These organisms lower the Gibbs free energy of the chemical mixture by synthesizing many of the components of their cells. Primary productivity is enormous in hydrothermal systems because it depends only on catalysis of thermodynamically favourable, exergonic reactions. It follows that hydrothermal systems may be the most favourable environments for life on Earth. This fact makes hydrothermal systems logical candidates for the location of the emergence of life, a speculation that is supported by genetic evidence that modern hyperthermophilic organisms are closer to a common ancestor than any other forms of life. The presence of hydrothermal systems on the early Earth would correspond to the presence of liquid water. Evidence that hydrothermal systems existed early in the history of Mars raises the possibility that life may have emerged on Mars as well. Redox reactions between water and rock establish the potential for organic synthesis in and around hydrothermal systems. Therefore, the single most important parameter for modelling the geochemical emergence of life on the early Earth or Mars is the composition of the rock which hosts the hydrothermal system.

  10. Alkaline thermal sludge hydrolysis.

    PubMed

    Neyens, E; Baeyens, J; Creemers, C

    2003-02-28

    The waste activated sludge (WAS) treatment of wastewater produces excess sludge which needs further treatment prior to disposal or incineration. A reduction in the amount of excess sludge produced, and the increased dewaterability of the sludge are, therefore, subject of renewed attention and research. A lot of research covers the nature of the sludge solids and associated water. An improved dewaterability requires the disruption of the sludge cell structure. Previous investigations are reviewed in the paper. Thermal hydrolysis is recognized as having the best potential to meet the objectives and acid thermal hydrolysis is most frequently used, despite its serious drawbacks (corrosion, required post-neutralization, solubilization of heavy metals and phosphates, etc.). Alkaline thermal hydrolysis has been studied to a lesser extent, and is the subject of the detailed laboratory-scale research reported in this paper. After assessing the effect of monovalent/divalent cations (respectively, K(+)/Na(+) and Ca(2+)/Mg(2+)) on the sludge dewaterability, only the use of Ca(2+) appears to offer the best solution. The lesser effects of K(+), Na(+) and Mg(2+) confirm previous experimental findings. As a result of the experimental investigations, it can be concluded that alkaline thermal hydrolysis using Ca(OH)(2) is efficient in reducing the residual sludge amounts and in improving the dewaterability. The objectives are fully met at a temperature of 100 degrees C; at a pH approximately 10 and for a 60-min reaction time, where all pathogens are moreover killed. Under these optimum conditions, the rate of mechanical dewatering increases (the capillary suction time (CST) value is decreased from approximately 34s for the initial untreated sample to approximately 22s for the hydrolyzed sludge sample) and the amount of DS to be dewatered is reduced to approximately 60% of the initial untreated amount. The DS-content of the dewatered cake will be increased from 28 (untreated) to 46

  11. Separating nano graphene oxide from the residual strong-acid filtrate of the modified Hummers method with alkaline solution

    NASA Astrophysics Data System (ADS)

    Hu, Xuebing; Yu, Yun; Wang, Yongqing; Zhou, Jianer; Song, Lixin

    2015-02-01

    In the modified Hummers method for preparing graphene oxide, the yellow slurry can be obtained. After filtering through a quantitative filter paper, the strong-acid filtrate containing the unprecipitated nano graphene oxide was gained. The corresponding filtrate was added gradually with an alkaline (NaOH or KOH) solution at room temperature. The unprecipitated nano graphene oxide could undergo fast aggregation when the pH value of the filtrate was about 1.7 and formed the stable floccules. X-ray diffraction analysis shows the dominant peak of the floccules is about 11°, which accords to the peak of graphene oxide. Spectra of X-ray photoelectron spectroscopy confirm the presence in the floccules of an abundance of oxygen functional groups and the purified graphene oxide floccules can be obtained. Atomic force microscopy measurement shows the graphene oxide floccules consists of sheet-like objects, mostly containing only a few layers (about 5 layers). Zeta potential analysis demonstrates the surface charge of the graphene oxide is pH-sensitive and its isoelectric point is ∼1.7. The flocculation mechanism of graphene oxide ascribes to the acid-base interaction with the surface functional groups of the carbon layers.

  12. Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization.

    PubMed

    Fang, Wei; Zhang, Panyue; Zhang, Guangming; Jin, Shuguang; Li, Dongyi; Zhang, Meixia; Xu, Xiangzhe

    2014-09-01

    To improve anaerobic digestion efficiency, combination pretreatment of alkaline and high pressure homogenization was applied to pretreat sewage sludge. Effect of alkaline dosage on anaerobic sludge digestion was investigated in detail. SCOD of sludge supernatant significantly increased with the alkaline dosage increase after the combined pretreatment because of sludge disintegration. Organics were significantly degraded after the anaerobic digestion, and the maximal SCOD, TCOD and VS removal was 73.5%, 61.3% and 43.5%, respectively. Cumulative biogas production, methane content in biogas and biogas production rate obviously increased with the alkaline dosage increase. Considering both the biogas production and alkaline dosage, the optimal alkaline dosage was selected as 0.04 mol/L. Relationships between biogas production and sludge disintegration showed that the accumulative biogas was mainly enhanced by the sludge disintegration. The methane yield linearly increased with the DDCOD increase as Methane yield (ml/gVS)=4.66 DDCOD-9.69. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. PH Tester Gauge Repeatability and Reproducibility Study for WO3 Nanostructure Hydrothermal Growth Process

    NASA Astrophysics Data System (ADS)

    Abd Rashid, Amirul; Hayati Saad, Nor; Bien Chia Sheng, Daniel; Yee, Lee Wai

    2014-06-01

    PH value is one of the important variables for tungsten trioxide (WO3) nanostructure hydrothermal synthesis process. The morphology of the synthesized nanostructure can be properly controlled by measuring and controlling the pH value of the solution used in this facile synthesis route. Therefore, it is very crucial to ensure the gauge used for pH measurement is reliable in order to achieve the expected result. In this study, gauge repeatability and reproducibility (GR&R) method was used to assess the repeatability and reproducibility of the pH tester. Based on ANOVA method, the design of experimental metrics as well as the result of the experiment was analyzed using Minitab software. It was found that the initial GR&R value for the tester was at 17.55 % which considered as acceptable. To further improve the GR&R level, a new pH measuring procedure was introduced. With the new procedure, the GR&R value was able to be reduced to 2.05%, which means the tester is statistically very ideal to measure the pH of the solution prepared for WO3 hydrothermal synthesis process.

  14. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  15. Pediatric reference intervals for alkaline phosphatase.

    PubMed

    Zierk, Jakob; Arzideh, Farhad; Haeckel, Rainer; Cario, Holger; Frühwald, Michael C; Groß, Hans-Jürgen; Gscheidmeier, Thomas; Hoffmann, Reinhard; Krebs, Alexander; Lichtinghagen, Ralf; Neumann, Michael; Ruf, Hans-Georg; Steigerwald, Udo; Streichert, Thomas; Rascher, Wolfgang; Metzler, Markus; Rauh, Manfred

    2017-01-01

    Interpretation of alkaline phosphatase activity in children is challenging due to extensive changes with growth and puberty leading to distinct sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics and seem reasonable for an analyte as closely linked to growth as alkaline phosphatase. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, resulting in limitations when clinical decisions are based on alkaline phosphatase activity. We applied an indirect method to generate percentile charts for alkaline phosphatase activity using clinical laboratory data collected during the clinical care of patients. A total of 361,405 samples from 124,440 patients from six German tertiary care centers and one German laboratory service provider measured between January 2004 and June 2015 were analyzed. Measurement of alkaline phosphatase activity was performed on Roche Cobas analyzers using the IFCC's photometric method. We created percentile charts for alkaline phosphatase activity in girls and boys from birth to 18 years which can be used as reference intervals. Additionally, data tables of age- and sex-specific percentile values allow the incorporation of these results into laboratory information systems. The percentile charts provided enable the appropriate differential diagnosis of changes in alkaline phosphatase activity due to disease and changes due to physiological development. After local validation, integration of the provided percentile charts into result reporting facilitates precise assessment of alkaline phosphatase dynamics in pediatrics.

  16. Calibrated Hydrothermal Parameters, Barrow, Alaska, 2013

    DOE Data Explorer

    Atchley, Adam; Painter, Scott; Harp, Dylan; Coon, Ethan; Wilson, Cathy; Liljedahl, Anna; Romanovsky, Vladimir

    2015-01-29

    A model-observation-experiment process (ModEx) is used to generate three 1D models of characteristic micro-topographical land-formations, which are capable of simulating present active thaw layer (ALT) from current climate conditions. Each column was used in a coupled calibration to identify moss, peat and mineral soil hydrothermal properties to be used in up-scaled simulations. Observational soil temperature data from a tundra site located near Barrow, AK (Area C) is used to calibrate thermal properties of moss, peat, and sandy loam soil to be used in the multiphysics Advanced Terrestrial Simulator (ATS) models. Simulation results are a list of calibrated hydrothermal parameters for moss, peat, and mineral soil hydrothermal parameters.

  17. Selection of hydrothermal pre-treatment conditions of waste sludge destruction using multicriteria decision-making.

    PubMed

    Al-Shiekh Khalil, Wael; Shanableh, Abdullah; Rigby, Portia; Kokot, Serge

    2005-04-01

    The effectiveness of hydrothermal treatment for the destruction of the organic content of sludge waste was investigated. The sludge sampled in this study contained approximately 2% solids. The experimental program consisted of hydrothermal treatment experiments conducted in a batch reactor at temperatures between 100 and 250 degrees C, with the addition of an oxidant (hydrogen peroxide) in the range of 0-150% with reference to TCOD, and reaction times of up to 60 min. The results suggested that the availability of oxidant, reaction temperature and reaction time were the determining factors for COD removal. A significant fraction of the COD remaining after treatment consisted of the dissolved COD. The results confirmed that hydrothermal treatment proceeds through hydrolysis resulting in the production of dissolved organic products followed by COD removal through oxidation. Two MCDM chemometrics methods, PROMETHEE and GAIA, were applied to process the large data matrix so as to facilitate the selection of the most suitable hydrothermal conditions for sludge destruction. Two possible scenarios were produced from this analysis-one depended on the use of high temperatures and no oxidant, while the second offered a choice of compromise solutions at lower temperatures but with the use of at least some oxidant. Thus, for the final choice of operating conditions, the decision maker needs local knowledge of the costs and available infrastructure. In principle, such information could be added as further criteria to the data matrix and new rankings obtained.

  18. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  19. High-Efficiency Artificial Photosynthesis Using a Novel Alkaline Membrane Cell

    NASA Technical Reports Server (NTRS)

    Narayan, Sri; Haines, Brennan; Blosiu, Julian; Marzwell, Neville

    2009-01-01

    A new cell designed to mimic the photosynthetic processes of plants to convert carbon dioxide into carbonaceous products and oxygen at high efficiency, has an improved configuration using a polymer membrane electrolyte and an alkaline medium. This increases efficiency of the artificial photosynthetic process, achieves high conversion rates, permits the use of inexpensive catalysts, and widens the range of products generated by this type of process. The alkaline membrane electrolyte allows for the continuous generation of sodium formate without the need for any additional separation system. The electrolyte type, pH, electrocatalyst type, and cell voltage were found to have a strong effect on the efficiency of conversion of carbon dioxide to formate. Indium electrodes were found to have higher conversion efficiency compared to lead. Bicarbonate electrolyte offers higher conversion efficiency and higher rates than water solutions saturated with carbon dioxide. pH values between 8 and 9 lead to the maximum values of efficiency. The operating cell voltage of 2.5 V, or higher, ensures conversion of the carbon dioxide to formate, although the hydrogen evolution reaction begins to compete strongly with the formate production reaction at higher cell voltages. Formate is produced at indium and lead electrodes at a conversion efficiency of 48 mg of CO2/kilojoule of energy input. This efficiency is about eight times that of natural photosynthesis in green plants. The electrochemical method of artificial photosynthesis is a promising approach for the conversion, separation and sequestration of carbon dioxide for confined environments as in space habitats, and also for carbon dioxide management in the terrestrial context. The heart of the reactor is a membrane cell fabricated from an alkaline polymer electrolyte membrane and catalyst- coated electrodes. This cell is assembled and held in compression in gold-plated hardware. The cathode side of the cell is supplied with carbon

  20. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    DOEpatents

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  1. Stainless steel anodes for alkaline water electrolysis and methods of making

    DOEpatents

    Soloveichik, Grigorii Lev

    2014-01-21

    The corrosion resistance of stainless steel anodes for use in alkaline water electrolysis was increased by immersion of the stainless steel anode into a caustic solution prior to electrolysis. Also disclosed herein are electrolyzers employing the so-treated stainless steel anodes. The pre-treatment process provides a stainless steel anode that has a higher corrosion resistance than an untreated stainless steel anode of the same composition.

  2. Anhydrite precipitation in seafloor hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  3. LEACHING OF URANIUM ORES USING ALKALINE CARBONATES AND BICARBONATES AT ATMOSPHERIC PRESSURE

    DOEpatents

    Thunaes, A.; Brown, E.A.; Rabbits, A.T.; Simard, R.; Herbst, H.J.

    1961-07-18

    A method of leaching uranium ores containing sulfides is described. The method consists of adding a leach solution containing alkaline carbonate and alkaline bicarbonate to the ore to form a slurry, passing the slurry through a series of agitators, passing an oxygen containing gas through the slurry in the last agitator in the series, passing the same gas enriched with carbon dioxide formed by the decomposition of bicarbonates in the slurry through the penultimate agitator and in the same manner passing the same gas increasingly enriched with carbon dioxide through the other agitators in the series. The conditions of agitation is such that the extraction of the uranium content will be substantially complete before the slurry reaches the last agitator.

  4. Concerns of Hydrothermal Degradation in CAD/CAM Zirconia

    PubMed Central

    Kim, J.-W.; Covel, N.S.; Guess, P.C.; Rekow, E.D.; Zhang, Y.

    2010-01-01

    Zirconia-based restorations are widely used in prosthetic dentistry; however, their susceptibility to hydrothermal degradation remains elusive. We hypothesized that CAD/CAM machining and subsequent surface treatments, i.e., grinding and/or grit-blasting, have marked effects on the hydrothermal degradation behavior of Y-TZP. CAD/CAM-machined Y-TZP plates (0.5 mm thick), both with and without subsequent grinding with various grit sizes or grit-blasting with airborne alumina particles, were subjected to accelerated aging tests in a steam autoclave. Results showed that the CAD/CAM-machined surfaces initially exhibited superior hydrothermal degradation resistance, but deteriorated at a faster rate upon prolonged autoclave treatment compared with ground and grit-blasted surfaces. The accelerated hydrothermal degradation of CAD/CAM surfaces is attributed to the CAD/CAM machining damage and the absence of surface compressive stresses in the fully sintered material. Clinical relevance for surface treatments of zirconia frameworks in terms of hydrothermal and structural stabilities is addressed. PMID:19966039

  5. Hydrothermal systems and volcano geochemistry

    USGS Publications Warehouse

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  6. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Nwokoro, Ogbonnaya; Anthonia, Odiase

    2015-01-01

    Amylases are among the main enzymes used in food and other industries. They hydrolyse starch molecules into polymers composing glucose units. Amylases have potential applications in a number of industrial processes including foods and pharmaceutical industries. Alkaline α-amylase has the potential of hydrolysing starch under alkaline pH and is useful in the starch and textile industries and as an ingredient of detergents. Amylases are produced from plants, however, microbial production processes have dominated applications in the industries. Optimization of microbial production processes can result in improved enzyme yields. Amylase activity was assayed by incubating the enzyme solution (0.5 ml) with 1% soluble starch (0.5 ml) in 0.1 M Tris/HCl buffer (pH 8.5). After 30 minutes, the reaction was stopped by the addition of 4 mL of 3,5-dinitrosalicylic acid (DNS) reagent then heated for 10 min in boiling water bath and cooled in a refrigerator. Absorbance readings were used to estimate the units of enzyme activity from glucose standard curve. Hydrolysed native starches from cassava, rice, corn, coco yam, maize and potato and soluble starch were adjusted to pH 8.5 prior to incubation with crude enzyme solution. Reducing sugars produced were therefore determined. The effect of pH on enzyme activity of the alkaline α-amylase was determined by using buffer solutions of different pH (potassium phosphate buffer, 6.0-7.0; Tris-HCl buffer 7.5 to 9.0 and carbonate/bicarbonate buffer, pH 9.5-11) for enzyme assay. The pH stability profile of the enzyme was determined by incubating 0.5 ml of α-amylase enzyme in 0.1 M Tris/HCl buffer (pH 8.5) and 0.5 ml of 1% (w/v) soluble starch (Merck) in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h in various buffers. The effect of temperature on enzyme activity was studied by incubating 0.5 mL of the enzyme solution contained in the test tube and 0.5 mL of 1% soluble starch (Merck) solution prepared in 0.1 M Tris/HCl buffer (pH 8.5) for 3 h at

  7. Synthesis of metal-doped Mn-Zn ferrite from the leaching solutions of vanadium slag using hydrothermal method

    NASA Astrophysics Data System (ADS)

    Liu, Shiyuan; Wang, Lijun; Chou, Kuochih

    2018-03-01

    Using vanadium slag as raw material, Metal-doped Mn-Zn ferrites were synthesized by multi-step processes including chlorination of iron and manganese by NH4Cl, selective oxidation of Fe cation, and hydrothermal synthesis. The phase composition and magnetic properties of synthesized metal-doped Mn-Zn ferrite were characterized by X-ray powder diffraction, Raman spectroscopy, transmission electron microscopy (TEM), X-ray photon spectra (XPS) and physical property measurement. It was found that Mn/Zn mole ratio significantly affected the magnetic properties and ZnCl2 content significantly influenced the purity of the phase of ferrite. Synthesized metal-doped Mn-Zn ferrite, exhibiting a larger saturation magnetization (Ms = 60.01 emu/g) and lower coercivity (Hc = 8.9 Oe), was obtained when the hydrothermal temperature was controlled at 200 °C for 12 h with a Mn/Zn mole ratio of 4. The effect of ZnCl2 content, Mn/Zn mole ratio and temperature on magnetic properties of the synthesized metal-doped Mn-Zn ferrite were systemically investigated. This process provided a new insight to utilize resources in the aim of obtaining functional materials.

  8. Energetics of alkali and alkaline earth ion-exchanged zeolite A

    DOE PAGES

    Sun, Hui; Wu, Di; Liu, Kefeng; ...

    2016-06-30

    Alkali and alkaline earth ion-exchanged zeolite A samples were synthesized in aqueous exchange media. They were thoroughly studied by powder X-ray diffraction (XRD), electron microprobe (EMPA), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), and high temperature oxide melt solution calorimetry. The hydration energetics and enthalpies of formation of these zeolite A materials from constituent oxides were determined. Specifically, the hydration level of zeolite A has a linear dependence on the average ionic potential ( Z/r) of the cation, from 0.894 (Rb-A) to 1.317 per TO 2 (Mg-A). The formation enthalpies from oxides (25 °C) range from –93.71 ± 1.77 (K-A)more » to –48.02 ± 1.85 kJ/mol per TO 2 (Li-A) for hydrated alkali ion-exchanged zeolite A, and from –47.99 ± 1.20 (Ba-A) to –26.41 ± 1.71 kJ/mol per TO 2 (Mg-A) for hydrated alkaline earth ion-exchanged zeolite A. As a result, the formation enthalpy from oxides generally becomes less exothermic as Z/r increases, but a distinct difference in slope is observed between the alkali and the alkaline earth series.« less

  9. Development of conductometric biosensors based on alkaline phosphatases for the water quality control

    NASA Astrophysics Data System (ADS)

    Berezhetskyy, A.

    2008-09-01

    Researches are focused on the elaboration of enzymatic microconductometric device for heavy metal ions detection in water solutions. The manuscript includes a general introduction, the first chapter contains bibliographic review, the second chapter described the fundamentals of conductometric transducers, the third chapter examining the possibility to create and to optimize conductometric biosensor based on bovine alkaline phosphatase for heavy metals ions detection, the fourth chapter devoted to creation and optimization of conductometric biosensor based on alkaline phosphatase active microalgae and sol gel technology, the last chapter described application of the proposed algal biosensor for measurements of heavy metal ions toxicity of waste water, general conclusions stating the progresses achieved in the field of environmental monitoring

  10. Characterization and quantification of biochar alkalinity.

    PubMed

    Fidel, Rivka B; Laird, David A; Thompson, Michael L; Lawrinenko, Michael

    2017-01-01

    Lack of knowledge regarding the nature of biochar alkalis has hindered understanding of pH-sensitive biochar-soil interactions. Here we investigate the nature of biochar alkalinity and present a cohesive suite of methods for its quantification. Biochars produced from cellulose, corn stover and wood feedstocks had significant low-pK a organic structural (0.03-0.34 meq g -1 ), other organic (0-0.92 meq g -1 ), carbonate (0.02-1.5 meq g -1 ), and other inorganic (0-0.26 meq g -1 ) alkalinities. All four categories of biochar alkalinity contributed to total biochar alkalinity and are therefore relevant to pH-sensitive soil processes. Total biochar alkalinity was strongly correlated with base cation concentration, but biochar alkalinity was not a simple function of elemental composition, soluble ash, fixed carbon, or volatile matter content. More research is needed to characterize soluble biochar alkalis other than carbonates and to establish predictive relationships among biochar production parameters and the composition of biochar alkalis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Impact Crater Hydrothermal Niches for Life on Mars: Question of Scale

    NASA Technical Reports Server (NTRS)

    Pope, K. O.; Ames, D. E.; Kieffer, S. W.; Ocampo, A. C.

    2000-01-01

    A major focus in the search for fossil life on Mars is on ancient hydrothermal deposits. Nevertheless, remote sensing efforts have not found mineral assemblages characteristic of hydrothermal activity. Future remote sensing work, including missions with higher spatial resolution, may detect localized hydrothermal deposits, but it is possible that dust mantles will prohibit detection from orbit and lander missions will be required. In anticipation of such missions, it is critical to develop a strategy for selecting potential hydrothermal sites on Mars. Such a strategy is being developed for volcanogenic hydrothermal systems, and a similar strategy is needed for impact hydrothermal systems.

  12. Microbial processing of carbon in hydrothermal systems (Invited)

    NASA Astrophysics Data System (ADS)

    LaRowe, D.; Amend, J. P.

    2013-12-01

    Microorganisms are known to be active in hydrothermal systems. They catalyze reactions that consume and produce carbon compounds as a result of their efforts to gain energy, grow and replace biomass. However, the rates of these processes, as well as the size of the active component of microbial populations, are poorly constrained in hydrothermal environments. In order to better characterize biogeochemical processes in these settings, a quantitative relationship between rates of microbial catalysis, energy supply and demand and population size is presented. Within this formulation, rates of biomass change are determined as a function of the proportion of catabolic power that is converted into biomass - either new microorganisms or the replacement of existing cell components - and the amount of energy that is required to synthesize biomass. The constraints that hydrothermal conditions place on power supply and demand are explicitly taken into account. The chemical composition, including the concentrations of organic compounds, of diffuse and focused flow hydrothermal fluids, hydrothermally influenced sediment pore water and fluids from the oceanic lithosphere are used in conjunction with cell count data and the model described above to constrain the rates of microbial processes that influence the carbon cycle in the Juan de Fuca hydrothermal system.

  13. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    NASA Astrophysics Data System (ADS)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  14. Alkaline Peroxides Versus Sodium Hypochlorite for Removing Denture Biofilm: a Crossover Randomized Trial.

    PubMed

    Peracini, Amanda; Regis, Rômulo Rocha; Souza, Raphael Freitas de; Pagnano, Valéria Oliveira; Silva, Cláudia Helena Lovato da; Paranhos, Helena de Freitas Oliveira

    2016-01-01

    This study evaluated the efficacy of cleanser solutions on denture biofilm removal by a crossover randomized clinical trial. Thirty two edentulous patients were instructed to brush their dentures (specific brush and liquid soap) three times a day (after breakfast, lunch and dinner) and to soak them (≥ 8 h) in: (C) control -water; (AP): alkaline peroxide; or (SH) 0.5% sodium hypochlorite. Each solution was used for 21 days (three cycles of 7 days). At the end of each cycle, the inner surfaces of maxillary dentures were disclosed (1% neutral red) and photographed (HX1 - Sony). Areas (total and stained biofilm) were measured (Image Tool software) and the percentage of biofilm calculated as the ratio between the area of the biofilm multiplied by 100 and total surface area of the internal base of the denture. Data were compared by means of generalized estimating equation (α=5%) and multiple comparisons (Bonferroni; α=1.67%). Immersion in SH reduced biofilm (%) (8.3 ± 13.3B) compared to C (18.2 ± 14.9A) and AP (18.2 ± 16.6A). The 0.5% sodium hypochlorite solution was the most efficacious for biofilm removal. Alkaline peroxides may not lead to further biofilm removal in patients with adequate denture maintenance habits.

  15. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    USGS Publications Warehouse

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  16. Weathering and hydrothermal alteration of basalts in Iceland: mineralogy from VNIR, TIR, XRD, and implications for Mars

    NASA Astrophysics Data System (ADS)

    Ehlmann, B. L.; Mustard, J. F.; Bish, D. L.

    2009-12-01

    Recent orbital investigations have revealed that aqueous alteration on early Mars took place in diverse alteration environments indicated by distinctive assemblages of minerals (Murchie et al., 2009, JGR). There is growing evidence for past diagenetic or low-temperature/pressure hydrothermal activity on Mars at neutral to alkaline pH, indicated by the presence of Fe/Mg smectites, chlorite, prehnite, serpentine, opaline silica, and zeolites such as analcime in Noachian terrains (Ehlmann et al., 2009, JGR). In recent investigations of terrestrial Mars analog sites, neutral to alkaline pH alteration of basalt, both pedogenic and hydrothermal, has been understudied in favor of sulfur-rich, acidic systems including those at the Hawaiian volcanoes and Rio Tinto, Spain. We began study of the alteration of basalt lava flows in Iceland as a geochemical analog for Noachian Mars. Because the basaltic bedrock is recently formed (<16Ma) with few localities of more highly evolved composition and has poorly formed soils and spare vegetation, the ground and surface waters are broadly similar to those which might have existed on Noachian Mars. Iceland has a variety of geothermal spring systems--low T, low S; low T, high S; and high T, high S--each of which creates distinctive mineralogic assemblages. Here we examine rocks of the Hvalfjordur peninsula, collected from basalt flows that were in some places altered at the surface by pedogenesis and in other locations were hydrothermally altered by non-sulfurous groundwater circulation (low T, low S) following the emplacement of a later hot basalt flow. Rock samples were surveyed in the field using a portable VNIR spectrometer. Altered and unaltered rocks that were typical for the locality were collected as were altered rocks whose spectra were most similar to those measured by CRISM from Mars orbit. Ten rocks were ultimately selected for detailed laboratory analyses: zeolitized basaltic rocks bearing minerals including analcime and

  17. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    NASA Technical Reports Server (NTRS)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  18. The chemistry of hydrothermal magnetite: a review

    USGS Publications Warehouse

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  19. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    NASA Astrophysics Data System (ADS)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including

  20. Catastrophic volcanic collapse: relation to hydrothermal processes.

    PubMed

    López, D L; Williams, S N

    1993-06-18

    Catastrophic volcanic collapse, without precursory magmatic activity, is characteristic of many volcanic disasters. The extent and locations of hydrothermal discharges at Nevado del Ruiz volcano, Colombia, suggest that at many volcanoes collapse may result from the interactions between hydrothermal fluids and the volcanic edifice. Rock dissolution and hydrothermal mineral alteration, combined with physical triggers such as earth-quakes, can produce volcanic collapse. Hot spring water compositions, residence times, and flow paths through faults were used to model potential collapse at Ruiz. Caldera dimensions, deposits, and alteration mineral volumes are consistent with parameters observed at other volcanoes.

  1. Hydrothermal alteration of felsic volcanic rocks at the Helen Siderite Deposit, Wawa, Ontario

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morton, R.L.; Nebel, M.L.

    1984-09-01

    Felsic lavas and pyroclastic rocks, underlying the Archean Helen iron-formation, have been variably altered by hydrothermal solutions which, when discharged onto the sea floor, formed the Helen siderite deposit. Within the footwall volcanic sequence five chemically and mineralogically distinct alteration types have been defined: least altered, sericite, chlorite chloritoid, and ankerite. Based on mineralogy and chemistry of the altered rocks and on the geometry of the alteration zones, an alteration model is proposed.

  2. Bacterial Diets of Primary Consumers at Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Govenar, B.; Shank, T. M.

    2008-12-01

    Chemical energy produced by mixing hydrothermal fluids and seawater supports dense biological communities on mid-ocean ridges. The base of the food web at deep-sea hydrothermal vents is formed by chemolithoautotrophic bacteria that use the energy from the oxidation of reduced chemicals to fix inorganic carbon into simple sugars. With the exception of a few species that have chemolithoautotropic bacterial symbionts, most of the vent-endemic macrofauna are heterotrophs that feed on free-living bacteria, protists, and other invertebrates. The most abundant and diverse group of primary consumers in hydrothermal vent communities belong to the Gastropoda, particularly the patellomorph limpets. Gastropod densities can be as high as 2000 individuals m-2, and there can be as many as 13 species of gastropods in a single aggregation of the siboglinid tubeworm Riftia pachyptila and more than 40 species along the East Pacific Rise. Some gastropods are ubiquitous and others are found in specific microhabitats, stages of succession, or associated with different foundation species. To determine the mechanisms of species coexistence (e.g. resource partitioning or competition) among hydrothermal vent primary consumers and to track the flow of energy in hydrothermal vent communities, we employed molecular genetic techniques to identify the gut contents of four species of co-occurring hydrothermal vent gastropods, Eulepetopsis vitrea, Lepetodrilus elevatus, Lepetodrilus ovalis and Lepetodrilus pustulosus, collected from a single diffuse-flow hydrothermal vent site on the East Pacific Rise. Unique haplotypes of the 16S gene that fell among the epsilon-proteobacteria were found in the guts of every species, and two species had gut contents that were similar only to epsilon-proteobacteria. Two species had gut contents that also included haplotypes that clustered with delta-proteobacteria, and one species had gut contents that clustered with alpha- proteobacteria. Differences in the diets

  3. Hydrothermal syntheses and anion-induced structural transformation of three Cadmium phosphonates

    NASA Astrophysics Data System (ADS)

    Hu, Han; Zhai, Fupeng; Liu, Xiaofeng; Ling, Yun; Chen, Zhenxia; Zhou, Yaming

    2018-05-01

    Three cadmium phosphonate coordinated polymers, namely as [Cd5(ptz)3(SO4)2(5H2O)]·6H2O (Cdptz-1), [Cd3(ptz)2(Cl)2(4H2O)]·2H2O (Cdptz-2) and [Cd4(ptz)2(SO4)(Cl)(OH)H2O]·H2O (Cdptz-3) have been hydrothermally synthesized using 4-(1,2,4-triazol-4-yl)phenylphosphonic acid (H2ptz) as ligand. Single crystal X-ray analyses revealed Cdptz-2 as layered structure and Cdptz-1,3 as pillar-layered structures with Cl- or SO42- as bridging anions. Due to the weak bonding between metal and anions, Cdptz-1 and 2 can reversibly convert into each other by simple immersing in the corresponding solution at room temperature. While the transformations between Cdptz-1,2 and Cdptz-3 can only happen under hydrothermal condition. The causes for the transformation involve the metal-ligand bond breaking/formation, replacement of anions and enhancement/decrement of the network dimensionality.

  4. Synthesis of kalsilite from microcline powder by an alkali-hydrothermal process

    NASA Astrophysics Data System (ADS)

    Su, Shuang-qing; Ma, Hong-wen; Yang, Jing; Zhang, Pan; Luo, Zheng

    2014-08-01

    The properties of aluminosilicate kalsilite have attracted the interest of researchers in chemical synthesis, ceramic industry, biofuels, etc. In this study, kalsilite was hydrothermally synthesized from microcline powder in a KOH solution. The microcline powder, rich in potassium, aluminum, and silicon, was collected from Mountain Changling in Northwestern China. The effects of temperature, time, and KOH concentration on the decomposition of microcline were investigated. The kalsilite and intermediate products were characterized by means of wet chemistry analysis, X-ray Diffraction (XRD), infrared spectrometry (IR), 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR), 27Al MAS NMR, and scanning electron microscope (SEM). With increasing temperature, the microcline powder transforms into a metastable KAlSiO4 polymorph before transforming further into pure kalsilite. A mixture of both kalsilite and metastable KAlSiO4 polymorph is obtained when the hydrothermal reaction is carried out within 2 h; but after 2 h, kalsilite is the predominant product. The concentration of KOH, which needs to be larger than 4.3 M, is an important parameter influencing the synthesis of kalsilite.

  5. A fuel-cell reactor for the direct synthesis of hydrogen peroxide alkaline solutions from H(2) and O(2).

    PubMed

    Yamanaka, Ichiro; Onisawa, Takeshi; Hashimoto, Toshikazu; Murayama, Toru

    2011-04-18

    The effects of the type of fuel-cell reactors (undivided or divided by cation- and anion-exchange membranes), alkaline electrolytes (LiOH, NaOH, KOH), vapor-grown carbon fiber (VGCF) cathode components (additives: none, activated carbon, Valcan XC72, Black Pearls 2000, Seast-6, and Ketjen Black), and the flow rates of anolyte (0, 1.5, 12 mL h(-1)) and catholyte (0, 12 mL h(-1)) on the formation of hydrogen peroxide were studied. A divided fuel-cell system, O(2) (g)|VGCF-XC72 cathode|2 M NaOH catholyte|cation-exchange membrane (Nafion-117)|Pt/XC72-VGCF anode|2 M NaOH anolyte at 12 mL h(-1) flow|H(2) (g), was effective for the selective formation of hydrogen peroxide, with 130 mA cm(-2) , a 2 M aqueous solution of H(2)O(2)/NaOH, and a current efficiency of 95 % at atmospheric pressure and 298 K. The current and formation rate gradually decreased over a long period of time. The cause of the slow decrease in electrocatalytic performance was revealed and the decrease was stopped by a flow of catholyte. Cyclic voltammetry studies at the VGCF-XC72 electrode indicated that fast diffusion of O(2) from the gas phase to the electrode, and quick desorption of hydrogen peroxide from the electrode to the electrolyte were essential for the efficient formation of solutions of H(2)O(2)/NaOH. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Molecular ecology of hydrothermal vent microbial communities.

    PubMed

    Jeanthon, C

    2000-02-01

    The study of the structure and diversity of hydrothermal vent microbial communities has long been restricted to the morphological description of microorganisms and the use of enrichment culture-based techniques. Until recently the identification of the culturable fraction required the isolation of pure cultures followed by testing for multiple physiological and biochemical traits. However, peculiar inhabitants of the hydrothermal ecosystem such as the invertebrate endosymbionts and the dense microbial mat filaments have eluded laboratory cultivation. Substantial progress has been achieved in recent years in techniques for the identification of microorganisms in natural environments. Application of molecular approaches has revealed the existence of unique and previously unrecognized microorganisms. These have provided fresh insight into the ecology, diversity and evolution of mesophilic and thermophilic microbial communities from the deep-sea hydrothermal ecosystem. This review reports the main discoveries made through the introduction of these powerful techniques in the study of deep-sea hydrothermal vent microbiology.

  7. Photocatalytic degradation of H2S aqueous media using sulfide nanostructured solid-solution solar-energy-materials to produce hydrogen fuel.

    PubMed

    Lashgari, Mohsen; Ghanimati, Majid

    2018-03-05

    H 2 S is a corrosive, flammable and noxious gas, which can be neutralized by dissolving in alkaline media and employed as H 2 -source by utilizing inside semiconductor-assisted/photochemical reactors. Herein, through a facile hydrothermal route, a ternary nanostructured solid-solution of iron, zinc and sulfur was synthesized in the absence and presence of Ag-dopant, and applied as efficient photocatalyst of hydrogen fuel production from H 2 S media. The effect of pH on the photocatalyst performance was scrutinized and the maximum activity was attained at pH=11, where HS - concentration is high. BET, diffuse reflectance and photoluminescence studies indicated that the ternary solid-solution photocatalyst, in comparison to its solid-solvent (ZnS), has a greater surface area, stronger photon absorption and less charge recombination, which justify its superiority. Moreover, the effect of silver-dopant on the photocatalyst performance was examined. The investigations revealed that although silver could boost the absorption of photons and increase the surface area, it could not appreciably enhance the photocatalyst performance due to its weak influence on retarding the charge-recombination process. Finally, the phenomenon was discussed in detail from mechanistic viewpoint. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  9. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  10. 21 CFR 864.7660 - Leukocyte alkaline phosphatase test.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Leukocyte alkaline phosphatase test. 864.7660... Leukocyte alkaline phosphatase test. (a) Identification. A leukocyte alkaline phosphatase test is a device used to identify the enzyme leukocyte alkaline phosphatase in neutrophilic granulocytes (granular...

  11. Impact of hydrothermalism on the ocean iron cycle

    PubMed Central

    Resing, Joseph

    2016-01-01

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon. This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element chemistry’. PMID:29035256

  12. Impact of hydrothermalism on the ocean iron cycle.

    PubMed

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  13. Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dem'yanets, L. N., E-mail: demianets@ns.crys.ras.ru; Artemov, V. V.; Li, L. E.

    Zinc oxide low-dimensional hollow structures in the form of hexagonal plates with holes at the center of the {l_brace}0001{r_brace} facets are synthesized in the course of the low-temperature interaction of ZnO precursors with aqueous solutions of potassium fluoride under hydrothermal conditions. Crystals have the shape of single-walled or multiwalled 'nuts.' The high optical quality of the structures is confirmed by cathodoluminescence data at room temperature. The mechanism of the formation of ZnO 'nanonuts' and products of the interaction of the ZnO precursors with KF is proposed.

  14. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  15. Alkaline hydrolysis of ethylene phosphate: an ab initio study by supermolecule model and polarizable continuum approach.

    PubMed

    Xia, Futing; Zhu, Hua

    2011-09-01

    The alkaline hydrolysis reaction of ethylene phosphate (EP) has been investigated using a supermolecule model, in which several explicit water molecules are included. The structures and single-point energies for all of the stationary points are calculated in the gas phase and in solution at the B3LYP/6-31++G(df,p) and MP2/6-311++G(df,2p) levels. The effect of water bulk solvent is introduced by the polarizable continuum model (PCM). Water attack and hydroxide attack pathways are taken into account for the alkaline hydrolysis of EP. An associative mechanism is observed for both of the two pathways with a kinetically insignificant intermediate. The water attack pathway involves a water molecule attacking and a proton transfer from the attacking water to the hydroxide in the first step, followed by an endocyclic bond cleavage to the leaving group. While in the first step of the hydroxide attack pathway the nucleophile is the hydroxide anion. The calculated barriers in aqueous solution for the water attack and hydroxide attack pathways are all about 22 kcal/mol. The excellent agreement between the calculated and observed values demonstrates that both of the two pathways are possible for the alkaline hydrolysis of EP. Copyright © 2011 Wiley Periodicals, Inc.

  16. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Förster, Hans-Jürgen; Heinrich, Wilhelm

    2002-09-01

    Detailed analyses of melt and fluid inclusions combined with an electron-microprobe survey of boron-bearing minerals reveal the evolution of boron in a highly evolved peraluminous granite-pegmatite complex and the associated high- and medium-temperature ore-forming hydrothermal fluids (Ehrenfriedersdorf, Erzgebirge, Germany). Melt inclusions in granite represent embryonic pegmatite-forming melts containing about 10 wt% H2O and 1.8 wt% B2O3. These melts are also enriched in F, P, and other incompatible elements such as Be, Sn, Rb, and Cs. Ongoing differentiation and volatile enrichment drove the system into a solvus, where two pegmatite-forming melts coexisted. The critical point is at about 712 °C, 100 MPa, 20 wt% H2O and 4.1 wt% B2O3. Cooling and concomitant fractional crystallisation from 700 to 500 °C induced development of two conjugate melts, an H2O-poor (A-melt) and an H2O-rich melt (B-melt) along the opening solvus. Boron is a major element in both melts and is preferentially partitioned into the H2O-rich melt. Temperature-dependent distribution coefficients $ D{boron}{{B - melt/A - melt}} $ are 1.3 at 650 °C, 1.5 at 600 °C, and 1.8 at 500 °C. In both melts, boron concentrations decreased during cooling because of exsolution of a boron-rich hypersaline brine throughout the pegmatitic stage. Boromuscovite containing up to 8.5 wt% was another sink for boron at this stage. The end of the melt-dominated pegmatitic stage was attained at a solidus temperature of around 490 °C. Fluid inclusions of the hydrothermal stage reveal trapping temperatures of 480 to 370 °C, along with varying densities and highly variable B2O3 contents ranging from 0.20 to 2.94 wt%. A boiling system evolved, indicating a complex interplay between closed- and open-system behaviour. Pressure switched from lithostatic to hydrostatic and back, generating hydrothermal convection cells where meteoric waters were introduced and mixed with magmatic fluids. Boron-rich solutions originated

  17. The behaviour of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study

    NASA Astrophysics Data System (ADS)

    Thomas, Rainer; Förster, Hans-Jürgen; Heinrich, Wilhelm

    Detailed analyses of melt and fluid inclusions combined with an electron-microprobe survey of boron-bearing minerals reveal the evolution of boron in a highly evolved peraluminous granite-pegmatite complex and the associated high- and medium-temperature ore-forming hydrothermal fluids (Ehrenfriedersdorf, Erzgebirge, Germany). Melt inclusions in granite represent embryonic pegmatite-forming melts containing about 10 wt% H2O and 1.8 wt% B2O3. These melts are also enriched in F, P, and other incompatible elements such as Be, Sn, Rb, and Cs. Ongoing differentiation and volatile enrichment drove the system into a solvus, where two pegmatite-forming melts coexisted. The critical point is at about 712 °C, 100 MPa, 20 wt% H2O and 4.1 wt% B2O3. Cooling and concomitant fractional crystallisation from 700 to 500 °C induced development of two conjugate melts, an H2O-poor (A-melt) and an H2O-rich melt (B-melt) along the opening solvus. Boron is a major element in both melts and is preferentially partitioned into the H2O-rich melt. Temperature-dependent distribution coefficients $ D{boron}{{B - melt/A - melt}} $ are 1.3 at 650 °C, 1.5 at 600 °C, and 1.8 at 500 °C. In both melts, boron concentrations decreased during cooling because of exsolution of a boron-rich hypersaline brine throughout the pegmatitic stage. Boromuscovite containing up to 8.5 wt% was another sink for boron at this stage. The end of the melt-dominated pegmatitic stage was attained at a solidus temperature of around 490 °C. Fluid inclusions of the hydrothermal stage reveal trapping temperatures of 480 to 370 °C, along with varying densities and highly variable B2O3 contents ranging from 0.20 to 2.94 wt%. A boiling system evolved, indicating a complex interplay between closed- and open-system behaviour. Pressure switched from lithostatic to hydrostatic and back, generating hydrothermal convection cells where meteoric waters were introduced and mixed with magmatic fluids. Boron

  18. Frictional healing of quartz gouge under hydrothermal conditions: 2. Quantitative interpretation with a physical model

    NASA Astrophysics Data System (ADS)

    Nakatani, Masao; Scholz, Christopher H.

    2004-07-01

    The companion paper by [2004] shows that a hydrothermal frictional healing mechanism results from local solution transfer. Here we evaluate this mechanism with the model of [1994], which assumes that the healing occurs by stress-driven asperity creep. The absence of a clear temperature dependence of the healing parameter b in the narrow tested range of 100-200°C is consistent with the model's prediction. The analysis also indicates that the mechanism involves a high stress assist parameter Ωσ = 200 kJ/mol, which is consistent with the contact stress being the indentation hardness, σ ˜ 10 GPa, and the activation volume Ω being the molar volume, both of which are reasonable. For this to be consistent with the observed temperature enhanced kinetics of healing also requires that the activation energy exceed 200 kJ/mol. This is much higher than the 20-70 kJ/mol known for low contact stress pressure solution. The analysis of several previously published studies of hydrothermal healing of hard silicates yielded the same results. Hence, if the underlying process is stress driven, it must have a different mechanism at high stress than at low stress. Alternatively, a solution transfer mechanism driven by something other than stress could be the underlying mechanism, but this is inconsistent with other aspects of our experimental results. On the other hand, the same analysis of phenomena that are independently inferred to proceed under relatively low contact stress yielded the parameter values consistent with low-stress pressure solution.

  19. Simultaneous recovery of Zn and Mn from used batteries in acidic and alkaline mediums: A comparative study.

    PubMed

    Abid Charef, S; Affoune, A M; Caballero, A; Cruz-Yusta, M; Morales, J

    2017-10-01

    A parallel study of acidic and alkaline leaching for the recovery of Mn and Zn from spent alkaline batteries is outlined. Using H 2 SO 4 as solvent and selecting appropriate conditions of temperature and concentration, all residues were dissolved except carbon. The separation and recovery of the two components were performed by electrodeposition with satisfactory results at pH values above 4 (current efficiency above 70% for Zn and Mn) but rather lower efficiencies as the pH decreased. Most of the Zn was selectively dissolved by alkaline leaching using a 6.5M NaOH solution, and its recovery was examined by means of both electrochemical and chemical processes. The expected formation of pure Zn by electrowinning failed due to the formation of ZnO, the content of which was highly dependent on the electrodeposition time. For short periods, Zn was the main component. For longer periods the electrodeposit consisted of agglomerated microparticles of ZnO with a minor fraction of Zn metal (barely 3% as measured by X-ray diffraction). A chemical reaction of the element with oxygen released at the anode surface might be responsible for its conversion to ZnO. A simple chemical route is described for the first time for the direct conversion of Zn(OH) 4 2- solution to nanostructured ZnO by lowering the pH to values around 12 using 2M HCl solution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Crystallization process of zircon and fergusonite during hydrothermal alteration in Nechalacho REE deposit, Thor Lake, Canada

    NASA Astrophysics Data System (ADS)

    Hoshino, M.; Watanabe, Y.; Murakami, H.; Kon, Y.; Tsunematsu, M.

    2012-04-01

    The core samples of two drill holes, which penetrate sub-horizontal mineralized horizons at Nechalacho REE deposit in the Proterozoic Thor Lake syenite, Canada, were studied in order to clarify magmatic and hydrothermal processes that enriched HFSE (e.g. Zr, Nb, Y and REE). Zircon is the most common REE minerals in Nechalacho REE deposit. The zircon is divided into five types as follows: Type-1 zircon occurs as single grain in phlogopite and the chondrite-normalized REE pattern is characterized by a steeply-rising slope from the LREE to the HREE with a positive Ce-anomaly and negative Eu-anomaly. This chemical characteristic is similar to that of igneous zircon. Type-2 zircon consists of HREE-rich magmatic porous core and LREE-Nb-F-rich hydrothermal rim. This type zircon is mostly included in phlogopite and fluorite, and occasionally in microcline. Type-3 zircon is characterized by euhedral to anhedral crystal, occurring in a complex intergrowth with REE fluorocarbonates. Type-3 zircons have high contents of REE, Nb and fluorine. Type-4 zircon consists of porous-core and -rim zones, but their chemical compositions are similar to each other. This type zircon is a subhedral crystal rimmed by fergusonite. Type-5 zircon is characterized by smaller, porous and subhedral to anhedral crystals. The interstices between small zircons are filled by fergusonite. Type-4 and -5 zircons show low REE and Nb contents. Occurrences of these five types of zircon are different according to the depth and degree of the alteration by hydrothermal solutions rich in F- and CO3 of the two drill holes, which permit a model for evolution of the zircon crystallization in Nechalacho REE deposit as follows: (1) type-1 (single magmatic zircon) is formed in miaskitic syenite. (2) LREE-Nb-F-rich hydrothermal zircon formed around HREE-rich magmatic zircon (type-2 zircon); (3) type-3 zircon crystallized thorough F and CO3-rich hydrothermal alteration of type-2 zircon which formed the complex

  1. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  2. Turnstiles and bifurcators: the disequilibrium converting engines that put metabolism on the road.

    PubMed

    Branscomb, Elbert; Russell, Michael J

    2013-02-01

    The Submarine Hydrothermal Alkaline Spring Theory for the emergence of life holds that it is the ordered delivery of hydrogen and methane in alkaline hydrothermal solutions at a spontaneously precipitated inorganic osmotic and catalytic membrane to the carbon dioxide and other electron acceptors in the earliest acidulous cool ocean that, through these gradients, drove life into being. That such interactions between hydrothermal fuels and potential oxidants have so far not been accomplished in the lab is because some steps along the necessary metabolic pathways are endergonic and must therefore be driven by being coupled to thermodynamically larger exergonic processes. But coupling of this kind is far from automatic and it is not enough to merely sum the ΔGs of two supposedly coupled reactions and show their combined thermodynamic viability. An exergonic reaction will not drive an endergonic one unless 'forced' to do so by being tied to it mechanistically via an organized "engine" of "Free Energy Conversion" (FEC). Here we discuss the thermodynamics of FEC and advance proposals regarding the nature and roles of the FEC devices that could, in principle, have arisen spontaneously in the alkaline hydrothermal context and have forced the onset of a protometabolism. The key challenge is to divine what these initial engines of life were in physicochemical terms and as part of that, what structures provided the first "turnstile-like" mechanisms needed to couple the partner processes in free energy conversion; in particular to couple the dissipation of geochemically given gradients to, say, the reduction of CO(2) to formate and the generation of a pyrophosphate disequilibrium. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  4. Influence of media composition on the production of alkaline α-amylase from Bacillus subtilis CB-18.

    PubMed

    Ogbonnaya, Nwokoro; Odiase, Anthonia

    2012-01-01

    Starch, a homopolysaccharide is an important and an abundant food reserve and energy source. Starches are processed to yield different products which find many industrial applications. Alpha-amylases hydrolyze starch by cleaving α-1,4-glucosidic bonds and have been used in food, textile and pharmaceutical industries [Sun et al. 2010]. Enzymatic conversion of starch with amylase presents an economically superior alternative to the conventional method of starch gelatinization. Alkaline α-amylase has an important position in the global enzyme market as a constituent of detergent. In this paper, we screened soil bacteria and an isolate, alkalophilic Bacillus subtilis CB-18 was found to produce an alkaline α-amylase in different media. MATERIAL AND METHODS. Screening of the isolates for amylolytic activity was carried out by growing bacteria isolated from the soil in starch agar plates and subsequently staining the plates with iodine solution to reveal zones of hydrolysis of starch. The selected isolate, Bacillus subtlis CB-18 was grown in different media at alkaline pH to evaluate the influence of media composition on alkaline α-amylase production. Enzyme assay was carried out by growing the culture in a broth medium and obtaining cell - free culture supernatant after centrifugation at 2515 × g for 15 minutes Amylase activity was determined by incubating 0.5 ml of crude enzyme solution in 0.1M Tris/HCl buffer (pH 8.5) with 0.5 ml of 1% soluble starch solution. The reaction was terminated by the addition of DNS reagent and reducing sugar produced from the amylolytic reaction was determined. Bacillus subtilis CB-18 used for this work was selected because it produced 7 mm zone diameter on starch agar plate. This organism was cultured in different alkaline broth media containing 2% soluble starch as inducer carbohydrate for α-amylase production. Among the carbon sources used for enzyme production, sorbitol was the best to stimulate enzyme production with

  5. Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lee, Kuo-Tong; Chien, Wen-Chen; Lin, Che-Tseng; Huang, Ching-An

    The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO 2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO 2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO 2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO 2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO 2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH 3OH, 2 M C 2H 5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm -2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO 2 composite polymer membrane with the permeability values in the order of 10 -7 to 10 -8 cm 2 s -1 is a potential candidate for use on alkaline DAFCs.

  6. Hydrothermal systems in small ocean planets.

    PubMed

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  7. Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks.

    PubMed

    Posmanik, Roy; Labatut, Rodrigo A; Kim, Andrew H; Usack, Joseph G; Tester, Jefferson W; Angenent, Largus T

    2017-06-01

    Hydrothermal liquefaction converts food waste into oil and a carbon-rich hydrothermal aqueous phase. The hydrothermal aqueous phase may be converted to biomethane via anaerobic digestion. Here, the feasibility of coupling hydrothermal liquefaction and anaerobic digestion for the conversion of food waste into energy products was examined. A mixture of polysaccharides, proteins, and lipids, representing food waste, underwent hydrothermal processing at temperatures ranging from 200 to 350°C. The anaerobic biodegradability of the hydrothermal aqueous phase was examined through conducting biochemical methane potential assays. The results demonstrate that the anaerobic biodegradability of the hydrothermal aqueous phase was lower when the temperature of hydrothermal processing increased. The chemical composition of the hydrothermal aqueous phase affected the anaerobic biodegradability. However, no inhibition of biodegradation was observed for most samples. Combining hydrothermal and anaerobic digestion may, therefore, yield a higher energetic return by converting the feedstock into oil and biomethane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An alkaline tin(II) halide compound Na{sub 3}Sn{sub 2}F{sub 6}Cl: Synthesis, structure, and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, Pifu; University of the Chinese Academy of Sciences, Beijing 100049; Luo, Siyang

    A new alkali tin(II) halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. This compound crystallizes trigonally in space group of R-3c (167), and processes a zero-dimensional (0D) structure consisted of Na{sup +} cations, Cl{sup −} anions and the isolated [SnF{sub 3}]{sup -} trigonal pyramids in which the stereochemically active 5s{sup 2} lone pair electrons are attached to the Sn{sup 2+} cations. Interestingly, the [SnF{sub 3}]{sup −} trigonal pyramids are parallel arranged in the a-b plane, while oppositely arranged in line with rotation along the c- axis. Moreover, the energy bandgap, thermal stability and electronic structure of Na{submore » 3}Sn{sub 2}F{sub 6}Cl are characterized and the results reveal that this compound has and indirect bandgap of 3.88 eV and is stable under 270 °C. - Graphical abstract: A zero-dimensional alkaline tin halide compound, Na{sub 3}Sn{sub 2}F{sub 6}Cl, is synthesized by hydrothermal method. Interestingly, both the anions and cations coordinating polyhedra exhibit order arranged with the [SnF{sub 3}]{sup -} trigonal pyramids rotating along the c- axis.« less

  9. Effect of an alkaline environment on the engineering behavior of cement-stabilized/solidified Zn-contaminated soils.

    PubMed

    Liu, Jingjing; Zha, Fusheng; Deng, Yongfeng; Cui, Kerui; Zhang, Xueqin

    2017-12-01

    Although the stabilization/solidification method has been widely used for remediation of heavy metal-contaminated soils in recent decades, the engineering behavior and mobility of heavy metal ions under alkaline groundwater conditions are still unclear. Therefore, the unconfined compressive strength test (UCS) combined with toxicity characteristic leaching procedure (TCLP) and general acid neutralization capacity (GANC) was used to investigate the effects of alkalinity (using NaOH to simulate alkalinity in the environment) on the mechanical and leaching characteristics of cement-solidified/stabilized (S/S) Zn-contaminated soils. Moreover, the microstructure was analyzed using the scanning electron microscope (SEM) technology. The results indicated that alkaline environment could accelerate the UCS development compared with specimens without soaking in NaOH solution,, regardless of whether the specimens contained Zn 2+ or not. And the UCS varied obviously attributed to the variations of both NaOH concentration and soaking time. Except for the specimens soaked for 90 days, the leached Zn 2+ concentrations were higher than that of without soaking. However, the leachability of Zn 2+ in all the stabilized specimens is in the regulatory level. ANC results indicated that the Zn 2+ leaching behavior can be divided into three stages related to the initial leachate pH. Moreover, SEM results proved that the alkaline environment could actually facilitate the cement hydration process. The results proved in the present paper could be useful in treating the heavy metal-contaminated soils involved in the solidification/stabilization technology under alkaline environment.

  10. Release kinetics of esterified p-coumaric acid and ferulic acid from rice straw in mild alkaline solution.

    PubMed

    Linh, Tran Ngoc; Fujita, Hirokata; Sakoda, Akiyoshi

    2017-05-01

    The release kinetics of esterified p-coumaric acid (PCA) and ferulic acid (FA) from rice straw under a mild alkaline condition were investigated to collect fundamental data for the design of a recovery process. The results showed that the straw size, NaOH concentration, and temperature were the key parameters governing release kinetics. The analysis demonstrated that FA is released considerably faster than PCA. The close relationship between lignin and the PCA dissolution indicates a reciprocal and/or simultaneous release. Moreover, PCA is broadly distributed in the lignin network but tends to be located more densely in the lignin fraction which is not easily solubilized by alkaline treatment. In contrast, the release of FA is strongly affected by removal of lignin fraction which is easily solubilized. These results suggest that the release kinetics are controlled by the accessibility of NaOH to their ester sites in the lignin/hemicellulose network, and by their localization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Pyrite-H2S/SO4 S isotope exchange at hydrothermal conditions: An experimental study at 300°C and 500 bars

    NASA Astrophysics Data System (ADS)

    Syverson, D. D.; Ono, S.; Seyfried, W. E., Jr.

    2017-12-01

    The rate of exchange and multiple S isotope fractionation between pyrite and dissolved H2S and SO4 was determined at 300°C and 500 bars at physiochemical conditions indicative of natural MOR hydrothermal systems by using the flexible gold cell reactor system [1]. A 34S enriched solution was designed to track reaction progress and to not significantly perturb mass dependent relationships between 33S and 36S, allowing for observations of natural mass dependent fractionation between pyrite and dissolved species during dissolution and recrystallization. The experimental data are compared with previously determined experimental constraints of S isotope exchange between fluid species [2] and with Fe and S isotope experiments conducted at higher temperature and where pyrite was precipitated rapidly from solution at 300 and 350°C and 500 bars [3, 4]. Briefly, the 34S isotope data indicate that the rate of exchange between pyrite and dissolved aqueous species is sluggish, where insignificant exchange occurred after the course of 4000 hours at 300°C, approximately 4%. Furthermore, the 33,36S mineral-fluid data indicate that upon pyrite dissolution, the light isotopes are preferentially removed into solution and incorporated as H2S and SO4-. These data are consistent with natural observations of pyrite-dissolved S disequilibrium and provide important insight towards mineral reactivity and retentiveness of recording mineral formation conditions. [1] Seyfried Jr., W.E., Janecky, D.R. & Berndt, M.E. 1987 Rocking autoclaves for hydrothermal experiments: II. The flexible reaction-cell system. Hydrothermal Experimental Techniques 216-239. [2] Ohmoto, H. & Lasaga, A.C. 1982 Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochimica et Cosmochimica Acta 46, 1727-1745. [3] Syverson, D.D., Borrok, D.M. & Seyfried Jr., W.E. 2013 Experimental determination of equilibrium Fe isotopic fractionation between pyrite and dissolved Fe under hydrothermal

  12. An alkalinizing oral rehydration solution containing lecithin-coated citrus fiber is superior to a nonalkalinizing solution in treating 360 calves with naturally acquired diarrhea.

    PubMed

    Goodell, G M; Campbell, J; Hoejvang-Nielsen, L; Stansen, W; Constable, P D

    2012-11-01

    The aim of this field study was to compare the efficacy and cost of 2 commercially available oral rehydration therapy (ORT) solutions in treating dairy calves with naturally acquired diarrhea. A total of 1,349 newborn Holstein-Friesian calves were prospectively enrolled in the study. Calves were housed in individual hutches and fed a mixture of pasteurized hospital milk and an all-milk protein milk replacer twice per day. Calves were monitored twice each day from d 2 of life until 30 d of age for the presence or absence of diarrhea, and were assigned a fecal score and a hydration score at each examination. Calves that developed mild to severe diarrhea that did not need intravenous fluids and did not have clinical evidence of concurrent disease (n = 360) were assigned randomly to receive 1 of 2 commercial ORT solutions: a hypertonic alkalinizing ORT containing lecithin-coated citrus fibers (Diaque, group D, n = 180; Boehringer Ingelheim, Ingelheim, Germany), and an isotonic nonalkalinizing ORT (RE-SORB, group R, n = 180; Pfizer Animal Health, New York, NY) for 2 to 8d; the duration of treatment depended on whether diarrhea was still present. No significant differences were observed in mortality rates or treatment failure rates between the 2 treatment groups. Fecal consistency returned to normal more quickly in group D calves than in group R calves; consequently, group D calves were treated for 1d less than were group R calves. The increase in body weight after 4d of treatment was larger in group D than in group R. The average daily gain from birth to weaning in calves that did not develop concurrent disease (such as pneumonia) during the study period tended to be higher in group D calves (0.53±0.11 kg/d) than in group R calves (0.51±0.09 kg/d). The smaller number of treatments at a lower cost per treatment produced a cost advantage of $4.82 per treated calf in group D calves compared with group R calves. Our findings support the concept that milk should continue

  13. Two 3D structured Co-Ni bimetallic oxides as cathode catalysts for high-performance alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shu, Chengyong; Fang, Yuan; Chen, Yuanzhen; Liu, Yongning

    2017-09-01

    Two NiCo2O4 bimetallic oxides were synthesized via a facile hydrothermal method. SEM and TEM observations show that these materials have three-dimensional (3D) dandelion-like (DL) and flower-like (FL) morphologies. Their large specific surface areas (90.68 and 19.8 m2·g-1) and porous structures provide many active sites and effective transport pathways for the oxygen reduction reaction (ORR). Electrochemical measurements with a rotating ring-disc electrode (RRDE) indicate that the electron transfer numbers of the NiCo2O4-DL and NiCo2O4-FL catalysts for ORR in an alkaline solution are 3.97 and 3.91, respectively. Fuel cells were assembled with the bimetallic oxides, PtRu/C and a polymer fiber membrane (PFM) as cathode catalysts, anode catalyst and electrolyte film, respectively. For NiCo2O4-DL, the peak power density reaches up to 73.5 mW·cm-2 at 26 °C, which is the highest room-temperature value reported to date. The high catalytic activity of NiCo2O4 is mainly attributed to the presence of many Co3+ cations that directly donate electrons to O2 to reduce it via a more efficient and effective route. Furthermore, the catalytic performance of NiCo2O4-DL is superior to that of NiCo2O4-FL because it has a higher specific surface area and is less crystalline.

  14. Fluid Flow and Sound Generation at Hydrothermal Vent Fields

    DTIC Science & Technology

    1988-04-01

    Pacific Rise The first evidence of vent sound generation came from data collected near hydrothermal vents at 21 N on the EPR where an array of ocean...associated with hydrothermal centers, one at 21 N on the East Pacific Rise (EPR) (Reidesel et al., 1982) and one on the Juan de Fuca Ridge (Bibee and Jacobson... East Pacific Rise at 210 N : the volcanic, tectonic and hydrothermal processes at

  15. Quaternized poly(vinyl alcohol)/alumina composite polymer membranes for alkaline direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Chien, Wen-Chen; Chiu, Sheng-Shin

    The quaternized poly(vinyl alcohol)/alumina (designated as QPVA/Al 2O 3) nanocomposite polymer membrane was prepared by a solution casting method. The characteristic properties of the QPVA/Al 2O 3 nanocomposite polymer membranes were investigated using thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), dynamic mechanical analysis (DMA), micro-Raman spectroscopy, and AC impedance method. Alkaline direct methanol fuel cell (ADMFC) comprised of the QPVA/Al 2O 3 nanocomposite polymer membrane were assembled and examined. Experimental results indicate that the DMFC employing a cheap non-perfluorinated (QPVA/Al 2O 3) nanocomposite polymer membrane shows excellent electrochemical performances. The peak power densities of the DMFC with 4 M KOH + 1 M CH 3OH, 2 M CH 3OH, and 4 M CH 3OH solutions are 28.33, 32.40, and 36.15 mW cm -2, respectively, at room temperature and in ambient air. The QPVA/Al 2O 3 nanocomposite polymer membranes constitute a viable candidate for applications on alkaline DMFC.

  16. Characterization of commercial iron chelates and their behavior in an alkaline and calcareous soil.

    PubMed

    Cantera, Rodrigo G; Zamarreño, Angel M; García-Mina, José M

    2002-12-18

    Iron deficiency is a common problem for many plants grown in alkaline and calcareous soils. To correct this problem, iron is supplied to plants as chelates. Several iron chelates are sold under diverse trademarks with different characteristics. This work evaluated 18 commercial products containing the most representative chelated iron sources used in agricultural practice in Spain when the study was done, namely the ferric chelates of EDDHA, EDDHMA, EDDCHA, EDDHSA, EDTA, and DTPA. The chelates were comprehensively characterized and quantitated by several techniques, including several chromatographic methods. Iron and chelate dynamics in soil were also studied in a model alkaline and calcareous soil. Results indicate that, in this model soil, among the different iron compounds studied only FeEDDHA and analogues have the capacity to maintain soluble iron in soil solution over time. These results are in agreement with general experience under field conditions. Furthermore, among the different ortho-ortho isomers of FeEDDHA's, FeEDDHSA and FeEDDCHA showed greater capacity than FeEDDHA and FeEDDHMA to maintain the chelated iron in soil solution over time.

  17. Transcriptome Exploration in Leymus chinensis under Saline-Alkaline Treatment Using 454 Pyrosequencing

    PubMed Central

    Sun, Yepeng; Wang, Fawei; Wang, Nan; Dong, Yuanyuan; Liu, Qi; Zhao, Lei; Chen, Huan; Liu, Weican; Yin, Hailong; Zhang, Xiaomei; Yuan, Yanxi; Li, Haiyan

    2013-01-01

    Background Leymus chinensis (Trin.) Tzvel. is a high saline-alkaline tolerant forage grass genus of the tribe Gramineae family, which also plays an important role in protection of natural environment. To date, little is known about the saline-alkaline tolerance of L. chinensis on the molecular level. To better understand the molecular mechanism of saline-alkaline tolerance in L. chinensis, 454 pyrosequencing was used for the transcriptome study. Results We used Roche-454 massive parallel pyrosequencing technology to sequence two different cDNA libraries that were built from the two samples of control and under saline-alkaline treatment (optimal stress concentration-Hoagland solution with 100 mM NaCl and 200 mM NaHCO3). A total of 363,734 reads in control group and 526,267 reads in treatment group with an average length of 489 bp and 493 bp were obtained, respectively. The reads were assembled into 104,105 unigenes with MIRA sequence assemable software, among which, 73,665 unigenes were in control group, 88,016 unigenes in treatment group and 57,576 unigenes in both groups. According to the comparative expression analysis between the two groups with the threshold of “log2 Ratio ≥1”, there were 36,497 up-regulated unegenes and 18,218 down-regulated unigenes predicted to be the differentially expressed genes. After gene annotation and pathway enrichment analysis, most of them were involved in stress and tolerant function, signal transduction, energy production and conversion, and inorganic ion transport. Furthermore, 16 of these differentially expressed genes were selected for real-time PCR validation, and they were successfully confirmed with the results of 454 pyrosequencing. Conclusions This work is the first time to study the transcriptome of L. chinensis under saline-alkaline treatment based on the 454-FLX massively parallel DNA sequencing platform. It also deepened studies on molecular mechanisms of saline-alkaline in L. chinensis, and constituted a

  18. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  19. The Biogeochemistry of Sulfur in Hydrothermal Systems

    NASA Technical Reports Server (NTRS)

    Schulte, Mitchell; Rogers, K. L.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. The incorporation of sulfur into many biomolecules likely dates back to the development of the earliest metabolic strategies. Sulfur is common in enzymes and co-enzymes and is an indispensable structural component in many peptides and proteins. Early metabolism may have been heavily influenced by the abundance of sulfide minerals in hydrothermal systems. Understanding how sulfur became prevalent in biochemical processes and many biomolecules requires knowledge of the reaction properties of sulfur-bearing compounds. We have previously estimated thermodynamic data for thiols, the simplest organic sulfur compounds, at elevated temperatures and pressures. If life began in hydrothermal environments, it is especially important to understand reactions at elevated temperatures among sulfur-bearing compounds and other organic molecules essential for the origin and persistence of life. Here we examine reactions that may have formed amino acids with thiols as reaction intermediates in hypothetical early Earth hydrothermal environments. (There are two amino acids, cysteine and methionine, that contain sulfur.) Our calculations suggest that significant amounts of some amino acids were produced in early Earth hydrothermal fluids, given reasonable concentrations H2, NH3, H2S and CO. For example, preliminary results indicate that glycine activities as high as 1 mmol can be reached in these systems at 100 C. Alanine formation from propanethiol is also a favorable reaction. On the other hand, the calculated equilibrium log activities of cysteine and serine from propanethiol are -21 and -19, respectively, at 100 C. These results

  20. Water column imaging on hydrothermal vent in Central Indian Ridge

    NASA Astrophysics Data System (ADS)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  1. Self-Assembled Fe-N-Doped Carbon Nanotube Aerogels with Single-Atom Catalyst Feature as High-Efficiency Oxygen Reduction Electrocatalysts

    DOE PAGES

    Zhu, Chengzhou; Fu, Shaofang; Song, Junhua; ...

    2017-02-06

    In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Chengzhou; Fu, Shaofang; Song, Junhua

    In this study, self-assembled M–N-doped carbon nanotube aerogels with single-atom catalyst feature are for the first time reported through one-step hydrothermal route and subsequent facile annealing treatment. By taking advantage of the porous nanostructures, 1D nanotubes as well as single-atom catalyst feature, the resultant Fe–N-doped carbon nanotube aerogels exhibit excellent oxygen reduction reaction electrocatalytic performance even better than commercial Pt/C in alkaline solution.

  3. High-performance oxygen reduction catalysts in both alkaline and acidic fuel cells based on pre-treating carbon material and iron precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Ping; Barkholtz, Heather M.; Wang, Ying

    We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives ofmore » Pt-based catalysts with best performance/price.« less

  4. Metalliferous sediments from Eolo Seamount (Tyrrhenian Sea): Hydrothermal deposition and re-deposition in a zone of oxygen depletion

    USGS Publications Warehouse

    Dekov, V.M.; Kamenov, George D.; Savelli, C.; Stummeyer, Jens; Thiry, M.; Shanks, Wayne C.; Willingham, A.L.; Boycheva, T.B.; Rochette, P.; Kuzmann, E.; Fortin, D.; Vertes, A.

    2009-01-01

    A sediment core taken from the south-east slope of the Eolo Seamount is composed of alternating red-brown and light-brown to bluish-grey layers with signs of re-deposition in the middle-upper section. The red-brown layers are Fe-rich metalliferous sediments formed as a result of low-temperature (??? 77????C) hydrothermal discharge, whereas the bluish-grey layers most probably originated from background sedimentation of Al-rich detrital material. The metalliferous layers are composed mainly of Si-rich goethite containing some Al. Co-precipitation of hydrothermally released SiO44- and Fe2+ as amorphous or poorly crystalline Fe-Si-oxyhydroxides explains the high Si concentration in goethite. The elevated Al content of the goethite is fairly unusual, but reflects the extremely high background Al content of the Tyrrhenian seawater due to the high eolian terrigenous flux from the Sahara desert. The Sr and Nd isotope data suggest that the Eolo metalliferous sediments are the product of a 3-component mixture: hydrothermal fluid, seawater, and detrital material (Saharan dust and Aeolian Arc material). The enrichment in Fe, P, As, Mo, Cd, Be, Sb, W, Y, V, depletion in REE and transition elements (Cu, Co, Ni, Zn) and the REE distribution patterns support the low-temperature hydrothermal deposition of the metalliferous layers. The hydrothermal field is located in a seawater layer of relative O2 depletion, which led to a significant fractionation of the hydrothermally emitted Fe and Mn. Fe-oxyhydroxides precipitated immediately around the vents whereas Mn stayed in solution longer and the Mn-oxides precipitated higher up on the seamount slope in seawater with relatively higher O2 levels. High seismic activity led to sediment re-deposition and slumping of the Mn-rich layers down slope and mixing with the Fe-rich layers. ?? 2009 Elsevier B.V. All rights reserved.

  5. Method for the recovery of silver from waste photographic fixer solutions

    DOEpatents

    Posey, F.A.; Palko, A.A.

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration of decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  6. Method for the recovery of silver from waste photographic fixer solutions

    DOEpatents

    Posey, Franz A.; Palko, Aloysius A.

    1984-01-01

    The method of the present invention is directed to the recovery of silver from spent photographic fixer solutions and for providing an effluent essentially silver-free that is suitable for discharge into commercial sewage systems. The present method involves the steps of introducing the spent photographic fixer solution into an alkaline hypochlorite solution. The oxidizing conditions of the alkaline hypochlorite solution are maintained during the addition of the fixer solution so that the silver ion complexing agents of thiosulfate and sulfite ions are effectively destroyed. Hydrazine monohydrate is then added to the oxidizing solution to form a reducing solution to effect the formation of a precipitate of silver which can be readily removed by filtration or decanting. Experimental tests indicate that greater than 99.99% of the original silver in the spent photographic fixer can be efficiently removed by practicing the present method. Also, the chemical and biological oxygen demand of the remaining effluent is significantly reduced so as to permit the discharge thereof into sewage systems at levels in compliance with federal and state environmental standards.

  7. HYDROTHERMAL SYNTHESIS OF α-MoO3 NANORODS FOR NO2 DETECTION

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Chen, Song; Tian, Yuan; Luo, Ruixian; Li, Dianqing; Chen, Aifan

    2012-12-01

    Thermodynamically stable molybdenum trioxide nanorods have been successfully synthesized by a simple hydrothermal process. The product exhibits high-quality, single-crystalline layered orthorhombic structure (α-MoO3), and aspect ratio over 20 by characterizations of X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) and Fourier transform infrared (FT-IR). The growth mechanism of α-MoO3 nanorods can be understood by electroneutral and dehydration reaction, which is highly dependent on solution acidity and hydrothermal temperature. The sensing tests show that the sensor based on MoO3 nanorods exhibits high sensitivity to NO2 and is not interferred by CO and CH4, which makes this kind sensor a competitive candidate for NO2 detection. The intrinsic sensing performance of MoO3 maybe arise from its nonstoichiometry of MoO3 owing to the presence of Mo5+ and oxygen vacancy in MoO3 lattice, which has been confirmed by X-ray photoelectron spectroscopy (XPS) analysis. The sensing mechanism of MoO3 for NO2 is also discussed.

  8. Rare Earth Element Concentrations in Submarine Hydrothermal Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, Andrew; Zierenberg, Robert

    Rare earth element concentrations in submarine hydrothermal fluids from Alarcon Rise, East Pacific Rise, REE concentrations in submarine hydrothermal fluids from Pescadero Basin, Gulf of California, and the Cleft vent field, southern Juan de Fuca Ridge. Data are not corrected to zero Mg.

  9. Hydrothermal synthesis and characterization of hydroxyapatite and fluorhydroxyapatite nano-size powders.

    PubMed

    Montazeri, Leila; Javadpour, Jafar; Shokrgozar, Mohammad Ali; Bonakdar, Shahin; Javadian, Sayfoddin

    2010-08-01

    Pure hydroxyapatite (HAp) and fluoride-containing apatite powders (FHAp) were synthesized using a hydrothermal method. The powders were assessed by x-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscope (SEM) and F-selective electrode. X-ray diffraction results revealed the formation of single phase apatite structure for all the compositions synthesized in this work. However, the addition of a fluoride ion led to a systematic shift in the (3 0 0) peak of the XRD pattern as well as modifications in the FTIR spectra. It was found that the efficiency of fluoride ion incorporation decreased with the increase in the fluoride ion content. Fluorine incorporation efficiency was around 60% for most of the FHAp samples prepared in the current study. Smaller and less agglomerated particles were obtained by fluorine substitution. The bioactivity of the powder samples with different fluoride contents was compared by performing cell proliferation, alkaline phosphatase (ALP) and Alizarin red staining assays. Human osteoblast cells were used to assess the cellular responses to the powder samples in this study. Results demonstrated a strong dependence of different cell activities on the level of fluoridation.

  10. Laboratory study on the behaviour of spent AA household alkaline batteries in incineration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, Manuel F.; Xara, Susana M.; Delgado, Julanda

    2009-01-15

    The quantitative evaluation of emissions from incineration is essential when Life Cycle Assessment (LCA) studies consider this process as an end-of-life solution for some wastes. Thus, the objective of this work is to quantify the main gaseous emissions produced when spent AA alkaline batteries are incinerated. With this aim, batteries were kept for 1 h at 1273 K in a refractory steel tube hold in a horizontal electric furnace with temperature control. At one end of the refractory steel tube, a constant air flow input assures the presence of oxygen in the atmosphere and guides the gaseous emissions to amore » filter system followed by a set of two bubbler flasks having an aqueous solution of 10% (v/v) nitric acid. After each set of experiments, sulphur, chlorides and metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Tl and Zn) were analyzed in both the solutions obtained from the steel tube washing and from the bubblers. Sulphur, chlorides and metals were quantified, respectively, using barium sulfate gravimetry, the Volhard method and atomic absorption spectrometry (AAS). The emissions of zinc, the most emitted metal, represent about 6.5% of the zinc content in the batteries. Emissions of manganese (whose oxide is the main component of the cathode) and iron (from the cathode collector) are negligible when compared with their amount in AA alkaline batteries. Mercury is the metal with higher volatility in the composition of the batteries and was collected even in the second bubbler flask. The amount of chlorides collected corresponds to about 36% of the chlorine in the battery sleeve that is made from PVC. A considerable part of the HCl formed in PVC plastic sleeve incineration is neutralized with KOH, zinc and manganese oxides and, thus, it is not totally released in the gas. Some of the emissions are predictable through a thermodynamic data analysis at temperatures in the range of 1200-1300 K taking into account the composition of the batteries. This analysis

  11. Magma ascent and emplacement in a continental rift setting: lessons from alkaline complexes in active and ancient rift zones

    NASA Astrophysics Data System (ADS)

    Hutchison, William; Lloyd, Ryan; Birhanu, Yelebe; Biggs, Juliet; Mather, Tamsin; Pyle, David; Lewi, Elias; Yirgu, Gezahgen; Finch, Adrian

    2017-04-01

    A key feature of continental rift evolution is the development of large chemically-evolved alkaline magmatic systems in the shallow crust. At active alkaline systems, for example in the East African Rift, the volcanic complexes pose significant hazards to local populations but can also sustain major geothermal resources. In ancient rifts, for example the Gardar province in Southern Greenland, these alkaline magma bodies can host some of the world's largest rare element deposits in resources such as rare earths, niobium and tantalum. Despite their significance, there are major uncertainties about how such magmas are emplaced, the mechanisms that trigger eruptions and the magmatic and hydrothermal processes that generate geothermal and mineral resources. Here we compare observations from active caldera volcanoes in the Ethiopian Rift with compositionally equivalent ancient (1300-1100 Ma) plutonic systems in the Gardar Rift province (Greenland). In the Ethiopian Rift Valley we use InSAR and GPS data to evaluate the temporal and spatial evolution of ground deformation at Aluto and Corbetti calderas. We show that unrest at Aluto is characterized by short (3-6 month) accelerating uplift pulses likely caused by magmatic fluid intrusion at 5 km. At Corbetti, uplift is steady ( 6.6 cm/yr) and sustained over many years with analytical source models suggesting deformation is linked to sill intrusion at depths of 7 km. To evaluate the validity of these contrasting deformation mechanisms (i.e. magmatic fluid intrusion and sill emplacement) we carried out extensive field, structural and geochemical analysis in the roof zones of two alkaline plutons (Ilímaussaq and Motzfeldt) in Greenland. Our results show that the volatile contents (F, Cl, OH and S) of these magmas were exceptionally high and that there is evidence for ponding of magmatic fluids in the roof zone of the magma reservoir. We also identified extensive sill networks at the contact between the magma reservoir and the

  12. The Nickel(111)/Alkaline Electrolyte Interface

    NASA Technical Reports Server (NTRS)

    Wang, Kuilong; Chottiner, G. S.; Scherson, D. A.; Reid, Margaret A.

    1991-01-01

    The electrochemical properties of Ni (111) prepared and characterized in ultra high vacuum, UHV, by surface analytical techniques have been examined in alkaline media by cyclic voltammetry using an UHV-electrochemical cell transfer system designed and built in this laboratory. Prior to the transfer, the Ni(111) surfaces were exposed to saturation coverages of CO in UHV in an attempt to protect the surface from possible contamination with other gases during the transfer. Temperature Programmed Desorption, TPD, of CO-dosed Ni (111) surfaces displaying sharp c(4x2), LEED patterns, subsequently exposed to water-saturated Ar at atmospheric pressure in an auxiliary UHV compatible chamber and finally transferred back to the main UHV chamber, yielded CO2 and water as the only detectable products. This indicates that the CO-dosed surfaces react with water and/or bicarbonate and hydroxide as the most likely products. Based on the integration of the TPD peaks, the combined amounts of H2O and CO2 were found to be on the order of a single monolayer. The reacted c(4x2)CO/Ni(111) layer seems to protect the surface from undergoing spontaneous oxidation in strongly alkaline solutions. This was evidenced by the fact that the open circuit potential observed immediately after contact with deaerated 0.1 M KOH was about 0.38 V vs. DHE, drifting slightly towards more negative values prior to initiating the voltametric scans. The average ratio of the integrated charge obtained in the first positive linear scan in the range of 0.35 to 1.5 V vs. DHE (initiated at the open circuit potential) and the first (and subsequent) linear negative scans in the same solution yielded for various independent runs a value of 3.5 +/- 0.3. Coulometric analysis of the cyclic voltammetry curves indicate that the electrochemically formed oxyhydroxide layer involves a charge equivalent to 3.2 +/- 0.4 layers of Ni metal.

  13. Removal of six pesticide residues in cowpea with alkaline electrolysed water.

    PubMed

    Han, Yongtao; Song, Le; An, Quanshun; Pan, Canping

    2017-06-01

    Reduction of six pesticide residues (isoprocarb, chlorpyrifos, bifenthrin, beta-cypermethrin, difenoconazole and azoxystrobin) in cowpea by alkaline electrolysed water (AlEW) solutions with different pH was investigated. The commonly used washing treatments in household processing were used for comparison. The residue magnitudes were determined by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). Results showed that the removal effect of AlEW solution on the six pesticides was superior to tap water, 5% sodium chloride, 5% sodium carbonate and 5% acetic acid solution. AlEW with pH 12.2 had more potential to eliminate the six pesticides in cowpeas. Moreover, the reduction of pesticide residues gradually increased with the increase of washing time. This study demonstrated that AlEW solution with pH of 12.2 could be used to reduce pesticide residues on fresh cowpea samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  15. Simulated bioavailability of phosphorus from aquatic macrophytes and hytoplankton by aqueous suspension and incubation with alkaline phosphatase

    USDA-ARS?s Scientific Manuscript database

    Bioavailability of phosphorus (P) in aquatic macrophytes and algae on lake eutrophication was studied by evaluation their P forms and quantities in their water suspensions and impact by alkaline phosphatase hydrolysis. using solution 31P-nuclear magnetic resonance (NMR). The laboratory suspension an...

  16. Genotyping by alkaline dehybridization using graphically encoded particles.

    PubMed

    Zhang, Huaibin; DeConinck, Adam J; Slimmer, Scott C; Doyle, Patrick S; Lewis, Jennifer A; Nuzzo, Ralph G

    2011-03-01

    This work describes a nonenzymatic, isothermal genotyping method based on the kinetic differences exhibited in the dehybridization of perfectly matched (PM) and single-base mismatched (MM) DNA duplexes in an alkaline solution. Multifunctional encoded hydrogel particles incorporating allele-specific oligonucleotide (ASO) probes in two distinct regions were fabricated by using microfluidic-based stop-flow lithography. Each particle contained two distinct ASO probe sequences differing at a single base position, and thus each particle was capable of simultaneously probing two distinct target alleles. Fluorescently labeled target alleles were annealed to both probe regions of a particle, and the rate of duplex dehybridization was monitored by using fluorescence microscopy. Duplex dehybridization was achieved through an alkaline stimulus using either a pH step function or a temporal pH gradient. When a single target probe sequence was used, the rate of mismatch duplex dehybridization could be discriminated from the rate of perfect match duplex dehybridization. In a more demanding application in which two distinct probe sequences were used, we found that the rate profiles provided a means to discriminate probe dehybridizations from both of the two mismatched duplexes as well as to distinguish at high certainty the dehybridization of the two perfectly matched duplexes. These results demonstrate an ability of alkaline dehybridization to correctly discriminate the rank hierarchy of thermodynamic stability among four sets of perfect match and single-base mismatch duplexes. We further demonstrate that these rate profiles are strongly temperature dependent and illustrate how the sensitivity can be compensated beneficially by the use of an actuating gradient pH field. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Sources of organic nitrogen at the serpentinite-hosted Lost City hydrothermal field.

    PubMed

    Lang, S Q; Früh-Green, G L; Bernasconi, S M; Butterfield, D A

    2013-03-01

    The reaction of ultramafic rocks with water during serpentinization at moderate temperatures results in alkaline fluids with high concentrations of reduced chemical compounds such as hydrogen and methane. Such environments provide unique habitats for microbial communities capable of utilizing these reduced compounds in present-day and, possibly, early Earth environments. However, these systems present challenges to microbial communities as well, particularly due to high fluid pH and possibly the availability of essential nutrients such as nitrogen. Here we investigate the source and cycling of organic nitrogen at an oceanic serpentinizing environment, the Lost City hydrothermal field (30°N, Mid-Atlantic Ridge). Total hydrolizable amino acid (THAA) concentrations in the fluids range from 736 to 2300 nm and constitute a large fraction of the dissolved organic carbon (2.5-15.1%). The amino acid distributions, and the relative concentrations of these compounds across the hydrothermal field, indicate they most likely derived from chemolithoautotrophic production. Previous studies have identified the presence of numerous nitrogen fixation genes in the fluids and the chimneys. Organic nitrogen in actively venting chimneys has δ(15) N values as low as 0.1‰ which is compatible with biological nitrogen fixation. Total hydrolizable amino acids in the chimneys are enriched in (13) C by 2-7‰ compared to bulk organic matter. The distribution and absolute δ(13) C(THAA) values are compatible with a chemolithoautotrophic source, an attribution also supported by molar organic C/N ratios in most active chimneys (4.1-5.5) which are similar to those expected for microbial communities. In total, these data indicate nitrogen is readily available to microbial communities at Lost City. © 2013 Blackwell Publishing Ltd.

  18. The Effect of Alkaline Earth Metal on the Cesium Loading of Ionsiv(R) IE-910 and IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fondeur, F.F.

    2001-01-16

    This study investigated the effect of variances in alkaline earth metal concentrations on cesium loading of IONSIV(R) IE-911. The study focused on Savannah River Site (SRS) ''average'' solution with varying amounts of calcium, barium and magnesium.

  19. Cation–hydroxide–water coadsorption inhibits the alkaline hydrogen oxidation reaction

    DOE PAGES

    Chung, Hoon Taek; Martinez, Ulises; Matanovic, Ivana; ...

    2016-10-24

    Rotating disk electrode voltammograms and infrared reflection absorption spectra indicate that the hydrogen oxidation reaction of platinum in 0.1 M tetramethylammonium hydroxide solution is adversely impacted by time-dependent and potential-driven cation–hydroxide–water coadsorption. Impedance analysis suggests that the hydrogen oxidation reaction inhibition is mainly caused by the hydrogen diffusion barrier of the coadsorbed trilayer rather than intuitive catalyst site blocking by the adsorbed cation species. Finally, these results give useful insights on how to design ionomeric binders for advanced alkaline membrane fuel cells.

  20. Genesis of the hydrothermal gold deposits in the Canan area, Lepaguare District, Honduras

    NASA Astrophysics Data System (ADS)

    Mattioli, Michele; Menichetti, Marco; Renzulli, Alberto; Toscani, Lorenzo; Salvioli-Mariani, Emma; Suarez, Pedro; Murroni, Alessandro

    2014-04-01

    The Canan area (Honduras) is characterized by a gold-bearing ore deposit that is associated with quartz-veined shear zones. Gold mineralization occurs in low-to medium-grade metamorphic host-rocks (graphitic and sericitic schists). Hydrothermal fluids, which are associated with the emplacement of Cretaceous-Tertiary granodioritic intrusions, are responsible for the formation of quartz veins and the hydrothermal alteration of wall-rocks. Three main altered zones have been detected in the wall-rocks as far as 150 cm from the quartz veins. The distal zone (up to 50-cm thick) contains quartz, chlorite and illite. The intermediate zone is the thickest (up to 80 cm) and is marked by quartz, muscovite, sulphides, kaolinite and native elements such as Au and Ag. The proximal zone, which is close to the quartz veins, is rather thin (up to 25 cm) and contains clay minerals, Al-oxides-hydroxides and sulphides. The transition from the distal to the proximal zone is accompanied by the enrichment of SiO2 and the depletion of all other major elements, except for Fe2O3(tot). Precious metals occur in the highest concentrations in the intermediate zone (Au up to 7.6 ppm and Ag up to 11 ppm). We suggest that gold was transported as a reduced sulphur complex and was precipitated from the hydrothermal solution by the reaction of the sulphur complexes with Fe2+ from the alteration of the mafic minerals of the host-rock. Fluid-wall-rock interactions seem to be the main cause of gold mineralization. Genetic relationships with a strike-slip fault system, hydrothermal alteration zones within the metamorphic wall-rocks, and an entire set of geochemical anomalies are consistent with orogenic-type gold deposits of the epizonal class.

  1. Late-stage magmatic to deuteric/metasomatic accessory minerals from the Cerro Boggiani agpaitic complex (Alto Paraguay Alkaline Province)

    NASA Astrophysics Data System (ADS)

    Comin-Chiaramonti, Piero; Renzulli, Alberto; Ridolfi, Filippo; Enrich, Gaston E. R.; Gomes, Celso B.; De Min, Angelo; Azzone, Rogério G.; Ruberti, Excelso

    2016-11-01

    This work describes rare accessory minerals in volcanic and subvolcanic silica-undersaturated peralkaline and agpaitic rocks from the Permo-Triassic Cerro Boggiani complex (Eastern Paraguay) in the Alto Paraguay Alkaline Province. These accessory phases consist of various minerals including Th-U oxides/silicates, Nb-oxide, REE-Sr-Ba bearing carbonates-fluorcarbonates-phosphates-silicates and Zr-Na rich silicates. They form a late-stage magmatic to deuteric/metasomatic assemblage in agpaitic nepheline syenites and phonolite dykes/lava flows made of sodalite, analcime, albite, fluorite, calcite, ilmenite-pyrophanite, titanite and zircon. It is inferred that carbonatitic fluids rich in F, Na and REE percolated into the subvolcanic system and metasomatically interacted with the Cerro Boggiani peralkaline and agpaitic silicate melts at the thermal boundary layers of the magma chamber, during and shortly after their late-stage magmatic crystallization and hydrothermal deuteric alteration.

  2. Hydrothermally grown β-V₂O₅ electrode at 95°C.

    PubMed

    Vernardou, D; Apostolopoulou, M; Louloudakis, D; Katsarakis, N; Koudoumas, E

    2014-06-15

    The hydrothermal growth of crystalline β-V2O5 microstructures was performed on fluorine doped tin dioxide glass substrates using oxalic acid to adjust the pH of the solution for various deposition periods. It was observed that the sample grown for 48 h at pH 2 exhibited the best electrochemical response in terms of the highest specific charge and capacitance, being 772 C g(-1) and 386 F g(-1) respectively. The importance of achieving high crystalline quality samples and increased surface area toward the improvement of the electrochemical performance of β-V2O5 is highlighted. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Entropy Production in Convective Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Boersing, Nele; Wellmann, Florian; Niederau, Jan

    2016-04-01

    Exploring hydrothermal reservoirs requires reliable estimates of subsurface temperatures to delineate favorable locations of boreholes. It is therefore of fundamental and practical importance to understand the thermodynamic behavior of the system in order to predict its performance with numerical studies. To this end, the thermodynamic measure of entropy production is considered as a useful abstraction tool to characterize the convective state of a system since it accounts for dissipative heat processes and gives insight into the system's average behavior in a statistical sense. Solving the underlying conservation principles of a convective hydrothermal system is sensitive to initial conditions and boundary conditions which in turn are prone to uncertain knowledge in subsurface parameters. There exist multiple numerical solutions to the mathematical description of a convective system and the prediction becomes even more challenging as the vigor of convection increases. Thus, the variety of possible modes contained in such highly non-linear problems needs to be quantified. A synthetic study is carried out to simulate fluid flow and heat transfer in a finite porous layer heated from below. Various two-dimensional models are created such that their corresponding Rayleigh numbers lie in a range from the sub-critical linear to the supercritical non-linear regime, that is purely conductive to convection-dominated systems. Entropy production is found to describe the transient evolution of convective processes fairly well and can be used to identify thermodynamic equilibrium. Additionally, varying the aspect ratio for each Rayleigh number shows that the variety of realized convection modes increases with both larger aspect ratio and higher Rayleigh number. This phenomenon is also reflected by an enlarged spread of entropy production for the realized modes. Consequently, the Rayleigh number can be correlated to the magnitude of entropy production. In cases of moderate

  4. Phosphatidylinositol anchor of HeLa cell alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jemmerson, R.; Low, M.G.

    1987-09-08

    Alkaline phosphatase from cancer cells, HeLa TCRC-1, was biosynthetically labeled with either /sup 3/H-fatty acids or (/sup 3/H)ethanolamine as analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitated material. Phosphatidylinositol-specific phospholipase C (PI-PLC) released a substantial proportion of the /sup 3/H-fatty acid label from immunoaffinity-purified alkaline phosphatase but had no effect on the radioactivity of (/sup 3/H)ethanolamine-labeled material. PI-PLC also liberated catalytically active alkaline phosphatase from viable cells, and this could be selectively blocked by monoclonal antibodies to alkaline phosphatase. However, the alkaline phosphatase released from /sup 3/H-fatty acid labeled cells by PI-PLC was not radioactive. By contrast,more » treatment with bromelain removed both the /sup 3/H-fatty acid and the (/sup 3/H)ethanolamine label from purified alkaline phosphatase. Subtilisin was also able to remove the (/sup 3/H)ethanolamine label from the purified alkaline phosphatase. The /sup 3/H radioactivity in alkaline phosphatase purified from (/sup 3/H)ethanolamine-labeled cells comigrated with authentic (/sup 3/H)ethanolamine by anion-exchange chromatography after acid hydrolysis. The data suggest that the /sup 3/H-fatty acid and (/sup 3/H)ethanolamine are covalently attached to the carboxyl-terminal segment since bromelain and subtilisin both release alkaline phosphatase from the membrane by cleavage at that end of the polypeptide chain. The data are consistent with findings for other proteins recently shown to be anchored in the membrane through a glycosylphosphatidylinositol structure and indicate that a similar structure contributes to the membrane anchoring of alkaline phosphatase.« less

  5. Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis

    Treesearch

    Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby

    2012-01-01

    Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...

  6. Increased river alkalinization in the Eastern U.S.

    PubMed

    Kaushal, Sujay S; Likens, Gene E; Utz, Ryan M; Pace, Michael L; Grese, Melissa; Yepsen, Metthea

    2013-09-17

    The interaction between human activities and watershed geology is accelerating long-term changes in the carbon cycle of rivers. We evaluated changes in bicarbonate alkalinity, a product of chemical weathering, and tested for long-term trends at 97 sites in the eastern United States draining over 260,000 km(2). We observed statistically significant increasing trends in alkalinity at 62 of the 97 sites, while remaining sites exhibited no significant decreasing trends. Over 50% of study sites also had statistically significant increasing trends in concentrations of calcium (another product of chemical weathering) where data were available. River alkalinization rates were significantly related to watershed carbonate lithology, acid deposition, and topography. These three variables explained ~40% of variation in river alkalinization rates. The strongest predictor of river alkalinization rates was carbonate lithology. The most rapid rates of river alkalinization occurred at sites with highest inputs of acid deposition and highest elevation. The rise of alkalinity in many rivers throughout the Eastern U.S. suggests human-accelerated chemical weathering, in addition to previously documented impacts of mining and land use. Increased river alkalinization has major environmental implications including impacts on water hardness and salinization of drinking water, alterations of air-water exchange of CO2, coastal ocean acidification, and the influence of bicarbonate availability on primary production.

  7. Thermohydrodynamic model: Hydrothermal system, shallowly seated magma chamber

    NASA Astrophysics Data System (ADS)

    Kiryukhin, A. V.

    1985-02-01

    The results of numerical modeling of heat exchange in the Hawaiian geothermal reservoir demonstrate the possibility of appearance of a hydrothermal system over a magma chamber. This matter was investigated in hydrothermal system. The equations for the conservation of mass and energy are discussed. Two possible variants of interaction between the magma chamber and the hydrothermal system were computated stationary dry magma chamber and dry magma chamber changing volume in dependence on the discharge of magma and taking into account heat exchange with the surrounding rocks. It is shown that the thermal supplying of the hydrothermal system can be ensured by the extraction of heat from a magma chamber which lies at a depth of 3 km and is melted out due to receipt of 40 cubic km of basalt melt with a temperature of 1,300 C. The initial data correspond with computations made with the model to the temperature values in the geothermal reservoir and a natural heat transfer comparable with the actually observed values.

  8. Electrochemical behavior of meso-substituted iron porphyrins in alkaline aqueous media

    NASA Astrophysics Data System (ADS)

    Berezina, N. M.; Bazanov, M. I.; Maksimova, A. A.; Semeikin, A. S.

    2017-12-01

    The effect meso-substitution in iron porphyrin complexes has on their redox behavior in alkaline aqueous solutions is studied via cyclic voltammetry. The voltammetric features of the reduction of iron pyridylporphyrins suggest that the sites of electron transfer lie at the ligand, the metal ion, and the pyridyl moieties. The electron transfer reactions between the different forms of these compounds, including the oxygen reduction reaction they mediate, are outlined to show the sequence and potential ranges in which they occur in alkaline aqueous media. Under our experimental conditions, the iron porphyrins exist as μ-oxo dimmers whose activity for the electrocatalytic reduction of oxygen displays a considerable dependence on the nature of the substitutents and nitrogen isomerization (for pyridylporphyrins) and grows in the order (Fe( ms-Ph)4P)2O, (Fe[ ms-(Py-3)Ph3]P)2O, (Fe[ ms-(Py-4)4]P)2O, and (Fe[ ms-(Py-3)4]P)2O.

  9. Characteristics of hydrothermal alteration mineralogy and geochemistry of igneous rocks from the epithermal Co-O mine and district, Eastern Mindanao (Philippines)

    NASA Astrophysics Data System (ADS)

    Sonntag, Iris; Hagemann, Steffen

    2010-05-01

    Detailed petrographic as well as hyperspectral analyses using PIMA (Portable Infrared Mineral Analyser) and geochemical (major, trace and rare earth elements) studies were conducted on samples of the epithermal, low sulfidation Co-O mine (47,869 ounces gold produced in 2009 with an average grade of 13.3 g/t gold) and district in Eastern Mindanao (Philippines). The aims of the study were to unravel the petrogenetic origin of the various volcanic (host rocks) and intrusive rocks (potential fluid driver) as well as their relationship and influence on the hydrothermal alteration zoning and fluid chemistry. The auriferous veins at the Co-O mine were formed during two hydrothermal stages associated with the district wide D1 and D2 deformation events. Gold in stage 1 quartz veins is in equilibrium with galena and sphalerite, whereas in stage 2 it is associated with pyrite. Auriferous quartz veins of stage 1 reflect temperatures below 250° C or strong variations in pH and fO2 at higher temperatures, due to potential involvement of acidic gas or meteoric water. Cathodoluminescense studies revealed strong zonation of quartz associated with Au, presumably related to changes in the Al content, which is influenced by the pH. Plumose textures indicate times of rapid deposition, whereas saccharoidal quartz grains are related to potential calcite replacement. The geology of the Co-O mine and district is dominated by Miocene volcanic rocks (basic to intermediate flows and pyroclastics units), which are partly covered by Pliocene volcanic rocks and late Oligocene to Miocene limestones. The Miocene units are intruded by diorite (presumably Miocene in age). The epithermal mineralization event may be related to diorite intrusions. The geochemistry of all igneous rocks in the district is defined by a sub-alkaline affinity and is low to medium K in composition. Most units are related to a Miocene subduction zone with westward subduction, whereas the younger Pliocene rocks are related to

  10. The effect of NaOH concentration on the steam-hydrothermally treated bioactive microarc oxidation coatings containing Ca, P, Si and Na on pure Ti surface.

    PubMed

    Zhou, Rui; Wei, Daqing; Cao, Jianyun; Feng, Wei; Cheng, Su; Du, Qing; Li, Baoqiang; Wang, Yaming; Jia, Dechang; Zhou, Yu

    2015-04-01

    The microarc oxidation (MAO) coating covered pure Ti plates are steam-hydrothermally treated in autoclaves containing NaOH solutions with different concentrations of 0, 0.001, 0.01, 0.1 and 1mol·L(-1). Due to the composition of Ti, O, Ca, P, Si and Na elements in the MAO coating, anatase and hydroxyapatite (HA) crystals are generated from the previously amorphous MAO coating after the steam-hydrothermal treatment. Meanwhile, it is noticed that the amount of HA crystals increases but showing a decline trend in aspect ratio in morphologies with the increasing of NaOH concentration. Interestingly, the steam-hydrothermally treated MAO coatings exhibit better bonding strength with Ti substrate (up to 43.8±1.1MPa) than that of the untreated one (20.1±3.1MPa). In addition, benefiting from the corrosive attack of the dissolved NaOH in water vapor on the MAO coating, Ti-OH is also formed on the steam-hydrothermally treated MAO coating surface, which can trigger apatite nucleation. Thus, the steam-hydrothermally treated MAO coatings exhibit good apatite-inducing ability. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Two chain gallium fluorodiphosphates: synthesis, structure solution, and their transient presence during the hydrothermal crystallisation of a microporous gallium fluorophosphate.

    PubMed

    Millange, Franck; Walton, Richard I; Guillou, Nathalie; Loiseau, Thierry; O'Hare, Dermot; Férey, Gérard

    2002-04-21

    Two novel gallium fluorodiphosphates have been isolated and their structures solved ab initio from powder X-ray diffraction data; the materials readily interconvert under hydrothermal conditions, and are metastable with respect to an open-framework zeolitic gallium fluorophosphate, during the synthesis of which they are present as transient intermediates.

  12. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability.

    PubMed

    Liu, Tongjun; Williams, Daniel L; Pattathil, Sivakumar; Li, Muyang; Hahn, Michael G; Hodge, David B

    2014-04-03

    A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. This work demonstrates that this two-stage pretreatment process is well suited for

  13. Coupling alkaline pre-extraction with alkaline-oxidative post-treatment of corn stover to enhance enzymatic hydrolysis and fermentability

    PubMed Central

    2014-01-01

    Background A two-stage chemical pretreatment of corn stover is investigated comprising an NaOH pre-extraction followed by an alkaline hydrogen peroxide (AHP) post-treatment. We propose that conventional one-stage AHP pretreatment can be improved using alkaline pre-extraction, which requires significantly less H2O2 and NaOH. To better understand the potential of this approach, this study investigates several components of this process including alkaline pre-extraction, alkaline and alkaline-oxidative post-treatment, fermentation, and the composition of alkali extracts. Results Mild NaOH pre-extraction of corn stover uses less than 0.1 g NaOH per g corn stover at 80°C. The resulting substrates were highly digestible by cellulolytic enzymes at relatively low enzyme loadings and had a strong susceptibility to drying-induced hydrolysis yield losses. Alkaline pre-extraction was highly selective for lignin removal over xylan removal; xylan removal was relatively minimal (~20%). During alkaline pre-extraction, up to 0.10 g of alkali was consumed per g of corn stover. AHP post-treatment at low oxidant loading (25 mg H2O2 per g pre-extracted biomass) increased glucose hydrolysis yields by 5%, which approached near-theoretical yields. ELISA screening of alkali pre-extraction liquors and the AHP post-treatment liquors demonstrated that xyloglucan and β-glucans likely remained tightly bound in the biomass whereas the majority of the soluble polymeric xylans were glucurono (arabino) xylans and potentially homoxylans. Pectic polysaccharides were depleted in the AHP post-treatment liquor relative to the alkaline pre-extraction liquor. Because the already-low inhibitor content was further decreased in the alkaline pre-extraction, the hydrolysates generated by this two-stage pretreatment were highly fermentable by Saccharomyces cerevisiae strains that were metabolically engineered and evolved for xylose fermentation. Conclusions This work demonstrates that this two

  14. Buffering of potassium in seawater by alteration of basalt in low-temperature, off-axis, hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Laureijs, C. T.; Coogan, L. A.

    2016-12-01

    It is generally accepted that the composition of seawater has varied through the Phanerzoic and that the variation is linked to changes in the same global fluxes that control the long-term carbon cycle. However, K is observed to be stable at a value of 10 mmol/L despite variable river and hydrothermal fluxes [1]. Secondary K-bearing phases are widely observed in altered upper oceanic crust, suggesting that reactions between seawater and basalt in low-temperature, off-axis, oceanic hydrothermal systems could buffer the K concentration of seawater [2]. As K-feldspar is a common secondary K-bearing mineral in Cretaceous and rare in Cenozoic oceanic crust, the formation of K-feldspar by breakdown of plagioclase reacting with a model Cretaceous seawater was modeled at 15 ºC using the PhreeqC code (version 3.2) and the associated llnl.dat database. A fluid with a K-content of 11 mmol/L in equilibrium with K-feldspar and calcite was generated, consistent with K-feldspar acting as a buffer for the K-content in Cretaceous seawater and the production of alkalinity stabilizing atmospheric CO2 levels on the long-term timescales. A compilation of the K2O content of lavas from DSDP and ODP drill cores (from: http://www.earthchem.org/petdb) shows that the average K-content of altered crust was higher in the Cretaceous than the Cenozoic. This data is inconsistent with the model for the composition of seawater presented in [2], but is consistent with an updated and modified version of this model, that uses more realistic fluxes [3]. We conclude that oceanic off-axis hydrothermal systems probably do buffer the K-content of seawater. [1] Timofeeff et al. (2006), Geochim. Cosmochim. Acta. 70, 1977-1994; [2] Demicco et al. (2005), Geology 33, 877-880. [3] Coogan & Dosso (2012), Earth Planet. Sci. Lett. 323-324, 92-101.

  15. Influence of hydrothermal processes on changes of volcanic rocks (data of physical modelling)

    NASA Astrophysics Data System (ADS)

    Shanina, V. V.; Bychkov, A. Y.

    2009-04-01

    Due to active development of geothermal energy, in middle of the last century have begun papers devoted to experiments, directed on study of transformations of minerals [4] and rocks [1, 2, 5] under action of geothermal processes. But any researcher did not estimate thus change of their physical and physico-mechanical properties. The purpose of job - to study character and dynamics changes of volcanic rocks (to simulate conditions of geothermal transformations). Tasks: creation of the whole series of experiments in autoclavs at various temperatures, pressure and composition of solutions, preparation of samples, study of chemical and mineral composition, structure and properties of rocks and solutions before and after experiments. In 2006 the first similar experiments were begun [3]. Researched rocks basalts, hyaloclasites and obsidian, selected from Iceland and tuffs Payzhetka Geothermal Field, Southern Kamchatka, Russia. Were used autoclavs, consisting from titanic of an alloy ВТ-8, volume 116-119 мл, in each of which was located from 2 up to 4 samples of rocks of the investigated structure and properties. The heating was made in OVEN ТРМ-10 with accuracy + 1 °С, the constancy of temperature was supervised by thermocouples. 15 experiences (temperature 200, 300 and 450 °С; pressure 16, 86 and 1000 bars accordingly now are carried out; 4 solutions (1 alkaline and 3 acid); duration 14, 15, 30 and 60 days). All four groups of the investigated rocks appreciablly react under geothermal influence. The changes are observed in colour of samples (brighten in acid solutions), their microstructure, that for basalts is visible only in raster electronic microscope, and in education of new mineral phases, is especially active in a acid solution, the X-Ray analysis (has executed by Dr. Krupskaya V.V., apparatuses - DRON- UM1) has shown, that 94,2 % is smectite, 3,5 % - kaolinite, 1,2 % - crisrobalite, 1,1 % - diopside (?), in others pores fills chlorite, and in an

  16. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    NASA Astrophysics Data System (ADS)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  17. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge

    NASA Astrophysics Data System (ADS)

    Ji, Fuwu; Zhou, Huaiyang; Yang, Qunhui; Gao, Hang; Wang, Hu; Lilley, Marvin D.

    2017-04-01

    The Longqi hydrothermal field at 49.6°E on the Southwest Indian Ridge was the first active hydrothermal field found at a bare-rock ultra-slow spreading mid-ocean ridge. Here we report the chemistry of the hydrothermal fluids, for the first time, that were collected from the S zone and the M zone of the Longqi field by gas-tight isobaric samplers by the HOV "Jiaolong" diving cruise in January 2015. According to H2, CH4 and other chemical data of the vent fluid, we suggest that the basement rock at the Longqi field is dominantly mafic. This is consistent with the observation that the host rock of the active Longqi Hydrothermal field is dominated by extensively distributed basaltic rock. It was very interesting to detect simultaneously discharging brine and vapor caused by phase separation at vents DFF6, DFF20, and DFF5 respectively, in a distance of about 400 m. Based on the end-member fluid chemistry and distance between the vents, we propose that there is a single fluid source at the Longqi field. The fluid branches while rising to the seafloor, and two of the branches reach S zone and M zone and phase separate at similar conditions of about 28-30.2 MPa and 400.6-408.3 °C before they discharge from the vents. The end-member fluid compositions of these vents are comparable with or within the range of variation of known global seafloor hydrothermal fluid chemical data from fast, intermediate and slow spreading ridges, which confirms that the spreading rate is not the key factor that directly controls hydrothermal fluid chemistry. The composition of basement rock, water-rock interaction and phase separation are the major factors that control the composition of the vent fluids in the Longqi field.

  18. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry.

    PubMed

    Deamer, David; Damer, Bruce

    2017-09-01

    Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth-hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface-and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus-Hydrothermal vents-Hydrothermal fields-Origin of life. Astrobiology 17, 834-839.

  19. Major off-axis hydrothermal activity on the northern Gorda Ridge

    USGS Publications Warehouse

    Rona, Peter A.; Denlinger, Roger P.; Fisk, M. R.; Howard, K. J.; Taghon, G. L.; Klitgord, Kim D.; McClain, James S.; McMurray, G. R.; Wiltshire, J. C.

    1990-01-01

    The first hydrothermal field on the northern Gorda Ridge, the Sea Cliff hydrothermal field, was discovered and geologic controls of hydrothermal activity in the rift valley were investigated on a dive series using the DSV Sea Cliff. The Sea Cliff hydrothermal field was discovered where predicted at the intersection of axis-oblique and axis-parallel faults at the south end of a linear ridge at mid-depth (2700 m) on the east wall. Preliminary mapping and sampling of the field reveal: a setting nested on nearly sediment-free fault blocks 300 m above the rift valley floor 2.6 km from the axis; a spectrum of venting types from seeps to black smokers; high conductive heat flow estimated to be equivalent to the convective flux of multiple black smokers through areas of the sea floor sealed by a caprock of elastic breccia primarily derived from basalt with siliceous cement and barite pore fillings; and a vent biota with Juan de Fuca Ridge affinites. These findings demonstrate the importance of off-axis hydrothermal activity and the role of the intersection of tectonic lineations in controlling hydrothermal sites at sea-floor spreading centers.

  20. Can Life Begin on Enceladus? A Perspective from Hydrothermal Chemistry

    PubMed Central

    Damer, Bruce

    2017-01-01

    Abstract Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus. Here we will compare the properties of two proposed sites for the origin of life on Earth—hydrothermal vents on the ocean floor and hydrothermal volcanic fields at the surface—and ask whether similar conditions could have fostered the origin of life on Enceladus. The answer depends on which of the two sites would be more conducive for the chemical evolution leading to life's origin. A hydrothermal vent origin would allow life to begin in the Enceladus ocean, but if the origin of life requires freshwater hydrothermal pools undergoing wet-dry cycles, the Enceladus ocean could be habitable but lifeless. These arguments also apply directly to Europa and indirectly to early Mars. Key Words: Enceladus—Hydrothermal vents—Hydrothermal fields—Origin of life. Astrobiology 17, 834–839. PMID:28682665