Science.gov

Sample records for alkaline hypersaline mono

  1. Morphological characterization of viruses in the stratified water column of alkaline, hypersaline Mono Lake.

    PubMed

    Brum, Jennifer R; Steward, Grieg F

    2010-10-01

    Concentrations of viruses and prokaryotes in the alkaline, moderately hypersaline, seasonally stratified Mono Lake are among the highest reported for a natural aquatic environment. We used electron microscopy to test whether viral morphological characteristics differed among the epilimnion, metalimnion, and the anoxic hypolimnion of the lake and to determine how the properties of viruses in Mono Lake compare to other aquatic environments. Viral capsid size distributions were more similar in the metalimnion and hypolimnion of Mono Lake, while viral tail lengths were more similar in the epilimnion and metalimnion. The percentage of tailed viruses decreased with depth and the relative percentages of tailed phage families changed with depth. The presence of large (>125 nm capsid), untailed viruses in the metalimnion and hypolimnion suggests that eukaryotic viruses are produced in these suboxic and anoxic, hypersaline environments. Capsid diameters of viruses were larger on average in Mono Lake compared to other aquatic environments, and no lemon-shaped or filamentous viruses were found, in contrast to other high-salinity or high-altitude lakes and seas. Our data suggest that the physically and chemically distinct layers of Mono Lake harbor different viral assemblages, and that these assemblages are distinct from other aquatic environments that have been studied. Furthermore, we found that filtration of a sample through a 0.22-µm pore-size filter significantly altered the distribution of viral capsid diameters and tail lengths, resulting in a relative depletion of viruses having larger capsids and longer tails. This observation highlights the potential for bias in molecular surveys of viral diversity, which typically rely on filtration through 0.2- or 0.22-µm pore-size membrane filters to remove bacteria during sample preparation.

  2. Organic osmolytes in aerobic bacteria from mono lake, an alkaline, moderately hypersaline environment.

    PubMed

    Ciulla, R A; Diaz, M R; Taylor, B F; Roberts, M F

    1997-01-01

    The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, Calif., an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress.

  3. Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California.

    PubMed

    Jiang, S; Steward, G; Jellison, R; Chu, W; Choi, S

    2004-01-01

    Mono Lake is a large (180 km2), alkaline (pH approximately 10), moderately hypersaline (70-85 g kg(-1)) lake lying at the western edge of the Great Basin. An episode of persistent chemical stratification (meromixis) was initiated in 1995 and has resulted in depletion of oxygen and accumulation of ammonia and sulfide beneath the chemocline. Although previous studies have documented high bacterial abundances and marked seasonal changes in phytoplankton abundance and community composition, there have been no previous reports on the occurrence of viruses in this unique lake. Based on the high concentrations and diversity of microbial life in this lake, we hypothesized that planktonic viruses are also abundant and diverse. To examine the abundance and distribution of viruses and bacteria, water samples were collected from four stations along 5 to 15 vertical depths at each station. Viral abundance ranged from 1 x 10(8) to 1 x 10(9) mL(-1), among the highest observed in any natural aquatic system examined so far. Increases (p < 0.1) in viral densities were observed in the anoxic bottom water at multiple stations. However, regression analysis indicated that viral abundance could not be predicted by any single environmental parameter. Pulsed field gel electrophoresis revealed a diverse viral community in Mono Lake with genome sizes ranging from approximately 14 to >400 kb with most of the DNA in the 30 to 60 kb size range. Cluster analysis grouped the anoxic bottom-water viral community into a unique cluster differentiating it from surface and mid-water viral communities. A hybridization study using an indigenous viral isolate as a probe revealed an episodic pattern of temporal phage distribution with strong niche stratification between oxic and anoxic waters.

  4. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment

    SciTech Connect

    Ciulla, R.A.; Roberts, M.F.; Diaz, M.R.; Taylor, B.F.

    1997-01-01

    The identity and concentrations of intracellular organic solutes were determined by nuclear magnetic resonance spectroscopy for two strains of aerobic, gram-negative bacteria isolated from Mono Lake, California, an alkaline, moderately hypersaline lake. Ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) was the major endogenous solute in both organisms. Concentrations of ectoine varied with external NaCl levels in strain ML-D but not in strain ML-G, where the level was high but invariant from 1.5 to 3.0 M NaCl. Hydroxyectoine also occurred in strain ML-D, especially at elevated NaCl concentrations (2.5 and 3.0 M), but at levels lower than those of ectoine. Exogenous organic solutes that might occur in Mono Lake were examined for their effects on the de novo synthesis of ectoine. Dimethylsulfoniopropionate (DMSP) (0.1 or 1 mM) did not significantly lower ectoine levels in either isolate, and only strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G showed any capacity for DMSP accumulation. With nitrogen limitation, however, DMSP (0.1 mM) substituted for ectoine in strain ML-G and became the main organic solute. Glycine betaine (GB) was more effective than DMSP in affecting ectoine levels, principally in strain ML-D. Strain ML-D accumulated GB to 50 or 67% of its organic solute pool at 2.5 M NaCl, at an external level of 0.1 or 1 mM GB, respectively. Strain ML-D also accumulated arsenobetaine. The methylated zwitterionic compounds, probably metabolic products of phytoplankton (DMSP and GB) or brine shrimps (arsenobetaine) in Mono Lake, may function as osmolytes for indigenous bacteria when present at high concentrations or under conditions of nitrogen limitation or salt stress. 33 refs., 5 figs., 2 tabs.

  5. Anaerobic Halo-Alkaliphilic Baterial Community of Athalassic, Hypersaline Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, Elena V.; Hoover, Richard B.; Marsic, Damien; Ng, Joseph D.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The microorganisms of soda Mono Lake and other similar athalassic hypersaline alkaline soda lakes are of significance to Astrobiology. The microorganisms of these regimes represent the best known terrestrial analogs for microbial life that might have inhabited the hypersaline alkaline lakes and evaporites confined within closed volcanic basins and impact craters during the late Noachian and early Hesperian epochs (3.6 - 4.2 Gya) of ancient Mars. We have investigated the anaerobic microbiota of soda Mono Lake in northern California. In this paper we discuss the astrobiological significance of these ecosystems and describe several interesting features of two novel new species of anaerobic halo-alkaliphilic bacteria (Spirochaeta americana, sp. nov. and Desulfonatronum paiuteum, sp. nov) that we have isolated from Mono Lake.

  6. Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California).

    PubMed

    Sorokin, Dimitry Yu; Gorlenko, Vladimir M; Tourova, Tat'yana P; Tsapin, Alexandre I; Nealson, Kenneth H; Kuenen, Gijs J

    2002-05-01

    Two strains of haloalkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria were isolated from the oxygen-sulfide interface water layer of stratified alkaline and saline Mono Lake, California, USA. Strain ALM 1T was a dominant species in enrichment on moderate-saline, carbonate-buffered medium (0.6 M total Na+, pH 10) with thiosulfate as an energy source and nitrate as a nitrogen source. Cells of ALM 1T are open ring-shaped and are non-motile. It has a high growth rate and activity of thiosulfate and sulfide oxidation and very low sulfur-oxidizing activity. Genetic comparison and phylogenetic analysis suggested that ALM 1T (= DSM 14477T = JCM 11371T) represents a new species of the genus Thioalkalimicrobium in the gamma-Proteobacteria, for which the name Thioalkalimicrobium cyclicum sp. nov. is proposed. Another Mono Lake isolate, strain ALM 2T, dominated in enrichment on a medium containing 2 M total Na+ (pH 10). It is a motile vibrio which tolerates up to 4 M Na+ and produces a membrane-bound yellow pigment. Phylogenetic analysis placed ALM 2T as a member of genus Thioalkalivibrio in the gamma-Proteobacteria, although its DNA hybridization with the representative strains of this genus was only about 30%. On the basis of genetic and phenotypic properties, strain ALM 2T (= DSM 14478T = JCM 11372T) is proposed as Thioalkalivibrio jannaschii sp. nov..

  7. Comparison of chitinolytic enzymes from an alkaline, hypersaline lake and an estuary.

    PubMed

    LeCleir, Gary R; Buchan, Alison; Maurer, John; Moran, Mary Ann; Hollibaugh, James T

    2007-01-01

    We examined the genetic and physiological characteristics of chitin degrading enzymes expressed by fosmids cloned from two strains of chitinolytic gammaproteobacteria isolated from alkaline, hypersaline Mono Lake, California; and from a metagenomic library derived from an estuarine bacterial community (Dean Creek, Sapelo Island, GA, USA). The Mono Lake chitinolytic enzymes presented unique adaptations in terms of halo- and alkalitolerance. The sequence from one of the Mono Lake isolates (strain 12A) was a conventional family 18 glycosyl hydrolase; however, the expressed protein had a novel secondary activity peak at pH 10. We obtained a novel family 20 glycosyl hydrolase sequence from Mono Lake strain AI21. The activity of the expressed protein had a pH optimum of 10, several pH units higher than any other enzyme currently assigned to this family, and the enzyme retained 80% of its activity at pH 11. The enzyme was also halotolerant, retaining activity in salt solutions of up to 225 g l(-1). Sequence analysis indicated a molecular weight of approximately 90 kDa for the protein, and that it contained two active sites. Culture supernatant contained two chitinolytic proteins, 45 and 31 kDa, suggesting possible post-expression modification of the gene product. In contrast, the sequence found in the estuarine metagenomic library and the functional characteristics of the protein expressed from it were those of a conventional family 18 glycosyl hydrolase.

  8. Alkaline Hypersaline Lakes as Analogs for Ancient Microbial Habitats on Mars

    NASA Technical Reports Server (NTRS)

    McDonald, G. D.; Tsapin, A. I.; Storrie-Lombardi, M. C.; Nealson, K. H.; Brinton, K. L. F.; Sun, H.; Venkateswaren, K.; Tsapin, I.; Melack, J.; Jellison, R.

    1999-01-01

    As the climate of ancient Mars became colder and drier with time, open bodies of water would have entered a regime in which evaporation exceeded input from precipitation or runoff. This would have resulted in increases in salinity and perhaps pH. The last open water on Mars was most likely found in alkaline hypersaline lakes, and these lakes would have been the last surface aquatic habitats for life on Mars. It follows, then, that the biomarkers most likely to be found in ancient sedimentary basins on Mars are those left by organisms adapted to high salt and high pH environments. We have begun to investigate the nature of biological diversity and adaptation to these environments, and the potential for biomarker preservation in them, using Mono Lake as a terrestrial analog environment. Additional information is contained in the original extended abstract.

  9. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    PubMed

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.

  10. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  11. First survey of fungi in hypersaline soil and water of Mono Lake area (California).

    PubMed

    Steiman, Régine; Ford, Larry; Ducros, Véronique; Lafond, Jean-Luc; Guiraud, Pascale

    2004-01-01

    Mono Lake is a closed lake located in central California, east of the Sierra Nevada mountains. It contains dissolved carbonates, sulfates and chlorides at high concentrations. Due to its high salinity, Mono Lake was sometimes compared to the Dead Sea. However, it appears that Mono Lake water and vicinity abound with life. In this work, the fungal flora living in this extreme ecosystem was studied for the first time. Soil, tufa, water and sediment samples were also analyzed for their mineral and salt composition. Results showed that water was particularly rich in sodium, potassium, phosphorus and boron. Soil and sediments contained very high levels of calcium and magnesium, but also barium, boron and strontium. Sodium, phosphorus and iron levels varied in a large extent from one to another sample. Neutral to very alkaline pH were recorded. Water samples were found sterile in the conditions chosen for fungi isolation, while sediment, soil and tufa samples led to the isolation of a total of 67 fungal species (from 23 samples), belonging to various taxonomic groups. From our results no clear effects of the chemical parameters of the samples were observed on fungal life apart from the pH. The methods chosen did not allow the isolation of extremely halotolerant species. We isolated in this work a series of ubiquitous species, suggesting that a selection of resistant and/or adaptable strains of some common species could have occurred. Depending on the medium and the temperature of isolation, it can be hypothesized that some species were present as dormant structures, while some others, isolated at pH 8 on a medium enriched in Na and Ca, could be in a growing form adapted to alkaline and saline conditions. This work contributes to a better knowledge of the mycobiota present in the Mono Lake's ecosystem.

  12. Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2(T), a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes.

    PubMed

    Melton, Emily Denise; Sorokin, Dimitry Y; Overmars, Lex; Chertkov, Olga; Clum, Alicia; Pillay, Manoj; Ivanova, Natalia; Shapiro, Nicole; Kyrpides, Nikos C; Woyke, Tanja; Lapidus, Alla L; Muyzer, Gerard

    2016-01-01

    Desulfurivibrio alkaliphilus strain AHT2(T) is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2(T) is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2(T) is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2(T) was sequenced by the DOE Joint Genome Institute as part of the Community Science Program.

  13. New insights into microbially induced sedimentary structures in alkaline hypersaline El Beida Lake, Wadi El Natrun, Egypt

    NASA Astrophysics Data System (ADS)

    Taher, Amany G.; Abdel-Motelib, Ali

    2015-10-01

    Microbially induced sedimentary structures (MISS) were studied in detail in the alkaline hypersaline El Beida Lake of Wadi El Natrun in the western desert sector of Egypt, based on field observations and sampling performed in 2013 and 2014. Geomorphologically, the lake can be subdivided into three zones, each with characteristic sedimentary and biosedimentary structures. The marginal elevated zone that borders the lake is characterized by thick blocky crusts devoid of microbial mats. The middle-lower supratidal zone has luxuriant microbial mats associated with knotty surfaces, mat cracks and wrinkle structures. A zone of ephemeral shallow pools and channels is characterized by reticulate surfaces, pinnacle mats, sieve-like surfaces, gas domes and mat chips. In the microbial mats, authigenic minerals include thenardite Na2SO4, trona Na3(CO3)(HCO3)•2H2O and halite NaCl. Scanning electron microscopy (SEM) analyses revealed that the minerals are closely associated with the MISS, suggesting some influence of microorganisms on mineral precipitation. Complex interactions between regional hydrological cycles and diagenetic processes imply low preservation potential. MISS signatures of such saline lakes can serve as key analogues for interpreting the geologic record.

  14. Water miscible mono alcohols' effect on the proteolytic performance of Bacillus clausii serine alkaline protease.

    PubMed

    Duman, Yonca Avci; Kazan, Dilek; Denizci, Aziz Akin; Erarslan, Altan

    2014-01-01

    In this study, our investigations showed that the increasing concentrations of all examined mono alcohols caused a decrease in the Vm, kcat and kcat/Km values of Bacillus clausii GMBE 42 serine alkaline protease for casein hydrolysis. However, the Km value of the enzyme remained almost the same, which was an indicator of non-competitive inhibition. Whereas inhibition by methanol was partial non-competitive, inhibition by the rest of the alcohols tested was simple non-competitive. The inhibition constants (KI) were in the range of 1.32-3.10 M, and the order of the inhibitory effect was 1-propanol>2-propanol>methanol>ethanol. The ΔG(≠) and ΔG(≠)E-T values of the enzyme increased at increasing concentrations of all alcohols examined, but the ΔG(≠)ES value of the enzyme remained almost the same. The constant Km and ΔG(≠)ES values in the presence and absence of mono alcohols indicated the existence of different binding sites for mono alcohols and casein on enzyme the molecule. The kcat of the enzyme decreased linearly by increasing log P and decreasing dielectric constant (D) values, but the ΔG(≠) and ΔG(≠)E-T values of the enzyme increased by increasing log P and decreasing D values of the reaction medium containing mono alcohols.

  15. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California.

    PubMed

    Kulp, T R; Hoeft, S E; Miller, L G; Saltikov, C; Murphy, J N; Han, S; Lanoil, B; Oremland, R S

    2006-10-01

    A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (approximately 90 g/liter) and Searles Lake (approximately 340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As]arsenate occurred at all depth intervals in the cores from Mono Lake (rate constant [k] = 0.103 to 0.04 h(-1)) and Searles Lake (k = 0.012 to 0.002 h(-1)), and the highest activities occurred in the top sections of each core. In contrast, [35S]sulfate reduction was measurable in Mono Lake (k = 7.6 x10(4) to 3.2 x 10(-6) h(-1)) but not in Searles Lake. Sediment DNA was extracted, PCR amplified, and separated by denaturing gradient gel electrophoresis (DGGE) to obtain phylogenetic markers (i.e., 16S rRNA genes) and a partial functional gene for dissimilatory arsenate reduction (arrA). The amplified arrA gene product showed a similar trend in both lakes; the signal was strongest in surface sediments and decreased to undetectable levels deeper in the sediments. More arrA gene signal was observed in Mono Lake and was detectable at a greater depth, despite the higher arsenate reduction activity observed in Searles Lake. A partial sequence (about 900 bp) was obtained for a clone (SLAS-3) that matched the dominant DGGE band found in deeper parts of the Searles Lake sample (below 3 cm), and this clone was found to be closely related to SLAS-1, a novel extremophilic arsenate respirer previously cultivated from Searles Lake.

  16. Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California

    USGS Publications Warehouse

    Kulp, T.R.; Hoeft, S.E.; Miller, L.G.; Saltikov, C.; Murphy, J.N.; Han, S.; Lanoil, B.; Oremland, R.S.

    2006-01-01

    A radioisotope method was devised to study bacterial respiratory reduction of arsenate in sediments. The following two arsenic-rich soda lakes in California were chosen for comparison on the basis of their different salinities: Mono Lake (???90 g/liter) and Searles Lake (???340 g/liter). Profiles of arsenate reduction and sulfate reduction were constructed for both lakes. Reduction of [73As] arsenate occurred at all depth intervals in the cores from Mono Lake (rate constant [k] = 0.103 to 0.04 h-1) and Searles Lake (k = 0.012 to 0.002 h-1), and the highest activities occurred in the top sections of each core. In contrast, [35S] sulfate reduction was measurable in Mono Lake (k = 7.6 ?? 104 to 3.2 ?? 10-6 h-1) but not in Searles Lake. Sediment DNA was extracted, PCR amplified, and separated by denaturing gradient gel electrophoresis (DGGE) to obtain phylogenetic markers (i.e., 16S rRNA genes) and a partial functional gene for dissimilatory arsenate reduction (arrA). The amplified arrA gene product showed a similar trend in both lakes; the signal was strongest in surface sediments and decreased to undetectable levels deeper in the sediments. More arrA gene signal was observed in Mono Lake and was detectable at a greater depth, despite the higher arsenate reduction activity observed in Searles Lake. A partial sequence (about 900 bp) was obtained for a clone (SLAS-3) that matched the dominant DGGE band found in deeper parts of the Searles Lake sample (below 3 cm), and this clone was found to be closely related to SLAS-1, a novel extremophilic arsenate respirer previously cultivated from Searles Lake. Copyright ?? 2006, American Society for Microbiology. All Rights Reserved.

  17. Ca isotope fractionation in a high-alkalinity lake system: Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Nielsen, Laura C.; DePaolo, Donald J.

    2013-10-01

    Precipitation of calcium carbonate minerals from aqueous solutions causes surface-controlled kinetic stable Ca isotope fractionation. The magnitude of fractionation depends on the relative rates of ion attachment to and detachment from the mineral surface, which in turn is predicted to depend on both the saturation state and the solution stoichiometry or the Ca:CO32- activity ratio. Experimental studies have not directly investigated the effects of varying solution stoichiometry on calcium isotope partitioning during calcite or aragonite growth, but natural alkaline lake systems such as Mono Lake, California provide a test bed for the hypothesized stoichiometry dependence. Mono Lake has a Ca:CO32- activity ratio of about 0.0001, seven orders of magnitude lower than ocean water and typical terrestrial freshwater. We present chemical and isotopic measurements of streams, springs, lake water, and precipitated carbonates from the Mono Basin that yield evidence of stoichiometry-dependent Ca isotope fractionation during calcite, aragonite and Mg-calcite precipitation from the alkaline lake water. To estimate the Ca isotope fractionation factors, it is necessary to characterize the lake Ca balance and constrain the variability of lake water chemistry both spatially and temporally. Streams and springs supply Ca to the lake, and a substantial fraction of this supply is precipitated along the lake shore to form tufa towers. Lake water is significantly supersaturated with respect to carbonate minerals, so CaCO3 also precipitates directly from the water column to form carbonate-rich bottom sediments. Growth rate inhibition by orthophosphate likely preserves the high degree of supersaturation in the lake. Strontium isotope ratios are used to estimate the proportions of fresh and alkaline lake water from which each solid carbonate sample precipitated. Carbonate minerals that precipitate directly from lake water (low Ca:CO32-) experience relatively large Ca isotope fractionation

  18. [The new bacteriochlorophyll a-containing bacterium Roseinatronobacter monicus sp. nov. from the hypersaline soda Mono Lake (California, United States)].

    PubMed

    Boldareva, E N; Briantseva, I A; Tsapin, A; Nelson, K; Sorokin, D Iu; Turova, T P; Boĭchenko, V A; Stadnichuk, I N; Gorlenko, V M

    2007-01-01

    Two strains of pink-colored aerobic bacteriochlorophyll a-containing bacteria were isolated from aerobic (strain ROS 10) and anaerobic (strain ROS 35) zones of the water column of Mono Lake (California, United States). Cells of the bacteria were nonmotile oval gram-negative rods multiplying by binary fission by means of a constriction. No intracellular membranes were detected. Polyphosphates and poly-1-hydroxybutyric acid were the storage compounds. Pigments were represented by bacteriochlorophyll a and carotenoids of the spheroidene series. The strains were obligately aerobic, mesophilic (temperature optimum of 25-30 degrees C), alkaliphilic (pH optimum of 8.5-9.5), and halophilic (optimal NaCl concentration of 40-60 g/l). They were obligately heterotrophic and grew aerobically in the dark and in the light. Respiration was inhibited by light at wavelengths corresponding to the absorption of the cellular pigments. The substrate utilization spectra were strain-specific. In the course of organotrophic growth, the bacteria could oxidize thiosulfate to sulfate; sulfide and polysulfide could also be oxidized. The DNA G+C content was 59.4 mol % in strain ROS 10 and 59 mol % in strain ROS 35. In their phenotypic properties, the new strains were close but not identical to the alkaliphilic bacterium Roseinatronobacter thiooxidans. The distinctions in the nucleotide sequences of the 16S rRNA genes (2%) and low DNA-DNA hybridization level with Rna. thiooxidans (22-25%) allow the new strains to be assigned to a new species of the genus Roseinatronobacter, Roseinatronobacter monicus sp. nov.

  19. Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron.

    PubMed

    Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol

    2013-01-01

    Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.

  20. Analysis of ammonia-oxidizing bacteria from hypersaline Mono Lake, California, on the basis of 16S rRNA sequences.

    PubMed

    Ward, B B; Martino, D P; Diaz, M C; Joye, S B

    2000-07-01

    Ammonia-oxidizing bacteria were detected by PCR amplification of DNA extracted from filtered water samples throughout the water column of Mono Lake, California. Ammonia-oxidizing members of the beta subdivision of the division Proteobacteria (beta-subdivision Proteobacteria) were detected using previously characterized PCR primers; target sequences were detected by direct amplification in both surface water and below the chemocline. Denaturing gradient gel electrophoresis analysis indicated the presence of at least four different beta-subdivision ammonia oxidizers in some samples. Subsequent sequencing of amplified 16S rDNA fragments verified the presence of sequences very similar to those of cultured Nitrosomonas strains. Two separate analyses, carried out under different conditions (different reagents, locations, PCR machines, sequencers, etc.), 2 years apart, detected similar ranges of sequence diversity in these samples. It seems likely that the physiological diversity of nitrifiers exceeds the diversity of their ribosomal sequences and that these sequences represent members of the Nitrosomonas europaea group that are acclimated to alkaline, high-salinity environments. Primers specific for Nitrosococcus oceanus, a marine ammonia-oxidizing bacterium in the gamma subdivision of the Proteobacteria, did not amplify target from any samples.

  1. Genome sequence of Sphingomonas sp. S17, isolated from an alkaline, hyperarsenic, and hypersaline volcano-associated lake at high altitude in the Argentinean Puna.

    PubMed

    Farias, Maria Eugenia; Revale, Santiago; Mancini, Estefania; Ordoñez, Omar; Turjanski, Adrian; Cortez, Néstor; Vazquez, Martin P

    2011-07-01

    The high-altitude Andean lakes (HAAL) in the Argentinean Puna-high Andes region represent an almost unexplored ecosystem exposed to extreme conditions (high UV irradiation, hypersalinity, drastic temperature changes, desiccation, and high pH). Here we present the first genome sequence, a Sphingomonas sp., isolated from this extreme environment.

  2. Genome Sequence of Sphingomonas sp. S17, Isolated from an Alkaline, Hyperarsenic, and Hypersaline Volcano-Associated Lake at High Altitude in the Argentinean Puna ▿

    PubMed Central

    Farias, Maria Eugenia; Revale, Santiago; Mancini, Estefania; Ordoñez, Omar; Turjanski, Adrian; Cortez, Néstor; Vazquez, Martin P.

    2011-01-01

    The high-altitude Andean lakes (HAAL) in the Argentinean Puna-high Andes region represent an almost unexplored ecosystem exposed to extreme conditions (high UV irradiation, hypersalinity, drastic temperature changes, desiccation, and high pH). Here we present the first genome sequence, a Sphingomonas sp., isolated from this extreme environment. PMID:21602338

  3. Analysis of methane monooxygenase genes in mono lake suggests that increased methane oxidation activity may correlate with a change in methanotroph community structure.

    PubMed

    Lin, Ju-Ling; Joye, Samantha B; Scholten, Johannes C M; Schäfer, Hendrik; McDonald, Ian R; Murrell, J Colin

    2005-10-01

    Mono Lake is an alkaline hypersaline lake that supports high methane oxidation rates. Retrieved pmoA sequences showed a broad diversity of aerobic methane oxidizers including the type I methanotrophs Methylobacter (the dominant genus), Methylomicrobium, and Methylothermus, and the type II methanotroph Methylocystis. Stratification of Mono Lake resulted in variation of aerobic methane oxidation rates with depth. Methanotroph diversity as determined by analysis of pmoA using new denaturing gradient gel electrophoresis primers suggested that variations in methane oxidation activity may correlate with changes in methanotroph community composition.

  4. Anaerobic bacteria from hypersaline environments.

    PubMed Central

    Ollivier, B; Caumette, P; Garcia, J L; Mah, R A

    1994-01-01

    Strictly anaerobic halophiles, namely fermentative, sulfate-reducing, homoacetogenic, phototrophic, and methanogenic bacteria are involved in the oxidation of organic carbon in hypersaline environments. To date, six anaerobic fermentative genera, containing nine species, have been described. Two of them are homoacetogens. Six species belong to the family Haloanaerobiaceae, as indicated by their unique 16S rRNA oligonucleotide sequences. Desulfohalobium retbaense and Desulfovibrio halophilus represent the only two moderately halophilic sulfate reducers so far reported. Among anoxygenic phototrophic anaerobes, a few purple bacteria with optimal growth at salinities between 6 and 11% NaCl have been isolated from hypersaline habitats. They belong to the genera Rhodospirillum, Chromatium, Thiocapsa, and Ectothiorhodospira. The commonest organisms isolated so far are Chromatium salexigens, Thiocapsa halophila, and Rhodospirillum salinarum. Extremely halophilic purple bacteria have most commonly been isolated from alkaline brines and require about 20 to 25% NaCl for optimal growth. They belong to the family Ectothiorodhospiraceae. Their osmoregulation involves synthesis or uptake of compatible solutes such as glycine-betaine that accumulate in their cytoplasm. The existence of methanogens in hypersaline environments is related to the presence of noncompetitive substrates such as methylamines, which originate mainly from the breakdown of osmoregulatory amines. Methanogenesis probably does not contribute to the mineralization of carbohydrates at NaCl concentrations higher than 15%. Above this concentration, sulfate reduction is probably the main way to oxidize H2 (although at rates too low to use up all the H2 formed) and occupies a terminal function kn the degradation of carbohydrates. Three genera and five species of halophilic methylotrophic methanogens have been reported. A bloom of phototrophic bacteria in the marine salterns of Salins-de-Giraud, located on the

  5. Vertical distribution of nitrogen-fixing phylotypes in a meromictic, hypersaline lake.

    PubMed

    Steward, G F; Zehr, J P; Jellison, R; Montoya, J P; Hollibaugh, J T

    2004-01-01

    We investigated the diversity of nitrogenase genes in the alkaline, moderately hypersaline Mono Lake, California to determine (1) whether nitrogen-fixing (diazotrophic) populations were similar to those in other aquatic environments and (2) if there was a pattern of distribution of phylotypes that reflected redox conditions, as well as (3) to identify populations that could be important in N dynamics in this nitrogen-limited lake. Mono Lake has been meromictic for almost a decade and has steep gradients in oxygen and reduced compounds that provide a wide range of aerobic and anaerobic habitats. We amplified a fragment of the nitrogenase gene (nifH) from planktonic DNA samples collected at three depths representing oxygenated surface waters, the oxycline, and anoxic, ammonium-rich deep waters. Forty-three percent of the 90 sequences grouped in nifH Cluster I. The majority of clones (57%) grouped in Cluster III, which contains many known anaerobic bacteria. Cluster I and Cluster III sequences were retrieved at every depth indicating little vertical zonation in sequence types related to the prominent gradients in oxygen and ammonia. One group in Cluster I was found most often at every depth and accounted for 29% of all the clones. These sequences formed a subcluster that contained other environmental clones, but no cultivated representatives. No significant nitrogen fixation was detected by the 15N2 method after 48 h of incubation of surface, oxycline, or deep waters, suggesting that pelagic diazotrophs were contributing little to nitrogen fluxes in the lake. The failure to measure any significant nitrogen fixation, despite the detection of diverse and novel nitrogenase genes throughout the water column, raises interesting questions about the ecological controls on diazotrophy in Mono Lake and the distribution of functional genes in the environment.

  6. Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California.

    PubMed

    Giri, Bruno J; Bano, Nasreen; Hollibaugh, James T

    2004-06-01

    Partial sequences of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (EC 4.1.1.39) genes were retrieved from samples taken along a redox gradient in alkaline, hypersaline Mono Lake, Calif. The form I gene (cbbL) was found in all samples, whereas form II (cbbM) was not retrieved from any of the samples. None of the RuBisCO sequences we obtained were closely related (nucleotide similarity, <90%) to sequences in the database. Some could be attributed to organisms isolated from the lake (Cyanobium) or appearing in enrichment cultures. Most (52%) of the sequences fell into in one clade, containing sequences that were identical to sequences retrieved from an enrichment culture grown with nitrate and sulfide, and another clade contained sequences identical to those retrieved from an arsenate-reducing, sulfide-oxidizing enrichment.

  7. Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes.

    PubMed

    Scholten, J C M; Joye, S B; Hollibaugh, J T; Murrell, J C

    2005-07-01

    Sulfate reduction is the most important process involved in the mineralization of carbon in the anoxic bottom waters of Mono Lake, an alkaline, hypersaline, meromictic Lake in California. Another important biogeochemical process in Mono Lake is thought to be sulfate-dependent methane oxidation (SDMO). However little is known about what types of organisms are involved in these processes in Mono Lake. Therefore, the sulfate-reducing and archaeal microbial community in Mono Lake was analyzed by targeting 16S rRNA, methyl-coenzyme M reductase (mcrA), adenosine-5'-phosphosulfate (apsA), and dissimilatory sulfite reductase (dsrAB) genes to investigate the sulfate-reducing and archaeal community with depth. Most of the 16S rRNA gene sequences retrieved from the samples fell into the delta-subdivision of the Proteobacteria. Phylogenetic analyses suggested that the clones obtained represented sulfate-reducing bacteria, which are probably involved in the mineralization of carbon in Mono Lake, many of them belonging to a novel line of descent in the delta-Proteobacteria. Only 6% of the sequences retrieved from the samples affiliated to the domain Euryarchaeota but did not represent Archaea, which is considered to be responsible for SDMO [Orphan et al. 2001: Appl Environ Microbiol 67:1922-1934; Teske et al.: Appl Environ Microbiol 68:1994-2007]. On the basis of our results and thermodynamic arguments, we proposed that SDMO in hypersaline environments is presumably carried out by SRB alone. Polymerase chain reaction (PCR) amplifications of the mcrA-, apsA-, and dsrAB genes in Mono Lake samples were, in most cases, not successful. Only the PCR amplification of the apsA gene was partially successful. The amplification of these functional genes was not successful because there was either insufficient "target" DNA in the samples, or the microorganisms in Mono Lake have divergent functional genes.

  8. Mono Test

    MedlinePlus

    ... services. Advertising & Sponsorship: Policy | Opportunities PLEASE NOTE: Your web browser does not have JavaScript enabled. Unless you enable Javascript , your ability to navigate and access the features of this website will be ... Mononucleosis (Mono) Test Share this page: Was this page helpful? Also ...

  9. Biodegradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-01-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review. PMID:24031900

  10. Biodegradation of petroleum hydrocarbons in hypersaline environments.

    PubMed

    Martins, Luiz Fernando; Peixoto, Raquel Silva

    2012-07-01

    Literature on hydrocarbon degradation in extreme hypersaline media presents studies that point to a negative effect of salinity increase on hydrocarbonoclastic activity, while several others report an opposite tendency. Based on information available in the literature, we present a discussion on the reasons that justify these contrary results. Despite the fact that microbial ability to metabolize hydrocarbons is found in extreme hypersaline media, indeed some factors are critical for the occurrence of hydrocarbon degradation in such environments. How these factors affect hydrocarbon degradation and their implications for the assessment of hydrocarbon biodegradation in hypersaline environments are presented in this review.

  11. Analysis of fae and fhcD genes in Mono Lake, California.

    PubMed

    Nercessian, Olivier; Kalyuzhnaya, Marina G; Joye, Samantha B; Lidstrom, Mary E; Chistoserdova, Ludmila

    2005-12-01

    Genes for two enzymes of the tetrahydromethanopterin-linked C(1) transfer pathway (fae and fhcD) were detected in hypersaline, hyperalkaline Mono Lake (California), via PCR amplification and analysis. Low diversity for fae and fhcD was noted, in contrast to the diversity previously detected in a freshwater lake, Lake Washington (Washington).

  12. Hydrocarbon Biodegradation in Hypersaline Environments

    PubMed Central

    Ward, David M.; Brock, T. D.

    1978-01-01

    When mineral oil, hexadecane, and glutamate were added to natural samples of varying salinity (3.3 to 28.4%) from salt evaporation ponds and Great Salt Lake, Utah, rates of metabolism of these compounds decreased as salinity increased. Rate limitations did not appear to relate to low oxygen levels or to the availability of organic nutrients. Some oxidation of l-[U-14C]glutamic acid occurred even at extreme salinities, whereas oxidation of [1-14C]hexadecane was too low to be detected. Gas chromatographic examination of hexane-soluble components of tar samples from natural seeps at Rozel Point in Great Salt Lake demonstrated no evidence of biological oxidation of isoprenoid alkanes subject to degradation in normal environments. Some hexane-soluble components of the same tar were altered by incubation in a low-salinity enrichment culture inoculated with garden soil. Attempts to enrich for microorganisms in saline waters able to use mineral oil as a sole source of carbon and energy were successful below, but not above, about 20% salinity. This study strongly suggests a general reduction of metabolic rate at extreme salinities and raises doubt about the biodegradation of hydrocarbons in hypersaline environments. PMID:16345276

  13. Hypersaline Microbial Mat Lipid Biomarkers

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsegereda; Turk, Kendra A.; Summons, Roger E.

    2002-01-01

    Lipid biomarkers and compound specific isotopic abundances are powerful tools for studies of contemporary microbial ecosystems. Knowledge of the relationship of biomarkers to microbial physiology and community structure creates important links for understanding the nature of early organisms and paleoenvironments. Our recent work has focused on the hypersaline microbial mats in evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, sulfur oxidizing and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface. The delta C-13 of cyanobacterial biomarkers such as the monomethylalkanes and hopanoids are consistent with the delta C-13 measured for bulk mat (-10%o), while a GNS biomarker, wax esters (WXE), suggests a more depleted delta C-13 for GNS biomass (-16%o). This isotopic relationship is different than that observed in mats at Octopus Spring, Yellowstone National Park (YSNP) where GNS appear to grow photoheterotrophic ally. WXE abundance, while relatively low, is most pronounced in an anaerobic zone just below the cyanobacterial layer. The WXE isotope composition at GN suggests that these bacteria utilize photoautotrophy incorporating dissolved inorganic carbon (DIC) via the 3-hydroxypropionate pathway using H2S or H2.

  14. Spirochaeta americana sp. nov.: A New Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake, California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1, was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The gram-negative cells are motile and spirochete-shaped with sizes of 0.22 x 10-15 micron. Growth was observed over the temperature range of 10 C to 44 C (optimum 37 C), NaCl concentration range of greater than 1 - 12 % (wt/vol) (optimum 3%), and pH range 7.5 - 10.5 (optimum pH 9.5). The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. Main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain AspG1 is resistant to kanamycin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%. On the basis of its physiological and molecular properties, the isolate appears to be a novel species among the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA_392(sup T) = DSMZ 14872(sup T)).

  15. Nitrogen fixation dynamics of two diazotrophic communities in Mono Lake, California

    USGS Publications Warehouse

    Oremland, R.S.

    1990-01-01

    Two types of diazotrophic microbial communities were found in the littoral zone of alkaline hypersaline Mono Lake, California. One consisted of anaerobic bacteria inhabiting the flocculent surface layers of sediments. Nitrogen fixation (acetylene reduction) by flocculent surface layers occurred under anaerobic conditions, was not stimulated by light or by additions of organic substrates, and was inhibited by O2, nitrate, and ammonia. The second community consisted of a ball-shaped association of a filamentous chlorophyte (Ctenocladus circinnatus) with diazotrophic, nonheterocystous cyanobacteria, as well as anaerobic bacteria (Ctenocladus balls). Nitrogen fixation by Ctenocladus balls was usually, but not always, stimulated by light. Rates of anaerobic dark fixation equaled those in the light under air. Fixation in the light was stimulated by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and by propanil [N-(3,4-dichlorophenyl)propanamide]. 3-(3,4-Dichlorophenyl)-1,1-dimethyl urea-elicited nitrogenase activity was inhibited by ammonia (96%) and nitrate (65%). Fixation was greatest when Ctenocladus balls were incubated anaerobically in the light with sulfide. Dark anaerobic fixation was not stimulated by organic substrates in short-term (4-h) incubations, but was in long-term (67-h) ones. Areal estimates of benthic N2 fixation were measured seasonally, using chambers. Highest rates (~29.3 ??mol of C2H4 m-2 h-1) occurred under normal diel regimens of light and dark. These estimates indicate that benthic N2 fixation has the potential to be a significant nitrogen source in Mono Lake.

  16. Heterotrophic Protists in Hypersaline Microbial Mats and Deep Hypersaline Basin Water Columns

    PubMed Central

    Edgcomb, Virginia P.; Bernhard, Joan M.

    2013-01-01

    Although hypersaline environments pose challenges to life because of the low water content (water activity), many such habitats appear to support eukaryotic microbes. This contribution presents brief reviews of our current knowledge on eukaryotes of water-column haloclines and brines from Deep Hypersaline Anoxic Basins (DHABs) of the Eastern Mediterranean, as well as shallow-water hypersaline microbial mats in solar salterns of Guerrero Negro, Mexico and benthic microbialite communities from Hamelin Pool, Shark Bay, Western Australia. New data on eukaryotic diversity from Shark Bay microbialites indicates eukaryotes are more diverse than previously reported. Although this comparison shows that eukaryotic communities in hypersaline habitats with varying physicochemical characteristics are unique, several groups are commonly found, including diverse alveolates, strameonopiles, and fungi, as well as radiolaria. Many eukaryote sequences (SSU) in both regions also have no close homologues in public databases, suggesting that these environments host unique microbial eukaryote assemblages with the potential to enhance our understanding of the capacity of eukaryotes to adapt to hypersaline conditions. PMID:25369746

  17. Uranium Geochemistry in Hypersaline Soda Lakes in Eastern Mongolia

    NASA Astrophysics Data System (ADS)

    Linhoff, B. S.; Bennett, P.; Puntsag, T.

    2007-12-01

    Extremely high concentrations of uranium were discovered in water samples from hypersaline soda lakes in eastern Mongolia. The origin and fate of uranium in these lakes was examined using geochemical analyses and modeling, using samples collected from five lakes, six wells and one stream. Samples were analyzed for strontium and uranium isotopes, cations and trace metals, anions, alkalinity, and unstable field parameters. The lakes are small, shallow (<1Km2, <1m) and terminal; their size fluctuates seasonally and they periodically completely desiccate. The region is characterized by rolling semi arid grassland steppe covered by a thick loess deposit of unknown thickness that is underlain by Neogene rhyolite. A typical groundwater in the field area is alkaline (pH = 7.9, 10.7 meq alk/L), 4.4 ° C, with an average T.D.S. of 1500 and low calcium concentration (20 ppm). A strong linear correlation was found between groundwater and lake water chlorine to bromine ratios implying groundwater discharges to lake water and is subsequently evaporated. Evaporation is intense with lake waters having average chlorine concentrations 300 times that of well waters. Uranium in well samples is higher than typical for shallow groundwaters (7-101ppb) suggesting discharging groundwater as a probable source of uranium in lake water. Concentrations of uranium in lake water ranges from 57-14,900ppb making these lakes possibly the highest naturally occurring uranium concentration reported. Lake water alkalinity is strongly correlated to uranium abundance suggesting uranium is complexed with carbonate as the aqueous species UO2CO3. Consequently, the extremely high alkalinity of the most alkaline lake (pH = 9.8, 1288.8 meq alk/L) also has the highest uranium concentrations. Stable strontium isotopes were used to assess the degree of water rock interactions and the presence of 90Sr was checked for to test the possibility of input of nuclear fallout. 90Sr was not detected in lake water samples

  18. Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California.

    PubMed

    Hoover, Richard B; Pikuta, Elena V; Bej, Asim K; Marsic, Damien; Whitman, William B; Tang, Jane; Krader, Paul

    2003-05-01

    A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1(T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0.2-0.22 x 8-18 microm. Growth of the strain was observed between 10 and 44 degrees C (optimum 37 degrees C), in 2-12% (w/v) NaCl (optimum 3% NaCl) and between pH 8 and 10.5 (optimum pH 9.5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing D-glucose, fructose, maltose, sucrose, starch and D-mannitol. End products of glucose fermentation were H2, acetate, ethanol and formate. Strain ASpG(T) was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G + C content of its DNA was 58.5 mol%. DNA-DNA hybridization analysis of strain ASpG1(T) with its most closely related species, Spirochaeta alkalica Z-7491(T), revealed a hybridization value of only 48.7%. On the basis of its physiological and molecular properties, strain ASpG1(T) appears to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta americana is proposed (type strain ASpG1(T) =ATCC BAA-392(T) = DSM 14872(T)).

  19. Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul

    2003-01-01

    A novel, obligately anaerobic, mesophilic, haloalkaliphilic spirochaete, strain ASpG1(T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, USA. Cells of the Gram-negative strain were motile and spirochaete-shaped with sizes of 0.2-0.22 x 8-18 microm. Growth of the strain was observed between 10 and 44 degrees C (optimum 37 degrees C), in 2-12% (w/v) NaCl (optimum 3% NaCl) and between pH 8 and 10.5 (optimum pH 9.5). The novel strain was strictly alkaliphilic, required high concentrations of carbonates in the medium and was capable of utilizing D-glucose, fructose, maltose, sucrose, starch and D-mannitol. End products of glucose fermentation were H2, acetate, ethanol and formate. Strain ASpG(T) was resistant to kanamycin and rifampicin, but sensitive to gentamicin, tetracycline and chloramphenicol. The G + C content of its DNA was 58.5 mol%. DNA-DNA hybridization analysis of strain ASpG1(T) with its most closely related species, Spirochaeta alkalica Z-7491(T), revealed a hybridization value of only 48.7%. On the basis of its physiological and molecular properties, strain ASpG1(T) appears to represent a novel species of the genus Spirochaeta, for which the name Spirochaeta americana is proposed (type strain ASpG1(T) =ATCC BAA-392(T) = DSM 14872(T)).

  20. Microbial Fuel Cell as Life Detector: Arsenic Cycling in Hypersaline Environments

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Blum, J. S.; Oremland, R. S.

    2006-12-01

    Detection of extant life on Mars or Europa is a future goal of exobiology. For the present, biosignatures arising from life in extreme environments on Earth suggest how to search for life elsewhere. One such biosignature is the electrical current derived from the metabolic activity of microorganisms, which may be measured using microbial fuel cells (MFCs). MFCs generate electricity by coupling bacterially mediated redox transformations to electrochemical reactions through a circuit. Our laboratory fuel cell employs solid graphite electrodes and uses a proton exchange membrane to separate anode (anaerobic) and cathode (aerobic) chambers. Mineral salts media are circulated by peristaltic pump through the chambers and through temperature-controlled reservoirs that are sparged with nitrogen (anode) or oxygen (cathode). In experiments with pure cultures, bacteria reduced arsenate to arsenite in the anode chamber, and produced electrical power in the process. Power production was sustained in the MFC only while bacteria were active. An arsenate respiring bacterium, Bacillus selenitireducens, isolated from moderately-hypersaline Mono Lake, CA grew on lactate using arsenate as the electron acceptor and also grew without arsenate, using the anode as the electron acceptor. Power densities (per unit area of anode surface) of 60 μW m-2 were achieved during growth without arsenate. Less power (3 μW m-2) was produced when arsenate was available because arsenate acted as an alternate electron acceptor to the anode. Another arsenate respiring bacterium, strain SLAS-1, isolated from extremely-hypersaline Searles Lake, CA respired lactate and reduced arsenate in the MFC, albeit more slowly. An arsenite oxidizing bacterium, Alkalilimnicola ehrlichii, isolated from Mono Lake will also be tested for its ability to generate electricity before proceeding to an examination of biocurrent production using natural sediments and waters from Mono Lake and Searles Lake.

  1. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    USGS Publications Warehouse

    Domagalski, J.L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    aromatic carbon and the absence of chemical structures indicative of the lignin of vascular plants. The dissolved organic carbon of the Mono Lake pore fluids is structurally related to humic acid and is also related to carbohydrate metabolism. The alkaline pore fluids, due to high pH, solubilize high molecular weight organic matter from the sediments. This hydrophilic material is a metal complexing agent. Despite very high algal productivities, organic carbon accumulation can be low in stratified lakes if the anoxic bottom waters are hypersaline with high concentrations of sulfate ion. Labile organic matter is recycled to the water column and the sedimentary organic matter is relatively nonsusceptible to bacterial metabolism. As a result, pore-fluid dissolved organic carbon and metal-organic complexation are low. ?? 1989.

  2. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    NASA Astrophysics Data System (ADS)

    Domagalski, Joseph L.; Orem, William H.; Eugster, Hans P.

    1989-11-01

    aromatic carbon and the absence of chemical structures indicative of the lignin of vascular plants. The dissolved organic carbon of the Mono Lake pore fluids is structurally related to humic acid and is also related to carbohydrate metabolism. The alkaline pore fluids, due to high pH, solubilize high molecular weight organic matter from the sediments. This hydrophilic material is a metal complexing agent. Despite very high algal productivities, organic carbon accumulation can be low in stratified lakes if the anoxic bottom waters are hypersaline with high concentrations of sulfate ion. Labile organic matter is recycled to the water column and the sedimentary organic matter is relatively nonsusceptible to bacterial metabolism. As a result, pore-fluid dissolved organic carbon and metal-organic complexation are low.

  3. Investigations of Methane Production in Hypersaline Environments

    NASA Technical Reports Server (NTRS)

    Bebout, Brad M.

    2015-01-01

    The recent reports of methane in the atmosphere of Mars, as well as the findings of hypersaline paleo-environments on that planet, have underscored the need to evaluate the importance of biological (as opposed to geological) trace gas production and consumption. Methane in the atmosphere of Mars may be an indication of life but might also be a consequence of geologic activity and/or the thermal alteration of ancient organic matter. Hypersaline environments have now been reported to be extremely likely in several locations in our solar system, including: Mars, Europa, and Enceladus. Modern hypersaline microbial mat communities, (thought to be analogous to those present on the early Earth at a period of time when Mars was experiencing very similar environmental conditions), have been shown to produce methane. However, very little is known about the physical and/or biological controls imposed upon the rates at which methane, and other important trace gases, are produced and consumed in these environments. We describe here the results of our investigations of methane production in hypersaline environments, including field sites in Chile, Baja California Mexico, California, USA and the United Arab Emirates. We have measured high concentrations of methane in bubbles of gas produced both in the sediments underlying microbial mats, as well as in areas not colonized by microbial mats in the Guerrero Negro hypersaline ecosystem, Baja California Mexico, in Chile, and in salt ponds on the San Francisco Bay. The carbon isotopic (d13C) composition of the methane in the bubbles exhibited an extremely wide range of values, (ca. -75 per mille ca. -25 per mille). The hydrogen isotopic composition of the methane (d2H) ranged from -60 to -30per mille and -450 to -350per mille. These isotopic values are outside of the range of values normally considered to be biogenic, however incubations of the sediments in contact with these gas bubbles reveals that the methane is indeed being

  4. Substrate limitation for methanogenesis in hypersaline environments.

    PubMed

    Kelley, Cheryl A; Poole, Jennifer A; Tazaz, Amanda M; Chanton, Jeffrey P; Bebout, Brad M

    2012-02-01

    Motivated by the increasingly abundant evidence for hypersaline environments on Mars and reports of methane in its atmosphere, we examined methanogenesis in hypersaline ponds in Baja California Sur, Mexico, and in northern California, USA. Methane-rich bubbles trapped within or below gypsum/halite crusts have δ¹³C values near -40‰. Methane with these relatively high isotopic values would typically be considered thermogenic; however, incubations of crust samples resulted in the biological production of methane with similar isotopic composition. A series of measurements aimed at understanding the isotopic composition of methane in hypersaline systems was therefore undertaken. Methane production rates, as well as the concentrations and isotopic composition of the particulate organic carbon (POC), were measured. Methane production was highest from microbial communities living within gypsum crusts, whereas POC content at gypsum/halite sites was low, generally less than 1% of the total mass. The isotopic composition of the POC ranged from -26‰ to -10‰. To determine the substrates used by the methanogens, ¹³C-labeled methylamines, methanol, acetate, and bicarbonate were added to individual incubation vials, and the methane produced was monitored for ¹³C content. The main substrates used by the methanogens were the noncompetitive substrates, the methylamines, and methanol. When unlabeled trimethylamine (TMA) was added to incubating gypsum/halite crusts in increasing concentrations, the isotopic composition of the methane produced became progressively lower; the lowest methane δ¹³C values occurred when the most TMA was added (1000 μM final concentration). This decrease in the isotopic composition of the methane produced with increasing TMA concentrations, along with the high in situ methane δ¹³C values, suggests that the methanogens within the crusts are operating at low substrate concentrations. It appears that substrate limitation is decreasing

  5. Radionuclides in Mono Lake, California

    SciTech Connect

    Simpson, H.J.; Trier, R.M.; Toggweiler, J.R.; Mathieu, G.; Deck, B.L.; Olsen, C.R.; Hammond, D.E.; Fuller, C.; Ku, T.L.

    1982-04-30

    Several radioisotopes of the naturally occurring uranium and thorium decay series, in addition to fallout plutonium, have unusually high concentrations in the water column of Mono Lake, a natural alkaline, saline lake. Complexing by carbonate ions appears to be responsible for the enhanced solubility of actinide elements with oxidation states of IV to VI. In contrast, fallout strontium-90 has been largely removed from the water, probably as a result of coprecipitation with calcium carbonate. The daughter/parent activity ratios of thorium, radium, and uranium isotopes suggest that thorium is removed from the water column to the sediments on time scales substantially longer than a month and that the desorption of thorium from the sediments to the water column requires less than a few years.

  6. Radionuclides in Mono Lake, California

    SciTech Connect

    Simpson, H.J.; Trier, R.M.; Toggweiler, J.R.; Mathieu, G.; Deck, B.L.; Olsen, C.R.; Hammond, D.E.; Fuller, C.; Ku, T.L.

    1982-04-01

    Several radioisotopes of the naturally occurring uranium and thorium decay series, in addition to fallout plutonium have unusually high concentrations in the water column of Mono Lake, a natural alkaline, saline lake. Complexing by carbonate ions appears to be responsible for the enhanced solubility of actinide elements with oxidation states of IV to VI. In contrast, fallout strontium-90 has been largely removed from the water, probably as a result of coprecipitation with calcium carbonate. The daughter/parent activity ratios of thorium, radium, and uranium isotopes suggest that thorium is removed from the water column to the sediments on time scales substantially longer than a month and that the desorption of thorium from the sediments to the water column requires less than a few years. 2 tables.

  7. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California

    USGS Publications Warehouse

    Oremland, R.S.; Dowdle, P.R.; Hoeft, S.; Sharp, J.O.; Schaefer, J.K.; Miller, L.G.; Switzer, Blum J.; Smith, R.L.; Bloom, N.S.; Wallschlaeger, D.

    2000-01-01

    The stratified (meromictic) water column of alkaline and hypersaline Mono Lake, California, contains high concentrations of dissolved inorganic arsenic (~200 ??mol/L). Arsenic speciation changes from arsenate [As (V)] to arsenite [As (III)] with the transition from oxic surface waters (misolimnion) to anoxic bottom waters (monimolimnion). A radioassay was devised to measure the reduction of 73As (V) to 73As (III) and tested using cell suspensions of the As (V)-respiring Bacillus selenitireducens, which completely reduced the 73As (V). In field experiments, no significant activity was noted in the aerobic mixolimnion waters, but reduction of 73As (V) to 73As (III) was observed in all the monimolimnion samples. Rate constants ranged from 0.02 to 0.3/day, with the highest values in the samples from the deepest depths (24 and 28 m). The highest activities occurred between 18 and 21 m, where As (V) abundant (rate, ~5.9 ??mol/L per day). In contrast, sulfate reduction occurred at depths below 21 m, with the highest rates attained at 28 m (rate, ~2.3 ??mol/L per day). These results indicate that As (V) ranks second in importance, after sulfate, as an electron acceptor for anaerobic bacterial respiration in the water column. Annual arsenate respiration may mineralize as much as 14.2% of the pelagic photosynthetic carbon fixed during meromixis. When combined with sulfate-reduction data, anaerobic respiration in the water column can mineralize 32-55% of this primary production. As lakes of this type approach salt saturation, As (V) can become the most important electron acceptor for the biogeochemical cycling of carbon. Copyright (C) 2000 Elsevier Science Ltd.

  8. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California

    NASA Astrophysics Data System (ADS)

    Oremland, Ronald S.; Dowdle, Philip R.; Hoeft, Shelly; Sharp, Jonathan O.; Schaefer, Jeffra K.; Miller, Laurence G.; Switzer Blum, Jodi; Smith, Richard L.; Bloom, Nicholas S.; Wallschlaeger, Dirk

    2000-09-01

    The stratified (meromictic) water column of alkaline and hypersaline Mono Lake, California, contains high concentrations of dissolved inorganic arsenic (˜200 μmol/L). Arsenic speciation changes from arsenate [As (V)] to arsenite [As (III)] with the transition from oxic surface waters (mixolimnion) to anoxic bottom waters (monimolimnion). A radioassay was devised to measure the reduction of 73As (V) to 73As (III) and tested using cell suspensions of the As (V)-respiring Bacillus selenitireducens, which completely reduced the 73As (V). In field experiments, no significant activity was noted in the aerobic mixolimnion waters, but reduction of 73As (V) to 73As (III) was observed in all the monimolimnion samples. Rate constants ranged from 0.02 to 0.3/day, with the highest values in the samples from the deepest depths (24 and 28 m). The highest activities occurred between 18 and 21 m, where As (V) was abundant (rate, ˜5.9 μmol/L per day). In contrast, sulfate reduction occurred at depths below 21 m, with the highest rates attained at 28 m (rate, ˜2.3 μmol/L per day). These results indicate that As (V) ranks second in importance, after sulfate, as an electron acceptor for anaerobic bacterial respiration in the water column. Annual arsenate respiration may mineralize as much as 14.2% of the pelagic photosynthetic carbon fixed during meromixis. When combined with sulfate-reduction data, anaerobic respiration in the water column can mineralize 32-55% of this primary production. As lakes of this type approach salt saturation, As (V) can become the most important electron acceptor for the biogeochemical cycling of carbon.

  9. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic

    USGS Publications Warehouse

    Switzer, Blum J.; Burns, Bindi A.; Buzzelli, J.; Stolz, J.F.; Oremland, R.S.

    1998-01-01

    Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS 10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5-10. Strain E1H had a salinity optimum at 60 g 1-1 NaCl, while strain MLS10 had optimal growth at lower salinities (24-60 g 1-1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria.

  10. Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic.

    PubMed

    Switzer Blum, J; Burns Bindi, A; Buzzelli, J; Stolz, J F; Oremland, R S

    1998-12-01

    Two gram-positive anaerobic bacteria (strains E1H and MLS10) were isolated from the anoxic muds of Mono Lake, California, an alkaline, hypersaline, arsenic-rich water body. Both grew by dissimilatory reduction of As(V) to As(III) with the concomitant oxidation of lactate to acetate plus CO2. Bacillus arsenicoselenatis (strain E1H) is a spore-forming rod that also grew by dissimilatory reduction of Se(VI) to Se(IV). Bacillus selenitireducens (strain MLS10) is a short, non-spore-forming rod that grew by dissimilatory reduction of Se(IV) to Se(0). When the two isolates were cocultured, a complete reduction of Se(VI) to Se(0) was achieved. Both isolates are alkaliphiles and had optimal specific growth rates in the pH range of 8.5-10. Strain E1H had a salinity optimum at 60 g l-1 NaCl, while strain MLS10 had optimal growth at lower salinities (24-60 g l-1 NaCl). Both strains have limited abilities to grow with electron donors and acceptors other than those given above. Strain MLS10 demonstrated weak growth as a microaerophile and was also capable of fermentative growth on glucose, while strain E1H is a strict anaerobe. Comparative 16S rRNA gene sequence analysis placed the two isolates with other Bacillus spp. in the low G+C gram-positive group of bacteria.

  11. Meromixis in hypersaline Mono Lake, California. 3. Biogeochemical response to stratification and overturn

    USGS Publications Warehouse

    Miller, L.G.; Jellison, R.; Oremland, R.S.; Culbertson, C.W.

    1993-01-01

    The monimolimnion remained anoxic and nearly isothermal, while the upper mixolimnion was well oxygenated and exhibited a seasonal thermal regime. Dissolved sulfide and methane increased in the monimolimnion as a result of diffusive flux from the sediments. Winter mixing down to the chemocline distributed sulfide and methane throughout the mixolimnion. Lakewide inventories of dissolved sulfide and methane reflected the balance between increased concentrations and decreased monimolimnion volume over time. At overturn, the entire water column was isothermal and anoxic. Dissolved sulfide (380 ?? 106 mol) was oxidized in one week by molecular oxygen. Methane (12 ?? 106 mol) was removed more slowly by microbial oxidation and ventilation across the air-water interface. -from Authors

  12. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... acids that are derived from edible sources. The most prevalent fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in the presence of an alkaline...

  13. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes

    USGS Publications Warehouse

    Miller, L.G.; Oremland, R.S.

    2008-01-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress. ?? 2008 US Government.

  14. Electricity generation by anaerobic bacteria and anoxic sediments from hypersaline soda lakes.

    PubMed

    Miller, Laurence G; Oremland, Ronald S

    2008-11-01

    Anaerobic bacteria and anoxic sediments from soda lakes produced electricity in microbial fuel cells (MFCs). No electricity was generated in the absence of bacterial metabolism. Arsenate respiring bacteria isolated from moderately hypersaline Mono Lake (Bacillus selenitireducens), and salt-saturated Searles Lake, CA (strain SLAS-1) oxidized lactate using arsenate as the electron acceptor. However, these cultures grew equally well without added arsenate using the MFC anode as their electron acceptor, and in the process oxidized lactate more efficiently. The decrease in electricity generation by consumption of added alternative electron acceptors (i.e. arsenate) which competed with the anode for available electrons proved to be a useful indicator of microbial activity and hence life in the fuel cells. Shaken sediment slurries from these two lakes also generated electricity, with or without added lactate. Hydrogen added to sediment slurries was consumed but did not stimulate electricity production. Finally, electricity was generated in statically incubated "intact" sediment cores from these lakes. More power was produced in sediment from Mono Lake than from Searles Lake, however microbial fuel cells could detect low levels of metabolism operating under moderate and extreme conditions of salt stress.

  15. Elevated concentrations of actinides in Mono Lake

    SciTech Connect

    Anderson, R.F.; Bacon, M.P.; Brewer, P.G.

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply.

  16. Elevated concentrations of actinides in mono lake.

    PubMed

    Anderson, R F; Bacon, M P; Brewer, P G

    1982-04-30

    Tetravalent thorium, pentavalent protactinium, hexavalent uranium, and plutonium (oxidation state uncertain) are present in much higher concentrations in Mono Lake, a saline, alkaline lake in eastern central California, than in seawater. Low ratios of actinium to protactinium and of americium to plutonium indicate that the concentrations of trivalent actinides are not similarly enhanced. The elevated concentrations of the ordinarily very insoluble actinides are maintained in solution by natural ligands, which inhibit their chemical removal from the water column, rather than by an unusually large rate of supply.

  17. Pyruvate: A key Nutrient in Hypersaline Environments?

    PubMed Central

    Oren, Aharon

    2015-01-01

    Some of the most commonly occurring but difficult to isolate halophilic prokaryotes, Archaea as well as Bacteria, require or prefer pyruvate as carbon and energy source. The most efficient media for the enumeration and isolation of heterotrophic prokaryotes from natural environments, from freshwater to hypersaline, including the widely used R2A agar medium, contain pyruvate as a key ingredient. Examples of pyruvate-loving halophiles are the square, extremely halophilic archaeon Haloquadratum walsbyi and the halophilic gammaproteobacterium Spiribacter salinus. However, surprisingly little is known about the availability of pyruvate in natural environments and about the way it enters the cell. Some halophilic Archaea (Halorubrum saccharovorum, Haloarcula spp.) partially convert sugars and glycerol to pyruvate and other acids (acetate, lactate) which are excreted to the medium. Pyruvate formation from glycerol was also shown during a bloom of halophilic Archaea in the Dead Sea. However, no pyruvate transporters were yet identified in the genomes of halophilic Archaea, and altogether, our understanding of pyruvate transport in the prokaryote world is very limited. Therefore, the preference for pyruvate by fastidious and often elusive halophiles and the empirically proven enhanced colony recovery on agar media containing pyruvate are still poorly understood. PMID:27682096

  18. Hypersalinity drives physiological and morphological changes in Limia perugiae (Poeciliidae)

    PubMed Central

    Tello, Oscar; Krieger, Jonathan; Marmolejo, Arlen; Weaver, Kathleen F.; Garcia, Jerome V.; Cruz, Alexander

    2016-01-01

    ABSTRACT A fundamental question in biology is how an organism's morphology and physiology are shaped by its environment. Here, we evaluate the effects of a hypersaline environment on the morphology and physiology of a population of livebearing fish in the genus Limia (Poeciliidae). We sampled from two populations of Limia perugiae (one freshwater and one hypersaline) in the southwest Dominican Republic. We evaluated relative abundance of osmoregulatory proteins using western blot analyses and used a geometric morphometric approach to evaluate fine-scale changes to size and shape. Our data show that gill tissue isolated from hypersaline fish contained approximately two and a half times higher expression of Na+/K+ ATPase proteins. We also show evidence for mitochondrial changes within the gills, with eight times more complex I and four times higher expression of ATP synthase within the gill tissue from the hypersaline population. The energetic consequences to Limia living in saline and hypersaline environments may be a driver for phenotypic diversity, reducing the overall body size and changing the relative size and shape of the head, as well as impeding the growth of secondary sex features among the males. PMID:27402966

  19. Bacterial Dormancy Is More Prevalent in Freshwater than Hypersaline Lakes

    PubMed Central

    Aanderud, Zachary T.; Vert, Joshua C.; Lennon, Jay T.; Magnusson, Tylan W.; Breakwell, Donald P.; Harker, Alan R.

    2016-01-01

    Bacteria employ a diverse array of strategies to survive under extreme environmental conditions but maintaining these adaptations comes at an energetic cost. If energy reserves drop too low, extremophiles may enter a dormant state to persist. We estimated bacterial dormancy and identified the environmental variables influencing our activity proxy in 10 hypersaline and freshwater lakes across the Western United States. Using ribosomal RNA:DNA ratios as an indicator for bacterial activity, we found that the proportion of the community exhibiting dormancy was 16% lower in hypersaline than freshwater lakes. Based on our indicator variable multiple regression results, saltier conditions in both freshwater and hypersaline lakes increased activity, suggesting that salinity was a robust environmental filter structuring bacterial activity in lake ecosystems. To a lesser degree, higher total phosphorus concentrations reduced dormancy in all lakes. Thus, even under extreme conditions, the competition for resources exerted pressure on activity. Within the compositionally distinct and less diverse hypersaline communities, abundant taxa were disproportionately active and localized in families Microbacteriaceae (Actinobacteria), Nitriliruptoraceae (Actinobacteria), and Rhodobacteraceae (Alphaproteobacteria). Our results are consistent with the view that hypersaline communities are able to capitalize on a seemingly more extreme, yet highly selective, set of conditions and finds that extremophiles may need dormancy less often to thrive and survive. PMID:27375575

  20. NITZSCHIA OVALIS (BACILLARIOPHYCEAE) MONO LAKE STRAIN ACCUMULATES 1,4/2,5 CYCLOHEXANETETROL IN RESPONSE TO INCREASED SALINITY(1).

    PubMed

    Garza-Sánchez, Fernando; Chapman, David J; Cooper, James B

    2009-04-01

    The growth of microalgae in hypersaline conditions requires that cells accumulate osmoprotectants. In many instances, these are polyols. We isolated the diatom Nitzschia ovalis H. J. Arn. from the saline and alkaline water body Mono Lake (CA, USA). This isolate can grow in salinities ranging from 5 to 120 parts per thousand (ppt) of salt but normally at 90 ppt salinity. In this report, we identified the major polyol osmoprotectant as 1,4/2,5 cyclohexanetetrol by electron ionization-mass spectrometry (EI-MS), (1) H, (13) C nuclear magnetic resonance spectroscopy (NMR), and infrared (IR) and showed an increase in cellular concentration in response to rising salinity. This increase in the cyclitol concentration was evaluated by gas chromatography of the derived tetraacetylated cyclohexanetetrol obtaining an average of 0.7 fmol · cell(-1) at 5 ppt and rising to 22.5 fmol · cell(-1) at 120 ppt. The 1,4/2,5 cyclohexanetetrol was also detected in the red alga Porphyridium purpureum. Analysis of the free amino acid content in N. ovalis cultures exposed to changes in salinity showed that proline and lysine also accumulate with increased salinity, but the cellular concentration of these amino acids is about 10-fold lower than the concentration of 1,4/2,5 cyclohexanetetrol. The comparison of amino acid concentration per cell with cyclitol suggests that this polyol is important in compensating the cellular osmotic pressure due to increased salinity, but other physiological functions could also be considered.

  1. Spirochaeta Americana Sp. Nov., A new Haloalkaliphilic, Obligately Anaerobic Spirochete Isolated from Soda Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Pikuta, Elena V.; Bej, Asim K.; Marsic, Damien; Whitman, William B.; Tang, Jane; Krader, Paul; Six, N. Frank (Technical Monitor)

    2002-01-01

    A novel obligately anaerobic, mesophilic, haloalkaliphilic spirochete, strain ASpG1(sup T), was isolated from sediments of the alkaline, hypersaline Mono Lake in California, U.S.A. The Gram-negative cells are motile and spirochete-shaped with sizes of 0.2 - 0.22 X 8-15 microns. Growth was observed over the following ranges: temperature 10 C to 44 C; optimum +37 C; NaCl concentration 2 - 12 % (w/v); optimum NaCl3 % and pH 8 - 10.5; optimum pH 9.5. The novel isolate is strictly alkaliphilic, requires high concentrations of carbonate in the medium, and is capable of utilizing D-glucose, fructose, maltose, sucrose, starch, and D-mannitol. The main end products of glucose fermentation are: H2, acetate, ethanol, and formate. Strain ASpG(sup T) is resistant to kanamycin, and rifampin, but sensitive to chloramphenicol, gentamycin and tetracycline. The G+C content of its DNA is 58.5 mol%, genome size is 2.98 x l0(exp 9) Daltons, Tm of the genomic DNA is 68 +/- 2 C, and DNA-DNA hybridization with the most closely related species, Spirocheta alkalica Strain Z-7491(sup T), exhibited 48.7% homology. On the basis of its physiological and molecular properties, the isolate appears to be a novel species of the genus Spirochaeta; and the name Spirochaeta americana sp. nov., is proposed for the taxon (type strain ASpG1(sup T) = ATCC BAA-392(sup T) = DSMZ 14872(sup T)).

  2. Microbial diversity in hypersaline wastewater: the example of tanneries.

    PubMed

    Lefebvre, O; Vasudevan, N; Thanasekaran, K; Moletta, R; Godon, J J

    2006-12-01

    In contrast to conventional wastewater treatment plants and saline environments, little is known regarding the microbial diversity of hypersaline wastewater. In this study, the microbial communities of a hypersaline tannery effluent, and those of three treatment systems operating with the tannery effluent, were investigated using 16S rDNA phylogenetic markers. The comparative analysis of 377 bacterial sequences revealed the high diversity of this type of hypersaline environment, clustering within 193 phylotypes (> or = 97% similarity) and covering 14 of the 52 divisions of the bacterial domain, i.e. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chlorobi, Planctomycetes, Spirochaetes, Synergistes, Chloroflexi, Thermotogae, Verrucomicrobia, OP3, OP11 and TM7. Most of the phylotypes were related to halophilic and pollutant-degrading bacteria. Using statistical analysis, the diversity of this type of environment was compared to that of other environmental samples selected on the basis of their salinity, oxygen content and organic load.

  3. The enigma of prokaryotic life in deep hypersaline anoxic basins.

    PubMed

    van der Wielen, Paul W J J; Bolhuis, Henk; Borin, Sara; Daffonchio, Daniele; Corselli, Cesare; Giuliano, Laura; D'Auria, Giuseppe; de Lange, Gert J; Huebner, Andreas; Varnavas, Sotirios P; Thomson, John; Tamburini, Christian; Marty, Danielle; McGenity, Terry J; Timmis, Kenneth N

    2005-01-07

    Deep hypersaline anoxic basins in the Mediterranean Sea are a legacy of dissolution of ancient subterranean salt deposits from the Miocene period. Our study revealed that these hypersaline basins are not biogeochemical dead ends, but support in situ sulfate reduction, methanogenesis, and heterotrophic activity. A wide diversity of prokaryotes was observed, including a new, abundant, deeply branching order within the Euryarchaeota. Furthermore, we demonstrated the presence of a unique, metabolically active microbial community in the Discovery basin, which is one of the most extreme terrestrial saline environments known, as it is almost saturated with MgCl2 (5 M).

  4. Mono County update

    SciTech Connect

    Lyster, D. )

    1988-12-01

    The Mono County Board of Supervisors approved the issuance of a use-permit for the Mammoth-Pacific II geothermal power plant. The power plant will be a binary, air-cooled, 10-megawatt, net, project. An appeal was filed by the California Department of Fish and Game, and the permit will not take effect until this appeal is resolved. Mono County also issued a project use-permit to proposers of Bonneville Pacific Corporations Mammoth Chance Geothermal Project, also a 10-megawatt, net, binary and air-cooled project. The permit was appealed by the Sierra Club, Cal-Trout, and the California Department of Fish and Game. Now, a subsequent EIR must be prepared for public review and comment. The subsequent EIR will address the issue of cumulative impacts and will include a discussion of new information.

  5. Mono County update

    SciTech Connect

    Lyster, D.L.

    1987-07-01

    In May 1987, the Mono County Energy Management Department recommended that a two-year moratorium be placed on geothermal power production projects on private lands within the Mono-Long Valley KGRA. The intent of the proposed moratorium was to allow for the collection and evaluation of hydrologic monitoring data in the Long Valley Caldera. Now, to still achieve this end, the Energy Management Department will suggest that mitigation measures and project-specific monitoring requirements be implemented via the California Environmental Quality Act (CEQA) documentation and the county use permit process. The monitoring data will provide important information to Mono County decision-makers regarding potential adverse impacts from geothermal production on such local resources as Hot Creek Gorge, the Hot Creek Fish Hatchery, and Hot Creek, itself. The Mammoth/Chance Geothermal Project is the proposed construction and operation of a 10 megawatt, net, geothermal binary-cycle power plant and production- and injection-well field by Bonneville Pacific Corporation. The project is currently under environmental review, pursuant to CEQA requirements. The Mono County Energy Management Director is providing assistance to the Town of Mammoth Lakes on its California Energy Commission (CEC) grant-funded resource assessment project. The grant of $220,000 provides for the drilling of at least two temperature-gradient wells (exploratory wells) within the town limits. If a geothermal resource is detected and found to provide adequate flows at a suitable temperature, the Town of Mammoth Lakes will proceed in the development of a geothermal space-heating system to provide heat to such users as the Centinela Mammoth Hospital, Mammoth elementary and high schools, the Gateway Industrial Park, and future residential development projects.

  6. Mono County update

    SciTech Connect

    Lyster, D.L.

    1987-06-01

    On February 9, 1988, the Mono County Board of Supervisors voted to approve Bonneville Pacific Corporation's Mammoth Chance Geothermal Project. The project is an air-cooled, binary, geothermal power plant, 10 megawatts, net. The Mono County Board of Supervisors issued a project use-permit with vigorous and stringent conditions. Specific emphasis was placed on the establishment of a monitoring program designed to detect the effects of geothermal development on the springs at the Hot Creek Fish Hatchery and Hot Creek Gorge. On October 5, 1987, the Mono County Planning Commission granted a use-permit to Mammoth Pacific for its Mammoth Pacific II Project, a binary, air-cooled, geothermal power plant, 10 megawatts, net. The issuance of the use-permit instigated an appeal by the Sierra Club. That appeal was heard on February 22, 1988, At the end of the testimony, the Board of Supervisors voted to uphold the appeal of the Sierra Club, thereby denying the project by a vote of 3 to 2. The main areas of concern voiced by the majority of the Board included potential hydrologic impacts to Hot Creek Gorge and Hot Creek Fish Hatchery, visual impacts, and impacts to mule deer migration and survival. One of the options now available to Mammoth Pacific is to request that the project be denied without prejudice. This would allow Mammoth Pacific to return to the Board immediately with additional material regarding its concerns.

  7. Capillary electrophoresis of neutral carbohydrates: mono-, oligosaccharides, glycosides.

    PubMed

    Campa, Cristiana; Rossi, Marco

    2008-01-01

    This chapter reports an overview of the recent advances in the analysis of neutral sugars by capillary electrophoresis (CE); furthermore, some relevant reviews and research articles in the field are tabulated. Comparison of CE with chromatography is also presented, with special attention to separation efficiency and sensitivity. The main routes aimed at pretreatment and CE analysis of uncharged mono-, oligosaccharides, and glycosides are described. Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral mono- and oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) underivatized mono- and di-saccharides analyzed using highly alkaline buffers; and (3) anomeric couples of glycosides separated using borate-based buffers.

  8. Mono County geothermal activity

    SciTech Connect

    Lyster, D.L.

    1986-01-01

    Three geothermal projects have been proposed or are underway in Mono County, California. The Mammoth/Chance geothermal development project plans to construct a 10-MW geothermal binary power plant which will include 8 production and 3 injection wells. Pacific Lighting Energy Systems is also planning a 10-MW binary power plant consisting of 5 geothermal wells and up to 4 injection wells. A geothermal research project near Mammoth Lakes has spudded a well to provide a way to periodically measure temperature gradient, pressure, and chemistry of the thermal waters and to investigate the space-heating potential of the area in the vicinity of Mammoth Lakes. All three projects are briefly described.

  9. Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California.

    PubMed

    Humayoun, Shaheen B; Bano, Nasreen; Hollibaugh, James T

    2003-02-01

    We analyzed the variation with depth in the composition of members of the domain Bacteria in samples from alkaline, hypersaline, and currently meromictic Mono Lake in California. DNA samples were collected from the mixolimnion (2 m), the base of the oxycline (17.5 m), the upper chemocline (23 m), and the monimolimnion (35 m). Composition was assessed by sequencing randomly selected cloned fragments of 16S rRNA genes retrieved from the DNA samples. Most of the 212 sequences retrieved from the samples fell into five major lineages of the domain Bacteria: alpha- and gamma-Proteobacteria (6 and 10%, respectively), Cytophaga-Flexibacter-Bacteroides (19%), high-G+C-content gram-positive organisms (Actinobacteria; 25%), and low-G+C-content gram-positive organisms (Bacillus and Clostridium; 19%). Twelve percent were identified as chloroplasts. The remaining 9% represented beta- and delta-Proteobacteria, Verrucomicrobiales, and candidate divisions. Mixolimnion and oxycline samples had low microbial diversity, with only 9 and 12 distinct phylotypes, respectively, whereas chemocline and monimolimnion samples were more diverse, containing 27 and 25 phylotypes, respectively. The compositions of microbial assemblages from the mixolimnion and oxycline were not significantly different from each other (P = 0.314 and 0.877), but they were significantly different from those of chemocline and monimolimnion assemblages (P < 0.001), and the compositions of chemocline and monimolimnion assemblages were not significantly different from each other (P = 0.006 and 0.124). The populations of sequences retrieved from the mixolimnion and oxycline samples were dominated by sequences related to high-G+C-content gram-positive bacteria (49 and 63%, respectively) distributed in only three distinct phylotypes, while the population of sequences retrieved from the monimolimnion sample was dominated (52%) by sequences related to low-G+C-content gram-positive bacteria distributed in 12 distinct

  10. How Long Is Mono Contagious?

    MedlinePlus

    ... it is contagious. Once someone gets mono, the virus stays in that person's body for life. That doesn't mean that you are always ... as long as 18 months. After that, the virus remains dormant (inactive) in the body for the rest of a person's life. If you've had mono, the virus can ...

  11. Ophiuroids Discovered in the Middle Triassic Hypersaline Environment

    PubMed Central

    Salamon, Mariusz A.; Niedźwiedzki, Robert; Lach, Rafał; Brachaniec, Tomasz; Gorzelak, Przemysław

    2012-01-01

    Echinoderms have long been considered to be one of the animal phyla that is strictly marine. However, there is growing evidence that some recent species may live in either brackish or hypersaline environments. Surprisingly, discoveries of fossil echinoderms in non-(open)marine paleoenvironments are lacking. In Wojkowice Quarry (Southern Poland), sediments of lowermost part of the Middle Triassic are exposed. In limestone layer with cellular structures and pseudomorphs after gypsum, two dense accumulations of articulated ophiuroids (Aspiduriella similis (Eck)) were documented. The sediments with ophiuroids were formed in environment of increased salinity waters as suggested by paleontological, sedimentological, petrographical and geochemical data. Discovery of Triassic hypersaline ophiuroids invalidates the paleontological assumption that fossil echinoderms are indicators of fully marine conditions. Thus caution needs to be taken when using fossil echinoderms in paleoenvironmental reconstructions. PMID:23185442

  12. Heterotrophic denitrification at extremely high salt and pH by haloalkaliphilic Gammaproteobacteria from hypersaline soda lakes

    PubMed Central

    Shapovalova, A. A.; Khijniak, T. V.; Tourova, T. P.; Muyzer, G.

    2008-01-01

    In this paper we describe denitrification at extremely high salt and pH in sediments from hypersaline alkaline soda lakes and soda soils. Experiments with sediment slurries demonstrated the presence of acetate-utilizing denitrifying populations active at in situ conditions. Anaerobic enrichment cultures at pH 10 and 4 M total Na+ with acetate as electron donor and nitrate, nitrite and N2O as electron acceptors resulted in the dominance of Gammaproteobacteria belonging to the genus Halomonas. Both mixed and pure culture studies identified nitrite and N2O reduction as rate-limiting steps in the denitrification process at extremely haloalkaline conditions. Electronic supplementary material The online version of this article (doi:10.1007/s00792-008-0166-6) contains supplementary material, which is available to authorized users. PMID:18452025

  13. Controls on the pH of hyper-saline lakes - A lesson from the Dead Sea

    NASA Astrophysics Data System (ADS)

    Golan, Rotem; Gavrieli, Ittai; Ganor, Jiwchar; Lazar, Boaz

    2016-01-01

    The pH of aqueous environments is determined by the dominant buffer systems of the water, defined operationally as total alkalinity (TA). The major buffer systems in the modern ocean are carbonic and boric acids of which the species bicarbonate, carbonate and borate make up about 77%, 19% and 4% of the TA, respectively. During the course of seawater evaporation (e.g. lagoons) the residual brine loses considerable portion of the dissolved inorganic carbon (DIC) and carbonate alkalinity (CA) already at the early stages of evaporation. DIC and CA decrease due to massive precipitation of CaCO3, while total boron (TB) increases conservatively, turning borate to the dominant alkalinity species in marine derived brines. In the present work we assess the apparent dissociation constant value of boric acid (KB‧) in saline and hypersaline waters, using the Dead Sea (DS) as a case study. We explain the DS low pH (∼6.3) and the effect of the boric and carbonic acid pK‧-s on the behavior of the brine's buffer system, including the pH increase that results from brine dilution.

  14. Ancient Life at the Extremes: Molecular Fossils and Paleoenvironmental Contexts of a Neoproterozoic Hypersaline Setting

    NASA Astrophysics Data System (ADS)

    Schinteie, R.; Brocks, J. J.

    2011-12-01

    We present the first molecular investigation of the biotic composition and biogeochemistry of an evaporitic, hypersaline environment from the Neoproterozoic (~800 Ma). Through detailed analyses of both sedimentary textures and their lipid biomarkers, we provide the oldest evidence of organisms that could exist at extremely saline conditions. Such research is timely, since the discovery of evaporite deposits on Mars highlights the need to understand their capacities as biological archives. Samples for this study were derived from evaporitic sediments of the Neoproterozoic Bitter Springs Formation, Amadeus Basin, central Australia. Due to the broad shallow nature of the basin and a tenuous connection with the ocean, the water was characterized by elevated salinity levels during that time. As a result, thick (100 m to >2000 m) evaporite units were deposited. All samples for this study were derived from drill cores held at Geoscience Australia (Canberra) and at the Northern Territory Geological Survey at Alice Springs. We extracted biomarkers from evaporitic sediments composed of dolomite, anhydrite and/or halite. The dolomite layers commonly assume the shape of microbial mat-like formations that exhibit roll-up structures and tearing. Framboidal pyrite was commonly associated with the dolomite and together with other textural and stable isotopic data provide the oldest putative evidence for biologically-induced dolomite precipitation. Full scan gas chromatography-mass spectrometry (GCMS) of the saturate fractions of these evaporites revealed high ratios of mono-and dimethylalkanes relative to n-alkanes. Such a pattern is typical of Precambrian and Cambrian samples. These molecules, together with elevated relative concentrations of n-C17, provide evidence of a photoautotrophic community - especially cyanobacteria. A further outstanding characteristic of these samples are the presence of several pseudohomologous series of both regular (to C25) and irregular (to C40

  15. MonoColor CMOS sensor

    NASA Astrophysics Data System (ADS)

    Wang, Ynjiun P.

    2009-02-01

    A new breed of CMOS color sensor called MonoColor sensor is developed for a barcode reading application in AIDC industry. The RGBW color filter array (CFA) in a MonoColor sensor is arranged in a 8 x 8 pixels CFA with only 4 pixels of them are color (RGB) pixels and the rest of 60 pixels are transparent or monochrome. Since the majority of pixels are monochrome, MonoColor sensor maintains 98% barcode decode performance compared with a pure monochrome CMOS sensor. With the help of monochrome and color pixel fusion technique, the resulting color pictures have similar color quality in terms of Color Semantic Error (CSE) compared with a Bayer pattern (RGB) CMOS color camera. Since monochrome pixels are more sensitive than color pixels, a MonoColor sensor produces in general about 2X brighter color picture and higher luminance pixel resolution.

  16. MAGNESIUM MONO POTASSIUM PHOSPHATE GROUT FOR P-REACTOR VESSEL IN-SITU DECOMISSIONING

    SciTech Connect

    Langton, C.; Stefanko, D.

    2011-01-05

    The objective of this report is to document laboratory testing of magnesium mono potassium phosphate grouts for P-Reactor vessel in-situ decommissioning. Magnesium mono potassium phosphate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout (pH of about 12.4). A less alkaline material ({<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere. Fresh and cured properties were measured for: (1) commercially blended magnesium mono potassium phosphate packaged grouts, (2) commercially available binders blended with inert fillers at SRNL, (3) grouts prepared from technical grade MgO and KH{sub 2}PO{sub 4} and inert fillers (quartz sands, Class F fly ash), and (4) Ceramicrete{reg_sign} magnesium mono potassium phosphate-based grouts prepared at Argonne National Laboratory. Boric acid was evaluated as a set retarder in the magnesium mono potassium phosphate mixes.

  17. Fungal communities of young and mature hypersaline microbial mats.

    PubMed

    Cantrell, Sharon A; Tkavc, Rok; Gunde-Cimerman, Nina; Zalar, Polona; Acevedo, Manuel; Báez-Félix, Claribel

    2013-01-01

    Microbial mats are a laminated organic-sedimentary ecosystem, found in a wide range of habitats. Fluctuating diel and seasonal physicochemical gradients characterize these ecosystems, resulting in both strata and microenvironments that harbor specific microbial communities. This study was undertaken to compare two types of microbial mats across seasons to further understand the structure of fungal communities in hypersaline microbial mats and their seasonal dynamics. The structure and diversity of fungal communities was documented in young transient and mature hypersaline microbial mats from a tropical region (Puerto Rico) using one culture-dependent and three culture-independent molecular techniques based on the internal transcribed spacer (ITS) region of ribosomal DNA: terminal restriction fragment length polymorphism (TRFLP), denaturing gradient gel electrophoresis (DGGE) and clone libraries. Two microbial mats (one young and transient, one mature) were sampled in Nov 2007 (wet season), Jan 2008 (intermediate season) and Mar 2008 (dry season) in the Cabo Rojo Solar Salterns on the southwestern coast of Puerto Rico. Traditional and molecular techniques revealed strong spatial and temporal heterogeneities in both microbial mats. Higher abundance of isolates and phylotypes were observed during the wet season, and diversity decreased from the top (oxic) to the bottom (anoxic) layers in both seasons. Some of the species isolated belong to the genera Aspergillus, Cladosporium, Hortaea, Pichia and Wallemia, which often are isolated from hypersaline environments. The most abundant clones belong to Acremonium strictum and Cladosporium halotolerans, which were not isolated in pure culture. The differences observed using culture-based and molecular techniques demonstrates the need of combining methods to study the diversity of fungi in a given substrate.

  18. Algal fossils from a late precambrian, hypersaline lagoon.

    PubMed

    Oehler, D Z; Oehler, J H; Stewart, A J

    1979-07-27

    Organically preserved algal microfossils from the Ringwood evaporite deposit in the Gillen Member of the Bitter Springs Formation (late Precambrian of central Australia) are of small size, low diversity, and probable prokaryotic affinities. These rather primitive characteristics appear to reflect the stressful conditions that prevailed in a periodically stagnant, hypersaline lagoon. This assemblage (especially in comparison with the much more diverse assemblages preserved in the Loves Creek Member of the same formation) illustrates the potential utility of Proterozoic microbiotas for basin analysis and local stratigraphic correlation and demonstrates the need to base evolutionary considerations and Precambrian intercontinental biostratigraphy on biotas that inhabited less restricted environments.

  19. Mono Lake Analog Mars Sample Return Expedition for AMASE

    NASA Technical Reports Server (NTRS)

    Conrad, P. G.; Steele, A.; Younse, P.; DiCicco, M.; Morgan, A. R.; Backes, P.; Eigenbrode, J. E.; Marquardt, D.; Amundsen, H. E. F.

    2011-01-01

    We explored the performance of one robotic prototype for sample acquisition and caching of martian materials that has been developed at the Jet Propulsion Laboratory for potential use in the proposed MAX-C Mars Sample Return architecture in an environment, rich in chemical diversity with a variety of mineralogical textures. Mono Lake State Tufa Reserve in Mono County, CA possesses a variety of minerals including a variety of evaporites, volcanic glass and lava, and sand and mudstones. The lake itself is an interesting chemical system: the water is highly alkaline (pH is approximately 10) and contains concentrations of Cl, K, B, with lesser amounts of S Ca Mg, F, As, Li, I and Wand generally enriched HREEs. There are also traces of radioactive elements U, Th, Pl.

  20. The microbial arsenic cycle in Mono Lake, California.

    PubMed

    Oremland, Ronald S; Stolz, John F; Hollibaugh, James T

    2004-04-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO(2) into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less "extreme" environments, such as drinking water aquifers.

  1. The microbial arsenic cycle in Mono Lake, California

    USGS Publications Warehouse

    Oremland, Ronald S.; Stolz, John F.; Hollibaugh, James T.

    2004-01-01

    Significant concentrations of dissolved inorganic arsenic can be found in the waters of a number of lakes located in the western USA and in other water bodies around the world. These lakes are often situated in arid, volcanic terrain. The highest concentrations of arsenic occur in hypersaline, closed basin soda lakes and their remnant brines. Although arsenic is a well-known toxicant to eukaryotes and prokaryotes alike, some prokaryotes have evolved biochemical mechanisms to exploit arsenic oxyanions (i.e., arsenate and arsenite); they can use them either as an electron acceptor for anaerobic respiration (arsenate), or as an electron donor (arsenite) to support chemoautotrophic fixation of CO2 into cell carbon. Unlike in freshwater or marine ecosystems, these processes may assume quantitative significance with respect to the carbon cycle in arsenic-rich soda lakes. For the past several years our research has focused on the occurrence and biogeochemical manifestations of these processes in Mono Lake, a particularly arsenic-rich environment. Herein we review some of our findings concerning the biogeochemical arsenic cycle in this lake, with the hope that it may broaden the understanding of the influence of microorganisms upon the speciation of arsenic in more common, less “extreme” environments, such as drinking water aquifers.

  2. Anaerobic oxidation of methane in hypersaline cold seep sediments.

    PubMed

    Maignien, Loïs; Parkes, R John; Cragg, Barry; Niemann, Helge; Knittel, Katrin; Coulon, Stephanie; Akhmetzhanov, Andrey; Boon, Nico

    2013-01-01

    Life in hypersaline environments is typically limited by bioenergetic constraints. Microbial activity at the thermodynamic edge, such as the anaerobic oxidation of methane (AOM) coupled to sulphate reduction (SR), is thus unlikely to thrive in these environments. In this study, carbon and sulphur cycling was investigated in the extremely hypersaline cold seep sediments of Mercator mud volcano. AOM activity was partially inhibited but still present at salinity levels of 292 g L(-1) (c. eightfold sea water concentration) with rates of 2.3 nmol cm(-3) day(-1) and was even detectable under saturated conditions. Methane and evaporite-derived sulphate comigrated in the ascending geofluids, which, in combination with a partial activity inhibition, resulted in AOM activity being spread over unusually wide depth intervals. Up to 79% of total cells in the AOM zone were identified by fluorescence in situ hybridization (FISH) as anaerobic methanotrophs of the ANME-1. Most ANME-1 cells formed monospecific chains without any attached partner. At all sites, AOM activity co-occurred with SR activity and sometimes significantly exceeded it. Possible causes of these unexpected results are discussed. This study demonstrates that in spite of a very low energy yield of AOM, microorganisms carrying this reaction can thrive in salinity up to halite saturation.

  3. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsege; Turk, Kendra A.

    2003-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments where microorganisms had virtually no competition apart from the harsh conditions of hypersalinity, desiccation and intense light. Today, the modern counterparts of these microbial ecosystems find appropriate niches in only a few places where extremes eliminate eukaryotic grazers. Answers to many outstanding questions about the evolution of microorganisms and their environments on early Earth are best answered through study of these extant analogs. Lipids associated with various groups of bacteria can be valuable biomarkers for identification of specific groups of microorganisms both in ancient organic-rich sedimentary rocks (geolipids) and contemporary microbial communities (membrane lipids). Use of compound specific isotope analysis adds additional refinement to the identification of biomarker source, so that it is possible to take advantage of the 3C-depletions associated with various functional groups of organisms (i.e. autotrophs, heterotrophs, methanotrophs, methanogens) responsible for the cycling of carbon within a microbial community. Our recent work has focused on a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico which support the abundant growth of Microcoleus-dominated microbial mats. Specific biomarkers for diatoms, cyanobacteria, archaea, green nonsulfur (GNS), sulfate reducing, and methanotrophic bacteria have been identified. Analyses of the ester-bound fatty acids indicate a highly diverse microbial community, dominated by photosynthetic organisms at the surface.

  4. Methanogenesis in hypersaline environments -Analogs for Ancient Mars?

    NASA Astrophysics Data System (ADS)

    Bebout, Brad; Chanton, Jeff; Kelley, Cheryl; Tazaz, Amanda; Poole, Jennifer; García Maldonado, José Q.; López Cortés, Alejandro

    The recent findings of evidence of large bodies of hypersaline water which existed in the past on Mars have underscored the need to investigate those environments for evidence of past, as well as extant, life. Methane, a key biomarker gas, has been reported in the atmosphere of Mars, and is known to be produced by microbial mats which are present in most hypersaline environments on Earth. Modern microbial mat communities are thought to be extant analogues of communities which were present early in Earth's geologic history, when environmental condition on Earth and Mars were similar. Because methane may be an indication of life (biogenic methane) but might also be a consequence of geologic activity (abiotic methane) and/or the thermal alteration of ancient organic matter (thermogenic methane), the stable isotopic composition of methane (both carbon and hydrogen) will be a key criterion for determining whether or not the methane on Mars is biologically produced, and if so, how recently (i.e., biogenic vs. thermogenic methane). The goals of our study are: a) to document the range of the stable isotopic composition of methane (both carbon and hydrogen) in hypersaline environments, and b) to understand the role of biology in generating that stable isotopic composition. Our results will help provide a framework for the interpretation of methane stable isotopic data from Mars. We have measured high concentrations of methane in bubbles of gas present in the Guerrero Negro hypersaline ecosystem, Baja California Mexico and in salt ponds on the San Francisco Bay. These bubbles are present both in sediments underlying microbial mats (including one site where methane constitutes nearly 40% by volume of the bubbles), as well as in areas not colonized by microbial mats; layers of evaporitic minerals in some areas trap gas containing high concentrations of methane. The carbon isotopic (δ 13 C) composition of the methane in collected bubbles exhibited an extremely wide range of

  5. Impacts of hypersaline acclimation on the acute toxicity of the organophosphate chlorpyrifos to salmonids.

    PubMed

    Maryoung, Lindley A; Lavado, Ramon; Schlenk, Daniel

    2014-07-01

    Acclimation to hypersaline conditions enhances the acute toxicity of certain thioether organophosphate and carbamate pesticides in some species of euryhaline fish. As the organophosphate chlorpyrifos is commonly detected in salmonid waterways, the impacts of hypersaline conditions on its toxicity were examined. In contrast to other previously examined pesticides, time to death by chlorpyrifos was more rapid in freshwater than in hypersaline water (16ppth). The median lethal time (LT50) after 100μg/L chlorpyrifos exposure was 49h (95% CI: 31-78) and 120h (95% CI: 89-162) for rainbow trout (Oncorhynchus mykiss) in freshwater and those acclimated to hypersaline conditions, respectively. Previous studies with hypersaline acclimated fish indicated induction of xenobiotic metabolizing enzymes that may detoxify chlorpyrifos. In the current study, chlorpyrifos metabolism was unaltered in liver and gill microsomes of freshwater and hypersaline acclimated fish. Acetylcholinesterase inhibition in brain and bioavailability of chlorpyrifos from the aqueous exposure media were also unchanged. In contrast, mRNA expression of neurological targets: calcium calmodulin dependent protein kinase II delta, chloride intracellular channel 4, and G protein alpha i1 were upregulated in saltwater acclimated fish, consistent with diminished neuronal signaling which may protect animals from cholinergic overload associated with acetylcholinesterase inhibition. These results indicate targets other than acetylcholinesterase may contribute to the altered toxicity of chlorpyrifos in salmonids under hypersaline conditions.

  6. Anammox bacterial populations in deep marine hypersaline gradient systems.

    PubMed

    Borin, Sara; Mapelli, Francesca; Rolli, Eleonora; Song, Bongkeun; Tobias, Craig; Schmid, Markus C; De Lange, Gert J; Reichart, Gert J; Schouten, Stefan; Jetten, Mike; Daffonchio, Daniele

    2013-03-01

    To extend the knowledge of anaerobic ammonium oxidation (anammox) habitats, bacterial communities were examined in two hypersaline sulphidic basins in Eastern Mediterranean Sea. The 2 m thick seawater-brine haloclines of the deep anoxic hypersaline basins Bannock and L'Atalante were sampled in intervals of 10 cm with increasing salinity. (15)N isotope pairing incubation experiments showed the production of (29)N2 and (30)N2 gases in the chemoclines, ranging from 6.0 to 9.2 % salinity of the L'Atalante basin. Potential anammox rates ranged from 2.52 to 49.65 nmol N2 L(-1) day(-1) while denitrification was a major N2 production pathway, accounting for more than 85.5 % of total N2 production. Anammox-related 16S rRNA genes were detected along the L'Atalante and Bannock haloclines up to 24 % salinity, and the amplification of the hydrazine synthase genes (hzsA) further confirmed the presence of anammox bacteria in Bannock. Fluorescence in situ hybridisation and sequence analysis of 16S rRNA genes identified representatives of the marine anammox genus 'Candidatus Scalindua' and putatively new operational taxonomic units closely affiliated to sequences retrieved in marine environments that have documented anammox activity. 'Scalindua brodae' like sequences constituted up to 84.4 % of the sequences retrieved from Bannock. The anammox community in L'Atalante was different than in Bannock and was stratified according to salinity increase. This study putatively extends anammox bacterial habitats to extremely saline sulphidic ecosystems.

  7. MILLIMETER-SCALE GENETIC GRADIENTS AND COMMUNITY-LEVEL MOLECULAR CONVERGENCE IN A HYPERSALINE MICROBIAL MAT

    SciTech Connect

    Fenner, Marsha W; Kunin, Victor; Raes, Jeroen; Harris, J. Kirk; Spear, John R.; Walker, Jeffrey J.; Ivanova, Natalia; Mering, Christian von; Bebout, Brad M.; Pace, Norman R.; Bork, Peer; Hugenholtz, Philip

    2008-04-30

    To investigate the extent of genetic stratification in structured microbial communities, we compared the metagenomes of 10 successive layers of a phylogenetically complex hypersaline mat from Guerrero Negro, Mexico. We found pronounced millimeter-scale genetic gradients that are consistent with the physicochemical profile of the mat. Despite these gradients, all layers displayed near identical and acid-shifted isoelectric point profiles due to a molecular convergence of amino acid usage indicating that hypersalinity enforces an overriding selective pressure on the mat community.

  8. Lipid Biomarkers for a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Embaye, Tsegereda; Turk, Kendra; Kubo, Mike; Summons, Roger

    2004-01-01

    The use of lipid biomarkers and their carbon isotopic compositions are valuable tools for establishing links to ancient microbial ecosystems. Various lipids associated with specific microbial groups can serve as biomarkers for establishing organism source and function in contemporary microbial ecosystems (membrane lipids), and by analogy, potential relevance to ancient organic-rich sedimentary rocks (geolipids). As witnessed by the stromatolite record, benthic microbial mats grew in shallow water lagoonal environments. Our recent work has focused on lipid biomarker analysis of a potential analogue for such ancient mats growing in a set of hypersaline evaporation ponds at Guerrero Negro, Baja California Sur, Mexico. The aerobic, surface layer of this mat (0 to 1 mm) contained a variety of ester-bound fatty acids (FA) representing a diverse bacterial population including cyanobacteria, sulphate reducers (SRB) and heterotrophs. Biomarkers for microeukaryotes detected in this layer included sterols, C-20 polyunsaturated FA and a highly branched isoprenoid, diagnostic for diatoms. Cyanobacteria were also indicated by the presence of a diagnostic set of mid-chain methylalkanes. C-28, to C-34 wax esters (WXE) present in relatively small amounts in the upper 3 mm of the mat are considered biomarkers for green non-sulphur bacteria. Ether-bound isoprenoids were also identified although in considerably lower abundance than ester-bound FA (approx. 1:l0). These complex ether lipids included archatol, hydroxyarchaeol and a C-40 tetraether, all in small amounts. After ether cleavage with boron tribromide, the major recovered isoprenyl was a C-30:1. This C(sub 30;1) yelded squalane after hydrogenation, a known geobiomarker for hypersaline environments in ancient oils and sediments. In this mat, it represents the dominant Archaeal population. The carbon isotopic composition of biomarker lipids were generally depleted relative to the bulk organic material (delta C-13 TOC -10%). Most

  9. Resilience of estuarine phytoplankton and their temporal variability along salinity gradients during drought and hypersalinity

    NASA Astrophysics Data System (ADS)

    Nche-Fambo, F. A.; Scharler, U. M.; Tirok, K.

    2015-06-01

    In South African estuaries, there is no knowledge on the resilience and variability in phytoplankton communities under conditions of hypersalinity, extended droughts and reverse salinity gradients. Phytoplankton composition, abundance and biomass vary with changes in environmental variables and taxa richness declines specifically under hypersaline conditions. This research thus investigated the phytoplankton community composition, its resilience and variability under highly variable and extreme environmental conditions in an estuarine lake system (Lake St. Lucia, South Africa) over one year. The lake system was characterised by a reverse salinity gradient with hypersalinity furthest from the estuarine inlet during the study period. During this study, 78 taxa were recorded: 56 diatoms, eight green algae, one cryptophyte, seven cyanobacteria and six dinoflagellates. Taxon variability and resilience depended on their ability to tolerate high salinities. Consequently, the phytoplankton communities as well as total abundance and biomass differed along the salinity gradient and over time with salinity as the main determinant. Cyanobacteria were dominant in hypersaline conditions, dinoflagellates in marine-brackish salinities, green algae and cryptophytes in lower salinities (brackish) and diatoms were abundant in marine-brackish salinities but survived in hypersaline conditions. Total abundance and biomass ranged from 3.66 × 103 to 1.11 × 109 Cells/L and 1.21 × 106 to 1.46 × 1010 pgC/L respectively, with the highest values observed under hypersaline conditions. Therefore, even under highly variable, extreme environmental conditions and hypersalinity the phytoplankton community as a whole was resilient enough to maintain a relatively high biomass throughout the study period. The resilience of few dominant taxa, such as Cyanothece, Spirulina, Protoperidinium and Nitzschia and the dominance of other common genera such as Chlamydomonas, Chroomonas, Navicula, Gyrosigma

  10. Characterization of eukaryotic microbial diversity in hypersaline Lake Tyrrell, Australia

    PubMed Central

    Heidelberg, Karla B.; Nelson, William C.; Holm, Johanna B.; Eisenkolb, Nadine; Andrade, Karen; Emerson, Joanne B.

    2013-01-01

    This study describes the community structure of the microbial eukaryotic community from hypersaline Lake Tyrrell, Australia, using near full length 18S rRNA sequences. Water samples were taken in both summer and winter over a 4-year period. The extent of eukaryotic diversity detected was low, with only 35 unique phylotypes using a 97% sequence similarity threshold. The water samples were dominated (91%) by a novel cluster of the Alveolate, Apicomplexa Colpodella spp., most closely related to C. edax. The Chlorophyte, Dunaliella spp. accounted for less than 35% of water column samples. However, the eukaryotic community entrained in a salt crust sample was vastly different and was dominated (83%) by the Dunaliella spp. The patterns described here represent the first observation of microbial eukaryotic dynamics in this system and provide a multiyear comparison of community composition by season. The lack of expected seasonal distribution in eukaryotic communities paired with abundant nanoflagellates suggests that grazing may significantly structure microbial eukaryotic communities in this system. PMID:23717306

  11. Halotaxis of cyanobacteria in an intertidal hypersaline microbial mat.

    PubMed

    Kohls, Katharina; Abed, Raeid M M; Polerecky, Lubos; Weber, Miriam; de Beer, Dirk

    2010-03-01

    An intertidal hypersaline cyanobacterial mat from Abu Dhabi (United Arab Emirates) exhibited a reversible change in its surface colour within several hours upon changes in salinity of the overlying water. The mat surface was orange-reddish at salinities above 15% and turned dark green at lower salinities. We investigated this phenomenon using a polyphasic approach that included denaturing gradient gel electrophoresis, microscopy, high-performance liquid chromatography, hyperspectral imaging, absorption spectroscopy, oxygen microsensor measurements and modelling of salinity dynamics. Filaments of Microcoleus chthonoplastes, identified based on 16S rRNA sequencing and morphology, were found to migrate up and down when salinity was decreased below or increased above 15%, respectively, causing the colour change of the mat uppermost layer. Migration occurred in light and in the dark, and could be induced by different salts, not only NaCl. The influence of salinity-dependent and independent physico-chemical parameters, such as water activity, oxygen solubility, H2S, gravity and light, was excluded, indicating that the observed migration was due to a direct response to salt stress. We propose to term this salinity-driven cyanobacterial migration as 'halotaxis', a process that might play a vital role in the survival of cyanobacteria in environments exposed to continuous salinity fluctuations such as intertidal flats.

  12. Assembly-driven community genomics of a hypersaline microbial ecosystem.

    PubMed

    Podell, Sheila; Ugalde, Juan A; Narasingarao, Priya; Banfield, Jillian F; Heidelberg, Karla B; Allen, Eric E

    2013-01-01

    Microbial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 and 14.1% of the planktonic community. Eight of the eleven archaeal genomes were from microbial species without previously cultured representatives. These new genomes provide habitat-specific reference sequences enabling detailed, lineage-specific compartmentalization of predicted functional capabilities and cellular properties associated with both dominant and less abundant community members, including organisms previously known only by their 16S rRNA sequences. Together, these data provide a comprehensive, culture-independent genomic blueprint for ecosystem-wide analysis of protein functions, population structure, and lifestyles of co-existing, co-evolving microbial groups within the same natural habitat. The "assembly-driven" community genomic approach demonstrated in this study advances our ability to push beyond single gene investigations, and promotes genome-scale reconstructions as a tangible goal in the quest to define the metabolic, ecological, and evolutionary dynamics that underpin environmental microbial diversity.

  13. Mechanisms of fenthion activation in rainbow trout (Oncorhynchus mykiss) acclimated to hypersaline environments

    SciTech Connect

    Lavado, Ramon Rimoldi, John M.; Schlenk, Daniel

    2009-03-01

    Previous studies in rainbow trout have shown that acclimation to hypersaline environments enhances the toxicity to thioether organophosphate and carbamate pesticides. In order to determine the role of biotransformation in this process, the metabolism of the thioether organophosphate biocide, fenthion was evaluated in microsomes from gills, liver and olfactory tissues in rainbow trout (Oncorhynchus mykiss) acclimated to freshwater and 17 per mille salinity. Hypersalinity acclimation increased the formation of fenoxon and fenoxon sulfoxide from fenthion in liver microsomes from rainbow trout, but not in gills or in olfactory tissues. NADPH-dependent and independent hydrolysis was observed in all tissues, but only NADPH-dependent fenthion cleavage was differentially modulated by hypersalinity in liver (inhibited) and gills (induced). Enantiomers of fenthion sulfoxide (65% and 35% R- and S-fenthion sulfoxide, respectively) were formed in liver and gills. The predominant pathway of fenthion activation in freshwater appears to be initiated through initial formation of fenoxon which may be subsequently converted to the most toxic metabolite fenoxon R-sulfoxide. However, in hypersaline conditions both fenoxon and fenthion sulfoxide formation may precede fenoxon sulfoxide formation. Stereochemical evaluation of sulfoxide formation, cytochrome P450 inhibition studies with ketoconazole and immunoblots indicated that CYP3A27 was primarily involved in the enhancement of fenthion activation in hypersaline-acclimated fish with limited contribution of FMO to initial sulfoxidation.

  14. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

    PubMed Central

    Vavourakis, Charlotte D.; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y.; Tringe, Susannah G.; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first “metagenomic snapshots” of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a “salt-in” strategy of

  15. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines.

    PubMed

    Vavourakis, Charlotte D; Ghai, Rohit; Rodriguez-Valera, Francisco; Sorokin, Dimitry Y; Tringe, Susannah G; Hugenholtz, Philip; Muyzer, Gerard

    2016-01-01

    Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a "salt-in" strategy of osmotic

  16. Geo- and biogeochemical processes in a heliothermal hypersaline lake

    NASA Astrophysics Data System (ADS)

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, James K.

    2016-05-01

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10-cm depth intervals through the shallow lake (2.4 m) during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by X-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- whereas sediments were dominated by gypsum (CaSO4·2H2O). Lake water concentrations increased with depth, reaching saturation with epsomite (MgSO4·7H2O) that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiological communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect that creates temperatures in excess of 60 °C in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic in volume and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this layer by fall allowed deeper mixing into the metalimnion, more rapid heat exchange, and lower winter lake temperatures. Solubility calculations indicate seasonal biogenic and thermogenic aragonite

  17. Geo- and Biogeochemical Processes in a Heliothermal Hypersaline Lake

    SciTech Connect

    Zachara, John M.; Moran, James J.; Resch, Charles T.; Lindemann, Stephen R.; Felmy, Andrew R.; Bowden, Mark E.; Cory, Alexandra B.; Fredrickson, Jim K.

    2016-03-17

    Water chemical variations were investigated over three annual hydrologic cycles in hypersaline, heliothermal, meromictic Hot Lake in north-central Washington State, USA. The lake, originally studied by Anderson (1958), contains diverse biota with dramatic zonation related to salinity and redox state. Water samples were collected at 10 cm depth intervals through the shallow lake (2.4 m) at a consistent location during 2012-2014, with comprehensive monitoring performed in 2013. Inorganic salt species, total dissolved solids (TDS), dissolved carbon forms (DOC, DIC), oxygen, sulfide, and methane were analyzed in lake water samples. Depth sonde measurements of pH and temperature were also performed to track their seasonal variations. A bathymetric survey of the lake was conducted to enable lake water volume and solute inventory calculations. Sediment cores were collected at low water and analyzed by x-ray diffraction to investigate sediment mineralogy. The primary dissolved salt in Hot Lake water was Mg2+-SO42- while sediments were dominated by gypsum (CaSO4•2H2O). Lake water concentrations increased with depth to reach saturation with epsomite that was exposed at lake bottom. At maximum volume in spring, Hot Lake exhibited a relatively dilute mixolimnion containing phyto- and zooplankton; a lower saline metalimnion with stratified oxygenic and anoxygenic photosynthetic microbiologic communities; and a stable, hypersaline monimolimnion, separated from above layers by a chemocline, containing high levels of sulfide and methane. The thickness of the mixolimnion regulates a heliothermal effect which creates temperatures in excess of 60 oC in the underlying metalimnion and monimolimnion. The mixolimnion was dynamic and actively mixed. It displayed large pH variations, in-situ calcium carbonate precipitation, and large evaporative volume losses. The depletion of this ephemeral layer by fall allowed deeper mixing into the volume-stable lower mixolimnion, more rapid heat

  18. Biogeography of Nocardiopsis strains from hypersaline environments of Yunnan and Xinjiang Provinces, western China

    PubMed Central

    He, Song-Tao; Zhi, Xiao-Yang; Jiang, Hongchen; Yang, Ling-Ling; Wu, Jin-Yuan; Zhang, Yong-Guang; Hozzein, Wael N.; Li, Wen-Jun

    2015-01-01

    The genus Nocardiopsis is a widespread group within the phylum Actinobacteria and has been isolated from various salty environments worldwide. However, little is known about whether biogeography affects Nocardiopsis distribution in various hypersaline environments. Such information is essential for understanding the ecology of Nocardiopsis. Here we analyzed 16S rRNA, gyrB, rpoB and sodA genes of 78 Nocardiopsis strains isolated from hypersaline environments in Yunnan and Xinjiang Provinces of western China. The obtained Nocardiopsis strains were classified into five operational taxonomic units, each comprising location-specific phylo- and genotypes. Statistical analyses showed that spatial distance and environmental factors substantially influenced Nocardiopsis distribution in hypersaline environments: the former had stronger influence at large spatial scales, whereas the latter was more influential at small spatial scales. PMID:26289784

  19. Hypersaline cyanobacterial mats as indicators of elevated tropical hurricane activity and associated climate change.

    PubMed

    Paerl, Hans W; Steppe, Timothy F; Buchan, Kenneth C; Potts, Malcolm

    2003-03-01

    The Atlantic hurricanes of 1999 caused widespread environmental damage throughout the Caribbean and US mid-Atlantic coastal regions. However, these storms also proved beneficial to certain microbial habitats; specifically, cyanobacteria-dominated mats. Modern mats represent the oldest known biological communities on earth, stromatolites. Contemporary mats are dominant biological communities in the hypersaline Bahamian lakes along the Atlantic hurricane track. We examined the impacts of varying levels of hypersalinity on 2 processes controlling mat growth, photosynthesis and nitrogen fixation, in Salt Pond, San Salvador Island, Bahamas. Hypersalinity (> 5 times seawater salinity) proved highly inhibitory to these processes. Freshwater input from Hurricane Floyd and other large storms alleviated this salt-inhibition. A predicted 10 to 40 year increase in Atlantic hurricane activity accompanied by more frequent "freshening" events will enhance mat productivity, CO2 sequestration and nutrient cycling. Cyanobacterial mats are sensitive short- and long-term indicators of climatic and ecological changes impacting these and other waterstressed environments.

  20. Hypersalinity toxicity thresholds for nine California ocean plan toxicity test protocols.

    PubMed

    Voorhees, Jennifer P; Phillips, Bryn M; Anderson, Brian S; Siegler, Katie; Katz, Scott; Jennings, Lydia; Tjeerdema, Ron S; Jensen, Joanna; de la Paz Carpio-Obeso, Maria

    2013-11-01

    Currently, several desalination facilities have been proposed to operate or are actually operating in California. These facilities' use of reverse osmosis (RO) may discharge hypersaline reject brine into the marine environment. The risks, if any, this brine would pose to coastal receiving waters are unknown. To test the toxicity of hypersaline brine in the absence of any additional toxic constituents, we prepared brine and tested it with the seven toxicity test organisms listed in the 2009 California Ocean Plan. The most sensitive protocols were the marine larval development tests, whereas the most tolerant to increased salinities were the euryhaline topsmelt, mysid shrimp, and giant kelp tests. Reject brines from the Monterey Bay Aquarium's RO desalination facility were also tested with three species. The effects of the aquarium's brine effluent on topsmelt, mussels, and giant kelp were consistent with those observed in the salinity tolerance experiments. This information will be used by regulators to establish receiving water limitations for hypersaline discharges.

  1. Diel Metagenomics and Metatranscriptomics of Elkhorn Slough Hypersaline Microbial Mat

    NASA Astrophysics Data System (ADS)

    Lee, J.; Detweiler, A. M.; Everroad, R. C.; Bebout, L. E.; Weber, P. K.; Pett-Ridge, J.; Bebout, B.

    2014-12-01

    To understand the variation in gene expression associated with the daytime oxygenic phototrophic and nighttime fermentation regimes seen in hypersaline microbial mats, a contiguous mat piece was subjected to sampling at regular intervals over a 24-hour diel period. Additionally, to understand the impact of sulfate reduction on biohydrogen consumption, molybdate was added to a parallel experiment in the same run. 4 metagenome and 12 metatranscriptome Illumina HiSeq lanes were completed over day / night, and control / molybdate experiments. Preliminary comparative examination of noon and midnight metatranscriptomic samples mapped using bowtie2 to reference genomes has revealed several notable results about the dominant mat-building cyanobacterium Microcoleus chthonoplastes PCC 7420. Dominant cyanobacterium M. chthonoplastes PCC 7420 shows expression in several pathways for nitrogen scavenging, including nitrogen fixation. Reads mapped to M. chthonoplastes PCC 7420 shows expression of two starch storage and utilization pathways, one as a starch-trehalose-maltose-glucose pathway, another through UDP-glucose-cellulose-β-1,4 glucan-glucose pathway. The overall trend of gene expression was primarily light driven up-regulation followed by down-regulation in dark, while much of the remaining expression profile appears to be constitutive. Co-assembly of quality-controlled reads from 4 metagenomes was performed using Ray Meta with progressively smaller K-mer sizes, with bins identified and filtered using principal component analysis of coverages from all libraries and a %GC filter, followed by reassembly of the remaining co-assembly reads and binned reads. Despite having relatively similar abundance profiles in each metagenome, this binning approach was able to distinctly resolve bins from dominant taxa, but also sulfate reducing bacteria that are desired for understanding molybdate inhibition. Bins generated from this iterative assembly process will be used for downstream

  2. Viral Induced Microbial Mortality in Arctic Hypersaline Spring Sediments.

    PubMed

    Colangelo-Lillis, Jesse; Wing, Boswell A; Raymond-Bouchard, Isabelle; Whyte, Lyle G

    2016-01-01

    Viruses are a primary influence on microbial mortality in the global ocean. The impacts of viruses on their microbial hosts in low-energy environments are poorly explored and are the focus of this study. To investigate the role of viruses in mediating mortality in low-energy environments where contacts between viruses and microbes are infrequent, we conducted a set of in situ time series incubations in the outlet and channel sediments of two cold, hypersaline springs of the Canadian High Arctic. We found microbial and viral populations in dynamic equilibrium, indicating approximately equal birth and death rates for each population. In situ rates of microbial growth were low (0.5-50 × 10(3) cells cm(-3) h(-1)) as were rates of viral decay (0.09-170 × 10(4) virions cm(-3) h(-1)). A large fraction of the springs' viral communities (49-100%) were refractory to decay over the timescales of our experiments. Microcosms amended with lactate or acetate exhibited increased microbial growth rates (up to three-fold) indicating organic carbon as one limiting resource for the microbial communities in these environments. A substantial fraction (15-71%) of the microbial populations contained inducible proviruses that were released- occasionally in multiple pulses- over the eight monitored days following chemical induction. Our findings indicate that viruses in low-energy systems maintain low rates of production and activity, have a small but notable impact on microbial mortality (8-29% attenuation of growth) and that successful viral replication may primarily proceed by non-lethal strategies. In cold, low biomass marine systems of similar character (e.g., subsurface sediments), viruses may be a relatively minor driver of community mortality compared to less energy-limited environments such as the marine water column or surface sediments.

  3. Chemical modeling for precipitation from hypersaline hydrofracturing brines.

    PubMed

    Zermeno-Motante, Maria I; Nieto-Delgado, Cesar; Cannon, Fred S; Cash, Colin C; Wunz, Christopher C

    2016-10-15

    Hypersaline hydrofracturing brines host very high salt concentrations, as high as 120,000-330,000 mg/L total dissolved solids (TDS), corresponding to ionic strengths of 2.1-5.7 mol/kg. This is 4-10 times higher than for ocean water. At such high ionic strengths, the conventional equations for computing activity coefficients no longer apply; and the complex ion-interactive Pitzer model must be invoked. The authors herein have used the Pitzer-based PHREEQC computer program to compute the appropriate activity coefficients when forming such precipitates as BaSO4, CaSO4, MgSO4, SrSO4, CaCO3, SrCO3, and BaCO3 in hydrofracturing waters. The divalent cation activity coefficients (γM) were computed in the 0.1 to 0.2 range at 2.1 mol/kg ionic strength, then by 5.7 mol/kg ionic strength, they rose to 0.2 for Ba(2+), 0.6 for Sr(2+), 0.8 for Ca(2+), and 2.1 for Mg(2+). Concurrently, the [Formula: see text] was 0.02-0.03; and [Formula: see text] was 0.01-0.02. While employing these Pitzer-derived activity coefficients, the authors then used the PHREEQC model to characterize precipitation of several of these sulfates and carbonates from actual hydrofracturing waters. Modeled precipitation matched quite well with actual laboratory experiments and full-scale operations. Also, the authors found that SrSO4 effectively co-precipitated radium from hydrofracturing brines, as discerned when monitoring (228)Ra and other beta-emitting species via liquid scintillation; and also when monitoring gamma emissions from (226)Ra.

  4. Viral Induced Microbial Mortality in Arctic Hypersaline Spring Sediments

    PubMed Central

    Colangelo-Lillis, Jesse; Wing, Boswell A.; Raymond-Bouchard, Isabelle; Whyte, Lyle G.

    2017-01-01

    Viruses are a primary influence on microbial mortality in the global ocean. The impacts of viruses on their microbial hosts in low-energy environments are poorly explored and are the focus of this study. To investigate the role of viruses in mediating mortality in low-energy environments where contacts between viruses and microbes are infrequent, we conducted a set of in situ time series incubations in the outlet and channel sediments of two cold, hypersaline springs of the Canadian High Arctic. We found microbial and viral populations in dynamic equilibrium, indicating approximately equal birth and death rates for each population. In situ rates of microbial growth were low (0.5–50 × 103 cells cm-3 h-1) as were rates of viral decay (0.09–170 × 104 virions cm-3 h-1). A large fraction of the springs’ viral communities (49–100%) were refractory to decay over the timescales of our experiments. Microcosms amended with lactate or acetate exhibited increased microbial growth rates (up to three-fold) indicating organic carbon as one limiting resource for the microbial communities in these environments. A substantial fraction (15–71%) of the microbial populations contained inducible proviruses that were released- occasionally in multiple pulses- over the eight monitored days following chemical induction. Our findings indicate that viruses in low-energy systems maintain low rates of production and activity, have a small but notable impact on microbial mortality (8–29% attenuation of growth) and that successful viral replication may primarily proceed by non-lethal strategies. In cold, low biomass marine systems of similar character (e.g., subsurface sediments), viruses may be a relatively minor driver of community mortality compared to less energy-limited environments such as the marine water column or surface sediments. PMID:28167930

  5. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir.

    PubMed

    Gales, Grégoire; Tsesmetzis, Nicolas; Neria, Isabel; Alazard, Didier; Coulon, Stéphanie; Lomans, Bart P; Morin, Dominique; Ollivier, Bernard; Borgomano, Jean; Joulian, Catherine

    2016-03-11

    Microbiology of a hypersaline oil reservoir located in Central Africa was investigated with molecular and culture methods applied to preserved core samples. Here we show that the community structure was partially acquired during sedimentation, as many prokaryotic 16S rRNA gene sequences retrieved from the extracted DNA are phylogenetically related to actual Archaea inhabiting surface evaporitic environments, similar to the Cretaceous sediment paleoenvironment. Results are discussed in term of microorganisms and/or DNA preservation in such hypersaline and Mg-rich solutions. High salt concentrations together with anaerobic conditions could have preserved microbial/molecular diversity originating from the ancient sediment basin wherein organic matter was deposited.

  6. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir

    NASA Astrophysics Data System (ADS)

    Gales, Grégoire; Tsesmetzis, Nicolas; Neria, Isabel; Alazard, Didier; Coulon, Stéphanie; Lomans, Bart P.; Morin, Dominique; Ollivier, Bernard; Borgomano, Jean; Joulian, Catherine

    2016-03-01

    Microbiology of a hypersaline oil reservoir located in Central Africa was investigated with molecular and culture methods applied to preserved core samples. Here we show that the community structure was partially acquired during sedimentation, as many prokaryotic 16S rRNA gene sequences retrieved from the extracted DNA are phylogenetically related to actual Archaea inhabiting surface evaporitic environments, similar to the Cretaceous sediment paleoenvironment. Results are discussed in term of microorganisms and/or DNA preservation in such hypersaline and Mg-rich solutions. High salt concentrations together with anaerobic conditions could have preserved microbial/molecular diversity originating from the ancient sediment basin wherein organic matter was deposited.

  7. Preservation of ancestral Cretaceous microflora recovered from a hypersaline oil reservoir

    PubMed Central

    Gales, Grégoire; Tsesmetzis, Nicolas; Neria, Isabel; Alazard, Didier; Coulon, Stéphanie; Lomans, Bart P.; Morin, Dominique; Ollivier, Bernard; Borgomano, Jean; Joulian, Catherine

    2016-01-01

    Microbiology of a hypersaline oil reservoir located in Central Africa was investigated with molecular and culture methods applied to preserved core samples. Here we show that the community structure was partially acquired during sedimentation, as many prokaryotic 16S rRNA gene sequences retrieved from the extracted DNA are phylogenetically related to actual Archaea inhabiting surface evaporitic environments, similar to the Cretaceous sediment paleoenvironment. Results are discussed in term of microorganisms and/or DNA preservation in such hypersaline and Mg-rich solutions. High salt concentrations together with anaerobic conditions could have preserved microbial/molecular diversity originating from the ancient sediment basin wherein organic matter was deposited. PMID:26965360

  8. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  9. Dynamics of Molecular Hydrogen in Hypersaline Microbial Mars

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Bebout, Brad M.; Visscher, Pieter T.; DesMarais, David J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    Early Earth microbial communities that centered around the anaerobic decomposition of organic molecular hydrogen as a carrier of electrons, regulator of energy metabolism, and facilitator of syntroph'c microbial interactions. The advent of oxygenic photosynthetic organisms added a highly dynamic and potentially dominant term to the hydrogen economy of these communities. We have examined the daily variations of hydrogen concentrations in cyanobacteria-dominated microbial mats from hypersaline ponds in Baja California Sur, Mexico. These mats bring together phototrophic and anaerobic bacteria (along with virtually all other trophic groups) in a spatially ordered and chemically dynamic matrix that provides a good analog for early Earth microbial ecosystems. Hydrogen concentrations in the photic zone of the mat can be three orders of magnitude or more higher than in the photic zone, which are, in turn, an order of magnitude higher than in the unconsolidated sediments underlying the mat community. Within the photic zone, hydrogen concentrations can fluctuate dramatically during the diel (24 hour day-night) cycle, ranging from less than 0.001% during the day to nearly 10% at night. The resultant nighttime flux of hydrogen from the mat to the environment was up to 17% of the daytime oxygen flux. The daily pattern observed is highly dependent on cyanobacterial species composition within the mat, with Lyngbya-dominated systems having a much greater dynamic range than those dominated by Microcoleus; this may relate largely to differing degrees of nitrogen-fixing and fermentative activity in the two mats. The greatest H2 concentrations and fluxes were observed in the absence of oxygen, suggesting an important potential feedback control in the context of the evolution of atmospheric composition. The impact of adding this highly dynamic photosynthetic term to the hydrogen economy of early microbial ecosystems must have been substantial. From an evolutionary standpoint, the H2

  10. Diversity of bacteria and archaea in hypersaline sediment from Death Valley National Park, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to phylogenetically analyze microorganisms from the domains Bacteria and Archaea in hypersaline sediment from Death Valley National Park. Using domain-specific primers, a region of the 16S rRNA gene was amplified using PCR, and the product was subsequently used to cr...

  11. Do copepods inhabit hypersaline waters worldwide? A short review and discussion

    NASA Astrophysics Data System (ADS)

    Anufriieva, Elena V.

    2015-11-01

    A small number of copepod species have adapted to an existence in the extreme habitat of hypersaline water. 13 copepod species have been recorded in the hypersaline waters of Crimea (the largest peninsula in the Black Sea with over 50 hypersaline lakes). Summarizing our own and literature data, the author concludes that the Crimean extreme environment is not an exception: copepod species dwell in hypersaline waters worldwide. There are at least 26 copepod species around the world living at salinity above 100; among them 12 species are found at salinity higher than 200. In the Crimea Cletocamptus retrogressus is found at salinity 360×10-3 (with a density of 1 320 individuals/m3) and Arctodiaptomus salinus at salinity 300×10-3 (with a density of 343 individuals/m3). Those species are probably the most halotolerant copepod species in the world. High halotolerance of osmoconforming copepods may be explained by exoosmolyte consumption, mainly with food. High tolerance to many factors in adults, availability of resting stages, and an opportunity of long-distance transportation of resting stages by birds and/or winds are responsible for the wide geographic distribution of these halophilic copepods.

  12. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  13. Digital Bathymetric Model of Mono Lake, California

    USGS Publications Warehouse

    Raumann, Christian G.; Stine, Scott; Evans, Alexander; Wilson, Jerry

    2002-01-01

    In 1986 and 1987, Pelagos Corporation of San Diego (now Racal Pelagos) undertook a bathymetric survey of Mono Lake in eastern California for the Los Angeles Department of Water and Power (DWP). The result of that survey was a series of maps at various scales and contour intervals. From these maps, the DWP hoped to predict consequences of the drop in lake level that resulted from their diversion of streams in the Mono Basin. No digital models, including shaded-relief and perspective-view renderings, were made from the data collected during the survey. With the permission of Pelagos Corporation and DWP, these data are used to produce a digital model of the floor of Mono Lake. The model was created using a geographic information system (GIS) to incorporate these data with new observations and measurements made in the field. This model should prove to be a valuable tool for enhanced visualization and analyses of the floor of Mono Lake.

  14. Brackish to hypersaline lake dolostones of the Mississippian

    NASA Astrophysics Data System (ADS)

    Bennett, Carys; Kearsey, Timothy; Davies, Sarah; Millward, David; Marshall, John

    2016-04-01

    , and 9% of all dolostone beds in the Norham Core are pedogenically altered. The isotopic composition of dolomite beds is δ18O -3.6‰ to -1.7‰ and δ13C -2.6‰ to 1.6‰ which is consistent with a brackish as opposed to marine origin. The dolostones are categorised by their sedimentary composition: Facies 1: Cemented siltstone and sandstone; Facies 2: Homogeneous micrite to micro-crystaline dolomite, within a clay matrix; Facies 3: Bedded dolomite and siltstone; Facies 4: Mixed calcite and dolomite; Facies 5: Dolomite with gypsum and anhydrite. Formation processes are diverse, and include diagenetic cementation (Facies 1), deposition in saline (brackish) lakes (Facies 2), deposition in saline lakes with clastic sediment input (Facies 3), lagoonal to shallow-marine carbonate deposition (Facies 4), and hypersaline lake to sabkha environments (Facies 5). 60% of the beds are facies 2 or 3 and their sedimentology, fauna, ichnofauna and isotopic composition indicate a brackish-water origin. Other Mississippian dolostones from around the world also contain a fairly restricted fauna and have been interpreted as brackish water deposits. The mechanism of dolomite formation under these conditions is discussed. These dolostones provided extensive coastal lakes that may have been an important habitat for tetrapods and other transitional groups during the Mississippian.

  15. Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments

    PubMed Central

    Zalar, P.; de Hoog, G.S.; Schroers, H.-J.; Crous, P.W.; Groenewald, J.Z.; Gunde-Cimerman, N.

    2007-01-01

    Saprobic Cladosporium isolates morphologically similar to C. sphaerospermum are phylogenetically analysed on the basis of DNA sequences of the ribosomal RNA gene cluster, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S rDNA (ITS) and the small subunit (SSU) rDNA as well as β-tubulin and actin gene introns and exons. Most of the C. sphaerospermum-like species show halotolerance as a recurrent feature. Cladosporium sphaerospermum, which is characterised by almost globose conidia, is redefined on the basis of its ex-neotype culture. Cladosporium dominicanum, C. psychrotolerans, C. velox, C. spinulosum and C. halotolerans, all with globoid conidia, are newly described on the basis of phylogenetic analyses and cryptic morphological and physiological characters. Cladosporium halotolerans was isolated from hypersaline water and bathrooms and detected once on dolphin skin. Cladosporium dominicanum and C. velox were isolated from plant material and hypersaline water. Cladosporium psychrotolerans, which grows well at 4 °C but not at 30 °C, and C. spinulosum, having conspicuously ornamented conidia with long digitate projections, are currently only known from hypersaline water. We also newly describe C. salinae from hypersaline water and C. fusiforme from hypersaline water and animal feed. Both species have ovoid to ellipsoid conidia and are therefore reminiscent of C. herbarum. Cladosporium langeronii (= Hormodendrum langeronii) previously described as a pathogen on human skin, is halotolerant but has not yet been recorded from hypersaline environments. PMID:18490999

  16. Isotopic measurements of N2O in a hypersaline pond

    NASA Astrophysics Data System (ADS)

    Peters, B. D.; Casciotti, K.; Samarkin, V.; Joye, S. B.; Madigan, M.; Schutte, C.

    2012-12-01

    Production of nitrous oxide (N2O) in aquatic environments has often been attributed to biological processes. However, reports of abiotic mechanisms of N2O production have suggested that such processes may be substantial in Antarctic Dry Valley soils. It has been proposed that the reduction of nitrate (NO3-) and nitrite (NO2-) coupled to Fe (II) oxidation can produce N2O with a characteristic site preference (SP), where SP is defined as the difference in nitrogen isotope ratio between the center and outside nitrogen atoms in the linear N2O molecule. The current study uses isotopic measurements of N2O, NO2-, and NO3- to examine N2O production mechanisms in Don Juan Pond (DJP), a hypersaline pond in the McMurdo Dry Valleys, Antarctica. [NO3-] and [NO2-] in DJP brine were quite high, ranging from 6,238 to 7,719μM and 23 to 36μM, respectively. N2O samples from pond water (brine) yielded δ15Nbulk of -38±1‰, δ18O of +60±2‰, and SP of +1±7‰. Gas collected from soil had similar N2O isotope ratios, with δ15Nbulk of -45±4‰, δ18O of +56±3‰, and SP of +6±1‰. These field measurements were interpreted using a two end member mixing model, in which the measured N2O was assumed to be a mixture between atmospheric N2O and N2O from a local source. Using the three isotope systems (δ15Nbulk, δ18O, and SP), a series of four equations were constructed with five unknowns: δ15Nbulk, δ18O, and SP of the source, and the fractional contributions of the local source and atmospheric N2O. Solving the equations required an assumption about one of the five unknowns. To do this, we used data from laboratory experiments carried out with sterile brine and DJP soil in order to provide an estimate of the N2O isotope signature of the abiotic source. DJP brine and soil measurements gave similar model results, and thus only results using DJP soil measurements are reported here. Assuming δ18O of the unknown local source is near +82‰(from abiotic laboratory experiments), then

  17. Removal performance and microbial communities in a sequencing batch reactor treating hypersaline phenol-laden wastewater.

    PubMed

    Jiang, Yu; Wei, Li; Zhang, Huining; Yang, Kai; Wang, Hongyu

    2016-10-01

    Hypersaline phenol-rich wastewater is hard to be treated by traditional biological systems. In this work, a sequencing batch reactor was used to remove phenol from hypersaline wastewater. The removal performance was evaluated in response to the variations of operating parameters and the microbial diversity was investigated by 454 pyrosequencing. The results showed that the bioreactor had high removal efficiency of phenol and was able to keep stable with the increase of initial phenol concentration. DO, pH, and salinity also affected the phenol removal rate. The most abundant bacterial group was phylum Proteobacteria in the two working conditions, and class Gammaproteobacteria as well as Alphaproteobacteria was predominant subgroup. The abundance of bacterial clusters was notably different along with the variation of operation conditions, resulting in changes of phenol degradation rates. The high removal efficiency of phenol suggested that the reactor might be promising in treating phenol-laden industrial wastewater in high-salt condition.

  18. Alloactinosynnema iranicum sp. nov., a rare actinomycete isolated from a hypersaline wetland, and emended description of the genus Alloactinosynnema.

    PubMed

    Nikou, Mahdi Moshtaghi; Ramezani, Mohaddaseh; Amoozegar, Mohammad Ali; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; Spröer, Cathrin; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-04-01

    A Gram-staining-positive actinobacterial strain, Chem10(T), was isolated from soil around Inche-Broun hypersaline wetland in the north of Iran. Strain Chem10(T) was strictly aerobic, and catalase- and oxidase-positive. The isolate grew with 0-3 % NaCl, at 20-40 °C and at pH 6.0-8.0. The optimum temperature and pH for growth were 30 °C and pH 7.0, respectively. The cell wall of strain Chem10(T) contained meso-diaminopimelic acid as diamino acid and galactose, ribose and arabinose as whole-cell sugars. The polar lipid pattern contained diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. Strain Chem10(T) synthesized cellular fatty acids of the straight-chain saturated and mono-unsaturated, and iso- and anteiso-branched types C14 : 0, C16 : 0, iso-C16 : 1, anteiso-C17 : 0, iso-C16 : 0, iso-C14 : 0 and iso-C15 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 70.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain Chem10(T) belonged to the family Pseudonocardiaceae and showed the closest phylogenetic similarity to Alloactinosynnema album KCTC 19294(T) (98.3 %) and Actinokineospora cibodasensis DSM 45658(T) (97.9 %). DNA-DNA relatedness values between the novel strain and strains Alloactinosynnema album KCTC 19294(T) and Actinokineospora cibodasensis DSM 45658(T) were only 52 % and 23 %, respectively. On the basis of phylogenetic analysis, phenotypic characteristics and DNA-DNA hybridization data, a novel species of the genus Alloactinosynnema is proposed, Alloactinosynnema iranicum sp. nov. The type strain is Chem10(T) ( = IBRC-M 10403(T) = CECT 8209(T)). In addition, an emended description of the genus Alloactinosynnema is proposed.

  19. Vacuolated Beggiatoa-like filaments from different hypersaline environments form a novel genus.

    PubMed

    Hinck, Susanne; Mussmann, Marc; Salman, Verena; Neu, Thomas R; Lenk, Sabine; Beer, Dirk de; Jonkers, Henk M

    2011-12-01

    In this study, members of a specific group of thin (6-14 µm filament diameter), vacuolated Beggiatoa-like filaments from six different hypersaline microbial mats were morphologically and phylogenetically characterized. Therefore, enrichment cultures were established, filaments were stained with fluorochromes to show intracellular structures and 16S rRNA genes were sequenced. Morphological characteristics of Beggiatoa-like filaments, in particular the presence of intracellular vacuoles, and the distribution of nucleic acids were visualized. In the intracellular vacuole nitrate reached concentrations of up to 650 mM. Fifteen of the retrieved 16S rRNA gene sequences formed a monophyletic cluster and were phylogenetically closely related (≥ 94.4% sequence identity). Sequences of known filamentous sulfide-oxidizing genera Beggiatoa and Thioploca that comprise non-vacuolated and vacuolated filaments from diverse habitats clearly delineated from this cluster. The novel monophyletic cluster was furthermore divided into two sub-clusters: one contained sequences originating from Guerrero Negro (Mexico) microbial mats and the other comprised sequences from five distinct Spanish hypersaline microbial mats from Ibiza, Formentera and Lake Chiprana. Our data suggest that Beggiatoa-like filaments from hypersaline environments displaying a thin filament diameter contain nitrate-storing vacuoles and are phylogenetically separate from known Beggiatoa. Therefore, we propose a novel genus for these organisms, which we suggest to name 'Candidatus Allobeggiatoa'.

  20. Characterization of basidiomycetous yeasts in hypersaline soils of the Urmia Lake National Park, Iran.

    PubMed

    Mokhtarnejad, Lachin; Arzanlou, Mahdi; Babai-Ahari, Asadollah; Di Mauro, Simone; Onofri, Andrea; Buzzini, Pietro; Turchetti, Benedetta

    2016-11-01

    Urmia Lake, located in northwest Iran, is an oligotrophic and extremely hypersaline habitat that supports diverse forms of life. Owing to its unique biodiversity and special environmental conditions, Urmia Lake National Park has been designated as one of the biosphere reserves by UNESCO. This study was aimed to characterize basidiomycetous yeasts in hypersaline soils surrounding the Urmia Lake National Park using a polyphasic combination of molecular and physiological data. Soil samples were collected from eight sites in Lake Basin and six islands insides the lake. Yeast strains were identified by sequencing the D1/D2 domains of the 26S rRNA gene. When D1/D2 domain sequencing did not resolve the identity of the species, strain identification was obtained by ITS 1 & 2 sequencing. Twenty-one species belonging to the genera Cystobasidium, Holtermanniella, Naganishia, Rhodotorula, Saitozyma, Solicoccozyma, Tausonia, Vanrija, and Vishniacozyma were identified. Solicoccozyma aeria represented the dominant species. The ability of isolates to grow at 10 and 15 % of NaCl was checked; about two-thirds of the strains grew at 10 %, while about 13 % of the isolates grew in medium with 15 % NaCl. this study is the first study on the culturable yeast diversity in hypersaline soils surrounding an Asian lake.

  1. Geologically controlled bi-directional exchange of groundwater with a hypersaline lake in the Canadian prairies

    NASA Astrophysics Data System (ADS)

    Bentley, Laurence R.; Hayashi, Masaki; Zimmerman, Elena P.; Holmden, Chris; Kelley, Lynn I.

    2016-06-01

    Hypersaline lakes occur in hydrologically closed basins due to evaporitic enrichment of dissolved salts transported to the lakes by surface water and groundwater. At the hypersaline Lydden Lake in Saskatchewan, Canada, groundwater/lake-water interaction is strongly influenced by the geological heterogeneity of glacial deposits, whereby a highly permeable glaciofluvial sand/gravel deposit is underlain by glaciolacustrine deposits consisting of dense clay interspersed with silt/sand lenses. Pressure head distribution in a near shore area indicates a bi-directional flow system. It consists of topographically driven flow of fresh groundwater towards the lake in the sand/gravel aquifer and density-driven, landward flow of saline groundwater in the underlying glaciolacustrine deposits. Electrical resistivity tomography, and chemical and isotopic composition of groundwater clearly show the landward intrusion of saline water in the heterogeneous unit. The feasibility of bi-directional flow and transport is supported by numerical simulations of density-coupled groundwater flow and transport. The results suggest that the geologically controlled groundwater exchange processes have substantial influences on both inputs and outputs of dissolved minerals in hypersaline lakes in closed basins.

  2. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer.

    PubMed

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-11-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ(13) CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed ((34) ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment.

  3. Dispersion and transport of hypersaline gravity currents in the presence of internal waves at a pycnocline

    NASA Astrophysics Data System (ADS)

    Hogg, C. A. R.; Pietrasz, V. B.; Ouellette, N. T.; Koseff, J. R.

    2015-12-01

    Desalination of seawater offers a source of potable water in arid regions and during drought. However, hypersaline discharge from desalination facilities presents environmental risks, particularly to benthic organisms. The risks posed by salt levels and chemical additives, which can be toxic to local ecosystems, are typically mitigated by ensuring high levels of dilution close to the source. We report on laboratory flume experiments examining how internal waves at the pycnocline of a layered ambient density stratification influence the transport of hypersaline effluent moving as a gravity current down the slope. We found that some of the hypersaline fluid from the gravity current was diverted away from the slope into an intrusion along the pycnocline. A parametric study investigated how varying the energy of the internal wave altered the amount of dense fluid that was diverted into the pycnocline intrusion. The results are compared to an analytical framework that compares the incident energy in the internal wave to potential energy used in diluting the gravity current. These results are significant for desalination effluents because fluid diverted into the intrusion avoids the ecologically sensitive benthic layer and disperses more quickly than if it had continued to propagate along the bed.

  4. The density-driven circulation of the coastal hypersaline system of the Great Barrier Reef, Australia.

    PubMed

    Salamena, Gerry G; Martins, Flávio; Ridd, Peter V

    2016-04-15

    The coastal hypersaline system of the Great Barrier Reef (GBR) in the dry season, was investigated for the first time using a 3D baroclinic model. In the shallow coastal embayments, salinity increases to c.a. 1‰ above typical offshore salinity (~35.4‰). This salinity increase is due to high evaporation rates and negligible freshwater input. The hypersalinity drifts longshore north-westward due to south-easterly trade winds and may eventually pass capes or headlands, e.g. Cape Cleveland, where the water is considerably deeper (c.a. 15m). Here, a pronounced thermohaline circulation is predicted to occur which flushes the hypersalinity offshore at velocities of up to 0.08m/s. Flushing time of the coastal embayments is around 2-3weeks. During the dry season early summer, the thermohaline circulation reduces and therefore, flushing times are predicted to be slight longer due to the reduced onshore-offshore density gradient compared to that in the dry season winter period.

  5. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat.

    PubMed

    Mobberley, Jennifer M; Lindemann, Stephen R; Bernstein, Hans C; Moran, James J; Renslow, Ryan S; Babauta, Jerome; Hu, Dehong; Beyenal, Haluk; Nelson, William C

    2017-03-15

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of 34 abundant organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.

  6. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  7. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  8. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  9. Linking Archaeal Molecular Diversity and Lipid Biomarker Composition in a Hypersaline Microbial Mat Community

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda; Orphan, Victoria; Turk, Kendra; Embaye, Tsegereda; Kubo, Mike; Summons, Roger

    2005-01-01

    Lipid biomarkers for discrete microbial groups are a valuable tool for establishing links to ancient microbial ecosystems. Lipid biomarkers can establish organism source and function in contemporary microbial ecosystems (membrane lipids) and by analogy, potential relevance to the fossilized carbon skeletons (geolipids) extracted from ancient sedimentary rock. The Mars Exploration Rovers have provided clear evidence for an early wet Mars and the presence of hypersaline evaporitic basins. Ongoing work on an early Earth analog, the hypersaline benthic mats in Guerrero Negro, Baja California Sur, may provide clues to what may have evolved and flourished on an early wet Mars, if only for a short period. Cyanobacterial mats are a pertinent early Earth analog for consideration of evolutionary and microbial processes within the aerobic photosynthetic and adjacent anoxic layers. Fluctuations in physio-chemical parameters associated with spatial and temporal scales are expressed through vast microbial metabolic diversity. Our recent work hopes to establish the dynamic of archaeal diversity, particularly as it relates to methane production in this high sulfate environment, through the use of lipid biomarker and phylogenetic analyses. Archaeal 16s rRNA and mcrA gene assemblages, demonstrated distinct spatial separation over the 130 mm core of at least three distinct genera within the order Methanosarcinales, as well as an abundance of uncultured members of the Thermoplasmales and Crenarchaeota. Ether-bound lipid analysis identified abundant 0-alkyl and 0-isopranyl chains throughout the core, and the presence of sn-2 hydroxyarchaeol, a biomarker for methylotrophic methanogens. A unique ether isoprenoid chain, a C30:1 , possibly related to the geolipid squalane, a paleobiomarker associated with hypersaline environments, was most abundant within the oxic-anoxic transition zone.

  10. Insights of Phage-Host Interaction in Hypersaline Ecosystem through Metagenomics Analyses

    PubMed Central

    Motlagh, Amir Mohaghegh; Bhattacharjee, Ananda S.; Coutinho, Felipe H.; Dutilh, Bas E.; Casjens, Sherwood R.; Goel, Ramesh K.

    2017-01-01

    Bacteriophages, as the most abundant biological entities on Earth, place significant predation pressure on their hosts. This pressure plays a critical role in the evolution, diversity, and abundance of bacteria. In addition, phages modulate the genetic diversity of prokaryotic communities through the transfer of auxiliary metabolic genes. Various studies have been conducted in diverse ecosystems to understand phage-host interactions and their effects on prokaryote metabolism and community composition. However, hypersaline environments remain among the least studied ecosystems and the interaction between the phages and prokaryotes in these habitats is poorly understood. This study begins to fill this knowledge gap by analyzing bacteriophage-host interactions in the Great Salt Lake, the largest prehistoric hypersaline lake in the Western Hemisphere. Our metagenomics analyses allowed us to comprehensively identify the bacterial and phage communities with Proteobacteria, Firmicutes, and Bacteroidetes as the most dominant bacterial species and Siphoviridae, Myoviridae, and Podoviridae as the most dominant viral families found in the metagenomic sequences. We also characterized interactions between the phage and prokaryotic communities of Great Salt Lake and determined how these interactions possibly influence the community diversity, structure, and biogeochemical cycles. In addition, presence of prophages and their interaction with the prokaryotic host was studied and showed the possibility of prophage induction and subsequent infection of prokaryotic community present in the Great Salt Lake environment under different environmental stress factors. We found that carbon cycle was the most susceptible nutrient cycling pathways to prophage induction in the presence of environmental stresses. This study gives an enhanced snapshot of phage and prokaryote abundance and diversity as well as their interactions in a hypersaline complex ecosystem, which can pave the way for

  11. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes.

    PubMed

    Andrei, Adrian-Ştefan; Robeson, Michael S; Baricz, Andreea; Coman, Cristian; Muntean, Vasile; Ionescu, Artur; Etiope, Giuseppe; Alexe, Mircea; Sicora, Cosmin Ionel; Podar, Mircea; Banciu, Horia Leonard

    2015-12-01

    Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive.

  12. Contrasting taxonomic stratification of microbial communities in two hypersaline meromictic lakes

    PubMed Central

    Andrei, Adrian-Ştefan; Robeson, Michael S; Baricz, Andreea; Coman, Cristian; Muntean, Vasile; Ionescu, Artur; Etiope, Giuseppe; Alexe, Mircea; Sicora, Cosmin Ionel; Podar, Mircea; Banciu, Horia Leonard

    2015-01-01

    Hypersaline meromictic lakes are extreme environments in which water stratification is associated with powerful physicochemical gradients and high salt concentrations. Furthermore, their physical stability coupled with vertical water column partitioning makes them important research model systems in microbial niche differentiation and biogeochemical cycling. Here, we compare the prokaryotic assemblages from Ursu and Fara Fund hypersaline meromictic lakes (Transylvanian Basin, Romania) in relation to their limnological factors and infer their role in elemental cycling by matching taxa to known taxon-specific biogeochemical functions. To assess the composition and structure of prokaryotic communities and the environmental factors that structure them, deep-coverage small subunit (SSU) ribosomal RNA (rDNA) amplicon sequencing, community domain-specific quantitative PCR and physicochemical analyses were performed on samples collected along depth profiles. The analyses showed that the lakes harbored multiple and diverse prokaryotic communities whose distribution mirrored the water stratification patterns. Ursu Lake was found to be dominated by Bacteria and to have a greater prokaryotic diversity than Fara Fund Lake that harbored an increased cell density and was populated mostly by Archaea within oxic strata. In spite of their contrasting diversity, the microbial populations indigenous to each lake pointed to similar physiological functions within carbon degradation and sulfate reduction. Furthermore, the taxonomy results coupled with methane detection and its stable C isotope composition indicated the presence of a yet-undescribed methanogenic group in the lakes' hypersaline monimolimnion. In addition, ultrasmall uncultivated archaeal lineages were detected in the chemocline of Fara Fund Lake, where the recently proposed Nanohaloarchaeota phylum was found to thrive. PMID:25932617

  13. Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic.

    PubMed

    Niederberger, Thomas D; Perreault, Nancy N; Tille, Stephanie; Lollar, Barbara Sherwood; Lacrampe-Couloume, Georges; Andersen, Dale; Greer, Charles W; Pollard, Wayne; Whyte, Lyle G

    2010-10-01

    We report the first microbiological characterization of a terrestrial methane seep in a cryo-environment in the form of an Arctic hypersaline (∼24% salinity), subzero (-5 °C), perennial spring, arising through thick permafrost in an area with an average annual air temperature of -15 °C. Bacterial and archaeal 16S rRNA gene clone libraries indicated a relatively low diversity of phylotypes within the spring sediment (Shannon index values of 1.65 and 1.39, respectively). Bacterial phylotypes were related to microorganisms such as Loktanella, Gillisia, Halomonas and Marinobacter spp. previously recovered from cold, saline habitats. A proportion of the bacterial phylotypes were cultured, including Marinobacter and Halomonas, with all isolates capable of growth at the in situ temperature (-5 °C). Archaeal phylotypes were related to signatures from hypersaline deep-sea methane-seep sediments and were dominated by the anaerobic methane group 1a (ANME-1a) clade of anaerobic methane oxidizing archaea. CARD-FISH analyses indicated that cells within the spring sediment consisted of ∼84.0% bacterial and 3.8% archaeal cells with ANME-1 cells accounting for most of the archaeal cells. The major gas discharging from the spring was methane (∼50%) with the low CH(4)/C(2+) ratio and hydrogen and carbon isotope signatures consistent with a thermogenic origin of the methane. Overall, this hypersaline, subzero environment supports a viable microbial community capable of activity at in situ temperature and where methane may behave as an energy and carbon source for sustaining anaerobic oxidation of methane-based microbial metabolism. This site also provides a model of how a methane seep can form in a cryo-environment as well as a mechanism for the hypothesized Martian methane plumes.

  14. Bacterial Community Response to Petroleum Hydrocarbon Amendments in Freshwater, Marine, and Hypersaline Water-Containing Microcosms

    PubMed Central

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida

    2013-01-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination. PMID:23872573

  15. Bacterial community response to petroleum hydrocarbon amendments in freshwater, marine, and hypersaline water-containing microcosms.

    PubMed

    Jurelevicius, Diogo; Alvarez, Vanessa Marques; Marques, Joana Montezano; de Sousa Lima, Laryssa Ribeiro Fonseca; Dias, Felipe de Almeida; Seldin, Lucy

    2013-10-01

    Hydrocarbon-degrading bacterial communities from freshwater, marine, and hypersaline Brazilian aquatic ecosystems (with water salinities corresponding to 0.2%, 4%, and 5%, respectively) were enriched with different hydrocarbons (heptadecane, naphthalene, or crude oil). Changes within the different microcosms of bacterial communities were analyzed using cultivation approaches and molecular methods (DNA and RNA extraction, followed by genetic fingerprinting and analyses of clone libraries based on the 16S rRNA-coding gene). A redundancy analysis (RDA) of the genetic fingerprint data and a principal component analysis (PCA) of the clone libraries revealed hydrocarbon-enriched bacterial communities specific for each ecosystem studied. However, within the same ecosystem, different bacterial communities were selected according to the petroleum hydrocarbon used. In general, the results demonstrated that Acinetobacter and Cloacibacterium were the dominant genera in freshwater microcosms; the Oceanospirillales order and the Marinobacter, Pseudomonas, and Cycloclasticus genera predominated in marine microcosms; and the Oceanospirillales order and the Marinobacter genus were selected in the different hydrocarbon-containing microcosms in hypersaline water. Determination of total petroleum hydrocarbons (TPHs) in all microcosms after 32 days of incubation showed a decrease in the hydrocarbon concentration compared to that for the controls. A total of 50 (41.3%) isolates from the different hydrocarbon-contaminated microcosms were associated with the dominant operational taxonomic units (OTUs) obtained from the clone libraries, and their growth in the hydrocarbon contaminating the microcosm from which they were isolated as the sole carbon source was observed. These data provide insight into the general response of bacterial communities from freshwater, marine, and hypersaline aquatic ecosystems to petroleum hydrocarbon contamination.

  16. Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer

    PubMed Central

    Avrahamov, N; Antler, G; Yechieli, Y; Gavrieli, I; Joye, S B; Saxton, M; Turchyn, A V; Sivan, O

    2014-01-01

    Geochemical and microbial evidence points to anaerobic oxidation of methane (AOM) likely coupled with bacterial sulfate reduction in the hypersaline groundwater of the Dead Sea (DS) alluvial aquifer. Groundwater was sampled from nine boreholes drilled along the Arugot alluvial fan next to the DS. The groundwater samples were highly saline (up to 6300 mm chlorine), anoxic, and contained methane. A mass balance calculation demonstrates that the very low δ13CDIC in this groundwater is due to anaerobic methane oxidation. Sulfate depletion coincident with isotope enrichment of sulfur and oxygen isotopes in the sulfate suggests that sulfate reduction is associated with this AOM. DNA extraction and 16S amplicon sequencing were used to explore the microbial community present and were found to be microbial composition indicative of bacterial sulfate reducers associated with anaerobic methanotrophic archaea (ANME) driving AOM. The net sulfate reduction seems to be primarily controlled by the salinity and the available methane and is substantially lower as salinity increases (2.5 mm sulfate removal at 3000 mm chlorine but only 0.5 mm sulfate removal at 6300 mm chlorine). Low overall sulfur isotope fractionation observed (34ε = 17 ± 3.5‰) hints at high rates of sulfate reduction, as has been previously suggested for sulfate reduction coupled with methane oxidation. The new results demonstrate the presence of sulfate-driven AOM in terrestrial hypersaline systems and expand our understanding of how microbial life is sustained under the challenging conditions of an extremely hypersaline environment. PMID:25039851

  17. Preserving the World Second Largest Hypersaline Lake under Future Irrigation and Climate Change

    NASA Astrophysics Data System (ADS)

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle; Pastor, Amandine; Kabat, Pavel

    2016-04-01

    Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.9•109 m3 water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake.

  18. Development of a Halotolerant Community in the St. Lucia Estuary (South Africa) during a Hypersaline Phase

    PubMed Central

    Carrasco, Nicola K.; Perissinotto, Renzo

    2012-01-01

    Background The St. Lucia Estuary, Africa's largest estuarine lake, is currently experiencing unprecedented freshwater deprivation which has resulted in a northward gradient of drought effects, with hypersaline conditions in its northern lakes. Methodology/Principal Findings This study documents the changes that occurred in the biotic communities at False Bay from May 2010 to June 2011, in order to better understand ecosystem functioning in hypersaline habitats. Few zooplankton taxa were able to withstand the harsh environmental conditions during 2010. These were the flatworm Macrostomum sp., the harpacticoid copepod Cletocamptus confluens, the cyclopoid copepod Apocyclops cf. dengizicus and the ciliate Fabrea cf. salina. In addition to their exceptional salinity tolerance, they were involved in a remarkably simple food web. In June 2009, a bloom of an orange-pigmented cyanobacterium (Cyanothece sp.) was recorded in False Bay and persisted uninterruptedly for 18 months. Stable isotope analysis suggests that this cyanobacterium was the main prey item of F. cf. salina. This ciliate was then consumed by A. cf. dengizicus, which in turn was presumably consumed by flamingos as they flocked in the area when the copepods attained swarming densities. On the shore, cyanobacteria mats contributed to a population explosion of the staphylinid beetle Bledius pilicollis. Although zooplankton disappeared once salinities exceeded 130, many taxa are capable of producing spores or resting cysts to bridge harsh periods. The hypersaline community was disrupted by heavy summer rains in 2011, which alleviated drought conditions and resulted in a sharp increase in zooplankton stock and diversity. Conclusions/Significance Despite the current freshwater deprivation crisis, the False Bay region has shown to be resilient, harboring a unique biodiversity with species that are capable of enduring harsh environmental conditions. However, further freshwater deprivation may extend beyond the

  19. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau.

    PubMed

    Jiang, Hongchen; Dong, Hailiang; Yu, Bingsong; Liu, Xinqi; Li, Yiliang; Ji, Shanshan; Zhang, Chuanlun L

    2007-10-01

    Previous investigations of the salinity effects on the microbial community composition have largely been limited to dynamic estuaries and coastal solar salterns. In this study, the effects of salinity and mineralogy on microbial community composition was studied by using a 900-cm sediment core collected from a stable, inland hypersaline lake, Lake Chaka, on the Tibetan Plateau, north-western China. This core, spanning a time of 17,000 years, was unique in that it possessed an entire range of salinity from freshwater clays and silty sands at the bottom to gypsum and glauberite in the middle, to halite at the top. Bacterial and archaeal communities were studied along the length of this core using an integrated approach combining mineralogy and geochemistry, molecular microbiology (16S rRNA gene analysis and quantitative polymerase chain reaction), cultivation and lipid biomarker analyses. Systematic changes in microbial community composition were correlated with the salinity gradient, but not with mineralogy. Bacterial community was dominated by the Firmicutes-related environmental sequences and known species (including sulfate-reducing bacteria) in the freshwater sediments at the bottom, but by halophilic and halotolerant Betaproteobacteria and Bacteroidetes in the hypersaline sediments at the top. Succession of proteobacterial groups along the salinity gradient, typically observed in free-living bacterial communities, was not observed in the sediment-associated community. Among Archaea, the Crenarchaeota were predominant in the bottom freshwater sediments, but the halophilic Halobacteriales of the Euryarchaeota was the most important group in the hypersaline sediments. Multiple isolates were obtained along the whole length of the core, and their salinity tolerance was consistent with the geochemical conditions. Iron-reducing bacteria were isolated in the freshwater sediments, which were capable of reducing structural Fe(III) in the Fe(III)-rich clay minerals

  20. Preserving the world second largest hypersaline lake under future irrigation and climate change.

    PubMed

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle T H; Pastor, Amandine; Kabat, Pavel

    2016-07-15

    Iran Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7·10(9)m(3) water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake.

  1. Response of biotic communities to salinity changes in a Mediterranean hypersaline stream

    PubMed Central

    Velasco, Josefa; Millán, Andrés; Hernández, Juan; Gutiérrez, Cayetano; Abellán, Pedro; Sánchez, David; Ruiz, Mar

    2006-01-01

    Background This study investigates the relationship between salinity and biotic communities (primary producers and macroinvertebrates) in Rambla Salada, a Mediterranean hypersaline stream in SE Spain. Since the 1980's, the mean salinity of the stream has fallen from about 100 g L-1 to 35.5 g L-1, due to intensive irrigated agriculture in the watershed. Furthermore, large dilutions occur occasionally when the water irrigation channel suffers cracks. Results Along the salinity gradient studied (3.5 – 76.4 g L-1) Cladophora glomerata and Ruppia maritima biomass decreased with increasing salinity, while the biomass of epipelic algae increased. Diptera and Coleoptera species dominated the community both in disturbed as in re-established conditions. Most macroinvertebrates species found in Rambla Salada stream are euryhaline species with a broad range of salinity tolerance. Eight of them were recorded in natural hypersaline conditions (~100 g L-1) prior to important change in land use of the watershed: Ephydra flavipes, Stratyomis longicornis, Nebrioporus ceresyi, N. baeticus, Berosus hispanicus, Enochrus falcarius, Ochthebius cuprescens and Sigara selecta. However, other species recorded in the past, such as Ochthebius glaber, O. notabilis and Enochrus politus, were restricted to a hypersaline source or absent from Rambla Salada. The dilution of salinity to 3.5 – 6.8 gL-1 allowed the colonization of species with low salininty tolerance, such as Melanopsis praemorsa, Anax sp., Simulidae, Ceratopogonidae and Tanypodinae. The abundance of Ephydra flavipes and Ochthebius corrugatus showed a positive significant response to salinity, while Anax sp., Simulidae, S. selecta, N. ceresyi, N. baeticus, and B. hispanicus showed significant negative correlations. The number of total macroinvertebrate taxa, Diptera and Coleoptera species, number of families, Margalef's index and Shannon's diversity index decreased with increasing salinity. However, the rest of community

  2. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    NASA Astrophysics Data System (ADS)

    Bergfeld, Deborah; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-02-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007-2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10-14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of - 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  3. On the viscosity of natural hyper-saline solutions and its importance: The Dead Sea brines

    NASA Astrophysics Data System (ADS)

    Weisbrod, Noam; Yechieli, Yoseph; Shandalov, Semion; Lensky, Nadav

    2016-01-01

    The relationship between the density, temperature and viscosity of hypersaline solutions, both natural and synthetic, is explored. An empirical equation of the density-viscosity relationship as a function of temperature was developed for the Dead Sea brine and its dilutions. The viscosity levels of the Dead Sea brine (density of 1.24 ṡ 103 kg/m3; viscosity of 3.6 mPa s at 20 °C) and of the more extremely saline natural brine (density of 1.37 ṡ 103 kg/m3) were found to be ∼3 and ∼10 times greater than that of fresh water, respectively. The combined effect of the above changes in viscosity and density on the hydraulic conductivity is reduction by a factor of 3-7. The chemical composition significantly affects the viscosity of brines with similar densities, whereby solutions with a higher Mg/Na ratio have higher viscosity. This explains the extremely high viscosity of the Dead Sea and related Mg-rich brines in comparison with the much lower values of NaCl and KCl brines with similar density. Possible impacts of the results include reduced settling velocity of grains in hypersaline viscous brines and changing hydraulic dynamics at the freshwater-saltwater and the vicinity of sinkholes.

  4. Two Fixed Ratio Dilutions for Soil Salinity Monitoring in Hypersaline Wetlands

    PubMed Central

    Herrero, Juan; Weindorf, David C.; Castañeda, Carmen

    2015-01-01

    Highly soluble salts are undesirable in agriculture because they reduce yields or the quality of most cash crops and can leak to surface or sub-surface waters. In some cases salinity can be associated with unique history, rarity, or special habitats protected by environmental laws. Yet in considering the measurement of soil salinity for long-term monitoring purposes, adequate methods are required. Both saturated paste extracts, intended for agriculture, and direct surface and/or porewater salinity measurement, used in inundated wetlands, are unsuited for hypersaline wetlands that often are only occasionally inundated. For these cases, we propose the use of 1:5 soil/water (weight/weight) extracts as the standard for expressing the electrical conductivity (EC) of such soils and for further salt determinations. We also propose checking for ion-pairing with a 1:10 or more diluted extract in hypersaline soils. As an illustration, we apply the two-dilutions approach to a set of 359 soil samples from saline wetlands ranging in ECe from 2.3 dS m-1 to 183.0 dS m-1. This easy procedure will be useful in survey campaigns and in the monitoring of soil salt content. PMID:26001130

  5. PHYLOGENETIC ANALYSIS AND AUTECOLOGY OF SPORE-FORMING BACTERIA FROM HYPERSALINE ENVIRONMENTS.

    PubMed

    Gladka, G V; Romanovskaya, V A; Tashyreva, H O; Tashyrev, O B

    2015-01-01

    Multi-resistant to extreme factors spore-forming bacteria of Bacillus genus are isolated from hypersaline environments of the Crimea (Ukraine) and the Dead Sea (Israel). Phylogenetic analysis showed distinction of dominating extremophilic culturable species in studied regions. In Crimean environments they are B. mojavensis and B. simplex, in the Dead Sea ecosystem--B. subtilis subsp. spizizenii, B. subtilis subsp. subtilis, B. licheniformis and B. simplex. Isolates are simultaneously halotolerant and resistant to UV radiation. Strains isolated from the Dead Sea and the Crimea environments were resistant to UV: LD90 and LD99.99 made 100-170 J/m2 and 750-1500 J/m2 respectively. Spores showed higher UV-resistance (LD99.99-2500 J/m2) than the vegetative cells. However the number of spores made 0.02-0.007% of the whole cell population, and should not significantly affect the UV LD99.99 value. Isolates of both environments were halotolerant in the range of 0.1-10% NaCl and thermotolerant in the range of 20-50 °C, and didn't grow at 15 °C. Survival strategy of spore-forming bacteria from hypersaline environments under high UV radiation level can be performed by spore formation which minimize cell damage as well as efficient DNA-repair systems that remove damages.

  6. Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia

    DOE PAGES

    Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.; ...

    2013-01-01

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clusteredmore » regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.« less

  7. Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia.

    PubMed

    Lu, Shipeng; Peiffer, Stefan; Lazar, Cassandre Sara; Oldham, Carolyn; Neu, Thomas R; Ciobota, Valerian; Näb, Olga; Lillicrap, Adam; Rösch, Petra; Popp, Jürgen; Küsel, Kirsten

    2016-02-01

    We investigated the microbial community compositions in two sediment samples from the acidic (pH ∼3) and hypersaline (>4.5% NaCl) surface waters, which are widespread in Western Australia. In West Dalyup River, large amounts of NaCl, Fe(II) and sulfate are brought by the groundwater into the surface run-off. The presence of K-jarosite and schwertmannite minerals in the river sediments suggested the occurrence of microbial Fe(II) oxidation because chemical oxidation is greatly reduced at low pH. 16S rRNA gene diversity analyses revealed that sequences affiliated with an uncultured archaeal lineage named Aplasma, which has the genomic potential for Fe(II) oxidation, were dominant in both sediment samples. The acidophilic heterotrophs Acidiphilium and Acidocella were identified as the dominant bacterial groups. Acidiphilium strain AusYE3-1 obtained from the river sediment tolerated up to 6% NaCl at pH 3 under oxic conditions and cells of strain AusYE3-1 reduced the effects of high salt content by forming filamentous structure clumping as aggregates. Neither growth nor Fe(III) reduction by strain AusYE3-1 was observed in anoxic salt-containing medium. The detection of Aplasma group as potential Fe(II) oxidizers and the inhibited Fe(III)-reducing capacity of Acidiphilium contributes to our understanding of the microbial ecology of acidic hypersaline environments.

  8. Virus-host and CRISPR dynamics in Archaea-dominated hypersaline Lake Tyrrell, Victoria, Australia.

    PubMed

    Emerson, Joanne B; Andrade, Karen; Thomas, Brian C; Norman, Anders; Allen, Eric E; Heidelberg, Karla B; Banfield, Jillian F

    2013-01-01

    The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007-2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75-95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clustered regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.

  9. Unveiling microbial activities along the halocline of Thetis, a deep-sea hypersaline anoxic basin

    PubMed Central

    Pachiadaki, Maria G; Yakimov, Michail M; LaCono, Violetta; Leadbetter, Edward; Edgcomb, Virginia

    2014-01-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most hostile environments on Earth. Little is known about the biochemical adaptations of microorganisms living in these habitats. This first metatranscriptome analysis of DHAB samples provides significant insights into shifts in metabolic activities of microorganisms as physicochemical conditions change from deep Mediterranean sea water to brine. The analysis of Thetis DHAB interface indicates that sulfate reduction occurs in both the upper (7.0–16.3% salinity) and lower (21.4–27.6%) halocline, but that expression of dissimilatory sulfate reductase is reduced in the more hypersaline lower halocline. High dark-carbon assimilation rates in the upper interface coincided with high abundance of transcripts for ribulose 1,5-bisphosphate carboxylase affiliated to sulfur-oxidizing bacteria. In the lower interface, increased expression of genes associated with methane metabolism and osmoregulation is noted. In addition, in this layer, nitrogenase transcripts affiliated to uncultivated putative methanotrophic archaea were detected, implying nitrogen fixation in this anoxic habitat, and providing evidence of linked carbon, nitrogen and sulfur cycles. PMID:24950109

  10. Viruses Occur Incorporated in Biogenic High-Mg Calcite from Hypersaline Microbial Mats

    PubMed Central

    De Wit, Rutger; Gautret, Pascale; Bettarel, Yvan; Roques, Cécile; Marlière, Christian; Ramonda, Michel; Nguyen Thanh, Thuy; Tran Quang, Huy; Bouvier, Thierry

    2015-01-01

    Using three different microscopy techniques (epifluorescence, electronic and atomic force microscopy), we showed that high-Mg calcite grains in calcifying microbial mats from the hypersaline lake “La Salada de Chiprana”, Spain, contain viruses with a diameter of 50–80 nm. Energy-dispersive X-ray spectrometer analysis revealed that they contain nitrogen and phosphorus in a molar ratio of ~9, which is typical for viruses. Nucleic acid staining revealed that they contain DNA or RNA. As characteristic for hypersaline environments, the concentrations of free and attached viruses were high (>1010 viruses per g of mat). In addition, we showed that acid treatment (dissolution of calcite) resulted in release of viruses into suspension and estimated that there were ~15 × 109 viruses per g of calcite. We suggest that virus-mineral interactions are one of the possible ways for the formation of nano-sized structures often described as “nanobacteria” and that viruses may play a role in initiating calcification. PMID:26115121

  11. Mollusc-Microbe Mutualisms Extend the Potential for Life in Hypersaline Systems

    NASA Astrophysics Data System (ADS)

    Hickman, Carole S.

    2003-11-01

    Metazoans in extreme environments have evolved mutualisms with microbes that extend the physical and chemical capabilities of both partners. Some of the best examples are bivalve molluscs in evaporite and hypersaline settings. Mollusc tissue is developmentally and evolutionarily amenable to housing vast numbers of symbiotic microbes. Documented benefits to the host are nutritional. Multiple postulated benefits to the microbes are related to optimizing metabolic performance at interfaces, where heterogeneity and steep gradients that cannot be negotiated by microbes can be spanned by larger metazoan hosts. A small cockle, Fragum erugatum, and its photosymbiotic microbes provide a remarkable example of a mutualistic partnership in the hypersaline reaches of Shark Bay, Western Australia. Lucinid bivalves and their endosymbiotic chemolithotrophic bacteria provide examples in which hosts span oxic/anoxic interfaces on behalf of their symbionts at sites of seafloor venting. Multiple lines of evidence underscore the antiquity of mutualisms and suggest that they may have played a significant role in life's first experiments above the prokaryotic grade of complexity. The study of metazoan-microbe mutualisms and their signatures in extreme environments in the geologic record will provide a significant augmentation to microbial models in paleobiology and astrobiology. There are strong potential links between mutualisms and the early history of life on Earth, the persistence of life in extreme environments at times of global crisis and mass extinction, and the possibilities for life elsewhere in the universe.

  12. Evolution of genomic diversity and sex at extreme environments: Fungal life under hypersaline Dead Sea stress

    PubMed Central

    Kis-Papo, Tamar; Kirzhner, Valery; Wasser, Solomon P.; Nevo, Eviatar

    2003-01-01

    We have found that genomic diversity is generally positively correlated with abiotic and biotic stress levels (1–3). However, beyond a high-threshold level of stress, the diversity declines to a few adapted genotypes. The Dead Sea is the harshest planetary hypersaline environment (340 g·liter–1 total dissolved salts, ≈10 times sea water). Hence, the Dead Sea is an excellent natural laboratory for testing the “rise and fall” pattern of genetic diversity with stress proposed in this article. Here, we examined genomic diversity of the ascomycete fungus Aspergillus versicolor from saline, nonsaline, and hypersaline Dead Sea environments. We screened the coding and noncoding genomes of A. versicolor isolates by using >600 AFLP (amplified fragment length polymorphism) markers (equal to loci). Genomic diversity was positively correlated with stress, culminating in the Dead Sea surface but dropped drastically in 50- to 280-m-deep seawater. The genomic diversity pattern paralleled the pattern of sexual reproduction of fungal species across the same southward gradient of increasing stress in Israel. This parallel may suggest that diversity and sex are intertwined intimately according to the rise and fall pattern and adaptively selected by natural selection in fungal genome evolution. Future large-scale verification in micromycetes will define further the trajectories of diversity and sex in the rise and fall pattern. PMID:14645702

  13. Assessing Ecological Impact Assessment: Lessons from Mono Lake, California.

    PubMed

    Wiens, John A; Patten, Duncan T; Botkin, Daniel B

    1993-11-01

    Because of its high salinity and alkalinity, Mono Lake, in eastern California (USA), is a relatively simple ecosystem. It has become the focus of an environmental controversy over the effects of 50 yr of diversions of water from tributary streams to supply water to Los Angeles. Diversions lowered the lake level, increased the salinity, changed the availability of aquatic habitats, and altered the configuration of the shoreline and of islands that support breeding colonies of gulls. We consider (1) how two independent panels of experts synthesized scientific information on the lake ecosystem to assess the environmental consequences of these changes, and (2) how the findings of these groups influenced policy decisions and how well subsequent changes in the lake matched expectations. Despite differences in composition and approach, the two panels reached generally similar conclusions. These conclusions have been a major component of legal activities and the development of management plans for the lake and basin ecosystem. Both panels concluded that, because of the simplicity of the lake ecosystem, ecological consequences of changes in lake level and salinity associated with continuing diversions were likely to be unusually clear-cut. At certain lake levels these changes would be expected to alter algal and invertebrate populations and the populations of aquatic birds that feed upon them or to disrupt breeding activities in gull colonies. Projections about when critical lake levels might be reached, however, have not been met. This is largely because stream flows into the lake have been altered from recent historic patterns by the cessation of water diversions due to governmental and legal actions (prompted in part by the panels' findings) and by a prolonged drought. These events illustrate the difficulty of projecting a timetable for environmental changes, even in simple and well-studied ecosystems.

  14. Draft Genome Sequence of "Candidatus Halobonum tyrrellensis" Strain G22, Isolated from the Hypersaline Waters of Lake Tyrrell, Australia.

    PubMed

    Ugalde, Juan A; Narasingarao, Priya; Kuo, Sidney; Podell, Sheila; Allen, Eric E

    2013-12-12

    We report the draft 3.675-Mbp genome sequence of "Candidatus Halobonum tyrrellensis" strain G22, a novel halophilic archaeon isolated from the surface hypersaline waters of Lake Tyrrell, Australia. The availability of the first genome from the "Candidatus Halobonum" genus provides a new genomic resource for the comparative genomic analysis of halophilic Archaea.

  15. Mono Lake earthquake of October 23, 1990

    SciTech Connect

    McNutt, S.; Bryant, W.; Wilson, R.

    1991-02-01

    On October 23, 1990, a moderate earthquake of local magnitude (M{sub L}) 5.7 shook the Mono Lake area, a region known for its recent volcanic and tectonic activity. The earthquake was centered approximately 5 miles north of Lee Vining and 16 miles southeast of Bridgeport, near Black Point, an isolated flat-topped hill on the north shore of Mono Lake. Shaking from the earthquake was felt at approximately Modified Mercalli Intensity VI in the local area and weakly throughout much of north central California as far west as Sacramento and the San Francisco Bay area. This article summarizes the seismological features of the earthquake and relates the findings made during a surface fault rupture investigation of epicentral area by Division of Mines and Geology (DMG) geologists. To demonstrate how this earthquake fits into the regional tectonic setting, the character of this event is compared to that of other noteworthy seismic events that have occurred over the last 12 years.

  16. Unusually high stable carbon isotopic values of methane from low organic carbon Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Poole, J. A.; Tazaz, A.; Chanton, J.; Bebout, B.

    2010-12-01

    Motivated by the Mars rovers’ findings of past hypersaline environments and the discovery of methane in the atmosphere of Mars, we examined methanogenesis in hypersaline ponds in Baja California Sur and in the Don Edwards National Wildlife Refuge in northern California. Methane-rich bubbles were observed to be released from below gypsum/halite crusts in these environments. The stable carbon isotopic composition of these bubbles ranged from about -30 to -40 ‰. Methane with these relatively high isotopic values would typically be considered non-biogenic, however incubations of crust and sediments samples over time resulted in the production of methane. We therefore undertook a series of measurements aimed at understanding the isotopic composition of methane in these environments. The concentrations and isotopic composition of the particulate organic carbon (POC) in these environments were measured. POC content was low (relative to most methane-producing sedimentary environments), generally less than 1%, and always less than 2% of the total mass. The isotopic composition of the POC ranged from -13 to -22 ‰. To determine the substrates used by the methanogens, 13C-labeled trimethylamine (TMA), monomethylamine, methanol, acetate and bicarbonate were added to incubation vials and the methane produced was monitored for 13C content. The main substrates used by the methanogens in these hypersaline environments were the non-competitive substrates, the methylamines and methanol. When unlabeled, but isotopically known, TMA was added to incubation vials in varying concentrations, the isotopic composition of the methane produced also varied. Little, if any, difference in the isotopic composition between the TMA and methane occurred at the lowest TMA concentration (10 µM final concentration). The lowest methane δ13C values (and so greatest fractionation between methane and TMA) occurred when the most TMA was added (1000 µM final concentration). This change in the

  17. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  18. Molecular Ecology of Hypersaline Microbial Mats: Current Insights and New Directions

    PubMed Central

    Wong, Hon Lun; Ahmed-Cox, Aria; Burns, Brendan Paul

    2016-01-01

    Microbial mats are unique geobiological ecosystems that form as a result of complex communities of microorganisms interacting with each other and their physical environment. Both the microorganisms present and the network of metabolic interactions govern ecosystem function therein. These systems are often found in a range of extreme environments, and those found in elevated salinity have been particularly well studied. The purpose of this review is to briefly describe the molecular ecology of select model hypersaline mat systems (Guerrero Negro, Shark Bay, S’Avall, and Kiritimati Atoll), and any potentially modulating effects caused by salinity to community structure. In addition, we discuss several emerging issues in the field (linking function to newly discovered phyla and microbial dark matter), which illustrate the changing paradigm that is seen as technology has rapidly advanced in the study of these extreme and evolutionally significant ecosystems. PMID:27681900

  19. Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica

    NASA Astrophysics Data System (ADS)

    Samarkin, Vladimir A.; Madigan, Michael T.; Bowles, Marshall W.; Casciotti, Karen L.; Priscu, John C.; McKay, Christopher P.; Joye, Samantha B.

    2010-05-01

    Nitrous oxide is a potent atmospheric greenhouse gas that contributes to ozone destruction. Biological processes such as nitrification and denitrification are thought to drive nitrous oxide production in soils, which comprise the largest source of nitrous oxide to the atmosphere. Here we present measurements of the concentration and isotopic composition of nitrous oxide in soil pore spaces in samples taken near Don Juan Pond, a metabolically dormant hypersaline pond in Southern Victoria Land, Antarctica in 2006, 2007 and 2008, together with in situ fluxes of nitrous oxide from the soil to the atmosphere. We find fluxes of nitrous oxide that rival those measured in fertilized tropical soils. Laboratory experiments-in which nitrite-rich brine was reacted with a variety of minerals containing Fe(II)-reveal a new mechanism of abiotic water-rock reaction that could support nitrous oxide fluxes at Don Juan Pond. Our findings illustrate a dynamic and unexpected link between the geosphere and atmosphere.

  20. Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars.

    PubMed

    Litchfield, C D

    1998-07-01

    There are two groups of microorganisms that live and grow in hypersaline (>10-15% NaCl) environments: the halophilic Archaea and the halotolerant Bacteria and algae. In order to grow and reproduce in such high-salt, low-water activity environments, these organisms have made basic biochemical adaptations in their proteins, osmoregulation mechanisms, nucleic acids, and lipids. The environment of the halophiles and especially how the halophilic Archaea have adapted to that environment are reviewed in this paper. Along with this review is a brief description of how these adaptations could be important in the detection of life on early Mars assuming similar types of salts and a carbon-based life.

  1. SAR Imagery Applied to the Monitoring of Hyper-Saline Deposits: Death Valley Example (CA)

    NASA Technical Reports Server (NTRS)

    Lasne, Yannick; Paillou, Philippe; Freeman, Anthony; Chapman, Bruce

    2009-01-01

    The present study aims at understanding the influence of salinity on the dielectric constant of soils and then on the backscattering coeff cients recorded by airborne/spaceborne SAR systems. Based on dielectric measurements performed over hyper-saline deposits in Death Valley (CA), as well as laboratory electromagnetic characterization of salts and water mixtures, we used the dielectric constants as input parameters of analytical IEM simulations to model both the amplitude and phase behaviors of SAR signal at C, and L-bands. Our analytical simulations allow to reproduce specif c copolar signatures recorded in SAR data, corresponding to the Cottonball Basin saltpan. We also propose the copolar backscattering ratio and phase difference as indicators of moistened and salt-affected soils. More precisely, we show that these copolar indicators should allow to monitor the seasonal variations of the dielectric properties of saline deposits.

  2. High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina.

    PubMed

    Besson, Alexandre; Guiraud, Pascal

    2013-11-01

    Natural autoflocculation was not observed in a Dunaliella salina hypersaline culture and the microalgae did not float without destabilization of the algal suspension. High-pH-induced flocculation by sodium hydroxide addition was chosen to induce flotation. Recovery efficiencies greater than 90% and concentration factors of around 20 were reached. An autoflocculation mechanism, with precipitation of magnesium hydroxide, is proposed to explain a sweeping flotation of D. salina cells. The influence of the flow rate of sodium hydroxide addition was also studied to anticipate the constraints related to the industrialization of this process. The flow rate of sodium hydroxide addition had no effect on the recovery efficiency and reduced the concentration factor only for abrupt injections. Natural increase of culture pH by photosynthetic activity could reduce the amount of base consumed. Non-harvested cells remained viable during pH increase and could be used as inoculum for a new culture.

  3. Polymerization under Hypersaline Conditions: A Robust Route to Phenolic Polymer-Derived Carbon Aerogels.

    PubMed

    Yu, Zhi-Long; Li, Guan-Cheng; Fechler, Nina; Yang, Ning; Ma, Zhi-Yuan; Wang, Xin; Antonietti, Markus; Yu, Shu-Hong

    2016-11-14

    Polymer-derived carbon aerogels can be obtained by direct polymerization of monomers under hypersaline conditions using inorganic salts. This allows for significantly increased mechanical robustness and avoiding special drying processes. This concept was realized by conducting the polymerization of phenol-formaldehyde (PF) in the presence of ZnCl2 salt. Afterwards, the simultaneous carbonization and foaming process conveniently converts the PF monolith into a foam-like carbon aerogel. ZnCl2 plays a key role, serving as dehydration agent, foaming agent, and porogen. The carbon aerogels thus obtained are of very low density (25 mg cm(-3) ), high specific surface area (1340 m(2)  g(-1) ), and have a large micro- and mesopore volume (0.75 cm(3)  g(-1) ). The carbon aerogels show very promising potential in the separation/extraction of organic pollutants and for energy storage.

  4. Use of an Acoustic Doppler Current Profiler (ADCP) to Measure Hypersaline Bidirectional Discharge

    USGS Publications Warehouse

    Johnson, K.K.; Loving, B.L.; ,

    2002-01-01

    The U.S. Geological Survey measures the exchange of flow between the north and south parts of Great Salt Lake, Utah, as part of a monitoring program. Turbidity and bidirectional flow through the breach in the causeway that divides the lake into two parts makes it difficult to measure discharge with conventional streamflow techniques. An acoustic Doppler current profiler (ADCP) can be used to more accurately define the angles of flow and the location of the interface between the layers of flow. Because of the high salinity levels measured in Great Salt Lake (60-280 parts per thousand), special methods had to be developed to adjust ADCP-computed discharges for the increased speed of sound in hypersaline waters and for water entrained at the interface between flow layers.

  5. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat.

    PubMed

    Abed, Raeid M M; Dobretsov, Sergey; Al-Fori, Marwan; Gunasekera, Sarath P; Sudesh, Kumar; Paul, Valerie J

    2013-07-01

    In this study, extremely halophilic and moderately thermophilic microorganisms from a hypersaline microbial mat were screened for their ability to produce antibacterial, antidiatom, antialgal, and quorum-sensing (QS) inhibitory compounds. Five bacterial strains belonging to the genera Marinobacter and Halomonas and one archaeal strain belonging to the genus Haloterrigena were isolated from a microbial mat. The strains were able to grow at a maximum salinity of 22-25 % and a maximum temperature of 45-60 °C. Hexanes, dichloromethane, and butanol extracts from the strains inhibited the growth of at least one out of nine human pathogens. Only butanol extracts of supernatants of Halomonas sp. SK-1 inhibited growth of the microalga Dunaliella salina. Most extracts from isolates inhibited QS of the acyl homoserine lactone producer and reporter Chromobacterium violaceum CV017. Purification of QS inhibitory dichloromethane extracts of Marinobacter sp. SK-3 resulted in isolation of four related diketopiperazines (DKPs): cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), cyclo(L-Pro-L-isoLeu), and cyclo(L-Pro-D-Phe). QS inhibitory properties of these DKPs were tested using C. violaceum CV017 and Escherichia coli-based QS reporters (pSB401 and pSB1075) deficient in AHL production. Cyclo(L-Pro-L-Phe) and cyclo(L-Pro-L-isoLeu) inhibited QS-dependent production of violacein by C. violaceum CV017. Cyclo(L-Pro-L-Phe), cyclo(L-Pro-L-Leu), and cyclo(L-Pro-L-isoLeu) reduced QS-dependent luminescence of the reporter E. coli pSB401 induced by 3-oxo-C6-HSL. Our study demonstrated the ability of halophilic and moderately thermophilic strains from a hypersaline microbial mat to produce biotechnologically relevant compounds that could be used as antifouling agents.

  6. Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments

    PubMed Central

    Fathepure, Babu Z.

    2014-01-01

    Many hypersaline environments are often contaminated with petroleum compounds. Among these, oil and natural gas production sites all over the world and hundreds of kilometers of coastlines in the more arid regions of Gulf countries are of major concern due to the extent and magnitude of contamination. Because conventional microbiological processes do not function well at elevated salinities, bioremediation of hypersaline environments can only be accomplished using high salt-tolerant microorganisms capable of degrading petroleum compounds. In the last two decades, there have been many reports on the biodegradation of hydrocarbons in moderate to high salinity environments. Numerous microorganisms belonging to the domain Bacteria and Archaea have been isolated and their phylogeny and metabolic capacity to degrade a variety of aliphatic and aromatic hydrocarbons in varying salinities have been demonstrated. This article focuses on our growing understanding of bacteria and archaea responsible for the degradation of hydrocarbons under aerobic conditions in moderate to high salinity conditions. Even though organisms belonging to various genera have been shown to degrade hydrocarbons, members of the genera Halomonas Alcanivorax, Marinobacter, Haloferax, Haloarcula, and Halobacterium dominate the published literature. Despite rapid advances in understanding microbial taxa that degrade hydrocarbons under aerobic conditions, not much is known about organisms that carry out similar processes in anaerobic conditions. Also, information on molecular mechanisms and pathways of hydrocarbon degradation in high salinity is scarce and only recently there have been a few reports describing genes, enzymes and breakdown steps for some hydrocarbons. These limited studies have clearly revealed that degradation of oxygenated and non-oxygenated hydrocarbons by halophilic and halotolerant microorganisms occur by pathways similar to those found in non-halophiles. PMID:24795705

  7. Nitrate attenuation potential of hypersaline lake sediments in central Spain: flow-through and batch experiments.

    PubMed

    Carrey, R; Rodríguez-Escales, P; Otero, N; Ayora, C; Soler, A; Gómez-Alday, J J

    2014-08-01

    Complex lacustrine systems, such as hypersaline lakes located in endorheic basins, are exposed to nitrate (NO3(-)) pollution. An excellent example of these lakes is the hypersaline lake located in the Pétrola basin (central Spain), where the lake acts as a sink for NO3(-) from agricultural activities and from sewage from the surrounding area. To better understand the role of the organic carbon (Corg) deposited in the bottom sediment in promoting denitrification, a four-stage flow-through experiment (FTR) and batch experiments using lake bottom sediment were performed. The chemical, multi-isotopic and kinetic characterization of the outflow showed that the intrinsic NO3(-) attenuation potential of the lake bottom sediment was able to remove 95% of the NO3(-) input over 296days under different flow conditions. The NO3(-) attenuation was mainly linked with denitrification but some dissimilatory nitrate reduction to ammonium was observed at early days favored by the high C/N ratio and salinity. Sulfate reduction could be neither confirmed nor discarded during the experiments because the sediment leaching masked the chemical and isotopic signatures of this reaction. The average nitrogen reduction rate (NRR) obtained was 1.25mmold(-1)kg(-1) and was independent of the flow rate employed. The amount of reactive Corg from the bottom sediment consumed during denitrification was 28.8mmol, representing approximately 10% of the total Corg of the sediment (1.2%). Denitrification was produced coupled with an increase in the isotopic composition of both δ(15)N and δ(18)O. The isotopic fractionations (ε of (15)N-NO3(-) and (18)O-NO3(-)) produced during denitrification were calculated using batch and vertical profile samples. The results were -14.7‰ for εN and -14.5‰ for εO.

  8. Metagenomic and lipid analyses reveal a diel cycle in a hypersaline microbial ecosystem

    PubMed Central

    Andrade, Karen; Logemann, Jörn; Heidelberg, Karla B; Emerson, Joanne B; Comolli, Luis R; Hug, Laura A; Probst, Alexander J; Keillar, Angus; Thomas, Brian C; Miller, Christopher S; Allen, Eric E; Moreau, John W; Brocks, Jochen J; Banfield, Jillian F

    2015-01-01

    Marine microbial communities experience daily fluctuations in light and temperature that can have important ramifications for carbon and nutrient cycling. Elucidation of such short time scale community-wide dynamics is hindered by system complexity. Hypersaline aquatic environments have lower species richness than marine environments and can be well-defined spatially, hence they provide a model system for diel cycle analysis. We conducted a 3-day time series experiment in a well-defined pool in hypersaline Lake Tyrrell, Australia. Microbial communities were tracked by combining cultivation-independent lipidomic, metagenomic and microscopy methods. The ratio of total bacterial to archaeal core lipids in the planktonic community increased by up to 58% during daylight hours and decreased by up to 32% overnight. However, total organism abundances remained relatively consistent over 3 days. Metagenomic analysis of the planktonic community composition, resolved at the genome level, showed dominance by Haloquadratum species and six uncultured members of the Halobacteriaceae. The post 0.8 μm filtrate contained six different nanohaloarchaeal types, three of which have not been identified previously, and cryo-transmission electron microscopy imaging confirmed the presence of small cells. Notably, these nano-sized archaea showed a strong diel cycle, with a pronounced increase in relative abundance over the night periods. We detected no eukaryotic algae or other photosynthetic primary producers, suggesting that carbon resources may derive from patchily distributed microbial mats at the sediment-water interface or from surrounding land. Results show the operation of a strong community-level diel cycle, probably driven by interconnected temperature, light abundance, dissolved oxygen concentration and nutrient flux effects. PMID:25918833

  9. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.

    PubMed

    O'Brien, P J; Herschlag, D

    2001-05-15

    Escherichia coli alkaline phosphatase (AP) is a proficient phosphomonoesterase with two Zn(2+) ions in its active site. Sequence homology suggests a distant evolutionary relationship between AP and alkaline phosphodiesterase/nucleotide pyrophosphatase, with conservation of the catalytic metal ions. Furthermore, many other phosphodiesterases, although not evolutionarily related, have a similar active site configuration of divalent metal ions in their active sites. These observations led us to test whether AP could also catalyze the hydrolysis of phosphate diesters. The results described herein demonstrate that AP does have phosphodiesterase activity: the phosphatase and phosphodiesterase activities copurify over several steps; inorganic phosphate, a strong competitive inhibitor of AP, inhibits the phosphodiesterase and phosphatase activities with the same inhibition constant; a point mutation that weakens phosphate binding to AP correspondingly weakens phosphate inhibition of the phosphodiesterase activity; and mutation of active site residues substantially reduces both the mono- and diesterase activities. AP accelerates the rate of phosphate diester hydrolysis by 10(11)-fold relative to the rate of the uncatalyzed reaction [(k(cat)/K(m))/k(w)]. Although this rate enhancement is substantial, it is at least 10(6)-fold less than the rate enhancement for AP-catalyzed phosphate monoester hydrolysis. Mutational analysis suggests that common active site features contribute to hydrolysis of both phosphate monoesters and phosphate diesters. However, mutation of the active site arginine to serine, R166S, decreases the monoesterase activity but not the diesterase activity, suggesting that the interaction of this arginine with the nonbridging oxygen(s) of the phosphate monoester substrate provides a substantial amount of the preferential hydrolysis of phosphate monoesters. The observation of phosphodiesterase activity extends the previous observation that AP has a low level of

  10. Gaylussite formation at mono lake, california

    USGS Publications Warehouse

    Bischoff, J.L.; Herbst, D.B.; Rosenbauer, R.J.

    1991-01-01

    The salinity of Mono Lake has steadily increased since 1941 from 50%. to about 90%. due to diversion of tributary streams. This increase has resulted in the newly discovered precipitation of gaylussite (Na2Ca(CO3)2 ?? 5H2O). Chemical modeling of the lake water using Pitzer equations suggests that gaylussite has been forming year round since about 1970 when the salinity first exceeded 80%., and that it was earlier forming intermittently at lower salinities in the winter shortly after diversion began, breaking down incongruently to aragonite during summers. Lake water appears to remain at a constant 9-fold supersaturation with aragonite at all salinities, perhaps buffered by monohydrocalcite which appears to be just at saturation for all salinities. Other saline lakes also appear to be buffered by monohydrocalcite. ?? 1991.

  11. Gaylussite formation at Mono Lake, California

    SciTech Connect

    Bischoff, J.L.; Rosenbauer, R.J. ); Herbst, D.B. )

    1991-06-01

    The salinity of Mono Lake has steadily increased since 1941 from 50{per thousand} to about 90{per thousand} due to diversion of tributary streams. This increase has resulted in the newly discovered precipitation of gaylussite (Na{sub 2}Ca(CO{sub 3}){sub 2} {center dot} 5H{sub 2}O). Chemical modeling of the lake water using Pitzer equations suggests that gaylussite has been forming year round since about 1970 when the salinity first exceeded 80{per thousand}, and that it was earlier forming intermittently at lower salinities in the winter shortly after diversion began, breaking down incongruently to aragonite during summers. Lake water appears to remain at a constant 9-fold supersaturation with aragonite at all salinities, perhaps buffered by monohydrocalcite which appears to be just at saturation for all salinities. Other saline lakes also appear to be buffered by monohydrocalcite.

  12. Capillary Electrophoresis of Mono- and Oligosaccharides.

    PubMed

    Toppazzini, Mila; Coslovi, Anna; Rossi, Marco; Flamigni, Anna; Baiutti, Edi; Campa, Cristiana

    2016-01-01

    This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.

  13. Assembly-driven metagenomics of a hypersaline microbial ecosystem (2013 DOE JGI Genomics of Energy and Environment 8th Annual User Meeting)

    SciTech Connect

    Allen, Eric

    2013-03-01

    Eric Allen of Scripps and UC San Diego on "Assembly-driven metagenomics of a hypersaline microbial ecosystem" at the 8th Annual Genomics of Energy & Environment Meeting on March 27, 2013 in Walnut Creek, Calif.

  14. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl ethers. 721.10505 Section 721... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  15. 40 CFR 721.10505 - Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl ethers. 721.10505 Section 721... Phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol mono-C12-16-alkyl... identified as phosphoric acid, mixed mono- and diesters with 2-ethyl-1-hexanol and polyethylene glycol...

  16. Intercultural Interactions of Mono-Cultural, Mono-Lingual Local Students in Small Group Learning Activities: A Bourdieusian Analysis

    ERIC Educational Resources Information Center

    Colvin, Cassandra; Fozdar, Farida; Volet, Simone

    2015-01-01

    This research examines the understandings and experiences of mono-cultural, mono-lingual local students in relation to intercultural interactions within small group learning activities at university. Bourdieu's concepts of field, habitus and capital are employed to illuminate a number of barriers to intercultural interaction. Using qualitative…

  17. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  18. Enzymatic kinetic parameters for polyfluorinated alkyl phosphate hydrolysis by alkaline phosphatase.

    PubMed

    Jackson, Derek A; Mabury, Scott A

    2012-09-01

    The hydrolysis kinetics of three polyfluorinated alkyl phosphate monoesters (monoPAPs), differing in fluorinated chain length, were measured using bovine intestinal alkaline phosphatase to catalyze the reaction. Kinetic values were also measured for analogous hydrogenated phosphate monoesters to elucidate the effects of the fluorinated chain on the rate of enzymatic hydrolysis. Michaelis constants (K(m)) were obtained by a competition kinetics technique in the presence of p-nitrophenyl phosphate (PNPP) using UV-vis spectroscopy. Compared with K(m) (PNPP), Michaelis constants for monoPAPs ranged from 0.9 to 2.1 compared with hydrogenated phosphates, which ranged from 4.0 to 13.0. Apparent bimolecular rate constants (k(cat)/K(m)) were determined by monitoring rates of product alcohol formation at low substrate concentrations using gas chromatography-mass spectrometry. The experimental values for k(cat)/K(m) averaged as 1.1 × 10(7) M(-1) s(-1) for monoPAPs compared with 3.8 × 10(5) M(-1) s(-1) for hexyl phosphate. This suggests that the electron-withdrawing nature of the fluorinated chain enhanced the alcohol leaving group ability. The results were used in a simple model to suggest that monoPAPs in a typical mammalian digestive tract would hydrolyze in approximately 100 s, supporting a previous study that showed its absence after a dosing study in rats.

  19. Mechanisms of Selenomethionine Developmental Toxicity and the Impacts of Combined Hypersaline Conditions on Japanese Medaka (Oryzias latipes)

    PubMed Central

    2015-01-01

    Selenium (Se) is an essential micronutrient that can cause embryotoxicty at levels 7–30 times above essential concentrations. Exposure to hypersaline conditions and 50 μM selenomethionine (SeMet) decreased embryo hatch and depleted glutathione in Japanese medaka embryos without affecting Se accumulation. To better understand the impacts of nonchemical stressors on developmental toxicity of Se in fish, several adverse outcome pathways were evaluated in the Japanese medaka (Oryzias latipes). We treated medaka embryos at 12 h post fertilization with 50 μM SeMet for 12 hours in freshwater or in 13 ppth hypersalinity and evaluated the contributions of oxidative stress, the unfolded protein response and apoptosis to reduced hatch. Exposure to SeMet and hypersalinity decreased embryo hatch to 3.7% ± 1.95, and induced teratogenesis in 100% ± 0 of hatched embryos. In contrast, treatments of freshwater, saltwater, and SeMet in freshwater resulted in 89.8% ± 3.91–86.7% ± 3.87 hatch, and no significant increase in deformities. We found no significant differences in lipid peroxidation, indicating that oxidative stress may not be responsible for the observed toxicity in embryos at this time point (24 h). Although significant changes in apoptosis were not observed, we witnessed up to 100 fold increases in transcripts of the endoplasmic reticulum (ER) chaperone, immunoglobulin binding protein (BiP) and trends toward increasing downstream signals, activating transcription factor 4 (ATF4) and ATF6 indicating potential contributions of the unfolded protein response to the effects of SeMet and hypersaline conditions. These data indicate that multiple adverse outcome pathways may be responsible for the developmental toxicity of Se and salinity, and these pathways may be time dependent. PMID:24856650

  20. The modulation of leaf metabolism plays a role in salt tolerance of Cymodocea nodosa exposed to hypersaline stress in mesocosms

    PubMed Central

    Piro, Amalia; Marín-Guirao, Lázaro; Serra, Ilia A.; Spadafora, Antonia; Sandoval-Gil, José M.; Bernardeau-Esteller, Jaime; Fernandez, Juan M. R.; Mazzuca, Silvia

    2015-01-01

    Applying proteomics, we tested the physiological responses of the euryhaline seagrass Cymodocea nodosa to deliberate manipulation of salinity in a mesocosm system. Plants were subjected to a chronic hypersaline condition (43 psu) to compare protein expression and plant photochemistry responses after 15 and 30 days of exposure with those of plants cultured under normal/ambient saline conditions (37 psu). Results showed a general decline in the expression level of leaf proteins in hypersaline stressed plants, with more intense reductions after long-lasting exposure. Specifically, the carbon-fixing enzyme RuBisCo displayed a lower accumulation level in stressed plants relative to controls. In contrast, the key enzymes involved in the regulation of glycolysis, cytosolic glyceraldehyde-3-phosphate dehydrogenase, enolase 2 and triose-phosphate isomerase, showed significantly higher accumulation levels. These responses suggested a shift in carbon metabolism in stressed plants. Hypersaline stress also induced a significant alteration of the photosynthetic physiology of C. nodosa by means of a down-regulation in structural proteins and enzymes of both PSII and PSI. However we found an over-expression of the cytochrome b559 alpha subunit of the PSII initial complex, which is a receptor for the PSII core proteins involved in biogenesis or repair processes and therefore potentially involved in the absence of effects at the photochemical level of stressed plants. As expected hypersalinity also affects vacuolar metabolism by increasing the leaf cell turgor pressure and enhancing the up-take of Na+ by over-accumulating the tonoplast specific intrinsic protein pyrophosphate-energized inorganic pyrophosphatase (H(+)-PPase) coupled to the Na+/H+-antiporter. The modulation of carbon metabolism and the enhancement of vacuole capacity in Na+ sequestration and osmolarity changes are discussed in relation to salt tolerance of C. nodosa. PMID:26167167

  1. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea.

    PubMed

    Lazar, Cassandre Sara; Parkes, R John; Cragg, Barry A; L'Haridon, Stéphane; Toffin, Laurent

    2011-08-01

    Submarine mud volcanoes are a significant source of methane to the atmosphere. The Napoli mud volcano, situated in the brine-impacted Olimpi Area of the Eastern Mediterranean Sea, emits mainly biogenic methane particularly at the centre of the mud volcano. Temperature gradients support the suggestion that Napoli is a cold mud volcano with moderate fluid flow rates. Biogeochemical and molecular genetic analyses were carried out to assess the methanogenic activity rates, pathways and diversity in the hypersaline sediments of the centre of the Napoli mud volcano. Methylotrophic methanogenesis was the only significant methanogenic pathway in the shallow sediments (0-40 cm) but was also measured throughout the sediment core, confirming that methylotrophic methanogens could be well adapted to hypersaline environments. Hydrogenotrophic methanogenesis was the dominant pathway below 50 cm; however, low rates of acetoclastic methanogenesis were also present, even in sediment layers with the highest salinity, showing that these methanogens can thrive in this extreme environment. PCR-DGGE and methyl coenzyme M reductase gene libraries detected sequences affiliated with anaerobic methanotrophs (mainly ANME-1) as well as Methanococcoides methanogens. Results show that the hypersaline conditions in the centre of the Napoli mud volcano influence active biogenic methane fluxes and methanogenic/methylotrophic diversity.

  2. MONO FOR CROSS-PLATFORM CONTROL SYSTEM ENVIRONMENT

    SciTech Connect

    Nishimura, Hiroshi; Timossi, Chris

    2006-10-19

    Mono is an independent implementation of the .NET Frameworkby Novell that runs on multiple operating systems (including Windows,Linux and Macintosh) and allows any .NET compatible application to rununmodified. For instance Mono can run programs with graphical userinterfaces (GUI) developed with the C# language on Windows with VisualStudio (a full port of WinForm for Mono is in progress). We present theresults of tests we performed to evaluate the portability of our controlssystem .NET applications from MS Windows to Linux.

  3. Travertine Hot Springs, Mono County, California

    SciTech Connect

    Chesterman, C.W.; Kleinhampl, F.J.

    1991-08-01

    This article is an abridgement of Special Report 172, Travertine Hot Springs at Bridgeport, Mono County, California, in preparation at the California Division of Mines and Geology. The Travertine Hot Springs area is on the northern edge of what many consider to be one of the most tectonically active areas in the United States. There is abundant geothermal and seismic activity. The landscape is dotted with volcanic features- cones, craters, domes, flows, fumaroles and hot springs-indicators of unrest in the present as well as reminders of activity in the past. Travertine, also known as calcareous sinter, is limestone formed by chemical precipitation of calcium carbonate (CaCO{sub 3}) from ground or surface waters. It forms stalactites and stalagmites in caves, fills some veins and spring conduits and can also be found at the mouths of springs, especially hot springs. The less compact variety is called tufa and the dense, banded variety is known as Mexican onyx, or onyx marble. True onyx, however, is a banded silicate.

  4. Calcium Biomineralization in Sediment of Lake Acigol, an Hypersaline Lake in SW Turkey

    NASA Astrophysics Data System (ADS)

    Celik Balci, Nurgul; Menekse, Meryem; Sonmez, Seref; Gul Karaguler, Nevin

    2010-05-01

    The study of biomineralization in (hyper) saline environments is important for two reasons, 1-it can extend our knowledge about the earliest microbial life on Earth which may have been halophilic 2-because of the presence of hypersaline conditions on Mars, the analog environments in Earth may have implications for the possibility of life on Mars. We examine calcium biomineralization in Lake Acigol, a unique hypersaline lake in southwest Turkey by integrating geochemical and microbiological approaches. Lake Acigol is a perennial lake with a maximum salinity of about 200 g/L and covers an area of 55-60 km2and is one of the main salt reservoirs of Turkey. Water, sediment and core samples were taken from the lake and salty ponds around the lake during the field excursion. The water chemistry revealed relatively high Na and SO4 concentrations both in the lake (30 gr/L, 33.36 gr/L), and the ponds (100 mg/L, 123 mg/L). The mineralogical analyses of sediments showed gypsum, halite, carbonate (aragonite, huntite) precipitation in the lake and ponds. We employed culture-dependent (16s rRNA cloning method, enrichment culture), and -independent techniques to study microbial diversity in Lake Aci gol. Sediment samples were used to isolate Halophilic sp. (e.g. salinicoccus roseus , Dunella sp.) under salinities that were similar to those measured in the lake water to further use in the laboratory Ca-precipitation experiments. For the precipitation experiments, liquid and solid culture media with various salinities ( 6-25 %) in addition to one similar to the lake water were prepared. In order to determine effect of Mg2+-Ca2+ molar ratio on mineralogy and the rate of precipitation, media with different Ca2+and Mg2+ concentrations were also prepared. Our preliminary results indicate that the halophilic bacteria play active role in the precipitation of Ca-minerals but the geochemical conditions are clearly influential. The results also point out that in the Lake Aci gol C, N, P, Ca

  5. Microbial Diversity in Maras Salterns, a Hypersaline Environment in the Peruvian Andes

    PubMed Central

    Maturrano, Lenin; Santos, Fernando; Rosselló-Mora, Ramon; Antón, Josefa

    2006-01-01

    Maras salterns are located 3,380 m above sea level in the Peruvian Andes. These salterns consist of more than 3,000 little ponds which are not interconnected and act as crystallizers where salt precipitates. These ponds are fed by hypersaline spring water rich in sodium and chloride. The microbiota inhabiting these salterns was examined by fluorescence in situ hybridization (FISH), 16S rRNA gene clone library analysis, and cultivation techniques. The total counts per milliliter in the ponds were around 2 × 106 to 3 × 106 cells/ml, while the spring water contained less than 100 cells/ml and did not yield any detectable FISH signal. The microbiota inhabiting the ponds was dominated (80 to 86% of the total counts) by Archaea, while Bacteria accounted for 10 to 13% of the 4′,6′-diamidino-2-phenylindole (DAPI) counts. A total of 239 16S rRNA gene clones were analyzed (132 Archaea clones and 107 Bacteria clones). According to the clone libraries, the archaeal assemblage was dominated by microorganisms related to the cosmopolitan square archaeon “Haloquadra walsbyi,” although a substantial number of the sequences in the libraries (31% of the 16S rRNA gene archaeal clones) were related to Halobacterium sp., which is not normally found in clone libraries from solar salterns. All the bacterial clones were closely related to each other and to the γ-proteobacterium “Pseudomonas halophila” DSM 3050. FISH analysis with a probe specific for this bacterial assemblage revealed that it accounted for 69 to 76% of the total bacterial counts detected with a Bacteria-specific probe. When pond water was used to inoculate solid media containing 25% total salts, both extremely halophilic Archaea and Bacteria were isolated. Archaeal isolates were not related to the isolates in clone libraries, although several bacterial isolates were very closely related to the “P. halophila” cluster found in the libraries. As observed for other hypersaline environments, extremely

  6. Monitoring The Dynamics Of Hyper-Saline Environments With Polarimetric SAR: Death Valley, California Example

    NASA Astrophysics Data System (ADS)

    Lasne, Y.; McDonald, K.; Paillou, P.; Freeman, A.; Chapman, B.; Farr, T.; Ruffié, G.; Malézieux, J.

    2008-12-01

    Soil salinization in arid and semi-arid regions still remains one of the most important threats not only for socio-economical issues when dealing with water ressources management, but also for ecological matters such as: desertification, climate changes, and biomass reduction. Then, monitoring and mapping of soil salinity distribution represent today a key challenge in our understanding of such environmental processes. Being highly dependent on the dielectric properties of soils, synthetic aperture radar (SAR) appears to be an efficient tool for the remote sensing of hyper-saline environments. More precisely, the influence of saline deposits on SAR imagery lies in the solubility and ionic properties of the minerals which strongly influence both real and imaginary parts of the complex permittivity of such deposits, and thus the radar backscattering coefficient. Based on temporal series acquired with spaceborne SAR systems (ALOS/PALSAR, SIR-C) over the Death Valley (CA), we show that the copolarized backscattering ratio and phase difference derived from SAR data can be used as suitable indicators to monitor the dynamics of hyper-saline deposits. In particular, we propose these copolar parameters to follow the variations in the dielectric properties of moistened and salt-affected soils on a seasonal time scale because of the close relationship between the salinity (governed by the soil moisture content) and the complex permittivity of the soils. We also highlight a strong temporal correlation between the copolar parameters and weather data since precipitation events control the soil moisture and salinity. In order to allow for a better interpretation of the saline deposits signatures observed on SAR data, we also perform analytical simulations of the radar backscattering associated with saline deposits by means of the IEM scattering model. Using laboratory and in~ situ dielectric measurements as input parameters, we simulate the copolar ratio and phase difference as

  7. Ecophysiological Distinctions of Haloarchaea from a Hypersaline Antarctic Lake as Determined by Metaproteomics

    PubMed Central

    Tschitschko, Bernhard; Williams, Timothy J.; Allen, Michelle A.; Zhong, Ling; Raftery, Mark J.

    2016-01-01

    ABSTRACT Deep Lake in the Vestfold Hills is hypersaline and the coldest system in Antarctica known to support microbial growth (temperatures as low as −20°C). It represents a strong experimental model because the lake supports a low-complexity community of haloarchaea, with the three most abundant species totaling ∼72%. Moreover, the dominant haloarchaea are cultivatable, and their genomes are sequenced. Here we use metaproteomics linked to metagenome data and the genome sequences of the isolates to characterize the main pathways, trophic strategies, and interactions associated with resource utilization. The dominance of the most abundant member, Halohasta litchfieldiae, appears to be predicated on competitive utilization of substrates (e.g., starch, glycerol, and dihydroxyacetone) produced by Dunaliella, the lake's primary producer, while also possessing diverse mechanisms for acquiring nitrogen and phosphorus. The second most abundant member, strain DL31, is proficient in degrading complex proteinaceous matter. Hht. litchfieldiae and DL31 are inferred to release labile substrates that are utilized by Halorubrum lacusprofundi, the third most abundant haloarchaeon in Deep Lake. The study also linked genome variation to specific protein variants or distinct genetic capacities, thereby identifying strain-level variation indicative of specialization. Overall, metaproteomics revealed that rather than functional differences occurring at different lake depths or through size partitioning, the main lake genera possess major trophic distinctions, and phylotypes (e.g., strains of Hht. litchfieldiae) exhibit a more subtle level of specialization. This study highlights the extent to which the lake supports a relatively uniform distribution of taxa that collectively possess the genetic capacity to effectively exploit available nutrients throughout the lake. IMPORTANCE Life on Earth has evolved to colonize a broad range of temperatures, but most of the biosphere (∼85

  8. The geomorphology of two hyper-saline springs in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Ward, Melissa; Pollard, Wayne

    2015-04-01

    On Axel Heiberg Island in the Canadian High Arctic, many low temperature perennial saline springs occur despite cold polar desert climate conditions marked by a mean annual air temperature of -18°C. Associated with 2 groups of hyper-saline springs are distinctive landforms resulting from winter deposition of salt minerals. These deposits resemble tufas structurally, but unlike true tufas which are composed of carbonate minerals, these landforms are formed mainly of salt. This study hypothesizes that the extreme cold winter air temperatures cool water temperatures triggering rapid precipitation of various salt minerals [mainly hydrohalite (NaCl*2H2O)]. These newly formed salt minerals subsequently alter the flow hydrology by obstructing summer flow paths. The tufa-like appearance of these salt deposits reflects the interaction between changing water temperature, chemistry and flow.This research characterises the geomorphology and geochemistry of two hyper-saline springs on Axel Heiberg Island: the first is located at Wolf Diapir (79°07'23"N; 90°14'39"W), the deposit at this site resembles a large conical mound (2.5m tall x 3m diameter). The second is located at Stolz Diapir (79°04'30"N; 87°04'30"W). In this case a series of pool and barrage structures staircase down a narrow valley for approximately 300m (several pools are up to 10 m wide x 3 m deep). The springs have very different seasonal surface hydrologic regimes and topographic settings which influence the pattern of mineral precipitates. The accumulation of precipitates occurs during the winter and is dominated by the formation of hydrohalite. In the summer, the accumulated hydrohalite melts incongruently to form halite. In addition, spring water and snowmelt dissolve various parts of the accumulations, changing the morphology of the deposits. This presentation will focus on results from four periods of fieldwork (two in spring for winter conditions and two in summer) including results from time

  9. Organic geochemistry and brine composition in Great Salt, Mono, and Walker Lakes

    SciTech Connect

    Domagalski, J.L.; Orem, W.H.; Eugster, H.P.

    1989-01-01

    Samples of recent sediments, representing up to 1,000 years of accumulation, were collected from three closed basin lakes to assess the effects of brine composition on the accumulation of effects of brine composition on the accumulation of total organic carbon, the concentration of dissolved organic carbon, humic acid structure and diagenesis, and trace metal complexation. The Great Salt Lake water column is a stratified Na-Mg-Cl-SO{sub 4} brine with low alkalinity. Algal debris is entrained in the high density (1.132-1.190 g/ml) bottom brines, and in this region maximum organic matter decomposition occurs by anaerobic processes, with sulfate ion as the terminal electron acceptor. Organic matter, below 5 cm of the sediment-water interface, degrades at a very slow rate in spite of very high pore-fluid sulfate levels. Mono Lake is an alkaline (Na-CO{sub 3}-Cl-SO{sub 4}) system. The water column is stratified, but the bottom brines are of lower density relative to the Great Salt Lake, and sedimentation of algal debris is rapid. Walker Lake is also an alkaline system. The water column is not stratified, and decomposition of organic matter occurs by aerobic processes at the sediment-water interface and by anaerobic processes below. Total organic carbon and dissolved organic carbon concentrations in Walker Lake sediments vary with location and depth due to changes in input and pore-fluid sulfate concentrations. Nuclear magnetic resonance studies of humic substances and dissolved organic carbon provide information on the source of the recent sedimentary organic carbon, its relative state of decomposition, and its chemical structure. 44 refs., 10 figs., 6 tabs.

  10. 9. GRANT LAKE AND MONO LAKE IN DISTANCE, LOOKING NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. GRANT LAKE AND MONO LAKE IN DISTANCE, LOOKING NORTHEAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  11. 1. LEE VINING INTAKE LOOKING EAST TO MONO LAKE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. LEE VINING INTAKE LOOKING EAST TO MONO LAKE. - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  12. 2. LEE VINING INTAKE, MONO LAKE IN BACKGROUND. Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. LEE VINING INTAKE, MONO LAKE IN BACKGROUND. - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  13. Plutonium speciation in water from Mono Lake, California

    USGS Publications Warehouse

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-01-01

    The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

  14. Plutonium speciation in water from Mono Lake, California

    SciTech Connect

    Cleveland, J.M.; Rees, T.F.; Nash, K.L.

    1983-12-23

    The solubility of plutonium in Mono Lake water is enhanced by the presence of large concentrations of indigenous carbonate ions and moderate concentrations of fluoride ions. In spite of the complex chemical composition of this water, only a few ions govern the behavior of plutonium, as demonstrated by the fact that it was possible to duplicate plutonium speciation in a synthetic water containing only the principal components of Mono Lake water.

  15. Metagenomic insights into strategies of carbon conservation and unusual sulfur biogeochemistry in a hypersaline Antarctic lake

    PubMed Central

    Yau, Sheree; Lauro, Federico M; Williams, Timothy J; DeMaere, Matthew Z; Brown, Mark V; Rich, John; Gibson, John AE; Cavicchioli, Ricardo

    2013-01-01

    Organic Lake is a shallow, marine-derived hypersaline lake in the Vestfold Hills, Antarctica that has the highest reported concentration of dimethylsulfide (DMS) in a natural body of water. To determine the composition and functional potential of the microbial community and learn about the unusual sulfur chemistry in Organic Lake, shotgun metagenomics was performed on size-fractionated samples collected along a depth profile. Eucaryal phytoflagellates were the main photosynthetic organisms. Bacteria were dominated by the globally distributed heterotrophic taxa Marinobacter, Roseovarius and Psychroflexus. The dominance of heterotrophic degradation, coupled with low fixation potential, indicates possible net carbon loss. However, abundant marker genes for aerobic anoxygenic phototrophy, sulfur oxidation, rhodopsins and CO oxidation were also linked to the dominant heterotrophic bacteria, and indicate the use of photo- and lithoheterotrophy as mechanisms for conserving organic carbon. Similarly, a high genetic potential for the recycling of nitrogen compounds likely functions to retain fixed nitrogen in the lake. Dimethylsulfoniopropionate (DMSP) lyase genes were abundant, indicating that DMSP is a significant carbon and energy source. Unlike marine environments, DMSP demethylases were less abundant, indicating that DMSP cleavage is the likely source of high DMS concentration. DMSP cleavage, carbon mixotrophy (photoheterotrophy and lithoheterotrophy) and nitrogen remineralization by dominant Organic Lake bacteria are potentially important adaptations to nutrient constraints. In particular, carbon mixotrophy relieves the extent of carbon oxidation for energy production, allowing more carbon to be used for biosynthetic processes. The study sheds light on how the microbial community has adapted to this unique Antarctic lake environment. PMID:23619305

  16. Archaeal Populations in Hypersaline Sediments Underlying Orange Microbial Mats in the Napoli Mud Volcano▿†

    PubMed Central

    Lazar, Cassandre Sara; L'Haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-01-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the “active” archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano. PMID:21335391

  17. Flow dynamics in hyper-saline aquifers: hydro-geophysical monitoring and modeling

    NASA Astrophysics Data System (ADS)

    Haaken, Klaus; Piero Deidda, Gian; Cassiani, Giorgio; Deiana, Rita; Putti, Mario; Paniconi, Claudio; Scudeler, Carlotta; Kemna, Andreas

    2017-03-01

    Saline-freshwater interaction in porous media is a phenomenon of practical interest particularly for the management of water resources in arid and semi-arid environments, where precious freshwater resources are threatened by seawater intrusion and where storage of freshwater in saline aquifers can be a viable option. Saline-freshwater interactions are controlled by physico-chemical processes that need to be accurately modeled. This in turn requires monitoring of these systems, a non-trivial task for which spatially extensive, high-resolution non-invasive techniques can provide key information. In this paper we present the field monitoring and numerical modeling components of an approach aimed at understanding complex saline-freshwater systems. The approach is applied to a freshwater injection experiment carried out in a hyper-saline aquifer near Cagliari (Sardinia, Italy). The experiment was monitored using time-lapse cross-hole electrical resistivity tomography (ERT). To investigate the flow dynamics, coupled numerical flow and transport modeling of the experiment was carried out using an advanced three-dimensional (3-D) density-driven flow-transport simulator. The simulation results were used to produce synthetic ERT inversion results to be compared against real field ERT results. This exercise demonstrates that the evolution of the freshwater bulb is strongly influenced by the system's (even mild) hydraulic heterogeneities. The example also highlights how the joint use of ERT imaging and gravity-dependent flow and transport modeling give fundamental information for this type of study.

  18. Biogeochemistry of hypersaline springs supporting a mid-continent marine ecosystem: an analogue for martian springs?

    PubMed

    Grasby, Stephen E; Londry, Kathleen L

    2007-08-01

    Hypersaline springs that host unique mid-continent marine ecosystems were examined in central Manitoba, Canada. The springs originate from a reflux of glacial meltwater that intrudes into underlying bedrock and dissolved buried salt beds. Two spring types were distinguished based both on flow rate and geochemistry. High flow springs (greater than 10 L/s) hosted extensive marine microbial mats, which were dominated by algae but also included diverse microbes. These varied somewhat between springs as indicated by changes in profiles of fatty acid methyl esters. Culture studies confirmed the presence of sulfate-reducing bacteria in sediments at the high flow sites. In contrast, low flow springs were affected by solar evaporation, increasing salinity, and temperature. These low flow springs behaved more like closed nutrient-limited systems and did not support microbial mats. Direct comparison of the high and low flow springs revealed interesting implications for the potential to record biosignatures in the rock record. High flow springs have abundant, well-developed microbial mats, which desiccate and are cemented along the edges of the spring pools; however, the high mass flux overwhelms any geochemical signature of microbial activity. In contrast, the nutrient-limited low flow sites develop strong geochemical signatures of sulfate reduction, even in the absence of microbial mats, due to less dilution with the lower flows. Geochemical and physical evidence for life did not correlate with the abundance of microbial life but, rather, with the extent to which the biological system formed a closed ecosystem.

  19. Mineralogy and Microbial Diversity of the Microbialites in the Hypersaline Storr's Lake, the Bahamas.

    PubMed

    Paul, Varun G; Wronkiewicz, David J; Mormile, Melanie R; Foster, Jamie S

    2016-04-01

    Microbialites found in the low-light-intensity, hypersaline waters of Storr's Lake (SL), San Salvador Island, the Bahamas, were investigated with respect to their morphology, mineralogy, and microbial diversity. Previously described microbialite morphologies, as well as a newly identified "multi-cuspate" morphology, were observed at various depths. Electron microscopy analysis revealed the presence of angular, blocky, and needle-shaped crystals with mineralized cyanobacterial filaments and remains of exopolymeric substances. X-ray diffraction studies confirmed the presence of both Mg-calcite and aragonite in the plateau-mushroom and pinnacle mound microbialites, whereas only Mg-calcite was identified in the other microbialite morphotypes. A comprehensive molecular analysis using barcoded pyrosequencing of five different microbial mat communities identified at least 12 dominant bacterial phyla. Cyanobacteria were generally low in abundance and ranged from ∼0.01% in the deeper pinnacle mounds to ∼3.2% in the shallow calcareous knobs. Other photosynthetic members included green nonsulfur bacteria of the phylum Chloroflexi and purple sulfur bacteria of the class Gammaproteobacteria. All mat types contained significant amounts of sulfate-reducing and dehalogenating bacteria. The low light intensity reaching the deeper microbialites, the lack of dominant cyanobacteria, and the abundance of sulfate reducers and Chloroflexi collectively suggest that sulfate reduction and anoxygenic photosynthetic processes influence the carbonate biomineralization process in these systems.

  20. Mineralogy and Microbial Diversity of the Microbialites in the Hypersaline Storr's Lake, the Bahamas

    NASA Astrophysics Data System (ADS)

    Paul, Varun G.; Wronkiewicz, David J.; Mormile, Melanie R.; Foster, Jamie S.

    2016-04-01

    Microbialites found in the low-light-intensity, hypersaline waters of Storr's Lake (SL), San Salvador Island, the Bahamas, were investigated with respect to their morphology, mineralogy, and microbial diversity. Previously described microbialite morphologies, as well as a newly identified "multi-cuspate" morphology, were observed at various depths. Electron microscopy analysis revealed the presence of angular, blocky, and needle-shaped crystals with mineralized cyanobacterial filaments and remains of exopolymeric substances. X-ray diffraction studies confirmed the presence of both Mg-calcite and aragonite in the plateau-mushroom and pinnacle mound microbialites, whereas only Mg-calcite was identified in the other microbialite morphotypes. A comprehensive molecular analysis using barcoded pyrosequencing of five different microbial mat communities identified at least 12 dominant bacterial phyla. Cyanobacteria were generally low in abundance and ranged from ˜0.01% in the deeper pinnacle mounds to ˜3.2% in the shallow calcareous knobs. Other photosynthetic members included green nonsulfur bacteria of the phylum Chloroflexi and purple sulfur bacteria of the class Gammaproteobacteria. All mat types contained significant amounts of sulfate-reducing and dehalogenating bacteria. The low light intensity reaching the deeper microbialites, the lack of dominant cyanobacteria, and the abundance of sulfate reducers and Chloroflexi collectively suggest that sulfate reduction and anoxygenic photosynthetic processes influence the carbonate biomineralization process in these systems.

  1. Biostimulation of indigenous microorganisms for bioremediation of oily hypersaline microcosms from the Arabian Gulf Kuwaiti coasts.

    PubMed

    Al-Mailem, Dina M; Al-Deieg, Maha; Eliyas, Mohamed; Radwan, Samir S

    2017-05-15

    Hypersaline soil and water samples were collected in summer and winter from the "sabkha" area at the Kuwaiti shore of the Arabian Gulf. Physicochemical parameters were analyzed, and found suitable for microbial oil-removal. Summer- and winter-microcosms were treated with individual cation (K(+), Ca(2+), Mg(2+), Fe(3+)) salts, and with animal blood and commercial yeast, as cost-effective vitamin sources. Those microcosms were exposed to the open environment for six winter and six summer months, and analyzed for their hydrocarbonoclastic microorganisms at time zero and in two month intervals. The hydrocarbonoclastic microbial communities in the microcosms consisted of halophilic bacteria and haloarchaea. The constituent bacterial species varied according to the season. Three species, Dietzia kunjamensis, Marinobacter lacisalsi and Halomonas oxialensis consistently occurred both in summer- and winter-samples, but the remaining species were different. On the other hand, the haloarchaeal communities in summer and winter were quite similar, and consisted mainly of Haloferax spp and Halobacterium spp. Treating the microcosms with cations and with vitamin-containing natural products enhanced microbial numbers and oil-removal. The effectiveness of the cations in oil-removal was in the order; Fe(3+) (94%) > Ca(2+) (89%) > Mg(2+) (85%) > K(+) (82%). Thus, oily microcosms amended with trivalent and divalent cations lost most of the oil, and those amended with commercial yeast and with animal blood, as vitamin sources, lost 78% and 72% oil, respectively.

  2. Sustainable Hypersaline Microbial Fuel Cells: Inexpensive Recyclable Polymer Supports for Carbon Nanotube Conductive Paint Anodes.

    PubMed

    Grattieri, Matteo; Shivel, Nelson D; Sifat, Iram; Bestetti, Massimiliano; Minteer, Shelley D

    2017-02-28

    Microbial fuel cells are an emerging technology for wastewater treatment, but to be commercially viable and sustainable, the electrode materials must be inexpensive, recyclable, and reliable. In this study, recyclable polymeric supports were explored for the development of anode electrodes to be applied in single-chamber microbial fuel cells operated in field under hypersaline conditions. The support was covered with a carbon nanotube (CNT) based conductive paint, and biofilms were able to colonize the electrodes. The single-chamber microbial fuel cells with Pt-free cathodes delivered a reproducible power output after 15 days of operation to achieve 12±1 mW m(-2) at a current density of 69±7 mA m(-2) . The decrease of the performance in long-term experiments was mostly related to inorganic precipitates on the cathode electrode and did not affect the performance of the anode, as shown by experiments in which the cathode was replaced and the fuel cell performance was regenerated. The results of these studies show the feasibility of polymeric supports coated with CNT-based paint for microbial fuel cell applications.

  3. Archaeal populations in hypersaline sediments underlying orange microbial mats in the Napoli mud volcano.

    PubMed

    Lazar, Cassandre Sara; L'haridon, Stéphane; Pignet, Patricia; Toffin, Laurent

    2011-05-01

    Microbial mats in marine cold seeps are known to be associated with ascending sulfide- and methane-rich fluids. Hence, they could be visible indicators of anaerobic oxidation of methane (AOM) and methane cycling processes in underlying sediments. The Napoli mud volcano is situated in the Olimpi Area that lies on saline deposits; from there, brine fluids migrate upward to the seafloor. Sediments associated with a brine pool and microbial orange mats of the Napoli mud volcano were recovered during the Medeco cruise. Based on analysis of RNA-derived sequences, the "active" archaeal community was composed of many uncultured lineages, such as rice cluster V or marine benthic group D. Function methyl coenzyme M reductase (mcrA) genes were affiliated with the anaerobic methanotrophic Archaea (ANME) of the ANME-1, ANME-2a, and ANME-2c groups, suggesting that AOM occurred in these sediment layers. Enrichment cultures showed the presence of viable marine methylotrophic Methanococcoides in shallow sediment layers. Thus, the archaeal community diversity seems to show that active methane cycling took place in the hypersaline microbial mat-associated sediments of the Napoli mud volcano.

  4. Potential for Plant Growth Promotion of Rhizobacteria Associated with Salicornia Growing in Tunisian Hypersaline Soils

    PubMed Central

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands. PMID:23781499

  5. Spatial distribution of Chloroflexus-like bacteria in the hypersaline artificial microbial mat

    NASA Astrophysics Data System (ADS)

    Bachar, A.; Polerecky, L.; Vamvakopoulos, K.; de Beer, D.; Jonkers, H. M.

    An artificial microbial mat grown in a mesocosm originated from the Hypersaline Lake of La Salada de Chiprana NE Spain was examined with respect to its organism s spatial distribution via high resolution methods A special attention was given to the elucidative Chloroflexus -like bacteria on which spatial distribution data is not available We have characterized this thick 1cm and developed mat for photopigments HPLC and obtained the general pigment distribution pattern Furthermore fiberoptic and photosynthetic microsensor measurements gave inner light attenuations and flux rates of oxygen within the different layers respectively Using fluorescence and spectral imaging we were able to detect characteristic pigmentation in the different layers FISH probes targeting Chloroflexus -like bacteria confirmed the visualization techniques and showed a single hybridized layer below the cyanobacterial layer as did the HPLC fiberoptic microsensor and fluorescence imaging We conclude that Chloroflexus -like bacteria are located below the cyanobacterial layer and above the purple sulfur bacteria and for the firs time we are able to show it by different independent state of the art techniques These approaches can be important for rapid community investigations within a millimeter scale microniches

  6. Photosynthetic performance and resource utilization of two mangrove species coexisting in a hypersaline scrub forest.

    PubMed

    Lovelock, Catherine E; Feller, Ilka C

    2003-03-01

    In a hypersaline mangrove scrub forest in northern Florida, coexisting trees of Laguncularia racemosa and Avicennia germinans were either fertilized with nitrogen or phosphorus, or not fertilized (controls). We aimed to test whether nutrient additions differentially altered photosynthetic performance and resource utilization in these two species. In control trees, photosynthetic rates were higher in L. racemosa than A. germinans. However, leaf nitrogen concentrations were higher in A. germinans than L. racemosa. Avicennia germinans responded to fertilization with nitrogen by increasing leaf nitrogen concentrations and rates of photosynthesis such that they were equivalent to photosynthesis in L. racemosa. Laguncularia racemosa did not show a response to nitrogen additions. Neither species showed strong responses to phosphorus fertilization. Avicennia germinans had high photosynthetic water-use efficiency (photosynthesis/transpiration), but low photosynthetic nitrogen-use efficiency (photosynthesis/leaf nitrogen). In contrast, L. racemosa had comparatively low photosynthetic water use efficiency and high photosynthetic nitrogen use efficiency. Leaf level characteristics lead us to hypothesize that coexistence of A. germinans and L. racemosa should occur where nitrogen levels are low and salinity is moderate, or at least moderate for some period of the year.

  7. Modeling of membrane bioreactor treating hypersaline oily wastewater by artificial neural network.

    PubMed

    Pendashteh, Ali Reza; Fakhru'l-Razi, A; Chaibakhsh, Naz; Abdullah, Luqman Chuah; Madaeni, Sayed Siavash; Abidin, Zurina Zainal

    2011-08-30

    A membrane sequencing batch reactor (MSBR) treating hypersaline oily wastewater was modeled by artificial neural network (ANN). The MSBR operated at different total dissolved solids (TDSs) (35,000; 50,000; 100,000; 150,000; 200,000; 250,000mg/L), various organic loading rates (OLRs) (0.281, 0.563, 1.124, 2.248, and 3.372kg COD/(m(3)day)) and cyclic time (12, 24, and 48h). A feed-forward neural network trained by batch back propagation algorithm was employed to model the MSBR. A set of 193 operational data from the wastewater treatment with the MSBR was used to train the network. The training, validating and testing procedures for the effluent COD, total organic carbon (TOC) and oil and grease (O&G) concentrations were successful and a good correlation was observed between the measured and predicted values. The results showed that at OLR of 2.44kg COD/(m(3)day), TDS of 78,000mg/L and reaction time (RT) of 40h, the average removal rate of COD was 98%. In these conditions, the average effluent COD concentration was less than 100mg/L and met the discharge limits.

  8. Effect of near infrared (NIR) light on oxygenic photosynthesis in hypersaline microbial mat

    NASA Astrophysics Data System (ADS)

    Finke, N.; Thamdrup, B.; Hoehler, T. M.

    2008-12-01

    Oxygen profiles and gross oxygenic photosynthesis were measured in hypersaline microbial mats under light conditions with and without near infrared (NIR) illumination. During illumination without NIR light oxygen concentrations and oxygenic photosynthesis rates were increased compared to incubations with full artificial light or artificial light with added NIR light to simulate sun light. Photosynthetic communities in these mats consist of two major groups. Oxygenic phototrophs using light at wavelengths below 700 nm producing oxygen on the one hand and anoxygenic phototrophs with absorption maxima in the near infrared (NIR), above 700 nm, which oxidize reduced sulfur on the other hand. The absence of NIR light might directly stimulate oxygenic photosynthesis, but to our knowledge no such effect has been reported from culture studies. Alternatively, the effect of increased photosynthetic activity under no NIR conditions might be indirect by eliminating either a competition between oxygenic and anoxygenic phototrophs for a common resource or an inhibitory effect of the action of the anoxygenic phototrophs on the oxygenic phototrophs. As the effect is most pronounced in the low sulfate treatment, competition in question might be for a reduced sulfur species.

  9. Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea

    NASA Astrophysics Data System (ADS)

    Edgcomb, V. P.; Orsi, W.; Breiner, H.-W.; Stock, A.; Filker, S.; Yakimov, M. M.; Stoeck, T.

    2011-10-01

    The combination of nearly saturated salt concentration and corresponding high density, high hydrostatic pressure, absence of light, anoxia, and a sharp chemocline make the deep hypersaline anoxic basins in the Eastern Mediterranean Sea some of the most polyextreme habitats on Earth. Using kinetoplastid-specific primers, we detected kinetoplastid flagellates in some of the harshest deep-sea environments known to date, including some whose small subunit ribosomal RNA gene sequences are not closely related to cultured representatives. Kinetoplastids, including presumably novel representatives appear to be specialists of halocline environments in the Eastern Mediterranean, and to comprise a significant fraction of the protist communities in the brines and haloclines of several basins. Fluorescent in situ hybridization data indicate a novel 'unidentified' sequence clade of kinetoplastids related to bodonids represents as much as 10% of the total protist community in the Discovery Basin halocline. Different kinetoplastid groups are unevenly represented in the different basins and habitats we sampled, which we discuss as a result of environmental selection.

  10. Microbial weeds in hypersaline habitats: the enigma of the weed-like Haloferax mediterranei

    NASA Astrophysics Data System (ADS)

    Oren, Aharon; Hallsworth, John E.

    2014-10-01

    Heterotrophic prokaryotic communities that inhabit saltern crystallizer ponds are typically dominated by two species, the archaeon Haloquadratum walsbyi and the bacterium Salinibacter ruber, regardless of location. These organisms behave as 'microbial weeds' as defined by Cray et al. (Microb Biotechnol6: 453–492, 2013) that possess the biological traits required to dominate the microbiology of these open habitats. Here, we discuss the enigma of the less abundant Haloferax mediterranei, an archaeon that grows faster than any other, comparable extreme halophile. It has a wide window for salt tolerance, can grow on simple as well as on complex substrates and degrade polymeric substances, has different modes of anaerobic growth, can accumulate storage polymers, produces gas vesicles, and excretes halocins capable of killing other Archaea. Therefore, Hfx. mediterranei is apparently more qualified as a 'microbial weed' than Haloquadratum and Salinibacter. However, the former differs because it produces carotenoid pigments only in the lower salinity range and lacks energy-generating retinal-based, light-driven ion pumps such as bacteriorhodopsin and halorhodopsin. We discuss these observations in relation to microbial weed biology in, and the open-habitat ecology of, hypersaline systems.

  11. New approaches indicate constant viral diversity despite shifts in assemblage structure in an Australian hypersaline lake.

    PubMed

    Emerson, Joanne B; Thomas, Brian C; Andrade, Karen; Heidelberg, Karla B; Banfield, Jillian F

    2013-11-01

    It is widely stated that viruses represent the most significant source of biodiversity on Earth, yet characterizing the diversity of viral assemblages in natural systems remains difficult. Viral diversity studies are challenging because viruses lack universally present, phylogenetically informative genes. Here, we developed an approach to estimate viral diversity using a series of functional and novel conserved genes. This approach provides direct estimates of viral assemblage diversity while retaining resolution at the level of individual viral populations in a natural system. We characterized viral assemblages in eight samples from hypersaline Lake Tyrrell (LT), Victoria, Australia, using 39,636 viral contigs. We defined viral operational taxonomic units (OTUs) in two ways. First, we used genes with three different functional predictions that were abundantly represented in the data set. Second, we clustered proteins of unknown function based on sequence similarity, and we chose genes represented by three clusters with numerous members to define OTUs. In combination, diversity metrics indicated between 412 and 735 sampled populations, and the number of populations remained relatively constant across samples. We determined the relative representation of each viral OTU in each sample and found that viral assemblage structures correlate with salinity and solution chemistry. LT viral assemblages were near-replicates from the same site sampled a few days apart but differed significantly on other spatial and temporal scales. The OTU definition approach proposed here paves the way for metagenomics-based analyses of viral assemblages using ecological models previously applied to bacteria and archaea.

  12. Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin.

    PubMed

    Borin, Sara; Brusetti, Lorenzo; Mapelli, Francesca; D'Auria, Giuseppe; Brusa, Tullio; Marzorati, Massimo; Rizzi, Aurora; Yakimov, Michail; Marty, Danielle; De Lange, Gert J; Van der Wielen, Paul; Bolhuis, Henk; McGenity, Terry J; Polymenakou, Paraskevi N; Malinverno, Elisa; Giuliano, Laura; Corselli, Cesare; Daffonchio, Daniele

    2009-06-09

    Urania basin in the deep Mediterranean Sea houses a lake that is >100 m deep, devoid of oxygen, 6 times more saline than seawater, and has very high levels of methane and particularly sulfide (up to 16 mM), making it among the most sulfidic water bodies on Earth. Along the depth profile there are 2 chemoclines, a steep one with the overlying oxic seawater, and another between anoxic brines of different density, where gradients of salinity, electron donors and acceptors occur. To identify and differentiate the microbes and processes contributing to the turnover of organic matter and sulfide along the water column, these chemoclines were sampled at a high resolution. Bacterial cell numbers increased up to a hundredfold in the chemoclines as a consequence of elevated nutrient availability, with higher numbers in the upper interface where redox gradient was steeper. Bacterial and archaeal communities, analyzed by DNA fingerprinting, 16S rRNA gene libraries, activity measurements, and cultivation, were highly stratified and metabolically more active along the chemoclines compared with seawater or the uniformly hypersaline brines. Detailed analysis of 16S rRNA gene sequences revealed that in both chemoclines delta- and epsilon-Proteobacteria, predominantly sulfate reducers and sulfur oxidizers, respectively, were the dominant bacteria. In the deepest layers of the basin MSBL1, putatively responsible for methanogenesis, dominated among archaea. The data suggest that the complex microbial community is adapted to the basin's extreme chemistry, and the elevated biomass is driven largely by sulfur cycling and methanogenesis.

  13. Environmental selection of protistan plankton communities in hypersaline anoxic deep-sea basins, Eastern Mediterranean Sea

    PubMed Central

    Filker, Sabine; Stock, Alexandra; Breiner, Hans-Werner; Edgcomb, Virginia; Orsi, William; Yakimov, Michail M; Stoeck, Thorsten

    2013-01-01

    High salt concentrations, absence of light, anoxia, and high hydrostatic pressure make deep hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea one of the most polyextreme habitats on Earth. Taking advantage of the unique chemical characteristics of these basins, we tested the effect of environmental selection and geographic distance on the structure of protistan communities. Terminal restriction fragment length polymorphism (T-RFLP) analyses were performed on water samples from the brines and seawater/brine interfaces of five basins: Discovery, Urania, Thetis, Tyro, and Medee. Using statistical analyses, we calculated the partitioning of diversity among the ten individual terminal restriction fragment (T-RF) profiles, based on peak abundance and peak incidence. While a significant distance effect on spatial protistan patterns was not detected, hydrochemical gradients emerged as strong dispersal barriers that likely lead to environmental selection in the DHAB protistan plankton communities. We identified sodium, magnesium, sulfate, and oxygen playing in concerto as dominant environmental drivers for the structuring of protistan plankton communities in the Eastern Mediterranean DHABs. PMID:23239531

  14. New Approaches Indicate Constant Viral Diversity despite Shifts in Assemblage Structure in an Australian Hypersaline Lake

    PubMed Central

    Thomas, Brian C.; Andrade, Karen; Heidelberg, Karla B.; Banfield, Jillian F.

    2013-01-01

    It is widely stated that viruses represent the most significant source of biodiversity on Earth, yet characterizing the diversity of viral assemblages in natural systems remains difficult. Viral diversity studies are challenging because viruses lack universally present, phylogenetically informative genes. Here, we developed an approach to estimate viral diversity using a series of functional and novel conserved genes. This approach provides direct estimates of viral assemblage diversity while retaining resolution at the level of individual viral populations in a natural system. We characterized viral assemblages in eight samples from hypersaline Lake Tyrrell (LT), Victoria, Australia, using 39,636 viral contigs. We defined viral operational taxonomic units (OTUs) in two ways. First, we used genes with three different functional predictions that were abundantly represented in the data set. Second, we clustered proteins of unknown function based on sequence similarity, and we chose genes represented by three clusters with numerous members to define OTUs. In combination, diversity metrics indicated between 412 and 735 sampled populations, and the number of populations remained relatively constant across samples. We determined the relative representation of each viral OTU in each sample and found that viral assemblage structures correlate with salinity and solution chemistry. LT viral assemblages were near-replicates from the same site sampled a few days apart but differed significantly on other spatial and temporal scales. The OTU definition approach proposed here paves the way for metagenomics-based analyses of viral assemblages using ecological models previously applied to bacteria and archaea. PMID:23995931

  15. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils.

    PubMed

    Mapelli, Francesca; Marasco, Ramona; Rolli, Eleonora; Barbato, Marta; Cherif, Hanene; Guesmi, Amel; Ouzari, Imen; Daffonchio, Daniele; Borin, Sara

    2013-01-01

    Soil salinity and drought are among the environmental stresses that most severely affect plant growth and production around the world. In this study the rhizospheres of Salicornia plants and bulk soils were collected from Sebkhet and Chott hypersaline ecosystems in Tunisia. Depiction of bacterial microbiome composition by Denaturing Gradient Gel Electrophoresis unveiled the occurrence of a high bacterial diversity associated with Salicornia root system. A large collection of 475 halophilic and halotolerant bacteria was established from Salicornia rhizosphere and the surrounding bulk soil, and the bacteria were characterized for the resistance to temperature, osmotic and saline stresses, and plant growth promotion (PGP) features. Twenty Halomonas strains showed resistance to a wide set of abiotic stresses and were able to perform different PGP activities in vitro at 5% NaCl, including ammonia and indole-3-acetic acid production, phosphate solubilisation, and potential nitrogen fixation. By using a gfp-labelled strain it was possible to demonstrate that Halomonas is capable of successfully colonising Salicornia roots in the laboratory conditions. Our results indicated that the culturable halophilic/halotolerant bacteria inhabiting salty and arid ecosystems have a potential to contribute to promoting plant growth under the harsh salinity and drought conditions. These halophilic/halotolerant strains could be exploited in biofertilizer formulates to sustain crop production in degraded and arid lands.

  16. Neutral monosaccharides from a hypersaline tropical environment: Applications to the characterization of modern and ancient ecosystems

    NASA Astrophysics Data System (ADS)

    Moers, M. E. C.; Larter, S. R.

    1993-07-01

    Surficial and buried sediment samples from a hypersaline lagoon-sabkha system (Abu Dhabi, United Arab Emirates) were analysed for carbohydrates (as neutral monosaccharides) to distinguish and characterise various types of recent and ancient tropical ecosystems on a molecular level. The samples consisted of surficial and buried microbial mats, lagoonal sediments containing seagrass ( Halodule uninervis), and mangrove ( Avicennia marina) paleosoils and handpicked mangrove leaves, ranging in age from contemporary to ca. 6000 yr Bp. Analysis of quantitative neutral monosaccharide data by multivariate techniques shows that various groups can be distinguished: intact vascular plant material (mangrove leaf) contains high amounts of arabinose and glucose and hardly any partially methylated monosaccharides, whereas microbial mats in general and lagoonal seagrass sediments show high contributions of fucose, ribose, mannose, galactose and partially methylated monosaccharides. Moreover, surficial microbial mats consisting of filamentous cyanobacteria ( Microcoleus chtonoplastes, Lyngbya aestuarii) can be distinguished from other mats and sediments containing coccoid cyanobacteria ( Entophysalis major) and/or fermenting, sulphate reducing, and methanogenic bacteria on the basis of high contributions of specific groups of partially methylated monosaccharides and other "minor" saccharides. The neutral monosaccharides present in mangrove paleosoils are for a substantial part derived from microorganisms.

  17. Diversity of Bacteria and Archaea in hypersaline sediment from Death Valley National Park, California.

    PubMed

    Kim, Jong-Shik; Makama, Mfundi; Petito, Janine; Park, Nyun-Ho; Cohan, Frederick M; Dungan, Robert S

    2012-06-01

    The objective of this study was to phylogenetically analyze microorganisms from the domains Bacteria and Archaea in hypersaline sediment from Death Valley National Park. Using domain-specific primers, a region of the 16S rRNA gene was amplified using polymerase chain reaction (PCR), and the product was subsequently used to create a clone library. A total of 243 bacterial clones, 99 archaeal clones, and 209 bacterial isolates were examined. The 243 clones from Bacteria were affiliated with the following groups: the Bacilli (59 clones) and Clostridia (1) of the Firmicutes, Bacteroidetes (90), Proteobacteria (27), Cyanobacteria (18), Gemmatimonadetes (41), candidate division OP1 (5), Actinobacteria (1), and the Deinococcus-Thermus division (1). Within the class Bacilli, 46 of 59 clones were tentatively identified as 10 unclassified species. The majority of bacterial isolates (130 of 209) were more closely related to the Bacillus subtilis-B. licheniformis clade than to any other recognized taxon, and an Ecotype Simulation analysis of B. subtilis relatives identified four previously unknown ecotypes. Several new genera were discovered within the Bacteroidetes (4) and the Gemmatimonadetes (2). Of the 99 archaeal clones, 94 were tentatively identified as belonging to 3 new genera within the Halobacteriaceae; other clones represented novel species within each of 4 established genera.

  18. Neutral monosaccharides from a hypersaline tropical environment: Applications to the characterization of modern and ancient ecosystems

    SciTech Connect

    Moers, M.E.C.; Larter, S.R. )

    1993-07-01

    Surficial and buried sediment samples from a hypersaline lagoon-sabkha system (Abu Dhabi, United Arab Emirates) were analyzed for carbohydrates (as neutral monosaccharides) to distinguish and characterize various types of recent and ancient tropical ecosystems on a molecular level. The samples consisted of surficial and buried microbial mats, lagoonal sediments containing seagrass (Halodule uninervis), and mangrove (Avicennia marine) paleosoils and handpicked mangrove leaves, ranging in age from contemporary to ca. 6000 yr BP. Analysis of quantitative neutral monosaccharide data by multivariate techniques shows that various groups can be distinguished: intact vascular plant material (mangrove leaf) contains high amounts of arabinose and glucose and hardly any partially methylated monosaccharides, whereas microbial mats in general and lagoonal seagrass sediments show high contributions of fucose, ribose, mannose, galactose, and partially methylated monosaccharides. Moreover, surficial microbial mats consisting of filamentous cyanobacteria (Microcoleus chtonoplastes, Lyngbya aestuarii) can be distinguished from other mats and sediments containing coccoid cyanobacteria (Entophysalis major) and/or fermenting, sulphate reducing, and methanogenic bacteria on the basis of high contributions of specific groups of partially methylated monosaccharides and other [open quotes]minor[close quotes] saccharides. The neutral monosaccharides present in mangrove paleosoils are for a substantial part derived from microorganisms. 22 refs., 4 figs., 4 tabs.

  19. Egg banks in hypersaline lakes of the South-East Europe

    PubMed Central

    Moscatello, Salvatore; Belmonte, Genuario

    2009-01-01

    The cyst banks of 6 coastal hypersaline lakes of South-East Europe have been investigated. The study concerned the bottom sediments of Khersonesskoe and Koyashskoe lakes in the Crimea (Ukraine), Nartë saltworks (Albania), Vecchia Salina at Torre Colimena (Apulia, Italy), Pantano Grande and Pantano Roveto at Vendicari (Sicily, Italy). A total of 19 cyst types were recognised. The cyst banks of lakes were found to be well separated in the representation derived from a statistical multivariate data analysis. For all the lakes examined a comparison was possible between the resting community in sediments (cyst bank) and the active one in the water. The cyst banks contained more species than those recorded over a multi-year sampling effort in the water column. The study of cyst hatching, performed on 5 cyst types under lab conditions, demonstrated that cysts do not hatch under the same conditions. Furthermore, each cyst type shows a wide range of preferential hatching conditions, which allow us to confirm the ecological generalism of salt lake species. PMID:19292906

  20. Microbial weeds in hypersaline habitats: the enigma of the weed-like Haloferax mediterranei.

    PubMed

    Oren, Aharon; Hallsworth, John E

    2014-10-01

    Heterotrophic prokaryotic communities that inhabit saltern crystallizer ponds are typically dominated by two species, the archaeon Haloquadratum walsbyi and the bacterium Salinibacter ruber, regardless of location. These organisms behave as 'microbial weeds' as defined by Cray et al. (Microb Biotechnol 6: 453-492, 2013) that possess the biological traits required to dominate the microbiology of these open habitats. Here, we discuss the enigma of the less abundant Haloferax mediterranei, an archaeon that grows faster than any other, comparable extreme halophile. It has a wide window for salt tolerance, can grow on simple as well as on complex substrates and degrade polymeric substances, has different modes of anaerobic growth, can accumulate storage polymers, produces gas vesicles, and excretes halocins capable of killing other Archaea. Therefore, Hfx. mediterranei is apparently more qualified as a 'microbial weed' than Haloquadratum and Salinibacter. However, the former differs because it produces carotenoid pigments only in the lower salinity range and lacks energy-generating retinal-based, light-driven ion pumps such as bacteriorhodopsin and halorhodopsin. We discuss these observations in relation to microbial weed biology in, and the open-habitat ecology of, hypersaline systems.

  1. Magmatic gas emissions at Holocene volcanic features near Mono Lake, California, and their relation to regional magmatism

    USGS Publications Warehouse

    Bergfeld, D.; Evans, William C.; Howle, James F.; Hunt, Andrew G.

    2015-01-01

    Silicic lavas have erupted repeatedly in the Mono Basin over the past few thousand years, forming the massive domes and coulees of the Mono Craters chain and the smaller island vents in Mono Lake. We report here on the first systematic study of magmatic CO2 emissions from these features, conducted during 2007–2010. Most notably, a known locus of weak steam venting on the summit of North Coulee is actually enclosed in a large area (~ 0.25 km2) of diffuse gas discharge that emits 10–14 t/d of CO2, mostly at ambient temperature. Subsurface gases sampled here are heavily air-contaminated, but after standard corrections are applied, show average δ13C-CO2 of − 4.72‰, 3He/4He of 5.89RA, and CO2/3He of 0.77 × 1010, very similar to the values in fumarolic gas from Mammoth Mountain and the Long Valley Caldera immediately to the south of the basin. If these values also characterize the magmatic gas source at Mono Lake, where CO2 is captured by the alkaline lake water, a magmatic CO2 upflow beneath the lake of ~ 4 t/d can be inferred. Groundwater discharge from the Mono Craters area transports ~ 13 t/d of 14C-dead CO2 as free gas and dissolved carbonate species, and adding in this component brings the estimated total magmatic CO2 output to 29 t/d for the two silicic systems in the Mono Basin. If these emissions reflect intrusion and degassing of underlying basalt with 0.5 wt.% CO2, a modest intrusion rate of 0.00075 km3/yr is indicated. Much higher intrusion rates are required to account for CO2 emissions from Mammoth Mountain and the West Moat of the Long Valley Caldera.

  2. Mono and diterpene production in Escherichia coli.

    PubMed

    Reiling, K Kinkead; Yoshikuni, Yasuo; Martin, Vincent J J; Newman, Jack; Bohlmann, Jörg; Keasling, Jay D

    2004-07-20

    Mono- and diterpenoids are of great industrial and medical value as specialty chemicals and pharmaceuticals. Production of these compounds in microbial hosts, such as Escherichia coli, can be limited by intracellular levels of the polyprenyl diphosphate precursors, geranyl diphosphate (GPP), and geranylgeranyl diphosphate (GGPP). To alleviate this limitation, we constructed synthetic operons that express three key enzymes for biosynthesis of these precursors: (1). DXS,1-deoxy-d-xylulose-5-phosphate synthase; (2). IPPHp, IPP isomerase from Haematococcus pluvialis; and (3). one of two variants of IspA, FPP synthase that produces either GPP or GGPP. The reporter plasmids pAC-LYC and pACYC-IB, which encode enzymes that convert either FPP or GGPP, respectively, to the pigment lycopene, were used to demonstrate that at full induction, the operon encoding the wild-type FPP synthase and mutant GGPP synthase produced similar levels of lycopene. To synthesize di- or monoterpenes in E. coli using the GGPP and GPP encoding operons either a diterpene cyclase [casbene cyclase (Ricinus communis L) and ent-kaurene cyclase (Phaeosphaeria sp. L487)] or a monoterpene cyclase [3-carene cyclase (Picea abies)] was coexpressed with their respective precursor production operon. Analysis of culture extracts or headspace by gas chromatography-mass spectrometry confirmed the in vivo production of the diterpenes casbene, kaur-15-ene, and kaur-16-ene and the monoterpenes alpha-pinene, myrcene, sabinene, 3-carene, alpha-terpinene, limonene, beta-phellandrene, alpha-terpinene, and terpinolene. Construction and functional expression of GGPP and GPP operons provides an in vivo precursor platform host for the future engineering of di- and monoterpene cyclases and the overproduction of terpenes in bacteria.

  3. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  4. Genome sequence of the photoarsenotrophic bacterium Ectothiorhodospira sp. strain BSL-9, isolated from a hypersaline alkaline arsenic-rich extreme environment

    USGS Publications Warehouse

    Hernandez-Maldonado, Jaime; Stoneburner, Brendon; Boren, Alison; Miller, Laurence; Rosen, Michael R.; Oremland, Ronald S.; Saltikov, Chad W

    2016-01-01

    The full genome sequence of Ectothiorhodospira sp. strain BSL-9 is reported here. This purple sulfur bacterium encodes an arxA-type arsenite oxidase within the arxB2AB1CD gene island and is capable of carrying out “photoarsenotrophy” anoxygenic photosynthetic arsenite oxidation. Its genome is composed of 3.5 Mb and has approximately 63% G+C content.

  5. Eco-morphological differentiation in Lake Magadi tilapia, an extremophile cichlid fish living in hot, alkaline and hypersaline lakes in East Africa.

    PubMed

    Kavembe, Geraldine D; Kautt, Andreas F; Machado-Schiaffino, Gonzalo; Meyer, Axel

    2016-04-01

    Ecological diversification through divergent selection is thought to be a major force during the process of adaptive radiations. However, the large sizes and complexity of most radiations such as those of the cichlids in the African Great Lakes make it impossible to infer the exact evolutionary history of any population divergence event. The genus Alcolapia, a small cichlid lineage endemic to Lakes Magadi and Natron in East Africa, exhibits phenotypes similar to some of those found in cichlids of the radiations of the African Great Lakes. The simplicity within Alcolapia makes it an excellent model system to investigate ecological diversification and speciation. We used an integrated approach including population genomics based on RAD-seq data, geometric morphometrics and stable isotope analyses to investigate the eco-morphological diversification of tilapia in Lake Magadi and its satellite lake Little Magadi. Additionally, we reconstructed the demographic history of the species using coalescent simulations based on the joint site frequency spectrum. The population in Little Magadi has a characteristically upturned mouth--possibly an adaptation to feeding on prey from the water surface. Eco-morphological differences between populations within Lake Magadi are more subtle, but are consistent with known ecological differences between its lagoons such as high concentrations of nitrogen attributable to extensive guano deposits in Rest of Magadi relative to Fish Springs Lagoon. All populations diverged simultaneously only about 1100 generations ago. Differences in levels of gene flow between populations and the effective population sizes have likely resulted in the inferred heterogeneous patterns of genome-wide differentiation.

  6. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  7. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  8. New mono-organotin (IV) dithiocarbamate complexes

    SciTech Connect

    Muthalib, Amirah Faizah Abdul; Baba, Ibrahim

    2014-09-03

    Eighteen new mono-organotin dithiocarbamate compounds derived each nine from methyltin(IV) and phenyltin(IV) reacted using in-situ method with various type of N-dialkylamine together with carbon disulphide with the ratio of 1:3:3. Elemental and gravimetric analysis showed that the general formula of these compounds were RSnCl[S{sub 2}CNR′R″]{sub 2} (R= Ph, CH{sub 3}, R′ = CH{sub 3}, C{sub 2}H{sub 5}, C{sub 7}H{sub 7} and R″ = C{sub 2}H{sub 5}, C{sub 6}H{sub 11}, iC{sub 3}H{sub 7}, C{sub 7}H{sub 7}). These compounds had been characterized by infrared spectroscopy, ultraviolet spectroscopy, {sup 1}H, {sup 13}C NMR spectroscopy and single crystal X-ray crystallography. The infrared spectra of these compounds showed three important peaks indicating the formation of dithiocarbamate compounds, ν(CN), ν(CS) and ν(Sn-S) band which present in the region of 1444–1519, 954–1098 and 318–349 cm{sup −1} respectively. The ultraviolet-visible spectra showed an absorption band for the π - π* transition of NCS group in the range of 253 – 259 nm due to the intramolecular charge transfer of the ligand. The {sup 13}C NMR spectra showed an important shift for δ(N{sup 13}CS{sub 2}) in the range of 196.8 – 201.9 ppm.. Single crystal X-ray diffraction studies showed three new structures with the general formula of PhSnCl[S{sub 2}CN(Et)(i−Pr)]{sub 2}, MeSnCl[S{sub 2}CN(Me)(Cy)]{sub 2} and MeSnCl[S{sub 2}CN(i−Pr)(CH{sub 2}Ph)]{sub 2}. All structures having a distorted octahedral geometry set by CClS{sub 4} donor atom from the two chelating dithiocarbamate ligands.

  9. New mono-organotin (IV) dithiocarbamate complexes

    NASA Astrophysics Data System (ADS)

    Muthalib, Amirah Faizah Abdul; Baba, Ibrahim

    2014-09-01

    Eighteen new mono-organotin dithiocarbamate compounds derived each nine from methyltin(IV) and phenyltin(IV) reacted using in-situ method with various type of N-dialkylamine together with carbon disulphide with the ratio of 1:3:3. Elemental and gravimetric analysis showed that the general formula of these compounds were RSnCl[S2CNR'R″]2 (R= Ph, CH3, R' = CH3, C2H5, C7H7 and R″ = C2H5, C6H11, iC3H7, C7H7). These compounds had been characterized by infrared spectroscopy, ultraviolet spectroscopy, 1H, 13C NMR spectroscopy and single crystal X-ray crystallography. The infrared spectra of these compounds showed three important peaks indicating the formation of dithiocarbamate compounds, ν(CN), ν(CS) and ν(Sn-S) band which present in the region of 1444-1519, 954-1098 and 318-349 cm-1 respectively. The ultraviolet-visible spectra showed an absorption band for the π - π* transition of NCS group in the range of 253 - 259 nm due to the intramolecular charge transfer of the ligand. The 13C NMR spectra showed an important shift for δ(N13CS2) in the range of 196.8 - 201.9 ppm.. Single crystal X-ray diffraction studies showed three new structures with the general formula of PhSnCl[S2CN(Et)(i-Pr)]2, MeSnCl[S2CN(Me)(Cy)]2 and MeSnCl[S2CN(i-Pr)(CH2Ph)]2. All structures having a distorted octahedral geometry set by CClS4 donor atom from the two chelating dithiocarbamate ligands.

  10. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation

    SciTech Connect

    Zhang, Qiang; Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Zhuang, Wei E-mail: gaoyq@pku.edu.cn; Gao, Yi Qin E-mail: gaoyq@pku.edu.cn

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.

  11. Pairing preferences of the model mono-valence mono-atomic ions investigated by molecular simulation.

    PubMed

    Zhang, Qiang; Zhang, Ruiting; Zhao, Ying; Li, HuanHuan; Gao, Yi Qin; Zhuang, Wei

    2014-05-14

    We carried out a series of potential of mean force calculations to study the pairing preferences of a series of model mono-atomic 1:1 ions with evenly varied sizes. The probabilities of forming the contact ion pair (CIP) and the single water separate ion pair (SIP) were presented in the two-dimensional plots with respect to the ion sizes. The pairing preferences reflected in these plots largely agree with the empirical rule of matching ion sizes in the small and big size regions. In the region that the ion sizes are close to the size of the water molecule; however, a significant deviation from this conventional rule is observed. Our further analysis indicated that this deviation originates from the competition between CIP and the water bridging SIP state. The competition is mainly an enthalpy modulated phenomenon in which the existing of the water bridging plays a significant role.

  12. The geomorphology of two hyper-saline springs in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Ward, M. K.; Pollard, W. H.

    2013-12-01

    On Axel Heiberg Island in the Canadian High Arctic a number of low temperature perennial saline springs occur despite being subject to a cold polar desert climate with a mean annual air temperature of -18°C. Associated with 2 groups of hyper-saline springs are distinctive landforms resulting from winter deposition of salt minerals. These deposits resemble tufas structurally but unlike true tufas which are composed of carbonate minerals, these landforms are formed mainly of salt. This study hypothesizes that the extreme cold winter air temperatures cools water temperatures triggering rapid precipitation of various salt minerals (mainly hydrohalite, NaCl*2H2O) which subsequently alters the flow hydrology by obstructing summer flow paths. The tufa-like appearance of these salt deposits reflects the interaction between changing water temperature, chemistry and flow. This research characterises the geomorphology and geochemistry of two hyper-saline springs on Axel Heiberg Island: the first is located at Wolf Diapir (79°07'23'N; 90°14'39'W), the deposit at this site resembles a large conical mound (2.5m tall x 3m diameter). The second is located at Stolz Diapir (79°04'30'N; 87°04'30'W), in this case a series of pool and barrage structures staircase down a narrow valley for approximately 300m (several pools are 10 m wide x 3 m deep). The springs have very different seasonal surface hydrologic regimes and topographic settings which influence the pattern of mineral precipitates. The accumulation of precipitates occurs during the winter and is dominated by the formation of hydrohalite. In the summer, the accumulated hydrohalite melts incongruently to form halite; spring water and snowmelt dissolves various parts of the accumulations, changing the morphology of the deposits. The aim of this poster is to present preliminary observations characterising the processes driving tufa formation in a permafrost environment, a process that has not been described in detail in

  13. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  14. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  15. The sources and evolution of sulfur in the hypersaline Lake Lisan (paleo-Dead Sea)

    NASA Astrophysics Data System (ADS)

    Torfstein, Adi; Gavrieli, Ittai; Stein, Mordechai

    2005-07-01

    δ34S values in gypsum are used to evaluate the fate of sulfur in the hypersaline Lake Lisan, the late Pleistocene precursor of the Dead Sea (70-14 ka BP), and applied as a paleo-limnological tracer. The Ca-chloride Lake Lisan evolved through meromictic periods characterized by precipitation of authigenic aragonite and holomictic episodes characterized by enhanced gypsum precipitation. The lake deposited two major gypsum units: the "Lower Gypsum unit" (deposited at ˜56 ka) showing δ34S values of 18-20‰, and the "Upper Gypsum unit" (deposited at 17 ka) displaying significantly higher δ34S values of 26-28‰. Laminated and disseminated gypsum, residing within the aragonite, exhibit δ34S values in the range of - 26‰ to 1‰. The isotopic composition of the gypsum was dictated by freshwater sulfate input that replenished the upper layer of the lake (the mixolimnion), bacterial sulfate reduction (BSR) that occurred under the anoxic conditions of the lower brine (the monimolimnion), and mixing between these two layers. During meromictic periods, the sulfate reservoir in the lower brine was replenished by precipitation of gypsum from the upper layer, and its subsequent dissolution due to sulfate deficiency induced by BSR activity. This process describes a "sulfur pump" mechanism and its effect on δ34S in the water can be modeled by a modified Rayleigh distillation equation. Steady state δ34S values (˜40‰) were reached in the lower brine after long meromictic periods. Following overturn episodes, induced by diminishing freshwater input and lake level decline, large quantities of δ34S enriched gypsum precipitated. The negative δ34S values in laminated and disseminated gypsum provide evidence for BSR activity in the lower brine that removed isotopically depleted sulfides from the water column, causing significant isotopic enrichment of remaining sulfate. Following the lake desiccation, the sediments were exposed and the latter sulfides oxidized and re

  16. Fermentation couples Chloroflexi and sulfate-reducing bacteria to Cyanobacteria in hypersaline microbial mats

    PubMed Central

    Lee, Jackson Z.; Burow, Luke C.; Woebken, Dagmar; Everroad, R. Craig; Kubo, Mike D.; Spormann, Alfred M.; Weber, Peter K.; Pett-Ridge, Jennifer; Bebout, Brad M.; Hoehler, Tori M.

    2013-01-01

    Past studies of hydrogen cycling in hypersaline microbial mats have shown an active nighttime cycle, with production largely from Cyanobacteria and consumption from sulfate-reducing bacteria (SRB). However, the mechanisms and magnitude of hydrogen cycling have not been extensively studied. Two mats types near Guerrero Negro, Mexico—permanently submerged Microcoleus microbial mat (GN-S), and intertidal Lyngbya microbial mat (GN-I)—were used in microcosm diel manipulation experiments with 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), molybdate, ammonium addition, and physical disruption to understand the processes responsible for hydrogen cycling between mat microbes. Across microcosms, H2 production occurred under dark anoxic conditions with simultaneous production of a suite of organic acids. H2 production was not significantly affected by inhibition of nitrogen fixation, but rather appears to result from constitutive fermentation of photosynthetic storage products by oxygenic phototrophs. Comparison to accumulated glycogen and to CO2 flux indicated that, in the GN-I mat, fermentation released almost all of the carbon fixed via photosynthesis during the preceding day, primarily as organic acids. Across mats, although oxygenic and anoxygenic phototrophs were detected, cyanobacterial [NiFe]-hydrogenase transcripts predominated. Molybdate inhibition experiments indicated that SRBs from a wide distribution of DsrA phylotypes were responsible for H2 consumption. Incubation with 13C-acetate and NanoSIMS (secondary ion mass-spectrometry) indicated higher uptake in both Chloroflexi and SRBs relative to other filamentous bacteria. These manipulations and diel incubations confirm that Cyanobacteria were the main fermenters in Guerrero Negro mats and that the net flux of nighttime fermentation byproducts (not only hydrogen) was largely regulated by the interplay between Cyanobacteria, SRBs, and Chloroflexi. PMID:24616716

  17. Diversity and Stratification of Archaea in a Hypersaline Microbial Mat▿ †

    PubMed Central

    Robertson, Charles E.; Spear, John R.; Harris, J. Kirk; Pace, Norman R.

    2009-01-01

    The Guerrero Negro (GN) hypersaline microbial mats have become one focus for biogeochemical studies of stratified ecosystems. The GN mats are found beneath several of a series of ponds of increasing salinity that make up a solar saltern fed from Pacific Ocean water pumped from the Laguna Ojo de Liebre near GN, Baja California Sur, Mexico. Molecular surveys of the laminated photosynthetic microbial mat below the fourth pond in the series identified an enormous diversity of bacteria in the mat, but archaea have received little attention. To determine the bulk contribution of archaeal phylotypes to the pond 4 study site, we determined the phylogenetic distribution of archaeal rRNA gene sequences in PCR libraries based on nominally universal primers. The ratios of bacterial/archaeal/eukaryotic rRNA genes, 90%/9%/1%, suggest that the archaeal contribution to the metabolic activities of the mat may be significant. To explore the distribution of archaea in the mat, sequences derived using archaeon-specific PCR primers were surveyed in 10 strata of the 6-cm-thick mat. The diversity of archaea overall was substantial albeit less than the diversity observed previously for bacteria. Archaeal diversity, mainly euryarchaeotes, was highest in the uppermost 2 to 3 mm of the mat and decreased rapidly with depth, where crenarchaeotes dominated. Only 3% of the sequences were specifically related to known organisms including methanogens. While some mat archaeal clades corresponded with known chemical gradients, others did not, which is likely explained by heretofore-unrecognized gradients. Some clades did not segregate by depth in the mat, indicating broad metabolic repertoires, undersampling, or both. PMID:19114531

  18. Mathematical simulation of the diel O, S, and C biogeochemistry of a hypersaline microbial mat

    NASA Astrophysics Data System (ADS)

    Decker, K.; Potter, C.

    2003-12-01

    The creation of a mathematical simulation model of photosynthetic microbial mats is an important step in our understanding of key biogeochemical cycles that may have altered the atmospheres of early Earth and of other terrestrial planets. A modeling investigation is presented here as a tool to utilize and integrate empirical results from research on hypersaline mats from Baja California, Mexico into a computational system that can be used to simulate biospheric inputs of trace gases to the atmosphere. An early version of our model calculates fluxes and cycling of oxygen, sulfide, and dissolved inorganic carbon (DIC) via abiotic components and via the major bacterial guilds: cyanobacteria (CYA), sulfur reducing bacteria (SRB), purple sulfur bacteria (PSB) and colorless sulfur bacteria (CSB). We used generalized monod-type equations that incorporate substrate and energy limits upon maximum rates of metabolic processes such as photosynthesis and sulfate reduction. We ran a simulation using temperature and irradiance inputs from data collected from a microbial mat in Guerrero Negro in Baja Mexico. Model oxygen, sulfide, and DIC results compared well with data collected in the field mats. A divergence from the field data was an initial large negative DIC flux early in the morning and little flux into the mat thereafter in the simulation. We hypothesize that this divergence will be reduced or eliminated if the salinity of the water surrounding the mat were used as an environmental input and as a limit to photosynthesis rates. Salinity levels, organic carbon, methane, methanogens and green nonsulfur bacteria will be added to this model before it is incorporated into a global model to simulate geological time scales.

  19. Morphological responses of mitochondria-rich cells to hypersaline environment in the Australian mudskipper, Periophthalmus minutus.

    PubMed

    Itoki, Naoko; Sakamoto, Tatsuya; Hayashi, Masahiro; Takeda, Tatsusuke; Ishimatsu, Atsushi

    2012-07-01

    A population of the Australian mudskipper, Periophthalmus minutus, was found to inhabit mudflat that remained uncovered by tide for more than 20 days in some neap tides. During these prolonged emersion periods, P. minutus retreated into burrows containing little water, with a highest recorded salinity of 84 ± 7.4 psu (practical salinity unit). To explore the mechanical basis for this salinity tolerance in P. minutus, we determined the densities of mitochondria-rich cells (MRCs) in the inner and outer opercula and the pectoral fin skin, in comparison with P. takita, [corrected] from an adjacent lower intertidal habitat, and studied morphological responses of MRCs to exposure to freshwater (FW), and 100% (34-35 psu) and 200% seawater (SW). Periophthalmus minutus showed a higher density of MRCs in the inner operculum (3365 ± 821 cells mm(-2)) than in the pectoral fin skin (1428 ± 161) or the outer operculum (1100 ± 986), all of which were higher than the MRC densities in p. takita. [corrected]. No mortality occurred in 100% or 200% SW, but half of the fish died within four days in FW. Neither 200% SW nor FW exposure affected MRC density. Transfer to 200% SW doubled MRC size after 9-14 days with no change in the proportion of MRCs with apical pits or plasma sodium concentration. In contrast, transfer to FW resulted in a rapid closing of pits and a significant reduction in plasma sodium concentration. These results suggest that P. minutus has evolved morphological and physiological mechanisms to withstand hypersaline conditions that they may encounter in their habitat.

  20. Anoxygenic Photosynthesis and Nitrogen Fixation by a Microbial Mat Community in a Bahamian Hypersaline Lagoon

    PubMed Central

    Pinckney, J. L.; Paerl, H. W.

    1997-01-01

    Simultaneous measurements of photosynthesis (both oxygenic and anoxygenic) and N(inf2) fixation were conducted to discern the relationships between photosynthesis, N(inf2) fixation, and environmental factors potentially regulating these processes in microbial mats in a tropical hypersaline lagoon (Salt Pond, San Salvador Island, Bahamas). Major photoautotrophs included cyanobacteria, purple phototrophic bacteria, and diatoms. Chemosystematic photopigments were used as indicators of the relative abundance of mat phototrophs. Experimental manipulations consisted of light and dark incubations of intact mat samples exposed to the photosystem II inhibitor DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea], a dissolved organic carbon source (D-glucose), and normal seawater (37(permil)). Photosynthetic rates were measured by both O(inf2) and (sup14)C methods, and nitrogenase activity (NA) was estimated by the acetylene reduction assay. Moderate reductions in salinity (from 74 to 37(permil)) had no measurable effect on photosynthesis, O(inf2) consumption, or NA. CO(inf2) fixation in DCMU-amended samples was (symbl)25% of that in the control (nonamended) samples and demonstrated photosynthetic activity by anoxygenic phototrophs. NA in DCMU-amended samples, which was consistently higher (by a factor of 2 to 3) than the other (light and dark) treatments, was also attributed to purple phototrophic bacteria. The ecological implication is that N(inf2) fixation by anoxygenic phototrophs (purple phototrophic bacteria and possibly cyanobacteria) may be regulated by the activity of oxygenic phototrophs (cyanobacteria and diatoms). Consortial interactions that enhance the physiological plasticity of the mat community may be a key for optimizing production, N(inf2) fixation, and persistence in these extreme environments. PMID:16535506

  1. Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community.

    PubMed

    Podell, Sheila; Emerson, Joanne B; Jones, Claudia M; Ugalde, Juan A; Welch, Sue; Heidelberg, Karla B; Banfield, Jillian F; Allen, Eric E

    2014-05-01

    Microbial community succession was examined over a two-year period using spatially and temporally coordinated water chemistry measurements, metagenomic sequencing, phylogenetic binning and de novo metagenomic assembly in the extreme hypersaline habitat of Lake Tyrrell, Victoria, Australia. Relative abundances of Haloquadratum-related sequences were positively correlated with co-varying concentrations of potassium, magnesium and sulfate, but not sodium, chloride or calcium ions, while relative abundances of Halorubrum, Haloarcula, Halonotius, Halobaculum and Salinibacter-related sequences correlated negatively with Haloquadratum and these same ionic factors. Nanohaloarchaea and Halorhabdus-related sequence abundances were inversely correlated with each other, but not other taxonomic groups. These data, along with predicted gene functions from nearly-complete assembled population metagenomes, suggest different ecological phenotypes for Nanohaloarchaea and Halorhabdus-related strains versus other community members. Nucleotide percent G+C compositions were consistently lower in community metagenomic reads from summer versus winter samples. The same seasonal G+C trends were observed within taxonomically binned read subsets from each of seven different genus-level archaeal groups. Relative seasonal abundances were also linked to percent G+C for assembled population genomes. Together, these data suggest that extreme ionic conditions may exert selective pressure on archaeal populations at the level of genomic nucleotide composition, thus contributing to seasonal successional processes. Despite the unavailability of cultured representatives for most of the organisms identified in this study, effective coordination of physical and biological measurements has enabled discovery and quantification of unexpected taxon-specific, environmentally mediated factors influencing microbial community structure.

  2. Rhodococcus sovatensis sp. nov., an actinomycete isolated from the hypersaline and heliothermal Lake Ursu.

    PubMed

    Táncsics, András; Máthé, István; Benedek, Tibor; Tóth, Erika M; Atasayar, Ewelina; Spröer, Cathrin; Márialigeti, Károly; Felföldi, Tamás; Kriszt, Balázs

    2017-02-01

    A Gram-stain-positive, strictly aerobic, mesophilic bacterium, designated H004T, was isolated from a water sample of the hypersaline and heliothermal Lake Ursu, Sovata, Romania. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain H004T formed a distinct phyletic lineage within the genus Rhodococcus. It shared the highest 16S rRNA gene sequence similarity with Rhodococcus yunnanensis YIM 70056T (98.80 %), followed by Rhodococcus fascians LMG 3623T (98.73 %), Rhodococcus cercidiphylli YIM 65003T (98.73 %), Rhodococcus cerastii C5T (98.58 %) and Rhodococcus kyotonensis DS472T (98.53 %). The alkB-based phylogenetic analysis further confirmed that this strain constitutes a highly unique lineage within the genus. Chemotaxonomic characteristics, including the predominant fatty acids acids C15 : 0, C18 : 1ω9c, C19 : 1ω11c/C19 : 1ω9c and C16 : 1ω7c/iso-C15 : 0 2-OH, the major quinone MK-8(H2), the presence of mycolic acids and cell-wall chemotype IV were also consistent with the properties of members of the genus Rhodococcus. The DNA G+C content of strain H004T was 65.4 mol%. The results of DNA-DNA hybridization analyses with the closest relatives, in combination with the alkB-based phylogenetic analysis, as well as the chemotaxonomic and physiological data, demonstrated that isolate H004T represents a novel species of the genus Rhodococcus, for which the name Rhodococcus sovatensissp. nov. is proposed. The type strain is H004T (=DSM 102881T=NCAIM B.02632T).

  3. Seasonal fluctuations in ionic concentrations drive microbial succession in a hypersaline lake community

    PubMed Central

    Podell, Sheila; Emerson, Joanne B; Jones, Claudia M; Ugalde, Juan A; Welch, Sue; Heidelberg, Karla B; Banfield, Jillian F; Allen, Eric E

    2014-01-01

    Microbial community succession was examined over a two-year period using spatially and temporally coordinated water chemistry measurements, metagenomic sequencing, phylogenetic binning and de novo metagenomic assembly in the extreme hypersaline habitat of Lake Tyrrell, Victoria, Australia. Relative abundances of Haloquadratum-related sequences were positively correlated with co-varying concentrations of potassium, magnesium and sulfate, but not sodium, chloride or calcium ions, while relative abundances of Halorubrum, Haloarcula, Halonotius, Halobaculum and Salinibacter-related sequences correlated negatively with Haloquadratum and these same ionic factors. Nanohaloarchaea and Halorhabdus-related sequence abundances were inversely correlated with each other, but not other taxonomic groups. These data, along with predicted gene functions from nearly-complete assembled population metagenomes, suggest different ecological phenotypes for Nanohaloarchaea and Halorhabdus-related strains versus other community members. Nucleotide percent G+C compositions were consistently lower in community metagenomic reads from summer versus winter samples. The same seasonal G+C trends were observed within taxonomically binned read subsets from each of seven different genus-level archaeal groups. Relative seasonal abundances were also linked to percent G+C for assembled population genomes. Together, these data suggest that extreme ionic conditions may exert selective pressure on archaeal populations at the level of genomic nucleotide composition, thus contributing to seasonal successional processes. Despite the unavailability of cultured representatives for most of the organisms identified in this study, effective coordination of physical and biological measurements has enabled discovery and quantification of unexpected taxon-specific, environmentally mediated factors influencing microbial community structure. PMID:24335829

  4. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock

    PubMed Central

    Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.

    2016-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712

  5. Exploration of Microbial Diversity and Community Structure of Lonar Lake: The Only Hypersaline Meteorite Crater Lake within Basalt Rock.

    PubMed

    Paul, Dhiraj; Kumbhare, Shreyas V; Mhatre, Snehit S; Chowdhury, Somak P; Shetty, Sudarshan A; Marathe, Nachiket P; Bhute, Shrikant; Shouche, Yogesh S

    2015-01-01

    Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21-47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments.

  6. Microbial Mg-carbonate Precipitation and Early Diagenetic Dolomite Crust Formation at Hypersaline Lagoon, Rio de Janeiro State, Brazil.

    NASA Astrophysics Data System (ADS)

    Bahniuk Rumbelsperger, A. M.; McKenzie, J. A.; Perri, E.; Vögeli, N.; Vasconcelos, C.

    2015-12-01

    Sedimentary dolomite rocks are commonly considered to be primarily a replacement product of the calcium carbonate components comprising the original limestone, a process known as secondary replacement dolomitization. Although numerous dolomite formations in the geologic record are composed of fine-grained crystals of micritic dolomite, an alternative process, i.e., direct precipitation, is often excluded because of the absence of visible or geochemical indicators supporting primary precipitation. We present a study of a modern coastal hypersaline lagoon, Brejo do Espinho, Rio de Janeiro State, Brazil, which is located in a special climatic regime where a well-defined seasonal cycle of wet and dry conditions occur. The direct precipitation of modern high-Mg calcite and Ca-dolomite mud from the lagoonal waters under low-temperature hypersaline conditions is associated with the activity of microbial organisms living in this restricted environment. The mud undergoes an early diagenetic transformation into a 100% dolomite crust on the margins of the lagoon. The biomineralization process, characterized by the variations of the physico-chemical conditions in this environment during the annual hydrologic cycle, is integrated with isotopic analysis to define the early diagenetic processes responsible for the formation of both dolomitic mud and crust. The carbon isotope values indicate a contribution of respired organic carbon, which is greater for the crust (δ13C = -9.5‰ VPDB) than mud (δ13C = -1.2‰ VPDB). The oxygen isotope values reflect a moderate degree of evaporation during mud formation (δ18O = 1.1‰ VPDB), whereas it is greatly enhanced during early diagenetic crust formation (δ18O = 4.2‰ VPDB). The clumped isotope formation temperatures derived for the Brejo do Espinho mud is 34°C and 32°C for the crust. These temperatures are consistent with the upper range of measured values during the dry season when the lagoon experiences the most hypersaline

  7. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    NASA Astrophysics Data System (ADS)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about

  8. Mono-isotope Prediction for Mass Spectra Using Bayes Network

    PubMed Central

    Li, Hui; Rwebangira, Mugizi Robert; Burge, Legand

    2015-01-01

    Mass spectrometry is one of the widely utilized important methods to study protein functions and components. The challenge of mono-isotope pattern recognition from large scale protein mass spectral data needs computational algorithms and tools to speed up the analysis and improve the analytic results. We utilized naïve Bayes network as the classifier with the assumption that the selected features are independent to predict mono-isotope pattern from mass spectrometry. Mono-isotopes detected from validated theoretical spectra were used as prior information in the Bayes method. Three main features extracted from the dataset were employed as independent variables in our model. The application of the proposed algorithm to publicMo dataset demonstrates that our naïve Bayes classifier is advantageous over existing methods in both accuracy and sensitivity. PMID:25620856

  9. Gas exchange on Mono Lake and Crowley Lake, California

    NASA Technical Reports Server (NTRS)

    Wanninkhof, Rik; Ledwell, James R.; Broecker, Wallace S.

    1987-01-01

    Gas exchange coefficients (k) have been determined for freshwater Crowley Lake and saline Mono Lake through the use of a man-made purposefully injected gas, SF6. The concentration decreased from an initial value of 40 to 4 pmol/L for Mono Lake and from 20 to 1 pmol/L for Crowley lake over a period of 6 wks. Wind-speed (u) records from anemometers on the shore of each lake made it possible to determine the relationship between k and u. The average u and k values for the experiment were identical for the two lakes, despite the large chemical differences. It is estimated that, for the u values observed over Mono Lake from July to December 1984, the exchange of CO2 occurred 2.5 times faster than without chemical enhancement. This is a factor of 4 lower than needed to explain the high invasion rate of C-14 produced by nuclear bomb tests.

  10. Experimental and theoretical studies on mono-iodohistamine

    NASA Astrophysics Data System (ADS)

    Garnuszek, P.; Dobrowolski, J. Cz; Sitkowski, J.; Bednarek, E.; Witowska, J.; Mazurek, A. P.

    2001-05-01

    The structure of mono-iodohistamine cation was determined by the 1H, 13C NMR, supported by ab initio calculations. Theoretical NMR spectra of the two mono-iodohistamine tautomers were calculated by using the CHF-GIAO approach. The N3-H tautomer of 4-I-histamine cationic form has been predicted to be the most stable, and its potential energy surface has been scanned at the HF/3-21G ∗∗ level. Reasons for higher stability of the 4-I-histamine comparing to the other iodohistamine isomers are also discussed.

  11. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment.

    PubMed

    Mirete, Salvador; Mora-Ruiz, Merit R; Lamprecht-Grandío, María; de Figueras, Carolina G; Rosselló-Móra, Ramon; González-Pastor, José E

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

  12. Sodium toxicity and pathology associated with exposure of waterfowl to hypersaline playa lakes of southeast New Mexico

    USGS Publications Warehouse

    Meteyer, C.U.; Dubielzig, R.D.; Dein, F.J.; Baeten, L.A.; Moore, M.K.; Jehl, J.R.; Wesenberg, K.E.

    1997-01-01

    Cause of mortality was studied in waterfowl in hypersaline playa lakes of southeast New Mexico during spring and fall migration. Mortality was not common in wild ducks resting on the playas during good weather. However, when birds remained on the lakes for prolonged periods of time, such as during experimental trials and stormy weather, a heavy layer of salt precipitated on their feathers. Sodium toxicity was the cause of death for all experimental mallards housed on playa water and for 50% of the wild waterfowl found moribund or dead during the spring of 1995. Gross lesions included heavy salt precipitation on the feathers, ocular lens opacities, deeply congested brains, and dilated, thin-walled, fluid-filled cloacae. Microscopic lesions in the more severely affected birds included liquefaction of ocular lens cortex with lens fiber swelling and multifocal to diffuse ulcerative conjunctivitis with severe granulocytic inflammation, edema, and granulocytic vasculitis resulting in thrombosis. Inflammation similar to that seen in the conjunctiva occasionally involved the mucosa of the mouth, pharynx, nasal turbinates, cloaca, and bursa. Transcorneal movement of water in response to the hypersaline conditions on the playa lakes or direct contact with salt crystals could induce anterior segment dehydration of the aqueous humor and increased osmotic pressure on the lens, leading to cataract formation.

  13. Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

    PubMed Central

    Mirete, Salvador; Mora-Ruiz, Merit R.; Lamprecht-Grandío, María; de Figueras, Carolina G.; Rosselló-Móra, Ramon; González-Pastor, José E.

    2015-01-01

    Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment. PMID:26528268

  14. Syntrophic associations from hypersaline soda lakes converting organic acids and alcohols to methane at extremely haloalkaline conditions.

    PubMed

    Sorokin, Dimitry Y; Abbas, Ben; Geleijnse, Mitchell; Kolganova, Tatjana V; Kleerebezem, Robbert; van Loosdrecht, Mark C M

    2016-09-01

    Until now anaerobic oxidation of VFA at high salt-pH has been demonstrated only at sulfate-reducing conditions. Here, we present results of a microbiological investigation of anaerobic conversion of organic acids and alcohols at methanogenic conditions by syntrophic associations enriched from hypersaline soda lakes in Central Asia. Sediment incubation experiments showed active, albeit very slow, methane formation from acetate, propionate, butyrate and C2 C4 alcohols at pH 10 and various levels of salinity. Enrichments of syntrophic associations using hydrogenotrophic members of the genus Methanocalculus from soda lakes as partners resulted in several highly enriched cultures converting acetate, propionate, butyrate, benzoate and EtOH to methane. Most syntrophs belonged to Firmicutes, while the propionate-oxidizer formed a novel lineage within the family Syntrophobacteraceae in the Deltaproteobacteria. The acetate-oxidizing syntroph was identified as 'Ca. Syntrophonatronum acetioxidans' previously found to oxidize acetate at sulfate-reducing conditions up to salt-saturating concentrations. Butyrate and a benzoate-degrading syntrophs represent novel genus-level lineages in Syntrophomonadales which are proposed as Candidatus taxons 'Syntrophobaca', 'Syntrophocurvum' and 'Syntropholuna'. Overall, despite very slow growth, the results indicated the presence of a functionally competent syntrophic community in hypersaline soda lakes, capable of efficient oxidation of fermentation products to methane at extremely haloalkaline conditions.

  15. Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes

    NASA Astrophysics Data System (ADS)

    Shadrin, Nickolai V.; Anufriieva, Elena V.; Amat, Francisco; Eremin, Oleg Yu.

    2015-11-01

    A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities; we need to take it into account to understand plankton dynamics. Hypersaline water bodies in Crimea, the largest peninsula in the Black Sea, constitute a very characteristic and peculiar habitat type in the region. We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes. Sediment samples were taken in 9 different lakes. Experiments performed on the hatching of these resting stages showed the presence of Moina salina (Cladocera), parthenogenetic Artemia and Artemia urmiana (Anostraca), Eucypris mareotica ( inflata) (Ostracoda), and Cletocamptus retrogressus (Harpacticoida). Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples, it was noted that clean cysts hatched much faster than those from sediments did. Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans. The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees. More data are needed before we can discuss the reasons of this inhibition. The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments, avoiding the risk that all may emerge at once under unsuitable conditions.

  16. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  17. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  18. [Carotenogenesis of five strains of the algae Dunaliella sp. (Chlorophyceae) isolated from Venezuelan hypersaline lagoons].

    PubMed

    Guevara, Miguel; Lodeiros, César; Gómez, Olga; Lemus, Nathalie; Núñez, Paulino; Romero, Lolymar; Vásquez, Aléikar; Rosales, Néstor

    2005-01-01

    We evaluated discontinuous cultures (Algal medium at 0.5 mM of NaNO3, and 27% NaCI) of five strains of Dunaliella sp. isolated from Venezuelan hypersaline lagoons (Araya, Coche, Peonia, Cumaraguas. and Boca Chica) and one strain from a reference collection (Dunaliella salina, LB1644). Cultures were maintained to 25+/-1 degrees C, with constant aeration, photoperiod 12:12, and two light intensities (195 and 390 microE.m(-2).s(-1)) during 30 days. Cell count was recorded on a daily basis using a Neubaüer camera. Totals of chlorophyll a and carotenoids were measured at the end of the experiment. The largest cellular densities were measured during the smallest light intensities. The strain with the largest cellular density was isolated from Boca Chica (8 xl0(6) and 2.5 xl0(6) cel.ml(-1) a 390 and 195microE.m(-2).s(-1), respectively). The increment of light intensity produced a significant reduction of growth rates in all strains. Totals of carotenoids by volume were as large as 390 microE.m(-2).s(-1). Strains LB 1644, from Coche and Araya were those that produced the largest amount of carotenoids (38.4; 32.8 and 21.0 microg.ml(-1), respectively). Differences total carotenoids by cell between treatments were significant. The largest concentration was 390 microE.m(-2).s(-1). The strains LB 1644 and Coche produced the highest values of carotenes (137.14 and 106.06 pg.cel(-1), respectively). Differences in the relation carotenoid:chlorophyll a between the strains at various light intensities was significant. Strains LB1644 presented the largest value of the relation carotenoids:chlorophyll a (20:1) at 195 microE.m(-2).s(-1). No significant differences were detected in the strain Coche (15:1). All the other strains showed relations lower than one. Our results suggest that the strains of Coche and Araya show potential to be used in the biotechnology of carotenoids production.

  19. Diversity, distribution, and morphological deformities among living Foraminifera in hypersaline Salwa Bay, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Olalekan Amao, Abduljamiu; Kaminski, Michael

    2016-04-01

    The Arabian Gulf is considered a naturally stressed environment due to extremes of salinity and summer temperatures. Anthropogenic influences such as rapid urbanisation projects, maritime transport, and large numbers of desalination plants and oil-related activities compounds the problem. Foraminifera are known to be resilient under such stressful conditions. The purpose of our study is to document the foraminiferal diversity and abundance in the hypersaline Salwa Bay area, near the Saudi Arabian-Qatar Border. We expect the foraminiferal fauna in Salwa Bay to be adapted to extremes in salinity, and we wish to document any species that might be endemic or uniquely adapted to the area. Shannon-Wiener index, relative abundance, species richness, and the percentage of morphological deformities were determined for samples collected from the bay. Salwa Bay is the most saline extension of the Arabian Gulf with high salinity, water temperature and evaporation rate, which is attributed to slow flushing rates, coral reef barriers and higher residency time of the water. Environmental parameters measured at the time of collection were depth (10-110 cm), salinity (52.6-53.0) total dissolved solids (48.8-49.4 g/l), and temperature (27-27.6°C). The foraminiferal assemblages in Salwa Bay are dominated by porcelaneous foraminifera, which include Peneroplis pertusus, Peneroplis planatus, Coscinospira hemprichii and Coscinospira acicularis. The most common species across the sampled transect is Peneroplis pertusus. Hyaline species were also found, but agglutinated foraminifera are absent. Diversity in Salwa Bay is lower compared with localities that have "normal" salinity, and many of the foraminifera display conspicuous morphological deformities. Approximately 55% of the assemblage exhibits mild to severe deformities such as fusion of two adults or double tests, protuberance on the spiral side, abnormal arrangement of the chambers, abnormal shape of the proloculus and modification

  20. Spatially-resolved stable isotope analysis of a hypersaline microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Cory, A. B.; Lindemann, S. R.; Fredrickson, J. K.

    2012-12-01

    Hot Lake is a hypersaline, meromictic lake located in north-central Washington. High rates of evapotranspiration coupled with its location in an endorrheic basin contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate; hypolimnion waters may seasonally exceed 2 M magnesium sulfate concentrations. In addition to extreme salinity, horizons within the lake seasonally exceed 50 °C, in part due to the enhanced light absorption by magnesium sulfate-saturated water. Despite extreme and highly variable seasonal conditions (salinity, temperature, photon flux), dense benthic microbial mats composed of cyanobacteria and bacterial heterotroph populations develop annually at the lake. These mats may exceed 5 mm in thickness and display stratification observable by eye associated with dominant bacterial phototrophic pigments. Typical mat stratification includes an orange surface layer followed by green and purple layers at increasing depth into the mat. Carbonates including aragonite and magnesite are observed within the mat and their formation is likely induced or influenced by microbial activities. While not exclusively limited to the green stratum in the mat, maximum carbonate content is within this layer. We are exploring the role Hot Lake's microbial mats play in carbon cycling within the system. Namely, we seek to understand the rates of carbon accumulation in the mat and associated sediments and the various forms this carbon takes (organic or inorganic species). We are assessing mat development, community composition, and carbon accumulation in pre-cleaned devices installed at the lake as they are colonized by native mat. We are using laser ablation isotope ratio mass spectrometry (LA-IRMS) to provide spatially-resolved stable isotope analysis of mat cross-sections. Currently, this technique permits isotope analysis at the 50 μm scale, and can provide multiple isotope analyses within the thickness of each major layer of the mat. We

  1. Hypersaline Subsurface Microbial Communities from the Dead Sea Viewed from Their Metagenomes.

    NASA Astrophysics Data System (ADS)

    Thomas, C.; Ionescu, D.; Ariztegui, D.

    2014-12-01

    The Dead Sea Deep Drilling Project (DSDDP) is an international research initiative aiming to reconstruct the paleoenvironmental and paleoseismic history of the Dead Sea Basin (DSB) in the Levantine region. Within this framework, analysis of microbial communities intend to qualify the extent of life in this extreme environment, the factors allowing its development and their contribution to the sedimentary and geochemical record. The extreme chemistry of the Dead Sea prevents the use of common in situ imaging techniques leaving little information on the general activity of the subsurface biosphere. Cloning and metagenomic techniques have however been implemented at different levels of a 457 m deep core. Results suggest a differential development or survival of the microbial community along the sedimentary column. Reasons for such distribution remain unclear but cannot only be imparted to salinity. Poorly known communities (e.g. Candidate Divisions MSBL1 and KB1) with strong potential for adaptations to anoxic hypersaline environments are recovered in some intervals. Halobacteria classes generally dominate the assemblages. Metagenomic data allowed characterizing their presence in two evaporitic facies of the core (aragonite at 2.7 m and gypsum at 90.6 m below lake floor), where they exhibit both salt-in and salt-out strategies to cope with the high salinities of the Dead Sea. Metabolisms are also adapted to the high heavy metal concentrations and low nutrient availability in the sediment. Although more work is needed in order to infer the impact of these microorganisms on the sediment and element cycles, indices of methanogenesis, fermentation and sulfate reducing activity imply influence on the carbon and sulfur cycle of the Dead Sea subsurface. This is highlighted by traces of microbial degradation of organic matter viewed under SEM, and by the formation of euhedral Fe-S mineralizations as a result of reduction of sulfur. Overall, this work calls for the importance

  2. Lanthanide behavior in hypersaline evaporation ponds at Guerrero Negro, Baja California, Mexico - an environment with halophiles

    NASA Astrophysics Data System (ADS)

    Choumiline, K.; López-Cortés, A.; Grajeda-Muñoz, M.; Shumilin, E.; Sapozhnikov, D.

    2013-12-01

    Lanthanides are known, in some cases, to be sensitive to changes in water column or sediment chemistry, a fact that allows them to be used as environmental fingerprints. Nevertheless, the behavior of these elements in hypersaline environments is insufficiently understood, especially in those colonized by bacteria, archaea and eukarya halophiles. Extreme environments like the mentioned exist in the artificially-controlled ponds of the 'Exportadora de Sal' salt-producing enterprise located in Guerrero Negro (Baja California, Mexico). Sediment cores from various ponds were collected, subsampled and measured by ICP-MS and INAA. This allowed differencing the behavior of lanthanides and trace elements under a water column salinity gradient along the evaporation sequence of ponds. Sediment profiles (30 mm long), obtained in Pond 5, dominated by Ca and Mg precipitation and at the same time rich in organic matter due to bacterial mat presence, showed highs and lows of the shale-normalized patterns along different in-core depths. Two groups of elements could be distinguished with similar trends: set A (La, Ce, Pr and Nd) and set B (Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu). The first 'group A' had two prominent peaks at 15 mm and around 22 mm, whereas the 'group B' showed only slight increase at 15 mm and none at 22 mm. Microscopic analyses of prokaryotic cells of a stratified mat in Pond 5 (collected in 2004) showed filamentous bacteria and cyanobacteria with a cell abundance and morphotype richness maxima of prokaryotic cells in a chemocline from 3 mm to 7 mm depth which co-exists nine morphotypes of aerobic and anaerobic prokaryotes Microcoleus chthonoplastes, Leptolyngbya, Cyanothece, Geitlerinema, Spirulina, Chloroflexus, Beggiatoa, Chromatium and Thioploca. Below the 7 mm depth, oxygenic photosynthesis depletes and sulfur reducing compounds increase. The highs of the shale-normalized lanthanide contents of the 'group A' (at 15 mm depth) seem to correlate with the

  3. Productivity Estimation of Hypersaline Microbial Mat Communities - Diurnal Cycles of Dissolved Oxygen

    NASA Astrophysics Data System (ADS)

    Less, G.; Cohen, Y.; Luz, B.; Lazar, B.

    2002-05-01

    Hypersaline microbial mat communities (MMC) are the modern equivalents of the Archean stromatolities, the first photosynthetic organisms on Earth. An estimate of their oxygen production rate is important to the understanding of oxygen evolution on Earth ca. 2 b.y.b.p. Here we use the diurnal cycle of dissolved oxygen, O2/Ar ratio and the isotopic composition of dissolved oxygen to calculate net and gross primary productivity of MMC growing in a large scale (80 m2) experimental pan. The pan is inoculated with MMC taken from the Solar Lake, Sinai, Egypt and filled with 90\\permil evaporated Red Sea water brine up to a depth of ca. 0.25 m. It is equipped with computerized flow through system that is programmed to pump pan water at selected time intervals into a sampling cell fitted with dissolved oxygen, pH, conductivity and temperature sensors connected to a datalogger. Manual brine samples were taken for calibrating the sensors, mass spectrometric analyses and for measurements of additional relevant parameters. Dissolved oxygen concentrations fluctuate during the diurnal cycle being highly supersaturated except for the end of the night. The O2 curve varies seasonally and has a typical "shark fin" shape due to the MMC metabolic response to the shape of the diurnal light curve. The dissolved oxygen data were fitted to a smooth curve that its time derivative (dO2 /dt) is defined as: Z dO2 /dt=GP-R-k(O2(meas)- O2(sat)) where z is the depth (m); GP and R are the MMC gross production and respiration (mol m-2 d-1), respectively; k is the gas exchange coefficient (m d-1); O2(meas) and O2(sat) (mol L-1) are the measured and equilibrium dissolved oxygen concentrations, respectively. The high resolution sampling of the automated system produces O2 curves that enable the calculation of smooth and reliable time derivatives. The calculations yield net production values that vary between 1,000 10-6 to -100 10-6 mol O2 m-2 h-1 and day respiration rates between 60 10-6 to 30 10

  4. Characterization of Sporohalobacter salinus sp. nov., an anaerobic, halophilic, fermentative bacterium isolated from a hypersaline lake.

    PubMed

    Ben Abdallah, Manel; Karray, Fatma; Mhiri, Najla; Cayol, Jean-Luc; Tholozan, Jean-Luc; Alazard, Didier; Sayadi, Sami

    2015-02-01

    Halophilic, obligately anaerobic, Gram-stain-negative bacterial strains were isolated from a sediment sample taken from under the salt crust of El-Jerid hypersaline lake in southern Tunisia by using tryptone or glucose as the substrate. One strain, CEJFT1B(T), was characterized phenotypically and phylogenetically. Cells were non-motile, non-spore-forming, short rods. Strain CEJFT1B(T) was able to grow in the presence of 5-30 % (w/v) NaCl (optimum 20 %) and at 30-60 °C (optimum 45 °C). It grew at pH 5.5-7.8 and the optimum pH for growth was 6.8. The isolate required yeast extract for growth. Substrates utilized by strain CEJFT1B(T) as the sole carbon source included glucose, fructose, sucrose, pyruvate, Casamino acids and starch. Individual amino acids such as glutamate, lysine, methionine, serine, tyrosine, and amino acid mixtures formed by the Stickland reaction such as alanine-glycine, valine-proline, leucine-proline, isoleucine-proline were also utilized. Products of glucose fermentation were acetate (major product), butyrate, H2 and CO2. The genomic DNA G+C content of strain CEJFT1B(T) was 32.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain CEJFT1B(T) should be assigned to the genus Sporohalobacter. The sequence similarity between strain CEJFT1B(T) and Sporohalobacter lortetii was 98.5 %, but DNA-DNA hybridization between the two strains revealed a relatedness value of 56.4 %, indicating that they are not related at the species level. The combination of phylogenetic analysis, DNA-DNA hybridization data, and differences in substrate utilization support the view that strain CEJFT1B(T) represents a novel species of the genus Sporohalobacter, for which the name Sporohalobacter salinus sp. nov. is proposed. The type strain is CEJFT1B(T) ( = DSM 26781(T) = JCM 19279(T)).

  5. Air quality in bedded mono-slope beef barns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bedded mono-slope barns are becoming more common in the upper Midwest. Because these are new facilities, little research has been published regarding environmental quality, building management and animal performance in these facilities. A team of researchers from South Dakota State University, USDA ...

  6. TOXICOLOGY OF MONO- AND DI-ALKYLTIN CHLORIDES.

    EPA Science Inventory

    Mono- and di-alkyltin chlorides are reactive compounds used in the production of stabilizers for polyvinyl chloride (PVC) plastics, primarily used for water distribution pipes. Health effects data were compiled or developed by the manufacturers for the EPA's HPV Challenge progra...

  7. TOXICOLOGY OF MONO- AND DI-ALKYLTIN CHLORIDES

    EPA Science Inventory

    Mono- and di-alkyltin chlorides are reactive compounds used in the production of stabilizers for polyvinyl chloride (PVC) plastics, primarily used for water distribution pipes. Health effects data were compiled or developed by the manufacturers for the EPA's HPV Challenge progra...

  8. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prepared from fats or oils or fat-forming acids that are derived from edible sources. The most prevalent fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in...

  9. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prepared from fats or oils or fat-forming acids that are derived from edible sources. The most prevalent fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in...

  10. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prepared from fats or oils or fat-forming acids that are derived from edible sources. The most prevalent fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in...

  11. 21 CFR 184.1505 - Mono- and diglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prepared from fats or oils or fat-forming acids that are derived from edible sources. The most prevalent fatty acids include lauric, linoleic, myristic, oleic, palmitic, and stearic. Mono- and diglycerides are manufactured by the reaction of glycerin with fatty acids or the reaction of glycerin with triglycerides in...

  12. IRIS Toxicological Review of Ethylene Glycol Mono Butyl ...

    EPA Pesticide Factsheets

    EPA has finalized the Toxicological Review of Ethylene Glycol Mono Butyl Ether: in support of the Integrated Risk Information System (IRIS). Now final, this assessment may be used by EPA’s program and regional offices to inform decisions to protect human health. N/A

  13. Geophysical studies of Mono Lake, east-central California

    NASA Astrophysics Data System (ADS)

    Athens, N. D.; Ponce, D. A.

    2012-12-01

    Magnetic and gravity investigations were undertaken in Mono Lake, California to study regional crustal structures and to aid understanding the geologic framework of Mono Lake, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Recent geophysical surveys included over 600 line-kilometers of high-resolution ship-borne magnetometer data that augmented existing airborne data, 22 line-kilometers of ground magnetic data that were collected along six traverses across Paoha Island, 56 gravity stations that were collected on Paoha and Negit Islands, and 28 rock samples that were collected for physical property data. Magnetic highs in the study area occur to the east and west of Mono Lake, where pre-Tertiary basement is exposed. Magnetic data indicate that Mono Lake itself is dominated by three prominent magnetic anomalies that are from west to east: a magnetic high along the northwest part of the lake associated with the moderately magnetic basalt cinder cone at Black Point, a magnetic high associated with the young volcanic centers at Paoha and Negit Islands, and a broad magnetic high along the eastern margin of the lake probably associated with moderately magnetic granitic basement rocks at depth. Because volcanic rocks exposed at the surface of Paoha and Negit Islands are only weakly magnetic, magnetic data suggest that more mafic volcanic rocks probably occur at depth and are the source of the anomaly. The linear and steep magnetic gradient across the eastern part of the lake may reflect a fault. A fault may also be imaged in the northeastern part of the lake, where a possible laterally offset magnetic anomaly may be present. Within Mono Lake, gravity station control is poor because land-based gravity stations are limited to Paoha and Negit Islands. The gravity low in the basin reflects a moderately deep sedimentary basin filled with low density lacustrine and volcanic deposits. Isostatic gravity data indicate the central

  14. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  15. Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA).

    PubMed

    Carini, Stephen; Bano, Nasreen; LeCleir, Gary; Joye, Samantha B

    2005-08-01

    Patterns of aerobic methane (CH4) oxidation and associated methanotroph community composition were investigated during the development of seasonal stratification in Mono Lake, California (USA). CH4 oxidation rates were measured using a tritiated CH4 radiotracer technique. Fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE) and sequence analysis were used to characterize methanotroph community composition. A temporally shifting zone of elevated CH4 oxidation (59-123 nM day(-1)) was consistently associated with a suboxycline, microaerophilic zone that migrated upwards in the water column as stratification progressed. FISH analysis revealed stable numbers of type I (4.1-9.3 x 10(5) cells ml(-1)) and type II (1.4-3.4 x 10(5) cells ml(-1)) methanotrophs over depth and over time. Denaturing gradient gel electrophoresis and sequence analysis indicated slight shifts in methanotroph community composition despite stable absolute cell numbers. Variable CH4 oxidation rates in the presence of a relatively stable methanotroph population suggested that zones of high CH4 oxidation resulted from an increase in activity of a subset of the existing methanotroph population. These results challenge existing paradigms suggesting that zones of elevated CH4 oxidation activity result from the accumulation of methanotrophic biomass and illustrate that type II methanotrophs may be an important component of the methanotroph population in saline and/or alkaline pelagic environments.

  16. Quaternary Eruptions of the Mono-Inyo Craters, California

    NASA Astrophysics Data System (ADS)

    Bursik, M. I.; Pouget, S.; Mangan, M.; Marcaida, M.; Vazquez, J. A.

    2013-12-01

    The eruptive products of the Mono-Inyo Craters volcanic chain include the tephra and associated volcanic rocks of Black Point, islands of Mono Lake, Mono Craters, Inyo Craters, late eruptions of Mammoth Mountain and Red Cones. Most of the eruptions were explosive, and generated numerous pyroclastic flows, surges and falls as well as the prominent domes and lava flows that now cover vents. The eruptions range in age from several hundred years to at least 60,000 yr BP. The Mono-Inyo tephras are dispersed throughout the Sierra Nevada and Basin and Range, providing key time-stratigraphic marker layers. Recent work has not only resulted in high-precision radiometric dating of many of the tephras, but also detailed geochemical data that for the first time provides fingerprinting sufficiently precise to discriminate among the tephras. Lithostratigraphy of many of the layers is herein described for the first time, based on careful sampling and description in the field, and laboratory grain size, grain shape and componentry analyses of the late Pleistocene tephras of the Wilson Creek Formation. Most of the Wilson Creek volcanic layers are fall deposits accumulated within paleolake Russell, which were generated by eruptions of variable intensity and influenced by paleowinds of different orientation. Prevailing winds were generally to the North and East, but often the Pleistocene layers less than 25 ka were dispersed to the West. Many of the fall layers show evidence of wave reworking, generally near the top, although in some cases it is pervasive. Only near the vent do some layers of apparent debris flow origin occur. Maximum pumice sizes range up to nearly 3 cm, and lithics range up to 1 cm in the rhyolitic fall beds, while thicknesses range up to c. 30 cm. These data are consistent with relatively low volume, subplinian style eruptive behavior for most of the life of the Mono-Inyo Craters.

  17. Expression of key ion transporters in the gill and esophageal-gastrointestinal tract of euryhaline Mozambique tilapia Oreochromis mossambicus acclimated to fresh water, seawater and hypersaline water.

    PubMed

    Li, Zhengjun; Lui, Eei Yin; Wilson, Jonathan M; Ip, Yuen Kwong; Lin, Qingsong; Lam, Toong Jin; Lam, Siew Hong

    2014-01-01

    The ability of euryhaline Mozambique tilapia to tolerate extreme environmental salinities makes it an excellent model for investigating iono-regulation. This study aimed to characterize and fill important information gap of the expression levels of key ion transporters for Na(+) and Cl(-) in the gill and esophageal-gastrointestinal tract of Mozambique tilapia acclimated to freshwater (0 ppt), seawater (30 ppt) and hypersaline (70 ppt) environments. Among the seven genes studied, it was found that nkcc2, nkcc1a, cftr, nka-α1 and nka-α3, were more responsive to salinity challenge than nkcc1b and ncc within the investigated tissues. The ncc expression was restricted to gills of freshwater-acclimated fish while nkcc2 expression was restricted to intestinal segments irrespective of salinity challenge. Among the tissues investigated, gill and posterior intestine were found to be highly responsive to salinity changes, followed by anterior and middle intestine. Both esophagus and stomach displayed significant up-regulation of nka-α1 and nka-α3, but not nkcc isoforms and cftr, in hypersaline-acclimated fish suggesting a response to hypersalinity challenge and involvement of other forms of transporters in iono-regulation. Changes in gene expression levels were partly corroborated by immunohistochemical localization of transport proteins. Apical expression of Ncc was found in Nka-immunoreactive cells in freshwater-acclimated gills while Nkcc co-localized with Nka-immunoreactive cells expressing Cftr apically in seawater- and hypersaline-acclimated gills. In the intestine, Nkcc-stained apical brush border was found in Nka-immunoreactive cells at greater levels under hypersaline conditions. These findings provided new insights into the responsiveness of these genes and tissues under hypersalinity challenge, specifically the posterior intestine being vital for salt absorption and iono-osmoregulation in the Mozambique tilapia; its ability to survive in hypersalinity may be in

  18. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  19. 40 CFR 721.8340 - Mono esters from 2- propenoic acid (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mono esters from 2- propenoic acid... Specific Chemical Substances § 721.8340 Mono esters from 2- propenoic acid (generic). (a) Chemical... as mono esters from 2-propenoic acid (PMN P-01-85) is subject to reporting under this section for...

  20. 40 CFR 721.8340 - Mono esters from 2- propenoic acid (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mono esters from 2- propenoic acid... Specific Chemical Substances § 721.8340 Mono esters from 2- propenoic acid (generic). (a) Chemical... as mono esters from 2-propenoic acid (PMN P-01-85) is subject to reporting under this section for...

  1. 21 CFR 184.1101 - Diacetyl tartaric acid esters of mono- and diglycerides.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Diacetyl tartaric acid esters of mono- and... acid esters of mono- and diglycerides. (a) Diacetyl tartaric acid esters of mono- and diglycerides, also know as DATEM, are composed of mixed esters of glycerin in which one or more of the...

  2. 21 CFR 184.1101 - Diacetyl tartaric acid esters of mono- and diglycerides.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Diacetyl tartaric acid esters of mono- and... acid esters of mono- and diglycerides. (a) Diacetyl tartaric acid esters of mono- and diglycerides, also know as DATEM, are composed of mixed esters of glycerin in which one or more of the...

  3. 21 CFR 184.1101 - Diacetyl tartaric acid esters of mono- and diglycerides.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Diacetyl tartaric acid esters of mono- and... acid esters of mono- and diglycerides. (a) Diacetyl tartaric acid esters of mono- and diglycerides, also know as DATEM, are composed of mixed esters of glycerin in which one or more of the...

  4. 40 CFR 721.8340 - Mono esters from 2- propenoic acid (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mono esters from 2- propenoic acid... Specific Chemical Substances § 721.8340 Mono esters from 2- propenoic acid (generic). (a) Chemical... as mono esters from 2-propenoic acid (PMN P-01-85) is subject to reporting under this section for...

  5. 21 CFR 184.1101 - Diacetyl tartaric acid esters of mono- and diglycerides.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Diacetyl tartaric acid esters of mono- and... acid esters of mono- and diglycerides. (a) Diacetyl tartaric acid esters of mono- and diglycerides, also know as DATEM, are composed of mixed esters of glycerin in which one or more of the...

  6. 40 CFR 721.8340 - Mono esters from 2- propenoic acid (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mono esters from 2- propenoic acid... Specific Chemical Substances § 721.8340 Mono esters from 2- propenoic acid (generic). (a) Chemical... as mono esters from 2-propenoic acid (PMN P-01-85) is subject to reporting under this section for...

  7. 21 CFR 184.1101 - Diacetyl tartaric acid esters of mono- and diglycerides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Diacetyl tartaric acid esters of mono- and... Specific Substances Affirmed as GRAS § 184.1101 Diacetyl tartaric acid esters of mono- and diglycerides. (a) Diacetyl tartaric acid esters of mono- and diglycerides, also know as DATEM, are composed of mixed...

  8. 40 CFR 721.8340 - Mono esters from 2- propenoic acid (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mono esters from 2- propenoic acid... Specific Chemical Substances § 721.8340 Mono esters from 2- propenoic acid (generic). (a) Chemical... as mono esters from 2-propenoic acid (PMN P-01-85) is subject to reporting under this section for...

  9. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  10. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  11. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  12. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  13. 21 CFR 573.800 - Polyethylene glycol (400) mono- and dioleate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Polyethylene glycol (400) mono- and dioleate. 573... DRINKING WATER OF ANIMALS Food Additive Listing § 573.800 Polyethylene glycol (400) mono- and dioleate. (a) The food additive polyethylene glycol (400) mono- and dioleate meets the following...

  14. 21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Sodium mono- and dimethyl naphthalene sulfonates... sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in... statement declaring the presence of sodium mono- and dimethyl naphthalene sulfonates....

  15. 21 CFR 172.824 - Sodium mono- and dimethyl naphthalene sulfonates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium mono- and dimethyl naphthalene sulfonates... sulfonates. The food additive sodium mono- and dimethyl naphthalene sulfonates may be safely used in... statement declaring the presence of sodium mono- and dimethyl naphthalene sulfonates....

  16. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed mono and diamides of an organic... Substances § 747.115 Mixed mono and diamides of an organic acid. This section identifies activities with... subject to this section: P-84-529, mixed mono and diamides of an organic acid. (b)...

  17. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed mono and diamides of an organic... Substances § 747.115 Mixed mono and diamides of an organic acid. This section identifies activities with... subject to this section: P-84-529, mixed mono and diamides of an organic acid. (b)...

  18. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed mono and diamides of an organic... Substances § 747.115 Mixed mono and diamides of an organic acid. This section identifies activities with... subject to this section: P-84-529, mixed mono and diamides of an organic acid. (b)...

  19. 40 CFR 747.115 - Mixed mono and diamides of an organic acid.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed mono and diamides of an organic... Substances § 747.115 Mixed mono and diamides of an organic acid. This section identifies activities with... subject to this section: P-84-529, mixed mono and diamides of an organic acid. (b)...

  20. Functional Role of Native and Invasive Filter-Feeders, and the Effect of Parasites: Learning from Hypersaline Ecosystems.

    PubMed

    Sánchez, Marta I; Paredes, Irene; Lebouvier, Marion; Green, Andy J

    2016-01-01

    Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce

  1. Functional Role of Native and Invasive Filter-Feeders, and the Effect of Parasites: Learning from Hypersaline Ecosystems

    PubMed Central

    Green, Andy J.

    2016-01-01

    Filter-feeding organisms are often keystone species with a major influence on the dynamics of aquatic ecosystems. Studies of filtering rates in such taxa are therefore vital in order to understand ecosystem functioning and the impact of natural and anthropogenic stressors such as parasites, climate warming and invasive species. Brine shrimps Artemia spp. are the dominant grazers in hypersaline systems and are a good example of such keystone taxa. Hypersaline ecosystems are relatively simplified environments compared with much more complex freshwater and marine ecosystems, making them suitable model systems to address these questions. The aim of this study was to compare feeding rates at different salinities and temperatures between clonal A. parthenogenetica (native to Eurasia and Africa) and the invasive American brine shrimp A. franciscana, which is excluding native Artemia from many localities. We considered how differences observed in laboratory experiments upscale at the ecosystem level across both spatial and temporal scales (as indicated by chlorophyll-a concentration and turbidity). In laboratory experiments, feeding rates increased at higher temperatures and salinities in both Artemia species and sexes, whilst A. franciscana consistently fed at higher rates. A field study of temporal dynamics revealed significantly higher concentrations of chlorophyll-a in sites occupied by A. parthenogenetica, supporting our experimental findings. Artemia parthenogenetica density and biomass were negatively correlated with chlorophyll-a concentration at the spatial scale. We also tested the effect of cestode parasites, which are highly prevalent in native Artemia but much rarer in the invasive species. The cestodes Flamingolepis liguloides and Anomotaenia tringae decreased feeding rates in native Artemia, whilst Confluaria podicipina had no significant effect. Total parasite prevalence was positively correlated with turbidity. Overall, parasites are likely to reduce

  2. Magmatic storage conditions along the Mono Craters chain, Eastern California

    NASA Astrophysics Data System (ADS)

    Williams, M.; Befus, K.; Gardner, J. E.

    2012-12-01

    We employ a variety of petrologic tools to characterize the pre-eruptive storage conditions of individual units erupted from Mono Craters. The Mono Craters chain represents one of the systems within the Long Valley volcanic field in Eastern California, which has been a regional center for effusive to cataclysmic volcanism from 800 ka until recent times. The Long Valley system has been the focus of much research; however, there are little published petrologic data for the Mono Craters chain. Understanding the Mono Craters chain is critical because it was the center for the most recent eruptions in the region. Eruptions along the chain occurred from 20 ka to ~660 years ago, and it is the most likely focus for future volcanic activity in the Long Valley region. Thus, petrologic data from Mono Craters must provide excellent constraints on the development and nature of the existing magmatic system. The Mono Craters chain contains 27 high silica rhyolite domes and flows and 1 dacite dome that were erupted along a gently arcuate trend that extends for ~15 km south of Mono Lake. The high silica rhyolites can be subdivided based on phenocryst assemblages into the following groups: biotite-bearing rhyolite, orthopyroxene-bearing rhyolite, fayalite-bearing rhyolite, sparsely porphyritic rhyolite, and aphyric rhyolite. We collected samples from 14 of the domes and flows within the Mono Craters chain, obtaining samples from each of the groups except the orthopyroxene-bearing rhyolite. We examined the composition of the mineral phases using electron microprobe analyses. Biotite-bearing rhyolites contain phenocrysts of quartz, plagioclase (Ab74-77), sanidine (Or66-68), Fe-rich hornblende, Ti-rich biotite, pyroxene, and magnetite with lamellae of ilmenite. Fayalite-bearing rhyolites contain phenocrysts of quartz, plagioclase (Ab75-80), sanidine (Or61-69), fayalite (Fa92-93), Fe-rich hornblende, Ti-rich biotite, pyroxene, magnetite and ilmenite. Sparsely porphyritic rhyolites

  3. The Magma Transport System of the Mono Craters, California

    NASA Astrophysics Data System (ADS)

    Johnson, M. R.; Putirka, K. D.

    2013-12-01

    The Mono Craters are a series of 28 volcanic domes, coulees, and craters, just 16 km north of Long Valley. The magmatic products of the Mono Craters include mostly small magmatic bodies, sills, and dikes set in a transtensional tectonic setting. New high-density sampling of the domes reveals a wider range of magma compositions than heretofore recognized, and thus reveals what is likely a more complex magmatic system, involving a greater number of batches of magma and a more complex magma storage/delivery system. Here, we present a model for the magma plumbing system based on space-composition patterns and preliminary estimates of crystallization temperatures and pressures based on olivine-, feldspar- and clinopyroxene-liquid equilibria. Whole rock analyses show three compositionally distinct batches of magma within the Mono Craters proper: a felsic (73-78.4% SiO2), intermediate (64.4-68% SiO2) and mafic (52.7-61% SiO2) group. The Mono Lake Islands (Paoha and Negit) fall into the intermediate group, but contain distinctly lower TiO2 and Fe2O3 at a given SiO2 compared to all other Mono Craters; on this basis, we surmise that the Paoha and Negit eruptions represent a distinct episode of magmatism that is not directly related to the magmatic activity that created the Mono Craters proper. The discontinuous nature of the three groups indicates that magma mixing, while evident to some degree within and between certain domes, did not encompass the entire range of compositions at any given time. The three groups, however, do form a rough linear trend, and some subsets of domes have compositions that fall on distinctly linear (if still discontinuous) trends that cannot be reproduced by fractional crystallization, but rather are indicative of magma mixing. Our high-density sampling also reveals interesting geographical patterns: for example, felsic magmas erupt throughout the entire Mono Craters chain, erupting at a wide range of temperatures, ranging from 650-995°C, but

  4. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  5. Spatially-resolved carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Lindemann, S. R.; Cory, A. B.; Courtney, S.; Cole, J. K.; Fredrickson, J.

    2013-12-01

    Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington. Low annual rainfall and high evaporation rates contribute to the lake's high salinity. The predominant dissolved salt is magnesium sulfate, of which monimolimnion waters may seasonally exceed 2 M concentrations. Induced by its high salinity and meromictic nature, Hot Lake displays an inverse thermal gradient with deep horizons seasonally exceeding 50 °C. Despite extreme conditions, dense benthic microbial mats composed of cyanobacteria, anoxygenic photoheterotrophs, and bacterial heterotroph populations develop in the lake. These mats can exceed 1 cm in thickness and display vertical stratification in color due to bacterial pigmentation. Typical mat stratification includes an orange surface layer underlain by green and purple layers at increasing depth. Carbonates, including aragonite and magnesite, are observed within the mat and their formation is likely induced or influenced by microbial metabolic activities and associated pH excursions. We are exploring the role Hot Lake's microbial mats play in carbon cycling. Cyanobacteria are the dominant CO2-fixing organisms in the mat and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. Secondly, we seek to understand the overall net carbon balance of the mat through a growing season. We are using a stable isotope probing approach for assessing carbon uptake and migration through representative mat samples. We performed a series of ex situ incubations of freshly harvested mat samples in lake water amended with 13C-labeled bicarbonate or substrates commonly consumed by heterotrophs (including acetate and glucose) and using multiple stable isotope techniques to track label uptake, residence time, remineralization, and location within the mat. In addition to bulk isotope

  6. Lipid Biomarkers for Methanogens in Hypersaline Cyanobacterial Mats for Guerrero Negro, Baja California Sur

    NASA Technical Reports Server (NTRS)

    Jahnke, Linda L.; Embaye, Tsegereda; Summons, Roger E.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Analyses of sediments from the vicinity of active methane seeps have uncovered a particular suite of lipid biomarker patterns that characterize methane consuming archaea and their syntrophic, sulfate reducing partners. These isoprenoid biomarkers, largely identified by their anomalously light carbon isotopic signatures, have been a topic of intense research activity and are recorded in numerous methane-rich environments from Holocene to Cenozoic. This phenomenon has implications for depleted kerogens at 2.7 Ga on early Earth (Hinrichs 2002). In contrast, the lipid biosignatures of methane producing archaea are not readily identified through distinct isotopic labels and have received comparably little attention in analyses of archaea in environmental samples. Indeed, environmental analyses generally detect only free archaeal lipids, not the intact, polar molecules found in the membrane of living organisms. As part of the Ames NAI, the 'Early Microbial Ecosystem Research Group' (EMERG) is working to understand microbial processes in the hypersaline cyanobacterial mats growing in the salt evaporation ponds of the Exportadora de Sal at Guerrero Negro, Baja California Sur, Mexico. The aim of this study was to develop methods by which we could identify the organisms responsible for methane generation in this environment. While the ester-bound fatty acids, hopanoids and wax esters provide a means to identify most of the bacterial components of these mats, the archaea which Ere evidently present through genomic assays and the fact of intense methane production (Hoehler et al. 200l), have not been identified through their corresponding lipid signatures. Archaeal core lipids present a number of analytical challenges. The core lipids of methanogens comprise C20, C40 and sometimes C25 isoprenoid chains, linked through ether bonds to glycerol. As well as archaeal (C20), sn-2- and sn-3-hydroxyarchaeol are associated particularly with methylotrophic methanogens. Recently, we have

  7. Chemical, crystallographic and stable isotopic properties of alunite and jarosite from acid-Hypersaline Australian lakes

    USGS Publications Warehouse

    Alpers, C.N.; Rye, R.O.; Nordstrom, D.K.; White, L.D.; King, B.-S.

    1992-01-01

    Chemical, crystallographic and isotopic analyses were made on samples containing alunite and jarosite from the sediments of four acid, hypersaline lakes in southeastern and southwestern Australia. The alunite and jarosite are K-rich with relatively low Na contents based on chemical analysis and determination of unit cell dimensions by powder X-ray diffraction. Correcting the chemical analyses of fine-grained mineral concentrates from Lake Tyrrell, Victoria, for the presence of halite, silica and poorly crystalline aluminosilicates, the following formulas indicate best estimates for solid-solution compositions: for alunite, K0.87Na0.04(H3O)0.09(Al 0.92Fe0.08)3(SO4)2(OH) 6 and for jarosite, K0.89Na0.07(H3O)0.04(Fe 0.80Al0.20)3(SO4)2(OH) 6. The ??D-values of alunite are notably larger than those for jarosite from Lake Tyrrell and it appears that the minerals have closely approached hydrogen isotope equilibrium with the acidic regional groundwaters. The ??D results are consistent with a fractionation ???60-70??? between alunite and jarosite observed in other areas. However, interpretation of ??D results is complicated by large variability in fluid ??DH2O from evaporation, mixing and possible ion hydration effects in the brine. ??D-values of water derived from jarosite by step-wise heating tend to be smaller at 250??C, at which temperature hydronium and other non-hydroxyl water is liberated, than at 550??C, where water is derived from the hydroxyl site, but the differences are not sufficiently different to invalidate measurements of total ??D obtained by conventional, single-step heating methods. ??34S-values for alunite and jarosite from the four lakes (+19.7 to +21.2??? CDT) and for aqueous sulfate from Lake Tyrrell (+18.3 to +19.8???) are close to the values for modern evaporites (+21.5 ??0.3???) and seawater (+20??0.5???) and are probably typical of seawater-derived aerosols in arid coastal environments. ??34-S-values slightly smaller than that for seawater may

  8. Effect of salinity on the concentrations of radioisotopes in the aquatic environment of a hypersaline coastal lagoon.

    PubMed

    Ramadan, Khaled A; Seddeek, Mostafa K; Sharshar, Taher; Elnimr, Tarek; Badran, Hussein M

    2014-06-01

    Research of the effect of salinity on the fate of radionuclides has been focused on seas or estuarine systems while there is almost no information on marine environments with a salinity higher than that of sea water. The hypersaline Bardawil lagoon is a concentration basin, with evaporation exceeding precipitation. This study presents the characteristics of some environmental factors including salinity and their influence on the distribution of natural and artificial radionuclides in different compartments of the lagoon. The concentrations of (238)U, (234)Th, (228)Ra and (137)Cs in sediments show some degree of dependency on the water's salinity. Migration of these radionuclides in the lagoon's sediments must take place from high salinity to low-salinity regions. Cluster analysis revealed the data structure for sediment by separating (137)Cs and (40)K from (232)Th, (226)Ra, and (234)Th and for sand by separating (40)K from the other radioisotopes.

  9. Remotely sensed sea surface salinity in the hyper-saline Arabian Gulf: Application to landsat 8 OLI data

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Temimi, Marouane; Ghedira, Hosni

    2017-03-01

    In this study, a multivariable linear algorithm was developed to derive sea surface salinity (SSS) from remote sensing reflectance (Rrs) in the hyper-saline Arabian Gulf. In situ measured Rrs at Operational Land Imager (OLI) bands 1-4 were involved in the algorithm development. Comparisons between estimated and in situ measured SSS produced R2s reaching 0.74 and RMSEs <2%. The proposed algorithm was applied to OLI scenes collected in November 2013 and March 2016 to demonstrate SSS changes from normal conditions when extreme events were encountered. The good agreement between satellite-derived and in situ Rrs suggested that the algorithm uncertainties were primarily attributed to the algorithm parameterization and more measurements were required for performance improving. Compared with OLI-derived products, numerical simulations overestimated SSS by 3.4%. Our findings demonstrate the potential of high resolution satellite products to study short-lasting events and capture fine-scale features in the marine environment.

  10. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  11. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  12. Hypersalinity and hydrogen peroxide upregulation of gene expression of antioxidant enzymes in Ulva fasciata against oxidative stress.

    PubMed

    Sung, Ming-Shiuan; Hsu, Yi-Ting; Hsu, Yuan-Ting; Wu, Tzure-Meng; Lee, Tse-Min

    2009-01-01

    The modulation of manganese superoxide dismutase (MnSOD), FeSOD, ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT) gene expression and activities and antioxidants in Ulva fasciata against hypersalinity (90 per thousand)-induced oxidative stress was studied. Increases in H(2)O(2) contents but no changes in lipid peroxidation and protein carbonyl group contents suggest oxidative damage did not occur in 90 per thousand condition. Antioxidants were consumed for reactive oxygen species (ROS) scavenging indicated by decreased ascorbate and glutathione contents by 90 per thousand. Antioxidant enzymes were differently expressed by 90 per thousand for ROS removal. MnSOD activity and transcript increased 1 h after 90 per thousand treatment with a peak at hour 3, while FeSOD activity increased fast to the plateau after 1 h and its transcript increased after 3 h. APX activity increased 1 h after 90 per thousand but its transcript rose till 3 h, and GR activity increased after 1 h with a peak at hour 3 but its transcript increased till 3 h. CAT activity and transcript increased after 12 h. Enzyme activity is transcriptionally regulated by 90 per thousand except a fast increase in FeSOD, APX, and GR activities during 1 h. APX is responsible for early H(2)O(2) decomposition while CAT scavenges H(2)O(2) in the later period. The inhibition of 90 per thousand induced increase of H(2)O(2) content and FeSOD activity and transcript by treatment of a H(2)O(2) scavenger, dimethylthiourea, and the increase of FeSOD transcript of 30 per thousand grown thalli by H(2)O(2) treatment suggest that H(2)O(2) mediates the upregulation of FeSOD by hypersalinity while other enzymes is modulated by factors other than H(2)O(2).

  13. Community structure and activity of a highly dynamic and nutrient-limited hypersaline microbial mat in Um Alhool Sabkha, Qatar.

    PubMed

    Al-Thani, Roda; Al-Najjar, Mohammad A A; Al-Raei, Abdul Munem; Ferdelman, Tim; Thang, Nguyen M; Al Shaikh, Ismail; Al-Ansi, Mehsin; de Beer, Dirk

    2014-01-01

    The Um Alhool area in Qatar is a dynamic evaporative ecosystem that receives seawater from below as it is surrounded by sand dunes. We investigated the chemical composition, the microbial activity and biodiversity of the four main layers (L1-L4) in the photosynthetic mats. Chlorophyll a (Chl a) concentration and distribution (measured by HPLC and hyperspectral imaging, respectively), the phycocyanin distribution (scanned with hyperspectral imaging), oxygenic photosynthesis (determined by microsensor), and the abundance of photosynthetic microorganisms (from 16S and 18S rRNA sequencing) decreased with depth in the euphotic layer (L1). Incident irradiance exponentially attenuated in the same zone reaching 1% at 1.7-mm depth. Proteobacteria dominated all layers of the mat (24%-42% of the identified bacteria). Anoxygenic photosynthetic bacteria (dominated by Chloroflexus) were most abundant in the third red layer of the mat (L3), evidenced by the spectral signature of Bacteriochlorophyll as well as by sequencing. The deep, black layer (L4) was dominated by sulfate reducing bacteria belonging to the Deltaproteobacteria, which were responsible for high sulfate reduction rates (measured using 35S tracer). Members of Halobacteria were the dominant Archaea in all layers of the mat (92%-97%), whereas Nematodes were the main Eukaryotes (up to 87%). Primary productivity rates of Um Alhool mat were similar to those of other hypersaline microbial mats. However, sulfate reduction rates were relatively low, indicating that oxygenic respiration contributes more to organic material degradation than sulfate reduction, because of bioturbation. Although Um Alhool hypersaline mat is a nutrient-limited ecosystem, it is interestingly dynamic and phylogenetically highly diverse. All its components work in a highly efficient and synchronized way to compensate for the lack of nutrient supply provided during regular inundation periods.

  14. Hypersalinity reduces the risk of cyanide toxicosis to insectivorous bats interacting with wastewater impoundments at gold mines.

    PubMed

    Griffiths, Stephen R; Donato, David B; Lumsden, Linda F; Coulson, Graeme

    2014-01-01

    Wildlife and livestock that ingest bioavailable cyanide compounds in gold mining tailings dams are known to experience cyanide toxicosis. Elevated levels of salinity in open impoundments have been shown to prevent wildlife cyanide toxicosis by reducing drinking and foraging. This finding appears to be consistent for diurnal wildlife interacting with open impoundments, however the risks to nocturnal wildlife of cyanide exposure are unknown. We investigated the activity of insectivorous bats in the airspace above both fresh (potable to wildlife) and saline water bodies at two gold mines in the goldfields of Western Australian. During this study, cyanide-bearing solutions stored in open impoundments at both mine sites were hypersaline (range=57,000-295,000 mg/L total dissolved solids (TDS)), well above known physiological tolerance of any terrestrial vertebrate. Bats used the airspace above each water body monitored, but were more active at fresh than saline water bodies. In addition, considerably more terminal echolocation buzz calls were recorded in the airspace above fresh than saline water bodies at both mine sites. However, it was not possible to determine whether these buzz calls corresponded to foraging or drinking bouts. No drinking bouts were observed in 33 h of thermal video footage recorded at one hypersaline tailings dam, suggesting that this water is not used for drinking. There is no information on salinity tolerances of bats, but it could be assumed that bats would not tolerate salinity in drinking water at concentrations greater than those documented as toxic for saline-adapted terrestrial wildlife. Therefore, when managing wastewater impoundments at gold mines to avoid wildlife mortalities, adopting a precautionary principle, bats are unlikely to drink solutions at salinity levels ≥50,000 mg/L TDS.

  15. Modification and performance evaluation of a mono-valve engine

    NASA Astrophysics Data System (ADS)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  16. A Lane Following Mobile Robot Navigation System Using Mono Camera

    NASA Astrophysics Data System (ADS)

    Cho, Yeongcheol; Kim, Seungwoo; Park, Seongkeun

    2017-02-01

    In this paper, we develop a lane following mobile robot using mono camera. By using camera, robot can recognize its left and right side lane, and maintain the center line of robot track. We use Hough Transform for detecting lane, and PID controller for control direction of mobile robot. The validity of our robot system is performed in a real world robot track environment which is built up in our laboratory.

  17. Bacterial oxidation of methyl bromide in Mono Lake, California

    USGS Publications Warehouse

    Connell, T.L.; Joye, S.B.; Miller, L.G.; Oremland, R.S.

    1997-01-01

    The oxidation of methyl bromide (MeBr) in the water column of Mono Lake, CA, was studied by measuring the formation of H14CO3 from [14C]MeBr. Potential oxidation was detected throughout the water column, with highest rates occurring in the epilimnion (5-12 m depth). The oxidation of MeBr was eliminated by filter-sterilization, thereby demonstrating the involvement of bacteria. Vertical profiles of MeBr activity differed from those obtained for nitrification and methane oxidation, indicating that MeBr oxidation is not simply a co-oxidation process by either nitrifiers or methanotrophs. Furthermore, specific inhibitors of methane oxidation and/or nitrification (e.g., methyl fluoride, acetylene, allyl sulfide) had no effect upon the rate of MeBr oxidation in live samples. Of a variety of potential electron donors added to Mono Lake water, only trimethylamine resulted in the stimulation of MeBr oxidation. Cumulatively, these results suggest that the oxidation of MeBr in Mono Lake waters is attributable to trimethylamine-degrading methylotrophs. Neither methyl chloride nor methanol inhibited the oxidation of [14C]MeBr in live samples, indicating that these bacteria directly oxidized MeBr rather than the products of MeBr nucleophilic substitution reactions.

  18. Nongeocentric axial dipole field behavior during the Mono Lake excursion

    NASA Astrophysics Data System (ADS)

    Negrini, Robert M.; McCuan, Daniel T.; Horton, Robert A.; Lopez, James D.; Cassata, William S.; Channell, James E. T.; Verosub, Kenneth L.; Knott, Jeffrey R.; Coe, Robert S.; Liddicoat, Joseph C.; Lund, Steven P.; Benson, Larry V.; Sarna-Wojcicki, Andrei M.

    2014-04-01

    A new record of the Mono Lake excursion (MLE) is reported from the Summer Lake Basin of Oregon, USA. Sediment magnetic properties indicate magnetite as the magnetization carrier and imply suitability of the sediments as accurate recorders of the magnetic field including relative paleointensity (RPI) variations. The magnitudes and phases of the declination, inclination, and RPI components of the new record correlate well with other coeval but lower resolution records from western North America including records from the Wilson Creek Formation exposed around Mono Lake. The virtual geomagnetic pole (VGP) path of the new record is similar to that from another high-resolution record of the MLE from Ocean Drilling Program (ODP) Site 919 in the Irminger Basin between Iceland and Greenland but different from the VGP path for the Laschamp excursion (LE), including that found lower in the ODP-919 core. Thus, the prominent excursion recorded at Mono Lake, California, is not the LE but rather one that is several thousands of years younger. The MLE VGP path contains clusters, the locations of which coincide with nonaxial dipole features found in the Holocene geomagnetic field. The clusters are occupied in the same time progression by VGPs from Summer Lake and the Irminger Basin, but the phase of occupation is offset, a behavior that suggests time-transgressive decay and return of the principal field components at the beginning and end of the MLE, respectively, leaving the nonaxial dipole features associated with the clusters dominant during the excursion.

  19. Mono- versus polydrug abuse patterns among publicly funded clients.

    PubMed

    Kedia, Satish; Sell, Marie A; Relyea, George

    2007-11-08

    To examine patterns of mono- versus polydrug abuse, data were obtained from intake records of 69,891 admissions to publicly funded treatment programs in Tennessee between 1998 and 2004. While descriptive statistics were employed to report frequency and patterns of mono- and polydrug abuse by demographic variables and by study years, bivariate logistic regression was applied to assess the probability of being a mono- or polydrug abuser for a number of demographic variables. The researchers found that during the study period 51.3% of admissions reported monodrug abuse and 48.7% reported polydrug abuse. Alcohol, cocaine, and marijuana were the most commonly abused substances, both alone and in combination. Odds ratio favored polydrug abuse for all but one drug category-other drugs. Gender did not affect drug abuse patterns; however, admissions for African Americans and those living in urban areas exhibited higher probabilities of polydrug abuse. Age group also appeared to affect drug abuse patterns, with higher odds of monodrug abuse among minors and adults over 45 years old. The discernable prevalence of polydrug abuse suggests a need for developing effective prevention strategies and treatment plans specific to polydrug abuse.

  20. Age of the Mono Lake excursion and associated tephra

    USGS Publications Warehouse

    Benson, L.; Liddicoat, J.; Smoot, J.; Sarna-Wojcicki, A.; Negrini, R.; Lund, S.

    2003-01-01

    The Mono Lake excursion (MLE) is an important time marker that has been found in lake and marine sediments across much of the Northern Hemisphere. Dating of this event at its type locality, the Mono Basin of California, has yielded controversial results with the most recent effort concluding that the MLE may actually be the Laschamp excursion (Earth Planet. Sci. Lett. 197 (2002) 151). We show that a volcanic tephra (Ash #15) that occurs near the midpoint of the MLE has a date (not corrected for reservoir effect) of 28,620 ?? 300 14C yr BP (??? 32,400 GISP2 yr BP) in the Pyramid Lake Basin of Nevada. Given the location of Ash #15 and the duration of the MLE in the Mono Basin, the event occurred between 31,500 and 33,300 GISP2 yr BP, an age range consistent with the position and age of the uppermost of two paleointensity minima in the NAPIS-75 stack that has been associated with the MLE (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009). The lower paleointensity minimum in the NAPIS-75 stack is considered to be the Laschamp excursion (Philos. Trans. R. Soc. London Ser. A 358 (2000) 1009).

  1. Ecophysiological plasticity of shallow and deep populations of the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa in response to hypersaline stress.

    PubMed

    Sandoval-Gil, Jose Miguel; Ruiz, Juan Manuel; Marín-Guirao, Lázaro; Bernardeau-Esteller, Jaime; Sánchez-Lizaso, Jose Luis

    2014-04-01

    The differential expression of the plant phenotypic plasticity due to inter- and intraspecific divergences can determine the plant physiological tolerance under stress. In this work, we examined the interspecific ecophysiological plasticity that the main Mediterranean seagrass species with distinct marine environmental distribution (Posidonia oceanica and Cymodocea nodosa) can exhibit in response to hypersaline stress. We also tested the potential implication of ecotypic intraspecific divergences in the development of such plasticities. To this end, plants from shallow (5-7 m) and deep (18-20 m) meadows of both were maintained under two salinity treatments (natural salinity level of 37, and hypersaline treatment of 43; Practical Salinity Scale) during a long-term experiment (i.e. 62 days) developed in a highly controlled mesocosm system. Hypersaline stress caused notable plastic physiological alterations in P. oceanica and C. nodosa, with appreciable inter- and intraspecific differences. Although both species were similarly able to osmoregulate by means of organic solute accumulation (proline and sugars) in response to hypersalinity stress, higher carbon balance reductions were detected in P. oceanica plants from the deep meadow and in shallower C. nodosa plants, due to both photosynthetic inhibition and enhancement of respiration. None of these deleterious effects were found in C. nodosa plants form the deeper meadow. Leaf photosynthetic pigments generally increased in P. oceanica from both depths, but light absorbance capacities by leaves and photosynthetic efficiency followed contrasting patterns, increasing and decreasing in plants from the deep and the shallow meadows, respectively, indicating distinct strategies to cope with photosynthetic dysfunctions. Despite the significant reduction of pigments in the shallower C. nodosa plants, their leaves were able to increase their light capture capacities under hypersaline stress, by means of particular leaf optics

  2. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    PubMed

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  3. The Relationship between Mono-abundance and Mono-age Stellar Populations in the Milky Way Disk

    NASA Astrophysics Data System (ADS)

    Minchev, I.; Steinmetz, M.; Chiappini, C.; Martig, M.; Anders, F.; Matijevic, G.; de Jong, R. S.

    2017-01-01

    Studying the Milky Way disk structure using stars in narrow bins of [Fe/H] and [α/Fe] has recently been proposed as a powerful method to understand the Galactic thick and thin disk formation. It has been assumed so far that these mono-abundance populations (MAPs) are also coeval, or mono-age, populations. Here we study this relationship for a Milky Way chemodynamical model and show that equivalence between MAPs and mono-age populations exists only for the high-[α/Fe] tail, where the chemical evolution curves of different Galactic radii are far apart. At lower [α/Fe]-values an MAP is composed of stars with a range in ages, even for small observational uncertainties and a small MAP bin size. Due to the disk inside-out formation, for these MAPs younger stars are typically located at larger radii, which results in negative radial age gradients that can be as large as 2 Gyr kpc‑1. Positive radial age gradients can result for MAPs at the lowest [α/Fe] and highest [Fe/H] end. Such variations with age prevent the simple interpretation of observations for which accurate ages are not available. Studying the variation with radius of the stellar surface density and scale height in our model, we find good agreement to recent analyses of the APOGEE red-clump (RC) sample when 1–4 Gyr old stars dominate (as expected for the RC). Our results suggest that the APOGEE data are consistent with a Milky Way model for which mono-age populations flare for all ages. We propose observational tests for the validity of our predictions and argue that using accurate age measurements, such as from asteroseismology, is crucial for putting constraints on Galactic formation and evolution.

  4. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    PubMed Central

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  5. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  6. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  7. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  8. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  9. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  10. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  11. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  12. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  13. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

    PubMed Central

    Bütepage, Mareike; Eckei, Laura; Verheugd, Patricia; Lüscher, Bernhard

    2015-01-01

    A key process in the regulation of protein activities and thus cellular signaling pathways is the modification of proteins by post-translational mechanisms. Knowledge about the enzymes (writers and erasers) that attach and remove post-translational modifications, the targets that are modified and the functional consequences elicited by specific modifications, is crucial for understanding cell biological processes. Moreover detailed knowledge about these mechanisms and pathways helps to elucidate the molecular causes of various diseases and in defining potential targets for therapeutic approaches. Intracellular adenosine diphosphate (ADP)-ribosylation refers to the nicotinamide adenine dinucleotide (NAD+)-dependent modification of proteins with ADP-ribose and is catalyzed by enzymes of the ARTD (ADP-ribosyltransferase diphtheria toxin like, also known as PARP) family as well as some members of the Sirtuin family. Poly-ADP-ribosylation is relatively well understood with inhibitors being used as anti-cancer agents. However, the majority of ARTD enzymes and the ADP-ribosylating Sirtuins are restricted to catalyzing mono-ADP-ribosylation. Although writers, readers and erasers of intracellular mono-ADP-ribosylation have been identified only recently, it is becoming more and more evident that this reversible post-translational modification is capable of modulating key intracellular processes and signaling pathways. These include signal transduction mechanisms, stress pathways associated with the endoplasmic reticulum and stress granules, and chromatin-associated processes such as transcription and DNA repair. We hypothesize that mono-ADP-ribosylation controls, through these different pathways, the development of cancer and infectious diseases. PMID:26426055

  14. Oxidation of ammonia and methane in an alkaline, saline lake

    USGS Publications Warehouse

    Joye, S.B.; Connell, T.L.; Miller, L.G.; Oremland, R.S.; Jellison, R.S.

    1999-01-01

    The oxidation of ammonia (NH3) and methane (CH4) was investigated in an alkaline saline lake, Mono Lake, California (U.S.A.). Ammonia oxidation was examined in April and July 1995 by comparing dark 14CO2 fixation rates in the presence or absence of methyl fluoride (MeF), an inhibitor of NH3 oxidation. Ammonia oxidizer-mediated dark 14CO2 fixation rates were similar in surface (5-7 m) and oxycline (11-15 m) waters, ranging between 70-340 and 89-186 nM d-1, respectively, or 1-7% of primary production by phytoplankton. Ammonia oxidation rates ranged between 580-2,830 nM d-1 in surface waters and 732-1,548 nM d-1 in oxycline waters. Methane oxidation was examined using a 14CH4 tracer technique in July 1994, April 1995, and July 1995. Methane oxidation rates were consistently higher in July, and rates in oxycline and anaerobic bottom waters (0.5-37 and 7-48 nM d-1, respectively) were 10-fold higher than those in aerobic surface waters (0.04-3.8 nM d-1). The majority of CH4 oxidation, in terms of integrated activity, occurred within anoxic bottom waters. Water column oxidation reduced the potential lake-atmosphere CH4 flux by a factor of two to three. Measured oxidation rates and water column concentrations were used to estimate the biological turnover times of NH3 and CH4. The NH3 pool turns over rapidly, on time scales of 0.8 d in surface waters and 10 d within the oxycline, while CH4 is cycled on 103-d time scales in surface waters and 102-d time scales within oxycline and bottom waters. Our data suggest an important role for NH3 oxidation in alkaline, saline lakes since the process converts volatile NH3 to soluble NO2-, thereby reducing loss via lake-atmosphere exchange and maintaining nitrogen in a form that is readily available to phytoplankton.

  15. Biogeochemistry of natural gases in three alkaline, permanently stratified (meromictic) lakes

    SciTech Connect

    Oremland, R.S.; Miller, L.G. )

    1993-01-01

    Methane and associated light hydrocarbons are present as dissolved gases in the water columns of three alkaline, permanently stratified (meromictic) lakes: Big Soda Lake (Nevada), Mono Lake (California), and Soap Lake (Washington). Methane originates in the bottom sediments, but higher gaseous hydrocarbons (that is, gaseous hydrocarbons of higher molecular weight) have either microbial or thermal sources in the different lakes. Stable isotopic composition, hydrocarbon indices, radiocarbon dating, abundance-versus-depth profiles, and biological experiments indicate that methane is formed in the sediments by microbial processes. Methanogenesis and sulfate-reduction have much higher activity in the shallow littoral sediments than in the colder, more saline pelagic sediments of all three lakes. Methane-rich gas seeps are common in Mono Lake and emanate from a natural-gas deposit underlying the current lakebed. Seeps do not occur in either Big Soda Lake or Soap Lake. Ethane and higher alkanes are present in Big Soda Lake and Mono Lake, but are not present in significant quantities in Soap Lake. It is not clear if the presence of these higher alkanes is a consequence of biological activity, a result of mixing with thermogenic gases, or a combination of both factors. These results indicate the potential complexity and diversity encountered in studying light-hydrocarbon biogeochemistry in thermally and microbially active systems. Hence, in the case of methane, detailed multidisciplinary studies are often needed to determine its origin. For ethane and higher alkanes, there is currently a paucity of basic scientific information to allow for unequivocal identification of microbial and thermogenetic sources. 61 refs., 12 figs., 6 tabs.

  16. Dust Storms From Owens and Mono Valleys, California

    DTIC Science & Technology

    1986-09-01

    developed a model that predicts that the level of Mono Lake will stabilize at 6.223 feet just after the year 2050, if the present water export and...done on the behavior of the saline components. and models were c’nstructed usint! lake-bed clays and brines. We visited the plava monthly in 1985. 21...lake bed. Spiralling streamers of dust arose from south of the water body to the region of the sand dunes, where an opaque cloud rose to 8,500 feet

  17. IRIS Toxicological Review of Ethylene Glycol Mono-Butyl ...

    EPA Pesticide Factsheets

    EPA released the draft report, Toxicological Review for Ethylene Glycol Mono-Butyl Ether , that was distributed to Federal agencies and White House Offices for comment during the Science Discussion step of the IRIS Assessment Development Process. Comments received from other Federal agencies and White House Offices are provided below with external peer review panel comments. EPA is conducting a peer review of the scientific basis supporting the human health hazard and dose-response assessment of EGBE that will appear on the Integrated Risk Information System (IRIS) database.

  18. Holocene Depositional History of Shad Pond, a Hypersaline Coastal Lagoon, Eleuthera, Bahamas and Its Influence on Lucayan Occupation

    NASA Astrophysics Data System (ADS)

    Boush, L. E.; Fentress, S.; Conroy, M.; Cook, A.; Miseridina, D.; Buynevich, I. V.; Myrbo, A.; Brown, E. T.; Berman, M.; Gnivecki, P.; Kjellmark, E.; Savarese, M.; Brady, K.

    2013-12-01

    Shad Pond, an enclosed hypersaline lagoon on the southeastern tip of Eleuthera, Bahamas reveals a ~5000-year record of hurricane activity, as well as sea-level and climate change history. Three sediment cores recovered 1.04-2.54 m of sediment over bedrock along a transect perpendicular to shoreline. Sediment composition and grain size, loss on ignition, X-ray fluorescence (XRF) measurements of the cores along with dune transects and ground-penetrating radar (GPR) profiles adjacent to the lake provide a comprehensive dataset to interpret the history of this coastal basin. The sedimentary sequence was composed of alternating lithofacies that included microbial mats, sand, and peat. Laminated mats often alternated with sandy layers in thin to medium-bedded units. Two peat layers were found in the basal part of the shore-distal core (Site 1) between 1.82-2.40 m and 2.53-2.54 m and were separated by a 13-cm-thick gray mud layer. In general, organic matter and carbonate content tracked granulometry and composition in all cores. High-resolution XRF scans of Ca and Sr at Site 1 show elevated levels ~3,700 cal yBP, which correlate with the top of the peat layer, but these elemental concentrations vary at Site 3. XRF measurements of Fe indicate a dust flux that has been recorded regionally throughout the Caribbean. Dune transects and GPR profiles indicate a phased history of the pond, beginning with initial stages as an open lagoon dominated by red mangrove, with black mangrove and buttonwood also present. The lake likely closed at approximately 3,700 cal yBP indicated by the transition between the upper peat and microbial mat layers. This could have been due to increased storm events in a regime of rising sea level. Aeolian aggradation continued to heighten the barrier between the bedrock headlands to its present position. Hurricane overwash deposits punctuated the algal mat accumulation throughout this time period. Present-day hypersaline conditions sustain algal mats

  19. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Zhuang, Guang-Chao; Elling, Felix J.; Nigro, Lisa M.; Samarkin, Vladimir; Joye, Samantha B.; Teske, Andreas; Hinrichs, Kai-Uwe

    2016-08-01

    Among the most extreme habitats on Earth, dark, deep, anoxic brines host unique microbial ecosystems that remain largely unexplored. As the terminal step of anaerobic degradation of organic matter, methanogenesis is a potentially significant but poorly constrained process in deep-sea hypersaline environments. We combined biogeochemical and phylogenetic analyses with incubation experiments to unravel the origin of methane in the hypersaline sediments of Orca Basin in the northern Gulf of Mexico. Substantial concentrations of methane, up to 3.4 mM, coexisted with high concentrations of sulfate from 16 to 43 mM in two sediment cores retrieved from the northern and southern parts of Orca Basin. The strong depletion of 13C in methane (-77‰ to -89‰) points towards a biological source. While low concentrations of competitive substrates limited the significance of hydrogenotrophic and acetoclastic methanogenesis, the presence of non-competitive methylated substrates (methanol, trimethylamine, dimethyl sulfide, dimethylsulfoniopropionate) supported the potential for methane generation through methylotrophic methanogenesis. Thermodynamic calculations demonstrated that hydrogenotrophic and acetoclastic methanogenesis were unlikely to occur under in situ conditions, while methylotrophic methanogenesis from a variety of substrates was highly favorable. Likewise, carbon isotope relationships between methylated substrates and methane suggested methylotrophic methanogenesis was the major source of methane. Stable and radio-isotope tracer experiments with 13C-labeled bicarbonate, acetate and methanol and 14C-labeled methylamine indicated that methylotrophic methanogenesis was the predominant methanogenic pathway. Based on 16S rRNA gene sequences, halophilic methylotrophic methanogens related to the genus Methanohalophilus dominated the benthic archaeal community in the northern basin and also occurred in the southern basin. High abundances of methanogen lipid biomarkers such as

  20. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  1. Mono-W dark matter signals at the LHC: simplified model analysis

    SciTech Connect

    Bell, Nicole F.; Cai, Yi; Leane, Rebecca K. E-mail: yi.cai@unimelb.edu.au

    2016-01-01

    We study mono-W signals of dark matter (DM) production at the LHC, in the context of gauge invariant renormalizable models. We analyze two simplified models, one involving an s-channel Z' mediator and the other a t-channel colored scalar mediator, and consider examples in which the DM-quark couplings are either isospin conserving or isospin violating after electroweak symmetry breaking. While previous work on mono-W signals have focused on isospin violating EFTs, obtaining very strong limits, we find that isospin violating effects are small once such physics is embedded into a gauge invariant simplified model. We thus find that the 8 TeV mono-W results are much less constraining than those arising from mono-jet searches. Considering both the leptonic (mono-lepton) and hadronic (mono fat jet) decays of the W, we determine the 14 TeV LHC reach of the mono-W searches with 3000 fb{sup −1} of data. While a mono-W signal would provide an important complement to a mono-jet discovery channel, existing constraints on these models imply it will be a challenging signal to observe at the 14 TeV LHC.

  2. Biosynthesis and Degradation of Mono-, Oligo-, and Polysaccharides: Introduction

    NASA Astrophysics Data System (ADS)

    Wilson, Iain B. H.

    Glycomolecules, whether they be mono-, oligo-, or polysaccharides or simple glycosides, are—as any biological molecules—the products of biosynthetic processes; on the other hand, at the end of their lifespan, they are also subject to degradation. The beginning point, biochemically, is the fixation of carbon by photosynthesis; subsequent metabolism in plants and other organisms results in the generation of the various monosaccharides. These must be activated—typically as nucleotide sugars or lipid-phosphosugars—before transfer by glycosyltransferases can take place in order to produce the wide variety of oligo- and polysaccharides seen in Nature; complicated remodelling processes may take place—depending on the pathway—which result in partial trimming of a precursor by glycosidases prior to the addition of further monosaccharide units. Upon completion of the 'life' of a glycoconjugate, glycosidases will degrade the macromolecule finally into monosaccharide units which can be metabolized or salvaged for incorporation into new glycan chains. In modern glycoscience, a wide variety of methods—genetic, biochemical, analytical—are being employed in order to understand these various pathways and to place them within their biological and medical context. In this chapter, these processes and relevant concepts and methods are introduced, prior to elaboration in the subsequent more specialized chapters on biosynthesis and degradation of mono-, oligo-, and polysaccharides.

  3. MonoSLAM: real-time single camera SLAM.

    PubMed

    Davison, Andrew J; Reid, Ian D; Molton, Nicholas D; Stasse, Olivier

    2007-06-01

    We present a real-time algorithm which can recover the 3D trajectory of a monocular camera, moving rapidly through a previously unknown scene. Our system, which we dub MonoSLAM, is the first successful application of the SLAM methodology from mobile robotics to the "pure vision" domain of a single uncontrolled camera, achieving real time but drift-free performance inaccessible to Structure from Motion approaches. The core of the approach is the online creation of a sparse but persistent map of natural landmarks within a probabilistic framework. Our key novel contributions include an active approach to mapping and measurement, the use of a general motion model for smooth camera movement, and solutions for monocular feature initialization and feature orientation estimation. Together, these add up to an extremely efficient and robust algorithm which runs at 30 Hz with standard PC and camera hardware. This work extends the range of robotic systems in which SLAM can be usefully applied, but also opens up new areas. We present applications of MonoSLAM to real-time 3D localization and mapping for a high-performance full-size humanoid robot and live augmented reality with a hand-held camera.

  4. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    NASA Astrophysics Data System (ADS)

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-02-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source.

  5. Mono-Energy Coronary Angiography with a Compact Synchrotron Source

    PubMed Central

    Eggl, Elena; Mechlem, Korbinian; Braig, Eva; Kulpe, Stephanie; Dierolf, Martin; Günther, Benedikt; Achterhold, Klaus; Herzen, Julia; Gleich, Bernhard; Rummeny, Ernst; Noёl, Peter B.; Pfeiffer, Franz; Muenzel, Daniela

    2017-01-01

    X-ray coronary angiography is an invaluable tool for the diagnosis of coronary artery disease. However, the use of iodine-based contrast media can be contraindicated for patients who present with chronic renal insufficiency or with severe iodine allergy. These patients could benefit from a reduced contrast agent concentration, possibly achieved through application of a mono-energetic x-ray beam. While large-scale synchrotrons are impractical for daily clinical use, the technology of compact synchrotron sources strongly advanced during the last decade. Here we present a quantitative analysis of the benefits a compact synchrotron source can offer in coronary angiography. Simulated projection data from quasi-mono-energetic and conventional x-ray tube spectra is used for a CNR comparison. Results show that compact synchrotron spectra would allow for a significant reduction of contrast media. Experimentally, we demonstrate the feasibility of coronary angiography at the Munich Compact Light Source, the first commercial installation of a compact synchrotron source. PMID:28181544

  6. Algal growth and utilization of phosphorus studied by combined mono-culture and co-culture experiments.

    PubMed

    Ren, Lingxiao; Wang, Peifang; Wang, Chao; Chen, Juan; Hou, Jun; Qian, Jin

    2017-01-01

    Phosphorus (P) plays a critical role in algal growth; therefore, a better understanding of P availability is essential to control harmful algal blooms. Three algae species, Microcystis aeruginosa, Chlorella pyrenoidosa, and Pseudokirchneriella subcapitata, were mono-cultured and co-cultured on three types of P substrates, dissolved inorganic P (DIP), phosphomonoesters glucose-6-phosphate (G-6-P) and β-glycerol phosphate (β-glycerol-P), and phosphonate (glyphosate), to explore their growth and P utilization. All three species could utilize dissolved organic P (DOP) to sustain their growth, whereas DIP was their preferred P substrate in both culture types. Algae could regulate the P uptake capacity under different P conditions, and the added P could be rapidly accumulated at the beginning of the culture and slowly utilized during the subsequent life cycle. M. aeruginosa exhibited wider P selectivity and could utilize all three P substrates, whereas the other two species could only use phosphomonoester (G-6-P and β-glycerol-P) in the mono-cultures. However, in the co-cultures, the relative bioavailability of DOP for M. aeruginosa and C. pyrenoidosa was enhanced, and M. aeruginosa might contribute to the growth of C. pyrenoidosa and P. subcapitata when fed with glyphosate. The three species showed an intrinsic ability to produce alkaline phosphatase (AP), and AP activity (APA) was regulated by Pi stress. However, high APA did not necessarily lead to high Pi release and algal growth on unfavorable substrates. Although M. aeruginosa was not superior in growth rate in the mono-cultures, it showed a better P accumulation ability and maintained stable growth on different P substrates. Moreover, it was a good competitor, suppressing the thriving growth of the other species in co-cultures. Overall, the findings indicated the strategic flexibility of P utilization by algae and the strong competitive ability of M. aeruginosa in Pi-limited and DOP-enriched natural

  7. The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater

    PubMed Central

    Cui, You-Wei; Zhang, Hong-Yu; Ding, Jie-Ran; Peng, Yong-Zhen

    2016-01-01

    With annual increases in the generation and use of saline wastewater, the need to avoid environmental problems such as eutrophication is critical. A previous study identified ways to start up a halophilic sludge domesticated from estuarine sediments to remove nitrogen from wastewater with a salinity of 30 g/L. This investigation expands that work to explore the impact of salinity on nitrogen removal. This study demonstrated that the mixed halophilic consortia removed nitrogen from wastewater with a salinity of 30–85 g/L. A kinetic analysis showed that halophilic nitrifiers selected based on hypersalinity were characterized by low Ks, μmax and specific ammonium oxidization rates. This explains the decrease in ammonium removal efficiency in the high salinity operational phases. Salinity inhibited ammonia oxidizing bacteria (AOB) activity, as well as the number of dominant AOB, but did not significantly affect the AOB dominant species. Three most dominant AOB lineages in the halophilic sludge were Nitrosomonas marina, Nitrosomonas europaea, and Nitrosococcus mobilis. Nitrosomonas europaea and Nitrosococcus mobilis were mainly affected by salinity, while nitrite accumulation and ammonia loading played the key role in determining the abundance of Nitrosococcus mobilis and Nitrosococcus europaea. The study contributes insights about shifts in halophilic nitrifying bacterial populations. PMID:27109617

  8. Use of 13C-Labeled Substrates to Determine Relative Methane Production Rates in Hypersaline Microbial Communities

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Bebout, B.; Chanton, J.

    2015-12-01

    Rates and pathways of methane production were determined from photosynthetic soft microbial mats and gypsum-encrusted endoevaporites collected in hypersaline environments from California, Mexico and Chile, as well as an organic-rich mud from a pond in the El Tatio volcanic fields, Chile. Samples (mud, homogenized soft mats and endoevaporites) were incubated anaerobically with deoxygenated site water, and the increase in methane concentration through time in the headspaces of the incubation vials was used to determine methane production rates. To ascertain the substrates used by the methanogens, 13C-labeled methylamines, methanol, dimethylsulfide, acetate or bicarbonate were added to the incubations (one substrate per vial) and the stable isotopic composition of the resulting methane was measured. The vials amended with 13C-labeled methylamines produced the most 13C-enriched methane, generally followed by the 13C-labeled methanol-amended vials. The stable isotope data and the methane production rates were used to determine first order rate constants for each of the substrates at each of the sites. Estimates of individual substrate use revealed that the methylamines produced 55 to 92% of the methane generated, while methanol was responsible for another 8 to 40%.

  9. Competition for inorganic carbon between oxygenic and anoxygenic phototrophs in a hypersaline microbial mat, Guerrero Negro, Mexico.

    PubMed

    Finke, Niko; Hoehler, Tori M; Polerecky, Lubos; Buehring, Benjamin; Thamdrup, Bo

    2013-05-01

    While most oxygenic phototrophs harvest light only in the visible range (400-700 nm, VIS), anoxygenic phototrophs can harvest near infrared light (> 700 nm, NIR). To study interactions between the photosynthetic guilds we used microsensors to measure oxygen and gross oxygenic photosynthesis (gOP) in a hypersaline microbial mat under full (VIS + NIR) and VIS illumination. Under normal dissolved inorganic carbon (DIC) concentrations (2 mM), volumetric rates of gOP were reduced up to 65% and areal rates by 16-31% at full compared with VIS illumination. This effect was enhanced (reduction up to 100% in volumetric, 50% in areal rates of gOP) when DIC was lowered to 1 mM, but diminished at 10 mM DIC or lowered pH. In conclusion, under full-light illumination anoxygenic phototrophs are able to reduce the activity of oxygenic phototrophs by efficiently competing for inorganic carbon within the highly oxygenated layer. Anoxygenic photosynthesis, calculated from the difference in gOP under full and VIS illumination, represented between 10% and 40% of the C-fixation. The DIC depletion in the euphotic zone as well as the significant C-fixation by anoxygenic phototrophs in the oxic layer influences the carbon isotopic composition of the mat, which needs to be taken into account when interpreting isotopic biosignals in geological records.

  10. Probing Saltern Brines with an Oxygen Electrode: What Can We Learn about the Community Metabolism in Hypersaline Systems?

    PubMed Central

    Oren, Aharon

    2016-01-01

    We have explored the use of optical oxygen electrodes to study oxygenic photosynthesis and heterotrophic activities in crystallizer brines of the salterns in Eilat, Israel. Monitoring oxygen uptake rates in the dark enables the identification of organic substrates that are preferentially used by the community. Addition of glycerol (the osmotic solute synthesized by Dunaliella) or dihydroxyacetone (produced from glycerol by Salinibacter) enhanced respiration rates. Pyruvate, produced from glycerol or from some sugars by certain halophilic Archaea also stimulated community respiration. Fumarate had a sparing effect on respiration, possibly as many halophilic Archaea can use fumarate as a terminal electron acceptor in respiration. Calculating the photosynthetic activity of Dunaliella by monitoring oxygen concentration changes during light/dark incubations is not straightforward as light also affects respiration of some halophilic Archaea and Bacteria due to action of light-driven proton pumps. When illuminated, community respiration of brine samples in which oxygenic photosynthesis was inhibited by DCMU decreased by ~40%. This effect was interpreted as the result of competition between two energy yielding systems: the bacteriorhodopsin proton pump and the respiratory chain of the prokaryotes. These findings have important implications for the interpretation of other published data on photosynthetic and respiratory activities in hypersaline environments. PMID:27338478

  11. Gene expression profiling of microbial activities and interactions in sediments under haloclines of E. Mediterranean deep hypersaline anoxic basins.

    PubMed

    Edgcomb, Virginia P; Pachiadaki, Maria G; Mara, Paraskevi; Kormas, Konstantinos A; Leadbetter, Edward R; Bernhard, Joan M

    2016-11-01

    Deep-sea hypersaline anoxic basins (DHABs) in the Eastern Mediterranean Sea are considered some of the most polyextreme habitats on Earth. In comparison to microbial activities occurring within the haloclines and brines of these unusual water column habitats near the Mediterranean seafloor, relatively little is known about microbial metabolic activities in the underlying sediments. In addition, it is not known whether activities are shaped by the unique chemistries of the different DHAB brines and whether evidence exists for active microbial eukaryotes in those sediments. Metatranscriptome analysis was applied to sediment samples collected using ROV Jason from underneath the haloclines of Urania, Discovery and L'Atalante DHABs and a control site. We report on expression of genes associated with sulfur and nitrogen cycling, putative osmolyte biosynthetic pathways and ion transporters, trace metal detoxification, selected eukaryotic activities (particularly of fungi), microbe-microbe interactions, and motility in sediments underlying the haloclines of three DHABs. Relative to our control sediment sample collected outside of Urania Basin, microbial communities (including eukaryotes) in the Urania and Discovery DHAB sediments showed upregulation of expressed genes associated with nitrogen transformations, osmolyte biosynthesis, heavy metals resistance and metabolism, eukaryotic organelle functions, and cell-cell interactions. Sediments underlying DHAB haloclines that have cumulative physico-chemical stressors within the limits of tolerance for microoorganisms can therefore be hotspots of activity in the deep Mediterranean Sea.

  12. Schmidingerothrix extraordinaria nov. gen., nov. spec., a secondarily oligomerized hypotrich (Ciliophora, Hypotricha, Schmidingerotrichidae nov. fam.) from hypersaline soils of Africa.

    PubMed

    Foissner, Wilhelm

    2012-08-01

    Schmidingerothrix extraordinaria nov. gen., nov. spec. was discovered in hypersaline soils from Namibia and Egypt. Its morphology and ontogenesis were studied with standard methods. Schmidingerothrix extraordinaria is a highly flexible, slender hypotrich with an average size of 90 × 15 μm. Likely, it prefers a salinity around 100‰ and feeds mainly on bacteria. Schmidingerothrix is extraordinary in having a frayed buccal lip, three-rowed adoral membranelles, only one frontal cirrus, a distinct gap between frontal and ventral adoral membranelles, and a miniaturized first frontal membranelle, while a paroral membrane, dorsal bristle rows, and buccal, transverse, and caudal cirri are absent. The ontogenesis is simple: the opisthe oral apparatus and frontoventral ciliature originate de novo, while parental structures are involved in the development of the ciliature of the proter. This special organization is used to define a new family, the Schmidingerotrichidae, which is likely related to the Cladotrichidae. Schmidingerothrix extraordinaria is very likely a secondarily oligomerized hypotrich, and the reduction occurred possibly very long ago because no traces of the ancestral ciliature remained in the ontogenetic processes. Possibly, the simple ciliature is an adaptation to highly saline habitats, where competition is low and bacterial food abundant.

  13. Hydrochemical and isotopes studies in a hypersaline wetland to define the hydrogeological conceptual model: Fuente de Piedra Lake (Malaga, Spain).

    PubMed

    Montalván, F J; Heredia, J; Ruiz, J M; Pardo-Igúzquiza, E; García de Domingo, A; Elorza, F J

    2017-01-15

    The Fuente de Piedra lake is a hypersaline wetland of great extension (13.5km(2)) and rich in aquatic birds and other species. It became therefore the third Spanish wetland to be included in the Ramsar convention and has been a "nature reserve" since 1984. The lake has an endorheic basin (150km(2)) with variable-density flows dominated by complex hydrogeological conditions. The traditional conceptualization of endorheic basins in semiarid climates considered that the brine in this hydric system was exclusively of evaporative origin and was placed only in the lake and its surrounding discharge area in the basin. Previous geophysical and hydrochemical studies identified different types of waters and brines. In this work, natural tracers (Cl(-), Br(-), Na(+), Mg(2+)) and environmental isotopes ((18)O, (2)H, (14)C, (13)C and (3)H) were employed to a) discriminate different types of brines according to their degree of evaporation and genesis, and b) to estimate residence times of brine waters and identify recharge areas of the different flow subsystems. A conceptual model of the hydrogeological system of the lake basin and its links to a regional karst system is proposed.

  14. Phylogenetic Analysis of a Microbialite-Forming Microbial Mat from a Hypersaline Lake of the Kiritimati Atoll, Central Pacific

    PubMed Central

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth. PMID:23762495

  15. Desulfonatronobacter acetoxydans sp. nov.,: a first acetate-oxidizing, extremely salt-tolerant alkaliphilic SRB from a hypersaline soda lake.

    PubMed

    Sorokin, D Y; Chernyh, N A; Poroshina, M N

    2015-09-01

    Recent intensive microbiological investigation of sulfidogenesis in soda lakes did not result in isolation of any pure cultures of sulfate-reducing bacteria (SRB) able to directly oxidize acetate. The sulfate-dependent acetate oxidation at haloalkaline conditions has, so far, been only shown in two syntrophic associations of novel Syntrophobacteraceae members and haloalkaliphilic hydrogenotrophic SRB. In the course of investigation of one of them, obtained from a hypersaline soda lake in South-Western Siberia, a minor component was observed showing a close relation to Desulfonatronobacter acidivorans--a "complete oxidizing" SRB from soda lakes. This organism became dominant in a secondary enrichment with propionate as e-donor and sulfate as e-acceptor. A pure culture, strain APT3, was identified as a novel member of the family Desulfobacteraceae. It is an extremely salt-tolerant alkaliphile, growing with butyrate at salinity up to 4 M total Na(+) with a pH optimum at 9.5. It can grow with sulfate as e-acceptor with C3-C9 VFA and also with some alcohols. The most interesting property of strain APT3 is its ability to grow with acetate as e-donor, although not with sulfate, but with sulfite or thiosulfate as e-acceptors. The new isolate is proposed as a new species Desulfonatronobacter acetoxydans.

  16. Isolation and identification of culturable halophilic bacteria with producing hydrolytic enzyme from Incheh Broun hypersaline wetland in Iran.

    PubMed

    Zarparvar, P; Amoozegar, M A; Babavalian, H; Reza Fallahian, M; Tebyanian, H; Shakeri, F

    2016-10-31

    Incheh Broun hypersaline wetland is located near the border of Turkmenistan in thenorth of Iran. This wetland is notable because of salinity (280g/l) and alteration in pH range (2.8 to 6.8). Eastern part of wetland is affected by wastewater of iodine extraction factory.  Samples were taken from soil, water and salt. Totally, 400 bacterial strains were isolated of which 194 strains were Gram-positive bacilli, 184 strains were Gram-negative rod and 22 strains were Gram-positive cocci. According to phylogenetic analysis of 16S rRNA, selected strains were placed in three taxonomic phyla including Firmicutes, Actinobacteria and Gammaproteobacteria. Optimum growth was evaluated for salt and 22 strains were found to be moderate halophile and 33 strains were halotolerant. Production of lipase, amylase, gelatinase and protease was examined. Gram-positive bacilli were the main producers of hydrolytic enzymes. Gelatinase and protease were the most frequent enzymes. Gram-positive cocci were the main producers of lipase but they didn't produce amylase.

  17. Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins

    PubMed Central

    Corinaldesi, C.; Tangherlini, M.; Luna, G. M.; Dell'Anno, A.

    2014-01-01

    Deep hypersaline anoxic basins (DHABs) of the Mediterranean Sea are among the most extreme ecosystems on Earth and host abundant, active and diversified prokaryotic assemblages. However, factors influencing biodiversity and ecosystem functioning are still largely unknown. We investigated, for the first time, the impact of viruses on the prokaryotic assemblages and dynamics of extracellular DNA pool in the sediments of La Medee, the largest DHAB found on Earth. We also compared, in La Medee and L'Atalante sediments, the diversity of prokaryotic 16S rDNA sequences contained in the extracellular DNA released by virus-induced prokaryotic mortality. We found that DHAB sediments are hot-spots of viral infections, which largely contribute to the release of high amounts of extracellular DNA. DNase activities in DHAB sediments were much higher than other extracellular enzymatic activities, suggesting that extracellular DNA released from killed prokaryotes can be the most suitable trophic resource for benthic prokaryotes. Preserved extracellular DNA pools, which contained novel and diversified gene sequences, were very similar between the DHABs but dissimilar from the respective microbial DNA pools. We conclude that the strong viral impact in DHAB sediments influences the genetic composition of extracellular DNA, which can preserve the signatures of present and past infections. PMID:24523277

  18. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific.

    PubMed

    Schneider, Dominik; Arp, Gernot; Reimer, Andreas; Reitner, Joachim; Daniel, Rolf

    2013-01-01

    On the Kiritimati atoll, several lakes exhibit microbial mat-formation under different hydrochemical conditions. Some of these lakes trigger microbialite formation such as Lake 21, which is an evaporitic, hypersaline lake (salinity of approximately 170‰). Lake 21 is completely covered with a thick multilayered microbial mat. This mat is associated with the formation of decimeter-thick highly porous microbialites, which are composed of aragonite and gypsum crystals. We assessed the bacterial and archaeal community composition and its alteration along the vertical stratification by large-scale analysis of 16S rRNA gene sequences of the nine different mat layers. The surface layers are dominated by aerobic, phototrophic, and halotolerant microbes. The bacterial community of these layers harbored Cyanobacteria (Halothece cluster), which were accompanied with known phototrophic members of the Bacteroidetes and Alphaproteobacteria. In deeper anaerobic layers more diverse communities than in the upper layers were present. The deeper layers were dominated by Spirochaetes, sulfate-reducing bacteria (Deltaproteobacteria), Chloroflexi (Anaerolineae and Caldilineae), purple non-sulfur bacteria (Alphaproteobacteria), purple sulfur bacteria (Chromatiales), anaerobic Bacteroidetes (Marinilabiacae), Nitrospirae (OPB95), Planctomycetes and several candidate divisions. The archaeal community, including numerous uncultured taxonomic lineages, generally changed from Euryarchaeota (mainly Halobacteria and Thermoplasmata) to uncultured members of the Thaumarchaeota (mainly Marine Benthic Group B) with increasing depth.

  19. Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) treating hypersaline composite chemical wastewater.

    PubMed

    Mohan, S Venkata; Lalit Babu, V; Vijaya Bhaskar, Y; Sarma, P N

    2007-05-01

    Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) was studied in the process of treating hypersaline (total dissolved inorganic solids (TDIS) approximately 26 g/l) and low biodegradable (BOD/COD approximately 0.3) composite chemical wastewater. Significant enhancement in the substrate removal efficiency and biogas yield was observed after introducing the recirculation to the system. Maximum efficiency (COD removal efficiency - 51%; SDR - 3.14 kg COD/cum-day) was observed at recirculation to feed (R/F) ratio of 2 (OLR - 6.15 kg C OD/cum-day; HLR - 2.30 cum (liquid)/cum day; UFV(A) - 0.023 m/h). Subsequent increase of R/F to 3 (OLR - 6.15 kg COD/cum-day; HLR - 3.07cum (liquid)/cum-day; UFV(A) - 0.035 m/h) resulted in reduction in COD removal efficiency (32%; SDR - 1.97 kg COD/cum-day). The enhanced performance of the system due to the introduction of recirculation was attributed to the improvement in the mass transfer between the substrate present in the bulk liquid and the attached biofilm. The hydrodynamic behavior due to recirculation mode of operation reduced the concentration gradient (substrate inhibition) of substrate and reaction by-products (VFA) resulting in mixed flow conditions.

  20. Characterization of thermo-solvent stable protease from Halobacillus sp. CJ4 isolated from Chott Eldjerid hypersaline lake in Tunisia.

    PubMed

    Daoud, Lobna; Jlidi, Mouna; Hmani, Houda; Hadj Brahim, Adel; El Arbi, Mahdi; Ben Ali, Mamdouh

    2017-02-01

    About 110 newly isolated halophilic and halotolerant bacteria were screened for protease production. A moderately halophilic strain (CJ4), isolated from Chott Eldjerid Hypersaline lake in Tunisia, showed the highest activity on agar plate and was then selected. The biochemical and physiological characterization of the isolate along with the 16S rRNA sequence analysis placed it in the genus Halobacillus. Protease production was maximal at 120 g/L NaCl (2 M) and it started from the post-exponential phase reaching a maximum level at the early decline phase of bacterial growth. Protease activity was optimal at 0.4 M NaCl, pH 9 and 45 °C. It showed an excellent stability over wide ranges of temperatures (30-60 °C), NaCl concentrations (0-5 M), and pH values (5-10), which make it a good candidate for industrial applications at harsh conditions. Crude protease was strongly inhibited by PMSF revealing the dominance of serine proteases. Protease activity exhibited high stability in the presence of several organic solvents and detergent additives. These findings make Halobacillus sp. CJ4 protease with a great interest for many biotechnological applications at high salt or low water content such as peptide synthesis and detergent formulation.

  1. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  2. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  3. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  4. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  5. 40 CFR 721.1729 - Boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether. 721.1729 Section 721.1729 Protection... acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene glycol mono Me ether... identified as boric acid (H3BO3), mixed esters with polyethylene glycol mono-Bu ether and polyethylene...

  6. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  7. Matrix diffusion of some alkali- and alkaline earth-metals in granitic rock

    SciTech Connect

    Johansson, H.; Byegaard, J.; Skarnemark, G.; Skaalberg, M.

    1997-12-31

    Static through-diffusion experiments were performed to study the diffusion of alkali- and alkaline earth-metals in fine-grained granite and medium-grained Aespoe-diorite. Tritiated water was used as an inert reference tracer. Radionuclides of the alkali- and alkaline earth-metals (mono- and divalent elements which are not influenced by hydrolysis in the pH-range studied) were used as tracers, i.e., {sup 22}Na{sup +}, {sup 45}Ca{sup 2+} and {sup 85}Sr{sup 2+}. The effective diffusivity and the rock capacity factor were calculated by fitting the breakthrough curve to the one-dimensional solution of the diffusion equation. Sorption coefficients, K{sub d}, that were derived from the rock capacity factor (diffusion experiments) were compared with K{sub d} determined in batch experiments using crushed material of different size fractions. The results show that the tracers were retarded in the same order as was expected from the measured batch K{sub d}. Furthermore, the largest size fraction was the most representative when comparing batch K{sub d} with K{sub d} evaluated from the diffusion experiments. The observed effective diffusivities tended to decrease with increasing cell lengths, indicating that the transport porosity decreases with increasing sample lengths used in the diffusion experiments.

  8. Three-dimensional model of the Mono Basin (California): finite element analysis of the interaction between the Hartley Spring Fault and the Mono Dike

    NASA Astrophysics Data System (ADS)

    La Marra, D.; Manconi, A.; McDonnell, A.; Battaglia, M.

    2012-12-01

    Mono Basin is a northward-trending structural depression lying immediately east of the central Sierra Nevada (California) that extends from the northern edge of Long Valley Caldera towards the center of Mono Lake. The Mono-Inyo Craters volcanic chain forms a prominent 17-km-long arcuate ridge within the Mono Basin. Recent studies have proposed that the volcanism and tectonism in this area is likely interrelated. Stratigraphic data suggest that a series of strong earthquakes occurred during the North Mono-Inyo eruption sequence of 1350 A.D. Geological data are consistent with rupture of the Hartley Springs fault during the eruption sequence. The temporal proximity of these events suggests the possibility of a causal relationship. We use the Finite Element Method (FEM) to generate a three-dimensional model of the Mono Basin and investigate the feedback mechanism between dike intrusion and slip along the Hartley Springs fault. First we combine the potential of the FEM with the Okada (1992) analytical solution for a homogeneous elastic flat half-space to validate our model. Then, to better simulate a geodynamic model of the Mono Basin, we implement more realistic dynamics that include gravity forces, vertical and lateral heterogeneities of the crust, and topography. We evaluate the distribution of local stress changes to study the influence of the Inyo dike intrusion on the Hartley Springs fault and how slip along the fault may encourage the propagation of dikes towards the surface. We employ the Coulomb stress change as a failure criterion on the Hartley Springs fault. Preliminary results indicate that slip along the Hartley Springs fault may have encouraged the intrusion of the Mono Dike.

  9. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  10. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  11. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  12. Water-quality data for selected sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, April 1994 to March 1995

    USGS Publications Warehouse

    Wang, Bronwen; Rockwell, G.L.; Blodgett, J.C.

    1995-01-01

    Water-quality data for selected sites on Reversed, Rush, and Alger Creeks and Gull and Silver Lakes, Mono County, California, were collected from April 1994 to March 1995. Water samples were analyzed for major ions and trace elements, nutrients, methylene blue active substances, and oil and grease. Field measurements were made for discharge, specific conductance, pH, water temperature, barometric pressure, dissolved oxygen, and alkalinity. Additional data collected include vertical water profiles of specific conductance, pH, water temperature, and dissolved oxygen collected at 3.3-foot intervals for Gull and Silver Lakes; chlorophyll-a and -b concentrations and Secchi depth for Gull and Silver Lakes; sediment interstitial- water nutrient concentrations in cores from Gull Lake; and lake surface and volume of Gull and Silver Lakes.

  13. Synthesis, purification, and time-dependent disposition studies of 9- or 10-mono-iodostearic acid and 9- and 10-mono-iodostearyl carnitine

    SciTech Connect

    Reed, K.W.

    1985-01-01

    The purpose of this investigation was to evaluate the potential use of radiolabeled 9- or 10-mono-iodostearyl carnitine as a perfusion and metabolic imaging agent for the heart. Radiochemical purity was achieved and determined by the use of silica gel and/or anion exchange resin chromatography. Radiochemical yields of 45-63 and 4% were obtained for the fatty acid and carnitine ester, respectively. Male albino mice were sacrificed at 2, 5, 7, 10, 15, 20, 30, and 50 minutes post-injection with either /sup 125/I 9- or 10-mono-iodostearic acid or 9- or 10-mono-iodostearyl (-) carnitine. The lungs, liver heart, kidney, spleen, pancreas, small intestine, stomach, thyroid, blood, fat, and skeletal muscle tissue were excised and assayed for levels of radioactivity in a NaI crystal well counter. The very low target-to-nontarget ratios obtained with /sup 125/I 9- or 10-mono-iodostearyl carnitine in mice strongly suggest that radioiodinated 9- or 10-mono-iodostearyl carnitine is not suitable for use as a myocardial imaging agent. However, radioiodinated 9- or 10-mono-iodostearic acid showed promise as a myocardial imaging agent and may warrant further investigation.

  14. Energetic N-trinitroethyl-substituted mono-, di-, and triaminotetrazoles.

    PubMed

    Zhang, Qinghua; Zhang, Jiaheng; Parrish, Damon A; Shreeve, Jean'ne M

    2013-08-12

    A series of dense energetic N-trinitroethyl-substituted mono-, bis-, and tri-5-aminotetrazoles were obtained by reacting primary amines with in situ generated cyanogen azide, followed by the trinitroethyl functionalization that involves a condensation of a hydroxymethyl intermediate (prepared by a reaction with formaldehyde) with trinitromethane. These compounds were fully characterized by using multinuclear NMR spectroscopy, IR, elemental analysis, differential scanning calorimetry (DSC), and, in one case with 9, with single-crystal XRD analysis. The heats of formation for all compounds were calculated with Gaussian 03 and then combined with experimental densities to determine the detonation pressures (P) and velocities (D(v)) of the energetic materials. Interestingly, most of them exhibited high density, good thermal stability, acceptable oxygen balance, positive heat of formation, low impact sensitivity, and excellent detonation properties, which highlighted their practical application potentials as a fascinating class of highly energetic materials.

  15. Lithium adsorption on heteroatom mono and dual doped graphene

    NASA Astrophysics Data System (ADS)

    Denis, Pablo A.

    2017-03-01

    Herein, we studied the interaction of lithium with monodoped (X) and dual-doped graphene (XY), X = Al, Si, P and S and Y = B, N and O. Dual-doping is the best choice to modulate the interaction of lithium with graphene. The strongest interaction with lithium was observed for SN-dual-doped graphene, while S-doped and N-doped graphene displayed the weakest interactions. With regards to the electronic properties, for some systems Li adsorption opened a band-gap, while for others restored the Dirac cones and the semimetallic character at the K-point. Therefore, Li-doping is a useful tool to fine-tune the band gap in mono and dual-doped graphene.

  16. The radiocarbon budget for Mono Lake: an unsolved mystery

    USGS Publications Warehouse

    Broecker, W.S.; Wanninkhof, R.; Mathieu, G.; Peng, T.-H.; Stine, S.; Robinson, S.; Herczeg, A.; Stuiver, M.

    1988-01-01

    Since 1957 the 14C C ratio of the dissolved inorganic carbon in Mono Lake has risen by about 60???. The magnitude of this increase is about four times larger than that expected from the invasion of bomb-produced 14C from the atmosphere. We have eliminated the following explanations: (1) measurement error, (2) an unusually high physical exchange rate for non-reactive gases, (3) inorganic enhancement of the CO2 exchange rate, and (4) biological enhancement of the CO2 exchange rate. Clandestine disposal of waste radiocarbon remains a dark-horse explanation. In the course of our investigations we have uncovered evidence for at least one episodic input of radiocarbon-free carbon to the lake over the last 1000 years. We speculate that this injection was related to a hydrothermal event resulting from sublacustrine volcanic activity. ?? 1988.

  17. Effects of mono- and bicultural experiences on auditory perception.

    PubMed

    Wong, Patrick C M; Chan, Alice H D; Margulis, Elizabeth H

    2012-04-01

    The auditory system functions in the context of everyday life and the cultural environment in which we live. Although cultural-invariant, universal principles certainly contribute to sound processing, cultural factors play a role as well. In this review paper, we discuss two potential sources of cultural influence on auditory perception. We term the first type bottom-up, and use it to refer to the way that increased exposure to particular kinds of sound could shape our auditory and auditory-neural responses. The second type we term top-down, and use it to refer to the way our cultural upbringing broadly shapes how we think, which may in turn have an impact on how we perceive the world. An important consideration regarding cultural influences is that many individuals grow up with exposure to environmental stimulations of more than one culture. In our discussion, we will consider both mono- and bicultural experiences.

  18. Study of viscosity of mono-, di-, and trialkylamines

    NASA Astrophysics Data System (ADS)

    Oswal, S. L.; Sindhe, R. G.; Patel, A. T.; Dave, J. P.; Patel, S. G.; Patel, B. M.

    1992-07-01

    Viscosities of several mono-, di-, and trialkylamines have been measured in the temperature range 298 to 333 K. It is observed that viscosities are highly dependent on shape, size, and association through H-bond or through dipole. Following the transition state theory, energy, Gibbs free energy, and entropy of activation of viscous flow have been calculated. The values of expansion energy for these liquids have also been calculated using free volume theory, and subsequently amines have been classified as volume-restrained or energy-restrained liquids. The group contribution method of Van Velzen, Cardozo, and Langenkamp for estimating viscosity has been examined with the present and literature data, and the new group contribution increments ΔN i and ΔB i for amines have been evaluated.

  19. Aryl hydrocarbon mono-oxygenase activity in human lymphocytes

    SciTech Connect

    Griffin, G.D.; Schuresko, D.D.

    1981-06-01

    Aryl hydrocarbon mono-oxygenase (AHM), an enzyme of key importance in metabolism of xenobiotic chemicals such as polynuclear aromatic hydrocarbons (PNA), is present in human lymphocytes. Studies investing the relation of activity of AHM in human lymphocytes to parameters such as disease state, PNA exposure, in vitro mitogen stimulation, etc. have been summarized in this report. Some studies have demonstrated increased AHM activity in lymphocytes from cigarette smokers (compared to nonsmokers), and in lung cancer patients when compared to appropriate control groups. These observations are confused by extreme variability in human lymphocyte AHM activities, such variability arising from factors such as genetic variation in AHM activity, variation in in vitro culture conditions which affect AHM activity, and the problematical relationship of common AHM assays to actual PNA metabolism taking place in lymphocytes. If some of the foregoing problems can be adequately addressed, lymphocyte AHM activity could hold the promise of being a useful biomarker system for human PNA exposure.

  20. Mono-Higgs detection of dark matter at the LHC

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Lin, Tongyan; Wang, Lian-Tao

    2014-06-01

    Motivated by the recent discovery of the Higgs boson, we investigate the possibility that a missing energy plus Higgs final state is the dominant signal channel for dark matter at the LHC. We consider examples of higher-dimension operators where a Higgs and dark matter pair are produced through an off-shell Z or γ, finding potential sensitivity at the LHC to cutoff scales of around a few hundred GeV. We generalize this production mechanism to a simplified model by introducing a Z' as well as a second Higgs doublet, where the pseudoscalar couples to dark matter. Resonant production of the Z' which decays to a Higgs plus invisible particles gives rise to a potential mono-Higgs signal. This may be observable at the 14 TeV LHC at low tan β and when the Z' mass is roughly in the range 600 GeV to 1.3 TeV.

  1. 21 CFR 184.1521 - Monosodium phosphate derivatives of mono- and diglycerides.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Monosodium phosphate derivatives of mono- and diglycerides. 184.1521 Section 184.1521 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... Specific Substances Affirmed as GRAS § 184.1521 Monosodium phosphate derivatives of mono- and...

  2. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  3. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  4. 40 CFR 721.10360 - 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol mono...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-(triethoxysilyl)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (generic). 721.10360... Substances § 721.10360 1-Substituted propane, 3-(triethoxysilyl)-, reaction products with polyethylene glycol...)-, reaction products with polyethylene glycol mono-(branched tridecyl) ether (PMN P-09-628) is subject...

  5. Magnetic and gravity studies of Mono Lake, east-central, California

    USGS Publications Warehouse

    Athens, Noah D.; Ponce, David A.; Jayko, Angela S.; Miller, Matt; McEvoy, Bobby; Marcaida, Mae; Mangan, Margaret T.; Wilkinson, Stuart K.; McClain, James S.; Chuchel, Bruce A.; Denton, Kevin M.

    2014-01-01

    From August 26 to September 5, 2011, the U.S. Geological Survey (USGS) collected more than 600 line-kilometers of shipborne magnetic data on Mono Lake, 20 line-kilometers of ground magnetic data on Paoha Island, 50 gravity stations on Paoha and Negit Islands, and 28 rock samples on Paoha and Negit Islands, in east-central California. Magnetic and gravity investigations were undertaken in Mono Lake to study regional crustal structures and to aid in understanding the geologic framework, in particular regarding potential geothermal resources and volcanic hazards throughout Mono Basin. Furthermore, shipborne magnetic data illuminate local structures in the upper crust beneath Mono Lake where geologic exposure is absent. Magnetic and gravity methods, which sense contrasting physical properties of the subsurface, are ideal for studying Mono Lake. Exposed rock units surrounding Mono Lake consist mainly of Quaternary alluvium, lacustrine sediment, aeolian deposits, basalt, and Paleozoic granitic and metasedimentary rocks (Bailey, 1989). At Black Point, on the northwest shore of Mono Lake, there is a mafic cinder cone that was produced by a subaqueous eruption around 13.3 ka. Within Mono Lake there are several small dacite cinder cones and flows, forming Negit Island and part of Paoha Island, which also host deposits of Quaternary lacustrine sediments. The typical density and magnetic properties of young volcanic rocks contrast with those of the lacustrine sediment, enabling us to map their subsurface extent.

  6. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an...

  7. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an...

  8. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an...

  9. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an...

  10. 21 CFR 573.820 - Polyoxyethylene glycol (400) mono- and dioleates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.820 Polyoxyethylene glycol (400) mono- and dioleates. The food additive polyoxyethylene glycol (400) mono- and dioleates may be safely used as an...

  11. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  12. 40 CFR 721.10437 - Sulfonic acid, linear xylene alkylate, mono, sodium salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Sulfonic acid, linear xylene alkylate... Significant New Uses for Specific Chemical Substances § 721.10437 Sulfonic acid, linear xylene alkylate, mono... chemical substances identified generically as sulfonic acid, linear xylene alkylate, mono, sodium...

  13. Mono and digallium selenide clusters as potential superhalogens.

    PubMed

    Seeburrun, Neelum; Archibong, Edet F; Ramasami, Ponnadurai

    2015-03-01

    We present a systematic theoretical study on mono and digallium selenide clusters, Ga(m)Se(n) (m = 1, 2 and n  =  1-4), along with their negatively and positively charged counterparts. Different theoretical methods, namely density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2) and coupled cluster singles and doubles, including non-iterative triples [CCSD(T)], were employed in conjunction with the 6-311+G(2df) basis set. The lowest-energy configurations of gallium selenides prefer to be planar, with the exception of cationic GaSe4 and Ga2Se4. The adiabatic electron affinities (AEA) of Ga(m)Se(n) (m = 1, 2 and n  = 1-4) clusters range from 1.07 to 3.78 eV, and their adiabatic ionization potentials (AIP) vary from 7.57 to 8.76 eV using the CCSD(T)//B3LYP level of theory. It was found that the AEAs of gallium selenides do not depend solely on the electrophilicity of the clusters but also on their electronic structures. No significant trend was observed in the AIP values and HOMO-LUMO (H-L) gaps with increase in cluster size of the mono and digallium selenide series. Among the dissociation channels, the decomposition of GaSe4 → GaSe2 + Se2 was found to be thermodynamically most favored. Furthermore, the AEAs of GaSe2, GaSe3, GaSe4 and Ga2Se4 were found to exceed that of the chlorine atom and are therefore termed as 'superhalogens'. Finally, the AEAs of the Ga2X(n) (X = O-Se; n = 2-4) series were found to be almost similar.

  14. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  15. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    PubMed

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  16. Sediment characteristics and water quality in the two hyper-saline lagoons along the Red Sea coast of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Rasul, Najeeb; Al-Farawati, Radwan; Al-Harbi, Omer; Naser Qutub, Abdul

    2013-04-01

    The two hyper-saline Shoaiba lagoons, Khawr ash Shaibah al Masdudah (northern lagoon) and Khawr ash Shaibah al Maftuhah (southern lagoon) have a unique environmental set-up because no rivers or wadis flow into the lagoons and therefore detrital material to the lagoons is lacking and most of the sediments are indigenous carbonates. The biogenic material is mostly derived from coral debris, coralline algae and molluscs abundant in gravel and sand size fractions. The evaporite deposits from the adjoining sabkhas are transported to the lagoon during tidal cycles. Carbonate is abundant in the form of aragonite and High Mg-calcite indicating carbonate to be recent and formed under shallow water conditions. In general, the sediments are the result of the mechanical breakdown of molluscs and coral reefs by either human activity or by coral boring marine organisms and physical processes such as tidal and wind generated currents. Strong currents dominate only the deeper part at the entrance of the lagoons that causes the winnowing of the finer sediments, and its transportation during flooding and ebbing. Shallow depths averaging 3 m, wind and tidal stirring are the main forces preventing the lagoons from developing stratification resulting in a well-mixed body of water. The shallow depth of the lagoons keep the turbidity levels higher, whereas salinity as high as 52 ‰ and water temperature as high as 38 °C helps in the formation of halite at the periphery. The cyclical inundation of sabkhas by a thin sheet of water during tidal cycles is important in understanding the ecological consequence. Mangrove stands in the lagoons act as a source of nutrients to the flora and fauna inhabiting the lagoons. The configurations of the mouth of the lagoons influence the tidal currents, including the sediment and water movement. The tidal current is enhanced as it enters the lagoons, in response to the funneling effect caused by the narrow channel. The current diffuses as the entrance

  17. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  18. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  19. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  20. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  1. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  2. Anaerobranca californiensis sp. nov., an anaerobic, alkalithermophilic, fermentative bacterium isolated from a hot spring on Mono Lake.

    PubMed

    Gorlenko, Vladimir; Tsapin, Alexandre; Namsaraev, Zorigto; Teal, Tracy; Tourova, Tatyana; Engler, Diane; Mielke, Randy; Nealson, Kenneth

    2004-05-01

    A novel, obligately anaerobic, alkalithermophilic, chemo-organotrophic bacterium was isolated from the sediment of an alkaline hot spring located on Paoha Island in Mono Lake, California, USA. This rod-shaped bacterium was motile via peritrichous flagella. Isolated strains grew optimally in 5-25 g NaCl l(-1), at pH 9.0-9.5 and at a temperature of 58 degrees C and were fermentative and mainly proteolytic, utilizing peptone, Casamino acids and yeast extract. Optimal growth was seen in the presence of elemental sulfur, polysulfide or thiosulfate with concomitant reduction to hydrogen sulfide. Sulfite was also formed in an equal ratio to sulfide during reduction of thiosulfate. The novel isolate could also reduce Fe(III) and Se(IV) in the presence of organic matter. On the basis of physiological properties, 16S rRNA gene sequence and DNA-DNA hybridization data, strain PAOHA-1(T) (=DSM 14826(T)=UNIQEM 227(T)) belongs to the genus Anaerobranca and represents a novel species, Anaerobranca californiensis sp. nov.

  3. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics.

    PubMed

    Moustafa, Ahmed M A; McPhedran, Kerry N; Moreira, Jesús; Gamal El-Din, Mohamed

    2014-12-16

    The thermodynamics of adsorption and competitive interactions of five weak acids on a graphite surface was assessed in alkaline solutions. Adsorption of the acids in mono- and multicompound solutions followed their Freundlich isotherms which suggest a diversity of graphite adsorption sites as confirmed by the presence of carboxylic and phenolic groups observed on graphite surfaces. Thermodynamic calculations assigned the formation of the negatively charged assisted hydrogen bond (-CAHB) between ionized solutes and adsorbent surface groups as the possible adsorption mechanism. However, the similar pKa values of current acids resulted in comparable free energies for -CAHB formation (ΔG(-CAHB)) being less than solvation free energies (ΔGSolv). Thus, additional ΔG is supplemented by increased hydrophobicity due to proton exchange of ionized acids with water (ΔΔG Hydrophobicity). Adsorption capacities and competition coefficients indicated that ΔΔG Hydrophobicity values depend on the neutral and ionized acid Kow. Competitive adsorption implies that multilayer adsorption may occur via hydrophobic bonding with the CH3 ends of the self-assembled layer which affects the acid adsorption capacities in mixtures as compared to monocompound solutions. The determination of adsorption mechanisms will assist in understanding of the fate and bioavailability of emerging and classical weak acids released into natural waters.

  4. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats

    NASA Technical Reports Server (NTRS)

    D'Amelio, E. D.; Cohen, Y.; Des Marais, D. J.

    1987-01-01

    An unidentified filamentous purple bacterium, probably belonging to a new genus or even a new family, is found in close association with the filamentous, mat-forming cyanobacterium Microcoleus chthonoplastes in a hypersaline pond at Guerrero Negro, Baja California Sur, Mexico, and in Solar Lake, Sinai, Egypt. This organism is a gliding, segmented trichome, 0.8-0.9 micrometer wide. It contains intracytoplasmic stacked lamellae which are perpendicular and obliquely oriented to the cell wall, similar to those described for the purple sulfur bacteria Ectothiorhodospira. These bacteria are found inside the cyanobacterial bundle, enclosed by the cyanobacterial sheath. Detailed transmission electron microscopical analyses carried out in horizontal sections of the upper 1.5 mm of the cyanobacterial mat show this cyanobacterial-purple bacterial association at depths of 300-1200 micrometers, corresponding to the zone below that of maximal oxygenic photosynthesis. Sharp gradients of oxygen and sulfide are established during the day at this microzone in the two cyanobacterial mats studied. The close association, the distribution pattern of this association and preliminary physiological experiments suggest a co-metabolism of sulfur by the two-membered community. This probable new genus of purple bacteria may also grow photoheterotrophically using organic carbon excreted by the cyanobacterium. Since the chemical gradients in the entire photic zone fluctuate widely in a diurnal cycle, both types of metabolism probably take place. During the morning and afternoon, sulfide migrates up to the photic zone allowing photoautotrophic metabolism with sulfide as the electron donor. During the day the photic zone is highly oxygenated and the purple bacteria may either use oxidized species of sulfur such as elemental sulfur and thiosulfate in the photoautotrophic mode or grow photoheterotrophically using organic carbon excreted by M. chthonoplastes. The new type of filamentous purple sulfur

  5. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile.

    PubMed

    Fernandez, Ana B; Rasuk, Maria C; Visscher, Pieter T; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G; Patterson, Molly M; Ventosa, Antonio; Farias, Maria E

    2016-01-01

    We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity.

  6. Carbon isotope discrepancy between precambrian stromatolites and their modern analogs: Inferences from hypersaline microbial mats of the sinai coast

    NASA Astrophysics Data System (ADS)

    Schidlowski, Manfred

    1985-12-01

    The isotopic composition of organic carbon from extant stromatolite-type microbial ecosystems is commonly slanted toward heavy δ13 C values as compared to respective compositions of average organic matter (including that from Precambrian stromatolites). This seems the more enigmatic as the bulk of primary producers from benthic microbial communities are known to fix carbon via the C3 pathway normally entailing the sizable fractionations of the RuBP carboxylase reaction. There is reason to believe that the small fractionations displayed by aquatic microorganisms result from the limitations of a diffusion-controlled assimilatory pathway in which the isotope effect of the enzymatic reaction is largely suppressed. Apart from the diffusion-control exercised by the aqueous environment, transport of CO2 to the photosynthetically active sites will be further impeded by the protective slime (polysaccharide) coatings commonly covering microbial mats in which gas diffusivities are extremely low. Ineffective discrimination against13C becomes, however, most pronounced in hypersaline environments where substantially reduced CO2 solubilities tend to push carbon into the role of a limiting nutrient (brine habitats constitute preferential sanctuaries of mat-forming microbenthos since the emergence of Metazoan grazers ˜ 0.7 Ga ago). As the same microbial communities had been free to colonize normal marine environments during the Precambrian, the CO2 concentration effect was irrelevant to the carbon-fixing pathway of these ancient forms. Therefore, it might not surprise that organic matter from Precambrian stromatolites displays the large fractionations commonly associated with C3 photosynthesis. Increased mixing ratios of CO2 in the Precambrian atmosphere may have additionally contributed to the elimination of the diffusion barrier in the carbon-fixing pathways of ancient mat-forming microbiota.

  7. Microbial Diversity in Sediment Ecosystems (Evaporites Domes, Microbial Mats, and Crusts) of Hypersaline Laguna Tebenquiche, Salar de Atacama, Chile

    PubMed Central

    Fernandez, Ana B.; Rasuk, Maria C.; Visscher, Pieter T.; Contreras, Manuel; Novoa, Fernando; Poire, Daniel G.; Patterson, Molly M.; Ventosa, Antonio; Farias, Maria E.

    2016-01-01

    We combined nucleic acid-based molecular methods, biogeochemical measurements, and physicochemical characteristics to investigate microbial sedimentary ecosystems of Laguna Tebenquiche, Atacama Desert, Chile. Molecular diversity, and biogeochemistry of hypersaline microbial mats, rhizome-associated concretions, and an endoevaporite were compared with: The V4 hypervariable region of the 16S rRNA gene was amplified by pyrosequencing to analyze the total microbial diversity (i.e., bacteria and archaea) in bulk samples, and in addition, in detail on a millimeter scale in one microbial mat and in one evaporite. Archaea were more abundant than bacteria. Euryarchaeota was one of the most abundant phyla in all samples, and particularly dominant (97% of total diversity) in the most lithified ecosystem, the evaporite. Most of the euryarchaeal OTUs could be assigned to the class Halobacteria or anaerobic and methanogenic archaea. Planctomycetes potentially also play a key role in mats and rhizome-associated concretions, notably the aerobic organoheterotroph members of the class Phycisphaerae. In addition to cyanobacteria, members of Chromatiales and possibly the candidate family Chlorotrichaceae contributed to photosynthetic carbon fixation. Other abundant uncultured taxa such as the candidate division MSBL1, the uncultured MBGB, and the phylum Acetothermia potentially play an important metabolic role in these ecosystems. Lithifying microbial mats contained calcium carbonate precipitates, whereas endoevoporites consisted of gypsum, and halite. Biogeochemical measurements revealed that based on depth profiles of O2 and sulfide, metabolic activities were much higher in the non-lithifying mat (peaking in the least lithified systems) than in lithifying mats with the lowest activity in endoevaporites. This trend in decreasing microbial activity reflects the increase in salinity, which may play an important role in the biodiversity. PMID:27597845

  8. Salinivibrio costicola GL6, a Novel Isolated Strain for Biotransformation of Caffeine to Theobromine Under Hypersaline Conditions.

    PubMed

    Ashengroph, Morahem

    2017-01-01

    The present study has been conducted towards isolation of moderately halophilic bacteria capable of transforming caffeine into theobromine. A total of 45 caffeine-degrading moderate halophiles were enriched from hypersaline lakes and examined for the biotransformation of caffeine to theobromine by thin-layer chromatography (TLC) and high-performance liquid chromatography analyses. Strain GL6, giving the highest yield of theobromine, was isolated from the Hoz Soltan Lake, 20 % w/v salinity, central Iran, and identified as Salinivibrio costicola based on morphological and biochemical features as well as its 16S rRNA gene sequence analysis (GeneBank Accession No. KT378066) and DNA-DNA relatedness. The biotransformation of caffeine with strain GL6 leads to the formation of two metabolites, identified as theobromine and paraxanthine, but the yield of paraxanthine was much lower. Further study on the production of theobromine from caffeine under resting cell experiment was carried out subsequently. The optimal yield of theobromine (56 %) was obtained after a 32-h incubation using 5 mM of caffeine and 15 g l(-1) (wet weight) of biomass in 0.1 M saline phosphate buffer (pH 7.0 and 10 % w/v NaCl) under agitation 180 rpm at 30 °C. The biotransformed theobromine was purified by preparative TLC and subjected to FTIR and mass spectroscopy for chemical identification. This is the first evidence for biotransformation of caffeine into theobromine by strains of the genus Salinivibrio.

  9. Archaeal and bacterial communities respond differently to environmental gradients in anoxic sediments of a California hypersaline lake, the Salton Sea.

    PubMed

    Swan, Brandon K; Ehrhardt, Christopher J; Reifel, Kristen M; Moreno, Lilliana I; Valentine, David L

    2010-02-01

    Sulfidic, anoxic sediments of the moderately hypersaline Salton Sea contain gradients in salinity and carbon that potentially structure the sedimentary microbial community. We investigated the abundance, community structure, and diversity of Bacteria and Archaea along these gradients to further distinguish the ecologies of these domains outside their established physiological range. Quantitative PCR was used to enumerate 16S rRNA gene abundances of Bacteria, Archaea, and Crenarchaeota. Community structure and diversity were evaluated by terminal restriction fragment length polymorphism (T-RFLP), quantitative analysis of gene (16S rRNA) frequencies of dominant microorganisms, and cloning and sequencing of 16S rRNA. Archaea were numerically dominant at all depths and exhibited a lesser response to environmental gradients than that of Bacteria. The relative abundance of Crenarchaeota was low (0.4 to 22%) at all depths but increased with decreased carbon content and increased salinity. Salinity structured the bacterial community but exerted no significant control on archaeal community structure, which was weakly correlated with total carbon. Partial sequencing of archaeal 16S rRNA genes retrieved from three sediment depths revealed diverse communities of Euryarchaeota and Crenarchaeota, many of which were affiliated with groups previously described from marine sediments. The abundance of these groups across all depths suggests that many putative marine archaeal groups can tolerate elevated salinity (5.0 to 11.8% [wt/vol]) and persist under the anaerobic conditions present in Salton Sea sediments. The differential response of archaeal and bacterial communities to salinity and carbon patterns is consistent with the hypothesis that adaptations to energy stress and availability distinguish the ecologies of these domains.

  10. The influence of salinity on D/H fractionation in dinosterol and brassicasterol from globally distributed saline and hypersaline lakes

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel B.; Sachs, Julian P.

    2014-05-01

    Salinity, growth rate, growth stage, nutrient limitation and temperature have all been shown to influence the magnitude of D/H fractionation in algal lipids through laboratory and field studies. Of these factors, salinity has been studied most extensively in the field, but to date all such investigations have focused on transect studies within specific and isolated environments. Here we test the relationship between salinity and the magnitude of D/H fractionation in algal lipids through paired analyses of sedimentary and particulate lipid and water hydrogen isotope values at a wide range of continental and coastal lake sites spanning salinities from 0 to 117 ppt. Our results demonstrate broad consistency between D/H fractionations in dinosterol and brassicasterol with those obtained from previous work, with salinity changes of 1 ppt resulting in lipid δD changes of 0.7-1‰. Although our results also show variability in D/H fractionation between sites that is not related to salinity, the fact that any relationship emerges above the influences of other factors suggests that the salinity effect is dominant for some lipids in the majority of saline to hypersaline environments. This improved understanding of D/H fractionation in dinosterol and brassicasterol synthesis supports the use of these compounds as paleohydrologic indicators. When combined with D/H measurements from a second lipid or oxygen isotope measurements from carbonate, quantitative reconstructions of salinity and lake water isotope changes are possible. Extending the number of algal lipids within which a consistent relationship between D/H fractionation and salinity has been identified also supports the notion that the relationship is widespread among unicellular photoautotrophs.

  11. Halanaerobium sehlinense sp. nov., an extremely halophilic, fermentative, strictly anaerobic bacterium from sediments of the hypersaline lake Sehline Sebkha.

    PubMed

    Abdeljabbar, Hedi; Cayol, Jean-Luc; Ben Hania, Wajdi; Boudabous, Abdellatif; Sadfi, Najla; Fardeau, Marie-Laure

    2013-06-01

    A strictly anaerobic, extremely halophilic, Gram-positive, rod-shaped bacterium was isolated from the hypersaline (>20% NaCl) surface sediments of Sehline Sebkha in Tunisia. The strain, designated 1Sehel(T), was strictly halophilic and proliferated at NaCl concentrations of between 5% and 30% (saturation), with optimal growth at 20% NaCl. Strain 1Sehel(T) was non-spore-forming, non-motile, appearing singly or in pairs, or occasionally as long chains and measured 0.5-0.8 µm by 3-10 µm. Strain 1Sehel(T) grew optimally at pH values of 7.4 but had a very broad pH range for growth (pH 5.2-9.4). It grew at temperatures between 20 and 50 °C with an optimum at 43 °C. Strain 1Sehel(T) required yeast extract for growth. The isolate fermented glucose, galactose, fructose, glycerol, mannose, maltose, ribose, pyruvate and sucrose. The fermentation products from glucose utilization were lactate, acetate, formate, ethanol, CO2 and H2. The G+C ratio of the DNA was 32.7 mol%. The major fatty acids were C15:1ω6c/7c, C16:1ω7c, C16:0 and C15:0. On the basis of phylogenetic and physiological properties, strain 1Sehel(T) (=DSM 25582(T)=JCM 18213(T)) is proposed as the type strain of Halanaerobium sehlinense sp. nov., within the family Halanaerobiaceae.

  12. Alkaline earth metal catalysts for asymmetric reactions.

    PubMed

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  13. The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).

    PubMed

    Pallarés, Susana; Arribas, Paula; Bilton, David T; Millán, Andrés; Velasco, Josefa

    2015-01-01

    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by

  14. Abundance, Distribution, and Activity of Fe(II)-Oxidizing and Fe(III)-Reducing Microorganisms in Hypersaline Sediments of Lake Kasin, Southern Russia

    PubMed Central

    Emmerich, Maren; Bhansali, Ankita; Lösekann-Behrens, Tina; Schröder, Christian; Kappler, Andreas

    2012-01-01

    The extreme osmotic conditions prevailing in hypersaline environments result in decreasing metabolic diversity with increasing salinity. Various microbial metabolisms have been shown to occur even at high salinity, including photosynthesis as well as sulfate and nitrate reduction. However, information about anaerobic microbial iron metabolism in hypersaline environments is scarce. We studied the phylogenetic diversity, distribution, and metabolic activity of iron(II)-oxidizing and iron(III)-reducing Bacteria and Archaea in pH-neutral, iron-rich salt lake sediments (Lake Kasin, southern Russia; salinity, 348.6 g liter−1) using a combination of culture-dependent and -independent techniques. 16S rRNA gene clone libraries for Bacteria and Archaea revealed a microbial community composition typical for hypersaline sediments. Most-probable-number counts confirmed the presence of 4.26 × 102 to 8.32 × 103 iron(II)-oxidizing Bacteria and 4.16 × 102 to 2.13 × 103 iron(III)-reducing microorganisms per gram dry sediment. Microbial iron(III) reduction was detected in the presence of 5 M NaCl, extending the natural habitat boundaries for this important microbial process. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of total Bacteria, total Archaea, and species dominating the iron(III)-reducing enrichment cultures (relatives of Halobaculum gomorrense, Desulfosporosinus lacus, and members of the Bacilli) were highest in an iron oxide-rich sediment layer. Combined with the presented geochemical and mineralogical data, our findings suggest the presence of an active microbial iron cycle at salt concentrations close to the solubility limit of NaCl. PMID:22504804

  15. The Effects of Trimethylamine and Organic Matter Additions on the Stable Carbon Isotopic Composition of Methane Produced in Hypersaline Microbial Mat Environments

    NASA Astrophysics Data System (ADS)

    Kelley, C. A.; Nicholson, B. E.; Beaudoin, C. S.; Detweiler, A. M.; Bebout, B.

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of non-competitive substrates, such as the methylamines, methanol and dimethylsulfide. The stable carbon isotopic composition of the produced methane has suggested that the methanogens are operating under conditions of substrate limitation. We investigated substrate limitation in gypsum-hosted endoevaporite and soft mat hypersaline environments by the additions of trimethylamine, a non-competitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71 ‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. We hypothesize that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  16. Application of factor analysis and electrical resistivity to understand groundwater contributions to coastal embayments in semi-arid and hypersaline coastal settings.

    PubMed

    Bighash, Paniz; Murgulet, Dorina

    2015-11-01

    Groundwater contributions and sources of salinity to Oso Bay in south Texas were investigated using multivariate statistical analysis of geochemical data and multitemporal electrical resistivity tomography surveys. Both analysis of geochemical data and subsurface imaging techniques identified two commonalities for the investigated system: 1) hypersaline water occurs near the groundwater/surface water interface during wet conditions creating reverse hydraulic gradients due to density effects. The development and downward movement of these fluids as continuous plumes deflect fresher groundwater discharge downward and laterally away from the surface; and 2) more pronounced upwelling of fresher groundwater occurs during drought periods when density inversions are more defined and are expected to overcome dispersion and diffusion processes and create sufficiently large-enough unstable gradients that induce density-difference convection. Salinity mass-balance models derived from time-difference resistivity tomograph and in-situ salinity data reaffirm these findings indicating that groundwater upwelling is more prominent during dry to wet conditions in 2013 (~545.5m(3)/d) and is less pronounced during wet to dry conditions in 2012 (~262.7 m(3)/d) for the 224 m(2) area surveyed. Findings show that the highly saline nature of water in this area and changes in salinity regimes can be attributed to a combination of factors, namely: surface outflows, evapoconcentration, recirculation of hypersaline groundwaters, and potential trapped oil field brines. Increased drought conditions will likely exacerbate the rate at which salinity levels are increasing in bays and estuaries in semi-arid regions where both hypersaline groundwater discharge and high evaporation rates occur simultaneously.

  17. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats

    PubMed Central

    Nicholson, Brooke E.; Beaudoin, Claire S.; Detweiler, Angela M.; Bebout, Brad M.

    2014-01-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ13C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ13C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more 13C-depleted methane. Trimethylamine-amended samples produced lower methane δ13C values than the mat-amended samples. This difference in the δ13C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis. PMID:25239903

  18. Trimethylamine and Organic Matter Additions Reverse Substrate Limitation Effects on the δ13C Values of Methane Produced in Hypersaline Microbial Mats.

    PubMed

    Kelley, Cheryl A; Nicholson, Brooke E; Beaudoin, Claire S; Detweiler, Angela M; Bebout, Brad M

    2014-12-01

    Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ(13)C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ(13)C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more (13)C-depleted methane. Trimethylamine-amended samples produced lower methane δ(13)C values than the mat-amended samples. This difference in the δ(13)C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.

  19. The Comparative Osmoregulatory Ability of Two Water Beetle Genera Whose Species Span the Fresh-Hypersaline Gradient in Inland Waters (Coleoptera: Dytiscidae, Hydrophilidae)

    PubMed Central

    Pallarés, Susana; Arribas, Paula; Bilton, David T.; Millán, Andrés; Velasco, Josefa

    2015-01-01

    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh—hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal’s haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg-1). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg-1) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm-1, respectively, and maintained osmotic gradients over 3500 mosmol kg-1, comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by

  20. Characterization of deep level defects present in mono-like, quasi-mono and multicrystalline silicon solar substrates

    NASA Astrophysics Data System (ADS)

    Pérez, E.; García, H.; Castán, H.; Dueñas, S.

    2015-03-01

    Defects on mono-like (ml-Si), quasi-mono (qm-Si) and multicrystalline silicon solar cell substrates are studied in depth. Using the thermal admittance spectroscopy technique we found a single deep level with an activation energy between 213 and 224 meV and a capture cross section in the order of 10-15-10-14 cm2, in the case of ml-Si samples. The 271, 291 and 373 meV levels were found in qm-Si samples. The first one is associated with a capture cross section in the order of 10-16 cm2, the second one in the order of 10-14, while the third one is associated, for the same magnitude, with a value in the order of 10-12 cm2. Multicrystalline samples showed two tendencies in the Arrhenius plot fit associated with a deep level in each one. The activation energy of the first one ranges from 336 meV to 342 meV, and the capture cross sections are in the order of 10-13-10-11 cm2. The values obtained for the second one are 251 and 171 meV, with the capture cross section values in the order of 10-15 and 10-18 cm2, respectively. The nature of these defects is probably due to iron-based impurities in different complexes. Segregation into extended defects of Fei or Fei-V is the most probable cause of the deep levels with higher capture cross section value. Punctual complexes such as Fei or Fei-V2 are probably the reason for the deep levels with lower capture cross section value.

  1. Low Bacterial Diversity and High Labile Organic Matter Concentrations in the Sediments of the Medee Deep-Sea Hypersaline Anoxic Basin

    PubMed Central

    Akoumianaki, Ioanna; Nomaki, Hidetaka; Pachiadaki, Maria; Kormas, Konstantinos Ar.; Kitazato, Hiroshi; Tokuyama, Hidekazu

    2012-01-01

    Studies in the center and margin of the Medee Basin, a Mediterranean deep-sea hypersaline anoxic basin, and at a reference site during Penelope cruise (2007), revealed the existence of a 7 m-thick halocline, with high salinity (328 psu), and high sedimentary organic carbon and biopolymer concentrations. The 194 16S rRNA sequences retrieved were grouped into 118 unique phylotypes. Pseudomonas gessardii, dominated in the center, while 33 phylotypes were detected at the margin and 73 at the reference site. The study suggested conditions hostile to bacteria in the sediments of the Medee Basin and preservation of sedimentary labile organic matter. PMID:22504432

  2. Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme.

    PubMed

    Shirai, T; Ishida, H; Noda, J; Yamane, T; Ozaki, K; Hakamada, Y; Ito, S

    2001-07-27

    The crystal structure of the catalytic domain of alkaline cellulase K was determined at 1.9 A resolution. Because of the most alkaliphilic nature and it's highest activity at pH 9.5, it is used commercially in laundry detergents. An analysis of the structural bases of the alkaliphilic character of the enzyme suggested a mechanism similar to that previously proposed for alkaline proteases, that is, an increase in the number of Arg, His, and Gln residues, and a decrease in Asp and Lys residues. Some ion pairs were formed by the gained Arg residues, which is similar to what has been found in the alkaline proteases. Lys-Asp ion pairs are disfavored and partly replaced with Arg-Asp ion pairs. The alkaline adaptation appeared to be a remodeling of ion pairs so that the charge balance is kept in the high pH range.

  3. Maize mono-digestion efficiency: results from laboratory tests.

    PubMed

    Ficara, Elena; Malpei, Francesca

    2011-01-01

    A laboratory experimental campaign was carried out in order to assess the optimal configuration for the anaerobic digestion of a mixture of sweet corn and ensiled maize. Batch hydrolysis tests were conducted at 35 and 55 °C and at four different particle sizes (2, 5, 20 and 50 mm) obtained by manual chopping and sieving. Chemical pre-treatment by 24 h incubation at various acid and alkaline pH was also considered for its potential to increase the maize methane yield. Results suggest that the hydrolytic phase proceeds significantly faster under thermophilic conditions. Significant differences in the solubilization rate were also observed when comparing coarse (20-50 mm) with fine (2-5 mm) particles, while 2 and 5 mm particles were solubilized at similar rates. No advantages from the chemical pre-treatment, in terms of solubilization efficiency and biomethanization potential were observed. According to these preliminary results, a two-stage semi-continuous laboratory plant consisting of a thermophilic hydrolytic reactor followed by a mesophilic methanogenic reactor was operated for 110 days. Steady state loading parameters were: influent concentration (maize mixture diluted in tap water) of 46 g VS/L, hydraulic retention time of 31 d, organic loading rate of 1.5 g VS/L/d. Alkalinity was dosed to the methanogenic reactor to avoid pH drops. Collected data allowed the average biodegradation efficiency to be estimated at around 60-65%.

  4. The sulphate-reduction alkalinity pump tested

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Petrishcheva, Elena

    2016-04-01

    Carbonate precipitation has been suggested to be induced by alkalinity increase during sulphate reduction under anoxic conditions. This mechanism may explain the formation of carbonate deposits in shallow marine environments, either within a redox stratified sediment inhabited by phototrophic microbial mats or in shallow water within the photic zone where sulphidic water is upwelling onto the shelf. The alkalinity pump may work as long as the sulphide is not reoxidized to sulphate, a process that would acidify the surrounding. The alkalinity effect of sulphate reduction was recently tested by Aloisi (2008) for microbial mats using a model approach. He found that sulphate reduction does not significantly increase or even decrease carbonate saturation and is unlikely to have played a significant role through Earth history. The model considers many environmental factors, including the effect of carbonate precipitation itself on the carbonate equilbrium and on the alkalinity. We used a modified version of Aloisi's (2008) model to simulate the saturation states of aragonite, calcite and dolomite without the effects of carbonate precipitation. This is necessary to evaluate the effect of microbial metabolisms exclusively on carbonate saturation, since carbonate precipitation is only the consequence, but not the cause of oversaturation. First results show that the saturation state is increased in the zone of phototrophic CO2 uptake. In contrast, the saturation state is strongly decreased in the zone where dissolved oxygen overlaps with dissolved sulphide. Aerobic sulphide oxidation consumes most of the HS- and dissipates most of the alkalinity produced in the sulphate reduction zone below. Hence, our results are consistent with the findings of Aloisi (2008), and they even more clearly show that sulphate reduction does not induce carbonate precipitation nor contributes to carbonate precipitation in combination with phototrophic CO2 uptake. The alkalinity effect of sulphate

  5. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    PubMed

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  6. A low-voltage alterable EEPROM with Metal-Oxide-Nitride-Oxide-Semiconductor /MONOS/ structures

    NASA Astrophysics Data System (ADS)

    Suzuki, E.; Ishii, K.; Hayashi, Y.; Hiraishi, H.

    1983-02-01

    Theoretical and experimental investigations to obtain lower voltage Electrically Erasable and Programmable ROM's (EEPROM's) than conventional devices have been performed. The scaled-down Metal-Oxide-Nitride-Oxide semiconductor (MONOS) structure is proposed to realize an extremely low-voltage programmable device. The proposed scaled down MONOS devices enjoy several advantages over MNOS devices, e.g., enlargement of the memory window, elimination of degradation phenomena, and drastic improvement in device yield. Low voltage operation with + or - 6-V supplies is demonstrated by the fabricated scaled down MONOS transistors.

  7. Interaction of potassium mono and di phosphates with bovine serum albumin studied by fluorescence quenching method.

    PubMed

    Bakkialakshmi, S; Shanthi, B; Chandrakala, D

    2011-03-01

    The interactions between potassium mono and di phosphates and bovine serum albumin (BSA) were studied using fluorescence spectroscopy (FS) and ultraviolet spectroscopy (UV). The experimental results showed that the potassium mono and di phosphates could insert into the BSA and quench the inner fluorescence of BSA by forming the potassium mono phosphate-BSA and pottassium di phosphate-BSA complexes. It was found that the static quenching was the main reason leading to the fluorescence quenching. It was conformed by XRD and SEM techniques.

  8. Balancing Public Trust Resources of Mono Lake and Los Angeles' Water Right: An Economic Approach

    NASA Astrophysics Data System (ADS)

    Loomis, John B.

    1987-08-01

    The contingent valuation method (CVM) is used to quantify the Public Trust values of Mono Lake at alternative lake levels. The dichotomous choice approach to contingent valuation is employed using a logit model. The economic benefit to California residents of preserving Mono Lake is estimated to be 1.5 billion. Purchase of replacement water and power would cost 26.2 million annually. On efficiency grounds, reallocation of water for maintenance of Public Trust values at Mono Lake is warranted. The CVM appears to be a useful methodology to evaluate the balancing and feasibility tests of the expanded Public Trust doctrine suggested by the California Supreme Court.

  9. Neutrino Mass Measurement Using a Directed Mono-Energetic Beam

    NASA Astrophysics Data System (ADS)

    Tsifrinovich, Vladimir; Folan, Lorcan

    2015-04-01

    It was shown that a directed mono-energetic neutrino beam can be generated by electron capture beta-decay in a sample with a strong hyperfine field at the radioactive nuclei. We study the conditions required to measure the neutrino rest mass using the recoil force produced by a directed neutrino beam. We consider the displacement of an atomic force microscope cantilever due to such a recoil force. We find the change in the cantilever displacement associated with the non-zero neutrino mass, as a function of nuclear half-life T1 / 2, cantilever spring constant, and temperature. We consider the opportunity to increase the sensitivity of the neutrino mass measurement using averaging of the measurement signal. We show that the optimal time for the signal accumulation is, approximately, 1.8T1 / 2. We compute the optimal signal-to-noise ratio for 119Sb nuclei decaying to 119Sn with a decrease in the nuclear spin from I = 5/2 to I = 3/2, and T1 / 2 = 38.2 hours. Finally, we present the parameters values required for detection of sub-eV neutrino rest mass, and estimate the angular distribution of neutrino radiation as a function of temperature.

  10. Raman spectroscopy of suspended mono and bilayer graphene

    NASA Astrophysics Data System (ADS)

    Kitt, Alexander; Feldman, Benjamin; Remi, Sebastian; Martin, Jens; Swan, Anna; Yacoby, Amir; Goldberg, Bennett

    2010-03-01

    Suspended mono and bilayer graphene flakes have been shown to have higher mobility and lower disorder than their supported counterparts^1. The geometry which decouples the flake from the substrate also causes an as yet uncharacterized backgate specific strain due to an electrostatic attraction between the graphene and the back gated substrate. We study this strain using spatially resolved Raman spectroscopy with a diffraction limited spot size. Upon application of uni-axial strain the unit cell is stretched reducing the symmetry of the system and breaking the double degeneracy of the G band causing a split in the peak. Additionally the Raman modes show a linear softening as a function of strain in the case of supported graphene. Suspended flakes provide an ideal system to study back gate tunable strain while avoiding complications due to substrates including the determination of the Poisson ratio and sample slippage^2. Here we present preliminary results of our observations. 1: B Feldman, J Martin, A Yacoby, ``Broken-symmetry states and divergent resistance in suspended bilayer graphene'', Nature Physics, doi:10.1038/nphys1406 2: C Metzger et al, ``Biaxial strain in graphene adhered to shallow depressions'', Accepted for publication in Nano Letters

  11. Sources and flux of natural gases from Mono lake, California

    SciTech Connect

    Oremland, R.S.; Miller, L.G. ); Whiticar, M.J. )

    1987-11-01

    The ability to identify a formation mechanism for natural gas in a particular environment requires consideration of several geochemical factors when there are multiple sources present. Four primary sources of methane have been identified in Mono Lake. Two of these sources were associated with numerous natural gas seeps which occur at various locations in the lake and extend beyond its present boundary; the two other gas sources result from current microbiological processes. Current microbiological processes responsible for sources of natural gas in the lake included pelagic methanogenesis and decomposition of terrestrial grasses in the littoral zone. Methanogenesis in the pelagic sediments resulted in methane saturation. Interstitial sulfate decreased from 133 mM at the surface to 35 mM by 110 cm depth, indicating that sulfate-reduction and methanogenesis operated concurrently. Methane diffused out of the sediments resulting in concentrations of about 50 {mu}M in the anoxic bottom waters. Methane oxidation in the oxic/anoxic boundary lowered the concentration by > 98%, but values in surface waters were supersaturated with respect to the atmosphere. The {delta}{sup 13}CH{sub 4} of this unoxidized residual methane was enriched in {sup 13}C relative to methane in the bottom water and sediments. Average outward flux of this methane was 2.77 {times} 10{sup 7} moles yr{sup {minus}1}. A fourth, but minor source of methane was associated with the decomposition of terrestrial grasses taking place in the lake's recently expanded littoral zone.

  12. Transcranial Propagation with an Ultrasonic Mono-element Focused Transducer

    NASA Astrophysics Data System (ADS)

    Iglesias, P. C.; Jiménez, N.; Konofagou, E.; Camarena, F.; Redondo, J.

    Focused Ultrasound is the only truly transient, local and non-invasive technique able to induce safe Blood-Brain Barrier Opening (BBBO), technique used in Parkinson or Alzheimer diseases research. However, the presence of the skull in the path usually affects the focus characteristics (gain, beam width, shape and maxima location). In this work, transcranial acoustic wave propagation generated by a mono-element focused transducer has been modeled using 2D and 3D FDTD methods. Skull structure of the non-human primate under test can be compared in terms of density and sound speed with polymethylmethacrylate (PMMA) films. Then, focus aberration and the phenomena that cause it are characterized, providing a better control of the beam focus using the BBBO technique. Results throw that focal axial displacements are constant with the angle of incidence for PMMA flat films. In normal incidence, a shift of 6 mm is given for axial displacement in the 2D transcranial propagation. Moreover, if the skull geometry under the action of the ultrasonic beam can be compared with the curvature radius of the transducer, displacements should be constant with angle independency, like those seeing in the homogenous flat films with the same thickness.

  13. Glass liquid glass reentrance in mono-component colloidal dispersions

    NASA Astrophysics Data System (ADS)

    Ramírez-González, P. E.; Vizcarra-Rendón, A.; Guevara-Rodríguez, F. de J.; Medina-Noyola, M.

    2008-05-01

    The self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics is employed to describe the ergodic-non-ergodic transition in model mono-disperse colloidal dispersions whose particles interact through hard-sphere plus short-ranged attractive forces. The ergodic-non-ergodic phase diagram in the temperature-concentration state space is determined for the hard-sphere plus attractive Yukawa model within the mean spherical approximation for the static structure factor by solving a remarkably simple equation for the localization length of the colloidal particles. Finite real values of this property signals non-ergodicity and determines the non-ergodic parameters f(k) and fs(k). The resulting phase diagram for this system, which involves the existence of reentrant (repulsive and attractive) glass states, is compared with the corresponding prediction of mode coupling theory. Although both theories coincide in the general features of this phase diagram, there are also clear qualitative differences. One of the most relevant is the SCGLE prediction that the ergodic-attractive glass transition does not preempt the gas-liquid phase transition, but always intersects the corresponding spinodal curve on its high-concentration side. We also calculate the ergodic-non-ergodic phase diagram for the sticky hard-sphere model to illustrate the dependence of the predicted SCGLE dynamic phase diagram on the choice of one important constituent element of the SCGLE theory.

  14. Collaborative study on determination of mono methylmercury in seafood.

    PubMed

    Valdersnes, Stig; Fecher, Peter; Maage, Amund; Julshamn, Kaare

    2016-03-01

    Eight laboratories participated in an inter-laboratory method-performance (collaborative) study of a method for the determination of mono methylmercury (MMHg) in foodstuffs of marine origin by gas chromatography inductively coupled plasma isotope dilution mass spectrometry (GC-ICP-IDMS) after dissolution, derivatisation and extraction of the species. The method was tested on seven seafood products covering both a wide concentration range and variations in the MMHg concentrations as well as matrix compositions. The samples were mussel tissue, squid muscle, crab claw meat, whale meat, cod muscle, Greenland halibut muscle and dogfish liver (NRCC DOLT-4), with MMHg concentrations ranging from 0.035 to 3.58mg/kg (as Hg) dry weight. Repeatability relative standard deviations (RSDr) for MMHg ranged from 2.1% to 8.7%. Reproducibility relative standard deviations (RSDR) ranged from 5.8% to 42%. All samples showed HorRat value below 1.0, except for the sample with the lowest MMHg content, mussel tissue, with a HorRat value of 1.6.

  15. Similar Sister Chromatid Arrangement in Mono- and Holocentric Plant Chromosomes.

    PubMed

    Schubert, Veit; Zelkowski, Mateusz; Klemme, Sonja; Houben, Andreas

    2016-01-01

    Due to the X-shape formation at somatic metaphase, the arrangement of the sister chromatids is obvious in monocentric chromosomes. In contrast, the sister chromatids of holocentric chromosomes cannot be distinguished even at mitotic metaphase. To clarify their organization, we differentially labelled the sister chromatids of holocentric Luzula and monocentric rye chromosomes by incorporating the base analogue EdU during replication. Using super-resolution structured illumination microscopy (SIM) and 3D rendering, we found that holocentric sister chromatids attach to each other at their contact surfaces similar to those of monocentrics in prometaphase. We found that sister chromatid exchanges (SCEs) are distributed homogeneously along the whole holocentric chromosomes of Luzula, and that their occurrence is increased compared to monocentric rye chromosomes. The SCE frequency of supernumerary B chromosomes, present additionally to the essential A chromosome complement of rye, does not differ from that of A chromosomes. Based on these results, models of the sister chromatid arrangement in mono- and holocentric plant chromosomes are presented.

  16. Laser System for Livermore's Mono Energetic Gamma-Ray Source

    SciTech Connect

    Gibson, D; Albert, F; Bayramian, A; Marsh, R; Messerly, M; Ebbers, C; Hartemann, F

    2011-03-14

    A Mono-energetic Gamma-ray (MEGa-ray) source, based on Compton scattering of a high-intensity laser beam off a highly relativistic electron beam, requires highly specialized laser systems. To minimize the bandwidth of the {gamma}-ray beam, the scattering laser must have minimal bandwidth, but also match the electron beam depth of focus in length. This requires a {approx}1 J, 10 ps, fourier-transform-limited laser system. Also required is a high-brightness electron beam, best provided by a photoinjector. This electron source requires a second laser system with stringent requirements on the beam including flat transverse and longitudinal profiles and fast rise times. Furthermore, these systems must be synchronized to each other with ps-scale accuracy. Using a novel hyper-dispersion compressor configuration and advanced fiber amplifiers and diode-pumped Nd:YAG amplifiers, we have designed laser systems that meet these challenges for the X-band photoinjector and Compton-scattering source being built at Lawrence Livermore National Laboratory.

  17. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma.

    PubMed

    Kogej, Tina; Gorbushina, Anna A; Gunde-Cimerman, Nina

    2006-06-01

    Melanized yeast-like meristematic fungi are characteristic inhabitants of highly stressed environments and are rare eukaryotic extremophiles. Therefore, they are attractive organisms for studies of adaptations. In this study we compared two meristematic species of the genus Trimmatostroma on media of differing water potentials isolated from distinct water-stressed environments: T. salinum from the hypersaline water of a solar saltern, and T. abietis from a marble monument in Crimea. The morphology and melanization of both isolates in response to sodium chloride-induced water stress were investigated by means of light and electron microscopy. We describe and compare the colony form and structure, ultrastructure, and degree of cell-wall melanization of both species in reaction to salinity and to inhibited melanin synthesis. The halophilic T. salinum responded to changed salinity conditions on the level of individual cell ultrastructure and degree of cell wall melanization, whereas the xerophilic rock-inhabiting T. abietis responded with modification of its colony structure. Surprisingly, both the halophilic and the xerophilic Trimmatostroma species were able to adapt to hypersaline growth conditions, although their growth patterns show distinct adaptation of each species to their natural ecological niches.

  18. Diversity of ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes in the MgCl2-dominated deep hypersaline anoxic basin discovery.

    PubMed

    van der Wielen, Paul W J J

    2006-06-01

    Partial sequences of the form I (cbbL) and form II (cbbM) of the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) large subunit genes were obtained from the brine and interface of the MgCl2-dominated deep hypersaline anoxic basin Discovery. CbbL and cbbM genes were found in both brine and interface of the Discovery Basin but were absent in the overlying seawater. The diversity of both genes in the brine and interface was low, which might caused by the extreme saline conditions in Discovery of approximately 5 M MgCl2. None of the retrieved sequences were closely related to sequences deposited in the GenBank database. A phylogenetic analysis demonstrated that the cbbL sequences were affiliated with a Thiobacillus sp. or with one of the RuBisCO genes from Hydrogenovibrio marinus. The cbbM sequences clustered with thiobacilli or formed a new group with no close relatives. The results implicate that bacteria with the potential for carbon dioxide fixation and chemoautotrophy are present in the Discovery Basin. This is the first report demonstrating that RuBisCO genes are present under hypersaline conditions of 5 M MgCl2.

  19. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring.

    PubMed

    Lamarche-Gagnon, Guillaume; Comery, Raven; Greer, Charles W; Whyte, Lyle G

    2015-01-01

    The lost hammer (LH) spring perennially discharges subzero hypersaline reducing brines through thick layers of permafrost and is the only known terrestrial methane seep in frozen settings on Earth. The present study aimed to identify active microbial communities that populate the sediments of the spring outlet, and verify whether such communities vary seasonally and spatially. Microcosm experiments revealed that the biological reduction of sulfur compounds (SR) with hydrogen (e.g., sulfate reduction) was potentially carried out under combined hypersaline and subzero conditions, down to -20 °C, the coldest temperature ever recorded for SR. Pyrosequencing analyses of both 16S rRNA (i.e., cDNA) and 16S rRNA genes (i.e., DNA) of sediments retrieved in late winter and summer indicated fairly stable bacterial and archaeal communities at the phylum level. Potentially active bacterial and archaeal communities were dominated by clades related to the T78 Chloroflexi group and Halobacteria species, respectively. The present study indicated that SR, hydrogenotrophy (possibly coupled to autotrophy), and short-chain alkane degradation (other than methane), most likely represent important, previously unaccounted for, metabolic processes carried out by LH microbial communities. Overall, the obtained findings provided additional evidence that the LH system hosts active communities of anaerobic, halophilic, and cryophilic microorganisms despite the extreme conditions in situ.

  20. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  1. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  2. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  3. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  4. Inhibition of Alkaline Phosphatase by Several Diuretics

    DTIC Science & Technology

    1980-01-01

    August 20th, 1979) . . Summary , . Acetazolamide, furosemide, ethacrynic acid and chlorothiazide, diuretics of considerable structural diversity, inhibit...Ki is calculated to be 8.4, 7.0, 2.8 and 0.1 mmol/l for acetazolamide, furosemide, ethacrynic acid and chlorothiazide, respectively. Chlorothiazide...is a much more potent inhibitor of alkaline phos- phatase than the other three diuretics. The combination of ethacrynic acid and cysteine, itself an

  5. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  6. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  7. Combined stable isotope, proteomic, metabolomics, and spatial specific analysis to track carbon flow through a hypersaline phototrophic microbial mat

    NASA Astrophysics Data System (ADS)

    Moran, J.; Cory, A.; Riha, K. M.; Huang, E. L.; Gritsenko, M. A.; Kim, Y. M.; Metz, T. O.; Lipton, M. S.

    2014-12-01

    Tracking labeled substrates through microbial mat systems can help elucidate carbon dynamics, species interactions, and niche partitioning, but the inherent microbial complexity of these systems makes them difficult to probe with single analytical techniques. Here we use a combination of different tools to track three labeled substrates through a benthic phototrophic mat from Hot Lake. Hot Lake is a hypersaline, meromictic lake located in an endorheic basin in north-central Washington which, despite extreme salinity and seasonal water temperatures (> 55 ˚C), hosts dense, phototrophic benthic microbial mats. Cyanobacteria are the dominant CO2-fixing organisms in the system and we seek to understand the spatial and metabolic controls on how the carbon initially fixed by mat cyanobacteria is transferred to associated heterotrophic populations spread throughout the mat strata. We performed ex situ incubations over a complete diel cycle with 13C labeled bicarbonate, acetate, and glucose. Traditional elemental analysis IRMS provided an estimate of bulk label uptake to total biomass and showed that both bicarbonate and acetate were incorporated only during daylight while glucose uptake was nearly constant through the cycle. Spatially resolved isotope analysis using laser ablation IRMS showed distinctive patterns between the different substrates with bicarbonate having highest uptake in the top third of the mat, acetate uptake focused near the mat's center, and glucose showing similar uptake at all mat depths. Proteomic analysis showed a longer lag in substrate conversion to protein than to biomass and a distinct spike in the number of labeled peptides in the bicarbonate incubation near the end of the diel cycle. Proteomic analysis confirmed that photosynthetic organisms showed the highest rates of label conversion to protein but heterotrophic organisms also incorporated label into their peptides. Metabolomic analysis demonstrated the high conversion of organic substrates

  8. Response of a hypersaline salt marsh to a large flood and rainfall event along the west coast of southern Africa

    NASA Astrophysics Data System (ADS)

    Bornman, T. G.; Adams, J. B.

    2010-04-01

    desertified marsh importing freshwater from the river mouth and exporting salt. Despite these responses it is unlikely that the hypersaline salt marsh will revegetate naturally. Human intervention is needed to ensure the rehabilitation of this important Ramsar site.

  9. Methylohalomonas lacus gen. nov., sp. nov. and Methylonatrum kenyense gen. nov., sp. nov., methylotrophic gammaproteobacteria from hypersaline lakes.

    PubMed

    Sorokin, Dimitry Yu; Trotsenko, Yuri A; Doronina, Nina V; Tourova, Tatjana P; Galinski, Erwin A; Kolganova, Tatjana V; Muyzer, Gerard

    2007-12-01

    Aerobic enrichment at 4 M NaCl, pH 7.5, with methanol as carbon and energy source from sediments of hypersaline chloride-sulfate lakes in Kulunda Steppe (Altai, Russia) resulted in the isolation of a moderately halophilic and obligately methylotrophic bacterium, strain HMT 1(T). The bacterium grew with methanol and methylamine within a pH range of 6.8-8.2 with an optimum at pH 7.5 and at NaCl concentrations of 0.5-4 M with an optimum at 2 M. In addition to methanol and methylamine, it can oxidize ethanol, formate, formaldehyde and dimethylamine. Carbon is assimilated via the serine pathway. The main compatible solute is glycine betaine. 16S rRNA gene sequence analysis placed the isolate as a new lineage in the family Ectothiorhodospiraceae (Gammaproteobacteria). It is proposed, therefore, to accommodate this bacterium within a novel genus and species, Methylohalomonas lacus gen. nov., sp. nov., with HMT 1(T) (=DSM 15733(T) =NCCB 100208(T) =UNIQEM U237(T)) as the type strain. Two strains were obtained in pure culture from sediments of soda lake Magadi in Kenya and the Kulunda Steppe (Russia) on a mineral medium at pH 10 containing 0.6 M total Na(+) using methanol as a substrate. Strain AMT 1(T) was enriched with methanol, while strain AMT 3 originated from an enrichment culture with CO. The isolates are restricted facultative methylotrophs, capable of growth with methanol, formate and acetate as carbon and energy sources. With methanol, the strains grew within a broad salinity range from 0.3 to 3.5-4 M total Na(+), with an optimum at 0.5-1 M. The pH range for growth was between 8.3 and 10.5, with an optimum at pH 9.5, which characterized the soda lake isolates as obligate haloalkaliphiles. Carbon is assimilated autotrophically via the Calvin-Benson cycle. Sequence analysis of the gene coding for the key enzyme RuBisCO demonstrated that strain AMT 1(T) possessed a single cbbL gene of the 'green' form I, clustering with members of the family Ectothiorhodospiraceae

  10. Growth-dependent hydrogen isotopic fractionation of algal lipid biomarkers in hypersaline Isabel Lake (México)

    NASA Astrophysics Data System (ADS)

    Romero-Viana, Lidia; Kienel, Ulrike; Wilkes, Heinz; Sachse, Dirk

    2013-04-01

    In this study, we evaluated the potential of the hydrogen isotopic composition of algal lipid biomarkers as a proxy for past hydroclimatic variability in hypersaline Isabel Lake, Mexico (Eastern Pacific). We compared rainfall variability recorded in the region over the last 65 years with changes in δD values of the most abundant compounds preserved in the uppermost 16 cm of lake sediment. Changes in δD values of the 1,15-C32 diol (δDdiol), a specific biomarker of algal populations, were related to rainfall variability; specifically, n-alkyl diols were more deuterium-enriched (depleted) during wetter (drier) periods. Strikingly, neither the magnitude of lipid biomarker isotopic changes over interannual timescales (of up to 70-80‰) nor the direction of that variability can be explained by changes in δD values of the water source or salinity fluctuations (approximately 30 on the practical salinity scale) controlled by seasonal rainfall. However, changes in sedimentary biomarker composition, higher total organic carbon content and less negative δ13C values of the 1,15-C32 diol indicate enhanced algal growth during wetter periods. We find that these conditions result in less negative δD values of n-alkyl diols. We hypothesize that due to higher lipid demand during enhanced algal growth, an increasing proportion of hydrogen for lipid synthesis is derived from the cytosol via oxidation of polysaccharides, which may cause a deuterium enrichment of the acetogenic compounds. This study has significant implications for paleohydrological reconstructions using algal lipid δD values, particularly in highly seasonal environments such as Isabel Lake. In such environments, δD values of specific algal lipid biomarkers may not record the full seasonal cycle in source water δD but appear to be mainly controlled by the physiological state of algal populations. Our data provide the first evidence that changes in D/H fractionation due to algal growth conditions can be recorded

  11. Field experiment determinations of distribution coefficients of actinide elements in alkaline lake environments

    SciTech Connect

    Simpson, H.J.; Trier, R.M.; Li, Y.-H.; Anderson, R.F.; Herczeg, A.L.

    1984-08-01

    Measurements of the radioisotope concentrations of a number of elements (Am, Pu, U, Pa, Th, Ac, Ra, Po, Pb, Cs, and Sr) in the water and sediments of a group of alkaline (pH = 9-10), saline lakes demonstrate greatly enhanced soluble-phase concentrations of elements with oxidation states of (III)-(VI) as the result of complexing by carbonate ion. Ratios of soluble radionuclide concentrations in Mono Lake to those in seawater ((CO/sub 3//sup 2 -/) in Mono Lake = 200 times that of seawater) were: Pu(approx. =10), /sup 238/U(approx. =150), /sup 231/Pa, /sup 228/Th, /sup 230/Th(approx. =10/sup 3/), and /sup 232/Th(approx. =10/sup 5/). Effective distribution coefficients of these radionuclides in high CO/sub 3//sup 2 -/ environments are several orders of magnitude lower (i.e., less particle reactive) than in most other natural waters. The importance of CO/sub 3//sup 2 -/ ion on effective K/sub d/ values was also strongly suggested by laboratory experiments in which most of the dissolved actinide elements became adsorbed to particles after a water sample normally at a pH of 10 was acidified, stripped of all CO/sub 2/, and then returned to pH 10 by adding NH/sub 4/OH. Furthermore, the effect of complexation by organic ligands is of secondary importance in the presence of appreciable carbonate ion concentration. Neither pure phase solubility calculations nor laboratory scale K/sub d/ determinations accurately predicted the measured natural system concentrations. Therefore, measurements of the distribution of radionuclides in natural systems are essential for assessment of the likely fate of potential releases from high level waste repositories to groundwater. 50 references, 31 figures, 43 tables.

  12. Mesozoic mafic alkaline magmatism of southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian

    2004-11-01

    More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17 27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the

  13. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  14. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  15. 11. GRANT LAKE AND MONO LAKE LOOKING NORTH/NORTHEAST Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. GRANT LAKE AND MONO LAKE LOOKING NORTH/NORTHEAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  16. 10. GRANT LAKE AND MONO LAKE LOOKING EAST/NORTHEAST Los ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. GRANT LAKE AND MONO LAKE LOOKING EAST/NORTHEAST - Los Angeles Aqueduct, From Lee Vining Intake (Mammoth Lakes) to Van Norman Reservoir Complex (San Fernando Valley), Los Angeles, Los Angeles County, CA

  17. Vibration localization in mono- and bi-coupled bladed disks - A transfer matrix approach

    NASA Technical Reports Server (NTRS)

    Ottarsson, Gisli; Pierre, Christophe

    1993-01-01

    A transfer matrix approach to the analysis of the dynamics of mistuned bladed disks is presented. The study focuses on mono-coupled systems, in which each blade is coupled to its two neighboring blades, and bi-coupled systems, where each blade is coupled to its four nearest neighbors. Transfer matrices yield the free dynamics, both the characteristic free wave and the normal modes - in closed form for the tuned assemblies. Mistuned assemblies are represented by random transfer matrices and an examination of the effect of mistuning on harmonic wave propagation yields the localization factor - the average rate of spatial wave amplitude decay per blade - in the mono-coupled assembly. Based on a comparison of the wave propagation characteristics of the mono- and bi-coupled assemblies, important conclusions are drawn about the effect of the additional coupling coordinate on the sensitivity to mistuning and the strength of mode localization predicted by a mono-coupled analysis.

  18. Geothermal systems of the Mono Basin-Long Valley region, eastern California and western Nevada

    SciTech Connect

    Higgins, C.T.; Flynn, T.; Chapman, R.H.; Trexler, D.T.; Chase, G.R.; Bacon, C.F.; Ghusn, G. Jr.

    1985-01-01

    The region that includes Mono Basin, Long Valley, the Bridgeport-Bodie Hills area, and Aurora, in eastern California and western Nevada was studied to determine the possible causes and interactions of the geothermal anomalies in the Mono Basin-Long Valley region as a whole. A special goal of the study was to locate possible shallow bodies of magma and to determine their influence on the hydrothermal systems in the region. (ACR)

  19. Discovery and industrial applications of lytic polysaccharide mono-oxygenases.

    PubMed

    Johansen, Katja S

    2016-02-01

    The recent discovery of copper-dependent lytic polysaccharide mono-oxygenases (LPMOs) has opened up a vast area of research covering several fields of application. The biotech company Novozymes A/S holds patents on the use of these enzymes for the conversion of steam-pre-treated plant residues such as straw to free sugars. These patents predate the correct classification of LPMOs and the striking synergistic effect of fungal LPMOs when combined with canonical cellulases was discovered when fractions of fungal secretomes were evaluated in industrially relevant enzyme performance assays. Today, LPMOs are a central component in the Cellic CTec enzyme products which are used in several large-scale plants for the industrial production of lignocellulosic ethanol. LPMOs are characterized by an N-terminal histidine residue which, together with an internal histidine and a tyrosine residue, co-ordinates a single copper atom in a so-called histidine brace. The mechanism by which oxygen binds to the reduced copper atom has been reported and the general mechanism of copper-oxygen-mediated activation of carbon is being investigated in the light of these discoveries. LPMOs are widespread in both the fungal and the bacterial kingdoms, although the range of action of these enzymes remains to be elucidated. However, based on the high abundance of LPMOs expressed by microbes involved in the decomposition of organic matter, the importance of LPMOs in the natural carbon-cycle is predicted to be significant. In addition, it has been suggested that LPMOs play a role in the pathology of infectious diseases such as cholera and to thus be relevant in the field of medicine.

  20. OVERVIEW OF MONO-ENERGETIC GAMMA-RAY SOURCES & APPLICATIONS

    SciTech Connect

    Hartemann, F V; Albert, F; Anderson, G G; Anderson, S G; Bayramian, A J; Betts, S M; Chu, T S; Cross, R R; Ebbers, C A; Fisher, S E; Gibson, D J; Ladran, A S; Marsh, R A; Messerly, M J; O'Neill, K L; Semenov, V A; Shverdin, M Y; Siders, C W; McNabb, D P; Barty, C P; Vlieks, A E; Jongewaard, E N; Tantawi, S G; Raubenheimer, T O

    2010-05-18

    Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC NAL will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable {gamma}-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence. In conclusion, we have optimized the design of a high brightness Compton scattering gamma-ray source, specifically designed for NRF applications. Two different parameters sets have been considered: one where the number of photons scattered in a single shot reaches approximately 7.5 x 10{sup 8}, with a focal spot size around 8 {micro}m; in the second set, the spectral brightness is optimized by using a 20 {micro}m spot size, with 0.2% relative bandwidth.

  1. Roles of mono-ubiquitinated Smad4 in the formation of Smad transcriptional complexes

    SciTech Connect

    Wang Bei; Suzuki, Hiroyuki Kato, Mitsuyasu

    2008-11-14

    TGF-{beta} activates receptor-regulated Smad (R-Smad) through phosphorylation by type I receptors. Activated R-Smad binds to Smad4 and the complex translocates into the nucleus and stimulates the transcription of target genes through association with co-activators including p300. It is not clear, however, how activated Smad complexes are removed from target genes. In this study, we show that TGF-{beta} enhances the mono-ubiquitination of Smad4. Smad4 mono-ubiquitination was promoted by p300 and suppressed by the c-Ski co-repressor. Smad4 mono-ubiquitination disrupted the interaction with Smad2 in the presence of constitutively active TGF-{beta} type I receptor. Furthermore, mono-ubiquitinated Smad4 was not found in DNA-binding Smad complexes. A Smad4-Ubiquitin fusion protein, which mimics mono-ubiquitinated Smad4, enhanced localization to the cytoplasm. These results suggest that mono-ubiquitination of Smad4 occurs in the transcriptional activator complex and facilitates the turnover of Smad complexes at target genes.

  2. Desialylated alkaline phosphatase: activation by 4-nitrophenol.

    PubMed

    Nayudu, P R

    1984-01-01

    Mouse ileal alkaline phosphatase is a sialyl enzyme (12-14 moles per mole of enzyme). When partially desialylated by treatment with neuraminidase, the enzyme loses most of its activity, associated with reduced apparent Vmax and Km. Part of that loss, however, is recovered as the product 4-nitrophenol's concentration builds up in the cuvette. Experimental results are presented to demonstrate that the activation is due to the binding of 4-nitrophenol as a ligand by the partially desialylated enzyme and that both the loss of activity by sialic acid removal and activation by ligand-binding are correlated with changes in protein conformation.

  3. 238U-230Th crystallization ages for the oldest domes of the Mono Craters, eastern California

    NASA Astrophysics Data System (ADS)

    Marcaida, M.; Vazquez, J. A.

    2014-12-01

    The Mono Craters volcanic chain is one of the youngest areas of rhyolitic volcanism in the Mono Lake-Long Valley region of eastern California. Located just south of Mono Lake, the Mono Craters comprise at least 28 individual domes and flows (numbered 3-30, north to south); however, the timing and frequency of eruptions remain poorly resolved. The earliest signs of volcanic activity are preserved as numerous tephra layers (Ashes 1-19, top to bottom) in the late Pleistocene Wilson Creek formation of ancestral Mono Lake, which indicate that rhyolitic volcanism from Mono Craters began by at least ca. 62 ka [1]. Although the current chronology indicates that most of the Mono Craters are younger than ca. 20 ka [2-4], similar compositions of titanomagnetite from both pumice and lava potentially correlate several Wilson Creek tephras to porphyritic biotite-bearing domes 11, 24, and 19 of the Mono Craters [5], suggesting that multiple domes in the Mono Craters chain reflect volcanism older than ca. 20 ka. Ash 3 is correlated to dome 11 based on similar ca. 20 ka ages and titanomagnetite compositions [6]. More recently, we performed ion microprobe 238U-230Th dating of unpolished rims of allanite and zircon from domes 24 and 19, yielding isochron ages of ca. 38 ka and ca. 42 ka, respectively. The age of dome 24 is consistent with the ca. 38 ka age of its potential correlative tephra layers [1, 5], indicating that dome 24 is likely the extrusive equivalent of Ashes 9-10. Dome 19 has titanomagnetite crystals with similar bimodal chemistry to titanomagnetites from Ash 15 [5]. The age of dome 19 is indistinguishable from the 238U-230Th age of Ash 15 [1], which erupted during a prominent geomagnetic excursion, originally designated as the "Mono Lake" excursion. Combining geochronological and titanomagnetite compositional data confirms that Ash 15 and its extrusive equivalent, dome 19, erupted during the Laschamp excursion. [1] Vazquez, J.A. and Lidzbarski, M.I. (2012) EPSL 357

  4. Origin of mafic and ultramafic cumulates from the Ditrău Alkaline Massif, Romania

    NASA Astrophysics Data System (ADS)

    Pál-Molnár, Elemér; Batki, Anikó; Almási, Enikő; Kiss, Balázs; Upton, Brian G. J.; Markl, Gregor; Odling, Nicholas; Harangi, Szabolcs

    2015-12-01

    Mafic-ultramafic cumulates enclosed in gabbroic-dioritic rocks form part of the Mesozoic Ditrău Alkaline Massif in the Eastern Carpathians, Romania. The poikilitic olivine- and pyroxene-rich and nearly mono mineralic hornblendite rocks display typical cumulate textures with early crystallised olivine (Fo75-73), diopside and augite. In the early stages of their genesis the amphibole was intercumulus whilst in later stages it acquired cumulus status as the fractionating magma evolved. Using major and trace element compositions of minerals and whole-rock samples the origin of these cumulates is determined and the parental magma composition and depth of emplacement are calculated. Cumulus clinopyroxene has more primitive composition than intercumulus amphibole suggesting closed system fractionation for the evolution of poikilitic olivine- and pyroxene-rich cumulates. The evolution of the amphibole-rich mesocumulates is more clearly the result of closed system crystallisation dominated by the precipitation of clinopyroxene and amphibole cumulus crystals. Lamprophyre dykes of the Ditrău Alkaline Massif are proposed to reflect multiple basanitic parental magma batches from which the cumulus olivine and clinopyroxene crystallised. Relative to these dykes the calculated equilibrium melts for intercumulus amphibole in the cumulates was more primitive whilst that for the cumulus amphibole was more evolved. The calculated crystallisation temperature and pressure of ~ 1000-1050 °C and ~ 0.7 GPa, based on the composition of the amphiboles, indicate crystallisation at lower crustal depths. Rare earth element compositions are consistent with an intra-plate tectonic setting.

  5. Sources and flux of natural gases from Mono Lake, California

    USGS Publications Warehouse

    Oremland, R.S.; Miller, L.G.; Whiticar, Michael J.

    1987-01-01

    The ability to identify a formation mechanism for natural gas in a particular environment requires consideration of several geochemical factors when there are multiple sources present. Four primary sources of methane have been identified in Mono Lake. Two of these sources were associated with numerous natural gas seeps which occur at various locations in the lake and extend beyond its present boundary; the two other gas sources result from current microbiological processes. In the natural gas seeps, we observed flow rates as high as 160 moles CH4 day-1, and estimate total lakewide annual seep flux to be 2.1 ?? 106 moles CH4. Geochemical parameters (??13CH4,??DCH4,CH4/[C2H6+ C3H8]) and ??14CH4measurements revealed that most of the seeps originate from a paleo-biogenic (??13CH4 = about -70%.). natural gas deposit of Pleistocene age which underlies the current and former lakebed. Gas seeps in the vicinity of hot springs had, in combination with the biogenic gas, a prominent thermogenic gas component resulting from hydrothermal alteration of buried organic matter. Current microbiological processes responsible for sources of natural gas in the lake included pelagic meth- anogenesis and decomposition of terrestrial grasses in the littoral zone. Methanogenesis in the pelagic sediments resulted in methane saturation (2-3 mM at 50 cm; ??13CH4 = about -85%.). Interstitial sulfate decreased from 133 mM at the surface to 35 mM by 110 cm depth, indicating that sulfate-reduction and methanogenesis operated concurrently. Methane diffused out of the sediments resulting in concentrations of about 50 ??M in the anoxic bottom waters. Methane oxidation in the oxic/anoxic boundry lowered the concentration by >98%, but values in surface waters (0.1-1.3??M) were supersaturated with respect to the atmosphere. The ??13CH4 (range = -21.8 to -71.8%.) of this unoxidized residual methane was enriched in 13C relative to methane in the bottom water and sediments. Average outward flux of this

  6. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  7. Caspase-dependent and -independent suppression of apoptosis by monoHER in Doxorubicin treated cells

    PubMed Central

    Bruynzeel, A M E; Abou El Hassan, M A; Torun, E; Bast, A; van der Vijgh, W J F; Kruyt, F A E

    2007-01-01

    Doxorubicin (DOX) is an antitumour agent for different types of cancer, but the dose-related cardiotoxicity limits its clinical use. To prevent this side effect we have developed the flavonoid monohydroxyethylrutoside (monoHER), a promising protective agent, which did not interfere with the antitumour activity of DOX. To obtain more insight in the mechanism underlying the selective protective effects of monoHER, we investigated whether monoHER (1 mM) affects DOX-induced apoptosis in neonatal rat cardiac myocytes (NeRCaMs), human endothelial cells (HUVECs) and the ovarian cancer cell lines A2780 and OVCAR-3. DOX-induced cell death was effectively reduced by monoHER in heart, endothelial and A2780 cells. OVCAR-3 cells were highly resistant to DOX-induced apoptosis. Experiments with the caspase-inhibitor zVAD-fmk showed that DOX-induced apoptosis was caspase-dependent in HUVECs and A2780 cells, whereas caspase-independent mechanisms seem to be important in NeRCaMs. MonoHER suppressed DOX-dependent activation of the mitochondrial apoptotic pathway in normal and A2780 cells as illustrated by p53 accumulation and activation of caspase-9 and -3 cleavage. Thus, monoHER acts by suppressing the activation of molecular mechanisms that mediate either caspase-dependent or -independent cell death. In light of the current work and our previous studies, the use of clinically achievable concentrations of monoHER has no influence on the antitumour activity of DOX whereas higher concentrations as used in the present study could influence the antitumour activity of DOX. PMID:17285121

  8. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California.

    PubMed

    Pikuta, Elena V; Hoover, Richard B; Bej, Asim K; Marsic, Damien; Detkova, Ekaterina N; Whitman, William B; Krader, Paul

    2003-08-01

    A novel extremely haloalkaliphilic, strictly anaerobic, acetogenic bacterium strain APO was isolated from sediments of the athalassic, meromictic, alkaline Mono Lake in California. The Gram-positive, spore-forming, slightly curved rods with sizes 0.55-0.7x1.7-3.0 microm were motile by a single laterally attached flagellum. Strain APO was mesophilic (range 10-48 degrees C, optimum of 37 degrees C); halophilic (NaCl range 1-20% (w/v) with optimum of 3-5% (w/v), and alkaliphilic (pH range 8.0-10.5, optimum 9.5). The novel isolate required sodium ions in the medium. Strain APO was an organotroph with a fermentative type of metabolism and used the substrates peptone, bacto-tryptone, casamino acid, yeast extract, l-serine, l-lysine, l-histidine, l-arginine, and pyruvate. The new isolate performed the Stickland reaction with the following amino acid pairs: proline + alanine, glycine + alanine, and tryptophan + valine. The main end product of growth was acetate. High activity of CO dehydrogenase and hydrogenase indicated the presence of a homoacetogenic, non-cycling acetyl-CoA pathway. Strain APO was resistant to kanamycin but sensitive to chloramphenicol, tetracycline, and gentamycin. The G+C content of the genomic DNA was 44.4 mol% (by HPLC method). The sequence of the 16S rRNA gene of strain APO possessed 98.2% similarity with the sequence from Tindallia magadiensis Z-7934, but the DNA-DNA hybridization value between these organisms was only 55%. On the basis of these physiological and molecular properties, strain APO is proposed to be a novel species of the genus Tindallia with the name Tindallia californiensis sp. nov., (type strain APO = ATCC BAA-393 = DSM 14871).

  9. Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California

    NASA Technical Reports Server (NTRS)

    Pikuta, E. V.; Hoover, R. B.; Bej, A. K.; Marsic, D.; Detkova, E. N.; Whitman, W. B.; Krader, P.

    2003-01-01

    A novel extremely haloalkaliphilic, strictly anaerobic, acetogenic bacterium strain APO was isolated from sediments of the athalassic, meromictic, alkaline Mono Lake in California. The Gram-positive, spore-forming, slightly curved rods with sizes 0.55- 0.7x1.7-3.0 microns were motile by a single laterally attached flagellum. Strain APO was mesophilic (range 10-48 C, optimum of 37 C); halophilic (NaCl range 1-20% (w/v) with optimum of 3-5% (w/v), and alkaliphilic (pH range 8.0-10.5, optimum 9.5). The novel isolate required sodium ions in the medium. Strain APO was an organotroph with a fermentative type of metabolism and used the substrates peptone, bacto-tryptone, casamino acid, yeast extract, L-serine, L-lysine, L-histidine, L-arginine, and pyruvate. The new isolate performed the Stickland reaction with the following amino acid pairs: proline + alanine, glycine + alanine, and tryptophan + valine. The main end product of growth was acetate. High activity of CO dehydrogenase and hydrogenase indicated the presence of a homoacetogenic, non-cycling acetyl-coA pathway. Strain APO was resistant to kanamycin but sensitive to chloramphenicol, tetracycline, and gentamycin. The G+C content of the genomic DNA was 44.4 mol% (by HPLC method). The sequence of the 16s rRNA gene of strain APO possessed 98.2% similarity with the sequence from Tindullia magadiensis Z-7934, but the DNA-DNA hybridization value between these organisms was only 55%. On the basis of these physiological and molecular properties, strain APO is proposed to be a novel species of the genus Tindallia with the name Tindallia californiensis sp. nov., (type strain APO = ATCC BAA-393 - DSM 14871).

  10. Response of Desulfovibrio vulgaris to alkaline stress.

    PubMed

    Stolyar, Sergey; He, Qiang; Joachimiak, Marcin P; He, Zhili; Yang, Zamin Koo; Borglin, Sharon E; Joyner, Dominique C; Huang, Katherine; Alm, Eric; Hazen, Terry C; Zhou, Jizhong; Wall, Judy D; Arkin, Adam P; Stahl, David A

    2007-12-01

    The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently controlled by unique regulatory circuits since the alternative sigma factors (sigma S and sigma E) contributing to this stress response in E. coli appear to be absent in D. vulgaris. Genes previously reported to be up-regulated in E. coli were up-regulated in D. vulgaris; these genes included three ATPase genes and a tryptophan synthase gene. Transcription of chaperone and protease genes (encoding ATP-dependent Clp and La proteases and DnaK) was also elevated in D. vulgaris. As in E. coli, genes involved in flagellum synthesis were down-regulated. The transcriptional data also identified regulators, distinct from sigma S and sigma E, that are likely part of a D. vulgaris Hildenborough-specific stress response system. Characterization of a study set of mutants with genes implicated in alkaline stress response deleted confirmed that there was protective involvement of the sodium/proton antiporter NhaC-2, tryptophanase A, and two putative regulators/histidine kinases (DVU0331 and DVU2580).

  11. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions.

  12. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  13. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  14. Thermodynamic model for an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verhaert, Ivan; De Paepe, Michel; Mulder, Grietus

    Alkaline fuel cells are low temperature fuel cells for which stationary applications, e.g. cogeneration in buildings, are a promising market. In order to guarantee a long life, water and thermal management has to be done in a careful way. In order to better understand the water, alkali and thermal flows, a two-dimensional model for an Alkaline Fuel Cell is developed using a control volume approach. In each volume the electrochemical reactions together with the mass and energy balance are solved. The model is created in Aspen Custom Modeller, the development environment of Aspen Plus, where special attention is given to the physical flow of hydrogen, water and air in the system. In this way the developed component, the AFC-cell, can be built into stack configurations to understand its effect on the overall performance. The model is validated by experimental data from measured performance by VITO with their Cell Voltage Monitor at a test case, where the AFC-unit is used as a cogeneration unit.

  15. Matrix-elimination with steam distillation for determination of short-chain fatty acids in hypersaline waters from pre-salt layer by ion-exclusion chromatography.

    PubMed

    Ferreira, Fernanda N; Carneiro, Manuel C; Vaitsman, Delmo S; Pontes, Fernanda V M; Monteiro, Maria Inês C; Silva, Lílian Irene D da; Neto, Arnaldo Alcover

    2012-02-03

    A method for determination of formic, acetic, propionic and butyric acids in hypersaline waters by ion-exclusion chromatography (IEC), using steam distillation to eliminate matrix-interference, was developed. The steam distillation variables such as type of solution to collect the distillate, distillation time and volume of the 50% v/v H₂SO₄ solution were optimized. The effect of the addition of NaCl different concentrations to the calibration standards on the carboxylic acid recovery was also investigated. Detection limits of 0.2, 0.5, 0.3 and 1.5 mg L⁻¹ were obtained for formic, acetic, propionic and butyric acids, respectively. Produced waters from petroleum reservoirs in the Brazilian pre-salt layer containing about 19% m/v of NaCl were analyzed. Good recoveries (99-108%) were obtained for all acids in spiked produced water samples.

  16. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  17. Ribulose-1,5-bisphosphate carboxylase/oxygenase genes as a functional marker for chemolithoautotrophic halophilic sulfur-oxidizing bacteria in hypersaline habitats.

    PubMed

    Tourova, Tatjana P; Kovaleva, Olga L; Sorokin, Dimitry Yu; Muyzer, Gerard

    2010-07-01

    The presence and diversity of the cbb genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) (a key enzyme of the Calvin-Benson cycle of autotrophic CO(2) assimilation) were investigated in pure cultures of seven genera of halophilic chemolithoautotrophic sulfur-oxidizing bacteria (SOB) and in sediments from a hypersaline lake in which such bacteria have been recently discovered. All of the halophilic SOB strains (with the exception of Thiohalomonas nitratireducens) possessed the cbbL gene encoding RuBisCO form I, while the cbbM gene encoding RuBisCO form II was detected only in some of the pure cultures. The general topologies of the CbbL/CbbM trees and the 16S rRNA gene tree were different, but both markers showed that the halophilic SOB genera formed independent lineages in the Gammaproteobacteria. In some cases, such as with several strains of the genus Thiohalospira and with Thioalkalibacter halophilus, the cbbL clustering was incongruent with the positions of these strains on the ribosomal tree. In the cbbM tree, the clustering of Thiohalospira and Thiohalorhabdus strains was incongruent with their branching in both cbbL and 16S rRNA gene trees. cbbL and cbbM genes related to those found in the analysed halophilic SOB were also detected in a sediment from a hypersaline lake in Kulunda Steppe (Russia). Most of the cbbL and cbbM genes belonged to members of the genus Thiohalorhabdus. In the cbbL clone library, sequences related to those of Halothiobacillus and Thiohalospira were detected as minor components. Some of the environmental cbbM sequences belonged to as yet unknown phylotypes, representing deep lineages of halophilic autotrophs.

  18. Denitrification in a hypersaline lake-aquifer system (Pétrola Basin, Central Spain): the role of recent organic matter and Cretaceous organic rich sediments.

    PubMed

    Gómez-Alday, J J; Carrey, R; Valiente, N; Otero, N; Soler, A; Ayora, C; Sanz, D; Muñoz-Martín, A; Castaño, S; Recio, C; Carnicero, A; Cortijo, A

    2014-11-01

    Agricultural regions in semi-arid to arid climates with associated saline wetlands are one of the most vulnerable environments to nitrate pollution. The Pétrola Basin was declared vulnerable to NO3(-) pollution by the Regional Government in 1998, and the hypersaline lake was classified as a heavily modified body of water. The study assessed groundwater NO3(-) through the use of multi-isotopic tracers (δ(15)N, δ(34)S, δ(13)C, δ(18)O) coupled to hydrochemistry in the aquifer connected to the eutrophic lake. Hydrogeologically, the basin shows two main flow components: regional groundwater flow from recharge areas (Zone 1) to the lake (Zone 2), and a density-driven flow from surface water to the underlying aquifer (Zone 3). In Zones 1 and 2, δ(15)NNO3 and δ(18)ONO3 suggest that NO3(-) from slightly volatilized ammonium synthetic fertilizers is only partially denitrified. The natural attenuation of NO3(-) can occur by heterotrophic reactions. However, autotrophic reactions cannot be ruled out. In Zone 3, the freshwater-saltwater interface (down to 12-16 m below the ground surface) is a reactive zone for NO3(-) attenuation. Tritium data suggest that the absence of NO3(-) in the deepest zones of the aquifer under the lake can be attributed to a regional groundwater flow with long residence time. In hypersaline lakes the geometry of the density-driven flow can play an important role in the transport of chemical species that can be related to denitrification processes.

  19. Defining the Functional Potential and Active Community Members of a Sediment Microbial Community in a High-Arctic Hypersaline Subzero Spring

    PubMed Central

    Lay, Chih-Ying; Mykytczuk, Nadia C. S.; Yergeau, Étienne; Lamarche-Gagnon, Guillaume; Greer, Charles W.

    2013-01-01

    The Lost Hammer (LH) Spring is the coldest and saltiest terrestrial spring discovered to date and is characterized by perennial discharges at subzero temperatures (−5°C), hypersalinity (salinity, 24%), and reducing (≈−165 mV), microoxic, and oligotrophic conditions. It is rich in sulfates (10.0%, wt/wt), dissolved H2S/sulfides (up to 25 ppm), ammonia (≈381 μM), and methane (11.1 g day−1). To determine its total functional and genetic potential and to identify its active microbial components, we performed metagenomic analyses of the LH Spring outlet microbial community and pyrosequencing analyses of the cDNA of its 16S rRNA genes. Reads related to Cyanobacteria (19.7%), Bacteroidetes (13.3%), and Proteobacteria (6.6%) represented the dominant phyla identified among the classified sequences. Reconstruction of the enzyme pathways responsible for bacterial nitrification/denitrification/ammonification and sulfate reduction appeared nearly complete in the metagenomic data set. In the cDNA profile of the LH Spring active community, ammonia oxidizers (Thaumarchaeota), denitrifiers (Pseudomonas spp.), sulfate reducers (Desulfobulbus spp.), and other sulfur oxidizers (Thermoprotei) were present, highlighting their involvement in nitrogen and sulfur cycling. Stress response genes for adapting to cold, osmotic stress, and oxidative stress were also abundant in the metagenome. Comparison of the composition of the functional community of the LH Spring to metagenomes from other saline/subzero environments revealed a close association between the LH Spring and another Canadian high-Arctic permafrost environment, particularly in genes related to sulfur metabolism and dormancy. Overall, this study provides insights into the metabolic potential and the active microbial populations that exist in this hypersaline cryoenvironment and contributes to our understanding of microbial ecology in extreme environments. PMID:23563939

  20. Characteristics of kerogens from Recent marine and lacustrine sediments: GC/MS analysis of alkaline permanganate oxidation products

    NASA Astrophysics Data System (ADS)

    Ishiwatari, Ryoshi; Morinaga, Shigeo; Yamamoto, Shuichi; Machihara, Tsutomu

    Extensive studies have been carried out by many workers on sedimentary kerogens. However little is known of the details of the chemical structure of kerogens and of the relation between immature and mature kerogens on a molecular basis. The present authors have been studying young kerogens (kerogens in young sediments). This study aimed to determine the structural pecularities of young kerogens from marine and lacustrine sediments. Kerogen samples were isolated from marine (Tanner Basin, offshore California) and freshwater lake (Lake Haruna, Japan) sediments. The kerogens belong to Type II or III. These kerogens were oxidized by alkaline permanganate and analyzed for their degradation products by GC/MS. The major degradation products are aliphatic normal α,ω-dicarboxylic acids with carbon numbers of 4-14; aliphatic normal monocarboxylic acids with carbon numbers of 8-26, and benzene mono-, di- and tetracarboxylic acids. A marked difference between kerogens from two environments was observed in the distribution of aliphatic dicarboxylic acids: C 4-C 10 acids are higher for marine kerogens than for lacustrine kerogens. This difference is probably due to the difference in the fatty acid composition of precursory materials (e.g. phytoplankton). These results indicate that the molecular structure of kerogens reflects generally the molecular composition of precursory materials, and consequently the present alkaline KMnO 4 oxidation method is useful for subtyping of kerogens.

  1. Multiplication of different Legionella species in Mono Mac 6 cells and in Acanthamoeba castellanii.

    PubMed Central

    Neumeister, B; Schöniger, S; Faigle, M; Eichner, M; Dietz, K

    1997-01-01

    Survival and distribution of legionellae in the environment are assumed to be associated with their multiplication in amoebae, whereas the ability to multiply in macrophages is usually regarded to correspond to pathogenicity. Since most investigations focused on Legionella pneumophila serogroup 1, we examined the intracellular multiplication of different Legionella species in Mono Mac 6 cells, which express phenotypic and functional features of mature monocytes, and in Acanthamoeba castellanii, an environmental host of Legionella spp. According to the bacterial doubling time in Mono Mac 6 cells and in A. castellanii, seven clusters of legionellae could be defined which could be split further with regard to finer differences. L. longbeachae serogroup 1, L. jordanis, and L. anisa were not able to multiply in either A. castellanii or Mono Mac 6 cells and are members of the first cluster. L. dumoffi did not multiply in Mono Mac 6 cells but showed a delayed multiplication in A. castellanii 72 h after infection and is the only member of the second cluster. L. steigerwaltii, L. gormanii, L. pneumophila serogroup 6 ATCC 33215, L. bozemanii, and L. micdadei showed a stable bacterial count in Mono Mac 6 cells after infection but a decreasing count in amoebae. They can be regarded as members of the third cluster. As the only member of the fourth cluster, L. oakridgensis was able to multiply slight in Mono Mac 6 cells but was killed within amoebae. A strain of L. pneumophila serogroup 1 Philadelphia obtained after 30 passages on SMH agar and a strain of L. pneumophila serogroup 1 Philadelphia obtained after intraperitoneal growth in guinea pigs are members of the fifth cluster, which showed multiplication in Mono Mac 6 cells but a decrease of bacterial counts in A. castellanii. The sixth cluster is characterized by intracellular multiplication in both host cell systems and consists of several strains of L. pneumophila serogroup 1 Philadelphia, a strain of L. pneumophila

  2. Microbial Diversity in a Permanently Cold and Alkaline Environment in Greenland

    PubMed Central

    Glaring, Mikkel A.; Vester, Jan K.; Lylloff, Jeanette E.; Abu Al-Soud, Waleed; Sørensen, Søren J.; Stougaard, Peter

    2015-01-01

    The submarine ikaite columns located in the Ikka Fjord in Southern Greenland represent a unique, permanently cold (less than 6°C) and alkaline (above pH 10) environment and are home to a microbial community adapted to these extreme conditions. The bacterial and archaeal community inhabiting the ikaite columns and surrounding fjord was characterised by high-throughput pyrosequencing of 16S rRNA genes. Analysis of the ikaite community structure revealed the presence of a diverse bacterial community, both in the column interior and at the surface, and very few archaea. A clear difference in overall taxonomic composition was observed between column interior and surface. Whereas the surface, and in particular newly formed ikaite material, was primarily dominated by Cyanobacteria and phototrophic Proteobacteria, the column interior was dominated by Proteobacteria and putative anaerobic representatives of the Firmicutes and Bacteroidetes. The results suggest a stratification of the ikaite columns similar to that of classical soda lakes, with a light-exposed surface inhabited by primary producers and an anoxic subsurface. This was further supported by identification of major taxonomic groups with close relatives in soda lake environments, including members of the genera Rhodobaca, Dethiobacter, Thioalkalivibrio and Tindallia, as well as very abundant groups related to uncharacterised environmental sequences originally isolated from Mono Lake in California. PMID:25915866

  3. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    PubMed

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step.

  4. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression.

    PubMed

    Stoffregen, Eric P; Donley, Nathan; Stauffer, Daniel; Smith, Leslie; Thayer, Mathew J

    2011-06-15

    Mammalian DNA replication initiates at multiple sites along chromosomes at different times, following a temporal replication program. Homologous alleles typically replicate synchronously; however, mono-allelically expressed genes such as imprinted genes, allelically excluded genes and genes on the female X chromosome replicate asynchronously. We have used a chromosome engineering strategy to identify a human autosomal locus that controls this replication timing program in cis. We show that Cre/loxP-mediated rearrangements at a discrete locus at 6q16.1 result in delayed replication of the entire chromosome. This locus displays asynchronous replication timing that is coordinated with other mono-allelically expressed genes on chromosome 6. Characterization of this locus revealed mono-allelic expression of a large intergenic non-coding RNA, which we have named asynchronous replication and autosomal RNA on chromosome 6, ASAR6. Finally, disruption of this locus results in the activation of the previously silent alleles of linked mono-allelically expressed genes. We previously found that chromosome rearrangements involving eight different autosomes display delayed replication timing, and that cells containing chromosomes with delayed replication timing have a 30-80-fold increase in the rate at which new gross chromosomal rearrangements occurred. Taken together, these observations indicate that human autosomes contain discrete cis-acting loci that control chromosome-wide replication timing, mono-allelic expression and the stability of entire chromosomes.

  5. An autosomal locus that controls chromosome-wide replication timing and mono-allelic expression

    PubMed Central

    Stoffregen, Eric P.; Donley, Nathan; Stauffer, Daniel; Smith, Leslie; Thayer, Mathew J.

    2011-01-01

    Mammalian DNA replication initiates at multiple sites along chromosomes at different times, following a temporal replication program. Homologous alleles typically replicate synchronously; however, mono-allelically expressed genes such as imprinted genes, allelically excluded genes and genes on the female X chromosome replicate asynchronously. We have used a chromosome engineering strategy to identify a human autosomal locus that controls this replication timing program in cis. We show that Cre/loxP-mediated rearrangements at a discrete locus at 6q16.1 result in delayed replication of the entire chromosome. This locus displays asynchronous replication timing that is coordinated with other mono-allelically expressed genes on chromosome 6. Characterization of this locus revealed mono-allelic expression of a large intergenic non-coding RNA, which we have named asynchronous replication and autosomal RNA on chromosome 6, ASAR6. Finally, disruption of this locus results in the activation of the previously silent alleles of linked mono-allelically expressed genes. We previously found that chromosome rearrangements involving eight different autosomes display delayed replication timing, and that cells containing chromosomes with delayed replication timing have a 30–80-fold increase in the rate at which new gross chromosomal rearrangements occurred. Taken together, these observations indicate that human autosomes contain discrete cis-acting loci that control chromosome-wide replication timing, mono-allelic expression and the stability of entire chromosomes. PMID:21459774

  6. PCNA Mono-ubiquitination and Activation of Translesion DNA Polymerases by DNA Polymerase α

    PubMed Central

    Suzuki, Motoshi; Niimi, Atsuko; Limsirichaikul, Siripan; Tomida, Shuta; Miao, Huang Qin; Izuta, Shunji; Usukura, Jiro; Itoh, Yasutomo; Hishida, Takashi; Akashi, Tomohiro; Nakagawa, Yoshiyuki; Kikuchi, Akihiko; Pavlov, Youri; Murate, Takashi; Takahashi, Takashi

    2014-01-01

    SUMMARY Translesion DNA synthesis (TLS) involves PCNA mono-ubiquitination and TLS DNA polymerases (pols). Recent evidence has shown that the mono-ubiquitination is induced not only by DNA damage but also by other factors that induce stalling of the DNA replication fork. We studied the effect of spontaneous DNA replication errors on PCNA mono-ubiquitination and TLS induction. In the pol1L868F strain, which expressed an error-prone pol α, PCNA was spontaneously mono-ubiquitinated. Pol α L868F had a rate-limiting step at the extension from mismatched primer termini. Electron microscopic observation showed the accumulation of a single-stranded region at the DNA replication fork in yeast cells. For pol α errors, pol ζ participated in a generation of +1 frameshifts. Furthermore, in the pol1L868F strain, UV-induced mutations were lower than in the wild-type and a pol δ mutant strain (pol3-5DV), and deletion of the RAD30 gene (pol η) suppressed this defect. These data suggest that nucleotide misincorporation by pol α induces exposure of single-stranded DNA, PCNA mono-ubiquitination, and activates TLS pols. PMID:19279190

  7. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  8. Development of an alkaline fuel cell subsystem

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  9. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  10. Advanced-capability alkaline fuel cell powerplant

    NASA Astrophysics Data System (ADS)

    Deronck, Henry J.

    The alkaline fuel cell powerplant utilized in the Space Shuttle Orbiter has established an excellent performance and reliability record over the past decade. Recent AFC technology programs have demonstrated significant advances in cell durability and power density. These capabilities provide the basis for substantial improvement of the Orbiter powerplant, enabling new mission applications as well as enhancing performance in the Orbiter. Improved durability would extend the powerplant's time between overhaul fivefold, and permit longer-duration missions. The powerplant would also be a strong candidate for lunar/planetary surface power systems. Higher power capability would enable replacement of the Orbiter's auxiliary power units with electric motors, and benefits mass-critical applications such as the National AeroSpace Plane.

  11. Polyvinyl alcohol membranes as alkaline battery separators

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W.; Gonzalez-Sanabria, O.; Manzo, M. A.

    1982-01-01

    Polyvinly alcohol (PVA) cross-linked with aldehyde reagents yields membranes that demonstrate properties that make them suitable for use as alkaline battery separators. Film properties can be controlled by the choice of cross-linker, cross-link density and the method of cross-linking. Three methods of cross-linking and their effects on film properties are discussed. Film properties can also be modified by using a copolymer of vinyl alcohol and acrylic acid as the base for the separator and cross-linking it similarly to the PVA. Fillers can be incorporated into the films to further modify film properties. Results of separator screening tests and cell tests for several variations of PBA films are discussed.

  12. Rechargeable alkaline manganese dioxide/zinc batteries

    NASA Astrophysics Data System (ADS)

    Kordesh, K.; Weissenbacher, M.

    The rechargeable alkaline manganese dioxide/zinc MnO 2/Zn) system, long established commercial as a primay battery, has reached a high level of performance as a secondary battery system. The operating principles are presented and the technological achievements are surveyed by referencing the recent publications and patent literature. A review is also given of the improvements obtained with newly formulated cathodes and anodes and specially designed batteries. Supported by modelling of the cathode and anode processes and by statistical evidence during cycling of parallel/series-connected modules, the envisioned performance of the next generation of these batteries is described. The possibility of extending the practical use of the improved rechargeable MnO 2/Zn system beyond the field of small electronics into the area of power tools, and even to kW-sized power sources, is demonstrated. Finally, the commercial development in comparison with other rechargeable battery systems is examined.

  13. Inhibition of renal alkaline phosphatase by cimetidine.

    PubMed

    Minai-Tehrani, Dariush; Khodai, Somayeh; Aminnaseri, Somayeh; Minoui, Saeed; Sobhani-Damavadifar, Zahra; Alavi, Sana; Osmani, Raheleh; Ahmadi, Shiva

    2011-08-01

    Alkaline phosphatase (ALP) belongs to hydrolase group of enzymes. It is responsible for removing phosphate groups from many types of molecules, including nucleotides and proteins. Cimetidine (trade name Tagamet) is an antagonist of histamine H2-receptor that inhibits the production of gastric acid. Cimetidine is used for the treatment of gastrointestinal diseases. In this study the inhibitory effect of cimetidine on mouse renal ALP activity was investigated. Our results showed that cimetidine can inhibit ALP by uncompetitive inhibition. In the absence of inhibitor the V(max) and K(m) of the enzyme were found to be 13.7 mmol/mg prot.min and 0.25 mM, respectively. Both the Vmax and Km of the enzyme decreased with increasing cimetidine concentrations (0- 1.2 mM). The Ki and IC(50) of cimetidine were determined to be about 0.5 mM and 0.52 mM, respectively.

  14. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Swette, Larry; Giner, Jose

    1987-09-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  15. Development of an alkaline fuel cell subsystem

    NASA Astrophysics Data System (ADS)

    1987-03-01

    A two task program was initiated to develop advanced fuel cell components which could be assembled into an alkaline power section for the Space Station Prototype (SSP) fuel cell subsystem. The first task was to establish a preliminary SSP power section design to be representative of the 200 cell Space Station power section. The second task was to conduct tooling and fabrication trials and fabrication of selected cell stack components. A lightweight, reliable cell stack design suitable for the SSP regenerative fuel cell power plant was completed. The design meets NASA's preliminary requirements for future multikilowatt Space Station missions. Cell stack component fabrication and tooling trials demonstrated cell components of the SSP stack design of the 1.0 sq ft area can be manufactured using techniques and methods previously evaluated and developed.

  16. Acylglucuronide in alkaline conditions: migration vs. hydrolysis.

    PubMed

    Di Meo, Florent; Steel, Michele; Nicolas, Picard; Marquet, Pierre; Duroux, Jean-Luc; Trouillas, Patrick

    2013-06-01

    This work rationalizes the glucuronidation process (one of the reactions of the phase II metabolism) for drugs having a carboxylic acid moiety. At this stage, acylglucuronides (AG) metabolites are produced, that have largely been reported in the literature for various drugs (e.g., mycophenolic acid (MPA), diclofenac, ibuprofen, phenylacetic acids). The competition between migration and hydrolysis is rationalized by adequate quantum calculations, combing MP2 and density functional theory (DFT) methods. At the molecular scale, the former process is a real rotation of the drug around the glucuconic acid. This chemical-engine provides four different metabolites with various toxicities. Migration definitely appears feasible under alkaline conditions, making proton release from the OH groups. The latter reaction (hydrolysis) releases the free drug, so the competition is of crucial importance to tackle drug action and elimination. From the theoretical data, both migration and hydrolysis appear kinetically and thermodynamically favored, respectively.

  17. The Alkaline Dissolution Rate of Calcite.

    PubMed

    Colombani, Jean

    2016-07-07

    Due to the widespread presence of calcium carbonate on Earth, several geochemical systems, among which is the global CO2 cycle, are controlled to a large extent by the dissolution and precipitation of this mineral. For this reason, the dissolution of calcite has been thoroughly investigated for decades. Despite this intense activity, a consensual value of the dissolution rate of calcite has not been found yet. We show here that the inconsistency between the reported values stems mainly from the variability of the chemical and hydrodynamic conditions of measurement. The spreading of the values, when compared in identical conditions, is much less than expected and is interpreted in terms of sample surface topography. This analysis leads us to propose benchmark values of the alkaline dissolution rate of calcite compatible with all the published values, and a method to use them in various chemical and hydrodynamic contexts.

  18. Alkaline oxide conversion coatings for aluminum alloys

    SciTech Connect

    Buchheit, R.G.

    1996-02-01

    Three related conversion coating methods are described that are based on film formation which occurs when aluminum alloys are exposed to alkaline Li salt solutions. Representative examples of the processing methods, resulting coating structure, composition and morphology are presented. The corrosion resistance of these coatings to aerated 0.5 M NaCl solution has been evaluated as a function of total processing time using electrochemical impedance spectroscopy (EIS). This evaluation shows that excellent corrosion resistance can be uniformly achieved using no more than 20 minutes of process time for 6061-T6. Using current methods a minimum of 80 minutes of process time is required to get marginally acceptable corrosion resistance for 2024-T3. Longer processing times are required to achieve uniformly good corrosion resistance.

  19. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  20. Alkaline pulping of some eucalypts from Sudan.

    PubMed

    Khristova, P; Kordsachia, O; Patt, R; Dafaalla, S

    2006-03-01

    Four eucalypts (Eucalyptus camaldulensis, Eucalyptus microtheca, Eucalyptus tereticornis and Eucalyptus citriodora) grown in Sudan were examined for their suitability for pulping and papermaking with different alkaline methods. Their physical, morphological and chemical characteristics are reported. The pulping trials with E. citriodora and E. tereticornis were carried out using the kraft-AQ, soda-AQ, modified AS/AQ (ASA), ASAM and kraft methods. For the other two species, only the ASAM and the kraft process were applied. ASAM pulping gave the best results in terms of yield, degree of delignification, mechanical and optical pulp properties. The best pulps, obtained in kraft and ASAM cooking of E. citriodora, were bleached to 88% ISO brightness in a totally chlorine free bleaching sequence (OQ1O/PQ2P). The bleached pulps, especially the ASAM pulp, showed good papermaking properties and would be suitable for manufacture of writing and printing grades of paper.