Science.gov

Sample records for alkaline igneous complex

  1. Lithium Isotope Systematics of Rift-related Alkaline Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Halama, R.; McDonough, W. F.; Rudnick, R. L.; Trumbull, R.; Klaudius, J.; Keller, J.; Taubald, H.

    2006-05-01

    Intracontinental alkaline igneous rocks from the Proterozoic Gardar Province (Greenland), the Cretaceous Damaraland Province (Namibia), the Tertiary Kaiserstuhl complex (Germany) and from the Holocene volcano Oldoinyo Lengai (Tanzania) were analyzed to characterize Li isotopic compositions of their mantle sources and to determine the processes affecting δ7Li in alkaline igneous rocks. The inferred mantle Li isotope signatures of the primitive alkaline rocks (δ7Li = +1 to +7) are similar to those of present- day MORB, OIB and carbonatites, and appear to be relatively constant in time and space. Gabbros from the Gardar Province define a relatively small field of Li isotope compositions (δ7Li = +4 to +7). Mineral separates (clinopyroxene, plagioclase) mostly overlap with the whole-rock values, which we interpret to reflect the δ7Li of the mantle sources of the gabbros. Mantle-like δ7Li values are also observed for primitive alkaline rocks from the other regions. Li isotope compositions in more differentiated rocks (syenites, phonolites and rhyolites) are highly variable (+11 to -22 per mil) and reflect a diversity of evolutionary processes that may vary from complex to complex. δ7Li values vary independently of Sr and Nd isotope values and indices of differentiation (e.g. MgO content) or weathering (e.g. LOI). Consistently light δ7Li values (+2 to -22) occur in Gardar syenites associated with a carbonatite. These may be explained by weathering and sub-solidus alteration, as indicated by petrographic observations. Alternatively, fluid-assisted diffusion processes, related to a fenitizing fluid from the carbonatite, may have led to extreme Li isotope fractionation. Whole-rock oxygen isotope analyses will be carried out to evaluate interaction with meteoric water, which would be reflected in a decrease in δ18O compared to magmatic values. The heaviest Li isotopic composition (+11 per mil) was obtained for a rhyolite, probably related to the presence of quartz

  2. Petrology and mineralogy of the La Peña igneous complex, Mendoza, Argentina: An alkaline occurrence in the Miocene magmatism of the Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Pagano, Diego Sebastián; Galliski, Miguel Ángel; Márquez-Zavalía, María Florencia; Colombo, Fernando

    2016-04-01

    The La Peña alkaline igneous complex (LPC) is located in the Precordillera (32°41‧34″ S - 68°59‧48″ W) of Mendoza province, Argentina, above the southern boundary of the present-day flat-slab segment. It is a 19 km2 and 5 km diameter subcircular massif emplaced during the Miocene (19 Ma) in the Silurian-Devonian Villavicencio Fm. The LPC is composed of several plutonic and subvolcanic intrusions represented by: a cumulate of clinopyroxenite intruded by mafic dikes and pegmatitic gabbroic dikes, isolated bodies of malignite, a central intrusive syenite that develops a wide magmatic breccia in the contact with clinopyroxenite, syenitic and trachytic porphyries, a system of radial and ring dikes of different compositions (trachyte, syenite, phonolite, alkaline lamprophyre, tephrite), and late mafic breccias. The main minerals that form the LPC, ordered according to their abundance, are: pyroxene (diopside, hedenbergite), calcium amphibole (pargasite, ferro-pargasite, potassic-ferro-pargasite, potassic-hastingsite, magnesio-hastingsite, hastingsite, potassic-ferro-ferri-sadanagaite), trioctahedral micas (annite-phlogopite series), plagioclase (bytownite to oligoclase), K-feldspar (sanidine and orthoclase), nepheline, sodalite, apatite group minerals (fluorapatite, hydroxylapatite), andradite, titanite, magnetite, spinel, ilmenite, and several Cu-Fe sulfides. Late hydrothermal minerals are represented by zeolites (scolecite, thomsonite-Ca), epidote, calcite and chlorite. The trace element patterns, coupled with published data on Sr-Nd-Pb isotopes, suggest that the primary magma of the LPC was generated in an initially depleted but later enriched lithospheric mantle formed mainly by a metasomatized spinel lherzolite, and that this magmatism has a subduction-related signature. The trace elements pattern of these alkaline rocks is similar to other Miocene calc-alkaline occurrences from the magmatic arc of the Southern Central Andes. Mineral and whole

  3. Abiogenic Fischer-Tropsch synthesis of hydrocarbons in alkaline igneous rocks; fluid inclusion, textural and isotopic evidence from the Lovozero complex, N.W. Russia

    NASA Astrophysics Data System (ADS)

    Potter, Joanna; Rankin, Andrew H.; Treloar, Peter J.

    2004-08-01

    A detailed fluid inclusion study has been carried out on the hydrocarbon-bearing fluids found in the peralkaline complex, Lovozero. Petrographic, microthermometric, laser Raman and bulk gas data are presented and discussed in context with previously published data from Lovozero and similar hydrocarbon-bearing alkaline complexes in order to further understand the processes which have generated these hydrocarbons. CH 4-dominated inclusions have been identified in all Lovozero samples. They occur predominantly as secondary inclusions trapped along cleavage planes and healed fractures together with rare H 2O-dominant inclusions. They are consistently observed in close association with either arfvedsonite crystals, partially replaced by aegirine, aegirine crystals or areas of zeolitization. The majority of inclusions consist of a low-density fluid with CH 4 homogenisation temperatures between -25 and -120 °C. Those in near-surface hand specimens contain CH 4+H 2 (up to 40 mol%)±higher hydrocarbons. However, inclusions in borehole samples contain CH 4+higher hydrocarbons±H 2 indicating that, at depth, higher hydrocarbons are more likely to form. Estimated entrapment temperatures and pressures for these inclusions are 350 °C and 0.2-0.7 kbar. A population of high-density, liquid, CH 4-dominant inclusions have also been recorded, mainly in the borehole samples, homogenising between -78 and -99 °C. These consist of pure CH 4, trapped between 1.2 and 2.1 kbar and may represent an early CH 4-bearing fluid overprinted by the low-density population. The microthermometric and laser Raman data are in agreement with bulk gas data, which have recorded significant concentrations of H 2 and higher hydrocarbons up to C 6H 12 in these samples. These data, combined with published isotopic data for the gases CH 4, C 2H 6, H 2, He and Ar indicate that these hydrocarbons have an abiogenic, crustal origin and were generated during postmagmatic, low temperature, alteration reactions of

  4. Sudbury Igneous Complex: Impact melt or igneous rock? Implications for lunar magmatism

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.

    1992-01-01

    The recent suggestion that the Sudbury Igneous Complex (SIC) is a fractionated impact melt may have profound implications for understanding the lunar crust and the magmatic history of the Moon. A cornerstone of much current thought on the Moon is that the development of the lunar crust can be traced through the lineage of 'pristine' igneous rocks. However, if rocks closely resembling those from layered igneous intrusions can be produced by differentiation of a large impact melt sheet, then much of what is thought to be known about the Moon may be called into question. This paper presents a brief evaluation of the SIC as a differentiated impact melt vs. endogenous igneous magma and possible implications for the magmatic history of the lunar crust.

  5. Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites

    USGS Publications Warehouse

    Flohr, M.J.K.; Ross, M.

    1990-01-01

    Syenites from the Magnet Cove alkaline igneous complex form a diverse mineralogical and geochemical suite. Compositional zoning in primary and late-stage minerals indicates complex, multi-stage crystallization and replacement histories. Residual magmatic fluids, rich in F, Cl, CO2 and H2O, reacted with primary minerals to form complex intergrowths of minerals such as rinkite, fluorite, V-bearing magnetite, F-bearing garnet and aegirine. Abundant sodalite and natrolite formed in pegmatitic segregations within nepheline syenite where Cl- and Na-rich fluids were trapped. During autometasomatism compatible elements such as Mn, Ti, V and Zr were redistributed on a local scale and concentrated in late-stage minerals. Early crystallization of apatite and perovskite controlled the compatible behavior of P and Ti, respectively. The formation of melanite garnet also affected the behaviour of Ti, as well as Zr, Hf and the heavy rare-earth elements. Pseudoleucite syenite and garnet-nepheline syenite differentiated along separate trends, but the two groups are related to the same parental magma by early fractionation of leucite, the presumed precursor of intergrowths of K-feldspar and nepheline. The Diamond Jo nepheline syenite group defines a different differentiation trend. Sphene-nepheline syenite, alkali syenite and several miscellaneous nepheline syenites do not consistently plot with the other syenite groups or each other on element and oxide variation diagrams, indicating that they were derived from still other parental syenite magmas. Mineral assemblages indicate that relatively high f{hook};O2, at or above the fayalite-magnetite-quartz buffer, prevailed throughout the crystallization history of the syenites. ?? 1990.

  6. Timescales and mechanisms of plume-lithosphere interactions: 40Ar/ 39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province

    NASA Astrophysics Data System (ADS)

    Gibson, S. A.; Thompson, R. N.; Day, J. A.

    2006-11-01

    We have determined high-precision 40Ar/ 39Ar ages for alkaline igneous rocks from the western margin of the Early-Cretaceous Paraná-Etendeka large igneous province (Paraguay). These show that small-fraction melt generation occurred beneath the region in two phases; at 145 Ma and 127.5 Ma, i.e. before and at the end of the 139-127.5 Ma Paraná-Etendeka flood-basalt eruptions. Previously published 40Ar/ 39Ar ages for alkaline igneous rocks on the proto-Atlantic coastal margins range from 134 to 128 Ma and indicate that small-fraction melt generation in the east of the province was either synchronous or slightly later than the main pulse of tholeiitic volcanism (between 134 and 132 Ma). Our new 40Ar/ 39Ar phlogopite ages confirm that: (i) the earliest melts associated with the initial impact of the Tristan plume were generated in the west of the Paraná-Etendeka large igneous province and (ii) igneous activity was long lived and immediately predates continental break-up. The Early-Cretaceous Paraguayan alkaline magmas are silica-undersaturated, enriched in incompatible-trace elements, have very-low initial ɛNd values and probably represent melts of phlogopite-bearing, carbonate-metasomatised peridotite in the subcontinental lithospheric mantle. Our simple one-dimensional, conductive-heating models suggest that the early-phase (145 Ma) alkaline magmas were emplaced on the margins of the Rio de La Plata craton at the time of sublithospheric impact of the proto-Tristan plume. The late phase (127.5 Ma) of Paraguayan alkaline magmatism is concentrated in an intra-cratonic rift zone and melt generation appears to have been triggered by lithospheric extension, perhaps facilitated by conductive heating and thermal weakening associated with the upwelling Tristan plume. The location and timing of both alkaline and tholeiitic melt generation in the Paraná-Etendeka province appear to have been significantly influenced by the non-uniform composition and thickness of the South

  7. Magnetic modeling of the Bushveld Igneous Complex

    NASA Astrophysics Data System (ADS)

    Webb, S. J.; Cole, J.; Letts, S. A.; Finn, C.; Torsvik, T. H.; Lee, M. D.

    2009-12-01

    Magnetic modeling of the 2.06 Ga Bushveld Complex presents special challenges due a variety of magnetic effects. These include strong remanence in the Main Zone and extremely high magnetic susceptibilities in the Upper Zone, which exhibit self-demagnetization. Recent palaeomagnetic results have resolved a long standing discrepancy between age data, which constrain the emplacement to within 1 million years, and older palaeomagnetic data which suggested ~50 million years for emplacement. The new palaeomagnetic results agree with the age data and present a single consistent pole, as opposed to a long polar wander path, for the Bushveld for all of the Zones and all of the limbs. These results also pass a fold test indicating the Bushveld Complex was emplaced horizontally lending support to arguments for connectivity. The magnetic signature of the Bushveld Complex provides an ideal mapping tool as the UZ has high susceptibility values and is well layered showing up as distinct anomalies on new high resolution magnetic data. However, this signature is similar to the highly magnetic BIFs found in the Transvaal and in the Witwatersrand Supergroups. Through careful mapping using new high resolution aeromagnetic data, we have been able to map the Bushveld UZ in complicated geological regions and identify a characteristic signature with well defined layers. The Main Zone, which has a more subdued magnetic signature, does have a strong remanent component and exhibits several magnetic reversals. The magnetic layers of the UZ contain layers of magnetitite with as much as 80-90% pure magnetite with large crystals (1-2 cm). While these layers are not strongly remanent, they have extremely high magnetic susceptibilities, and the self demagnetization effect must be taken into account when modeling these layers. Because the Bushveld Complex is so large, the geometry of the Earth’s magnetic field relative to the layers of the UZ Bushveld Complex changes orientation, creating

  8. Petrology of the Betulia Igneous Complex, Cauca, Colombia

    NASA Astrophysics Data System (ADS)

    Gil-Rodriguez, Javier

    2014-12-01

    The Betulia Igneous Complex (BIC) is a group of Late-Miocene (11.8 ± 0.2 Ma) hypabyssal intrusions of intermediate to felsic composition located in the SW of the Colombian Andes. These bodies have a calc-alkaline tendency and are related to the subduction of the Nazca plate under the South American plate. Diorites, quartz diorites and tonalities have porphyritic and phaneritic textures and are composed of plagioclase, amphibole, quartz, biotite, and orthoclase. Plagioclase is mainly of andesine-type and the amphiboles were classified mainly as magnesiohornblendes, actinolites, and tschermakites. BIC rocks have a narrow range of SiO2 content (59-67wt%) and exhibit an enrichment of LILE and LREE relative to HFSE and HREE, respectively. These features are attributed to enrichment of LILE from the source and retention of HFSE (mainly Nb, Ta, and Ti) by refractory phases within the same source. The depletion of HREE is explained by fractionation of mineral phases that have a high partition coefficients for these elements, especially amphiboles, the major mafic phase in the rocks. Nevertheless, the fractionation of garnet in early stages of crystallization is not unlikely. Probably all BIC units were generated by the same magma chamber or at least by the same petrologic mechanism as shown by the similar patterns in spider and REE diagrams; fractional crystallization and differentiation processes controlled the final composition of the rocks, and crystallization stages determined the texture. Isotopic compositions of BIC rocks (87Sr/86Sr: 0.70435-0.70511; 143Nd/144Nd: 0.51258-0.51280; 206Pb/204Pb: 19.13-19.31; 207Pb/204Pb: 15.67-15.76; 208Pb/204Pb: 38.93-39.20) indicate a source derived from the mantle with crustal contamination. The model proposed for the BIC consists of fluids from the dehydration of the subducted slab (Nazca plate) and subducted sediments that generated partial melting of the mantle wedge. These basaltic melts ascended to the mantle-crust boundary

  9. Emplacement of the La Peña alkaline igneous complex, Mendoza, Argentina (33° S): Implications for the early Miocene tectonic regime in the retroarc of the Andes

    NASA Astrophysics Data System (ADS)

    Pagano, D. S.; Galliski, M. A.; Márquez-Zavalía, M. F.

    2014-03-01

    The La Peña alkaline complex (LPC) of Miocene age (18-19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400-2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW-SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N-S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R‧), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW-SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by

  10. Magmatic origin of alkaline meta-igneous rocks from Chamberlindalen, SW Svalbard

    NASA Astrophysics Data System (ADS)

    Goluchowska, Karolina; Barker, Abigail; Manecki, Maciej; Czerny, Jerzy; Majka, Jaroslaw

    2014-05-01

    This study focuses on the late Neoproterozoic meta-igneous rocks of SW Svalbard to determine their magmatic evolution, conditions of magma storage and origin. The samples from the Chamberlindalen area form an alkaline igneous suite, from which thin dikes and intrusive bodies have been collected. The rocks in question intrude Late Neoproterozoic metasediments and are surrounded by occurrences of Neoproterozoic metabasalts in contrast to highly alkaline the Chamberlindalen intrusions. The rocks from Chamberlindalen are divided into two groups based on their geochemistry, mineralogy and field relationships. The dikes, classify as minettes, belonging to the lamprophyre group and contain mainly euhedral, elongated phlogopite and additionally clinopyroxene and feldspar. The rest of the samples are highly magnesian and are classified as alkali gabbro. The alkali gabbros contain primary magmatic minerals such as clinopyroxene, calcic amphibole and mica in different proportions. The alkali gabbros are enriched in LREE and HFSE and depleted in P, K and HREE. The minette dikes are always more enriched in HFSE and REE in comparison to the alkali gabbros. The mineral chemistry of the alkali gabbros reveals that pyroxenes are represented by diopside with Wo46-51 En35-46 Fs6-14, and calcic amphibole by kaersutite. The Mg# number for diopside is from 72 - 88, whereas for kaersutite Mg# number is 51 - 74. Thermobarometry calculations for diopside and kaersutite have been performed. In the alkali gabbros from Chamberlindalen, diopside crystallized between 0.7 - 8 kbar and 1152 - 1233°C. Results for kaersutite reveal that they crystallized between 5 - 17 kbar and 1043 - 1215°C. For diopside the main crystallization was between 10 and 38 km, whereas for kaersutite, the main crystallization was between 30 and 50 km. Clinopyroxene and minor kaersutite also show a zone of crystallization at 2 to 10 km. This reflects a main crystallization zone at 10 - 50 km throughout the continental

  11. Evidence for alkaline igneous activity and associated metasomatism in the Reelfoot rift, south-central Midcontinent, U. S. A

    SciTech Connect

    Goldhaber, M.B.; Diehl, S.F.; Sutley, S.J. ); Flohr, M.J.K. )

    1993-03-01

    Alkaline igneous magmatism is commonly associated with intracontinental rifts such as the Reelfoot rift (RR). Direct evidence for alkaline magmatism in the area of the RR occurs as lamprophyre and syenite encountered in deep wells. The authors' new studies of lamprophyres and sedimentary rocks from wells in the region provide additional examples of alkaline magmatism and emphasize the effects of related metasomatism. Sedimentary rocks in the Dow Chemical No. 1 Garrigan well, which is not known to contain lamprophyre dikes, probably also were metasomatically altered, as they contain authigenic fluorapatite, Ce-phosphates, and other REE-rich minerals. Enrichments of incompatible and large ion lithophile elements commonly associated with alkaline magmatism occur in the New Madrid test well, near the crest of the Pascola Arch. The carbonate-free fraction of Paleozoic rocks in this well is highly enriched in Nb (500 ppm), Ba (> 5,000 ppm), La (500 ppm), Th (1,000 ppm), and F (2,400 ppm). Abundant inclusion-rich potassium-feldspar cement in a nearby well may also be the result of alkaline metasomatism. Fluorite and elevated F concentrations are found in several wells in the RR, and contrast with stratigraphically correlative platform carbonates of the Ozark uplift, which lack F enrichment. Well and spring water samples above the RR are enriched in fluorine (as much as 5,000 ppb) compared to samples away from the rift which typically have concentrations two orders of magnitude smaller. The data and observations are consistent with relatively widespread alkaline metasomatism, which was associated with the intrusion of alkaline magmas in the RR.

  12. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  13. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ahmad, Irshad; Khan, Shuhab; Lapen, Thomas; Burke, Kevin; Jehan, Noor

    2013-01-01

    New isotopic ages on zircons from rocks of the Peshawar Plain Alkaline Igneous Province (PPAIP) reveal for the first time the occurrence of ignimbritic Cenozoic (Oligocene) volcanism in the Himalaya at 26.7 ± 0.8 Ma. Other new ages confirm that PPAIP rift-related igneous activity was Permian and lasted from ˜290 Ma to ˜250 Ma. Although PPAIP rocks are petrologically and geochemically typical of rifts and have been suggested to be linked to rifting on the Pangea continental margin at the initiation of the Neotethys Ocean, there are no documented rift-related structures mapped in Permian rocks of the Peshawar Plain. We suggest that Permian rift-related structures have been dismembered and/or reactivated during shortening associated with India-Asia collision. Shortening in the area between the Main Mantle Thrust (MMT) and the Main Boundary Thrust (MBT) may be indicative of the subsurface northern extension of the Salt Range evaporites. Late Cenozoic sedimentary rocks of the Peshawar Plain deposited during and after Himalayan thrusting occupy a piggy-back basin on top of the thrust belt. Those sedimentary rocks have buried surviving evidence of Permian rift-related structures. Igneous rocks of the PPAIP have been both metamorphosed and deformed during the Himalayan collision and Cenozoic igneous activity, apart from the newly recognized Gohati volcanism, has involved only the intrusion of small cross-cutting granitic bodies concentrated in areas such as Malakand that are close to the MMT. Measurements on Chingalai Gneiss zircons have confirmed the occurrence of 816 ± 70 Ma aged rocks in the Precambrian basement of the Peshawar Plain that are comparable in age to rocks in the Malani igneous province of the Rajasthan platform ˜1000 km to the south.

  14. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  15. Pre-Elsonian mafic magmatism in the Nain Igneous Complex, Labrador: the bridges layered intrusion

    USGS Publications Warehouse

    Ashwal, L.D.; Wiebe, R.A.; Wooden, J.L.; Whitehouse, M.J.; Snyder, Diane

    1992-01-01

    Decades of work on the pristine, unmetamorphosed, and well exposed anorthositic, mafic and granitic rocks of the Nain igneous complex, Labrador, have led to the conclusion that all plutonic rocks in that area were emplaced in a short time intercal at about 1300 ?? 10 Ma). We report here new isotopic data for mafic intrusive rocks that appear to have crystallized several hundred Ma earlier than the bulk of the plutonic activity in the Nain complex. The Bridges layered intrusion (BLI) is a small (15-20 km2) lens of layered mafic rocks about 1.5 km thick, surrounded and intruded by anorthositic, leuconoritic and leucotroctolitic plutons in the middle of the coastal section of the Nain igneous complex. BLI shows very well developed magmatic structures, including channel scours, slump structures, and ubiquitous modally graded layering. Most rocks, however, show granular textures indicative of recrystallization, presumably caused by emplacement of younger anorthositic rocks. BLI contains cumulate rocks with slightly more primitive mineral compositions (An60-83, Fo66-71) than those of other mafic intrusions in the Nain igneous complex, including Kiglapait. SmNd isotopic data for 7 BLI whole-rocks ranging in composition between olivine melagabbro and olivine leucogabbro yield an age of 1667 ?? 75 Ma, which we interpret as the time of primary crystallization. The internal isotopic systematics of the BLI have been reset, probably by intrusion of adjacent anorthositic plutons. A SmNd mineral isochron (plag, whole-rock, mafics) for a BLI olivine melagabbro gives an age of 1283 ?? 22 Ma, equivalent within error of a mineral array (plag, whole-rock, opx, cpx) for an adjacent, igneous-textured, leuconorite vein (1266 ?? 152 Ma). The initial Nd ratio for BLI corresponds to ??{lunate}Nd = -3.18 ?? 0.44. Other whole-rock samples, however, some with vein-like alteration (Chlorite, serpentine, amphiboles), show ??{lunate}Nd values as low as -9.1, suggesting variable contamination by

  16. Intrusive origin of the Sudbury Igneous Complex: Structural and sedimentological evidence

    NASA Technical Reports Server (NTRS)

    Cowan, E. J.; Schwerdtner, W. M.

    1992-01-01

    In recent years, many geoscientists have come to believe that the Sudbury event was exogenic rather than endogenic. Critical to a recent exogenic hypothesis is the impact melt origin of the Sudbury Igneous Complex (SIC). Such origin implies that the SIC was emplaced before deposition of the Whitewater Group, in contrast to origins in which the SIC postdates the lithification of the Onaping Formation. Structural and sedimentological evidence is summarized herein that supports an intrusion of the SIC after lithification of all Whitewater Group strata, and conflicts with the hypothesis advanced by other researchers.

  17. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    NASA Astrophysics Data System (ADS)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  18. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  19. The Late Precambrian Timna igneous complex, Southern Israel: Evidence for comagmatic-type sanukitoid monzodiorite and alkali granite magma

    NASA Astrophysics Data System (ADS)

    Beyth, Michael; Stern, Robert J.; Altherr, Rainer; Kröner, Alfred

    1994-01-01

    New data from a geochemical, geochronological and isotopic study of the Late Precambrian Timna igneous complex suggest the formation of alkali granites from a LIL-enriched, mantle derived, sanukitoid-type monzodiorite (a silica oversaturated rock with Mg# >60). These data also provide new insights into the petrology, timing and regional tectonic control of the transition from the calc-alkaline to the alkaline magmatic activity in the northern Arabian-Nubian Shield (ANS) during the Late Precambrian. The Timna alkali granite was formed by fractional crystallization from the monzodioritic magma in a quasi-stratified magmatic cell which formed 610 Ma ago in the 625 Ma old calc-alkaline, porphyritic granite crust. These monzodiorites are mantle-derived, as demonstrated by their high Mg# (63), Cr (230 ppm), and Ni (120 ppm). They are characterized by initial {87Sr}/{86Sr} of 0.7034, ɛ-Nd (610 Ma) = +3.4, and are enriched in K 2O (2.9%), Sr (840 ppm), Ba (1290 ppm) and LREE [ ( {La}/{Lu}) n= 10-25 ]. The chemical characteristics and REE patterns of the monzodiorites and andesitic dykes of Timna are very similar to Dokhan andesites from northeastern Egypt and the Archean sanukitoids from Canada. The isotopic, geochemical and geochronologic data all indicate that Timna monzodiorites are comagmatic with the alkali granite. The alkali granite is a typical post-orogenic, borderline A-type granite. It is enriched in potassium (K 2O=4.68-6.64%), has a negative europium anomaly ( {Eu}/{Eu∗}=0.058-0.38 ) and ɛ-Nd (610 Ma) of +3.9. The calc-alkaline granite is a typical I-type granite with a small positive europium anomaly ( {Eu}/{Eu∗}=1.02-1.16 ). Its age and the Sr, Nd and Pb isotopic characteristics with ɛ-Nd (625 Ma) of +5.6 to +5.9 are significantly different from these of the alkali granite and monzodiorites, and indicate little interaction with the monzodiorite during the formation of the alkali granite. The alkali granites are correlative with the post

  20. Palaeomagnetism of the Early Permian Mount Leyshon Intrusive Complex and Tuckers Igneous Complex, North Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Clark, D. A.; Lackie, M. A.

    2003-06-01

    This study provides reliable, precisely defined and well-dated Early Permian (286 +/- 6 Ma) palaeomagnetic poles for Australia from the Mount Leyshon Intrusive Complex (MLIC) and the Tuckers Igneous Complex (TIC). Both complexes are associated with prominent negative magnetic anomalies, indicating the presence of rocks carrying stable remanence of reverse polarity, with a Koenigsberger ratio greater than unity. The characteristic remanence carried by the intrusive phases and by locally remagnetized, contact-metamorphosed host rocks is always of reverse polarity, consistent with acquisition during the Permo-Carboniferous (Kiaman) Reverse Superchron. The corresponding palaeopoles confirm that Australia occupied high latitudes in the Early Permian. The pole positions are: MLIC: lat. = 43.2 °S, long. = 137.3 °E dp = 6.0°, dm = 6.4° Q= 6; TIC: lat. = 47.5 °S, long. = 143.0 °E, dp = 6.0°, dm = 6.6° Q= 6. Permian palaeomagnetic overprinting is detectable at considerable distances from the MLIC (2-3 km), well beyond the zone of visible alteration. The primary nature of the Early Permian palaeomagnetic signature is established by full baked contact/aureole tests at both localities. Other new data from Australia are consistent with the poles reported here. Comparison of the Australian, African and South American Apparent Polar Wander Paths (APWP) suggests that mean Permian and Triassic poles from West Gondwana, particularly from South America, are biased by remagnetization in the Jurassic-Cretaceous and that the Late Palaeozoic-Mesozoic APWP for Gondwana is best defined by Australian data. The Australian APWP exhibits substantial movement through the Mesozoic. Provided only that the time-averaged palaeofield was zonal, the Early Triassic palaeomagnetic data from Australia provide an important palaeogeographic constraint that the south geographic pole was within, or very close to, SE Australia around 240 Ma. The new Early Permian poles are apparently more consistent

  1. The Basal Onaping Intrusion in the North Range: Roof rocks of the Sudbury Igneous Complex

    NASA Astrophysics Data System (ADS)

    Anders, Denise; Osinski, Gordon R.; Grieve, Richard A. F.; Brillinger, Derek T. M.

    2015-09-01

    The 1.85 Ga Sudbury impact structure is one of the largest impact structures on Earth. Igneous bodies—the so-called "Basal Onaping Intrusion"—occur at the contact between the Sudbury Igneous Complex (SIC) and the overlying Onaping Formation and occupy ~50% of this contact zone. The Basal Onaping Intrusion is presently considered part of the Onaping Formation, which is a complex series of breccias. Here, we present petrological and geochemical data from two drill cores and field data from the North Range of the Sudbury structure, which suggests that the Basal Onaping Intrusion is not part of the Onaping Formation. Our observations indicate that the Basal Onaping Intrusion crystallized from a melt and has a groundmass comprising a skeletal intergrowth of feldspar and quartz that points to simultaneous cooling of both components. Increasing grain size and decreasing amounts of clasts with increasing depth are general features of roof rocks of coherent impact melt rocks at other impact structures and the Basal Onaping Intrusion. Planar deformation features within quartz clasts of the Basal Onaping Intrusion are indicators for shock metamorphism and, together with the melt matrix, point to the Basal Onaping Intrusion as being an impact melt rock, by definition. Importantly, the contact between Granophyre of the SIC and Basal Onaping Intrusion is transitional and we suggest that the Basal Onaping Intrusion is what remains of the roof rocks of the SIC and, thus, is a unit of the SIC and not the Onaping Formation. We suggest henceforth that this unit be referred to as the "Upper Contact Unit" of the SIC.

  2. Deep structure of the Mount Amram igneous complex, interpretation of magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Shirman, Boris; Rybakov, Michael; Beyth, Michael; Mushkin, Amit; Ginat, Hanan

    2015-03-01

    The Mt Amram igneous complex (AIC) represents northern tip of the Neoproterozoic Arabian Nubian Shield (ANS). For the first time the AIC deep structure was studied using the gravity, aero and ground magnetic, magnetic susceptibility and density measurements and geological data. Analysing all available data at the Amram area we concluded what only monzonite body can be reason for gravity high and coinciding reduced to pole (RTP) maximum. Geological knowledge allowed suggesting its intrusive character and compact body form. Cluster of inverse solutions (Werner deconvolution) localized this body as initial model for forward modelling. Further iterations (23/4-D forward modelling) clarified the monzonite geometry and properties; the modelling allowed also to investigate the non-uniqueness and estimate also the confident intervals for final solution. The research consists three interconnected stages. At the detailed scale, ground magnetic data suggested three magmatic blocks of few hundred meters shifted dextral about 100 m along the Zefunut fault. Estimated accuracy for geometry of the magnetic bodies is a few tens metres. At the middle scale, quantitative gravity and magnetic interpretations provide model of the monzonite body, which is an order of magnitude more than the volume of the felsic rhyolites and granite rocks. Boundary of the whole monzonite body was estimated with accuracy as a hundred meters. As a result we suggest that the parent magma for the AIC is the monzonite, similar to the model suggested for the Timna Igneous Complex 12 km north of the AIC. The model developed can be applied to evaluate the subsurface volumes of the mafic magmatic rocks in adjacent locations. At the regional scale for exposed the Sinai and Arab Saudi Precambrian crystalline shield our approach allows to understand the apparent contradiction between geological predominantly granite composition (low magnetic rocks) and magnetic data. The aeromagnetic data show number strong

  3. The “eye of Africa” (Richat dome, Mauritania): An isolated Cretaceous alkaline-hydrothermal complex

    NASA Astrophysics Data System (ADS)

    Matton, Guillaume; Jébrak, Michel

    2014-09-01

    The Richat dome is a spectacular circular structure located in the Mauritanian part of the Sahara Desert. The current erosion level of this igneous complex presents a wide variety of contrasting extrusive and intrusive rocks from shallow to deep source regions providing insight into the magmatic process at the origin of the complex. The Richat is the superposition of a bimodal tholeiitic suite crosscut by carbonatitic and kimberlitic magmatic rocks. The bimodal series is characterized by two concentric gabbroic ring dikes and two extrusive rhyolitic centers representing the remnant of two maar systems. Silica undersaturated magmas occur as carbonatite dikes, a kimberlite plug, and kimberlite sills extruded along the old regional anisotropies filling NNE-SSW dextral strike-slip faults and en-echelon tension gashes. An intense low-temperature hydrothermal event affected the Richat area. It is responsible, notably, for the karst-collapse central mega-breccia, the alteration of the rhyolites, the potassic alteration of the gabbros and the stable isotope enrichment in the carbonatites. A piston-like collapse is proposed to explain the contrast existing between the central and outer part of the Richat. Structural inheritance played an important role in the history of the Richat complex. Pre-existing anisotropies acted as a pathway for the ascent of asthenospheric and sub-continental melts and allowed the coexistence of alkaline and tholeiitic magmas within the same igneous complex.

  4. Zonation of the Newry Igneous Complex, Northern Ireland, based on geochemical and geophysical data

    NASA Astrophysics Data System (ADS)

    Anderson, P. E.; Cooper, M. R.; Stevenson, C. T.; Hastie, A. R.; Hoggett, M.; Inman, J.; Meighan, I. G.; Hurley, C.; Reavy, R. J.; Ellam, R. M.

    2016-09-01

    The Late Caledonian Newry Igneous Complex (NIC), Northern Ireland, comprises three largely granodioritic plutons, together with an intermediate-ultramafic body at its northeastern end. New whole-rock geochemical data, petrological classifications, and published data, including recent Tellus aeromagnetic and radiometric results, have been used to establish 15 distinct zones across the four bodies of the NIC. These become broadly younger to the southwest of the complex and toward the centres of individual plutons. In places, zones are defined by both current compositional data (geochemistry and petrology) and Tellus results. This is particularly clear at the eastern edge of the NIC, where a thorium-elevated airborne radiometric signature occurs alongside distinct concentrations of various elements from geochemistry. However, in the northeastern-most pluton of the NIC, a prominent ring-shaped aeromagnetic anomaly occurs independent of any observed surface compositional variation, and thus the zones in this area are defined by aeromagnetic data only. The origins of this and other aeromagnetic anomalies are as yet undetermined, although in places, these closely correspond to facies at the surface. The derived zonation for the NIC supports incremental emplacement of the complex as separate, distinct magma pulses. Each pulse is thought to have originated from the same fractionally crystallising source that periodically underwent mixing with more basic magma.

  5. Petrologic significance of silicic magmatism in the Ferrar Large Igneous Province: geochemistry and geochronology of the Butcher Ridge Igneous Complex, Antarctica

    NASA Astrophysics Data System (ADS)

    Nelson, D. A.; Cottle, J. M.; Barboni, M.; Schoene, B.

    2014-12-01

    Mafic sills and lavas of the c. 183 Ma Ferrar Large Igneous Province are assumed to have originated from the same parental magma source with minor differentiation during long-distance transport, storage, and emplacement. However, a brief field study by Marshak et al. (1981) reported that the Butcher Ridge Igneous Complex (BRIC), a ~6000 km3 glassy hypabyssal intrusion in the Cook Mountains of southern Victoria Land, reputed to be a significant magma distribution center within the Ferrar LIP, contains lithologies and structures consistent with a major episode of magma differentiation. At present, based on available data, it remains unclear whether production of compositionally diverse magmas, ranging from 53 to 73 wt. % SiO2, originated purely via fractional crystallization of a parental Ferrar magma(s) or whether crustal contamination, and/or re-melting of granitoid basement played a significant role in driving differentiation. In addition, the timing and duration of BRIC magmatism with respect to the main phase of Ferrar magmatism is debated. Here we present the results of new isotopic, major- and trace-element geochemical analyses for (n=130) BRIC samples that, when combined with detailed petrologic and thermodynamic modeling, delineate the geochemical diversity within the BRIC, and enable detailed comparisons with new and existing data for the remainder of Ferrar LIP. In addition, new high-resolution U-Pb ID-TIMS geochronology on baddeleyite from both the BRIC and Dolerite sills from the Ferrar LIP indicate magmatism occurred over a relatively short time span (<<100ka) and overlaps with the main phase of Ferrar magma emplacement. These data are combined with ongoing geochemical and thermodynamic modeling to develop a petrogenetic model for the BRIC and establish the origins and petrologic significance of silicic magmatism within the Ferrar LIP and other LIPs globally.

  6. Magnetic fabrics and petrology of the Newry Igneous Complex, Northern Ireland reveals a new emplacement model

    NASA Astrophysics Data System (ADS)

    Anderson, Paul; Stevenson, Carl; Cooper, Mark; Ellam, Rob; Meighan, Ian; Hurley, Colm; Reavy, John; Inman, James; Condon, Dan; Crowley, Quentin

    2013-04-01

    The Newry Igneous Complex (NIC) is a largely granodioritic intrusion, comprising three plutons together with an intermediate-ultramafic body at its NE end. The recent Tellus survey of Northern Ireland has highlighted several geophysical anomalies within this area, including two previously unrecognised concentric aeromagnetic structures. U-Pb zircon ages and a geochemical study suggest that these features represent magmas intruded at different times, and that each pluton was emplaced through a series of inward-younging, concentric pulses. A combination of anisotropy of magnetic susceptibility (AMS) and field relations were used to investigate the emplacement of these pulses. AMS reveals strong, dominantly oblate, concentric fabrics. These suggest forceful emplacement. Field relationships indicate that the complex was intruded as steep, sheet-like pulses. Host rocks show deflection of fabrics around the NIC supporting the forceful emplacemnt model. However the amount of strain recorded in the host rocks does not fully explain the space required for intrusion. The presence of a deeply penetrating tectontic structure offers a way to transport magma and create space through a releasing bend. The releasing bend would have created some of the space for intrusion to take place initially and likely guided the ascent of magma. However, the strong fabrics present within the NIC suggest that most of the space for the intrusion was created in a forceful way. Therefore, the NIC was emplaced as a ballooning type pluton after ascent through a tectonically created conduit along a deeply penetrating fault.

  7. Subsurface Structure of the Bushveld Igneous Complex, South Africa: An Application of Geophysics

    NASA Astrophysics Data System (ADS)

    Vallejo, G.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Falzone, C.; Guandique, J.; Emry, E.; Webb, S. J.; Nyblade, A.

    2014-12-01

    South Africa is host to the largest single known platinum group metal supply in the world. The Bushveld Igneous Complex, spanning 300x400 kilometers, hosts hundreds of years' worth of platinum, chromite, vanadium, and other ore. Its wealth of these metals is tied directly to the large layered igneous intrusion that formed roughly 2061 million years ago. The extraction of platinum is vital to the industrial world - as these metals are widely used in the automotive industry, dental restorations, computer technology, in addition to many other applications. In collaboration with the Africa Array geophysics field school and the Penn State Summer Research Opportunities Program (SROP), we surveyed the Modikwa mine located along the border of the provinces of Mpumalanga and Limpopo in South Africa. The following techniques were applied to survey the area of interest: seismic refraction and reflection, gravity, magnetics, electrical resistivity, and electromagnetics. The data collected were used to determine the depth to bedrock and to identify potential mining hazards from dykes and faults in the bedrock. Several areas were studied and with the combination of the above-mentioned methods several possible hazards were identified. One broad, major dyke that was located in a prior aeromagnetic survey and several previously undetected, parallel, minor dykes were identified in the region. The overburden thickness was determined to be ̴4-5 meters in some regions, and as thin as several centimeters in others. This section of rock and soil lies above an area where platinum will likely be mined in the future. The removal of overburden can be accomplished by using power shovels or scrapers; while remaining material can be contained with the use of galvanized steel culverts. Additionally, a number of joints were located that may have allowed water to accumulate underground. The models created from the data permit us to estimate which hazards could be present in different parts of the

  8. The Emplacement of the Newry Igneous Complex, Northern Ireland, from magnetic fabrics and strain

    NASA Astrophysics Data System (ADS)

    Stevenson, C.; Anderson, P.; Cooper, M.; Ellam, R. M.; Reavy, J.; Condon, D. J.; Crowley, Q.

    2013-05-01

    The Newry Igneous Complex (NIC) is a largely granodioritic intrusion, comprising three plutons together with an intermediate-ultramafic body at its NE end. The recent Tellus survey of Northern Ireland has highlighted several geophysical anomalies within this area, including two previously unrecognised concentric aeromagnetic structures. U-Pb zircon ages and a geochemical study suggest that these features represent magmas intruded at different times, and that each pluton was emplaced through a series of inward-younging, concentric pulses. A combination of anisotropy of magnetic susceptibility (AMS) and field relations were used to investigate the emplacement of these pulses. AMS reveals strong, dominantly oblate, concentric fabrics. These suggest forceful emplacement. In detail magnetic anisotropy values are highest near the boundary of internal pulses, suggesting that AMS is recording variations in magmatic strain consistent with a pulsed emplacement in unique detail. Our model for the NIC is that it was emplaced as a ballooning type pluton after ascent through a tectonically created conduit along a deeply penetrating fault.

  9. Is the West Karmøy complex igneous or metasedimentary?

    NASA Astrophysics Data System (ADS)

    Rodgers, John

    1994-03-01

    The island of Karmøy in southwestern Norway is famous among geologists for the Ophiolite, one of the first ophiolites to be recognized and described in the Scandinavian Caledonides. Much of the island is underlain by the West Karmøy Complex, presently interpreted as an igneous complex that intrudes the Karmøy Ophiolite. There is a striking resemblance of some rocks of the Complex with the Sykesville "granite" of Maryland, which was shown by Cloos and by Hopson (1964) to be a metadiamictite. After local examination of the rocks and after comparison with the 1980 report of Ledru, the conclusion was drawn that — except for the Risdal granodiorite, pegmatite and aplite dikes — the Complex is a metasedimentary, compositionally variable succession of meta-arkose (the "quartz-augen gneiss"—Ledru's Diorite quartzique et Granodiorite du nord) and metadiamictite (his various inclusion-rich "granite" units). Both units were derived by erosion from advancing thrust sheets, including the Karmøy Ophiolite, which then overrode the sedimentary succession. The high modal quartz and normative corundum contents of the "granitic" rocks resemble those of the Sykesville and favor a metasedimentary origin; the chemistry is also similar and rather far from a granite minimum melt, though certain mixtures of quartz-sandy matrix and mafic blocks may have melted locally while being overridden by the Ophiolite. Reports that quartz diorite of the West Karmøy Complex intrudes metagabbro of the Karmøy Ophiolite could not be confirmed, although trondhjemite dikes belonging to the Ophiolite do intrude the metagabbro; the contact of the Ophiolite with the Complex was faulted wherever observed. As recognized by almost all observers, both Ophiolite and Complex are overlain unconformably by Upper Ordovician sediments of the Skudeneset Group, which was later deformed and metamorphosed in the greenschist facies; at least a great part of the fault separating the Karmøy Ophiolite and the West

  10. Mantle-derived sources of syenites from the A-type igneous suites - New approach to the provenance of alkaline silicic magmas

    NASA Astrophysics Data System (ADS)

    Litvinovsky, B. A.; Jahn, B. M.; Eyal, M.

    2015-09-01

    Granite is generally dominant in A-type igneous suites but these frequently include also alkali feldspar- and peralkaline- syenite and quartz syenite. Such syenites can provide essential information about magma sources and mode of generation of A-type silicic magma. This paper addresses the petrogenesis of syenites based on comparisons between the Mongolian-Transbaikalian Belt, Russia (MTB), and the northern Arabian-Nubian Shield (ANS) as exposed in the Sinai Peninsula, Egypt and adjacent areas of southern Israel. The syenitic rocks from MTB and ANS are characterized by high alkali content (Na2O + K2O = 10.5 to 12.5 wt.%) and are assigned to alkaline metaluminous and peralkaline granitoids. Peralkaline syenites are generally richer in Na and contain slightly less K and Ba than are metaluminous granitoids. REE abundances are similar in all types of syenites. The Eu/Eu* ratios range commonly from 0.35 to 0.65, although higher values, up to 1.15, attributed to presence of accumulated Afs and minor Pl, also occur in some plutons. The geochemical and Sr-Nd isotope characteristics of associated syenite, granite and monzogabbro from five igneous suites (~ 80 samples) suggest that the main rock types, silicic and mafic, are cogenetic in each suite. Syenite magmas were produced from mantle-derived source with little, if any silicic crustal component. The generation of abundant A-type granite and syenite magmas in the young juvenile crust (ANS) argues that old continental crust is not required for generation of highly alkaline silicic magmas, as commonly advocated. The most probable source of both syenite and granite was mantle-derived K-rich shoshonitic monzogabbro. The bimodal character of the A-type suites suggests that partial melting of monzogabbro, rather than fractional crystallization of basic magma, accompanied with enrichment of a cumulate phase in the mafic units, was the dominant mode of granitoid magma formation. Granite magmas were produced in the lower crust

  11. Thermobarometric studies on the Levack Gneisses: Footwall rocks to the Sudbury Igneous Complex

    NASA Technical Reports Server (NTRS)

    James, R. S.; Peredery, W.; Sweeny, J. M.

    1992-01-01

    Granulite and amphibolite facies gneisses and migmatites of the Levack Gneiss Complex occupy a zone up to 8 km wide around the northern part of the Sudbury Igneous Complex (SIC). Orthopyroxene- and garnet-bearing tonalitic and semipelitic assemblages of granulite facies grade occur within 3 km of the SIC together with lenses of mafic and pyroxenitic rock compositions normally represented by an amphibole +/- cpx-rich assemblage; amphibolite facies assemblages dominate elsewhere in this terrain. These 2.711-Ga gneisses were introduced by (1) the Cartier Granite Batholith during late Archaean to early Proterozoic time and (2) the SIC, at 1.85 Ga, which produced a contact aureole 1-1.5 km wide in which pyroxene hornfelses are common within 200-300 m of the contact. A suite of 12 samples including both the opx-gt and amphibole-rich rock compositions have been studied. Garnets in the semipelitic gneisses are variably replaced by a plg-bio assemblage. Thermobarometric calculations using a variety of barometers and thermometers reported in the literature suggest that the granulite facies assemblages formed at depths in the 21-28 km range (6-8 kbar). Textures and mineral chemistry in the garnet-bearing semipelitic rocks indicate that this terrain underwent a second metamorphic event during uplift to depth in the 5-11 km range (2-3 kbar) and at temperatures as low as 500-550 C. This latter event is distinct from thermal recrystallization caused by the emplacement of the SIC; it probably represents metamorphism attributable to intrusion of the Cartier Granite Batholith. These data allow two interpretations for the crustal uplift of the Levack Gneisses: (1) The gneisses were tectonically uplifted prior to the Sudbury Event (due to intrusion of the Cartier Batholith); or (2) the gneisses were raised to epizonal levels as a result of meteorite impact at 1.85 Ga.

  12. The Paleoproterozoic Singo granite in south-central Uganda revealed as a nested igneous ring complex using geophysical data

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Mohamed G.; Katumwehe, Andrew B.; Atekwana, Estella A.; Le Pera, Alan K.; Achang, Mercy

    2016-04-01

    We used high-resolution airborne magnetic and radiometric data and satellite gravity data to investigate the form of occurrence of the Paleoproterozoic Singo granite in west-central Uganda. This granitic body covers an area of ∼700 km2, intrudes Paleoproterozoic crystalline rocks and overlain by Paleoproterozoic-Mesoproterozoic sedimentary rocks, both of which belong to the Rwenzori terrane, and it is host to hydrothermally-formed economic minerals such as gold and tungsten. Our analysis provided unprecedented geometrical details of the granitic body and revealed the following: (1) the margins of the Singo granite are characterized by a higher magnetic signature compared to the interior of the granitic body as well as the surroundings. These anomalies are apparent in both the total magnetic field and horizontal derivative images and define eight overlapping ring features. (2) the depth continuation of these magnetic anomalies define outward but steeply-dipping features as indicated by the tilt images extracted from the airborne magnetic data. This is further supported by forward modeling of the magnetic and gravity data. (3) the Singo granite is characterized by relatively high and evenly-distributed equivalent concentration of Uranium (eU) and Thorium (eTh) compared to the surroundings and this is apparent in the Potassium (K)-eTh-eU radiometric ternary image. (4) the granitic body is defined by a gravity low anomaly that persisted to a depth of three km as shown by the Bouguer anomaly image and its five km upward continuation. We used these observations to identify this granitic body as a nested igneous ring complex and we refer to it as the Singo Igneous Ring Complex (SIRC). We further interpreted the eight ring structures as individual igneous ring complexes aligned in an E-W and NE-SW direction and these were developed due to repeated calderas collapse. Additionally, we interpreted the ring-shaped magnetic anomalies as due to hydrothermally-altered margins

  13. Compositions of magmas and carbonate silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy

    NASA Astrophysics Data System (ADS)

    Solovova, I. P.; Girnis, A. V.; Kogarko, L. N.; Kononkova, N. N.; Stoppa, F.; Rosatelli, G.

    2005-11-01

    This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate-carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate-silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.

  14. A melt inclusion study of the Sudbury Igneous Complex (Ontario, Canada): preliminary results

    NASA Astrophysics Data System (ADS)

    Watts, Kathleen; Hanley, Jacob; Kontak, Daniel; Ames, Doreen

    2013-04-01

    The 1.85 Ga Sudbury Igneous Complex (SIC), Ontario, Canada, is an intrusive complex representing the crystallized melt sheet that formed within a large impact crater. The SIC has been extensively studied due to its rich endowment in magmatic sulfide ores (Ni-Cu-PGEs). The nature and origin of the SIC melt sheet and its subsequent evolution still remain controversial. In this study, analyses of primary melt inclusions hosted in cumulus apatite within three mafic units of the SIC (gabbro, norite and sublayer quartz diorite) are used to decipher the thermometric and chemical characteristics of the evolving melt sheet as it crystallized. Apatite-hosted melt inclusions commonly display a negative crystal shape, occur parallel to the c-axis, and often occur within a central growth zone, which suggest a primary origin. The compositions of coeval (co-entrapped) melt inclusions are distinct and may represent either the products of immiscibility (low or high temperature field; c.f. the Skaergaard Intrusion: Jakobsen et al., Geology, 2005), or a product of early, high-temperature, impact-generated emulsification (prior to and independent of crystallization of the melt sheet). The compositions of homogenized (1100-1200oC for 3 hrs) melt inclusions, determined by SEM-EDS and EMP analyses of opened, homogenized melt inclusions, equate to two distinct compositions: (1) Type-I are SiO2-rich, ranging from tonalitic to granodioritic in composition (60-70 wt% SiO2, up to 11 wt% FeO); and (2) Type-II are Fe-rich with syenogabbroic to essexitic to alkali gabbroic compositions (27-49 wt% SiO2, 16-44 wt% FeO). Trace element data, obtained by LA-ICPMS analyses of single inclusions and surrounding host apatite, are used to infer D values between apatite and the two melt types, and between the coexisting melt types. Apparent Dap-melt values for both Type-I and Type-II inclusions show that the REE, Sr, and Y are compatible in apatite, and As is weakly compatible or incompatible in apatite

  15. A review of scientific literature examining the mining history, geology, mineralogy, and amphibole asbestos health effects of the Rainy Creek igneous complex, Libby, Montana, USA.

    PubMed

    Bandli, Bryan R; Gunter, Mickey E

    2006-11-01

    This article reviews the past 90 yr of scientific research directed on multiple aspects of the unique geology and environmental health issues surrounding the vermiculite deposit found at Libby, MT. Hydrothermal alteration and extensive weathering of the ultramafic units resulted in the formation of a rich deposit of vermiculite that was mined for 67 yr and used in numerous consumer products in its expanded form. Later intrusions of alkaline units caused hydrothermal alteration of the pyroxenes, resulting in formation of amphiboles. Some of these amphiboles occur in the asbestiform habit and have been associated with pulmonary disease in former miners and mill workers. Identification of these amphibole asbestos minerals has received little attention in the past, but recent work shows that the majority of the amphibole mineral species present may not be any of the amphibole species currently regulated by government agencies. Epidemiological studies on former miners have, nevertheless, shown that the amphibole asbestos from the Rainy Creek igneous complex is harmful; also, a recent study by the Agency for Toxic Substances and Disease Registry shows that residents of Libby who had not been employed in the vermiculite mining or milling operations also appear to have developed asbestos-related pulmonary diseases at a higher rate than the general public elsewhere. Since November 1999, the U.S. Environmental Protection Agency has been involved in the cleanup of asbestos-contaminated sites in and around Libby associated with the mining and processing of vermiculite.

  16. Petrochemistry and hydrothermal alteration within the Tyrone Igneous Complex, Northern Ireland: implications for VMS mineralization in the British and Irish Caledonides

    NASA Astrophysics Data System (ADS)

    Hollis, Steven P.; Roberts, Stephen; Earls, Garth; Herrington, Richard; Cooper, Mark R.; Piercey, Stephen J.; Archibald, Sandy M.; Moloney, Martin

    2014-06-01

    Although volcanogenic massive sulfide (VMS) deposits can form within a wide variety of rift-related tectonic environments, most are preserved within suprasubduction affinity crust related to ocean closure. In stark contrast to the VMS-rich Appalachian sector of the Grampian-Taconic orogeny, VMS mineralization is rare in the peri-Laurentian British and Irish Caledonides. Economic peri-Gondwanan affinity deposits are limited to Avoca and Parys Mountain. The Tyrone Igneous Complex of Northern Ireland represents a ca. 484-464 Ma peri-Laurentian affinity arc-ophiolite complex and a possible broad correlative of the Buchans-Robert's Arm belt of Newfoundland, host to some of the most metal-rich VMS deposits globally. Stratigraphic horizons prospective for VMS mineralization in the Tyrone Igneous Complex are associated with rift-related magmatism, hydrothermal alteration, synvolcanic faults, and high-level subvolcanic intrusions (gabbro, diorite, and/or tonalite). Locally intense hydrothermal alteration is characterized by Na-depletion, elevated SiO2, MgO, Ba/Sr, Bi, Sb, chlorite-carbonate-pyrite alteration index (CCPI) and Hashimoto alteration index (AI) values. Rift-related mafic lavas typically occur in the hanging wall sequences to base and precious metal mineralization, closely associated with ironstones and/or argillaceous sedimentary rocks representing low temperature hydrothermal venting and volcanic quiescence. In the ca. 475 Ma pre-collisional, calc-alkaline lower Tyrone Volcanic Group rift-related magmatism is characterized by abundant non-arc type Fe-Ti-rich eMORB, island-arc tholeiite, and low-Zr tholeiitic rhyolite breccias. These petrochemical characteristics are typical of units associated with VMS mineralization in bimodal mafic, primitive post-Archean arc terranes. Following arc-accretion at ca. 470 Ma, late rifting in the ensialic upper Tyrone Volcanic Group is dominated by OIB-like, subalkaline to alkali basalt and A-type, high-Zr rhyolites. These units

  17. Isotope characteristics of the Okenyenya igneous complex, northwestern Namibia: constraints on the composition of the early Tristan plume and the origin of the EM 1 mantle component

    NASA Astrophysics Data System (ADS)

    Milner, Simon C.; le Roex, Anton P.

    1996-06-01

    Sr, Nd and Pb isotope data are presented for a variety of intrusive rocks from the Mesozoic age Okenyenya igneous complex, which is temporally and spatially associated with the Etendeka Group volcanic rocks in northwestern Namibia. On the basis of bulk rock geochemistry the Okenyenya intrusions can be subdivided into tholeiitic and alkaline suites. The tholeiitic suite has a wide range in isotope composition; for example, initial ɛSr ( ɛSr(i)) from 1.2 to 150 with decrease in initial ɛNd ( ɛNd(i)) from 4.8 to -3.9. In contrast, the undersaturated rock types show a more restricted range and, in terms of ɛSr(i) (- 11.0-15.1) and ɛNd(i) (0.3-5.0), plot within the mantle array and close to Bulk Earth values. The range in isotope composition shown by the Okenyenya intrusions is similar to that shown by the Etendeka Group volcanic rocks. The tholeiitic suite is comparable in isotope composition to the Etendeka low TiZr (LTZ) basalts and defines a trend towards continental crust, whereas the alkaline suite is similar to the Etendeka Tafelkop basalts. The Etendeka high TiZr (HTZ) basalts do not have an isotopic equivalent amongst the Okenyenya intrusions, but are indistinguishable from basalts in DSDP Hole 525A on the Walvis Ridge; both are strongly displaced towards enriched mantle (EM 1) sources. The large variation in ɛSr(i) shown by the tholeiitic suite and Etendeka LTZ basalts appears to reflect extensive crustal contamination of the magmas, whereas the HTZ basalts, which trend towards EM 1, owe their isotope composition to melting of ancient continental lithospheric mantle. The alkaline gabbros and the Tafelkop basalts have compositions similar to the present-day composition of the Tristan plume and are interpreted as direct melts of the upwelling Tristan mantle plume at the time of continental break-up. An analogous relationship is observed between the Marion plume, Madagascan Upper Cretaceous basalts, and MORB erupted at the intersection between the

  18. The influence of complexing pharmaceutical compositions on alkaline phosphatase

    NASA Astrophysics Data System (ADS)

    Atyaksheva, L. F.; Chukhrai, E. S.; Stepina, N. D.; Novikova, N. N.; Yur'eva, E. A.

    2011-06-01

    It is established that the pharmaceutical compositions xydiphon, medifon, succimer, and EDTA, which are used as complexing agents for accelerating the excretion of heavy metals from human organism, at certain concentrations inhibit enzyme alkaline phosphatase (AP). It is concluded that xydiphon and EDTA have a noticeable effect on AP activity at concentrations over 0.01 mM; medifon and succimer, at concentrations of over 0.3-0.5 mM. The enzyme's inhibition constants and type of inhibition are determined. Xydiphon is found to manifest the highest affinity to AP ( K I = 0.35 mM). It is shown by kinetic analysis that dissociative chemoinactivation of the enzyme takes place under the action of complexing agents. The corresponding kinetic parameters are calculated.

  19. Middle Jurassic oceanic island igneous rocks of the Raohe accretionary complex, northeastern China: Petrogenesis and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Hui; Ge, Wen-Chun; Yang, Hao; Zhang, Yan-Long; Bi, Jun-Hui; Tian, De-Xin; Xu, Wen-Liang

    2015-11-01

    Whole-rock major and trace element, and Sr, Nd, and Hf isotopic data, together with zircon U-Pb ages and in situ zircon Hf isotopes, are reported for Middle Jurassic igneous rocks of the Raohe accretionary complex, northeastern China, to investigate their petrogenesis and tectonic implications. The igneous rocks consist of pillow basalt, pyroxenite, gabbro, plagioclasite, and plagiogranite. The zircons from one plagioclasite and one plagiogranite are euhedral-subhedral and display fine-scale oscillatory growth zoning, indicating a magmatic origin. Zircon U-Pb dating gives an emplacement age of 169-167 Ma. The basalts are associated with late Paleozoic to middle Mesozoic sediments typical of ocean plate stratigraphy; i.e., limestone, bedded chert, and siliceous shale. The basalts, which show geochemical features similar to those of oceanic island basalts (OIBs), are enriched in TiO2, light rare earth elements (LREEs) (average: La/Smn = 2.12), and Nb (average: Zr/Nb = 12.24), and are characterized by positive Nb anomalies (averages: Nb/Thpm = 1.46, Nb/Lapm = 1.31). The rocks are depleted in heavy rare earth elements (HREEs) (average: Gd/Ybn = 2.03) and exhibit high εNd(t) (+8.2 to +8.3) and εHf(t) (+9.0 to +9.1) values. The geochemical features indicate the Jurassic OIB-like basalts were derived by a low degree of partial melting (<5%) of peridotite in the garnet stability field. The intermediate-mafic intrusive rocks show typical OIB affinities and are geochemically similar to the basalts. Most of the intermediate-mafic intrusive rocks are enriched in LREEs and Nb, depleted in HREEs, and show low Zr/Nb ratios and high εNd(t) (+7.2 to +8.2) and εHf(t) (+8.8 to +10.3) values, indicating they were derived from a common source and are the products of fractional crystallization of the OIB-like basalts. All of the igneous rocks are likely fragments of oceanic islands/seamounts. The identification of OIB-like basalts and associated intermediate-mafic intrusive rocks

  20. Syn- and post-orogenic alkaline magmatism in a continental arc: Along-strike variations in the composition, source, and timing of igneous activity in the Ross Orogen, Antarctica

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, G.; Cottle, J. M.

    2013-12-01

    Neoproterozoic-Paleozoic convergence and subduction along the margin of East Gondwana (Australia, New Zealand, Antarctica) resulted in a belt of deformed and metamorphosed sedimentary rocks and batholith-scale igneous intrusions comparable in size to the present day Andes. Mid-crustal levels of this belt, known as the Ross Orogen in Antarctica, are exposed in the basement of the Cenozoic Transantarctic Mountains, providing snapshots of the intrusive magma system of a major continental arc. Whole rock major- and trace-element geochemistry, Hf isotopes in zircon, and U-Pb geochronology have identified along-strike variations in the composition, source, and timing of magmatism along ~200 km of the southern Victoria Land segment of the orogen. There is an apparent younging of the igneous activity from south to north. New U-Pb ages for intrusive rocks from the Koettlitz Glacier Alkaline Province (KGAP) reveal that igneous activity spanned ca. 565-500 Ma (~30 m.y. longer than previously recognized), while immediately to the north in the Dry Valleys area most igneous activity was confined to a relatively short period (ca. 515-495 Ma). Alkaline and subalkaline igneous rocks occur in both the Dry Valleys area and the KGAP, but alkaline rocks in the Dry Valleys are restricted to the latest phase of magmatism. Na-alkaline rocks in the KGAP, including nepheline syenites, carbonatites, and A-type granites, range in age from ca. 545-500 Ma and overlap in age with more typical subduction/collision-related I- and S-type granites elsewhere in southern Victoria Land. Strong enrichments in the LILE and LREE and high LILE/HFSE and LREE/HREE of samples from the KGAP reveal a source enriched in aqueous-mobile elements, potentially a strongly metasomatized mantle wedge beneath the arc. In the Dry Valleys area, rocks with alkali-calcic composition constitute only the youngest intrusions (505-495 Ma), apparently reflecting a shift to post-orogenic magmatism. Zircons from Dry Valleys

  1. Crystal mat-formation as an igneous layering-forming process: Textural and geochemical evidence from the 'lower layered' nepheline syenite sequence of the Ilímaussaq complex, South Greenland

    NASA Astrophysics Data System (ADS)

    Lindhuber, Matthias J.; Marks, Michael A. W.; Bons, Paul D.; Wenzel, Thomas; Markl, Gregor

    2015-05-01

    The lower layered nepheline syenite sequence (kakortokites) of the Mesoproterozoic alkaline to peralkaline Ilímaussaq complex, South Greenland shows spectacular rhythmic meter-scale igneous layering. The 29 exposed units have sharp contacts against each other and each of these units consists of three modally graded layers dominated by arfvedsonitic amphibole, eudialyte-group minerals, and alkali feldspar, respectively. This study uses field observations on changes in mineral orientation, recurrent mineral textures, compositional data from eudialyte-group minerals and amphibole, and settling rate calculations based on a modified Stokes' equation to explain the igneous layering of the kakortokites. We propose that the three major cumulus minerals (amphibole, eudialyte s.l., and alkali feldspar) were separated from each other by density contrasts, resulting in modally graded layers within each unit. The densest of these three minerals (amphibole) formed crystal mats within the cooling magma body. These crystal mats acted as barriers that inhibited large-scale vertical migration of melts and crystals with increasing effectiveness over time. The sub-volumes of magma captured in between the crystal mats evolved largely as geochemically independent sub-systems, as indicated by the observed trends in mineral composition.

  2. Origin of the ore-forming fluids of the Tongchang porphyry Cu-Mo deposit in the Jinshajiang-Red River alkaline igneous belt, SW China: Constraints from He, Ar and S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Jiang, Guohao; Qi, Youqiang

    2014-01-01

    The Jinshajiang-Red River alkaline igneous belt with abundant Cu-Mo-Au mineralization, in the eastern Indian-Asian collision zone, is an important Cenozoic magmatic belt formed under an intra-continental strike-slip system in southwestern (SW) China. The Tongchang deposit is a representative porphyry Cu-Mo deposit in southern segment of the Jinshajiang-Red River alkaline igneous belt, with 8621 t Cu @ 1.24 wt.% and 17,060 t Mo @ 0.218 wt.%. In this study, He, Ar and S isotopic compositions of the Tongchang deposit were determined. He and Ar isotopic compositions suggest that the ore-forming fluids, with 3He/4He ratios varying from 0.17 to 1.50 Ra and 40Ar/36Ar ratios from 299.1 to 347.3 for the deposit, are a mixture between a crust-derived fluid (MASW) with near atmospheric Ar and crustal He, and a mantle-derived fluid. However, the δ34S values of the hydrothermal pyrite samples ranging from 1.0‰ to 1.5‰ with an average of 1.2‰, indicate that the sulfur in the ore-forming fluids of the Tongchang deposit was primarily derived from the magma or indirectly mantle-derived without assimilation of crustal sulfur. In combination with previously published He and Ar isotopic data of the Yulong and Machangqing deposits in northern and central segments of the Jinshajiang-Red River alkaline igneous belt, respectively, the ore-forming fluids of the Yulong and Machangqing deposits are obviously richer in 3He and 40Ar, and poorer in 36Ar in comparison with the Tongchang deposit, implying that more mantle-derived fluids were involved in the ore-forming fluids of the Yulong and Machangqing deposits than those for the Tongchang deposit. This might be one of the most important factors producing larger scales of mineralization in the Yulong and Machangqing deposits than the Tongchang deposit.

  3. Anatomy of a deep crustal volcanic conduit system; The Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    NASA Astrophysics Data System (ADS)

    Grant, Thomas B.; Larsen, Rune B.; Anker-Rasch, Lars; Grannes, Kim Rune; Iljina, Markku; McEnroe, Suzanne; Nikolaisen, Even; Schanche, Mona; Øen, Endre

    2016-05-01

    The Reinfjord Ultramafic Complex, Seiland Igneous Province represents a lower crustal magma chamber (25-30 km depth) that likely records a deep conduit system for mantle derived melts ascending through the continental crust. It consists of cumulates of dunite, wehrlite, olivine clinopyroxene as well as subordinate lherzolite and websterites, intruded into gabbro-norite and metasediment gneisses. Field, petrographic and geochemical data show that the intrusion developed through fractional crystallization and interactions between new batches of magma and partially solidified cumulates. This resulted in a 'reverse fractionation sequence' whereby cumulates became progressively more MgO and olivine rich with time. Contamination by partial melting of the gabbro-norite is evident in the marginal zones, but is limited in the central parts of the intrusion. Interrupted crystallization sequences of olivine → olivine + clinopyroxene and the absence of significant amounts of more evolved melts, suggests that large volumes of melt passed through the system to shallower levels in the crust leaving behind the cumulate sequences observed at Reinfjord. Therefore, the Reinfjord Ultramafic Complex represents a deep crustal conduit system, through which mantle derived melts passed. The parent melts are likely to have formed from partial melting of mantle with residual garnet and clinopyroxene.

  4. The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Gumsley, A. P.; de Kock, M. O.; Rajesh, H. M.; Knoper, M. W.; Söderlund, U.; Ernst, R. E.

    2013-08-01

    In this paper, we present geochronological, geochemical and palaeomagnetic results from the Hlagothi Complex and a NW-trending dolerite dyke swarm on the southeastern region of the Kaapvaal Craton in northern KwaZulu-Natal, South Africa. The Hlagothi Complex consists of layered sills of meta-peridotite, pyroxenite and gabbro intruding into the Pongola Supergroup. U-Pb baddeleyite ages on the Hlagothi Complex and a NW-trending dyke of 2866 ± 2 Ma and 2874 ± 2 Ma, respectively, reveal a ca. 2.87 Ga magmatic event on the southeastern Kaapvaal Craton. The geochemical signature of the Hlagothi Complex recognises two discrete groupings, with a magmatic source that is chemically distinct from those of the older rift-related Nsuze and Dominion groups. Additional units on the Kaapvaal Craton can be linked with this new ‘Hlagothi' event based on spatial and temporal association, and geochemistry: 1) the Thole Complex, 2) parts of the Usushwana Complex, and 3) flood basalts within the Mozaan Group and Central Rand Group. The association between all these units suggests a previously unrecognised large igneous province in the southeastern Kaapvaal Craton. Our palaeomagnetic data identifies a possible primary magnetisation within the least-altered lithologies of the Hlagothi Complex (with a virtual geographic pole at 23.4°N, 53.4°E, dp = 8.2° and dm = 11.8°). The bulk of samples however, displayed two episodes of remagnetisation. These are likely to be associated with 2.85 to 2.75 Ga aged granitoids across the southeastern Kaapvaal Craton, and tectonic activity in the nearby Meso- to Neoproterozoic Namaqua-Natal mobile belt. A short-lived (≤ 8 Ma) mantle plume is proposed to have caused the ca. 2.87 Ga magmatism, and also may well have controlled sedimentation within the Pongola-Witwatersrand basin. Volcanism during uplift would have been fed through a series of feeder dykes and sills, of which the Hlagothi Complex and NW-trending dykes are part of.

  5. Geochemistry of the Madawara Igneous Complex, Bundelkhand Craton, Central India: Implications for PGE Metallogeny

    NASA Astrophysics Data System (ADS)

    Manavalan, Satyanarayanan; Singh, Surya Prakash; Balaram, Vysetti; Niranjan, Mohanty

    2015-12-01

    The southern part of the Bundelkhand craton contains a series of a E-W trending mafic and ultramafic rocks, about 40 km in length and 2-4 km wide, that occur as intrusions within the Bundelkhand Gneissic Complex (BnGC). They are confined between the Madawara- Karitoran and Sonrai-Girar shear zones. Dunite, harzburgite, lherzolite and websterite are the commonly occurring ultramafic rocks that have high MgO, Ni, Cr, PGE and low Al2O3, CaO, K2O, TiO2 and V contents, and shows peridotitic affinity. A distinct trend of crystallization from peridotite to komatiitic basalt has been inferred from geochemical plots, which also indicates the occurrence of at least two varieties among the ultramafic suite of the Madawara ultramafic complex, namely, Group I comprising dunite, spinel peridotite, harzburgite and lherzolite, and Group II consisting of pyroxenite, websterite and olivine websterite. In several places, the rocks of Group II have an intrusive relationship with Group I, and are relatively enriched in total platinum group elements (PGE ~ 300 ppb). The discrimination diagrams suggest that the PGE are enriched in low sulphur-fugacity source magma at moderate to deeper depths by high degree of partial melting of the mantle.

  6. Radiological Mapping of the Alkaline Intrusive Complex of Jombo, South Coastal Kenya by In-Situ Gamma-Ray Spectrometry

    NASA Astrophysics Data System (ADS)

    Kaniu, Ian; Darby, Iain G.; Kalambuka Angeyo, Hudson

    2016-04-01

    Carbonatites and alkaline intrusive complexes are rich in a variety of mineral deposits such as rare earth elements (REEs), including Nb, Zr and Mn. These are often associated with U and Th bearing minerals, including monazite, samarskite and pyrochlore. Mining waste resulting from mineral processing activities can be highly radioactive and therefore poses a risk to human health and environment. The Jombo complex located in Kenya's south coastal region is potentially one of the richest sources of Nb and REEs in the world. It consists of the main intrusion at Jombo hill, three associated satellite intrusions at Mrima, Kiruku and Nguluku hills, and several dykes. The complex is highly heterogeneous with regard to its geological formation as it is characterized by alkaline igneous rocks and carbonatites which also influence its radio-ecological dynamics. In-situ gamma spectrometry offers a low-cost, rapid and spatially representative radioactivity estimate across a range of landscapes compared to conventional radiometric techniques. In this work, a wide ranging radiological survey was conducted in the Jombo complex as follow up on previous studies[1,2], to determine radiation exposure levels and source distributions, and perform radiological risk assessments. The in-situ measurements were carried out using a 2.0 l NaI(Tl) PGIS-2 portable detector from Pico Envirotec Inc integrated with GPS, deployed for ground (back-pack) and vehicular gamma-ray spectrometry. Preliminary results of radiological distribution and mapping will be presented. [1] Patel, J. P. (1991). Discovery and Innovation, 3(3): 31-35. [2] Kebwaro, J. M. et. al. (2011). J. Phys. Sci., 6(13): 3105-3110.

  7. Preliminary AMS Study in Cretaceous Igneous Rocks of Valle Chico Complex, Uruguay: Statistical Determination of Magnetic Susceptibility

    NASA Astrophysics Data System (ADS)

    Barcelona, H.; Mena, M.; Sanchez-Bettucci, L.

    2009-05-01

    The Valle Chico Complex, at southeast Uruguay, is related Paraná-Etendeka Province. The study involved basaltic lavas, quarz-syenites, and rhyolitic and trachytic dikes. Samples were taken from 18 sites and the AMS of 250 specimens was analyzed. The AMS is modeled by a second order tensor K and it graphical representation is a symmetric ellipsoid. The axes relations determine parameters which describe different properties like shape, lineation, and foliation, degree of anisotropy and bulk magnetic susceptibility. Under this perspective, one lava, dike, or igneous body can be considered a mosaic of magnetic susceptibility domains (MSD). The DSM is an area with specific degree of homogeneity in the distribution of parameters values and cinematic conditions. An average tensor would weigh only one MSD, but if the site is a mosaic, subsets of specimens with similar parameters can be created. Hypothesis tests can be used to establish parameter similarities. It would be suitable considered as a MSD the subsets with statistically significant differences in at least one of its means parameters, and therefore, be treated independently. Once defined the MSDs the tensor analysis continues. The basalt-andesitic lavas present MSD with an NNW magnetic foliation, dipping 10. The K1 are sub-horizontal, oriented E-W and reprsent the magmatic flow direction. The quartz-syenites show a variable magnetic fabric or prolate ellipsoids mayor axes dispose parallel to the flow direction (10 to the SSE). Deformed syenites show N300/11 magnetic foliation, consistent with the trend of fractures. The K1 is subvertical. The MSD defined in rhyolitic dikes have magnetic foliations consistent with the structural trend. The trachytic dikes show an important indetermination in the magnetic response. However, a 62/N90 magnetic lineation was defined. The MSDs obtained are consistent with the geological structures and contribute to the knowledge of the tectonic, magmatic and kinematic events.

  8. A multi-isotope approach to understanding the evolution of Cenozoic magmatism in the northeastern Basin and Range: Results from igneous rocks in the Albion-Raft River-Grouse Creek metamorphic core complex

    NASA Astrophysics Data System (ADS)

    Konstantinou, A.; Strickland, A.; Miller, E. L.

    2012-12-01

    Deep crustal rocks exposed by extensional processes in metamorphic core complexes provide a unique opportunity to address the magmatic and isotopic evolution of the crust and assess the relative crust versus mantle contributions in Cenozoic igneous rocks exposed in the complexes. The Albion-Raft River-Grouse Creek metamorphic core complex exposes mid-crustal rocks that resided at depths of ~15-20 km before the onset of Cenozoic extension. Three major Cenozoic magmatic events are represented in the complex and have been studied using multiple isotopic systems (whole rock Sr and Nd coupled with the Oxygen isotopes in zircon). These three major events are: (1) 42-31 Ma intrusion of a composite plutonic complex of calc-alkaline composition that intrudes both upper crustal rocks (~5-10 km depth) and deeper rocks. (2) A 32-25 Ma plutonic complex, with evolved calc-alkaline composition that intruded in the middle crust (~12-15 km depth), and (3) A 10-8 Ma bimodal (basalt-rhyolite) suite of volcanic rocks that contain high-T anhydrous mineral assemblages erupted across the complex. The pre-extensional crust consisted of an upper crust composed primarily of Neoproterozoic through Triassic metasedimentary rocks (schist and quartzite at its base and limestone at its top). The middle crust consists of late Archean orthogneiss with evolved composition (metamorphosed peraluminous granite) with average 87Sr/86Sr40~0.800, ɛNd40~ -43.4 and δ18Ozirc ~5.7‰. The lower crust is inferred to have been composed of Precambrian intermediate composition igneous rocks with average 87Sr/86Sr40~0.750, ɛNd40~ -37.5 and δ18Ozirc ~5.9‰, and Precambrian mafic rocks with average 87Sr/86Sr40~0.717, ɛNd40~ -25 and δ18Ozirc ~7.0‰. Existing and new data indicate that the 42-31 Ma upper crustal plutonic complex ranges in isotopic composition from 87Sr/86Sri=0.709-0.712, ɛNdi=-15 to -25 and δ18Ozirc 4.7-6.5‰. The composition of the 32-25 Ma middle crustal plutonic complex ranges from 87Sr

  9. Middle Miocene nepheline-bearing mafic and evolved alkaline igneous rocks at House Mountain, Arizona Transition Zone, north-central Arizona

    SciTech Connect

    Wittke, J.; Holm, R.F.; Ranney, W.D.R. . Dept. of Geology)

    1993-04-01

    The Middle Miocene House Mountain shield volcano is located on the northern margin of the Arizona Transition Zone, about 7 km SW of Sedona, AZ. Deep erosion has exposed internal structural and stratigraphic relationships of the volcano. Mapping documents two igneous suites: (1) alkali basalt to trachyte and alkali-feldspar syenite, and (2) olivine melanephelinite, nepheline monzodiorite, nepheline monzosyenite and nepheline syenite. The rocks of the first suite occur as dikes and flows, which, with a thick pyroclastic section, are the principal units of the volcano. The melanephelinite is nonvesicular and intruded as a large irregular dike and several smaller dikes. The nepheline-bearing syenitic rocks, which are phaneritic with nepheline and clinopyroxene crystals up to 1 cm in diameter, occur as pods and sheets within the melanephelinite. Also within the melanephelinite are wispy leucocratic segregations, syenitic fracture-fillings, and ocelli. The largest phaneritic sheet is [approx]18 m thick; it displays crude subhorizontal compositional banding and vuggy surfaces. The latter indicate that the magmas were fluid-rich. Compositions intermediate between the melanephelinite and syenitic rocks have not been found. Although the syenitic rocks are coarse-grained, mapping indicates the they are near the summit of the volcano and were probably emplaced at a depth of less than 1 km, possibly of only a few hundred meters. The field relationships of the phaneritic rocks can be explained by ascent and coalescence of immiscible syenitic liquids within the melanephelinite dike. Calculated density contrasts between melanephelinite and syenitic liquids exceed 0.2 g/cm[sup 3].

  10. 916 Ma Pole for southwestern Baltica: palaeomagnetism of the Bjerkreim-Sokndal layered intrusion, Rogaland Igneous Complex, southern Norway

    NASA Astrophysics Data System (ADS)

    Brown, Laurie L.; McEnroe, Suzanne A.

    2015-10-01

    The Rogaland Igneous Complex (RIC) in southern Norway intruded into post-Sveconorwegian granulite facies crust ˜930 Ma. It includes three massif anorthosites, several small leuconorite bodies and the ˜7 km thick norite-quartz mangerite layered Bjerkreim-Sokndal (BKS) intrusion. The intrusion consists of five rhythmic megaunits created by repeated magma influxes topped by a transition zone and more evolved mangerites and quartz mangerites. Over 70 palaeomagnetic sites have been collected in the BKS, sampling all the megacyclic subunits and overlying mangerites. Remanence within the BKS is held in hemo-ilmenite-only rocks (lower parts of the megacyclic units), mixed hemo-ilmenite and magnetite rocks (upper parts of the lower megacyclic units) and magnetite only rocks in the upper highest megacyclic unit and overlying mangerites. Due to the different oxides present magnetic susceptibility varies over four orders of magnitude with a bimodal distribution (mean susceptibility of 6.4 × 10-3 SI for hemo-ilmenite rocks, and 8.7 × 10-2 SI for magnetite rocks). NRM values do not show a strong bimodal distribution as many of the rocks lacking magnetite have hemo-ilmenite with strong lamellar magnetism; average NRM for the entire suite is 8.83 A m-1. All sites within the cyclic part of the intrusion have stable remanence and produce well-clustered site means. Samples from the upper mangerite rocks, dominated by MD magnetite, are commonly unstable and not all sites provide acceptable data. Mean directions for 66 sites spanning the entire intrusion are I = -73.5°, D = 303.4°, with α95 = 3.7° and k = 24. The resulting pole position is at 35.9°S and 217.9°E, with a palaeolatitude for this part of Baltica of -59.4°. Examination of the magnetic mineralogy combined with geochronology for RIC rocks and cooling rates for the region yields an age of magnetization of 916 Ma. Metamorphic country rocks yield similar directions at least 10 km from the contact, confirming the

  11. The Precambrian Singo Igneous Complex (SIC), Uganda Revealed As a Mineralized Nested Ring Complex Using High Resolution Airborne Radiometric and Magnetic Data.

    NASA Astrophysics Data System (ADS)

    Atekwana, E. A.; LePera, A.; Abdelsalam, M. G.; Katumwehe, A. B.; Achang, M.

    2014-12-01

    We used high-resolution radiometrics and aeromagnetic data to investigate the Precambrian Singo Igneous Complex (SIC) in Uganda. The SIC covers an area of about 700 km² and is host to hydrothermally formed economic minerals such as Gold and Tungsten. The distribution of the ore deposits is not well known and current mine workings are limited to the western margins of the complex. Our objectives were to (1) provide a detailed geological map of the SIC and surrounding, (2) investigate relationships between preserved intrusive bodies and Precambrian tectonic structures to provide insight into emplacement of the complex, (3) examine links between magma emplacement, discontinuities and hydrothermal alteration (4) generate two-dimensional (2-D) and three-dimensional (3-D) models of the complex to understand its subsurface geometry, (5) investigate the relationship between the structure of the SIC and mineral occurrences as an aid to future exploration programs. Edge enhancement filters such as the analytical signal, vertical and tilt derivatives were applied to the magnetic data. In addition, 2-D and 3-D models were produced using Geosoft's GM-SYS 2-D and Voxi modules. The filtered data provided unprecedented structural details of the complex and revealed the following: (1) the edge of the SIC is characterized by higher magnetic susceptibility and Thorium content than its interior, (2) the SIC is characterized by eight to nine nested ring complexes with diameters ranging from 2.5 to 14 km, (3) the 3-D inversion suggests near vertical walls for the ring complexes extending to a depth of about 7 km, (4) the SIC was emplaced within a Precambrian folded basement and was traversed by numerous NW-trending dykes and (5) present day mining activities are concentrated within the folded basement units although occurrences of Tungsten and Gold are found associated with the highly magnetized edge of the ring complexes. We interpret the highly magnetized edges of the nested ring

  12. Large Igneous Provinces of the Central Asia: data on geochronology, geochemistry and petrology of the Tien Shan and Junggar basaltic complexes

    NASA Astrophysics Data System (ADS)

    Simonov, V.; Mikolaichuk, A.

    2012-04-01

    During last years Large Igneous Provinces of the Central Asia were an object of steadfast attention of researchers. It was established that on a formation and development of continental earth crust a great influence was rendered by deep magmatic systems of mantle plumes of various age. Undoubtedly that these global processes of basaltic magmatism had in many respects crucial importance for ecology, climate and life development. Our researches of magmatic associations of the Tien Shan and Junggar have allowed to accumulate a considerable volume of new data on geochronology, geochemistry and physico-chemical parameters of petrogenesis of within-plate basaltic complexes of the Central Asia, which area of distribution covers territory over than 285000 km2. Analysis with the help of 40Ar/39Ar method has shown that the basaltic complexes of the Tien Shan have Cretaceous-Paleogene age (61-76 Ma). Basalts of the Southeast Kazakhstan (North Tien Shan) corresponds to Paleozoic age: 305-312 Ma. Rather close values of 40Ar/39Ar data are received for basalts of the Altynemel Ridge (South Junggar) - 282 Ma. Isotope 40Ar/39Ar dating of basalts of the Alakol site (Junggar) has shown Mesozoic age (186-198 Ma). As a whole, the carried out researches testify to formation of Tien Shan and Junggar within-plate basalt complexes as a result of influence of three plumes, operating in various time: Tarim (282-312 Ma), Junggar (186-198 Ma) and Tien Shan (61-76 Ma). Data on petrochemistry, geochemistry of trace and rare-earth elements and mineralogy shows an enriched plume characteristics (close to OIB) of Mesozoic-Cenozoic basalts and presence of group of Paleozoic rocks close to continental and oceanic plateau basalts. As a whole, successive evolution in time of geodynamics of within-plate basalt magmatism of Tien Shan and Junggar is established. Paleozoic - plateau basaltic magmatism like Siberian traps or oceanic plateau basalts of Ontong Java. Mesozoic - development of more local hot

  13. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  14. U-Pb Dating, whole rock and Sr-Nd-Pb-O isotope geochemistry of collisional magmatism in the CACC: Çiçekdaǧ igneous complex (ÇIC)

    NASA Astrophysics Data System (ADS)

    Deniz, Kiymet; Kagan Kadioglu, Yusuf; Stuart, Finlay; Ellam, Rob; Boyce, Adrian; Condon, Daniel

    2015-04-01

    The closure of Neotethys induced from calcalkaline through alkaline magmatism within the Central Anatolia Crystalline Complex (CACC) during the late Cretaceous-early Paleogene. Timing of these magmatism is very important for understanding the magmato-tectonic evolution and the relation with the collision. Despite the genesis of felsic products are well understood, there is lack of petrogenetic explanation about especially alkaline mafic products. The relation between Neotethyan ophiolites and late alkaline dykes which haven't reported before is the most important undeclared gap. Çiçekdağ igneous complex (ÇIC) is one of the best area for explaining all of these problems within the CACC. In accordance with these purposes, we have carried out detailed petrographic, whole rock geochemical, Sr-Nd-Pb-O isotopic and geochronological (U/Pb and Ar/Ar) study of the rocks in the ÇIC in order to unravel the magmatic history of the CACC and thus constrain the tectonic history. The intrusive rocks of the ÇIC are differentiated into four main group as an ophiolites, calcalkaline series, alkaline series and late alkaline dykes. The felsic and mafic units intruded to the ophiolitic rocks. The calcalkaline series mostly composed of monzonites and monzodiorite porphyry whereas the alkaline series consist of syenites and feldspathoid-bearing gabbros. Variations in the major oxide compositions of both rock series can be attributed with fractionation of clinopyroxene, plagioclase, amphibole, apatite and iron titan oxide minerals. The high 87Sr/86Sr and low 143Nd/144Nd of both series are indicative of mantle sources with large continental crustal components. Feldspar and quartz oxygen isotope data from calcalkaline and alkaline series have a range of δ18O values 5.1-11.4o 8.3-9.2o and 7.7-14.1o 10.2-13.7o respectively and are compatible with the values for I-A-type granitoids. Both rock series represent the mixed (mantle-crustal) origin. The combination of all data suggest that

  15. Low Temperature Fluid Flow in the Permeable Igneous Complex of the Subducting Cocos Plate, Offshore Costa Rica

    NASA Astrophysics Data System (ADS)

    Dreyer, B.; Chavagnac, V.; Morris, J.

    2005-12-01

    An active low-temperature fluid flow system operates within ~24Ma EPR-generated oceanic crust of the Cocos plate near the Middle American trench, as indicated by anomalously low surface and borehole heat flow values (Langseth and Sliver, GRL, v23, 1996). ODP Legs 170 and 205 examined fluid flow pathways at the Costa Rica margin through coring, downhole logging, and subseafloor monitoring (Kimura et al., Init. Rept. 170, 1997; Morris et al., Init. Rept. 205, 2003). Lateral seawater flow in the upper igneous basement is inferred from basal sediment pore water profiles, which show a return toward seawater chemistry above basement (Silver et al., Geology, 2000). Interpretation of initial results from in situ subseafloor monitors (CORK-IIs) suggests that the upper basement is highly permeable and is hydrologically connected to points of distant recharge (IODP Leg 301T Prel. Rept., 2005). Thermal modeling indicates advective heat extraction in the uppermost 100-600m of basement (Fisher et al., GRL, v30, 2003), an area where lateral permeability may be affected by the abundance of sills identified through correlation of TicoFlux seismic profiles with ODP cores (Silver et al., GRL, v 31, 2004). Legs 170 and 205 cored 180m of low-K tholeiitic gabbros and basalts, consisting of an upper 31m gabbroic sill separated from >148m of a lower igneous unit by ~30m of post-18.2Ma sediment. These units are derived from a homogeneous mantle source enriched relative to EPR MORB; differences in degree of partial melting and crystallization control limited geochemical variation (Dreyer et al., submitted). Low-temperature alteration in the sill is characterized by palagonitization, replacement of primary minerals by clay, zeolitization, and void and vein filling by clays +/- calcite. The lower unit has experienced higher degrees of alteration, though discrete alteration remains low (generally 1-5%, but locally up to 50%). Sparse celadonite and Fe-oxyhydroxides in the recovered rocks

  16. Variations in the Pb isotope composition in polyformational magmatic rocks of the Ketkap-Yuna igneous province of the Aldan Shield: Evidence for mantle-crust interaction

    NASA Astrophysics Data System (ADS)

    Polin, V. F.; Dril, S. I.; Khanchuk, A. I.; Velivetskaya, T. A.; Vladimirova, T. A.; Il'ina, N. N.

    2016-06-01

    The Pb isotope composition of polyformational Mesozoic igneous rocks of the Ketkap-Yuna igneous province (KYIP) and lower crustal metamorphic rocks of the Batomga granite-greenstone area (the complex of the KYIP basement) of the Aldan Shield was studied for the first time. Based on the data obtained, several types of material sources participating in petrogenetic processes were distinguished. The mantle source identified as PREMA is registered in most of the igneous formations and predominates in mafic alkaline rocks. According to the isotope characteristics, the upper crustal source corresponds to a source of the "Orogen" type by the model of "plumbotectonics" or to the average composition of the continental crust by the Stacey-Kramers model. The lower crust is the third material source; however, the type of lower crustal protolith involved in the igneous process is still not defined, which makes difficult to estimate its role in the petrogenetic processes.

  17. Arc-continent collision and the formation of continental crust: A new geochemical and isotopic record from the Ordovician Tyrone Igneous Complex, Ireland

    USGS Publications Warehouse

    Draut, Amy E.; Clift, Peter D.; Amato, Jeffrey M.; Blusztajn, Jerzy; Schouten, Hans

    2009-01-01

    Collisions between oceanic island-arc terranes and passive continental margins are thought to have been important in the formation of continental crust throughout much of Earth's history. Magmatic evolution during this stage of the plate-tectonic cycle is evident in several areas of the Ordovician Grampian-Taconic orogen, as we demonstrate in the first detailed geochemical study of the Tyrone Igneous Complex, Ireland. New U-Pb zircon dating yields ages of 493 2 Ma from a primitive mafic intrusion, indicating intra-oceanic subduction in Tremadoc time, and 475 10 Ma from a light rare earth element (LREE)-enriched tonalite intrusion that incorporated Laurentian continental material by early Arenig time (Early Ordovician, Stage 2) during arc-continent collision. Notably, LREE enrichment in volcanism and silicic intrusions of the Tyrone Igneous Complex exceeds that of average Dalradian (Laurentian) continental material that would have been thrust under the colliding forearc and potentially recycled into arc magmatism. This implies that crystal fractionation, in addition to magmatic mixing and assimilation, was important to the formation of new crust in the Grampian-Taconic orogeny. Because similar super-enrichment of orogenic melts occurred elsewhere in the Caledonides in the British Isles and Newfoundland, the addition of new, highly enriched melt to this accreted arc terrane was apparently widespread spatially and temporally. Such super-enrichment of magmatism, especially if accompanied by loss of corresponding lower crustal residues, supports the theory that arc-continent collision plays an important role in altering bulk crustal composition toward typical values for ancient continental crust. ?? 2009 Geological Society of London.

  18. Petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks: Mineralogical and geochemical evidence from the Saima alkaline complex, NE China

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Yang, Jin-Hui; Sun, Jin-Feng; Zhang, Ji-Heng; Wu, Fu-Yuan

    2016-03-01

    A combined study of zircon U-Pb ages, mineral chemistry, whole-rock elements and Sr-Nd-Hf isotopes was carried out for the Saima alkaline complex in the northeastern China, in order to investigate the source and petrogenesis of coeval silica-saturated and silica-undersaturated alkaline rocks. The Saima alkaline complex consists of nepheline syenites, quartz-bearing syenites and alkaline volcanic rocks (i.e., phonolite and trachyte), with minor mafic dikes and carbonatitic veins. Laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS) zircon U-Pb dating gives consistent ages of 230-224 Ma for these rocks, suggesting that they are coeval. All alkaline rocks in the Saima complex are enriched in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depleted in high field strength elements (HFSEs) with significant negative Nb, Ta and Ti anomalies. Geochemical data and Sr-Nd-Hf isotopic compositions indicate that the various alkaline rocks were all derived from partial melting of an ancient, re-enriched lithospheric mantle in the garnet stability field, but experienced variable siliceous- or carbonate-rich crustal contamination. Based on petrographic evidence, mineral compositions, and whole-rock geochemical data, two distinct magmatic evolutionary trends are proposed to explain the coeval emplacement of the various rock types within the Saima alkaline complex. The silica-undersaturated rocks (nepheline syenites and phonolites) result from alkali feldspar + apatite + titanite crystal fractionation of an alkaline mafic parental melt combined with assimilation of marine carbonate host rocks. In contrast, the generation of silica-saturated rocks (quartz-bearing syenites and trachytes) may be attributed to subsequent and continued clinopyroxene + apatite + biotite crystal fractionation coupled with assimilation of siliceous sediments.

  19. The ca. 350 Ma Beja Igneous Complex: A record of transcurrent slab break-off in the Southern Iberia Variscan Belt?

    NASA Astrophysics Data System (ADS)

    Pin, Christian; Fonseca, Paulo E.; Paquette, Jean-Louis; Castro, Paulo; Matte, Philippe

    2008-12-01

    We report the results of an isotopic study of the large gabbro-dioritic Beja Igneous Complex (BIC) in the boundary between the highly contrasting Ossa-Morena (OM) and South Portuguese (SP) Zones of the Southern Iberian Variscan orogen. This boundary is interpreted as a major suture zone materialized by discontinuous, scattered strips of mafic/ultramafic rocks (the so-called Beja-Acebuches ophiolite complex, BAOC), and by mélange deposits of Middle to Late Devonian age in the Pulo do Lobo accretionary prism (PLAP). The Beja gabbro was interpreted either as part of the ophiolite-like units, or as a broadly arc-related massif reflecting the northward subduction of oceanic lithosphere. U-Pb zircon (ID-TIMS) dating of two diorites and a granodiorite points to igneous emplacement ages of 350 ± 2 Ma (Serpa), 352 ± 2 Ma (Torrão), and 353 ± 4 Ma (São Pedro), respectively, whereas a felsic dyke yields a slightly younger age of 345 ± 2 Ma. These results show that published Ar/Ar dates do not represent igneous crystallization ages, but merely reflect regional cooling below ca. 500 °C, at least 10 Ma after the major intrusive event, probably as a result of uplift of the OMZ side of the suture zone relative to the subsiding SPZ. 87Sr/ 86Sr 350 and ɛNd 350 display a large range of values (from 0.7041 to 0.7093 and from + 4.0 to - 6.1, respectively) which documents a rather complex petrogenetic history, with an important role played by crustal contamination processes. The more primitive Sr and Nd isotope signatures are measured in the mafic cumulates, while radiogenic Sr and unradiogenic Nd isotope compositions occur in the more evolved rock-types. The broad trend of decreasing ɛNd 350 with decreasing Sm/Nd and increasing SiO 2 concentration is reminiscent of crustal assimilation combined with fractional assimilation (AFC). ɛNd values of flasergabbros and associated cumulates ascribed to the ophiolite-like unit in the Guadiana valley are close to zero or even slightly

  20. The Ezhimala Igneous Complex, southern India: Possible imprint of Late Cretaceous magmatism within rift setting associated with India-Madagascar separation

    NASA Astrophysics Data System (ADS)

    Mohan, M. Ram; Shaji, E.; Satyanarayanan, M.; Santosh, M.; Tsunogae, T.; Yang, Qiong-Yan; Dhanil Dev, S. G.

    2016-05-01

    The gabbro-granophyre-granite complex of Ezhimala emplaced along the western rifted continental margin of India preserves evidence for bimodal magmatism, with related magma mixing and mingling processes. Here we report petrological, geochemical, zircon U-Pb geochronological and Lu-Hf isotopic data from the Ezhimala Igneous Complex (EIC) that provide insights into the Late Cretaceous magmatic activity. Field investigations and petrographic observations in Zircon U-Pb data from the granophyres show emplacement ages of 93.21 ± 0.6 Ma and 94.26 ± 0.92 Ma. The evolved Lu-Hf isotopic systematics for these rocks are indicative of the involvement of older crustal material during magma genesis. The geochemical systematics together with isotopic data suggest magma generation in a rift-related setting, and interaction with or melting of Neoproterozoic basement rocks. The timing of magmatism broadly correlates with the Late Cretaceous Marion hotspot activity which is considered to be responsible for the break-up of India and Madagascar. We thus interpret the EIC to be one of the rare signatures in southern India for the final phase of rifting of Gondwana.

  1. Application of remote sensing to the geological study of the alkaline complex region of Itatiaia. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.

    1980-01-01

    The methodology of remote sensing applied to geological study in a complex area was evaluated. Itatiaia was selected as a test area, which covers the alkaline massives and its precambrian basement. LANDSAT-MSS and radar mosaic of the RADAMBRASIL Project were used for photointerpretation. Previous geological works were consulted and many discrepancies in the distribution of stratigraphic units were found. Moreover, structural lineaments and talus deposits were clearly delineated.

  2. U-Pb ages, geochemistry, C-O-Nd-Sr-Hf isotopes and petrogenesis of the Catalão II carbonatitic complex (Alto Paranaíba Igneous Province, Brazil): implications for regional-scale heterogeneities in the Brazilian carbonatite associations

    NASA Astrophysics Data System (ADS)

    Guarino, Vincenza; Wu, Fu-Yuan; Melluso, Leone; de Barros Gomes, Celso; Tassinari, Colombo Celso Gaeta; Ruberti, Excelso; Brilli, Mauro

    2016-09-01

    The Catalão II carbonatitic complex is part of the Alto Paranaíba Igneous Province (APIP), central Brazil, close to the Catalão I complex. Drill-hole sampling and detailed mineralogical and geochemical study point out the existence of ultramafic lamprophyres (phlogopite-picrites), calciocarbonatites, ferrocarbonatites, magnetitites, apatitites, phlogopitites and fenites, most of them of cumulitic origin. U-Pb data have constrained the age of Catalão I carbonatitic complex between 78 ± 1 and 81 ± 4 Ma. The initial strontium, neodymium and hafnium isotopic data of Catalão II (87Sr/86Sri = 0.70503-0.70599; ɛNdi = -6.8 to -4.7; 176Hf/177Hf = 0.28248-0.28249; ɛHfi = -10.33 to -10.8) are similar to the isotopic composition of the Catalão I complex and fall within the field of APIP kimberlites, kamafugites and phlogopite-picrites, indicating the provenance from an old lithospheric mantle source. Carbon isotopic data for Catalão II carbonatites (δ13C = -6.35 to -5.68 ‰) confirm the mantle origin of the carbon for these rocks. The origin of Catalão II cumulitic rocks is thought to be caused by differential settling of the heavy phases (magnetite, apatite, pyrochlore and sulphides) in a magma chamber repeatedly filled by carbonatitic/ferrocarbonatitic liquids (s.l.). The Sr-Nd isotopic composition of the Catalão II rocks matches those of APIP rocks and is markedly different from the isotopic features of alkaline-carbonatitic complexes in the southernmost Brazil. The differences are also observed in the lithologies and the magmatic affinity of the igneous rocks found in the two areas, thus demonstrating the existence of regional-scale heterogeneity in the mantle sources underneath the Brazilian platform.

  3. ReOs isotope systematics of NiCu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component

    USGS Publications Warehouse

    Walker, R.J.; Morgan, J.W.; Naldrett, A.J.; Li, C.; Fassett, J.D.

    1991-01-01

    Sudbury Igneous Complex sublayer ores from the Levack West, Falconbridge and Strathcona mines were analyzed for their Re and Os concentrations and Os isotopic compositions. The ReOs isotope systematics of three ores from the different mines give isochron ages of 1840 ?? 60 Ma, 1770 ?? 60 Ma and 1780 ?? 110 Ma, suggesting that the ReOs system became closed at the time of, or soon after the 1850 ?? 1 Ma crystallization age of the complex. The Os isotopic compositions of different portions of the complex at the time of crystallization varied considerably, with initial 187Os 186Os1850 ranging from 4.64 at Levack West to 7.55 at Strathcona. These heterogeneities require that the Os, and probably also the other platinum-group elements contained in the ores, were derived from at least two sources. In addition, the high initial 187Os 186Os ratios indicate that the Os was derived predominantly from ancient crust. Previous studies have suggested that the complex either crystallized from a mixture of mantle-derived basaltic melt and ancient continental crust, or was derived exclusively from the fusion of ancient continental crust resulting from a meteorite impact. Results of modelling suggest that if a contemporaneous mantle-derived basaltic melt was involved in the origin of the SIC, it likely contributed < 50% of the Os to all three ores. The large percentage of ancient crust involved in the production of the ores is most consistent with an interpretation of substantial crustal fusion resulting from meteorite impact. ?? 1991.

  4. Complexation of Al(III) with gluconate in alkaline to hyperalkaline solutions: formation, stability and structure.

    PubMed

    Pallagi, Attila; Tasi, Ágost Gyula; Peintler, Gábor; Forgo, Péter; Pálinkó, István; Sipos, Pál

    2013-10-01

    Contrary to suggestions in the literature, it has been proven that Al(III) forms a 1 : 1 complex with gluconate (hereafter Gluc(-)) in strongly alkaline (pH > 12) aqueous solutions. The complex formation was proven via(27)Al and (1)H NMR, freezing-point depression, polarimetric measurements as well as potentiometric and conductometric titrations. This complexation is a pH independent process, i.e., a condensation reaction takes place. The stability constant of the complex formed was derived from (1)H NMR and polarimetric measurements, and was found to be log K = 2.4 ± 0.4. In the complex formed, Al(III) has a tetrahedral geometry, and the Al(OH)4(-) is most probably statistically distributed between the alcoholate groups of the Gluc(-). PMID:23897548

  5. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  6. Pyroxene zonation trends in mafic nepheline syenite and ijolite, Diamond Jo quarry, Magnet Cove igneous alkalic complex, Arkansas

    SciTech Connect

    Flohr, M.J.K.; Ross, M.

    1985-01-01

    Compositions of pyroxenes from mafic nepheline syenite and ijolite from Magnet Cove (NS and IJ) define zoning trends that reflect changing conditions in the crystallizing magmas and are used to contrast Magnet Cove with other alkalic complexes. The Na-Mg-Fe/sup 2 +/+Mn plot is used to compare NS and IJ pyroxenes with pyroxenes from nepheline syenites from S. Qoroq Centre, Greenland, and the Coldwell Complex intrusions, Ontario. Trends from the three areas are similar, but differences exists. Zoning in individual NS grains is greater than ranges for individual intrusions from S. Qoroq. Also, NS pyroxenes with compositions more magnesisan than Mg/sub 50/Nag are more Al-rich than S. Qoroq and Coldwell pyroxenes, indicating crystallization from a more undersaturated magma. These NS pyroxenes also contain 2-3 times more Ti and Fe/sup 3 +/. Despite different concentrations of Al, Ti, and Fe/sup 3 +/, the general crystallization trends shown by all elements considered are similar in NS and S. Qoroq pyroxenes. Sparse biotite and the absence of amphibole in NS indicate an H/sub 2/O-poor parent magma compared with those of the Coldwell and S. Qoroq nepheline syenites, which contain these phases. Mg-rich biotites and pyroxenes in IJ indicate that it formed from a less evolved liquid than NS.

  7. Resolving the Richat enigma: Doming and hydrothermal karstification above an alkaline complex

    NASA Astrophysics Data System (ADS)

    Matton, Guillaume; Jébrak, Michel; Lee, James K. W.

    2005-08-01

    The Richat structure (Sahara, Mauritania) appears as a large dome at least 40 km in diameter within a Late Proterozoic to Ordovician sequence. Erosion has created circular cuestas represented by three nested rings dipping outward from the structure. The center of the structure consists of a limestone-dolomite shelf that encloses a kilometer-scale siliceous breccia and is intruded by basaltic ring dikes, kimberlitic intrusions, and alkaline volcanic rocks. Several hypotheses have been presented to explain the spectacular Richat structure and breccia, but their origin remains enigmatic. The breccia body is lenticular in shape and irregularly thins at its extremities to only a few meters. The breccia was created during karst dissolution and collapse. Internal sediments fill the centimeter- to meter-scale cavities. Alkaline enrichment and the presence of Cretaceous automorphous neoformed K-feldspar demonstrate the hydrothermal origin of these internal sediments and their contemporaneity with magmatism. A model is proposed in which doming and the production of hydrothermal fluids were instrumental in creating a favorable setting for dissolution. The circular Richat structure and its breccia core thus represent the superficial expression of a Cretaceous alkaline complex with an exceptionally well preserved hydrothermal karst infilling at its summit.

  8. Igneous evolution of a complex laccolith-caldera, the Solitario, Trans-Pecos Texas: Implications for calderas and subjacent plutons

    USGS Publications Warehouse

    Henry, C.D.; Kunk, M.J.; Muehlberger, W.R.; McIntosh, W.C.

    1997-01-01

    The Solitario is a large, combination laccolith and caldera (herein termed "laccocaldera"), with a 16-km-diameter dome over which developed a 6 x 2 km caldera. This laccocaldera underwent a complex sequence of predoming sill, laccolith, and dike intrusion and concurrent volcanism; doming with emplacement of a main laccolith; ash-flow eruption and caldera collapse; intracaldera sedimentation and volcanism; and late intrusion. Detailed geologic mapping and 40Ar/39Ar dating reveal that the Solitario evolved over an interval of approximately 1 m.y. in three distinct pulses at 36.0, 35.4, and 35.0 Ma. The size, duration, and episodicity of Solitario magmatism are more typical of large ash-flow calderas than of most previously described laccoliths. Small volumes of magma intruded as abundant rhyolitic to trachytic sills and small laccoliths and extruded as lavas and tuffs during the first pulse at 36.0 Ma. Emplacement of the main laccolith, doming, ash-flow eruption, and caldera collapse occurred at 35.4 Ma during the most voluminous pulse. A complex sequence of debris-flow and debris-avalanche deposits, megabreccia, trachyte lava, and minor ash-flow tuff subsequently filled the caldera. The final magmatic pulse at 35.0 Ma consisted of several small laccoliths or stocks and numerous dikes in caldera fill and along the ring fracture. Solitario rocks appear to be part of a broadly cogenetic, metaluminous suite. Peralkaline rhyolite lava domes were emplaced north and west of the Solitario at approximately 35.4 Ma, contemporaneous with laccolith emplacement and the main pulse in the Solitario. The spatial and temporal relation along with sparse geochemical data suggest that the peralkaline rhyolites are crustal melts related to the magmatic-thermal flux represented by the main pulse of Solitario magmatism. Current models of laccolith emplacement and evolution suggest a continuum from initial sill emplacement through growth of the main laccolith. Although the Solitario

  9. Platinum group elements geochemistry of ultramafic and associated rocks from Pindar in Madawara Igneous Complex, Bundelkhand massif, central India

    NASA Astrophysics Data System (ADS)

    Balaram, V.; Singh, S. P.; Satyanarayanan, M.; Anjaiah, K. V.

    2013-02-01

    Ultramafic rocks comprising dunite, harzburgite, lherzolite, olivine webserite and websterite occur as intrusives in the form of small hillocks at Pindar into the granite-gneisses of Bundelkhand Gneissic Complex (BnGC). The peridotites are dominated by olivine cumulates where chromite and precious metal-bearing sulphides crystallized along with pyroxenes, subsequent to crystallization of olivine into the interstitial spaces of cumulates during cooling. Ultramafic rocks of Pindar are characterized by high MgO (up to 46.0 wt%) and FeO (up to 5.8 wt%); low SiO2 (40.8 to 48.0 wt%), TiO2 (0.2 to 0.5 wt%), Al2O3 (~3.2 wt% av.), CaO (~2.7 wt% av.) and Cu (11 to 73 μg/g). Cr and Ni values range from 2297 to 3150 μg/g and 2434 to 2767 μg/g, respectively. Distribution of Ir (up to 20 ng/g), Ru (27 to 90 ng/g), Rh (3 to 14 ng/g), Pt (18 to 72 ng/g), Pd (10 to 27 ng/g) and Au (22 to 57 ng/g) indicate platinum group element (PGE) and associated gold mineralization in these ultramafic rocks. A mineral phase representing sperrylite (PtAs2) was also identified within the sulphides in scanning electron microscopy with energy dispersive spectrometer (SEM-EDS) studies. The primitive mantle-normalized siderophile elements pattern shows platinum group element PGE (PPGE) enrichment (Rh, Pt, Pd). Discrimination diagrams of Pd/Ir vs. Ni/Cu, Pd/Pt vs. Ni/Cu, Cu/Pd vs. Pd, and Cu vs. Pd for the peridotites of Pindar attribute to affinity towards komatiite magma, derived from high degree of partial melting of prolonged depleted mantle, and the sulphur saturation condition incurred during the crystallization of chromite which was favourable for PGE mineralization.

  10. The Job Canyon caldera, Stillwater Range, west-central Nevada: A steeply tilted late Oligocene igneous complex

    SciTech Connect

    John, D.A.; Pickthorn, W.J. )

    1993-04-01

    The Job Canyon caldera (JCC) and underlying IXL pluton are the oldest ([approx]29 Ma) and most well preserved parts of the Stillwater caldera complex (SCC), southern Stillwater Range (SR). SCC consists of three partly overlapping calderas JCC, Poco Canyon caldera (PCC), and Elevenmile Canyon caldera (ECC) and the underlying IXL and Freeman Creek plutons. SCC was steeply tilted to the west or east by earliest Miocene extensional faulting exposing sections of late Oligocene rocks as thick as 10 km. JCC consists of 2 structural blocks separated by an E-striking fault zone that was later reactivated to form the north margins of PCC and ECC. The north block of JCC consists of 1.1 km of dacite and andesite lavas, overlain by 2 km of rhyolitic ash-flow tuff locally interbedded with megabreccia, overlain by 2.5 km of dacite and andesite lavas. The south block of JCC is broken into 5 small fault blocks that have thinner sequences of caldera fill consisting of rhyolite ash-flow tuff underlain locally by dacite and andesite lavas. Caldera collapse was accomplished both by large-scale displacement along steep bounding faults and by small displacement along high-angle faults in the interior of the caldera. Hydrothermal alteration of caldera fill is pervasive within JCC and in the upper part of the IXL pluton and appears to predate formation of PCC and tilting of SCC. Most alteration is propylitic and intensity of alteration increases downwards within caldera fill. Preliminary whole-rock [delta][sup 18]O values indicate that hydrothermal fluids were dominated by meteoric water. These values increase upwards to +5 to [minus]3 permil near the top suggesting that there was a steep temperature gradient with temperature increasing with depth. SCC was steeply tilted at about 24--23 Ma shortly following formation of PCC and ECC at about 25--24 Ma. Late Miocene--Holocene Basin and Range faulting has uplifted the SR exposing the older extensional faults and fossil hydrothermal system.

  11. Thermal evolution and interaction between impact melt sheet and footwall: A genetic model for the contact sublayer of the Sudbury Igneous Complex, Canada

    NASA Astrophysics Data System (ADS)

    Prevec, Stephen A.; Cawthorn, R. Grant

    2002-08-01

    The Sudbury Igneous Complex (SIC) and associated Ni-Cu-PGE mineralization has been interpreted in terms of a large meteorite impact event. In this study, the thermal relationship between the large cooling melt sheet and the surrounding country rock is examined in terms of its role in an evolving thermal gradient rather than as a passive receptacle for the melt sheet above. Thermal modeling of this environment is undertaken using physical and thermal constraints appropriate to the SIC and assuming heat dissipation from the 2.5-km-thick superheated melt sheet (>=1800°C) by either diffusion with zero convection or by rapid convection within the melt sheet. With zero convection, basal cooling produces a solid base, which lowers conductivity such that the immediate footwall rocks reach <=1000°C, producing partial melting that extends 200 m into the footwall. In a rapidly convecting melt sheet the initial footwall chill is remelted and high temperatures maintained within the sheet close to the contact. This results in higher temperatures being attained in the immediate footwall (1100-1200°C), inducing complete melting of proximal footwall and partial melting to depths of 500 m below the melt sheet. Proximal footwall consists of Paleoproterozoic Huronian basalts, granitoids and sediments, exposed in the south range, overlying Archaean gneisses and granitoids. Total and partial melting of this material early in the cooling history of the melt sheet and the subsequent gravitational accommodation of these melts according to density would produce a basalt-dominated basal liquid corresponding to the so-called contact sublayer. The thermal aureole predicted by our models is consistent with that preserved around the north range of the SIC assuming ~800 m of thermally induced erosion at the contact.

  12. Multiple sulfur isotope and mineralogical constraints on the genesis of Ni-Cu-PGE magmatic sulfide mineralization of the Monchegorsk Igneous Complex, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Bekker, A.; Grokhovskaya, T. L.; Hiebert, R.; Sharkov, E. V.; Bui, T. H.; Stadnek, K. R.; Chashchin, V. V.; Wing, B. A.

    2015-08-01

    We present the results of a pilot investigation of multiple sulfur isotopes for the Ni-Cu-PGE sulfide mineralization of the ˜2.5 Ga Monchegorsk Igneous Complex (MIC). Base Metal Sulfide (BMS) compositions, Platinum Group Element (PGE) distributions, and Platinum Group Mineral (PGM) assemblages were also studied for different types of Ni-Cu-PGE mineralization. The uniformly low S content of the country rocks for the MIC as well as variable Sm-Nd isotope systematics and low-sulfide, PGE-rich mineralization of the MIC suggest that S saturation was reached via assimilation of silicates rather than assimilation of sulfur-rich lithologies. R-factor modeling suggests that the mixing ratio for silicate-to-sulfide melt was very high, well above 15,000 for the majority of our mineralized samples, as might be expected for the low-sulfide, PGE-rich mineralization of the MIC. Small, negative Δ33S values (from -0.23 to -0.04 ‰) for sulfides in strongly metamorphosed MIC-host rocks indicate that their sulfur underwent mass-independent sulfur isotope fractionation (MIF) in the oxygen-poor Archean atmosphere before it was incorporated into the protoliths of the host paragneisses and homogenized during metamorphism. Ore minerals from the MIC have similar Δ33S values (from -0.21 to -0.06 ‰) consistent with country rock assimilation contributing to sulfide saturation, but, also importantly, our dataset suggests that Δ33S values decrease from the center to the margin of the MIC as well as from early to late magmatic phases, potentially indicating that both local assimilation of host rocks and S homogenization in the central part of the large intrusion took place.

  13. Deciphering igneous and metamorphic events in high-grade rocks of the Wilmington complex, Delaware: Morphology, cathodoluminescence and backscattered electron zoning, and SHRIMP U-Pb geochronology of zircon and monazite

    USGS Publications Warehouse

    Aleinikoff, J.N.; Schenck, W.S.; Plank, M.O.; Srogi, L.A.; Fanning, C.M.; Kamo, S.L.; Bosbyshell, H.

    2006-01-01

    High-grade rocks of the Wilmington Complex, northern Delaware and adjacent Maryland and Pennsylvania, contain morphologically complex zircons that formed through both igneous and metamorphic processes during the development of an island-arc complex and suturing of the arc to Laurentia. The arc complex has been divided into several members, the protoliths of which include both intrusive and extrusive rocks. Metasedimentary rocks are interlayered with the complex and are believed to be the infrastructure upon which the arc was built. In the Wilmingto n Complex rocks, both igneous and metamorphic zircons occur as elongate and equant forms. Chemical zoning, shown by cathodoluminescence (CL), includes both concentric, oscillatory patterns, indicative of igneous origin, and patchwork and sector patterns, suggestive of metamorphic growth. Metamorphic monazites are chemically homogeneous, or show oscillatory or spotted chemical zoning in backscattered electron images. U-Pb geochronology by sensitive high resolution ion microprobe (SHRIMP) was used to date complexly zoned zircon and monazite. All but one member of the Wilmington Complex crystallized in the Ordovician between ca. 475 and 485 Ma; these rocks were intruded by a suite of gabbro-to-granite plutonic rocks at 434 ?? Ma. Detrital zircons in metavolcanic and metasedimentary units were derived predominantly from 0.9 to 1.4 Ga (Grenvillian) basement, presumably of Laurentian origin. Amphibolite to granulite facies metamorphism of the Wilmington Complex, recorded by ages of metamorphic zircon (428 ?? 4 and 432 ?? 6 Ma) and monazite (429 ?? 2 and 426 ?? 3 Ma), occurred contemporaneously with emplacement of the younger plutonic rocks. On the basis of varying CL zoning patterns and external morphologies, metamorphic zircons formed by different processes (presumably controlled by rock chemistry) at slightly different times and temperatures during prograde metamorphism. In addition, at least three other thermal episodes are

  14. Lu-Hf isotopic memory of plume-lithosphere interaction in the source of layered mafic intrusions, Windimurra Igneous Complex, Yilgarn Craton, Australia

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Arculus, R. J.; Ivanic, T. J.; Nebel-Jacobsen, Y. J.

    2013-10-01

    Most layered mafic intrusions (LMI) are formed via multiple magma injections into crustal magma chambers. These magmas are originally sourced from the mantle, likely via plume activity, but may interact with the overriding lithosphere during ascent and emplacement in the crust. The magma injections lead to the establishment of different layers and zones with complex macroscopic, microscopic and cryptic compositional layering through magmatic differentiation and associated cumulate formation, sometimes accompanied by crustal assimilation. These complex mineralogical and petrological processes obscure the nature of the mantle sources of LMI, and typically have limited the degree to which parental liquids can be fully characterised. Here, we present Lu-Hf isotope data for samples from distinct layers of the Upper Zone of the Windimurra Igneous Complex (WIC), an immense late-Archean LMI in the West Australian Yilgarn Craton. Lu-Hf isotope systematics of whole rocks are well correlated (MSWD=5.6, n=17) with an age of ˜3.05±0.05 Ga and initial ɛHf˜+8. This age, however, is older than whole rock Sm-Nd and zircon U-Pb ages of the intrusion, both of which are ca. 2.8 Ga. Stratigraphically-controlled initial Hf isotope variations (associated with multiple episodes of emplacement at ca. 2.8 Ga) indicate isotope mixing between a near-chondritic and an ultra-radiogenic component, the latter with ɛHf[2.8 Ga]>+15. This Hf isotope mixing creates a pseudochron-relationship at the time of intrusion of ˜250 Myr that is superimposed on subsequent radiogenic ingrowth after crystallisation, generating an age that predates the actual emplacement event. Mixing between late-stage crystallisation products (melt + crystals) from the Middle Zone and replenishing, plume-derived liquids was followed by crystal accumulation in a chemically evolving magma chamber. The ultra-radiogenic Hf isotope endmember in the WIC mantle source requires parent-daughter ratios consistent with very early

  15. REE mineralization in the carbonatites of the sung valley ultramafic-alkaline-carbonatite complex, Meghalaya, India

    NASA Astrophysics Data System (ADS)

    Sadiq, Mohd.; Ranjith, A.; Umrao, Ravi Kumar

    2014-12-01

    The Early Cretaceous Sung Valley Ultramafic-Alkaline-Carbonatite (SUAC) complex intruded the Proterozoic Shillong Group of rocks and located in the East Khasi Hills and West Jaintia Hills districts of Meghalaya. The SUAC complex is a bowl-shaped depression covering an area of about 26 km2 and is comprised serpentinised peridotite forming the core of the complex with pyroxenite rim. Alkaline rocks are dominantly ijolite and nepheline syenite, occur as ring-shaped bodies as well as dykes. Carbonatites are, the youngest intrusive phase in the complex, where they form oval-shaped bodies, small dykes and veins. During the course of large scale mapping in parts of the Sung Valley complex, eleven carbonatite bodies were delineated. These isolated carbonatite bodies have a general NW-SE and E-W trend and vary from 20-125 m long and 10-40 m wide. Calcite carbonatite is the dominant variety and comprises minor dolomite and apatite and accessory olivine, magnetite, pyrochlore and phlogopite. The REE-bearing minerals identified in the Sung Valley carbonatites are bastnäsite-(Ce), ancylite-(Ce), belovite-(Ce), britholite-(Ce) and pyrochlore that are associated with calcite and apatite. The presence of REE carbonates and phosphates associated with REE-Nb bearing pyrochlore enhances the economic potential of the Sung Valley carbonatites. Trace-element geochemistry also reveals an enrichment of LREEs in the carbonatites and average ΣREE value of 0.102% in 26 bed rock samples. Channel samples shows average ΣREE values of 0.103 wt%. Moreover, few samples from carbonatite bodies has indicated relatively higher values for Sn, Hf, Ta and U. Since the present study focuses surface evaluation of REE, therefore, detailed subsurface exploration will be of immense help to determine the REE and other associated mineralization of the Sung Valley carbonatite prospect.

  16. Nature, geochemistry and petrogenesis of the syn-tectonic Amspoort suite (Pan-African Boundary Igneous Complex, Kaoko Belt, NW Namibia)

    NASA Astrophysics Data System (ADS)

    Janousek, Vojtech; Konopasek, Jiri; Ulrich, Stanislav

    2010-05-01

    Crucial information on the Neoproterozoic-Cambrian amalgamation of Western Gondwana is provided by studies of the large Pan-African collisional belt in central-northern Namibia. This so-called Damara Orogen (Miller, 1983) can be subdivided into two branches, the SW-NE trending Damara Belt and a roughly perpendicular, NNW-SSE trending Kaoko Belt further north. The Kaoko Belt consists of two principal crustal units. The easterly part has a Congo Craton affinity (a basement built mostly by ≥ 1.5 Ga granitic gneisses with Neoproterozoic metasedimentary cover), whereas the westerly Coastal Terrane consists of Neoproterozoic (c.850-650 Ma) metapsammites and minor metabasic bodies; no exposures of the basement were found. The at least 180 km long, NNW-SSE trending suture between both units was intruded by numerous syn-tectonic magmatic bodies with ages spanning the interval 580-550 Ma (Seth et al., 1998; Kröner et al., 2004) designated as the Boundary Igneous Complex by Konopásek et al. (2008). The most typical representatives of this syn-collision igneous association are c.550 Ma old K-feldspar-phyric, Bt ± Cam granites-granodiorites of the Amspoort suite, with minor Cpx gabbro and rare two-pyroxene dolerite bodies. The petrological character, whole-rock geochemistry and Sr-Nd isotopic signatures of the scarce Opx-Cpx-Bt dolerites indicate an origin from a CHUR-like mantle-derived melts (87Sr/86Sr550 ~ 0.7045, ɛNd550 ~ 0) modified by extensive (?Ol-) Cpx fractionation. The rest of the suite is interpreted as a product of a high-temperature anatexis of a heterogeneous lower crust, built mainly by immature metapsammites - rich in arc-derived detritus - with minor metabasite and intermediate metaigneous bodies. The most likely source appears to be the anatectic Coastal Terrane gneisses. Yet, partial melting of the so far little constrained Congo Craton cover, if formed by immature and youthful detritus unrelated to the basement, cannot be discounted. In any case, the

  17. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt

  18. Xenoliths of mafic/ultramafic igneous rocks as carriers of information on lower crust beneath Złotoryja - Jawor volcanic complex (SW Poland).

    NASA Astrophysics Data System (ADS)

    Dajek, Michał; Matusiak-Malek, Magdalena; Puziewicz, Jacek; Lipa, Danuta; Ntaflos, Theodors

    2016-04-01

    The Cenozoic alkaline volcanic rocks in Lower Silesia (SW Poland) are known for their mantle peridotite xenoliths. However, the mafic and ultramafic xenoliths with cumulative textures and of composition of olivine- or hornblende clinopyroxenite, clinopyroxenite, websterite, norite and gabbro occur in some of the lavas (6 sites) of the Złotoryja-Jawor volcanic complex. The xenoliths are anhydrous, only in Wilcza Góra minor amount of amphibole occurs. The Mg# of clinopyroxene varies from 0.54 (Ostrzyca Proboszczowicka clinopyroxenite) to 0.89 (Góra Świątek clinopyroxenite). Forsterite content in olivine varies from 64% (Winna Góra gabbro) to 86% (Wilcza Góra hornblende clinopyroxenite). Anortite content in plagioclase in nortite and gabbros is 33-56%. The Mg# in amphibole is 0.43 to 0.76. Clinopyroxene trace element composition is typically LREE enriched, but in Wilcza Góra norite and Mnisza Góra clinopyroxenite it is LREE-depleted. The calculated pressures of clinopyroxene crystallization (calculated by the algorithm of Nimis and Ulmer, 1998, CMP, 1998, 122-135, assuming all Fe to be 2+) is from 0.45 to 0.96 GPa pointing to crystallization of the pyroxenitic rocks in lower crust or at crust/mantle boundary. Theoretical melts in equilibrium with clinopyroxene enriched in LREE resemble the alkaline lavas from the area and we suggest they are cognate with host magmas. We explain variations in composition of mafic xenoliths from Wilcza Góra, Winna Góra and Grodziec to be a result of magma fractionation. Xenoliths containing clinopyroxene impoverished in LREE may represent lithologies inherited from Variscan oceanic crust. Megacrysts of clinopyroxene present in some of the localities cannot result from disintegration of mafic xenoliths This study was possible thanks to project NCN UMO-2014/15/B/ST10/00095 of Polish National Centre for Science.

  19. Theoretical Investigation of the M+-RG2 (m = Alkaline Earth Metal; RG = Rare Gas) Complexes

    NASA Astrophysics Data System (ADS)

    Gardner, Adrian M.; Plowright, Richard J.; Graneek, Jack; Wright, Timothy G.; Breckenridge, W. H.

    2012-06-01

    Metal cation rare gas complexes provide an expectedly simple system with which to investigate intermolecular interactions. Despite this, we have previously found the M+-RG (M = alkaline earth metal) complexes to very complicated systems, with the complexes of the heavier rare gases displaying surprisingly large degrees of chemical character. Here we extend these studies by examining the nature of these interactions with increasing degrees of solvation through investigating the M+-RG_2 complexes using high level {ab initio} techniques. Intriguing trends in the geometries and dissociation energies of these complexes have been observed and are rationalized. A. M. Gardner, C. D. Withers, J. B. Graneek, T. G. Wright, L. A. Viehland and W. H. Breckenridge, J. Phys. Chem. A, 2000, 114, 7631. A. M. Gardner, C. D. Withers, T. G. Wright, K. I. Kaplan, C. Y. N. Chapman, L. A. Viehland, E. P. F. Lee and W. H. Breckenridge, J. Chem. Phys., 2010, 132, 054302. M. F. McGuirk, L. A. Viehland, E. P. F. Lee, W. H. Breckenridge, C. D. Withers, A. M. Gardner, R. J. Plowright and T. G. Wright, J. Chem. Phys., 2009, 130, 194305.

  20. Bacterial degradation of cyanide and its metal complexes under alkaline conditions.

    PubMed

    Luque-Almagro, Víctor M; Huertas, María-J; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Roldán, M Dolores; García-Gil, L Jesús; Castillo, Francisco; Blasco, Rafael

    2005-02-01

    A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Coleccion Espanola de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l-methionine-d,l-sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d,l-malate were suitable carbon sources for cyanotrophic growth, but no growth was detected in media with cyanide as the sole carbon source. In addition to cyanide, P. pseudoalcaligenes CECT5344 used other nitrogen sources, namely ammonium, nitrate, cyanate, cyanoacetamide, nitroferricyanide (nitroprusside), and a variety of cyanide-metal complexes. Cyanide and ammonium were assimilated simultaneously, whereas cyanide strongly inhibited nitrate and nitrite assimilation. Cyanase activity was induced during growth with cyanide or cyanate, but not with ammonium or nitrate as the nitrogen source. This result suggests that cyanate could be an intermediate in the cyanide degradation pathway, but alternative routes cannot be excluded.

  1. Alkaline magmatism in the Amambay area, NE Paraguay: The Cerro Sarambí complex

    NASA Astrophysics Data System (ADS)

    Gomes, C. B.; Velázquez, V. F.; Azzone, R. G.; Paula, G. S.

    2011-07-01

    The Early Cretaceous alkaline magmatism in the northeastern region of Paraguay (Amambay Province) is represented by stocks, plugs, dikes, and dike swarms emplaced into Carboniferous to Triassic-Jurassic sediments and Precambrian rocks. This magmatism is tectonically related to the Ponta Porã Arch, a NE-trending structural feature, and has the Cerro Sarambí and Cerro Chiriguelo carbonatite complexes as its most significant expressions. Other alkaline occurrences found in the area are the Cerro Guazú and the small bodies of Cerro Apuá, Arroyo Gasory, Cerro Jhú, Cerro Tayay, and Cerro Teyú. The alkaline rocks comprise ultramafic-mafic, syenitic, and carbonatitic petrographic associations in addition to lithologies of variable composition and texture occurring as dikes; fenites are described in both carbonatite complexes. Alkali feldspar and clinopyroxene, ranging from diopside to aegirine, are the most abundant minerals, with feldspathoids (nepheline, analcime), biotite, and subordinate Ti-rich garnet; minor constituents are Fe-Ti oxides and cancrinite as the main alteration product from nepheline. Chemically, the Amambay silicate rocks are potassic to highly potassic and have miaskitic affinity, with the non-cumulate intrusive types concentrated mainly in the saturated to undersaturated areas in silica syenitic fields. Fine-grained rocks are also of syenitic affiliation or represent more mafic varieties. The carbonatitic rocks consist dominantly of calciocarbonatites. Variation diagrams plotting major and trace elements vs. SiO 2 concentration for the Cerro Sarambí rocks show positive correlations for Al 2O 3, K 2O, and Rb, and negative ones for TiO 2, MgO, Fe 2O 3, CaO, P 2O 5, and Sr, indicating that fractional crystallization played an important role in the formation of the complex. Incompatible elements normalized to primitive mantle display positive spikes for Rb, La, Pb, Sr, and Sm, and negative for Nb-Ta, P, and Ti, as these negative anomalies are

  2. Draped aeromagnetic survey in Transantarctic Mountains over the area of the Butcher Ridge igneous complex showing extent of underlying mafic intrusion

    USGS Publications Warehouse

    Behrendt, John C.; Damaske, D.; Finn, C.A.; Kyle, P.; Wilson, T.J.

    2002-01-01

    A draped aeromagnetic survey over the area surrounding the Butcher Ridge igneous complex (BRIC), Transantarctic Mountains, was acquired in 1997-1998 as part of a larger Transantarctic Mountains Aerogeophysical Research Activity survey. The BRIC is a sill-like hypoabyssal intrusion ranging in composition from tholeiitic basalt to rhyolite. An 40Ar/39 Ar age of 174 Ma and the chemical character of the basaltic rocks show the BRIC to be part of the widespread Jurassic Ferrar suite of continental tholeiitic rocks, that extends for 3500 km across Antarctica. The aeromagnetic survey shows a horseshoe-shaped pattern of anomalies reaching amplitudes as great as 1900 nT generally associated with the bedrock topography where it is exposed. It is apparent that the high-amplitude anomaly pattern is more extensive than the 10-km-long exposed outcrop, first crossed by a single 1990 aeromagnetic profile. The highest-amplitude anomalies appear south of the profile acquired in 1990 and extend out of the survey area. The new aeromagnetic data allow determination of the extent of the interpreted Butcher mafic(?) intrusion beneath exposures of Beacon sedimentary rock and ice in the area covered, as well as beneath the small BRIC exposure. The magnetic anomalies show a minimum area of 3000 km2, a much greater extent than previously inferred. Magnetic models indicate a minimum thickness of ???1-2 km for a horizontal intrusion. However, nonunique models with magnetic layers decreasing in apparent susceptibility with depth are consistent with of a 4- to 8-km-thick layered intrusion. These magnetic models indicate progressively deeper erosion of the interpreted mafic-layered body from the south to north. The erosion has removed more magnetic upper layers that mask the magnetic effects of the lower less magnetic layers. The probable minimum volume of the intrusion in the area of the survey is ???6000 km3. An alternate, but less likely, interpretation of a series of dikes can also fit the

  3. 900 Ma Pole from the Bjerkreim-Sokndal Layered Intrusion, Rogaland Igneous Complex, Norway: Where Was Baltica in the Early Neoproterozoic?

    NASA Astrophysics Data System (ADS)

    Brown, L. L.; McEnroe, S. A.

    2014-12-01

    The southern Norwegian Rogaland Igneous Complex (RIC) intruded into post-Sveconorwegian granulite facies crust between 930 and 920 Ma. It includes three massif anorthosites, several small leuconorite bodies and the ~7km thick norite-quartz mangerite layered Bjerkreim-Sokndal (BKS) intrusion. The intrusion consists of five rhythmic mega-units created by repeated magma influxes capped by a transition zone and a thick sequence of more evolved mangerites and quartz mangerites. Over 70 paleomagnetic sites have been collected in the BKS, sampling all the mega-cyclic subunits and overlying mangerites. Remanence within the BKS is held in hemo-ilmenite-only rocks (lower parts of the mega-cyclic units), mixed hemo-ilmenite and magnetite rocks (upper parts of the lower mega-cyclic units) and magnetite only rocks in the upper highest mega-cyclic unit and overlying mangerites. Due to the different oxides present magnetic susceptibility varies over four orders of magnitude with a bimodal distribution (mean susceptibility of 6.4 x 10-3 SI for hemo-ilmenite rocks, and 8.9 x 10-2 SI for magnetite rocks). NRM values do not show a strong bimodal distribution as many of the rocks lacking magnetite have hemo-ilmenite with strong lamellar magnetism; average NRM for the entire suite is 8.83 A/m. All sites within the cyclic part of the intrusion have stable remanence and produce well-clustered site means. Samples from the upper mangerite rocks, dominated by MD magnetite, are often unstable and not all sites provide acceptable data. Mean directions for 66 sites spanning the entire intrusion are I = -73.7°, D = 303.7°, with α95 = 3.6° and k = 24. The resulting pole position is at 36.1°S and 217.5°E, with a paleolatitude for this part of Baltica of 59.7°S. Examination of the magnetic mineralogy combined with geochronology for RIC rocks yields an age of magnetization of ~900 Ma. Metamorphic country rocks yield similar directions at least 10 km from the contact, confirming the presence

  4. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  5. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores

    PubMed Central

    Muñoz-Santiburcio, Daniel; Marx, Dominik

    2016-01-01

    The hydroxide anion OH−(aq) in homogeneous bulk water, that is, the solvated proton hole, is known to feature peculiar properties compared with excess protons solvated therein. In this work, it is disclosed that nanoconfinement of such alkaline aqueous solutions strongly affects the key structural and dynamical properties of OH−(aq) compared with the bulk limit. The combined effect of the preferred hypercoordinated solvation pattern of OH−(aq), its preferred perpendicular orientation relative to the confining surfaces, the pronounced layering of nanoconfined water and the topology of the hydrogen bond network required for proton hole transfer lead to major changes of the charge transport mechanism, in such a way that the proton hole migration mechanism depends exquisitely on the width of the confined space that hosts the water film. Moreover, the anionic Zundel complex, which is of transient nature in homogeneous bulk solutions, can be dynamically trapped as a shallow intermediate species by suitable nanoconfinement conditions. PMID:27550616

  6. On the complex structural diffusion of proton holes in nanoconfined alkaline solutions within slit pores

    NASA Astrophysics Data System (ADS)

    Muñoz-Santiburcio, Daniel; Marx, Dominik

    2016-08-01

    The hydroxide anion OH-(aq) in homogeneous bulk water, that is, the solvated proton hole, is known to feature peculiar properties compared with excess protons solvated therein. In this work, it is disclosed that nanoconfinement of such alkaline aqueous solutions strongly affects the key structural and dynamical properties of OH-(aq) compared with the bulk limit. The combined effect of the preferred hypercoordinated solvation pattern of OH-(aq), its preferred perpendicular orientation relative to the confining surfaces, the pronounced layering of nanoconfined water and the topology of the hydrogen bond network required for proton hole transfer lead to major changes of the charge transport mechanism, in such a way that the proton hole migration mechanism depends exquisitely on the width of the confined space that hosts the water film. Moreover, the anionic Zundel complex, which is of transient nature in homogeneous bulk solutions, can be dynamically trapped as a shallow intermediate species by suitable nanoconfinement conditions.

  7. Recycling of Ni(II)-citrate complexes using precipitation in alkaline solutions.

    PubMed

    Gyliene, O; Aikaite, J; Nivinskiene, O

    2004-06-18

    When the excess of Ni(II) ions as compared to citrate concentration is used both Ni(II) ions and citrate can be precipitated in alkaline solutions. The ratio between Ni(II) and citrate in the precipitate and completeness of citrate precipitation depends on the ratio between the Ni(II) and citrate concentrations in the initial solution and its pH. The data of chemical analysis, potentiometric titration, FT-IR as well as visible spectrophotometric investigations suggest that Ni(II) in the insoluble compound is bound with three -COO- groups and -OH group of the citrate. The insoluble compound also contains SO4(2-) and hydroxides. The treatment of this precipitate with H2SO4 enables to recover a soluble Ni(II)-citrate complex, which can be reused in practice, and to remove the excess of Ni(II) in the form of insoluble Ni(OH)2. PMID:15177751

  8. Petrology, geochemistry and geochonology of the Jacupiranga ultramafic, alkaline and carbonatitic complex (southern Brazil)

    NASA Astrophysics Data System (ADS)

    Chmyz, Luanna; Arnaud, Nicolas; Biondi, João Carlos

    2015-04-01

    Brazilian carbonatitic complexes are located at the edges of the Paleozoic basins and are usually associated to tectonic crustal flexuring or deep fault zones. The Jacupiranga Complex is a 65 km² ultrabasic-alkaline carbonatitic intrusive body outcroping at the northeastern border of the Paraná Basin, South of São Paulo State (Brazil). The northern portion of the unit is mostly composed of peridotitic rocks, while the southern part contains ijolites, melteigites, clinopyroxenites and carbonatites which host a phosphate deposit, mined since 1966. Even though the carbonatites only represent 1% of the Complex's area, they have concentrated most of the historical petrogenetic studies, leaving almost unknown the petrogenetic and the geochronological characteristics of other rocks. This explains why the few petrogenetic models from the literature are very partial and mostly unsatisfactory. While the peridotitic rocks are largely hindered by the absence of fresh outcrops, the regolith thickness and the high serpentinization degree, field observations and petrographic data notably show a heterogeneous zone around the peridotitic body. That zone is composed of a large variety of lithotypes over a relatively small area (~9 km²), comprising diorites, monzodiorites, alkali feldspar syenites, trachytes, lamprophyres and syenites. Moreover, these rocks present a restricted lateral continuity (decametric) and a lack of the magmatic bedding characteristic of the ijolitic and clinopyroxenitc rocks. The southern clinopyroxenitic zone (~20 km²) is composed of clinopyroxenite and melteigite with prominent magmatic layering, probably of cumulative origin, and a body of carbonatites which outcrops over less than 1 km2 essentially composed of sovite and beforsite, with abundant apatite. The Jacupiranga Complex characteristics indicate that its formation possibly comprises at least five magmatic events which cannot at present be surely ordinated in time: a) the emplacement of the

  9. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  10. Metal based synthetic routes to heavy alkaline earth aryloxo complexes involving ligands of moderate steric bulk.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Guino-o, Marites; Ruhlandt-Senge, Karin

    2009-07-01

    Treatment of an alkaline earth metal (Ca, Sr, Ba) with 2,4,6-trimethylphenol (HOmes) at elevated temperatures in the presence of mercury under solvent-free conditions, followed by extraction of the reaction mixture with 1,2-dimethoxyethane (dme), afforded dinuclear alkaline earth aryloxo complexes [Ae2(Omes)4(dme)4] (Ae = Ca 1, Sr 3, Ba 6). Extraction of the Ca metal and HOmes reaction mixture with thf afforded [Ca3(Omes)6(thf)] 2. In contrast, redox transmetallation ligand exchange reactions between an alkaline earth metal, diphenylmercury and HOmes in dme yielded solely 1 for Ca metal, a mixture of 3 and the methoxide bridged cage [Sr5(Omes)5(OMe)5(dme)4] x 2dme 4 for Sr metal, and solely [Ba5(Omes)5(OMe)5(dme)4] x dme 7 for Ba metal. The methoxide ligands originate from the C-O activation of the dme solvent. Treatment of liquid ammonia activated Sr or Ba metal with HOmes in thf afforded the linear species [Ae3(Omes)6(thf)6] (Ae = Sr 5, Ba 8), and 8 was also obtained from barium metal and HOmes in refluxing thf. The structures of 1 and 3, determined by X-ray crystallography, consist of two six coordinate Ae metal atoms, to each of which is bound a terminal aryloxide ligand, two bridging aryloxide ligands, and chelating and unidentate dme ligands. The structures of 4 and 7 contain five Ae metal atoms arranged on the vertices of a distorted square based pyramid. The Ae atoms are linked by four mu3-OMe ligands and a mu4-OMe ligand. Four bridging aryloxide ligands and four chelating dme ligands complete the coordination spheres of the four seven coordinate Ae atoms at the base of the pyramid, and a terminal aryloxide ligand is bound to the five coordinate apical Ae atom. The structures of 5 and 8 consist of a trinuclear linear array of Ae metal atoms, and contain solely bridging aryloxide ligands. Three thf ligands are bound to each terminal Ae atom, giving all Ae atoms a coordination number of six. PMID:19662279

  11. New data on carbonatites of the Il'mensky-Vishnevogorsky alkaline complex, the southern Urals, Russia

    NASA Astrophysics Data System (ADS)

    Nedosekova, I. L.

    2007-04-01

    Carbonatites that are hosted in metamorphosed ultramafic massifs in the roof of miaskite intrusions of the Il’mensky-Vishnevogorsky alkaline complex are considered. Carbonatites have been revealed in the Buldym, Khaldikha, Spirikha, and Kagan massifs. The geological setting, structure of carbonatite bodies, distribution of accessory rare-metal mineralization, typomorphism of rock-forming minerals, geochemistry, and Sr and Nd isotopic compositions are discussed. Dolomite-calcite carbonatites hosted in ultramafic rocks contain tetraferriphlogopite, richterite, accessory zircon, apatite, magnetite, ilmenite, pyrrhotite, pyrite, and pyrochlore. According to geothermometric data and the composition of rock-forming minerals, the dolomite-calcite carbonatites were formed under K-feldspar-calcite, albite-calcite, and amphibole-dolomite-calcite facies conditions at 575-300°C. The Buldym pyrochlore deposit is related to carbonatites of these facies. In addition, dolomite carbonatites with accessory Nb and REE mineralization (monazite, aeschynite, allanite, REE-pyrochlore, and columbite) are hosted in ultramafic massifs. The dolomite carbonatites were formed under chlorite-sericite-ankerite facies conditions at 300-200°C. The Spirikha REE deposit is related to dolomite carbonatite and alkaline metasomatic rocks. It has been established that carbonatites hosted in ultramafic rocks are characterized by high Sr, Ba, and LREE contents and variable Nb, Zr, Ti, V, and Th contents similar to the geochemical attributes of calcio-and magnesiocarbonatites. The low initial 87Sr/86Sr = 0.7044-0.7045 and ɛNd ranging from 0.65 to -3.3 testify to their derivation from a deep mantle source of EM1 type.

  12. Bacterial Degradation of Cyanide and Its Metal Complexes under Alkaline Conditions

    PubMed Central

    Luque-Almagro, Víctor M.; Huertas, María-J.; Martínez-Luque, Manuel; Moreno-Vivián, Conrado; Roldán, M. Dolores; García-Gil, L. Jesús; Castillo, Francisco; Blasco, Rafael

    2005-01-01

    A bacterial strain able to use cyanide as the sole nitrogen source under alkaline conditions has been isolated. The bacterium was classified as Pseudomonas pseudoalcaligenes by comparison of its 16S RNA gene sequence to those of existing strains and deposited in the Colección Española de Cultivos Tipo (Spanish Type Culture Collection) as strain CECT5344. Cyanide consumption is an assimilative process, since (i) bacterial growth was concomitant and proportional to cyanide degradation and (ii) the bacterium stoichiometrically converted cyanide into ammonium in the presence of l-methionine-d,l-sulfoximine, a glutamine synthetase inhibitor. The bacterium was able to grow in alkaline media, up to an initial pH of 11.5, and tolerated free cyanide in concentrations of up to 30 mM, which makes it a good candidate for the biological treatment of cyanide-contaminated residues. Both acetate and d,l-malate were suitable carbon sources for cyanotrophic growth, but no growth was detected in media with cyanide as the sole carbon source. In addition to cyanide, P. pseudoalcaligenes CECT5344 used other nitrogen sources, namely ammonium, nitrate, cyanate, cyanoacetamide, nitroferricyanide (nitroprusside), and a variety of cyanide-metal complexes. Cyanide and ammonium were assimilated simultaneously, whereas cyanide strongly inhibited nitrate and nitrite assimilation. Cyanase activity was induced during growth with cyanide or cyanate, but not with ammonium or nitrate as the nitrogen source. This result suggests that cyanate could be an intermediate in the cyanide degradation pathway, but alternative routes cannot be excluded. PMID:15691951

  13. Petrogenesis of the Sabongari alkaline complex, cameroon line (central Africa): Preliminary petrological and geochemical constraints

    NASA Astrophysics Data System (ADS)

    Njonfang, Emmanuel; Tchoneng, Gilbert Tchuenté; Cozzupoli, Domenico; Lucci, Federico

    2013-07-01

    The petrography, mineral chemistry and geochemical features of the Sabongari alkaline complex are presented and discussed in this paper with the aim of constraining its petrogenesis and comparing it with other alkaline complexes of the Cameroon Line. The complex is mainly made up of felsic rocks: (i) granites predominate and include pyroxene-amphibole (the most abundant), amphibole-biotite, biotite and pyroxene types; (ii) syenites are subordinate and comprise amphibole-pyroxene and amphibole-biotite quartz syenites; (iii) pyroxene-amphibole-biotite trachyte and (iv) relatively abundant rhyolite. The minor basic and intermediate terms associated with felsic rocks consist of basanites, microdiorite and monzodioites. Two groups of pyroxene bearing rocks are distinguished: a basanite-trachyte-granite (Group 1) bimodal series (SiO2 gap: 44 and 63 wt.%) and a basanite-microdiorite-monzodiorite-syenite-granite (Group 2) less pronounced bimodal series (reduced SiO2 gap: 56-67 wt.%). Both are metaluminous to peralkaline whereas felsic rocks bare of pyroxene (Group 3) are metaluminous to peraluminous. The Group 1 basanite is SiO2-undersaturated (modal analcite in the groundmass and 11.04 wt.% normative nepheline); its Ni (240 ppm) and Cr (450 ppm) contents, near mantle values, indicate its most primitive character. The Group 2 basanite is rather slightly SiO2-saturated (1.56 wt.% normative hypersthene), a marker of its high crustal contamination (low Nb/Y-high Rb/Y). The La/Yb and Gd/Yb values of both basanites (1: 19.47 and 2.92; 2: 9.09 and 2.23) suggest their common parental magma composition, and their crystallization through two episodes of partial melting (2% and 3% respectively) of a lherzolite mantle source with <4% residual garnet. The effects of crustal contamination were selectively felt in the values of HFSE/LREE, LREE/LILE and LREE/HFSE ratios, known as indicators. Similar features have been recently obtained in the felsic lavas of the Cameroon Volcanic Line.

  14. Magnetotelluric investigation of the Alnö alkaline and carbonatite ring complex, central Sweden

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Andersson, Magnus; Garcia Juanatey, Maria A.; Shan, Chunling; Malehmir, Alireza; Pedersen, Laust B.

    2014-05-01

    Alnö complex, 553-590 Ma, located in central Sweden, is one of the largest of few known alkaline and carbonatite ring intrusions in the world. The complex primarily consists of alkaline silicate rocks (ijolite, nepheline-syenite and pyroxenite) and a wide range of carbonatite dykes with different compositions (e.g., sövite). To better understand the intrusion mechanism(s) and the deeper structure of the intrusion, three high-resolution reflection seismic, gravity and magnetic profiles, crossing the main intrusion, were acquired in winter 2010. Together with these, petrophysical measurements on various rock samples have also been carried out. These data not only successfully showed the lateral extension of the intrusion at depth but also suggested a solidified saucer-shaped magma chamber at about 3 km depth that is associated with caldera-related ring-type fault systems. To further elucidate these interpretations, magnetotelluric (MT) data were acquired in summer 2013. The MT data were measured at 34 stations across the intrusion and designed so that a 3D conductivity model can be obtained. Most of the sites are located along the seismic profiles, while the rest is distributed over the intrusion area, to provide lateral and off-profile information. The time series were recorded with four broadband MT instruments simultaneously. The used sampling rates were 1000 Hz (two hours after midnight) and 20 Hz (a full day). The collected MT data are highly influenced by noise from cultural sources. Luckily, higher frequencies are less influenced providing a good coverage of the interest depth of about 5 km. Therefore, the data processing and analysis focused solely on the high frequency data. To decrease the effect of noise, the best quality site in one day was chosen for remote referencing the other three. Even if the sites were only 500 to 1000 m apart, better results were obtained, indicating very localized noise sources in the area. The strike analysis of the obtained

  15. Ore metal redistribution by hydrocarbon-brine and hydrocarbon-halide melt phases, North Range footwall of the Sudbury Igneous Complex, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Hanley, J. J.; Mungall, J. E.; Pettke, T.; Spooner, E. T. C.; Bray, C. J.

    2005-11-01

    We report methane-dominant hydrocarbon (fluid) inclusions (CH4±C2H6-C2H2, C3H8) coexisting with primary brine inclusions and secondary halide melt (solid NaCl) inclusions in Au-Pt-rich quartz-sulfide-epidote alteration veins associated with the footwall-style Cu-PGE (platinum-group element)-Au deposits at the Fraser Mine (North Range of the Sudbury Igneous Complex). Evidence for coentrapment of immiscible hydrocarbon-brine, and hydrocarbon-halide melt mixtures is demonstrated. A primary CH4-brine assemblage was trapped during quartz growth at relatively low T (min. T trapping˜145-315°C) and P (max. P trapping˜500 bar), prior to the crystallization of sulfide minerals in the veins. Secondary inclusions contain solid halite and a mixture of CH4, C2H6-C2H2 and C3H8 and were trapped at a minimum T of ˜710°C. The halite inclusions may represent halide melt that exsolved from crystallizing sulfide ores that texturally postdate (by replacement) early alteration quartz hosting the primary, lower T brine-CH4 assemblage. Laser ablation ICP-MS analyses show that the brine, hydrocarbon and halide melt inclusions contain significant concentrations of Cu (0.1-1 wt% range), Au, Bi, Ag and Pt (all 0.1-10 ppm range). Cu:Pt and Cu:Au ratios in the inclusions are significantly (up to 4 log units) lower than in the host alteration veins and adjacent massive sulfide ore veins, suggesting either (1) early Cu loss from the volatiles by chalcopyrite precipitation or (2) enhanced Au and Pt solubilities relative to Cu at the temperatures of entrapment. Concentration ratios between coexisting brine and CH4 inclusions [C^{elem}_{brine}/C^{elem}_{CH4}] are lower for Cu, Au, Bi and Ag than for other elements (Na, Ca, Fe, Mn, Zn, Pb) indicating that during interaction with the brine, the hydrocarbon phase was enriched in ore metals. The high concentrations of ore metals in hydrocarbon, brine and halide melt phases confirm that both aqueous and non-aqueous volatiles were carriers of

  16. Mercury(II) Complex Formation With Glutathione in Alkaline Aqueous Solution

    SciTech Connect

    Mah, V.; Jalilehvand, F.

    2009-05-19

    The structure and speciation of the complexes formed between mercury(II) ions and glutathione (GSH = L-glutamyl-L-cysteinyl-glycine) have been studied for a series of alkaline aqueous solutions (C{sub Hg{sup 2+}} {approx} 18 mmol dm{sup -3} and C{sub GSH} = 40-200 mmol dm{sup -3} at pH {approx} 10.5) by means of extended X-ray absorption fine structure (EXAFS) and {sup 199}Hg NMR spectroscopy at ambient temperature. The dominant complexes are [Hg(GS){sub 2}]{sup 4-} and [Hg(GS){sub 3}]{sup 7-}, with mean Hg-S bond distances of 2.32(1) and 2.42(2) {angstrom} observed in digonal and trigonal Hg-S coordination, respectively. The proportions of the Hg{sup 2+}-glutathione complexes were evaluated by fitting linear combinations of model EXAFS oscillations representing each species to the experimental EXAFS spectra. The [Hg(GS){sub 4}]{sup 10-} complex, with four sulfur atoms coordinated at a mean Hg-S bond distance of 2.52(2) {angstrom}, is present in minor amounts (<30%) in solutions containing a large excess of glutathione (C{sub GSH} {ge} 160 mmol dm{sup -3}). Comparable alkaline mercury(II) cysteine (H{sub 2}Cys) solutions were also investigated and a reduced tendency to form higher complexes was observed, because the deprotonated amino group of Cys{sup 2-} allows the stable [Hg(S,N-Cys){sub 2}]{sup 2-} chelate to form. The effect of temperature on the distribution of the Hg{sup 2+}-glutathione complexes was studied by comparing the EXAFS spectra at ambient temperature and at 25 K of a series of glycerol/water (33/67, v/v) frozen glasses with and C{sub Hg{sup 2+}} {approx} 7 mmol dm{sup -3} and C{sub GSH} = 16-81 mmol dm{sup -3}. Complexes with high Hg-S coordination numbers, [Hg(GS){sub 3}]{sup 7-} and [Hg(GS){sub 4}]{sup 10-}, became strongly favored when just a moderate excess of glutathione (C{sub GSH} {ge} 28 mmol dm{sup -3}) was used in the glassy samples, as expected for a stepwise exothermic bond formation. Addition of glycerol had no effect on the Hg

  17. The Temporal Relationship Between Alkaline and Tholeiitic Magmatism in the Paraná-Etendeka Igneous Province: ID-TIMS U-Pb Ages of the José Fernandes Gabbro and Dykes of the Ponta Grossa Arch, Brazil

    NASA Astrophysics Data System (ADS)

    de Almeida, V. V.; Heaman, L. M.; Shaulis, B.; Janasi, V. A.; Faleiros, F. M.

    2015-12-01

    The Ponta Grossa Arch (PGA) region in S-SE Brazil hosts prominent NW-oriented lineaments with hundreds of tholeiitic dykes of the Ponta Grossa Dyke Swarm (PGDS) and also alkaline intrusions concentrated between the Guapiara and São Jerônimo-Curiúva lineaments. Many of these intrusions lack more robust geochronological data; the alkaline intrusions appear to be both coeval with (e.g. Jacupiranga, Juquiá with ~130 Ma) and much younger than (e.g. Tunas, Cananéia with ~85 Ma) the adjacent Paraná basaltic lavas. We present in this work the first ID-TIMS U-Pb baddeleyite-zircon ages for diabase dykes of the Guapiara Lineament and for an alkaline intrusion (José Fernandes Gabbro) in order to determine more precisely the space-time relation between alkaline and tholeiitic magmatism in the PGA. The dated diabase dykes show high TiO2 (up to 4.5 wt%) and variable Sr (405-890 ppm). Baddeleyite-zircon concordia ages are 130.3 ± 0.5 Ma (all uncertainties reported at 2σ) and 131.3 ± 0.7 Ma, within the range of previously reported step-heating 40Ar/39Ar ages (133.1 ± 0.5 to 130.8 ± 0.4 Ma), confirming a good coherency between crystallization and cooling ages. Three distinct samples of the José Fernandes Gabbro were investigated (melagabbro, banded gabbro and quartz monzogabbro). Preliminary baddeleyite U-Pb ages obtained for a crust-contaminated quartz monzogabbro (52-56% SiO2; ~4% K2O; δ18O= +6.7 to +7.5‰; eNd(T)= -10) yielded a weighted mean 206Pb/238U data of 133.56 ± 0.31 Ma as the age for the intrusion. The age is about 2 m.y. older than the U-Pb ages obtained for the diabase dykes of the PGA. FAPESP proc. 2012/06082-6; CNPq 202043/2014-2

  18. Late Triassic alkaline complex in Sulu UHP terrane: Implications for post-collisional magmatism along the continental subduction zone

    NASA Astrophysics Data System (ADS)

    Xu, H.; Song, Y.; Liu, Q.

    2014-12-01

    In order to insight into crust-mantle interaction triggered by partial melting of the subudcted continental crust during its exhumation, we carried out a combined study on Shidao alkaline complex in the Sulu ultrahigh pressure (UHP) terrane. The alkaline complex is composed of shoshonitic to ultrapotassic gabbro, pyroxene syenite, amphibole syenite, quartz syenite, and granite. Field researches suggest that the mafic rocks are earlier than the felsic ones in sequence. LA-ICPMS zircon U-Pb dating on them gives Late Triassic ages of 214 ± 2 to 200 ± 3 Ma from mafic to felsic rocks. These ages are a bit younger than Late Triassic ages for partial melting of the Sulu UHP terrane during exhumation, indicating syn-exhumation magmatism during continental collision. The alkaline rocks have wide ranges of SiO2 (49.7 - 76.7 wt.%), MgO (8.25 - 0.03 wt.%),total Fe2O3 (9.23 - 0.47 wt.%), CaO (8.39 - 0.39 wt.%), Ni (126.0 - 0.07 ppm), and Cr (182.0 - 0.45 ppm) contents. Other major oxides are regularly changed with SiO2. The alkaline rocks have characteristics of arc-like patterns in the trace element distribution, e.g., enrichment of LREE and LILE (Rb, Ba, Th and U), depletion of HFSE (Nb, Ta, P and Ti), and positive Pb anomalies. From the mafic to felsic rocks, (La/Yb)N ratios and contents of the total REE, Sr and Ba are decreased but Rb contents are increased. The alkaline rocks also display features of A2-type granitoids, suggesting a post-collisional magmatism. They have high initial 87Sr/86Sr ratios (0.70575 and 0.70927) and negative ɛNd(t) values (-18.6 to -15.0) for whole-rock. The homogeneous initial 87Sr/86Sr ratios and ɛNd(t) values of the alkaline rocks are almost unchanged with SiO2 and MgO contents, suggesting a fractional crystallization (FC) process from a same parental magma. Our studies suggest a series of crust-mantle interaction processes along the continental subduction interface as follows: (1) melts from partial melting of the subducted continental

  19. High crystallization temperatures indicated for igneous rocks from tranquillity base.

    PubMed

    Skinner, B J

    1970-01-30

    Complex intergrowths of troilite (FeS) and iron in the igneous rocks from Tranquillity Base contain 8.4 percent native iron by volume. The intergrowths were derived from an initially homogeneous sulfide liquid that separated immiscibly from the magma at 1140 degrees C or above. Textures show that the sulfide liquid formed late in the crystallization and cooling history of the igneous rocks and after the major ilmenite and pyroxene had formed.

  20. Triazenide complexes of the heavier alkaline earths: synthesis, characterization, and suitability for hydroamination catalysis.

    PubMed

    Barrett, Anthony G M; Crimmin, Mark R; Hill, Michael S; Hitchcock, Peter B; Kociok-Köhn, Gabriele; Procopiou, Panayiotis A

    2008-08-18

    A series of triazenide complexes of the heavier alkaline earths, Ca, Sr and Ba, have been synthesized by either protonolysis or salt metathesis routes. Although complexes of the form [{Ar 2N 3}M{N(SiMe 3) 2}(THF) n ] (M = Ca, n = 2; M = Sr, n = 3; Ar = 2,6-diisopropylphenyl) and [{Ar 2N 3}Ca(I)(THF) 2] 2 could be isolated and characterized by X-ray crystallography, solution studies revealed the propensity of these species to undergo Schlenk-like redistribution with the formation of [{Ar 2N 3} 2M(THF) n ] (M = Ca, n = 1; M = Sr, n = 2). The latter compounds have been synthesized independently. In the case of the large barium dication, attempts to synthesize the heaviest analogue of the series, [{Ar 2N 3} 2Ba(THF) n ], failed and led instead to the isolation of the potassium barate complex [K{Ar 2N 3}Ba{N(SiMe 3) 2} 2(THF) 4]. Single crystal X-ray diffraction studies demonstrated that, although in all the aforementioned cases the triazenide ligand binds to the electrophilic group 2 metal centers via symmetrical kappa (2)- N, N-chelates, in the latter compound an unprecedented bridging mode is observed in which the triazenide ligand coordinates through both terminal and internal nitrogen centers. A series of density-functional theory computational experiments have been undertaken to assist in our understanding of this phenomenon. In further experiments, the calcium and strontium amide derivatives [{Ar 2N 3}M{N(SiMe 3) 2}(THF) n ] (M = Ca, n = 2; M = Sr, n = 3) proved to be catalytically active for the intramolecular hydroamination of 1-amino-2,2-diphenylpent-4-ene to form 2-methyl-4,4-diphenylpyrrolidine, with the calcium species demonstrating a higher turnover number than the strontium analogue ( 2a, TOF = 500 h (-1); 2b, TOF = 75 h (-1)). In these instances, because of ambiguities in the structural charcterization of the precatalyst in solution, such quantification holds little value and detailed catalytic studies have not been conducted. PMID:18620384

  1. Tertiary alkaline Roztoky Intrusive Complex, České středohoří Mts., Czech Republic: petrogenetic characteristics

    NASA Astrophysics Data System (ADS)

    Skála, Roman; Ulrych, Jaromír; Ackerman, Lukáš; Jelínek, Emil; Dostál, Jaroslav; Hegner, Ernst; Řanda, Zdeněk

    2014-07-01

    The České středohoří Mts. is the dominant volcanic center of the Ohře (Eger) rift zone. It hosts the Roztoky Intrusive Complex (RIC), which is made up of a caldera vent and intrusions of 33-28-Ma-old hypabyssal bodies of essexite-monzodiorite-sodalite syenite series accompanied by a radially oriented 30-25-Ma-old dike swarm comprising about 1,000 dikes. The hypabyssal rocks are mildly alkaline mostly foid-bearing types of mafic to intermediate compositions. The dike swarm consists of chemically mildly alkaline and rare strongly alkaline rocks (tinguaites). The geochemical signatures of the mildly alkaline hypabyssal and associated dike rocks of the RIC are consistent with HIMU mantle sources and contributions from lithospheric mantle. The compositional variations of essexite and monzodiorite can be best explained by fractional crystallization of parent magma without significant contributions of crustal material. On the other hand, the composition of monzosyenite, leuco-monzodiorite and sodalite syenite reflects fractional crystallization coupled with variable degrees of crustal assimilation. It is suggested that the parent magmas in the Ohře rift were produced by an adiabatic decompression melting of ambient upper mantle in response to lithospheric extension associated with the Alpine Orogeny.

  2. Remote mineralogic and lithologic mapping of the Ice River alkaline complex, British Columbia, Canada, using AVIRIS data

    USGS Publications Warehouse

    Bowers, T.L.; Rowan, L.C.

    1996-01-01

    The Ice River Alkaline Complex is a late Paleozoic intrusion of mafic alkaline rocks, syenite, and carbonatite exposed in southeastern British Columbia, Canada. The complex intrudes Cambrian and Ordovician shales, slates, and limestones of the Chancellor and Ottertail Formations and the McKay Group. We examined the alkaline complex and adjacent country rocks using Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) data. The data were first calibrated to relative reflectance and then used to spectrally map mineralogies in the study area by using a linear spectral unmixing program. This technique models each pixel spectrum in an AVIRIS image as a linear combination of unique endmember spectra. We selected endmember spectra from well-exposed and spectrally distinct mineralogic units, vegetation, and snow. Four of the endmembers reflect mineralogic variations within the McKay group in the study area, and may represent lateral and vertical variations of sedimentary or metamorphic facies. Otherwise, the resultant spatial distribution of endmembers shows generally close agreement with the published geologic map, although, in several places, our image-map is more accurate than the published map.

  3. Primary alkaline magmas associated with the Quaternary Alligator Lake volcanic complex, Yukon Territory, Canada

    NASA Astrophysics Data System (ADS)

    Eiché, G. E.; Francis, D. M.; Ludden, J. N.

    1987-02-01

    The Alligator Lake complex is a Quaternary alkaline volcanic center located in the southern Yukon Territory of Canada. It comprises two cinder cones which cap a shield consisting of five distinct lava units of basaltic composition. Units 2 and 3 of this shield are primitive olivine-phyric lavas (13.5 19.5 cation % Mg) which host abundant spinel lherzolite xenoliths, megacrysts, and granitoid fragments. Although the two lava types have erupted coevally from adjacent vents and are petrographically similar, they are chemically distinct. Unit 2 lavas have considerably higher abundances of LREE, LILE, and Fe, but lower HREE, Y, Ca, Si, and Al relative to unit 3 lavas. The 87Sr/86Sr and 143Nd/144Nd isotopic ratios of these two units are, however, indistinguishable. The differences between these two lava types cannot be explained in terms of low pressure olivine fractionation, and the low concentrations of Sr, Nb, P, and Ti in the granitoid xenoliths relative to the primitive lavas discounts differential crustal contamination. The abundance of spinel lherzolite xenoliths and the high Mg contents in the lavas of both units indicates that their compositional differences originated in the upper mantle. The Al and Si systematics of these lavas suggests that, compared to unit 3 magmas, the unit 2 magmas may have segregated at greater depths from a garnet lherzolite mantle. The identical isotopic composition and similar ratios of highly incompatible elements in these two lava units argues against their differences being a consequence of random metasomatism or mantle heterogeneity. The lower Y and HREE contents but higher concentrations of incompatible elements in the unit 2 lavas relative to unit 3 can be most simply explained by differential partial melting of similar garnet-bearing sources. The unit 2 magmas thus appear to have been generated by smaller degrees of melting at a greater depth than the unit 3 magmas. The contemporaneous eruption of two distinct but

  4. Origins of Igneous Layering

    NASA Astrophysics Data System (ADS)

    Marsh, Bruce

    Anyone who has ever seen a photo of a layered intrusion, let alone visited one first hand, or even seen a thin section from one, cannot help but be impressed by the stunning record of crystal growth and deposition. Such bodies stand as majestic monuments of undeniable evidence that intricate magmatic processes exist, processes that couple crystallization, convection, and crystal sorting to form rocks so highly ordered and beautiful that they are a wonder to behold. These are the altars to which petrologists must carry their conceived petrologic processes for approval.Although significant in number, the best layered intrusions seem to be found almost always in remote places. Their names, Bushveld, Muskox, Kiglapait, Stillwater, Duke Island, Skaergaard, Rhum, ring through igneous petrology almost as historic military battles (Saratoga, Antietam, Bull Run, Manassas, Gettysburg) do through American history. People who have worked on such bodies are almost folk heros: Wager, Deer, Brown, Jackson, Hess, Irvine, McBirney, Morse; these names are petrologic household words. Yet with all this fanfare and reverence, layered instrusions are nearly thought of as period pieces, extreme examples of what can happen, but not generally what does. This is now all changing with the increasing realization that these bodies are perhaps highly representative of all magmatic bodies. They are simply more dynamically complete, containing more of the full range of interactions, and of course, exposing a more complete record. They are one end of a spectrum containing lava flows, lava lakes, large sills, plutons, and layered intrusions. This book uniquely covers this range with an abundance of first-hand field observations and a good dose of process conceptualization, magma physics, and crystal growth kinetics.

  5. Magmatism and fenitization in the Cretaceous potassium-alkaline-carbonatitic complex of Ipanema São Paulo State, Brazil

    NASA Astrophysics Data System (ADS)

    Guarino, Vincenza; Azzone, Rogério Guitarrari; Brotzu, Pietro; de Barros Gomes, Celso; Melluso, Leone; Morbidelli, Lucio; Ruberti, Excelso; Tassinari, Colombo Celso Gaeta; Brilli, Mauro

    2012-01-01

    The Ipanema alkaline-carbonatitic complex is part of the Meso-Cenozoic alkaline magmatism located within the southeastern part of the Brazilian Platform. Drill-core and field sampling have indicated the occurrence of glimmerites, with subordinate shonkinites (mela-syenites), clinopyroxene-bearing glimmerites, diorites and syenites. The glimmerites are cross-cut by lamprophyric dykes and calciocarbonatites. Fenitization has deeply affected the country rocks, originating dioritic and syenitic rocks. The Ipanema rocks show a distinct potassic affinity. The initial Sr-Nd- isotopic composition of the Ipanema rocks (87Sr/86Sr = 0.70661-0.70754 and 143Nd/144Nd = 0.51169-0.51181) is similar to that of tholeiitic and potassium-rich-alkaline rocks of the Eastern Paraguay. Stable isotope data for the Ipanema calciocarbonatite suggest interaction with fluids at temperatures typical of hydrothermal stages, as hypothesized for other carbonatite complexes from southeastern Brazil. The chemical differences between the lamprophyre, glimmerites, carbonatites, apatitites and magnetitites, and the absence of marked REE enrichment in the evolved lithologies, all indicate that fractional crystallization and accumulus of liquidus phases in a magma reservoir, likely coupled with liquid immiscibility processes, may have played an important role in the genesis of the Ipanema rocks.

  6. Mesozoic igneous intrusions in New England and Quebec: Implications from lead (Pb) isotopes on petrogenesis and mantle sources (Ascutney Mountain, Vermont; Mont Saint Hilaire, Quebec; Pliny Complex, New Hampshire)

    SciTech Connect

    Schucker, D.E.

    1992-01-01

    Lead isotopes are used to study Mesozoic intrusions from New England and Quebec, specifically the igneous complexes of Ascutney Mountain (Vermont), Mont Saint Hilaire (Quebec), and Pliny (New Hampshire). The main objectives are to address the: (1) petrogenesis of specific complexes using Pb isotopes along with previous results; and (2) sources of parental magmas in the context of a possible plume source for the Cretaceous intrusions and New England Seamounts. Analytical procedures for Pb and U are also described in detail. For each of the three complexes, significant variation in apparent initial [sup 208]Pb/[sup 204]Pb, [sup 207]Pb/[sup 204]Pb, and [sup 206]Pb/[sup 204]Pb ratios are observed. These variations reflect crustal contamination and local country rocks are isotopically suitable contaminants. Contamination lowers the Pb isotopic ratios of the modified magmas. The Pb ratios of the parental magmas are constrained by defining trends resulting from crustal contamination. At the Ascutney complex, granites appear to be uniform at the time of formation based on feldspar results. Granite whole rocks exhibit open system U-Pb behavior which is attributed to significant recent U loss (of up to 38%). Both local schists and gneisses are important contaminants with generally <25% contamination. Significant isotopic variations are apparent at Mont Saint Hilaire where rock-feldspar variations are apparently not in isotopic equilibrium. Feldspars reflect magmatic values and indicate crustal contamination of a parental magma for the Hilaire complex. A limited data set for the Pliny complex suggests a parental magma. The Pb results support a common mantle source for the Cretaceous continental intrusions (Ascutney and Mont Saint Hilaire) and the New England Seamounts. They imply magma from a sublithospheric mantle-plume, and that magmas ascended with little or no lithospheric interaction. The magma source for the Jurassic Pliny complex appears to be different.

  7. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  8. Ionium dating of igneous rocks.

    PubMed

    Kigoshi, K

    1967-05-19

    Local fractionation of uranium and thorium, between minerals within a sample of igneous rock at the time of crystallization, makes it possible to date its solidification by use of ionium and uranium. Results on samples of granite, pumice, and lava suggest that this method of dating is reliable.

  9. Self-glazing ceramic tiles based on acidic igneous glasses

    SciTech Connect

    Merkin, A.P.; Nanazashvili, V.I.

    1988-07-01

    A technology was derived to produce self-glazing ceramic tiles based on single-component systems of acidic igneous (volcanic) glasses. A weakly alkaline solution of NaOH or KOH was used as the sealing water to activate the sintering process. Tests conducted on the self-glazing ceramic tiles showed that their water absorption amounts to 2.5-8%, linear shrinkage is 3.2-7%, and frost resistance amounts to 35-70 cycles. The application of acidic igneous glasses as the main raw material for the production of ceramic facing tiles made it possible to widen the raw material base and simplify the technology for fabricating ceramic facing tiles at lower cost. The use of waste products when processing perlite-bearing rocks, when carrying out mining and cutting of tuffs, slags, and tuff breccia for recovering cut materials was recommended.

  10. Layered intrusions as transitional chambers of magmatic systems of large igneous provinces: Evidence from the eastern Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii; Bogina, Maria; Chistyakov, Alexey

    2013-04-01

    Large igneous provinces are usually formed by lava plateaus, dyke swarms, and intrusions. The rocks of these units show wide variations in composition. However, it is unclear which mechanisms and where produced such a compositional diversity. It is also important to understand whether these complexes are comagmatic or not? For this purpose, we studied the above mentioned volcanic and plutonic components of two Paleoproterozoic large igneous provinces in the eastern Fennoscandian Shield: (1) early Paleoproterozoic (2.5-2.35 Ga) province made up of siliceous high-Mg volcanics and layered dunite-harzburgite-bronzitite-norite-gabbronorite-anorthosite (Monchegorsky, Fedorovo-Pansky, Burakovsky, etc.) plutonic complexes, and (2) middle Paleoproterozoic (2.35-1.9 Ga) province made up of high- and low-Ti alkaline and tholeiite basalts and wehrlite-clinopyroxenite-gabbro-alkaline gabbros (Elet'ozero, Gremyakha-Vyrmes) plutonic complexes. It is known that layered intrusions were formed by replenishment of solidifying chambers accompanied by magma differentiation and contamination. Geochemical and isotope data showed that all rocks of these complexes are related in different degree and often close in composition to volcanics in lava plateaus, and can be considered as comagmatic in origin. So, we suggest that these layered complexes represent long-lived magmatic centers - transitional chambers - where melts derived from magma-generation zones were accumulated, subjected to crystallization differentiation, mixed with evolved and fresh magmas, and contaminated. It is highly possible that some batches of evolved magmas arrived to the surface, forming lava successions of different composition. This is consistent with the fact that all volcanics that compose the plateaus are represented by evolved derivatives that presumably formed in transitional chamber, whereas primary melts are practically missing.

  11. Chabazite and dolomite formation in a dolocrete profile: An example of a complex alkaline paragenesis in Lanzarote, Canary Islands

    NASA Astrophysics Data System (ADS)

    Alonso-Zarza, Ana M.; Bustamante, Leticia; Huerta, Pedro; Rodríguez-Berriguete, Álvaro; Huertas, María José

    2016-05-01

    This paper studies the weathering and soil formation processes operating on detrital sediments containing alkaline volcanic rock fragments of the Mirador del Río dolocrete profile. The profile consists of a lower horizon of removilised weathered basalts, an intermediate red sandy mudstones horizon with irregular carbonate layers and a topmost horizon of amalgamated carbonate layers with root traces. Formation occurred in arid to semiarid climates, giving place to a complex mineralogical association, including Mg-carbonates and chabazite, rarely described in cal/dolocretes profiles. Initial vadose weathering processes occurred in the basalts and in directly overlying detrital sediments, producing (Stage 1) red-smectites and dolomicrite. Dominant phreatic (Stage 2) conditions allowed precipitation of coarse-zoned dolomite and chabazite filling porosities. In Stages 3 and 4, mostly pedogenic, biogenic processes played an important role in dolomite and calcite accumulation in the profile. Overall evolution of the profile and its mineralogical association involved initial processes dominated by alteration of host rock, to provide silica and Mg-rich alkaline waters, suitable for chabazite and dolomite formation, without a previous carbonate phase. Dolomite formed both abiogenically and biogenically, but without a previous carbonate precursor and in the absence of evaporites. Dominance of calcite towards the profile top is the result of Mg/Ca decrease in the interstitial meteoric waters due to decreased supply of Mg from weathering, and increased supply of Ca in aeolian dust. Meteoric origin of the water is confirmed by C and O isotope values, which also indicate lack of deep sourced CO2. The dolocrete studied and its complex mineral association reveal the complex interactions that occur at surface during weathering and pedogenesis of basalt-sourced rocks.

  12. Order of Activity of Nitrogen, Iron Oxide, and FeNx Complexes towards Oxygen Reduction in Alkaline Medium.

    PubMed

    Zhu, Yansong; Zhang, Bingsen; Wang, Da-Wei; Su, Dang Sheng

    2015-12-01

    In alkaline medium, it seems that both metal-free and iron-containing carbon-based catalysts, such as nitrogen-doped nanocarbon materials, FeOx -doped carbon, and Fe/N/C catalysts, are active for the oxygen reduction reaction (ORR). However, the order of activity of these different active compositions has not been clearly determined. Herein, we synthesized nitrogen-doped carbon black (NCB), Fe3 O4 /CB, Fe3 O4 /NCB, and FeN4 /CB. Through the systematic study of the ORR catalytic activity of these four catalysts in alkaline solution, we confirmed the difference in the catalytic activity and catalytic mechanism for nitrogen, iron oxides, and Fe-N complexes, respectively. In metal-free NCB, nitrogen can improve the ORR catalytic activity with a four-electron pathway. Fe3 O4 /CB catalyst did not exhibit improved activity over that of NCB owing to the poor conductivity and spinel structure of Fe3 O4 . However, FeN4 coordination compounds as the active sites showed excellent ORR catalytic activity.

  13. Igneous Graphite in Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.

  14. Electronic structures and second hyperpolarizabilities of alkaline earth metal complexes end-capped with NA2 (A = H, Li, Na).

    PubMed

    Banerjee, Paramita; Nandi, Prasanta K

    2016-05-14

    The ground state structures and NLO properties of a number of alkaline earth metal complexes end-capped with NA2 groups (A = H, Li, Na) are calculated by employing the CAM-B3LYP, wB97XD and B2PLYP functionals along with MP2 and CCSD(T) for 6-311++G(d,p), 6-311++G(3df,3pd), aug-cc-pVTZ, aug-pc-2 and Hypol basis sets. The complexes are found to be significantly stable. The magnitude of second hyperpolarizability enhances appreciably with increase in the number of magnesium and calcium atoms in the chain, which has been indicated by the power law dependence γ = a + bn(c) with c values ranging from 2.4-4.3 for Mg and 2.4-3.7 for Ca complexes, respectively. The largest second-hyperpolarizability (10(9) au) is obtained for the complex Ca7(NNa2)2 at the CAM-B3LYP level. The two state model has been used to explain the variation of hyperpolarizabilities. PMID:27088138

  15. Aluminum in hornblende: an empirical igneous geobarometer.

    USGS Publications Warehouse

    Hammarstrom, J.M.; Zen, E.

    1986-01-01

    Electron-microprobe analyses of hornblendes from five calc-alkaline plutonic complexes representing low- and high-pressure regimes define a tightly clustered linear trend in terms of total Al (AlT) and tetrahedral Al (Aliv) contents. Data collated from the literature on calcic amphiboles from other plutonic complexes and from phase equilibrium experiments using natural rocks or synthetic analogue compositions show a similar AlT-Aliv trend and systematic pressure effects.-J.A.Z.

  16. Petrogenesis of Sierra Nevada plutons inferred from the Sr, Nd, and O isotopic signatures of mafic igneous complexes in Yosemite Valley, California

    NASA Astrophysics Data System (ADS)

    Nelson, Wendy R.; Dorais, Michael J.; Christiansen, Eric H.; Hart, Garret L.

    2013-02-01

    Mafic complexes in the central Sierra Nevada batholith record valuable geochemical information regarding the role mafic magmas play in arc magmatism and the generation of continental crust. In the intrusive suite of Yosemite Valley, major and trace element compositions of the hornblende-bearing gabbroic rocks from the Rockslides mafic complex and of the mafic dikes in the North America Wall are compositionally similar to high-alumina basalt. Of these rocks, two samples have higher Ni and Cr abundances as well as higher ɛNd values than previously recognized for the intrusive suite. Plagioclase crystals in rocks from the North America Wall and the Rockslides have prominent calcic cores and sharply defined sodic rims, a texture commonly associated with mixing of mafic and felsic magmas. In situ analyses of 87Sr/86Sr in plagioclase show no significant isotopic difference from the cores to the rims of these grains. We propose that the high 87Sr/86Sr (~0.7067) and low ɛNd (~-3.4) of bulk rocks, the homogeneity of 87Sr/86Sr in plagioclase, and the high δ18O values of bulk rocks (6.6-7.3 ‰) and zircon (Lackey et al. in J Petrol 49:1397-1426, 2008) demonstrate that continental crust was assimilated into the sublithospheric mantle-derived basaltic precursors of the mafic rocks in Yosemite Valley. Contamination (20-40 %) likely occurred in the lower crust as the magma differentiated to high-alumina basalt prior to plagioclase (and zircon) crystallization. As a consequence, the isotopic signatures recorded by whole rocks, plagioclase, and zircon do not represent the composition of the underlying lithospheric mantle. We conclude that the mafic and associated felsic members of the intrusive suite of Yosemite Valley represent 60-80 % new additions to the crust and include significant quantities of recycled ancient crust.

  17. Chemical and isotopic relationship of mafic and felsic magmas in a sub-volcanic reservoir: The Guadalupe Igneous Complex (GIC), Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Ratschbacher, B. C.; Paterson, S. R.; Putirka, K. D.

    2013-12-01

    It is commonly believed that the interaction of mafic and felsic melts in the form of mixing/mingling as well as their genetic link in the form of fractionation play an important role in the formation of continental crust. The combination of whole rock major element content and isotopic signature, as presented in this study, is a powerful tool to identify the origin and genetic relation of mafic and felsic melts in magmatic arc settings where new material is added to the crust. The GIC is part of the Jurassic Sierran magmatic arc exposed in the Western Metamorphic Belt and contains two main units consisting of mafic (up to 9 wt. % MgO and 49 to 56 wt. % SiO2) and felsic (around 75 wt. % SiO2) rocks, which locally mingled and mixed to different proportions at a shallow emplacement level. In the lower parts of the GIC, fine-grained gabbros gradually evolve into the overlying diorite to meladiorite unit. A mingling zone separates these mafic rocks from granites, granophyres and overlying rhyolites in the upper part of the complex. Major element whole rock analyses show that the GIC is bimodal with gabbros and granitoids acting as endmembers in SiO2, MgO and CaO contents. For Al2O3, Na2O and other element oxides, the different units strongly overlap in compositions. Recent work using single grain zircon U-Pb dating found ages for both the gabbros and the felsic part of the complex of 151 Ma within uncertainty (Saleeby et al., 1989; Ernst et al., 2009, and unpublished data from this study). These ages are in agreement with Rb-Sr data from each unit, which fall on a 152×7 Ma isochron and therefore imply closed-system evolution. Major oxide data show that assimilation of the exposed surrounding host rocks is unlikely and cannot serve as an assimilant to reproduce the observed felsic compositions from the gabbroic rocks. Sri, Nd and Pb systematics show that all units except for capping granophyres and rhyolites plot close together implying a shared parental melt, which is

  18. 3D magnetotelluric modelling of the Alnö alkaline and carbonatite ring complex, central Sweden

    NASA Astrophysics Data System (ADS)

    Yan, Ping; Andersson, Magnus; Kalscheuer, Thomas; García Juanatey, María A.; Malehmir, Alireza; Shan, Chunling; Pedersen, Laust B.; Almqvist, Bjarne S. G.

    2016-06-01

    Thirty-four broadband magnetotelluric stations were deployed across the Alnö alkaline and carbonatite ring intrusion in central Sweden. The measurements were designed such that both 2D models along existing seismic profiles and a 3D model can be constructed. Alnö Island and surrounding areas are densely populated and industrialized and in order to reduce the effect of noise, the remote reference technique was utilized in time series processing. Strike and dimensionality analyses together with the induction arrows show that there is no homogeneous regional strike direction in this area. Therefore, only the determinant of the impedance tensor was used for 2D inversion whereas all elements of the impedance tensor were used for 3D inversion. Representative rock samples were collected from existing outcrops and their resistivities were measured in the laboratory to facilitate interpretation of the inversion models. The results from these measurements show that coarse-grained (sövite, white color) and fine-grained (dark color) carbonatites are the most conductive and resistive rock types, respectively. In accordance with the interpretation of the reflection seismic images, the 2D and 3D resistivity models depict the caldera-related ring-type fault system and updoming faulted and fractured systems as major 10-500 Ωm conductors, extending down to about 3 km depth. A central ~ 4000 Ωm resistive unit at about 3 km depth appears to correspond to a solidified fossil magma chamber as speculated from the reflection seismic data and earlier field geological studies.

  19. Unusual evolution of silica-under- and -oversaturated alkaline rocks in the Cenozoic Ambohimirahavavy Complex (Madagascar): Mineralogical and geochemical evidence

    NASA Astrophysics Data System (ADS)

    Estrade, Guillaume; Béziat, Didier; Salvi, Stefano; Tiepolo, Massimo; Paquette, Jean-Louis; Rakotovao, Soatsitohaina

    2014-10-01

    The almost unknown Ambohimirahavavy ring complex in the Cenozoic alkaline province of northwestern Madagascar has recently attracted considerable interest because of the discovery of important rare-metal mineralization. The complex consists of arc-shaped bodies made up of silica-under- and -oversaturated syenites and extremely evolved peralkaline granitic dykes, as well as several mafic to felsic volcanic units, including basalt, phonolite and trachyte, all of which have an alkaline affinity. Uranium-lead zircon ages of 24.2 ± 0.6 Ma and 23.5 ± 6.8 Ma have been obtained for nepheline syenites and peralkaline granitic dykes, respectively, which, together with field data and ages of neighboring complexes, support emplacement controlled by regional lithospheric structures, rather than an evolving hot spot. Whole-rock major and trace-element and Sr-Nd isotopic data for the mafic suite suggest that the parental melt of this complex was generated by low degrees of melting of a metasomatized mantle source with residual amphibole. Fractional crystallization of this alkali basaltic melt likely produced the silica-undersaturated suite. We propose that the silica-oversaturated suite evolved from the undersaturated melt after contamination of the latter by crustal material. Further evolution to peralkaline compositions in both suites is attributed mainly to plagioclase and alkali feldspar segregation. Nepheline and feldspar compositions, as well as considerations of mineral equilibria among mafic silicates and Fe-Ti oxide minerals indicate crystallization temperatures of 1000 to 700 °C and an oxygen fugacity of 0.4 to 0.8 log units below the fayalite-magnetite-quartz (FMQ) buffer at 1 kbar for the silica-undersaturated melt, and temperatures of 860 to 570 °C and an oxygen fugacity of 1.5 to 3.8 log units below FMQ for the oversaturated syenitic melt. The undersaturated melt evolved towards a more peralkaline composition. Crystallization of arfvedsonite plus aegirine

  20. Magma storage of an alkali ultramafic igneous suite from Chamberlindalen, SW Svalbard

    NASA Astrophysics Data System (ADS)

    Gołuchowska, Karolina; Barker, Abigail K.; Czerny, Jerzy; Majka, Jarosław; Manecki, Maciej; Farajewicz, Milena; Dwornik, Maciej

    2016-10-01

    An alkali mafic-ultramafic igneous suite of composite intrusions, lenses and associated greenstones are hosted by Neoproterozoic metasedimentary sequences in Chamberlindalen, Southwest Svalbard. This study focuses on the alkali igneous suite of Chamberlindalen with a view to determining the conditions of magma storage. The rocks from Chamberlindalen display cumulate textures, are highly magnesian and are classified as alkaline by the occurrence of kaersutite. They have textures that indicate cocrystallization of primary magmatic minerals such as diopside, kaersutite-ferrokaersutite and biotite-phlogopite in different proportions. The historic magma plumbing system for the alkaline cumulates has been reconstructed by thermobarometry. Diopside and kaersutite crystallization in the alkaline cumulates show a dominant level of magma storage between 30 and 50 km in the subcontinental lithospheric mantle.

  1. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  2. Mineral Detector for Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Ishikawa, S. T.; Hart, S. D.; Gulick, V. C.

    2010-12-01

    We present a Raman spectral analysis tool that uses machine learning algorithms to classify pure minerals in igneous rocks. Experiments show greater than 90% accuracy classifying a test set of pure minerals against a database of similar reference minerals using an artificial neural network. Efforts are currently underway to improve this tool for use as a mineral detector in rock samples, an important milestone toward autonomously classifying rocks based on spectral, and previous imaging work. Although pure mineral classification has been widely successful, applying the same methods to rocks is difficult because the spectra may represent a combination of multiple, and often competing, mineral signatures. In such cases some minerals may appear with more intensity than others resulting in masking of weaker minerals. Furthermore, with our particular spectrometer (852 nm excitation, ~50 micron spot size), minerals such as potassium feldspar fluoresce, both obscuring its characteristic Raman features and suppressing those of weaker minerals. For example, plagioclase and quartz, two key minerals for determining the composition of igneous rocks, are often hidden by minerals such as potassium feldspar and pyroxene, and are consequently underrepresented in the spectral analysis. These technicalities tend to skew the perceived composition of a rock from its actual composition. Despite these obstacles, an experiment involving a training set of 26 minerals (plagioclase, potassium feldspar, pyroxene, olivine, quartz) and a test set of 57 igneous rocks (basalt, gabbro, andesite, diorite, dacite, granodiorite, rhyolite, granite) shows that generalizations derived from their spectral data are consistent with expected trends: as rock composition goes from felsic to mafic there is a marked increase in the detection of minerals such as plagioclase and pyroxene along with a decrease in the detection of minerals such as quartz and potassium feldspar. The results suggest that phaneritic

  3. Log evaluation of oil-bearing igneous rocks

    SciTech Connect

    Khatchikian, A.

    1983-12-01

    The evaluation of porosity, water saturation and clay content of oilbearing igneous rocks with well logs is difficult due to the mineralogical complexity of this type of rocks. The log responses to rhyolite and rhyolite tuff; andesite, dacite and zeolite tuff; diabase and basalt have been studied from examples in western Argentina and compared with values observed in other countries. Several field examples show how these log responses can be used in a complex lithology program to make a complete evaluation.

  4. Volcanological and geochemical studies of Cambrian rift-related igneous rocks in the Western Arbuckle Mountains, southern Oklahoma

    NASA Astrophysics Data System (ADS)

    Eschberger, Amy Michelle

    The Carlton Rhyolite Group formed within a major Cambrian rift in southern Oklahoma. The rhyolites are exposed in the Wichita Mountains of southwestern Oklahoma and in the East and West Timbered Hills in the Arbuckle Mountains. My project is the first modern study of the Arbuckle rhyolites. Two thick rhyolite flows are present in the East Timbered Hills and are separated by a lacustrine volcaniclastic sequence. The nearest basement well shows a similar series of rhyolite lavas, but correlation between units in the two areas is not possible. Studies of an igneous breccia in the West Timbered Hills show it to represent a basaltic phreatomagmatic vent complex. The Arbuckle rhyolites have similar A-type geochemical compositions to those in the Wichitas and are divided into four distinct trace element groups. Late diabases in the Arbuckles show geochemical affinities to within-plate tholeiitic to alkaline basalts, similar to those documented in the Wichitas.

  5. Synthesis of a new family of ionophores based on aluminum-dipyrrin complexes (ALDIPYs) and their strong recognition of alkaline earth ions.

    PubMed

    Saikawa, Makoto; Daicho, Manami; Nakamura, Takashi; Uchida, Junji; Yamamura, Masaki; Nabeshima, Tatsuya

    2016-03-14

    Mononuclear and dinuclear aluminum-dipyrrin complexes (ALDIPYs) were synthesized as a new family of ionophores. They exhibited colorimetric and fluorometric responses to alkaline earth ions in an aqueous mixed solvent. The strong recognition was achieved via multipoint interactions with the oxygen atoms appropriately incorporated into the ligand framework. PMID:26935409

  6. Mind Over Magma: The Story of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Snyder, Don

    2004-01-01

    In the centuries that enquiring minds have studied and theorized about igneous rocks, much progress has been made, both in accumulating observations and in developing theories. Yet, writing a history of this progress is a daunting undertaking. The volume of the literature is vast and in multiple languages; the various lines of inquiry are diverse and complex; and the nomenclature is sometimes abstruse. On top of these challenges, many of its principal issues have yet to find a definitive consensus. With the exception of a few topical studies, historians of science have virtually avoided the subject. In Mind Over Magma: The Story of Igneous Petrology, Davis Young has taken on the challenge of writing a comprehensive survey of the study of igneous rocks, and the result has been a remarkable book of meticulous scholarship. Igneous petrology is a vast subject, and it is not obvious how best to organize its history. Young takes a topical approach, generally grouping together various studies by either the problem being investigated or the method of attack. These topics span the earliest times to the present, with an emphasis on recurring themes, such as the causes of magmatic diversity and the origins of the granitic rocks. The range of topics includes most of the subjects central to the field over its history. As much as is practical, topics are discussed in chronological order, and along the way, the reader is treated to biographical sketches of many of the key contributors. This organization proves effective in dealing with the multitude of concepts.

  7. Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Kamenetsky, Vadim S.; Simonetti, Antonio

    2013-10-01

    The Earth’s sole active carbonatite volcano, Oldoinyo Lengai (Tanzania), is presently erupting unique natrocarbonatite lavas that are characterized by Na- and K-bearing magmatic carbonates of nyerereite [Na2Ca(CO3)2] and gregoryite [(Na2,K2,Ca)CO3]. Contrarily, the vast majority of older, plutonic carbonatite occurrences worldwide are dominated by Ca-(calcite) or Mg-(dolomite)-rich magmatic carbonates. Consequently, this leads to the conundrum as to the composition of primary, mantle-derived carbonatite liquids. Here we report a detailed chemical investigation of melt inclusions associated with intrusive (plutonic) calcite-rich carbonatites from the ~120 Ma carbonatite complex of Oka (Canada). Melt inclusions are hosted by magnetite (Fe3O4), which crystallizes through a significant period of carbonatite melt solidification. Our results indicate mineral assemblages within the melt inclusions that are consistent with those documented in natrocarbonatite lavas. We propose therefore that derivation of alkali-enriched parental carbonatite melts has been more prevalent than that preserved in the geological record.

  8. Evidence for the alkaline nature of parental carbonatite melts at Oka complex in Canada.

    PubMed

    Chen, Wei; Kamenetsky, Vadim S; Simonetti, Antonio

    2013-01-01

    The Earth's sole active carbonatite volcano, Oldoinyo Lengai (Tanzania), is presently erupting unique natrocarbonatite lavas that are characterized by Na- and K-bearing magmatic carbonates of nyerereite [Na2Ca(CO3)2] and gregoryite [(Na2,K2,Ca)CO3]. Contrarily, the vast majority of older, plutonic carbonatite occurrences worldwide are dominated by Ca-(calcite) or Mg-(dolomite)-rich magmatic carbonates. Consequently, this leads to the conundrum as to the composition of primary, mantle-derived carbonatite liquids. Here we report a detailed chemical investigation of melt inclusions associated with intrusive (plutonic) calcite-rich carbonatites from the ~120 Ma carbonatite complex of Oka (Canada). Melt inclusions are hosted by magnetite (Fe3O4), which crystallizes through a significant period of carbonatite melt solidification. Our results indicate mineral assemblages within the melt inclusions that are consistent with those documented in natrocarbonatite lavas. We propose therefore that derivation of alkali-enriched parental carbonatite melts has been more prevalent than that preserved in the geological record. PMID:24173270

  9. Polychronous (Early Cretaceous to Palaeogene) emplacement of the Mundwara alkaline complex, Rajasthan, India: 40Ar/39Ar geochronology, petrochemistry and geodynamics

    NASA Astrophysics Data System (ADS)

    Pande, Kanchan; Cucciniello, Ciro; Sheth, Hetu; Vijayan, Anjali; Sharma, Kamal Kant; Purohit, Ritesh; Jagadeesan, K. C.; Shinde, Sapna

    2016-07-01

    The Mundwara alkaline plutonic complex (Rajasthan, north-western India) is considered a part of the Late Cretaceous-Palaeogene Deccan Traps flood basalt province, based on geochronological data (mainly 40Ar/39Ar, on whole rocks, biotite and hornblende). We have studied the petrology and mineral chemistry of some Mundwara mafic rocks containing mica and amphibole. Geothermobarometry indicates emplacement of the complex at middle to upper crustal levels. We have obtained new 40Ar/39Ar ages of 80-84 Ma on biotite separates from mafic rocks and 102-110 Ma on whole-rock nepheline syenites. There is no evidence for excess 40Ar. The combined results show that some of the constituent intrusions of the Mundwara complex are of Deccan age, but others are older and unrelated to the Deccan Traps. The Mundwara alkaline complex is thus polychronous and similar to many alkaline complexes around the world that show recurrent magmatism, sometimes over hundreds of millions of years. The primary biotite and amphibole in Mundwara mafic rocks indicate hydrous parental magmas, derived from hydrated mantle peridotite at relatively low temperatures, thus ruling out a mantle plume. This hydration and metasomatism of the Rajasthan lithospheric mantle may have occurred during Jurassic subduction under Gondwanaland, or Precambrian subduction events. Low-degree decompression melting of this old, enriched lithospheric mantle, due to periodic diffuse lithospheric extension, gradually built the Mundwara complex from the Early Cretaceous to Palaeogene time.

  10. A preorganized metalloreceptor for alkaline earth ions showing calcium versus magnesium selectivity in water: biological activity of selected metal complexes.

    PubMed

    Amatori, Stefano; Ambrosi, Gianluca; Fanelli, Mirco; Formica, Mauro; Fusi, Vieri; Giorgi, Luca; Macedi, Eleonora; Micheloni, Mauro; Paoli, Paola; Rossi, Patrizia

    2014-08-25

    The N,N'-bis[(3-hydroxy-4-pyron-2-yl)methyl]-N,N'-dimethylethylendiamine (Malten = L) forms the highly stable [CuH(-2)L] species in water, in which the converging maltol oxygen atoms form an electron-rich area able to host hard metal ions. When considering the alkaline earth series (AE), the [Cu(H(-2)L)] species binds all metal ions, with the exception of Mg(2+), exhibiting the relevant property to discriminate Ca(2+) versus Mg(2+) at physiological pH 7.4; the binding of the AE metal is visible to the naked eye. The stability constant values of the trinuclear [AE{Cu(H(-2)L)}2](2+) species formed reach the maximum for Ca(2+) (log K=7.7). Ca(2+) also forms a tetranuclear [Ca{Cu(H(-2)L)}]2(4+) species at a high Ca(2+) concentration. Tri- and tetranuclear calcium complexes show blue- and pink-colored crystals, respectively. [Cu(H(-2)L)] is the most active species in inducing DNA alterations. The DNA damages are compatible with its hydrolytic cleavages.

  11. Ureilites are not igneous differentiates

    NASA Technical Reports Server (NTRS)

    Clayton, Robert N.; Mayeda, Toshiko K.

    1988-01-01

    Although most all meteorites are as old as the solar system (4.5 billion years), they can be subdivided into primitive and evolved groups, depending on the extent of their chemical and physical processing. Primitive meteorites, most of which are chondrites, are assemblages of dust and millimeter-sized pellets from the presolar nebula, which were not extensively heated and processed since their assembly. Thus they provide information about the conditions in the nebular cloud. Many of the evolved meteorites are achondrites, which are igneous rocks produced by melting on or within an asteroidal object known as the parent body. A major unsolved problem in solar system studies is identification of the source of heat which led to melting of the achondrites. The role of oxygen isotopes in establishing genetic relationships among meteorites is examined.

  12. Kinetics of crystallization of igneous rocks

    SciTech Connect

    Kirkpatrick, R.J.

    1981-01-01

    The geochemistry of igneous rocks is discussed, with the primary objectives of bringing together the theories underlying the kinetics of crystallization of igneous rocks and illustrating the use of these theories in understanding experimental and observational data. The primary purpose of the chapter is to introduce current thinking about the kinetics of igneous rocks and to provide a basis for understanding other work. A basic assumption made in the discussion is that the rate of any chemical reaction, including the crystallization of igneous rocks, is zero at equilibrium and proceeds at a finite rate only at a finite deviation from equilibrium. As such, an understanding of the processes operating in igneous rocks requires an understanding of how deviation from equilibrium affects the rates and mechanisms of the processes occurring during crystallization. These processes are detailed, with special emphasis given to nucleation and crystal growth. (JMT)

  13. Mineralization of alkaline phosphatase-complexed collagen implants in the rat in relation to serum inorganic phosphate.

    PubMed

    van den Bos, T; Oosting, J; Everts, V; Beertsen, W

    1995-04-01

    The present study was designed to determine the relationship between mineralization of collagenous matrices and serum levels of calcium and inorganic phosphate. Collagen slices were prepared from bovine dentin or cortical bone and complexed with varying amounts of intestinal alkaline phosphatase (ALP). The enzyme was added to induce de novo mineralization. The ALP-complexed slices were implanted subcutaneously over the skull and in the dorsolateral aspect of the abdominal wall in female Wistar rats of various ages (5-, 10-, 20-, or 35-week-old) and in young male rats fed on a low-P diet. After 1-4 weeks, the implants were removed and analyzed for calcium and phosphate content. In addition, serum levels of calcium and phosphate (total and inorganic) were determined. It was shown that the highest mineral influx occurred in the younger rats (which were also highest in serum P(i)), whereas almost no mineral uptake occurred in the older ones. Also in rats fed on a low-P diet (which were low in serum P(i), a strongly decreased mineral influx was noted. In all animal groups a positive correlation was found between the degree of mineralization and serum P(i). No distinct relationship was found between serum Ca/organic phosphate levels and mineral influx in the implants. In vitro incubation of ALP-collagen conjugates in serum from younger and older rats confirmed our view that serum P(i), besides local levels of ALP, is important in de novo mineral deposition. For accretion of mineral in partially remineralized collagenous carriers, ALP activity was not required.

  14. Titanium Dioxide-Grafted Copper Complexes: High-Performance Electrocatalysts for the Oxygen Reduction Reaction in Alkaline Media.

    PubMed

    Wang, Fei-Fei; Wei, Ping-Jie; Yu, Guo-Qiang; Liu, Jin-Gang

    2016-01-01

    The sluggish kinetics of the oxygen reduction reaction (ORR) at the cathodes of fuel cells significantly hampers fuel cell performance. Therefore, the development of high-performance, non-precious-metal catalysts as alternatives to noble metal Pt-based ORR electrocatalysts is highly desirable for the large-scale commercialization of fuel cells. TiO2 -grafted copper complexes deposited on multiwalled carbon nanotubes (CNTs) form stable and efficient electrocatalysts for the ORR. The optimized catalyst composite CNTs@TiO2 -ZA-[Cu(phen${{^{{\\rm NO}{_{2}}}}}$)(BTC)] shows surprisingly high selectivity for the 4 e(-) reduction of O2 to water (approximately 97 %) in alkaline solution with an onset potential of 0.988 V vs. RHE, and demonstrates superior stability and excellent tolerance for the methanol crossover effect in comparison to a commercial Pt/C catalyst. The copper complexes were grafted onto the surface of TiO2 through coordination of an imidazole-containing ligand, zoledronic acid (ZA), which binds to TiO2 through its bis-phosphoric acid anchoring group. Rational optimization of the copper catalyst's ORR performance was achieved by using an electron-deficient ligand, 5-nitro-1,10-phenanthroline (phen${{^{{\\rm NO}{_{2}}}}}$), and bridging benzene-1,3,5-tricarboxylate (BTC). This facile approach to the assembly of copper catalysts on TiO2 with rationally tuned ORR activity will have significant implications for the development of high-performance, non-precious-metal ORR catalysts. PMID:26602327

  15. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, Graham; Cottle, John M.

    2016-10-01

    Extensive exposure of intrusive igneous rocks along the Ross orogen of Antarctica-an ancient accretionary orogen on the margin of East Gondwana-provides an exceptional opportunity to study continental arc magmatism. There is significant petrologic and geochemical variability in igneous rocks within a ~ 500-km-long segment of the arc in southern Victoria Land. The conspicuous occurrence of carbonatite and alkaline silicate rocks (nepheline syenite, A-type granite, and alkaline mafic rocks) adjacent to large complexes of subalkaline granitoids is not adequately explained by traditional models for continental arc magmatism. Extensive geochemical analysis (> 100 samples) and zircon U-Pb geochronology (n = 70) confirms that alkaline and carbonatitic magmatism was partially contemporaneous with the emplacement of large subduction-related igneous complexes in adjacent areas. Major pulses of subalkaline magmatism were compositionally distinct and occurred at different times along the arc. Large bodies of subalkaline orthogneiss and granite (sensu lato) were emplaced over similar time intervals (ca. 25 Myr) to the north (ca. 515-492 Ma) and south (ca. 550-525 Ma) of the alkaline magmatic province, although the initiation of these major pulses of magmatism was offset by ca. 35 Myr. Alkaline and carbonatitic magmatism spanned at least ca. 550-509 Ma, overlapping with voluminous subalkaline magmatism in adjacent areas. The most primitive rocks from each area have similarly enriched trace element compositions, indicating some common characteristics of the magma sources along the arc. The samples from the older subalkaline complex have invariably low Sr/Y ratios (< 40), consistent with relatively shallow magma generation and differentiation. The younger subalkaline complex and subalkaline rocks within the area of the alkaline province extend to higher Sr/Y ratios (up to ~ 300), indicative of generation and differentiation at deeper levels. The significant spatial and temporal

  16. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits

    USGS Publications Warehouse

    du Bray, Edward A.

    2014-01-01

    The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.

  17. Intraplate magmatism related to opening of the southern Iapetus Ocean: Cambrian Wichita igneous province in the Southern Oklahoma rift zone

    NASA Astrophysics Data System (ADS)

    Hanson, Richard E.; Puckett, Robert E.; Keller, G. Randy; Brueseke, Matthew E.; Bulen, Casey L.; Mertzman, Stanley A.; Finegan, Shane A.; McCleery, David A.

    2013-08-01

    Southern Oklahoma and adjacent parts of Texas contain an extensive igneous province emplaced during Early Cambrian rifting within the Southern Oklahoma rift zone. The rift zone was initiated in association with the opening of the southern Iapetus Ocean during Rodinia supercontinent breakup and later became the site of a series of linked uplifts and basins as a result of late Paleozoic inversion. Igneous rocks within the rift are referred to as the Wichita province and are present mostly in the subsurface, although critical exposures occur in the Wichita and Arbuckle Mountains in southwestern and southern Oklahoma. Wells drilled into basement in the region provide a wealth of information on the distribution and relations of the major igneous units in the upper crust, and geophysical data provide important constraints on deeper levels of the rift zone. The upper parts of the igneous rift fill comprise the Carlton Rhyolite Group, which has an estimated subsurface areal extent of ~ 40,000 km2, and the related Wichita sheet granites, which intrude the lower parts of the rhyolite succession. These rocks have A-type characteristics and were emplaced after intrusion, tilting and uplift of a large tholeiitic layered mafic complex; smaller bodies of gabbro also intruded the layered complex after it was tilted. U-Pb zircon and 40Ar/39Ar geochronology indicates the felsic rocks and at least some of the mafic units were emplaced in a relatively narrow time frame at ~ 539-530 Ma. Basalts and intermediate lavas are present only in the subsurface. Our new work shows these lavas to have tholeiitic to mildly alkaline compositions and to be more extensive than previously realized, forming thick successions that both underlie and are intercalated with the rhyolites. Diabase dikes were intruded into older crust during initial opening of the rift, and a suite of late diabase intrusions also cuts the rhyolites and granites, indicating that mafic magma was supplied to the rift throughout

  18. Evaluation of AA5052 alloy anode in alkaline electrolyte with organic rare-earth complex additives for aluminium-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Li, Heshun; Liu, Jie; Zhang, Daquan; Gao, Lixin; Tong, Lin

    2015-10-01

    Behaviours of the AA5052 aluminium alloy anode of the alkaline aluminium-air battery are studied by the hydrogen evolution test, the electrochemical measurements and the surface analysis method. The combination of amino-acid and rare earth as electrolyte additives effectively retards the self-corrosion of AA5052 aluminium alloy in 4 M NaOH solution. It shows that the combination of L-cysteine and cerium nitrate has a synergistic effect owing to the formation of a complex film on AA5052 alloy surface. The organic rare-earth complex can decrease the anodic polarisation, suppress the hydrogen evolution and increase the anodic utilization rate.

  19. Inherited igneous zircons in jadeitite predate high-pressure metamorphism and jadeitite formation in the Jagua Clara serpentinite mélange of the Rio San Juan Complex (Dominican Republic)

    NASA Astrophysics Data System (ADS)

    Hertwig, Andreas; McClelland, William C.; Kitajima, Kouki; Schertl, Hans-Peter; Maresch, Walter V.; Stanek, Klaus; Valley, John W.; Sergeev, Sergey A.

    2016-05-01

    This study utilizes zircon SIMS U-Pb dating, REE and trace-element analysis as well as oxygen isotope ratios of zircon to distinguish jadeite-rich rocks that formed by direct crystallization from a hydrous fluid from those that represent products of a metasomatic replacement process. Zircon was separated from a concordant jadeitite layer and its blueschist host, as well as from loose blocks of albite-jadeite rock and jadeitite that were all collected from the Jagua Clara serpentinite-matrix mélange in the northern Dominican Republic. In the concordant jadeitite layer, three groups of zircon domains were distinguished based on both age as well as geochemical and oxygen isotope values: age groups old (117.1 ± 0.9 Ma), intermediate (three dates: 90.6, 97.3, 106.0 Ma) and young (77.6 ± 1.3 Ma). Zircon populations from the blueschist host as well as the other three jadeite-rich samples generally match zircon domains of the old age group in age as well as geochemistry and oxygen isotope ratios. Moreover, these older zircon populations are indistinguishable from zircon typical of igneous oceanic crust and hence are probably inherited from igneous protoliths of the jadeite-rich rocks. Therefore, the results suggest that all investigated jadeite-rich rocks were formed by a metasomatic replacement process. The younger domains might signal actual ages of jadeitite formation, but there is no unequivocal proof for coeval zircon-jadeite growth.

  20. Charge-separated and molecular heterobimetallic rare earth-rare earth and alkaline earth-rare earth aryloxo complexes featuring intramolecular metal-pi-arene interactions.

    PubMed

    Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F

    2009-01-01

    Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.

  1. Structure reactivity and thermodynamic analysis on the oxidation of ampicillin drug by copper(III) complex in aqueous alkaline medium (stopped-flow technique)

    NASA Astrophysics Data System (ADS)

    Shetti, Nagaraj P.; Hegde, Rajesh N.; Nandibewoor, Sharanappa T.

    2009-07-01

    Oxidation of penicillin derivative, ampicillin (AMP) by diperiodatocuprate(III) (DPC) in alkaline medium at a constant ionic strength of 0.01-mol dm -3 was studied spectrophotometrically. The reaction between DPC and ampicillin in alkaline medium exhibits 1:4 stoichiometry (ampicillin:DPC). Intervention of free radicals was observed in the reaction. Based on the observed orders and experimental evidences, a mechanism involving the protonated form of DPC as the reactive oxidant species has been proposed. The oxidation reaction in alkaline medium has been shown to proceed via a DPC-AMP complex, which decomposes slowly in a rate determining step to yield phenyl glycine (PG) and free radical species of 6-aminopenicillanic acid (6-APA), followed by other fast steps to give the products. The two major products were characterized by IR, NMR, LC-MS and Spot test. The reaction constants involved in the different steps of the mechanism were calculated. The activation parameters with respect to slow step of the mechanism were computed and discussed and thermodynamic quantities were also determined.

  2. Copper(II) complexes with cyanoguanidine and o-phenanthroline: Theoretical studies, in vitro antimicrobial activity and alkaline phosphatase inhibitory effect

    NASA Astrophysics Data System (ADS)

    Martínez Medina, Juan J.; Islas, María S.; López Tévez, Libertad L.; Ferrer, Evelina G.; Okulik, Nora B.; Williams, Patricia A. M.

    2014-01-01

    Calculations based on density functional methods are carried out for two Cu(II) complexes with cyanoguanidine (cnge) and o-phenanthroline (o-phen): [Cu(o-phen)2(cnge)](NO3)2ṡ2H2O (1) and [Cu(o-phen)(cnge)(H2O)(NO3)2] (2). The calculated geometrical parameters are in agreement with the experimental values. The results of Atoms in Molecules (AIM) topological analysis of the electron density indicate that the Cu-N(phen) bonds in complex (1) have lower electron density, suggesting that those bonds are stronger in complex (2). Moreover, the ionic character of the Cu-N bond in the complex (1) is slightly stronger than that in the complex (2) and this situation would explain the fact that only complex (2) was stable in water solution. For this reason, the antimicrobial and enzymatic assays were performed using complex (2). It is well known that the increased use of antibiotics has resulted in the development of resistant bacterial and fungal strains. In this context, the study of novel antimicrobial agents has an enormous importance and metal complexes represent an interesting alternative for the treatment of infectious diseases. The aim of this work is to prove the modification of some biological properties like antimicrobial activity or alkaline phosphatase inhibitory activity upon copper complexation.

  3. Potassic igneous rocks from the vicinity of epithermal gold mineralization, Lihir Island, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Müller, Daniel; Franz, Leander; Herzig, Peter M.; Hunt, Steve

    2001-06-01

    Many world-class porphyry copper-gold and epithermal gold deposits worldwide are hosted by volatile-rich and oxidized alkaline rocks. This study investigates potassic igneous rocks from the vicinity of epithermal gold mineralization at Lihir Island, Papua New Guinea. The island consists of five Pliocene-Pleistocene stratovolcanoes, one of which hosts Ladolam, one of the largest epithermal gold deposits discovered to date. Petrographically, the rocks range from porphyritic trachybasalts, trachyandesites and latites to rare phonolites and olivine-clinopyroxene cumulates. In some places, these rocks are cut by monzodiorite stocks. According to Al-in-hornblende barometry, the main crystallization of these rocks occurred close to the surface. Titanium-in-hornblende thermometry as well as olivine-spinel geothermometry and oxygen barometry indicate temperatures of 787-965°C at elevated oxygen fugacities ( fO 2) of 1.4-4.8 log units above that of the FMQ buffer. Although previous studies have suggested high fO 2 of alkaline rocks associated with copper-gold mineralization based on abundant primary magnetite contents, this is the first direct determination of the fO 2 of such rocks. High fO 2 of parental melts commonly delays the early crystallization of magmatic sulphides; this is important because metals such as Au and Cu preferentially partition into sulphide phases resulting in their depletion in the melt during increasing fractionation. Geochemically, the rocks range from primitive to relatively evolved compositions, as reflected by their SiO 2 (45.8-55.0 wt.%) and MgO (1.4-15.3 wt.%) contents and variable concentrations of mantle-compatible elements (130-328 ppm V, 1-186 ppm Ni). Their high K 2O content (up to 4.7 wt.%), high average K 2O/Na 2O ratios (0.8) and high average Ce/Yb ratios (14) are typical of high-K igneous rocks transitional to shoshonites. Although these rocks formed by decompression melting related to back-arc rifting in the Manus Basin, the high

  4. Geochemistry of Sarvabad basic igneous rocks from northern Sanandaj - Sirjan Magmatic Arc, Iran

    NASA Astrophysics Data System (ADS)

    Mahmoudi, H.; Ghorbani, M.; Azizi, H.

    2009-12-01

    Sanandaj - Sirjan Magmatic Arc (SSMA) as a segment of Alpine -Himalayan magmatic belt embrace a wide spectrum of igneous rocks, both volcanic and plutonic, from basic to felsic compositions. The igneous rocks which are mainly calc-alkaline are attributed to the subduction of Neotethyan oceanic slab beneath central Iranian plate in Mesozoic time (Berberian and Berberian, 1981; Omrani et al., 2008). In the present study the focus is made on the geochemistry and petrography of igneous rocks from northwestern end of the SSMA, in Sarvabad area, in order to elucidate their geodynamic setting. A set of 30 rock samples were analyzed for major and selected trace elements. Mafic igneous bodies from northern SSMA are regarded as post - collisional plutonic bodies of Eocene - Oligocene age (Ghasemi and Talbot, 2006). Azizi and Moinevaziri (2009) considered the igneous rocks from the northern SSMA, at Sonqor - Baneh area, as the products of subduction that continued to the Paleogene time. Investigations carried out in the course of present study demonstrate that the Sarvabad basic igneous rocks, shown on the magmatic map of Iran (Emami et al., 1993) as gabbroic plutons, are composed of volcanic, subvolcanic and plutonic rocks of basic composition. The silica and Mg number of the rocks vary in the ranges 49-52 wt. % and 54-68, respectively. The volcanic rocks are vitrophyric to porphyritic with some plagioclase, olivine and clinopyroxene microphenocrysts. In the subvolcanic and plutonic bodies, plagioclase, clinopyroxene and some amphibole and Fe-Ti oxides are the major constituents. These igneous rocks indicate tholeitic affinity and cover the typical mantle array on a Zr/Nb vs. Y/Nb plot. Occurrences of a few ultramafic bodies found as metric - size isolated lenses in the basic igneous rocks highlight the spatial characteristic of these rocks; the existence of an ophiolitic rock assemblage nearby. Located toward the southwest of Sarvabad basic igneous rocks, is a Cretaceous

  5. Organic Protomolecule Assembly in Igneous Minerals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Staple, Aaron; Scoville, John

    2001-01-01

    C-H stretching bands in the infrared spectrum of single crystals of nominally high purity, laboratory-grown MgO and of natural upper mantle olivine provide an "organic" signature that closely resembles the symmetrical and asymmetrical C-H stretching modes of aliphatic -CH2- units. The C-H stretching bands indicate that H20 and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C-H entities, probably through segregation into defects such as dislocations. Heating causes the C-H bonds to pyrolyze and the C-H stretching bands to disappear, but annealing at 70 C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x less than or equal to 4, with the terminal C atoms anchored to the MgO matrix by bonding to two U. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx-Hy-Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and of the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of Life.

  6. Organic protomolecule assembly in igneous minerals.

    PubMed

    Freund, F; Staple, A; Scoville, J

    2001-02-27

    CH stretching bands, nu(CH), in the infrared spectrum of single crystals of nominally high purity, of laboratory-grown MgO, and of natural upper mantle olivine, provide an "organic" signature that closely resembles the symmetrical and asymmetrical C--H stretching modes of aliphatic -CH(2) units. The nu(CH) bands indicate that H(2)O and CO(2), dissolved in the matrix of these minerals, converted to form H(2) and chemically reduced C, which in turn formed C--H entities, probably through segregation into defects such as dislocations. Heating causes the C--H bonds to pyrolyze and the nu(CH) bands to disappear, but annealing at 70 degrees C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to C(x) chains, x = 4, with the terminal C atoms anchored to the MgO matrix by bonding to two O(-). Allowing H(2) to react with such C(x) chains leads to [O(2)C(CH(2))(2)CO(2)] or similar precipitates. It is suggested that such C(x)--H(y)--O(z) entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus, it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks, the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of life.

  7. Theoretical petrology. [of igneous and metamorphic rocks

    NASA Technical Reports Server (NTRS)

    Stolper, E.

    1979-01-01

    In the present paper, some areas of growing interest in the American efforts in petrology during the 1975-1978 quadrennium are reviewed. In igneous petrology, studies of structures and thermodynamic properties of silicate melts and of kinetics of igneous processes are in a period of rapid growth. Plate tectonic concepts have had (and will no doubt continue to have) an important influence by focusing interest on specific problems and by providing a framework for the understanding of petrogenesis. An understanding of mantle processes and evolution through the integration of petrological, geophysical, and geochemical constraints has been developed over the past 20 years, and will undoubtedly provide direction for future petrological studies.

  8. Geochemistry and petrogenesis of late Ediacaran (605-580 Ma) post-collisional alkaline rocks from the Katherina ring complex, south Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    Azer, M. K.; Obeid, M. A.; Ren, M.

    2014-10-01

    The Katherina ring complex (KRC) in the central part of south Sinai, Egypt, is a typical ring complex of late Neoproterozoic age (605-580 Ma). It was developed during the final tectono-magmatic stage of the north Arabian-Nubian Shield (ANS) during evolution of the Pan-African crust. The KRC includes Katherina volcanics, subvolcanic bodies, ring dykes and Katherina granitic pluton. The Katherina volcanics represent the earliest stage of the KRC, which was subsequently followed by emplacement of the subvolcanic bodies and ring dykes. The Katherina granitic pluton depicts as the latest evolution stage of the KRC that intruded all the early formed rock units in the concerned area. The Katherina volcanics are essentially composed of rhyolites, ignimbrite, volcanic breccia and tuffs. Mineralogically, the peralkaline rhyolites contain sodic amphiboles and aegirine. The rhyolite whole rock chemistry has acmite-normative character. The subvolcanic bodies of the KRC are represented by peralkaline microgranite and porphyritic quartz syenite. The ring dykes are semicircular in shape and consist mainly of quartz syenite, quartz trachyte and trachybasalt rock types. The Katherina subvolcanic rocks, volcanic rocks as well as the ring dykes are alkaline or/and peralkaline in nature. The alkaline granitic pluton forms the inner core of the KRC, including the high mountainous areas of G. Abbas Pasha, G. Bab, G. Katherina and G. Musa. These mountains are made up of alkaline syenogranite and alkali feldspar granite. The mantle signature recorded in the KRC indicates a juvenile ANS crust partial melting process for the generation of this system. The evolution of the KRC rocks is mainly dominated by crystal fractionation and crustal contamination. Mineral geothermometry points to the high temperature character of the KRC, up to 700-1100 °C.

  9. Zr and REE mineralization in sodic lujavrite from the Saima alkaline complex, northeastern China: A mineralogical study and comparison with potassic rocks

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Wang, Ru-Cheng; Yang, Jin-Hui; Wu, Fu-Yuan; Zhang, Wen-Lan; Gu, Xiang-Ping; Zhang, Ai-Cheng

    2016-10-01

    The Triassic Saima alkaline complex on the Liaodong Peninsula, northeastern China, consists mainly of potassic phonolite, nepheline syenite, and sodic lujavrite. The lujavrite shows significant Zr-REE mineralization, which is present in the form of early magmatic, Zr-REE-enriched clinopyroxene (30%-40%), titanite (5%), and loparite-(Ce), and late magmatic to hydrothermal wadeite, widespread eudialyte group minerals (5%-10%), and catapleiite. Ultimately, the fractionation of the alkaline magma leads to the crystallization of mosandrite and hezuolinite. Textural relations and compositional variation among the characteristic Zr-REE-bearing minerals record that both Zr and REEs were strongly incompatible in the sodic melt, but that Zr mineralization preceded REE mineralization. The main Zr-REE mineralization in the Saima lujavrite resulted from the high peralkalinity, Na/K ratio and HFSE content, low oxygen fugacity, and the intensive activity of water and volatiles of its evolving magma. The discontinuous and abrupt changes in melt composition and mineral assemblage from the potassic nepheline syenite of the complex to the sodic lujavrite suggest that their magma was derived from different episodes of magmatic activity with different physico-chemical characteristics, rather than from the continuous evolution of a single magmatic event.

  10. Magmatic systems of large continental igneous province

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2014-05-01

    Large igneous provinces (LIPs) of the modern type are known from the middle Paleoproterozoic and have a great abundance in the Phanerozoic. The most researches considered their appearance with ascending of the mantle thermochemical superplumes which provided simultaneously eruption of the same type of lavas on the huge territories. Judging on presence among them different subprovinces, formation of concrete magmatic systems were linked with protuberances (secondary plumes) on the superplumes surfaces. We suggest that origin of such plumes was linked with local enrichment of upper part of the superplumes head beneath roofing by fluid components; it led to lowering of the plume material density and initiated ascending of the secondary plumes. As a result, their heads, where partial melting occurred, can reach the level of the upper crust as it follows from absence of lower-crustal rocks among xenoliths in basalts, although mantle xenoliths existed in them. Important feature of LIPs is presence of two major types of mafic lavas: (1) geochemical-enriched alkali Fe-Ti basalts and picrites, and (2) basalts of normal alkalinity (tholeiites) with different contents of TiO2. At that the first type of mafites are usually typical for lower parts of LIPs which initially developed as continental rifts, whereas the second type composed the upper part of the traps' cover. Magmatic systems of the LIPs are subdivided on three levels of different deep: (1) zones of magma generation, (2) areas of transitional magma chambers where large often layered intrusive bodies are formed, and (3) areas on surface where lava eruptions and subvolcanic intrusions occurred. All these levels are linked by feeder dykes. The least known element of the system is area of magma generation, and, especially, composition of melting substratum. Important information about it is contained in aforementioned mantle xenoliths in alkali basalts and basanites. They practically everywhere are represented by two

  11. Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah

    USGS Publications Warehouse

    Best, M.G.; Christiansen, E.H.; Blank, H.R.

    1989-01-01

    The Indian Peak volcanic field is representative of the more than 50 000 km3 of ashflow tuff and tens of calderas in the Great Basin that formed during the Oligocene-early Miocene "ignimbrite flareup' in southwestern North America. These dominantly high-K calc-alkaline rocks are a record of the birth, maturation, and death of a large, open, continental magma system that was probably initiated and sustained by influx of mafic magma derived from a southward-migrating locus of magma production in the mantle. Recurrent production of very large batches (some greater than 3000 km3) of quite uniform dacite magmas appears to have required combination of andesite magma and crustal silicic material in vigorously convecting chambers. Compositional data indicate that rhyolites are polygenetic. As the main locus of mantle magma production shifted southward, trachydacite magma could have been produced by fractionation of andesitic magma within the crust. -from Author

  12. Electrocatalysis for dioxygen reduction by a μ-oxo decavanadium complex in alkaline medium and its application to a cathode catalyst in air batteries

    NASA Astrophysics Data System (ADS)

    Dewi, Eniya Listiani; Oyaizu, Kenichi; Nishide, Hiroyuki; Tsuchida, Eishun

    The redox behavior of a decavanadium complex [(VO) 10(μ 2-O) 9(μ 3-O) 3(C 5H 7O 2) 6] ( 1) was studied using cyclic voltammetry under acidic and basic conditions. The reduction potential of V(V) was found at less positive potentials for higher pH electrolyte solutions. The oxygen reduction at complex 1 immobilized on a modified electrode was examined using cyclic voltammetry and rotating ring-disk electrode techniques in the 1 M KOH solutions. On the basis of measurements using a rotating disk electrode (RDE), the complex 1 was found to be highly active for the direct four-electron reduction of dioxygen at -0.2 V versus saturated calomel electrode (SCE). The complex 1 as a reduction catalyst of O 2 with a high selectivity was demonstrated using rotating ring-disk voltammograms in alkaline solutions. The application of complex 1 as an oxygen reduction catalyst at the cathode of zinc-air cell was also examined. The zinc-air cell with the modified electrode showed a stable discharge potential at approximately 1 V with discharge capacity of 80 mAh g -1 which was about five times larger than that obtained with the commonly used manganese dioxide catalyst.

  13. Igneous and tectonic evolution of Venusian and terrestrial coronae

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Komatsu, G.

    1992-01-01

    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions.

  14. Igneous and tectonic evolution of Venusian and terrestrial coronae

    NASA Astrophysics Data System (ADS)

    Kargel, J. S.; Komatsu, G.

    1992-12-01

    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions.

  15. MULTIPLE EPISODES OF IGNEOUS ACTIVITY, MINERALIZATION, AND ALTERATION IN THE WESTERN TUSHAR MOUNTAINS, UTAH.

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Campbell, David L.; Naeser, Charles W.; Pitkin, James A.; Duval, Joseph S.

    1984-01-01

    The report outlines the complex history of igneous activity and associated alteration and mineralization in the western Tushar Mountains, Utah and pointss out implciations for minerals exploration. The area has been subjected to recurrent episodes of igneous intrusion, hydrothermal alteration, and mineralization, and the mineral-resource potential of the different mineralized areas is directly related to local geologic history. The mineral commodities to be expected vary from one hydrothermal system to another, and from one depth to another within any given system. Uranium and molybdenum seem likely to have the greatest economic potential, although significant concentrations of gold may also exist.

  16. A new combined process for efficient removal of Cu(II) organic complexes from wastewater: Fe(III) displacement/UV degradation/alkaline precipitation.

    PubMed

    Xu, Zhe; Gao, Guandao; Pan, Bingcai; Zhang, Weiming; Lv, Lu

    2015-12-15

    Efficient removal of heavy metals complexed with organic ligands from water is still an important but challenging task now. Herein, a novel combined process, i.e., Fe(III)-displacement/UV degradation/alkaline precipitation (abbreviated as Fe(III)/UV/OH) was developed to remove copper-organic complexes from synthetic solution and real electroplating effluent, and other processes including alkaline precipitation, Fe(III)/OH, UV/OH were employed for comparison. By using the Fe(III)/UV/OH process, some typical Cu(II) complexes, such as Cu(II)-ethylenediaminetetraacetic acid (EDTA), Cu(II)-nitrilotriacetic acid (NTA), Cu(II)-citrate, Cu(II)-tartrate, and Cu(II)-sorbate, each at 19.2 mg Cu/L initially, were efficiently removed from synthetic solution with the residual Cu below 1 mg/L. Simultaneously, 30-48% of total organic carbon was eliminated with exception of Cu(II)-sorbate. Comparatively, the efficiency of other processes was much lower than the Fe(III)/UV/OH process. With Cu(II)-citrate as the model complex, the optimal conditions for the combined process were obtained as: initial pH for Fe(III) displacement, 1.8-5.4; molar ratio of [Fe]/[Cu], 4:1; UV irradiation, 10 min; precipitation pH, 6.6-13. The mechanism responsible for the process involved the liberation of Cu(II) ions from organic complexes as a result of Fe(III) displacement, decarboxylation of Fe(III)-ligand complexes subjected to UV irradiation, and final coprecipitation of Cu(II) and Fe(II)/Fe(III) ions. Up to 338.1 mg/L of Cu(II) in the electroplating effluent could be efficiently removed by the process with the residual Cu(II) below 1 mg/L and the removal efficiency of ∼99.8%, whereas direct precipitation by using NaOH could only result in total Cu(II) removal of ∼8.6%. In addition, sunlight could take the place of UV to achieve similar removal efficiency with longer irradiation time (90 min).

  17. Is phosphorus predictably incompatible in igneous processes?

    NASA Technical Reports Server (NTRS)

    Goodrich, C. A.; Barnes, S.

    1984-01-01

    Siderophile element abundances are central to recent models for core formation in the Earth and Moon and the origin of the Moon. It is important to identify siderophile elements whose behavior in igneous processes is predictable, so that primary mantle abundances can be deduced by subtracting out the effects of igneous processes. Newsom's model for core formation in the Moon requires subchondritic P, and suggests that P was depleted due to volatility. Experiments were conducted to determine P olivine/liquid distribution coefficients. Preliminary results indicate that P can be compatible with olivine during rapid cooling, but is not during isothermal crystallization with long growth times, and tends to be expelled during annealing. It is therefore not likely that P is compatible under any widespread igneous conditions, and the incompatible behavior of P in lunar crustal rocks can be safety assumed. In addition, low fO2 is insufficient to cause P compatibility, so it is unlikely that P-rich silicates formed during the early evolution of the Earth or Moon. These results indicate that P is depleted in the Moon.

  18. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  19. Tectonic significance of Neoproterozoic magmatism of Nakora area, Malani igneous suite, Western Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Vallinayagam, G.

    2014-05-01

    Three magmatic phases are distinguished in the Neoproterozoic Nakora Ring Complex (NRC) of Malani Igneous Suite (MIS), namely (a) Extrusive (b) Intrusive and (c) Dyke phase. Magmatism at NRC initiated with minor amount of (basic) basalt flows and followed by the extensive/voluminous acid (rhyolites-trachytes) flows. The ripple marks are observed at the Dadawari area of NRC in tuffaceous rhyolite flow which suggests the aqueous condition of flows deposition. The emplacement of the magma appears to have been controlled by a well defined NE-SW tectonic lineament and cut by radial pattern of dykes. These NE-SW tectonic lineaments are the linear zones of crustal weakness and high heat flow. The spheroidal and rapakivi structures in the Nakora acid volcanics indicate the relationship between genetic link and magma mixing. Basalt-trachyte-rhyolite association suggests that the large amount of heat is supplied to the crust from the magma chamber before the eruption. The field (elliptical/ring structures), mineralogical and geochemical characteristics of Nakora granites attest an alkaline character in their evolution and consistent with within plate tectonic setting. The emplacement of these granites and associated volcanics is controlled by ring structures, a manifestation of plume activity and cauldron subsidence, an evidence of extensional tectonic environment. NRC granites are the product of partial melting of rocks similar to banded gneiss from Kolar Schist Belt of India. The present investigations suggest that the magmatic suites of NRC rocks are derived from a crustal source and the required heat supplied from a mantle plume.

  20. Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge, Alabama Appalachians

    SciTech Connect

    Drummond, M.S. . Geology Dept.); Allison, D.T. . Geology Dept.); Tull, J.F. . Geology Dept.); Bieler, D.B. . Geology Dept.)

    1994-03-01

    A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derived from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.

  1. Late Proterozoic and Silurian alkaline plutons within the southeastern New England Avalon zone

    SciTech Connect

    Hermes, O.D. ); Zartman, R.E. )

    1992-07-01

    Distinct pulses of quartz-bearing, alkaline plutonism and volcanism are known to have occurred in the Avalon zone of southeastern New England during the Late Ordovician, Early Silurian, Devonian, and Carboniferous. Zircon separates from the Franklin and Dartmouth plutons demonstrate that two additional, previously unrecognized periods of alkaline magmatism occurred. The Franklin pluton yields an age of 417 {plus minus} 6 Ma (Late Silurian), whereas the Dartmouth pluton is Late Proterozoic (595 {plus minus} 5 Ma) and markedly older than the other plutons of alkaline affinity. The new ages further emphasize the episodic nature and long-term duration of such alkaline igneous events within the southeastern New England Avalon zone. The Dartmouth pluton may represent a post-collisional alkaline granite emplaced in the Late Proterozoic, almost immediately after a major period of calcalkaline igneous activity that accompanied plate convergence and continental accretion. The abrupt change from orogenic calcalkaline igneous activity to post-collisional alkaline granite, followed by younger episodes of anorogenic emplacement, is remarkably similar to igneous events reported from pan-African mobile belts widespread throughout Africa. In addition, parts of the Dartmouth pluton exhibit features indicative of mixing and commingling of felsic and mafic melts that are associated with coevally formed mylonitic fabrics. Because these fabrics are conformable to those in adjacent gneisses, but discordant with Alleghanian fabrics in the nearby Carboniferous Narragansett basin, they represent some of the best candidates for pre-Alleghanian structures thus far identified in the southeastern New England Avalon zone.

  2. Application of remote sensing to the photogeologic mapping of the region of the Itatiaia alkaline complex. M.S. Thesis; [Minas Gerais, Rio De Janeiro, Sao Paulo, and Itatiaia, Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Rodrigues, J. E.

    1981-01-01

    Remote sensing methods applied to geologically complex areas, through interaction of ground truth and information obtained from multispectral LANDSAT images and radar mosaics were evaluated. The test area covers parts of Minos Gerais, Rio De Janeiro and Sao Paulo states and contains the alkaline complex of Itatiaia and surrounding Precambrian terrains. Geological and structural mapping was satisfactory; however, lithological varieties which form the massif's could not be identified. Photogeological lineaments were mapped, some of which represent the boundaries of stratigraphic units. Automatic processing was used to classify sedimentary areas, which includes the talus deposits of the alkaline massifs.

  3. Genetic implications of minor-element and Sr-isotope geochemistry of alkaline rock complexes in the Wet Mountains area, Fremont and Custer counties, Colorado

    USGS Publications Warehouse

    Armbrustmacher, T.J.; Hedge, C.E.

    1982-01-01

    Concentrations of Rb, Sr, and REE (rare earth elements), and Sr-isotopic ratios in rocks of the Cambrian alkaline complexes in the Wet Mountains area, Colorado, show that rocks formed as end-products of a variety of magmas generated from different source materials. The complexes generally contain a bimodal suite of cumulus mafic-ultramafic rocks and younger leucocratic rocks that include nepheline syenite and hornblende-biotite syenite in the McClure Mountain Complex, nepheline syenite pegmatite in the Gem Park Complex, and quartz syenite in the complex at Democrat Creek. The nepheline syenite and hornblende-biotite syenite at McClure Mountain (535??5m.y.) are older than the syenitic rocks at Democrat Creek (511??8m.y.). REE concentrations indicate that the nepheline syenite at McClure Mountain cannot be derived from the hornblende-biotite syenite, which it intrudes, or from the associated mafic-ultramafic rocks. REE also indicate that mafic-ultramafic rocks at McClure Mountain have a source distinct from that of the mafic-ultramafic rocks at Democrat Creek. In the McClure Mountain Complex, initial87Sr/86Sr ratios for mafic-ultramafic rocks (0.7046??0.0002) are similar to those of hornblende-biotite syenite (0.7045??0.0002), suggesting a similar magmatic source, whereas ratios for carbonatites (0.7038??0.0002) are similar to those of nepheline syenite (0.7038??0.0002). At Democrat Creek, initial ratios of syenitic rocks (0.7032??0.0002) and mafic-ultramafic rocks (0.7028??0.0002) are different from those of corresponding rocks at McClure Mountain. ?? 1982 Springer-Verlag.

  4. The photochemistry of a bis-crown ether based on benzobis(thiazole) and its alkaline earth metal cation complexes.

    PubMed

    Fedorov, Yu; Fedorova, O; Schepel, N; Alfimov, M; Turek, A M; Saltiel, J

    2006-01-01

    Irradiation of acetonitrile solutions of the bis-crown ether E,E-2,7-bis[2-(6,7,9,10,12,13,15,16-octahydro-5,8,11,14,17-pentaoxabenzocyclopentadecen-2-yl)vinyl]-benzo[1,2-d;3,4-d']bisthiazole (hereafter, 1) gives efficient E --> Z photoisomerization (initial phi(trans --> cis) = 0.48), leading to lambda(exc)-dependent quasi-photostationary states composed primarily of E,Z and E,E isomer mixtures. Further irradiation gives [2 + 2]-cycloadducts of 1. In the presence of Ba2+ ions, essentially quantitative formation of 2:2 complexes, 1(2) x (Ba2+)2 controls the photochemical outcome. E --> Z photoisomerization of the ligand is entirely suppressed and efficient intramolecular [2 + 2]-photocycloaddition in the complexes leads to cyclobutane dimers of 1 (phiCB = 0.26). The reactivity of 1 in the presence of Mg2+ ions for which 1:2 complex formation dominates gives both cis-trans photoisomerization and enhanced photocycloaddition.

  5. Thermal stability of the anionic sigma complexes of 2,4,6-trinitroanisole with the methylates of the alkaline-earth metals

    SciTech Connect

    Glaz, A.I.; Soldatova, T.A.; Golopolosova, T.V.; Gitis, S.S.

    1987-09-10

    The study of the stability of the 1,1-dimethoxy-2,4,6-trinitrocyclohexadienates of the alkali metals when they are heated in air showed that their temperature of decomposition and the heat effect of the process are dependent on the nature of the cation. Our study centered on the thermal decomposition of the products resulting from the addition of the methylates of calcium, strontium, and barium to 2,4,6-trinitroanisole. For a quantitative assessment of the process we used the combined methods of differential-thermal analysis and differential thermogravimetry. The anionic sigma-complexes of 2,4,6-trinitroanisole with the methylates of the alkaline-earth metals decompose on heating into the corresponding picrates; at the same time, when one passes from the calcium slat to the strontium and barium salts the decomposition temperature and the heat effect of the process show a drop which is linked to the structure both of the complexes and of the picrates forming therefrom.

  6. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  7. Magmas and magmatic rocks: An introduction to igneous petrology

    SciTech Connect

    Middlemost, E.A.K.

    1986-01-01

    This book melds traditional igneous petrology with the emerging science of planetary petrology to provide an account of current ideas on active magmatic and volcanic processes, drawing examples from all igneous provinces of the world as well as from the moon and planets. It reviews the history and development of concepts fundamental to modern igneous petrology and includes indepth sections on magmas, magnetic differentiation and volcanology.

  8. Stable Isotope Variability of Altered Sanidine Feldspars within the Bear Lodge Alkaline Intrusive Complex, Wyoming: Implications for Mineral Exploration Near a Late-Stage Carbonatite Ore Body

    NASA Astrophysics Data System (ADS)

    Mulvaney-Norris, J. L.; Larson, P. B.

    2015-12-01

    In a brecciated intrusive complex, mineral assemblages from non-ore-stage hydrothermal alteration may be mistakenly associated with ore body emplacement during exploration. The ability to differentiate mineralizing from non-mineralizing alteration by stable isotope analysis, and to map the fluid pathways, is a useful tool for future exploration. The Bull Hill diatreme, central Bear Lodge Mountains, contains porphyritic alkaline clasts and cross-cutting megacrystic sanidine trachyte dikes. The K feldspar (Kfs) phenocrysts reacted with and recorded the passage of hydrothermal fluids, likely derived from post-diatreme carbonatite intrusions. A study of the δ18O values of Kfs in the complex can assist mineralization mapping by revealing the late hydrothermal fluid pathways and provenance. Dike and breccia samples were split from three drill holes at regular distances, moving away from carbonatite dikes and large veins. Eighteen samples were prepared for oxygen isotope analysis by physical separation of megacrysts, or by crushing and hand-picking Kfs fragments from the breccia. A carbonatite Kfs sample was prepared by partial HCl digestion. Oxygen isotope ratios were measured at the Washington State University GeoAnalytical Laboratory using a Finnegan Delta S Mass Spectrometer. Kfs δ18O values range between 7.69‰ and 9.09‰ in the diatreme breccia xenocrysts, 5.28‰ to 8.12‰ in the megacrystic dike phenocrysts, and 7.15‰ in the carbonatite phenocrysts. Results suggest no clear relationship between the δ18O values in Kfs and the different phases of intrusion. This may be due to δ18O variability introduced by zoned and multi-crystal samples, limited variations of δ18O values among intrusion fluids, or that the final carbonatite intrusion pervasively altered all samples within the study area. Therefore, this method may not be particularly useful for identifying potential ore-bearing units in the Bear Lodge Intrusive Complex.

  9. Northeast Atlantic Igneous Province volcanic margin development

    NASA Astrophysics Data System (ADS)

    Mjelde, R.; Breivik, A. J.; Faleide, J. I.

    2009-04-01

    Early Eocene continental breakup in the NE Atlantic Volcanic Province (NAIP) was associated with voluminous extrusive and intrusive magmatism, and initial seafloor spreading produced anomalously thick oceanic crust. Recent publications based on crustal-scale wide-angle seismic data show that there is a positive correlation between igneous crustal thickness (H) and average P-wave velocity (Vp) on all investigated margins in the NAIP. Vp can be used as a proxy for crustal composition, which can be related to the mode of mantle melting. A positive H-Vp correlation indicates that excessive mantle melting the first few million years after breakup was driven by an initial increased temperature that cools off as seafloor spreading develops, consistent with a mantle plume model. Variations in mantle composition can explain excess magmatism, but will generate a negative H-Vp correlation. Active mantle convection may increase the flux of mantle rocks through the melting zone above the rate of passive corner flow, which can also produce excessive magmatism. This would produce little H-Vp correlation, and place the curve lower than the passive flow melting curve in the diagram. We have compiled earlier published results with our own analyses of published and unpublished data from different groups to look for systematic variations in the mantle melting mode along the NAIP margins. Earlier studies (Holbrook et al., 2002, White et al, 2008) on the southeast Greenland conjugate system, indicate that the thick igneous crust of the southern NAIP (SE Greenland ? Hatton Bank) was dominated by increased mantle temperature only, while magmatism closer to the southern side of and including the Greenland-Iceland-Færøy Ridge (GIFR) was created by combined temperature increase and active mantle convection. Recent publications (Breivik et al., 2008, White et al, 2008) north of the GIFR for the Norway Basin segment, indicate temperature dominated magmatism between the Jan Mayen Fracture

  10. Carbonatite diversity in the Central Andes: the Ayopaya alkaline province, Bolivia

    NASA Astrophysics Data System (ADS)

    Schultz, Frank; Lehmann, Bernd; Tawackoli, Sohrab; Rössling, Reinhard; Belyatsky, Boris; Dulski, Peter

    2004-12-01

    The Ayopaya province in the eastern Andes of Bolivia, 100 km NW of Cochabamba, hosts a Cretaceous alkaline rock series within a Palaeozoic sedimentary sequence. The alkaline rock association comprises nepheline-syenitic/foyaitic to ijolitic intrusions, carbonatite, kimberlite, melilititic, nephelinitic to basanitic dykes and diatremes, and a variety of alkaline dykes. The carbonatites display a wide petrographic and geochemical spectrum. The Cerro Sapo area hosts a small calciocarbonatite intrusion and a multitude of ferrocarbonatitic dykes and lenses in association with a nepheline-syenitic stock. The stock is crosscut by a spectacular REE-Sr-Th-rich sodalite-ankerite-baryte dyke system. The nearby Chiaracke complex represents a magnesiocarbonatite intrusion with no evidence for a relationship to igneous silicate rocks. The magnesiocarbonatite (Σ REE up to 1.3 wt%) shows strong HREE depletion, i.e. unusually high La/Yb ratios (520 1,500). Calciocarbonatites (Σ REE up to 0.5 wt%) have a flatter REE distribution pattern (La/Yb 95 160) and higher Nb and Zr contents. The sodalite-ankerite-baryte dyke system shows geochemical enrichment features, particularly in Na, Ba, Cl, Sr, REE, which are similar to the unusual natrocarbonatitic lavas of the recent volcano of Oldoinyo Lengai, Tanzania. The Cerro Sapo complex may be regarded as an intrusive equivalent of natrocarbonatitic volcanism, and provides an example for carbonatite genesis by late-stage crystal fractionation and liquid immiscibility. The magnesiocarbonatite intrusion of Chiaracke, on the other hand, appears to result from a primary carbonatitic mantle melt. Deep seated mantle magmatism/metasomatism is also expressed by the occurrence of a kimberlite dyke. Neodymium and strontium isotope data (ɛNd 1.4 5.4, 87Sr/86 Sralkaline magmatism. The magmatism of the Ayopaya region is attributed to failed rifting of western South America during the Mesozoic and

  11. Large igneous provinces and mass extinctions

    NASA Astrophysics Data System (ADS)

    Wignall, P. B.

    2001-03-01

    Comparing the timing of mass extinctions with the formation age of large igneous provinces reveals a close correspondence in five cases, but previous claims that all such provinces coincide with extinction events are unduly optimistic. The best correlation occurs for four consecutive mid-Phanerozoic examples, namely the end-Guadalupian extinction/Emeishan flood basalts, the end-Permian extinction/Siberian Traps, the end-Triassic extinction/central Atlantic volcanism and the early Toarcian extinction/Karoo Traps. Curiously, the onset of eruptions slightly post-dates the main phase of extinctions in these examples. Of the seven post-Karoo provinces, only the Deccan Traps coincide with a mass extinction, but in this case, the nature of the biotic crisis is best reconciled with the effects of a major bolide impact. Intraoceanic volcanism may also be implicated in a relatively minor end-Cenomanian extinction crisis, although once again the main phase of volcanism occurs after the crisis. The link between large igneous province formation and extinctions remains enigmatic; volume of extrusives and extinction intensity are unrelated and neither is there any apparent relationship with the rapidity of province formation. Violence of eruptions (proportions of pyroclastics) also appears unimportant. Six out of 11 provinces coincide with episodes of global warming and marine anoxia/dysoxia, a relationship that suggests that volcanic CO 2 emissions may have an important effect on global climate. Conversely, there is little, if any, geological evidence for cooling associated with continental flood basalt eruptions suggesting little long-term impact of SO 2 emissions. Large carbon isotope excursions are associated with some extinction events and intervals of flood basalt eruption but these are too great to be accounted for by the release of volcanic CO 2 alone. Thus, voluminous volcanism may in some circumstances trigger calamitous global environmental changes (runaway greenhouses

  12. Introduction to the Apollo collections. Part 1: Lunar igneous rocks

    NASA Technical Reports Server (NTRS)

    Mcgee, P. E.; Warner, J. L.; Simonds, C. H.

    1977-01-01

    The basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.

  13. Kinetics of the oxidation of lactose by copper(II) complexed with bipyridyl in alkaline medium using chloro-complex of rhodium(III) in its nano-concentration range as homogeneous catalyst: a spectrophotometric study.

    PubMed

    Kumar Singh, Ashok; Singh, Manjula; Srivastava, Jaya; Rahmani, Shahla

    2012-06-01

    Kinetics of the oxidation of lactose by Cu(II) complexed with bipyridyl have been investigated at 40 °C for the first time spectrophotometrically using Rh(III) chloride as homogeneous catalyst in aqueous alkaline medium in its nano-concentration range. The order of reaction was found to be fractional positive-order, when the concentration of Rh(III) chloride was varied from 0.30×10(-9) M to 6.00×10(-9) M. The reaction shows fractional positive-order kinetics with respect to [lactose] and [OH(-)] and zeroth-order kinetics with respect to [Cu(II)]. The reaction also shows slight increase in the rate by decreasing dielectric constant of the medium and remains unaffected by the change in ionic strength of the medium. The reaction was carried out at four different temperatures and observed values of rate constants were utilized to calculate various activation parameters specially the entropy of activation (ΔS(#)). The species, [RhCl(3)(H(2)O)(2)OH](-), was postulated as the main reactive species of Rh(III) chloride for the oxidation of lactose by Cu(II) in alkaline medium. On the basis of kinetic and equivalence studies together with spectrophotometric information for the formation of a complex, [formula see text] the most appropriate mechanism for the aforesaid reaction has been proposed. Support to the proposed mechanism was also given by the observed activation parameters and multiple regression analysis. Sodium salts of formic acid, arabinonic acid and lyxonic acid were identified as the main oxidation products of the reaction under investigation.

  14. Large igneous provinces linked to supercontinent assembly

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Santosh, M.; Luo, Zhaohua; Hao, Jinhua

    2015-04-01

    Models for the disruption of supercontinents have considered mantle plumes as potential triggers for continental extension and the formation of large igneous provinces (LIPs). An alternative hypothesis of top-down tectonics links large volcanic eruptions to lithospheric delamination. Here we argue that the formation of several LIPs in Tarim, Yangtze, Lhasa and other terranes on the Eurasian continent was coeval with the assembly of the Pangean supercontinent, in the absence of plumes rising up from the mantle transition zone or super-plumes from the core-mantle boundary. The formation of these LIPs was accompanied by subduction and convergence of continents and micro-continents, with no obvious relation to major continental rifting or mantle plume activity. Our model correlates LIPs with lithospheric extension caused by asthenospheric flow triggered by multiple convergent systems associated with supercontinent formation.

  15. Igneous rocks from Apollo 16 rake samples

    NASA Technical Reports Server (NTRS)

    Dowty, E.; Keil, K.; Prinz, M.

    1974-01-01

    Results are reported for a study of seven holocrystalline feldspathic rocks (including a spinel troctolite and six melt rocks) and one mare basalt clast from the Apollo-16 rake samples. The composition and grain structure of each rock is described in detail. Only the spinel troctolite is considered a good candidate for a primary igneous cumulate formed during the original differentiation of the lunar crust. It is shown that the melt rocks probably resulted from shock melting followed by rapid crystallization of heterogeneous highland material and that compositional variations are probably due to mixing of various amounts of heterogeneous cumulates and KREEP components. It is suggested that the mare basalt clast may have been derived from Mare Fecunditatis, although the nearest mare to the Apollo-16 site is Nectaris.

  16. Combined 40Ar/39Ar and Fission-Track study of the Freetown Layered Igneous Complex, Freetown, Sierra Leone, West Africa: Implications for the Initial Break-up of Pangea to form the Central Atlantic Ocean and Insight into the Post-rift Evolution of the Sie

    NASA Astrophysics Data System (ADS)

    Barrie, Ibrahim; Wijbrans, Jan; Andriessen, Paul; Beunk, Frank; Strasser-King, Victor; Fode, Daniel

    2010-05-01

    Sierra Leone lies within the south-western part of the West African Craton and comprises two major Archaean structural divisions: a low-grade granite-greenstone terrane characterised by N-S striking structures and a NW-SE striking highly metamorphosed belt of strained rocks that form the coastal margin of the craton. Intruded into the belt is the Freetown Layered Igneous Complex (FLIC), a tholeiitic magamtic body emplaced prior to or during the break-up of Pangea to form the Central Atlantic Ocean and, forming today the high ground of the coastal outline of Sierra Leone which is one of the most distinctive features on the West African coast. The break-up of Pangaea to form the Central Atlantic and its passive margins began in the Early Jurassic. Geo-tectonically, the break-up was particularly characterised by the formation of the Central Atlantic Magmatic Province (CAMP), covering once-contiguous parts of North America, Europe, Africa and South America. The FLIC forming part of the heart of CAMP is the largest single layered igneous intrusive yet known on either side of the Central Atlantic, measuring on surface, 65 x 14 x 7 km. Geophysical investigations indicate that the intrusion extends offshore to a depth of about 20 km. Geologically the Complex is a rhythmically layered elongated ultramafic-mafic lopolith divisible into 4 major zones each comprising repeated sequences of troctolitic, gabbroic and anorthositic rocks. An idealised unit of layering is from base upwards: dunite, troctolite, olivine-gabbro, leuco-gabbro, gabbro-norite and anorthosite cumulates. 40Ar-39Ar age spectra and 40Ar/36Ar versus 39Ar/36Ar isochron plots obtained by stepwise-heating experiments on plagioclases, biotites and amphiboles from troctolites, olivine-gabbros, gabbro-norites and anorthosites of the four zones yield plateau and isochron ages that seem to depict the cooling history of the Complex after emplacement. The biotites and some of the plagioclases and amphiboles give very

  17. The nakhlite meteorites: Augite-rich igneous rocks from Mars

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    2005-01-01

    analyses show mass-independent fractionations of S isotopes. Nitrogen and noble gases are complex and represent three components: two mantle sources (Chas-E and Chas-S), and fractionated Martian atmosphere. The nakhlites are igneous cumulate rocks, formed from basaltic magma at approx.1.3 Ga, containing excess crystals over what would form from pure magma. After accumulation of their augite and olivine crystals, they were affected (to various degrees) by crystallization of the magma, element diffusion among minerals and magma, chemical reactions among minerals and magma, magma movement among the crystals, and post-igneous chemical equilibration. The extent of these modifications varies, from least to greatest, in the order: MIL03346, NWA817, Y000593, Nakhla = Governador Valadares, Lafayette, and NWA998. Chemical, isotopic, and chronologic data confirm that the nakhlites formed on Mars, most likely in thick lava flows or shallow intrusions. Their crystallization ages, referenced to crater count chronologies for Mars, suggest that the nakhlites formed on the large volcanic constructs of Tharsis, Elysium, or Syrtis Major. The nakhlites were suffused with liquid water, probably at approx.620 ma. This water dissolved olivine and mesostasis glass, and deposited iddingsite and salt minerals in their places. The nakhlites were ejected from Mars at approx.10.75Ma by an asteroid impact and fell to Earth within the last 10,000 years. Although the nakhlites are enriched in incompatible elements, their source mantle was strongly depleted. This depletion event was ancient, as the nakhlites source mantle was fractionated while short-lived radionuclides (e.g., t(sub 1/2 = 9 my) were still active. This differentiation event may have been core formation coupled with a magma ocean, as is inferred for the moon.

  18. Number of Waste Package Hit by Igneous Intrusion

    SciTech Connect

    M. Wallace

    2004-10-13

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios.

  19. Evolution and timing of tectonic events in the Arabia-Eurasia convergence zone as inferred from igneous geochemistry from the EarthChem database

    NASA Astrophysics Data System (ADS)

    Lieu, W. K.; Stern, R. J.

    2011-12-01

    The timing of tectonic events in the Anatolia-Iranian region can be inferred from analysis of igneous rocks. Magmatic activities in the region are generally associated with the convergence of the African-Arabian and Eurasian plates and the subduction of the Neotethys Ocean. Ancillary processes such as subduction of continental crust, delamination of upper plate lithosphere or lower crust, or asthenospheric decompression accompanying post-collisional relaxation also contribute to the composition of igneous rocks. Here we use geochemical data gathered from the EarthChem database to assess broad chemical implications of Cenozoic tectonic activities of the convergence region. We search for geochemical signal of the timing of first contact of the subducting Arabian and overriding Eurasian continental crust. Of particular interest is how igneous rock compositions vary during the transition from pre- to post-contact of the continental crusts. Also, is there a geographic variation along the convergence zone during this tectonic transition? We generate maps and geochemical plots for four different epochs and two different regions since Cenozoic time: Iran and Anatolia in the Eocene, Oligocene, Miocene and Plio-Quaternary. This board, region-scaled analysis of major and trace element patterns suggests the following tectonic events: Subduction-related medium K calc-alkaline igneous rocks reflect Eocene subduction of the Neo-Tethys oceanic lithosphere. Oligocene igneous rocks are characterized by K2O-SiO2 trends scattering to higher silica and alkaline content, which may reflect subduction of stretched continental margin lithosphere and sediments. A bimodal pattern of potash-silica trends during Miocene time may mark the transition from subduction-related to intra-plate magmatism, perhaps signaling contact between the continental crust of Arabia-Africa with Eurasia. Pliocene and younger igneous rocks show an intra-plate and ocean island basalt trend, as the region's activities

  20. Preliminary results, Central Gneiss Complex of the Coast Range batholith, southeastern Alaska: the roots of a high-K, calc-alkaline arc?

    USGS Publications Warehouse

    Barker, F.; Arth, Joseph G.

    1984-01-01

    The Central Gneiss Complex (CGC) of the Coast Range batholith is the oldest unit of the batholith east of Ketchikan, Alaska, being dated by the zircon UPb method (by T.W. Stern) at 128-140 Ma. Heterogeneous, layered, commonly migmatitic, orthogneiss of hornblende-biotite quartz diorite, tonalite, quartz monzodiorite and granodiorite compositions (IUGS terminology) form the major part of the CGC. These gneisses show a range of 50-65% SiO2 and are high in Al2O3 (c. 15-19%), K2O (1.5-4%) and Sr (800-900 ppm). Most major elements show coherent, typically magmatic trends with SiO2. La and Rb show maxima at ??? 58% SiO2. Initial 87Sr/86Sr ratios are relatively high and range from 0.7052 to 0.7066. Wallrocks of the CGC are mostly metagraywacke, pelite and metavolcanic rocks at amphibolite facies; they are geochemically dissimilar to the CGC. Major and minor elements of the CGC are very similar to those of high-K orogenic, calc-alkaline andesitic suites. The CGC may have formed largely by fractionation of mantle-derived, high AlKSr basaltic liquid in an ascending diapir, having hornblende, plagioclase, and biotite as major precipitating phases. The CGC probably represents the plutonic equivalent of a continental-margin or Andean arc that formed when the Taku terrane of the Insular belt on the west collided with the previously emplaced (but also allochthonous) Stikine terrane on the east in Late Jurassic or Early Cretaceous time. ?? 1984.

  1. Automated igneous rock identifiers for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.

    2003-04-01

    A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions [1]. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. Our algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high-resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples. Our prototype image analysis system identifies some igneous rocks from texture and color information. Spectral analysis algorithms have also been developed that successfully identify quartz, silica polymorphs, calcite, pyroxene, and jarosite from both visible/near-IR and mid-IR spectra. We have also developed spectral recognizers that identify high-iron pyroxenes and iron-bearing minerals using visible/near-IR spectra only. We are building a combined image and spectral database of rocks and minerals with which to continue development of our algorithms. Future plans include developing algorithms to identify

  2. Orogenic potassic mafic magmatism, a product of alkaline-peraluminous mixing ? Variscan 'calc-alkaline' rocks from the Central Iberian and Ossa Morena Zones, Central Spain.

    NASA Astrophysics Data System (ADS)

    Scarrow, Jane H.; Cambeses, Aitor; Bea, Fernando; Montero, Pilar; Molina, José F.; Moreno, Juan Antonio

    2013-04-01

    Orogenic magmatic rocks provide information about mantle and crust melt-generation and -interaction processes. In this context, minor potassic mafic stocks which are formed of enriched mantle and crustal components and are common as late-orogenic intrusions in granitic plutons give insight into the timing of new crust formation and crustal recycling. Potassic mafic stocks are prevalent, albeit low volume, constituents of granite batholiths all through the European Variscan (350-280 Ma). In the Central Iberia Zone, Spanish Central System, crustal-melt, S-type, granitoid plutons are intruded by minor concomitant ultramafic-intermediate appinitic-vaugneritic stocks. Notwithstanding their whole-rock calc-alkaline composition, the stocks apparently did not have a subduction-related origin. Recent studies have attributed their genesis to mixing of alkaline mantle and peraluminous crustal melts. Their primary alkaline character, as indicated by amphibole and biotite mineral chemistry data, points, rather, towards an extension-related genesis. In the Ossa Morena Zone, south of the Central Iberian Zone, the igneous rocks also have a whole-rock calc-alkaline composition which has been considered to be the result of northward subduction of the South Portuguese Zone. Nevertheless, identification of a 'sill' of significant volume of mafic magma in the middle crust, the ´IBERSEIS reflective body', in a seismic profile across the Ossa Morena and South Portuguese Zones has cast doubt upon the calc-alkaline magmatism-subduction model; leading, instead, to the magmatism being attributed to intra-orogenic extension related to a mantle plume active from 340 Ma to 330 Ma. The aim here, then, is to reinvestigate the petrogenesis and age of the calc-alkaline rocks of the Ossa Morena Zone to determine their tectonomagmatic context be it subduction-, plume- or extension-related, and establish what they may reveal about mantle-crust interactions. Focussing, initially, on the Valencia del

  3. Igneous rock from Severnyi Kolchim (H3) chondrite: Nebular origin

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Brandstaetter, F.; Kurat, G.

    1993-01-01

    The discovery of lithic fragments with compositions and textures similar to igneous differentiates in unequilibrated ordinary chondrites (UOC's) and carbonaceous chondrites (CC's) has been interpreted as to suggest that planetary bodies existed before chondrites were formed. As a consequence, chondrites (except, perhaps CI chondrites) cannot be considered primitive assemblages of unprocessed nebular matter. We report about our study of an igneous clast from the Severnyi Kolchim (H3) chondrite. The results of the study are incompatible with an igneous origin of the clast but are in favor of a nebular origin similar to that of chondrules.

  4. Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.

  5. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  6. On the weathering of Martian igneous rocks

    NASA Technical Reports Server (NTRS)

    Dreibus, G.; Waenke, H.

    1992-01-01

    Besides the young crystallization age, one of the first arguments for the martian origin of shergottite, nakhlite, and chassignite (SNC) meteorites came from the chemical similarity of the meteorite Shergotty and the martian soil as measured by Viking XRF analyses. In the meantime, the discovery of trapped rare gas and nitrogen components with element and isotope ratios closely matching the highly characteristic ratios of the Mars atmosphere in the shock glasses of shergottite EETA79001 was further striking evidence that the SNC's are martian surface rocks. The martian soil composition as derived from the Viking mission, with its extremely high S and Cl concentrations, was interpreted as weathering products of mafic igneous rocks. The low SiO2 content and the low abundance of K and other trace elements in the martian soils point to a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust. However, the chemical evolution of the martian regolith and soil in respect to surface reaction with the planetary atmosphere or hydrosphere is poorly understood. A critical point in this respect is that the geochemical evidence as derived from the SNC meteorites suggests that Mars is a very dry planet that should have lost almost all its initially large water inventory during its accretion.

  7. Igneous intrusions in coal-bearing sequences

    SciTech Connect

    Gurevich, A.B.; Shishlov, S.B.

    1987-08-01

    Intrusions of various compositions, sizes, and shapes have been observed in 115 out of 620 coal basins or deposits on all the continents. They are mainly subvolcanic and hypabyssal, with depths of emplacement estimated as ranging from a few hundred meters to 6 km, but usually 3-4 km. Compositionally, 42% are basic, 31% intermediate, 23% acid, and 4% ultrabasic. Mafic (and related) rock types include dolerites, trachydolerites, gabbro-dolerites, gabbro-monzonites, monzonites, diabases, gabbrodiabases, and less often gabbros and basalts (subvolcanic bodies). These mafic intrusions occur in coal formations of various ages from Carboniferous through Neogene, but predominate in Paleozoic (47%) and Cenozoic beds (45%). They also occur in coal formations of all genetic types, apart from those on ancient stable platforms, where there are no signs of intrusive activity. The mafic intrusions are almost everywhere associated with comagmatic lavas and tuffs (mainly in the younger strata), and the coal beds themselves are to some extent enriched in pyroclastic material, particularly in the upper horizons. This paper gives a worldwide review of igneous intrusions in coal beds. 24 references.

  8. Insights into Igneous Geochemistry from Trace Element Partitioning

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Hanson, B. Z.

    2001-01-01

    Partitioning of trivalent elements into olivine are used to explore basic issues relevant to igneous geochemistry, such as Henry's law. Additional information is contained in the original extended abstract.

  9. Age and composition of igneous rocks, Edna Mountain quadrangle, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, Ralph L.; Silberman, Miles L.; Marsh, S.P.

    1978-01-01

    Six pulses of igneous activity ranging in age from Jurassic to Pliocene have been identified in the Edna Mountain quadrangle, Humboldt County, Nev. Porphyritic syenite am! quartz monzonite of Jurassic age (146-164 million years) at Buffalo Mountain are highly potassic through a wide range in SiO2 content from olivine-bearing syenite to quartz-rich monzonite, and their composition contrasts sharply with plutons elsewhere in north-central Nevada. Granodiorite and quartz monzonite plutons of Cretaceous age (88- 106 m.y.) are chemically and mineralogically similar to other calc-alkaline plutons in north-central Nevada. Four episodes of Tertiary volcanism include rhyolite ashflow tuffs and slightly younger andesitic basalt flows and tuffs of Oligocene age, rhyolite vitrophyre of late Miocene age, and olivine basalt flows of Pliocene age. Their age and mineralogical and chemical compositions are similar to other Tertiary volcanic rocks in north-central Nevada.

  10. Evaporatic-source model for igneous-related Fe oxide (REE-Cu-Au-U) mineralization

    SciTech Connect

    Barton, M.D.; Johnson, D.A.

    1996-03-01

    We propose that many igneous-related Fe oxide-rich (REE-Cu-Au-U-bearing) deposits form by hydrothermal processes involving evaporitic ligand sources, either coeval salars or older evaporites. These deposits are abundant in both Phanerozoic and Proterozoic extensional continental and continent-margin settings. They commonly form in global arid zones, but they also occur where magmatism is superimposed upon older evaporites. Magmatic compositions exert only second-order control, mainly on alteration mineralogy and on element abundances. Hot S-poor brines generated by interaction with evaporitic materials are consistent with geologic settings and help rationalize the distinctive element enrichments (siderophile, lithophile) and hydrothermal alteration (sodic, locally alkaline) found in these systems. This model contrasts with immiscible oxide melt and magmatic-hydrothermal origins commonly proposed for these deposits, although all three mechanisms can occur. 31 refs., 3 figs., 1 tab.

  11. Some Environmental Consequences of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.

    2009-12-01

    The formation of large igneous provinces (LIPs)—continental flood basalts, ‘volcanic’ margins, and oceanic plateaus—may impact the atmosphere, oceans, and biosphere by rapidly releasing huge amounts of particulates, magmatic volatiles (CO2, SO2, Cl, F, etc.), and potentially volatiles (CO2, CH4, SO2, etc.) from intruded sediments (e.g., carbonates, organic-rich shales, evaporites). A key factor affecting the magnitude of volatile release is whether eruptions are subaerial or marine; hydrostatic pressure inhibits vesiculation and degassing of relatively soluble volatile components (H2O, S, Cl, F) in deep water submarine eruptions, although low solubility components (CO2, noble gases) are mostly degassed even at abyssal depths. Directly or indirectly, such injections may cause changes in the atmosphere/ocean system that can lead to perturbations of atmosphere/ocean chemistry, circulation, ecology, and biological productivity. These changes can be global in extent, particularly if environmental conditions were at or near a threshold state or tipping point. LIPs may have been responsible for some of the most dramatic and rapid changes in the global environment. For example, between ~145 and ~50 Ma, the global ocean was characterized by chemical and isotopic variations (especially in C and Sr isotope ratios, trace metal concentrations, and biocalcification), relatively high temperatures, high relative sea level, episodic deposition of black shales (oceanic anoxic events), high production of hydrocarbons, mass extinctions of marine organisms, and radiations of marine flora and fauna. Temporal correlations between the intense pulses of igneous activity associated with LIP formation and environmental changes suggest more than pure coincidence. The 1783-84 eruption of Laki on Iceland provides the only historical record of the type of volcanism that constructs transient LIPs. Although Laki produced a basaltic lava flow representing only ~1% of the volume of a typical

  12. Charge Generation and Propagation in Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    2000-01-01

    Resistivity changes, ground potentials, electromagnetic (EM) and luminous signals prior to or during earthquakes have been reported, in addition to ground uplift and tilt, and to changes in the seismic wave propagation parameters. However, no physical model exists that ties these diverse phenomena together. Through time-resolved impacts experiments it has been observed that, when igneous rocks (gabbro, diorite, granite) are impacted at low velocities (approx. 100 m/sec), highly mobile electronic charge carriers are generated, spreading from a small volume near the impact point, causing electric potentials, EM and light emission. The rock becomes momentarily conductive. When impacted at higher velocities (approx. 1.5 km/sec), the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. At the same time, the rock volume is filled with mobile charge carriers, and a positive surface potential is registered. During the next 1-2 msec the surface potential oscillates, due to electron injection from ground. These observations are consistent with positive holes, e.g. defect electrons in the O(2-) sublattice, that can travel via the O 2p-dominated valence band of the silicate minerals at the speed of a phonon-mediated charge transfer. Before activation, the positive hole charge carriers lay dormant in form of positive hole pairs, PHP, electrically inactive, chemically equivalent to peroxy links in the structures of constituent minerals. PHPs are introduced by way of hydroxyl (O3Si-OH) incorporated into nominally anhydrous minerals when they crystallize in water-laden environments. Given that sound waves of even relatively low intensity appear to cause PHPs dissociation, thus generating mobile positive holes, it is proposed that microfracturing during rock deformation cause PHP dissociation. Depending on where and how much the rock volume is stressed, the positive holes are expected to form fluctuating charge clouds in the

  13. On the Basic Principles of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2014-12-01

    How and why Differentiation occurs has dominated Igneous Petrology since its beginning (~1880) even though many of the problems associated with it have been thoroughly solved. Rediscovery of the proverbial wheel with new techniques impedes progress. As soon as thin section petrography was combined with rock and mineral chemistry, rock diversity, compositional suites, and petrographic provinces all became obvious. The masterful 1902 CIPW norm in a real sense solved the chemical mystery of differentiation: rocks are related by the addition and subtraction of minerals in the anciently appreciated process of fractional crystallization. Yet few believed this, even after phase equilibria arrived. Assimilation, gas transfer, magma mixing, Soret diffusion, immiscibility, and other processes had strong adherents, even though by 1897 Becker conclusively showed the ineffectiveness of molecular diffusion in large-scale processes. The enormity of heat to molecular diffusion (today's Lewis no.) should have been convincing; but few paid attention. Bowen did, and he refined and restated the result; few still paid attention. And in spite of his truly masterful command of experiment and field relations in promoting fractional crystallization, Fenner and others fought him with odd arguments. The beauty of phase equilibria eventually dominated at the expense of knowing the physical side of differentiation. Bowen himself saw and struggled with the connection between physical and chemical processes. Progress has come from new concepts in heat transfer, kinetics, and slurry dynamics. The key approach is understanding the dynamic competition between spatial rates of solidification and all other processes. The lesson is clear: Scholarship and combined field, laboratory and technical expertise are critical to understanding magmatic processes. Magma is a limitlessly enchanting and challenging material wherein physical processes buttressed by chemistry govern.

  14. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  15. Combined 40Ar/39Ar and Fission-Track study of the Freetown Layered Igneous Complex, Freetown, Sierra Leone, West Africa: Implications for the Initial Break-up of Pangea to form the Central Atlantic Ocean and Insight into the Post-rift Evolution of the Sie

    NASA Astrophysics Data System (ADS)

    Barrie, Ibrahim; Wijbrans, Jan; Andriessen, Paul; Beunk, Frank; Strasser-King, Victor; Fode, Daniel

    2010-05-01

    Sierra Leone lies within the south-western part of the West African Craton and comprises two major Archaean structural divisions: a low-grade granite-greenstone terrane characterised by N-S striking structures and a NW-SE striking highly metamorphosed belt of strained rocks that form the coastal margin of the craton. Intruded into the belt is the Freetown Layered Igneous Complex (FLIC), a tholeiitic magamtic body emplaced prior to or during the break-up of Pangea to form the Central Atlantic Ocean and, forming today the high ground of the coastal outline of Sierra Leone which is one of the most distinctive features on the West African coast. The break-up of Pangaea to form the Central Atlantic and its passive margins began in the Early Jurassic. Geo-tectonically, the break-up was particularly characterised by the formation of the Central Atlantic Magmatic Province (CAMP), covering once-contiguous parts of North America, Europe, Africa and South America. The FLIC forming part of the heart of CAMP is the largest single layered igneous intrusive yet known on either side of the Central Atlantic, measuring on surface, 65 x 14 x 7 km. Geophysical investigations indicate that the intrusion extends offshore to a depth of about 20 km. Geologically the Complex is a rhythmically layered elongated ultramafic-mafic lopolith divisible into 4 major zones each comprising repeated sequences of troctolitic, gabbroic and anorthositic rocks. An idealised unit of layering is from base upwards: dunite, troctolite, olivine-gabbro, leuco-gabbro, gabbro-norite and anorthosite cumulates. 40Ar-39Ar age spectra and 40Ar/36Ar versus 39Ar/36Ar isochron plots obtained by stepwise-heating experiments on plagioclases, biotites and amphiboles from troctolites, olivine-gabbros, gabbro-norites and anorthosites of the four zones yield plateau and isochron ages that seem to depict the cooling history of the Complex after emplacement. The biotites and some of the plagioclases and amphiboles give very

  16. Paleomagnetism of large igneous provinces: case-study from West Greenland, North Atlantic igneous province

    NASA Astrophysics Data System (ADS)

    Riisager, Janna; Riisager, Peter; Pedersen, Asger Ken

    2003-09-01

    We present new paleomagnetic and multi-model stereo photogrammetry data from lava sequences in the West Greenland part of the North Atlantic igneous province (NAIP). The joint analyses of paleomagnetic and photogrammetric data yield a well-defined paleomagnetic pole located at Lat=73.6°N, Long=160.5°E ( N=44, α95=6.2°, K=13.1; age ˜61-55 Ma), which is statistically indistinguishable from a pole recently obtained for the Eurasian part of the NAIP on Faroe Islands [Riisager et al., Earth Planet. Sci. Lett. 201 (2002) 261-276]. Combining the two datasets we obtain a joint NAIP paleomagnetic pole in Greenland coordinates: Lat=71.1°N, Long=161.1°E ( N=87, α95=4.3°, K=13.6; age ˜61-54 Ma). The results presented here represent the first study in which photogrammetry profiles were photographed at the exact same locations where paleomagnetic fieldwork was carried out, and a direct flow-to-flow comparison of the two datasets is possible. Photogrammetry is shown to be particularly useful because of (i) highly precise dip/strike measurements and (ii) detailed 'field observations' that can be made in the laboratory. Highly precise determination of the structural attitude of well-exposed Kanisut Mb lava sequences demonstrates that their apparently reliable in-field dip/strike measurements typically are up to ˜6° wrong. Erroneous dip/strike readings are particularly problematic as they offset paleomagnetic poles without affecting their confidence limits. Perhaps more important for large igneous provinces is the recognition of a variable temporal relationship between consecutive lava flows. We demonstrate how correct interpretation of paleosecular variation, facilitated by the detailed photogrammetry analysis, is crucial for the rapidly emplaced Vaigat Formation lavas. Inaccurate tectonic correction, non-averaged paleosecular variation and unrecognized excursional directions may, perhaps, explain why coeval paleomagnetic poles from large igneous provinces are often

  17. Mg Isotopes of USGS Igneous Rock Standards

    NASA Astrophysics Data System (ADS)

    Huang, F.; Glessner, J. J.; Lundstrom, C. C.

    2008-12-01

    Magnesium has three stable isotopes, 24Mg, 25Mg, and 26Mg with abundances of 78.99%, 10.00%, and 11.01%, respectively. It is one of the most abundant elements in the crust and mantle. As advancements of analytical techniques using MC-ICP-MS have dramatically advanced our ability to measure isotope ratios of Mg with greater precision, Mg isotopes can now be applied to study a variety of fundamental geological processes, such as continental crust weathering, chemical diffusion, and chondrule formation. Therefore the need for well characterized Mg isotope ratios for geological materials is increasingly important. Routine measurement of readily-available USGS rock standards is a viable way for inter-lab comparison to show the quality of data. However, the Mg isotope data for USGS standards reported in the literature are limited and inconsistent. USGS standards reported by different MC-ICP-MS labs have a range of Mg isotopic data outside of the normal external error of 0.1‰ (2σ). Mg isotopes of USGS igneous rock standards (dunite, DTS-1; basalts, BCR-1, BCR-2, BHVO-1; and andesite, AGV-1) were measured by a sample-standard bracketing method using a low resolution MC-ICP- MS (Nu-Plasma HR). The method has a large tolerance of matrix bias with Na/Mg and Al/Mg > 100% only changing the δ26Mg by less than 0.1‰. Dilution effects do not cause significant error (< 0.1‰) until the concentration difference between standard and sample is greater than 25%. The isobaric interference of CN+ on 26Mg was avoided by measuring Mg signal on the low mass shoulder. Only purified samples with excellent yields (>99.5%) and acceptable concentrations of matrix (mainly Na, Al, Ca, and Fe) are included in these results. Duplicate analyses of independently processed standards yielded the following results (δ26MgDSM-3 (‰)): BCR-2 (-0.306±0.144, - 0.290±0.116, -0.283±0.048, -0.288±0.057), BCR-1 (-0.399±0.079, -0.346±0.046), AGV-1 (-0.295±0.110, -0.307±0.086, -0.339±0.068), BHVO-1

  18. Ocean anoxia and large igneous provinces

    NASA Astrophysics Data System (ADS)

    Ruhl, Micha; Bjerrum, Christian J.; Canfield, Donald E.; Korte, Christoph; Stemmerik, Lars; Frei, Robert

    2013-04-01

    Earth's history is marked by multiple events of ocean anoxia developing along continental margins and potentially into the open ocean realm. These events often coincide with the emplacement of large igneous provinces (LIPs) on continents, major perturbations of global geochemical cycles and marine (mass) extinction. The geographic and temporal extend and the intensity (ferruginous vs. euxinic) of anoxic conditions is often, however, poorly constraint. This complicates understanding of close coupling between Earth's physical, chemical and biological processes. We studied ocean redox change over two major mass extinction events in Earth history, the Permian-Triassic (at ~252 Ma) and Triassic-Jurassic (at ~201.3 Ma) mass extinctions. Both extinction events are marked by a major perturbation of the global exogenic carbon cycle (and associated major negative carbon isotope excursion (CIE)), likely initiated by carbon outgassing of the Siberian Traps and the Central Atlantic Magmatic Province (CAMP), respectively. We compare Permian-Triassic and Triassic-Jurassic ocean redox change along continental margins in different geographic regions (Permian-Triassic: Greenland, Svalbard, Iran; Triassic-Jurassic: UK, Austria) and discuss its role in marine mass extinction. We show strongly enhanced sedimentary redox-sensitive trace element concentrations (e.g. Mo) during both events. However, increased Permian-Triassic values are in all localities distinctly delayed relative to the associated negative CIE. Triassic-Jurassic values are only delayed in the oceanographically restricted western Germanic basin (UK) while increased Mo-values in the north-western Tethys Ocean (Austria) directly match the onset of the associated negative CIE. Speciation of iron [giving (Fe-HR/ Fe-T) and (Fe(Py)/ Fe-HR)] in the Triassic-Jurassic western Germanic basin (UK) however shows close coupling between the onset of the global carbon cycle perturbation and a shift to anoxic and even euxinic conditions

  19. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European

  20. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  1. Origins of large igneous provinces: Thermal or chemical? (Invited)

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2010-12-01

    Large igneous provinces such as continental flood basalts and oceanic plateaus are commonly believed to be caused by massive thermal anomalies in the mantle, or more specifically, mantle plume heads possibly rising from the core-mantle boundary. The existence of such plume heads is more elusive than that of mantle plumes, because there is no currently ongoing formation of continental flood basalt or oceanic plateau, so potential evidence for plume heads must come from the detailed analysis of their fossil traces, i.e., their melting products represented as igneous crust. Compared to petrological and geochemical inference based on surface lavas, seismological studies on large igneous provinces have the advantage of probing the entire crustal section, thereby providing potentially more robust constraints on primary melt composition and the nature of the source mantle. In this talk, I will review the debates over the North Atlantic igneous province, which includes the Iceland hotspot, as well as discuss the prospects of studying oceanic plateaus for providing key information to resolve the origins of large igneous provinces.

  2. Magnetostratigraphy of the Etendeka Large Igneous Province, Namibia.

    NASA Astrophysics Data System (ADS)

    Dodd, S. C.; Muxworthy, A. R.; Mac Niocaill, C.

    2014-12-01

    The Paraná - Etendeka large igneous province (≈ 135 Ma) has not been linked to a known mass extinction event, despite large igneous provinces being postulated as a cause. The reason why some large igneous provinces appear the cause of huge fluctuations in the global biosphere, an example being the link between Siberian trap volcanism and the Permo-Triassic boundary, while others seem to have only a minor effect is still debated. Establishing detailed histories of these large igneous provinces is important for understanding why such variations in effect may occur. Why does the volume of the province not reflect the magnitude of the effects seen? During the early Cretaceous, reversals of Earth's magnetic field were more frequent than at other times in Earth's history. Magnetostratigraphy is therefore a tool capable of providing high resolution constraints on the history and duration of the Paraná - Etendeka large igneous province volcanism. Detailed sampling of the Etendeka volcanic stratigraphy, followed by progressive demagnetisation of 893 specimens, yields 70 individual polarities gained from throughout the central volcanic succession. Correlation of the individual sections sampled reveals a minimum of 16 separate polarities are recorded. Subsequent links to the geomagnetic polarity timescale suggest a minimum province duration of > 1 Myrs, with no obvious period of short, high volume volcanism as is often suggested. A protracted duration (>1Myr) may therefore provide the reason why at least the Paraná - Etendeka appears to have no associated extinction event.

  3. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component

    NASA Astrophysics Data System (ADS)

    Tolstikhin, I. N.; Kamensky, I. L.; Marty, B.; Nivin, V. A.; Vetrin, V. R.; Balaganskaya, E. G.; Ikorsky, S. V.; Gannibal, M. A.; Weiss, D.; Verhulst, A.; Demaiffe, D.

    2002-03-01

    During the Devonian magmatism (370 Ma ago) ˜20 ultrabasic-alkaline-carbonatite complexes (UACC) were formed in the Kola Peninsula (north-east of the Baltic Shield). In order to understand mantle and crust sources and processes having set these complexes, rare gases were studied in ˜300 rocks and mineral separates from 9 UACC, and concentrations of parent Li, K, U, and Th were measured in ˜70 samples. 4He/ 3He ratios in He released by fusion vary from pure radiogenic values ˜10 8 down to 6 × 10 4. The cosmogenic and extraterrestrial sources as well as the radiogenic production are unable to account for the extremely high abundances of 3He, up to 4 × 10 -9 cc/g, indicating a mantle-derived fluid in the Kola rocks. In some samples helium extracted by crushing shows quite low 4He/ 3He = 3 × 10 4, well below the mean ratio in mid ocean ridge basalts (MORB), (8.9 ± 1.0) × 10 4, indicating the contribution of 3He-rich plume component. Magnetites are principal carriers of this component. Trapped 3He is extracted from these minerals at high temperatures 1100°C to 1600°C which may correspond to decrepitation or annealing primary fluid inclusions, whereas radiogenic 4He is manly released at a temperature range of 500°C to 1200°C, probably corresponding to activation of 4He sites degraded by U, Th decay. Similar 4He/ 3He ratios were observed in Oligocene flood basalts from the Ethiopian plume. According to a paleo-plate-tectonic reconstruction, 450 Ma ago the Baltica (including the Kola Peninsula) continent drifted not far from the present-day site of that plume. It appears that both magmatic provinces could relate to one and the same deep-seated mantle source. The neon isotopic compositions confirm the occurrence of a plume component since, within a conventional 20Ne/ 22Ne versus 21Ne/ 22Ne diagram, the regression line for Kola samples is indistinguishable from those typical of plumes, such as Loihi (Hawaii). 20Ne/ 22Ne ratios (up to 12.1) correlate well with 40

  4. Oxidative mobilization of cerium and uranium and enhanced release of "immobile" high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Kraemer, Dennis; Kopf, Sebastian; Bau, Michael

    2015-09-01

    Polyvalent trace elements such as the high field strength elements (HFSE) are commonly considered rather immobile during low-temperature water-rock interaction. Hence, they have become diagnostic tools that are widely applied in geochemical studies. We present results of batch leaching experiments focused on the mobilization of certain HFSE (Y, Zr, Hf, Th, U and rare earth elements) from mafic, intermediate and felsic igneous rocks in the presence and absence, respectively, of the siderophore desferrioxamine B (DFOB). Our data show that DFOB strongly enhances the mobility of these trace elements during low-temperature water-rock interaction. The presence of DFOB produces two distinct features in the Rare Earths and Yttrium (REY) patterns of leaching solutions, regardless of the mineralogical and chemical composition or the texture of the rock type studied. Bulk rock-normalized REY patterns of leaching solutions with DFOB show (i) a very distinct positive Ce anomaly and (ii) depletion of La and other light REY relative to the middle REY, with a concave downward pattern between La and Sm. These features are not observed in experiments with hydrochloric acid, acetic acid or deionized water. In DFOB-bearing leaching solutions Ce and U are decoupled from and selectively enriched relative to light REY and Th, respectively, due to oxidation to Ce(IV) and U(VI). Oxidation of Ce3+ and U4+ is promoted by the significantly higher stability of the Ce(IV) and U(VI) DFOB complexes as compared to the Ce(III) and U(IV) DFOB complexes. This is similar to the relationship between the Ce(IV)- and Ce(III)-pentacarbonate complexes that cause positive Ce anomalies in alkaline lakes. However, while formation of Ce(IV) carbonate complexes is confined to alkaline environments, Ce(IV) DFOB complexes may produce positive Ce anomalies even in mildly acidic and near-neutral natural waters. Siderophore-promoted dissolution processes also significantly enhance mobility of other 'immobile' HFSE

  5. Origin of igneous meteorites and differentiated asteroids

    NASA Astrophysics Data System (ADS)

    Scott, E.; Goldstein, J.; Asphaug, E.; Bottke, W.; Moskovitz, N.; Keil, K.

    2014-07-01

    Introduction: Igneously formed meteorites and asteroids provide major challenges to our understanding of the formation and evolution of the asteroid belt. The numbers and types of differentiated meteorites and non-chondritic asteroids appear to be incompatible with an origin by fragmentation of numerous Vesta-like bodies by hypervelocity impacts in the asteroid belt over 4 Gyr. We lack asteroids and achondrites from the olivine-rich mantles of the parent bodies of the 12 groups of iron meteorites and the ˜70 ungrouped irons, the 2 groups of pallasites and the 4--6 ungrouped pallasites. We lack mantle and core samples from the parent asteroids of the basaltic achondrites that do not come from Vesta, viz., angrites and the ungrouped eucrites like NWA 011 and Ibitira. How could core samples have been extracted from numerous differentiated bodies when Vesta's basaltic crust was preserved? Where is the missing Psyche family of differentiated asteroids including the complementary mantle and crustal asteroids [1]? Why are meteorites derived from far more differentiated parent bodies than chondritic parent bodies even though C and S class chondritic asteroids dominate the asteroid belt? New paradigm. Our studies of meteorites, impact modeling, and dynamical studies suggest a new paradigm in which differentiated asteroids accreted at 1--2 au less than 2 Myr after CAI formation [2]. They were rapidly melted by 26Al and disrupted by hit-and-run impacts [3] while still molten or semi-molten when planetary embryos were accreting. Metallic Fe-Ni bodies derived from core material cooled rapidly with little or no silicate insulation less than 4 Myr after CAI formation [4]. Fragments of differentiated planetesimals were subsequently tossed into the asteroid belt. Meteorite evidence for early disruption of differentiated asteroids. If iron meteorites were samples of Fe-Ni cores of bodies that cooled slowly inside silicate mantles over ˜50--100 Myr, irons from each core would have

  6. Uranium and other element analyses of igneous rocks of Arkansas

    SciTech Connect

    Steele, K.F.

    1982-05-01

    Seventy-six samples of igneous rocks representing a variety of rock types and locations in Arkansas were analyzed by neutron activation analysis for the elements U, Th, Na, Al, Sc, Ti, V, Mn, Fe, La, Ce, Sm, Eu, Dy, Yb, Lu, and Hf. Samples were collected from the major igneous intrusions at Granite Mountain, Bauxite, Magnet Cove, Potash Sulfur Springs, and Murfreesboro, representing various syenites, lamprophyres, carbonatite, kimberlite, and periodotite. To make the data available for public use without further delay, this report is being issued without the normal technical and copy editing.

  7. Volcanic and Igneous Plumbing Systems: State-of-the-Art and Future Developments

    NASA Astrophysics Data System (ADS)

    Galland, Olivier; Burchardt, Steffi; Troll, Valentin

    2013-04-01

    The dynamics of volcanic and igneous plumbing systems (VIPS) are governed by complex interacting chemical and mechanical processes, which control how magmas stall or propagate through the Earth's crust, the way they are emplaced, and the dynamics of their eruption. In addition, these processes control dramatic volcanotectonic phenomena such as caldera and sector collapse. Traditionally, the study of the dynamics of VIPS is method based, and relatively limited bridges between the distinct methodological approaches exist. Consequently, studies that employ different methods often lead to contradictory conclusions, illustrating a need for integrated multidisciplinary research approaches.

  8. The Kenna ureilite - An ultramafic rock with evidence for igneous, metamorphic, and shock origin

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.; Brown, H. G.; Keil, K.; Carter, N. L.; Mercier, J.-C. C.; Huss, G.

    1976-01-01

    Ureilites are a rare group of achondrites. They are composed mainly of olivine and pigeonite in a matrix of carbonaceous material, including graphite, lonsdaleite, diamond, and metal. In most respects Kenna is a typical ureilite with the requisite mineralogical and chemical properties of the group. Differences of the Kenna ureilite from previously studied ureilites are related to a greater density, the occurrence of exceedingly minute quantities of feldspar, and a very strong elongation lineation of the silicate minerals. A description is presented of a study which indicates a complex history for Kenna, including igneous, mild metamorphic, and shock processes.

  9. Igneous Petrogenesis of Tequila Volcano, Western Mexico

    NASA Astrophysics Data System (ADS)

    Vázquez-Duarte, A.; Gómez-Tuena, A.; Díaz-Bravo, B.

    2011-12-01

    Tequila volcano belongs to a Quaternary volcanic chain that runs in parallel to the Middle American Trench, but that have been constructed within the so-called Tepic-Zacoalco rift: an extensional tectonic structure that has been active for the past 3.5 Ma. This unusual tectonic setting, and the existence of a high-resolution stratigraphy for the Tequila Volcanic Field (Lewis-Kenedi, 2005, Bull Volcanol), provide an excellent opportunity to study andesite petrogenesis. New comprehensive geochemical data allow the recognition of at least four different magmatic series around Tequila: 1) The Santa Rosa intraplate basalts (1.0 - 0.2 Ma), a volcanic plateau constructed along the Santiago River Fault north of Tequila volcano. These Na-alkaline basalts are olivine-phyric, have negligible subduction signatures (Ba/Nb= 11.75 - 49.36), and display Sr-Nd-Pb isotopic compositions that correlate with fractionation indexes, probably indicating melt-crust interactions. 2) A group of vitreous domes and flows of dacitic to rhyolitic compositions, mostly contemporaneous to the Santa Rosa basalts, that were emplaced on the periphery of Tequila volcano. These rocks can have very low Sr and Eu contents but their isotopic compositions are remarkably constant and similar to the Santa Rosa basalts, probably indicating a genetic link through low pressure fractionation in the stability field of plagioclase. 3) The main edifice of Tequila volcano (~0.2 Ma) is made of two pyroxene andesites and dacites with strong subduction signatures (Ba/Nb= 53-112), that inversely correlate with MgO contents, but that follow a diverging evolutionary trend as the rest of the sequences. The isotopic compositions of Tequila main edifice can extend to slightly more enriched values, but do not correlate with fractionation indexes, thus indicating provenance from a different source. 4) The youngest activity on Tequila volcano (~0.09 Ma) is represented by amphibole bearing andesites that erupted through the

  10. Geochemistry of primary-carbonate bearing K-rich igneous rocks in the Awulale Mountains, western Tianshan: Implications for carbon-recycling in subduction zone

    NASA Astrophysics Data System (ADS)

    Yang, Wu-Bin; Niu, He-Cai; Shan, Qiang; Chen, Hua-Yong; Hollings, Pete; Li, Ning-Bo; Yan, Shuang; Zartman, Robert E.

    2014-10-01

    Arc magmatism plays an important role in the recycling of subducted carbon and returning it to the surface. However, the transfer mechanisms of carbon are poorly understood. In this study, the contribution of subducted carbonate-rich sediments to the genesis of the carbonate-bearing K-rich igneous rocks from western Tianshan was investigated. Four key triggers are involved, including sediments subduction, slab decarbonation, partial melting and magma segregation. The globular carbonate ocelli show C-O isotope signatures intermediate between oceanic sediments and mantle, suggesting that the carbon of the primary carbonate ocelli was derived from recycled subducted sediments in the mantle. Decarbonation of the subducted slab is regarded as the primary agent to carbonize the mantle wedge. Geochemical features indicate that the carbonate ocelli are primary, and that the parental K- and carbon-rich mafic alkaline magma was derived from partial melting of carbonated mantle wedge veined with phlogopite. Major and trace element compositions indicate that globular carbonate ocelli hosted in the Bugula K-rich igneous rocks are calcio-carbonate and formed primarily by segregation of the differentiated CO2-rich alkaline magma after crystallization fractionation. The K-rich alkaline magma, which formed from partial melting of metasomatized (i.e., phlogopite bearing) mantle wedge in the sub-arc region, is a favorable agent to transport subducted carbon back to the Earth's surface during carbon recycling in subduction zones, because of the high CO2 solubility in alkaline mafic magma. We therefore propose a model for the petrogenesis of the carbonate-bearing K-rich igneous rocks in western Tianshan, which are significant for revealing the mechanism of carbon recycling in subduction zones.

  11. The Mount Kozak magmatic complex, Western Anatolia

    NASA Astrophysics Data System (ADS)

    Altunkaynak, Ş.; Yılmaz, Y.

    1998-10-01

    The Mount Kozak igneous complex is located close to the towns of Ayvalık, Bergama and Burhaniye in the Western Anatolia, Turkey. Magmatic activity occurred during the Late Oligocene-Early Miocene, beginning with the emplacement of the Kozak pluton. Sheet intrusive rocks formed around it coevally. They are surrounded by the volcanic rocks, partly contemporaneously with the emplacement of the granitic rocks during the Early Miocene. The Upper Oligocene-Lower Miocene magmatic rocks of the Kozak region are represented by a high-K, calc-alkaline suite of predominantly intermediate and acidic composition. Their geochemical characteristics suggest that the magmas are hybrid, and were formed from a similar source, representing mantle-derived magmas, contaminated by crustal materials. The cogenetic plutonic rocks, the hypabyssal rocks and the overlying volcanic associations are related to one another in space and time, and appear to have been connected to a shallow level granitic intrusion in a caldera collapse setting. The calc-alkaline magmatic activity waned during the Middle Miocene. When the volcanism was rejuvenated during the Late Miocene-Pliocene, alkaline basalt lavas were formed as fissure eruptions.

  12. Characterization of Arctic Highly Magnetic Domains - the Geophysical Expression of Inferred Large Igneous Province(s)

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G.; Miller, E. L.; Jackson, R.

    2012-12-01

    The magnetic anomalies of the high arctic are dominated by a large domain (1000 x 1700 km; the High Arctic Magnetic High, HAMH) consisting of numerous high-amplitude magnetic high ridges with a complex set of orientations and by other smaller, but still fundamentally highly magnetic, domains. The magnetic potential anomaly field (also known as pseudogravity) of the HAMH shows a single large intensity high and underscores the crustal-scale thickness of this geophysical feature (which also forms a prominent anomaly on satellite magnetic maps). The seafloor morphology of this region includes the complex linear trends of the Alpha and Mendeleev ridges, but the magnetic expression of this domain extends beyond the complex bathymetry to include areas where Canada Basin sediments have covered the complex basement topography. The calculated magnetic effect of the bathymetric ridges matches some of the observed magnetic anomalies, but not others. We have analyzed and modeled the distinctive HAMH and other smaller magnetic high domains to generate estimates of their volume and to characterize the directionality of their component features. Complimentary processing and modeling of high arctic gravity anomalies allows characterization of the density component of these geophysical features. Spatially, the HAMH encompasses the Alpha and Mendeleev "ridges," that are considered to represent a major mafic igneous province. The term "Alpha-Mendeleev Large Igneous Province" is given to a domain mapped by tracing magnetic anomalies in a recent map published by AAPG (Grantz and others, 2009). On this map the province is described as "alkali basalt with ages between 120 and 90 Ma". New seismic and bathymetric data, collected as part of on-going research efforts for definition of extended continental shelf, are revealing new details about the Alpha ridge. One interesting development is the possible identification of a supervolcano that may represent a major locus of igneous activity. In

  13. Occurrences of igneous rocks in the Adriatic Sea: a possible indicator of the Paleozoic supercontinent disintegration

    NASA Astrophysics Data System (ADS)

    Kudrna Prašek, Marko; Petrinec, Zorica; Balen, Dražen

    2014-05-01

    Islands of the Adriatic Sea are part of the Mesozoic Adriatic Dinaridic Carbonate Platform (ADCP) and so are mostly comprised of limestones. Occurrences of igneous rocks inside ADCP are in general extremely rare, with the exception of two small islands, Jabuka and Brusnik, which are completely igneous in origin. Small outcrops of igneous rocks can also be found on the island of Vis. Samples used in this research where gathered on a diving expedition of the islands Jabuka and Brusnik and a previously unknown and unexplored underwater (14-25 m b.s.l.) locality - Brusnik Shoal. Samples are mostly hypidiomorphic holocrystalline medium-grained rocks with a massive, locally ophitic texture. Mineral composition is dominated by clinopyroxene and weakly zoned polysynthetic twins of plagioclase. Subordinate are secondary aggregates of amphibole (uralite), chlorite, sericite, biotite, apatite and fine-grained opâque minerals while microfissures are filled with non-oriented needles of prehnite and calcite. Petrographically, all samples are determined as gabbro to gabbro-diorite. Major and trace element signature, characterized by low content of MgO (2.43-5.01 wt. %), low magnesium number (34-53), low content of Ni and Cr (6-12 and 6-61 ppm, respectively) is typical for calc-alkaline to tholeiitic gabbros and shows that the parental magma was not primitive by nature. Trace element patterns, high LILE/HSFE and chondrite-normalized LREE/HREE ratios (LaN/YbN: 3.27 - 5.26), Eu anomaly (Eu/Eu*: 0.75 - 0.93), low Nb (2.2 - 3.8 ppm) and high Pb (2 - 18 ppm), together with elevated P, Zr, Ti, U, Th, K concentrations studied in this research point to an active marginal setting with significant contribution from the recycled continental crust. Observed geochemical characteristics point to a single igneous event that led to the formation of all studied samples. At the same time, different degrees of crustal contamination, fractionation of pyroxene and plagioclase and/or development of

  14. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  15. Winter Ice and Snow as Models of Igneous Rock Formation.

    ERIC Educational Resources Information Center

    Romey, William D.

    1983-01-01

    Examines some features of ice and snow that offer teachers and researchers help in understanding many aspects of igneous processes and configurations. Careful observation of such processes as melting, decay, evolution, and snow accumulation provide important clues to understanding processes by which many kinds of rocks form. (Author/JN)

  16. The Formation of Igneous CAIs and Chondrules by Impacts?

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Love, Stanley G.

    2001-01-01

    Numerous challenges exist with forming the igneous spheres found within chondrites via collision events in the early solar nebula. We explore these challenges and discuss potential methods to overcome them. Collision models should be received cautiously. Additional information is contained in the original extended abstract.

  17. Geochemistry of subalkaline and alkaline extrusives from the Kermanshah ophiolite, Zagros Suture Zone, Western Iran: implications for Tethyan plate tectonics

    NASA Astrophysics Data System (ADS)

    Ghazi, A. Mohamad; Hassanipak, A. A.

    1999-06-01

    The Kermanshah ophiolite is a highly dismembered ophiolite complex that is located in western Iran and belongs to the Zagros orogenic system. The igneous rocks of this complex consist of both mantle and crustal suites and include peridotites (dunite and harzburgite), cumulate gabbros, diorites, and a volcanic sequence that exhibits a wide range in composition from subalkaline basalts to alkaline basalts to trachytes. The associated sedimentary rocks include a variety of Upper Triassic to Lower Cretaceous deep- and shallow-water sedimentary rocks (e.g., dolomite, limestone, and pelagic sediments, including umber). Also present are extensive units of radiolarian chert. The geochemical data clearly identifies some of the volcanic rocks to have formed from two distinct types of basaltic melts: (i) those of the subalkaline suite, which formed from an initial melt with a light rare earth elements (LREE) enriched signature and incompatible trace element patterns that suggest an island arc affinity; and (ii) those of the alkaline suite with LREE-enriched signature and incompatible trace element patterns that are virtually identical to typical oceanic island basalt (OIB) pattern. The data also suggests that the trachytes were derived from the alkaline source, with fractionation controlled by extensive removal of plagioclase and to a lesser extent clinopyroxene. The presence of compositionally diverse volcanics together with the occurrence of a variety of Triassic-Cretaceous sedimentary rocks and radiolarian chert indicate that the studied volcanic rocks from the Kermanshah ophiolite represent off-axis volcanic units that were formed in intraplate oceanic island and island arc environments in an oceanic basin. They were located on the eastern and northern flanks of one of the spreading centers of a ridge-transform fault system that connected Troodos to Oman prior to its subduction under the Eurasian plate.

  18. Breakup magmatism style on the North Atlantic Igneous Province: insight from Mid-Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Mansour Abdelmalak, Mohamed; Faleide, Jan Inge; Planke, Sverre; Theissen-Krah, Sonja; Zastrozhnov, Dmitrii; Breivik, Asbjørn Johan; Gernigon, Laurent; Myklebust, Reidun

    2014-05-01

    The distribution of breakup-related igneous rocks on rifted margins provide important constraints on the magmatic processes during continental extension and lithosphere separation which lead to a better understanding of the melt supply from the upper mantle and the relationship between tectonic setting and volcanism. The results can lead to a better understanding of the processes forming volcanic margins and thermal evolution of associated prospective basins. We present a revised mapping of the breakup-related igneous rocks in the NE Atlantic area, which are mainly based on the Mid-Norwegian (case example) margin. We divided the breakup related igneous rocks into (1) extrusive complexes, (2) shallow intrusive complexes (sills/dykes) and (3) deep intrusive complexes (Lower Crustal Body: LCB). The extrusive complex has been mapped using the seismic volcanostratigraphic method. Several distinct volcanic seismic facies units have been identified. The top basalt reflection is easily identified because of the high impedance contrast between the sedimentary and volcanic rocks resulting in a major reflector. The basal sequence boundary is frequently difficult to identify but it lies usually over the intruded sedimentary basin. Then the base is usually picked above the shallow sill intrusions identified on seismic profile. The mapping of the top and the base of the basaltic sequences allows us to determine the basalt thickness and estimate the volume of the magma production on the Mid- Norwegian margin. The thicker part of the basalt corresponds to the seaward dipping reflector (SDR). The magma feeder system, mainly formed by dyke and sill intrusions, represents the shallow intrusive complex. Deeper interconnected high-velocity sills are also mappable in the margin. Interconnected sill complexes can define continuous magma network >10 km in vertical ascent. The large-scale sill complexes, in addition to dyke swarm intrusions, represent a mode of vertical long-range magma

  19. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  20. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  1. Empirical equation for igneous calcic amphibole geobarometry

    SciTech Connect

    Hammarstrom, J.M.; Zen, E.

    1985-01-01

    The octahedral (Al/sup vi/) aluminum content of amphibole (am) is frequently cited as a pressure sensitive parameter. A positive correlation between total (Al/sup T/) and tetrahedral (Al/sup lv/) aluminum, defined by a single linear trend, is observed for calcic am from 6 calc-alkalic tonalite- and granodiorite-dominant plutonic complexes which have similar 1) mineral assemblages, 2) bulk composition, 3) crystallization temperature ranges, and 4) oxygen fugacities. The 6 complexes vary from 1 to 8-10 kbar in estimated pressure (P) of emplacement based on one or more of the following criteria: associated regional/contact metamorphism, reconstructed overburden, cooling history, presence of magmatic epidote, and/or grossular-almandine garnet, and presence of miarolites. Am from each complex are compositionally variable, largely due to the strong dependence of Al/sup iv/ on temperature; e.g., Al/sup T/ values, calculated for 23 oxygens per formula unit, range from 0.6 to 1.8 and 1.7 to 2.7 in complexes with estimated emplacement pressures of 2 and 8 kbar, respectively. The entire range of microprobe analyses from these complexes and others indicate this empirical geobarometer: P (kbar) = -3.89 + 5.04 Al/sup T/, +/- 2 kbar standard error on the pressure estimate. Al/sup T/ is preferred over Al/sup vi/ as the independent parameter because it is not a difference between two large numbers, and is less sensitive to errors in site assignments and ferric iron estimates from microprobe data.

  2. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  3. Geochemistry of Rock Samples Collected from the Iron Hill Carbonatite Complex, Gunnison County, Colorado

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2008-01-01

    A study conducted in 2006 by the U.S. Geological Survey collected 57 surface rock samples from nine types of intrusive rock in the Iron Hill carbonatite complex. This intrusive complex, located in Gunnison County of southwestern Colorado, is known for its classic carbonatite-alkaline igneous geology and petrology. The Iron Hill complex is also noteworthy for its diverse mineral resources, including enrichments in titanium, rare earth elements, thorium, niobium (columbium), and vanadium. This study was performed to reexamine the chemistry and metallic content of the major rock units of the Iron Hill complex by using modern analytical techniques, while providing a broader suite of elements than the earlier published studies. The report contains the geochemical analyses of the samples in tabular and digital spreadsheet format, providing the analytical results for 55 major and trace elements.

  4. Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.; Wheat, C. G.

    2010-12-01

    The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.

  5. Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, E.; Mendoza-Borunda, R.

    2014-12-01

    Measurement of the anisotropy of magnetic susceptibility (AMS) of igneous rocks can provide clues concerning their mechanism of formation and in particular are very helpful as flow direction indicators. Unlike other igneous rocks, however, pyroclastic density current deposits (PDCDs) present a challenge in the interpretation of AMS measurements due to the complexity of their mechanism of emplacement. In this paper we review the most common assumptions made in the interpretation of the AMS of PDCD, taking advantage of key lessons obtained from obsidians. Despite the complexities on the mechanism of formation of PDCDs, it is shown that a key element for the fruitful interpretation of AMS is to give proper attention to the various components likely to be involved in controlling their general petrofabric. The anisotropies of ferromagnetic crystals (whether as free phases or embedded within clasts or shards), and those of paramagnetic minerals (mainly ferrosilicates) need to be taken into consideration when interpreting the AMS measurements of PDCDs. Variations of the deposition regime both as a function of position and of time also need to be considered on the interpretations. Nevertheless, if a suitable sampling strategy is adopted, the potential of the AMS method as a petrofabric indicator is maximized.

  6. Did North Atlantic Igneous Province igneous sills trigger or maintain Paleocene Eocene Thermal Maximum global warming?

    NASA Astrophysics Data System (ADS)

    Fernandes, Karina; Jones, Stephen M.; Schofield, Nick; Clayton, Geoff

    2010-05-01

    Igneous sills of the North Atlantic Igneous Province (NAIP) were intruded into organic-rich sediments, generating methane and carbon dioxide by thermal maturation. These greenhouse gases escaped to the ocean and atmosphere through hydrothermal vents above the sills that have been observed on seismic reflection data and by drilling. It has been suggested that the NAIP sills provided a significant component of the greenhouse gases that forced warming during the Paleocene Eocene Thermal Maximum (PETM). Here we consider whether methane released by NAIP sills could have triggered, as well as maintained, the PETM warming. Warming resulting from the PETM trigger began a few thousand years before the major upheaval in the carbon cycle that was associated with the PETM itself. Recent organic geochemical investigations have suggested that methane was involved in the trigger. Since the lifetime of methane in the atmosphere was approximately one decade during the Paleocene, the triggering methane pulse probably contained on the order of 100 Gt or more of carbon and was probably released in a period of c. 10 years or less. We use recent field observations of fluidized country rocks around sills to speculate on a model for sill emplacement, greenhouse gas generation and escape. The observation of fluidized sediments associated with lobe and finger structures along inward-dipping sections of many sills suggests that these sill rims propagated laterally by fluidizing a restricted volume of country rock, allowing the magma to advance into the fluidized region as a viscous fingering front. At this stage, the fluidized region was not connected to the surface by a conduit, so greenhouse gases could not escape rapidly. Eventually, as the sill rim propagated laterally and upward, a hydrothermal conduit was initiated and propagated rapidly upward to the surface. This model, based on field observations implies that the gases which initially escaped up the hydrothermal conduit were

  7. CO2-dependent fractional crystallization of alkaline silicate magmas and unmixing of carbonatites within the intrusive complexes of Brava Island (Cape Verde)

    NASA Astrophysics Data System (ADS)

    Weidendorfer, D.; Schmidt, M. W.; Mattsson, H. B.

    2014-12-01

    Intrusive carbonatites often occur in intimate association with SiO2-undersaturated rocks such as melilitites, nephelinites, syenites and phonolites. The occurrence of carbonatites on five of the 10 main islands of the Cape Verde hotspot argues for a CO2-enriched mantle source. Whether alkali-poor carbonatites on the Cape Verdes directly represent small mantle melt fractions or form by extreme fractionation and/or liquid immiscibility from a CO2-rich silicate magma remains a matter of debate. This study focuses on the pyroxenites, nephelinites, ijolites, syenites, phonolites and carbonatites of the intrusive unit of Brava Island. This relative complete series allows for the deduction of a CO2-dependent fractionation pathway from the most primitive basanitic dikes towards phonolitic compositions through an ijolitic series. Major and trace element whole rock and mineral composition trends can be reproduced by fractionating a sequence of olivine, augite, perovskite, biotite, apatite, sodalite and FeTi-oxides, present as phenocrysts in the rocks corresponding to their fractionation interval. To reproduce the observed chemistry of the alkaline silicate rocks a total fractionation of ~87% is required. The melts evolve towards the carbonatite-silicate miscibility gap, an initial CO2 of 0.5 wt% would be sufficient to maintain CO2-saturation in the more evolved compositions. The modelled carbonatite compositions, conjugate to nepheline-syenites to phonolites, correspond well to the observed ones except for an alkali-enrichment with respect to the natural samples. The alkali-depleted nature of the small carbonatite intrusions and dikes on Brava is likely a consequence of fluid-release to the surrounding wall-rocks during crystallization, where fenitization can be observed. The trace element chemistry of primary carbonates and also cpx within both, the carbonatites and the associated silicate rocks, substantiates our fractionation model. Furthermore, carbonatite and silicate

  8. Production of mildly alkaline basalts at complex ocean ridge settings: Perspectives from basalts emitted during the 2010 eruption at the Eyjafjallajökull volcano, Iceland

    NASA Astrophysics Data System (ADS)

    Viccaro, Marco; Nicotra, Eugenio; Urso, Salvatore

    2015-11-01

    The early phase of the 2010 eruption at the Eyjafjallajökull volcano (Iceland) produced poorly evolved mildly alkaline basalts that have a signature more enriched with respect to the typically depleted basalts emitted at ocean ridges. The whole rock geochemistry of these basaltic magmas offers a great opportunity to investigate the mantle source characteristics and reasons leading to this enriched fingerprint in proximity of the ocean ridge system. Some basaltic products of Katla volcano, ∼25 km east of Eyjafjallajökull, have been chosen from the literature, as they display a similar mildly alkaline signature and can be therefore useful to explore the same target. Major and trace element variations of the whole rock suggest a very limited evolutionary degree for the 2010 Eyjafjallajökull products and the selected Katla magmas, highlighting the minor role played by differentiation processes such as fractional crystallization. Nevertheless, effects of the limited fractionation have been erased through re-equilibration of the major and trace element abundances at primary conditions. Concentrations of Th after re-equilibration have been assumed as indexes of the partial melting degree, given the high incompatibility of the element, and enrichment ratios calculated for each trace element. Especially for LILE (Rb, Ba, K, Sr), the pattern of resulting enrichment ratios well matches that obtained from fractional melting of peridotite bearing hydrous phases (amphibole/phlogopite). This put forward the idea that magmas have been generated through partial melting of enriched mantle domains where hydrous minerals have been stabilized as a consequence of metasomatic processes. Refertilization of the mantle has been attributed to intrusion of hydrous silicate melts and fractional crystallization of hydrous cumulates. These refertilizing melts, inherited from an ancient subducted oceanic crust, intruded into a depleted oceanic lithosphere that remained stored for a long time

  9. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: Age and geological constraints from North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Tappe, S.; Heaman, L.; Knudsen, M. F.

    2013-12-01

    Age, compositional and geological data show the High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan orogeny. New 40Ar-39Ar and U-Pb dating provides emplacement ages of 71-68 Ma for most of the Kap Washington alkaline volcanics of North Greenland, but with activity continuing down to 61 Ma. A thermal resetting age of 49-47 Ma is also identified in 40Ar-39Ar whole-rock data for trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting, interpreted as a result of Eurekan compressional tectonism. The formation of the tholeiitic suite (130-80 Ma) appears to be associated with the opening of the Canada Basin and may have involved mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay. The alkaline and tholeiitic suites of the High Arctic may therefore be unrelated. It is striking that High Arctic volcanism terminates at about the same time (c. 60 Ma) as magmatism in the North Atlantic Large Igneous Province begins. We suggest this is a corollary of a change from extensional to compressional tectonism in the High Arctic. In the period when Greenland moved together with Eurasia (>60 Ma), the separation from North America resulted in rift-related alkaline magmatism in the High Arctic. When Greenland subsequently moved as a separate plate (60-35 Ma), overlapping spreading on both sides pushed it northwards and volcanism in the High Arctic stopped due to compression. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  10. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  11. Primary Igneous Anhydrite: Progress Since the 1982 El Chichón Eruption (Mexico)

    NASA Astrophysics Data System (ADS)

    Luhr, J. F.

    2006-05-01

    Anhydrite (CaSO4) was confirmed as a stable primary igneous mineral, capable of precipitating from a silicate melt, through petrographic observations of fresh trachyandesitic pumices erupted in the spring of 1982 from El Chichón, a little known, isolated tuff and lava-dome complex in eastern Mexico. The 1982 eruption was also notable for the associated release of an estimated 5-9 megatons of SO2 to the stratosphere and troposphere, as measured by the Total Ozone Mapping Spectrometer. Subsequent years saw confirmation of primary igneous anhydrite in laboratory phase-equilibrium experiments, and anhydrite was also observed in the products of several subsequent explosive eruptions, most importantly dacitic pumices from the massive 15 June 1991 eruption of Mount Pinatubo, in the Philippines. That eruption involved ~5X the mass of magma and ~3X the mass of SO2 release compared to El Chichón's eruption. For both the Pinatubo and El Chichón eruptions, it has been concluded that the sulfur released to the atmosphere was too great in mass to have been dissolved in the erupted melt volume just prior to eruption. In both cases workers advocated the existence of a separate gas phase prior to eruption, where much of the subsequently released sulfur was present. Thus, primary igneous anhydrite has been linked with another important phenomenon: excess sulfur release during volcanic eruptions. This presentation will review other developments concerning primary igneous anhydrite since 1982. These include: (1) other examples of primary anhydrite from volcanic samples (Nevado del Ruiz, Colombia; Lascar, Chile; Sutter Buttes, USA; Eagle Mountain, USA; Shiveluch, Russia; (2) examples of primary anhydrite from plutonic samples (Julcani, Peru; Santa Rita, USA; Cajon Pass Scientific Drillhole, USA); (3) laboratory experiments that have expanded our understanding of the T-P-fO2 conditions of anhydrite stability, melt/vapor partition coefficients for sulfur as a function of these

  12. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1974-01-01

    Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  13. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1977-01-01

    Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  14. Martian Igneous Geochemistry: The Nature of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.

    2012-01-01

    Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).

  15. Igneous Consequence Modeling for the TSPA-SR

    SciTech Connect

    John McCord

    2001-10-29

    The purpose of this technical report is to develop credible, defendable, substantiated models for the consequences of igneous activity for the TSPA-SR Model. The effort will build on the TSPA-VA and improve the quality of scenarios and depth of the technical basis underlying disruptive events modeling. Computational models for both volcanic eruptive releases (this is an event that results in ash containing waste being ejected from Yucca Mountain) and igneous intrusion groundwater releases (this is an event that reaches the repository level, impacts the waste packages, and produces releases from waste packages damaged by igneous activity) will be included directly in the TSPA calculations as part of the TSPA-SR Model. This Analysis Model Report (AMR) is limited to development of the conceptual models for these two scenarios. The mathematical implementation of these conceptual models will be done within the TSPA-SR Model. Thus, this AMR will not include any model results or sensitivity analyses. Calculation of any doses resulting from igneous releases will also be done within the TSPA-SR model, as will the probabilistic weighting of these doses. Calculation and analysis of the TSPA-SR Model results for igneous disruption are, therefore, outside the scope of this activity. The reason for not running the mathematical models as part of this AMR is that the models are integrated within the TSPA-SR model and, thus, any model simulations and the corresponding results are out of the scope of this AMR. The scope of this work as defined in the development plan (CRWMS M&O 2000j) involves using data that has been extracted from existing sources to design and support the TSPA-SR models for the transport of radionuclides following igneous disruption of the repository. The development plan states ''applications of the code in this analysis will be limited to testing of the code and sensitivity analyses during analysis design.'' In contrast to the development plan, the ASHPLUME

  16. A Comparison of Microbial Communities from Deep Igneous Crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.

    2013-12-01

    Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.

  17. Felsic Igneous Rocks at Gale Crater : a Comparison with Lithic Clasts in NWA 7533

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Wiens, R. C.; Toplis, M. J.; Cousin, A.; Forni, O.; Fabre, C.

    2014-12-01

    Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian rocks. In Hummocky plain, more than half of the igneous floats rocks are highly alkaline rocks (Stolper et al. doi: 101126/science.12239463, Schmidt et al. doi: 10.1002/2013JE004481) and feldspar-bearing rocks (Sautter et al. doi: 10.1002/2013JE00447). ChemCam observations at sub-millimeter scale show that these samples contain a significant feldspar component, either associated with LCP in gabbroic texture or with augite in effusive rocks defining an alkaline K-feldspar-bearing suite: basanite, trachy-andesite with porphyritic texture and syenitic rock with apahnitic texture. This series likely resulted from differentiation of liquids produced by low degrees of partial melting of primitive mantle. These rocks are float rocks or occurred as clast in conglomerate suggesting a provenance from Gale crater rim. NWA 7533 is the first Noachian breccia sampling the southern hemisphere Martian regolith. It is a polymict breccia with leucocratic clasts including zircon with 4.4 Ga ages Humayun et al., doi :10.1038/nature). The alkali basaltic evolved clasts contain two feldspars (alkali and plagioclase) and modal recombination gives a basaltic trachy-andesite, gabbroic, trachy-andesite and mugearite clast (Agee et al. doi: 10.1126/science. 1228858). Noritic clasts contain andesine, LCP, and Cr-magnetite. The monzonitic/mugearitic-evolved clasts are composed of alkali feldspar, plagioclase, augite, Ti-Magnetite, Cl-apatite and zircon. These clasts would represent products of Martian crust emplaced at 4.5 Ga and re-melted at 4.4 Ga (Humayun et al., doi :10.1038/nature). The leucocratic clasts of the Noachian SNC breccia will be compared with evolved lithology encountered at Gale crater and products of Noachian magmatism will be discussed.

  18. [X-ray absorption spectroscopic evidence for the formation of Pb(II) inner-sphere adsorption complexes and precipitates at the alkaline soil-water interface].

    PubMed

    Hu, Ning-Jing; Luo, Yong-Ming; Huang, Peng; Hu, Tian-Dou; Xie, Ya-Ning; Wu, Zi-Yu; Shi, Xue-Fa

    2011-02-01

    Adsorption mechanisms of Pb on soil with high CaCO3 content were investigated by combined batch sorption and X-ray absorption fine structure (XAFS). Date from the batch equilibrium studies showed that Pb sorption was nonlinear and was well fitted to Langmiur isotherm. The XAFS data indicated that Pb could be adsorbed via the inner-sphere complex, the precipitation of calcium carbonate containing Pb (PbCaCO3), and outer-sphere Pb sorption complex. The formations of inner-sphere complexes and PbCaCO3 implied strong metal interactions with the surfaces the mechanistic reason for the affinity of Pb for CaCO3 as observed in macroscopic studies. At low metal concentration, 500 mg x L(-1) of initial Pb, radial distance of the first-shell Pb-O (R1) was 0.169 2 nm, however, at 1 000 mg x L(-1) of initial Pb, the R1 was 0.166 8 nm. These revealed that the percentage of inner-sphere complexes increased when the initial Pb was increased from 500 to 1 000 mg x L(-1). PMID:21510427

  19. Geochemical studies and petrogenesis of ~2.21-2.22 Ga Kunigal mafic dyke swarm (trending N-S to NNW-SSE) from eastern Dharwar craton, India: implications for Paleoproterozoic large igneous provinces and supercraton superia

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh K.; Jayananda, M.; Gautam, Gulab C.; Samal, Amiya K.

    2014-10-01

    The Archean eastern Dharwar craton is transacted by at least four major Proterozoic mafic dyke swarms. We present geochemical data for the ~2.21-2.22 Ga N-S to NNW-SSE trending Kunigal mafic dyke swarm of the eastern Dharwar craton to address its petrogenesis and formation of large igneous province as well as spatial link to supercontinent history. It has a strike span of about 200 km; one dyke of this swarm runs ~300 km along the western margin of the Closepet granite. Texture and mineral compositions classify them as dolerite and olivine dolerite. They show compositions of high-iron tholeiites, high-magnesian tholeiites or picrites. Geochemical characteristics of the sampled dykes suggest their co-genetic nature and show variation from primitive (Mg#; as high as ~76) to evolved (differentiated) nature. Although geochemical characteristics indicate possibility of minor crustal contamination, they show their derivation from an uncontaminated mantle melt. These mafic dykes are probably evolved from a sub-alkaline basaltic magma generated by ~20 % batch melting of a depleted lherzolite mantle source and about 15-30 % olivine fractionation. Paleoproterozoic (~2.21-2.22 Ga) mafic magmatism is recognized globally as dyke swarms or gabbroic sill complexes in the Superior, Slave, North Atlantic, Fennoscandian and Pilbara cratons. Possible Paleoproterozoic Dharwar-Superior-North-Atlantic-Slave correlations are constrained with implications for the configuration of supercraton Superia.

  20. Geodynamic setting and geochemical signatures of Cambrian?Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia)

    NASA Astrophysics Data System (ADS)

    Sánchez-García, T.; Bellido, F.; Quesada, C.

    2003-04-01

    An important rifting event, accompanied by massive igneous activity, is recorded in the Ossa-Morena Zone of the SW Iberian Massif (European Variscan Orogen). It likely culminated in the formation of a new oceanic basin (Rheic ocean?), remnants of which appear presently accreted at the southern margin of the Ossa-Morena Zone. Rifting propagated diachronously across the zone from the Early Cambrian to the Late Ordovician, but by Early Ordovician time, the existence of a significant tract of new ocean is evidenced by a breakup unconformity. Although early stages of rifting were not accompanied by mantle-derived igneous activity, a pronounced increase of the geothermal gradient is indicated by partial melting of metasedimentary protoliths in the upper and middle crust, and by coeval core-complex formation. Geochemistry of the main volume of igneous rocks, emplaced some million years later during more mature stages of rifting, suggests an origin in a variably enriched asthenospheric source, similar to that of many OIB, from which subsequent petrogenetic processes produced a wide range of compositions, from basalt to rhyolite. A tectonic model involving collision with, and subsequent overriding of, a MOR is proposed to account for the overall evolution, a present-day analogue for which lies in the overriding of the East Pacific Rise by North America and the rifting of Baja California.

  1. Contrasting methods of fracture trend characterization in crystalline metamorphic and igneous rocks of the Windham quadrangle, New Hampshire

    USGS Publications Warehouse

    Walsh, G.J.; Clark, S.F.

    2000-01-01

    The bedrock of the Windham quadrangle in southeastern New Hampshire consists of deformed early Palaeozoic crystalline metamorphic and intrusive igneous rocks intruded by Mesozoic igneous dikes. Generally, less common northeast striking, steeply dipping fractures developed sub-parallel to the pre-existing tectonic foliation in the Palaeozoic rocks. Mesozoic lamprophyre and diabase dikes intruded along the northeast trending fractures, utilizing the pre-existing anisotropy in the crystalline rocks. Northwest striking, steeply dipping systematic joints and joint sets are the most prominent fractures in the area and, at least in part, post-date the Mesozoic dikes. Sub-horizontal sheeting joints occur in all rock types. Locally, the coincidence of the sub-horizontal fractures with a sub-horizontal Paleozoic cleavage suggests that some of the sheeting fractures utilized the pre-existing ductile anisotropy during unloading. Generally, the metasedimentary rocks show a less complex pattern of fracturing than the intrusive rocks suggesting that rock type is a controlling factor. Metasedimentary rocks in the biotite zone and well-foliated igneous rocks show a greater tendency to fracture along pre-existing bedding and foliation surfaces than metasedimentary rocks in the garnet zone and poorly foliated igneous rocks. A comparison of mapped fracture data and station fracture data indicates that either mapped data or station data can be used to identify regional fracture trends. Local fracture trends can not be identified by limited measurements at a few fracture stations, however, because they do not address spatial variability. Some fracture trends may be scale-dependant because they may be either unique to a local area or present only at regional scales.

  2. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex, northeastern Morocco: geochemical, isotopic and geochronological evidence

    NASA Astrophysics Data System (ADS)

    Ajaji, Tamimount; Weis, Dominique; Giret, André; Bouabdellah, Mohamed

    1998-12-01

    The post-collisional late Hercynian Tanncherfi intrusive complex (TIC) is part of a widespread intrusive episode in the Moroccan Meseta. The complex contains a wide range of rock types, from monzogabbros to monzogranites. Two distinct magmatic series are recognized: (1) a potassic (shoshonitic) series consisting of monzogabbros, quartz monzonites and monzogranites; and (2) a sodic (granodioritic) series represented by quartz monzodiorites and granodiorites. All the Tanncherfi plutonic rocks display similar spider-diagram profiles, with LILE and LREE enrichment and Nb, Ta, Ti depletion, which are typical of subduction-related magmas. Combined major, trace element compositions and Sr, Nd isotopic results indicate that the two series have been derived from a LILE- and LREE-enriched continental lithospheric mantle source, under different partial melting and/or depth conditions. Intrusion of the Tanncherfi rocks was not temporally related to subduction and the enrichment of their source is likely to be linked to preceding subduction events. The two series evolved by fractional crystallization, of clinopyroxene, plagioclase, hornblende, biotite, K-feldspar and accessories (Fe-Ti oxide minerals, titanite, apatite and zircon) for the potassic series while the sodic series combined fractional crystallization with assimilation of felsic magmas with lower Sr isotopic ratio than the more mafic term of the series, the quartz monzodiorite. The intrusion of the potassic magmas (344±6 Ma) marks a major change in the tectonic regime of eastern Meseta. These magmas intruded during post-thickening uplift and extension, both probably favored by convective thinning of the lithosphere. This model provides a reasonable mechanism for the genesis of other Hercynian intrusive complexes in Morocco.

  3. Potential Future Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    M. Cline; F. Perry; G. Valentine; E. Smistad

    2005-05-26

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10{sup -8} per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10{sup -8} be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the

  4. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas

    USGS Publications Warehouse

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.

    2009-01-01

    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that

  5. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    SciTech Connect

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  6. Teaching Igneous and Metamorphic Petrology Through Guided Inquiry Projects

    NASA Astrophysics Data System (ADS)

    McMillan, N. J.

    2003-12-01

    Undergraduate Petrology at New Mexico State University (GEOL 399) has been taught using three, 5-6 week long projects in place of lectures, lab, and exams for the last six years. Reasons for changing from the traditional format include: 1) to move the focus from identification and memorization to petrologic thinking; 2) the need for undergraduate students to apply basic chemical, structural, and field concepts to igneous and metamorphic rocks; 3) student boredom in the traditional mode by the topic that has captivated my professional life, in spite of my best efforts to offer thrilling lectures, problems, and labs. The course has three guided inquiry projects: volcanic, plutonic, and pelitic dynamothermal. Two of the rock suites are investigated during field trips. Each project provides hand samples and thin sections; the igneous projects also include whole-rock major and trace element data. Students write a scientific paper that classifies and describes the rocks, describes the data (mineralogical and geochemical), and uses data to interpret parameters such as tectonic setting, igneous processes, relationship to phase diagrams, geologic history, metamorphic grade, metamorphic facies, and polymetamorphic history. Students use the text as a major resource for self-learning; mini-lectures on pertinent topics are presented when needed by the majority of students. Project scores include evaluation of small parts of the paper due each Friday and participation in peer review as well as the final report. I have found that petrology is much more fun, although more difficult, to teach using this method. It is challenging to be totally prepared for class because students are working at different speeds on different levels on different aspects of the project. Students enjoy the course, especially the opportunity to engage in scientific investigation and debate. A significant flaw in this course is that students see fewer rocks and have less experience in rock classification

  7. Magnetic fabric constraints of the emplacement of igneous intrusions

    NASA Astrophysics Data System (ADS)

    Maes, Stephanie M.

    Fabric analysis is critical to evaluating the history, kinematics, and dynamics of geological deformation. This is particularly true of igneous intrusions, where the development of fabric is used to constrain magmatic flow and emplacement mechanisms. Fabric analysis was applied to three mafic intrusions, with different tectonic and petrogenetic histories, to study emplacement and magma flow: the Insizwa sill (Mesozoic Karoo Large Igneous Province, South Africa), Sonju Lake intrusion (Proterozoic Midcontinent Rift, Minnesota, USA), and Palisades sill (Mesozoic rift basin, New Jersey, USA). Multiple fabric analysis techniques were used to define the fabric in each intrusive body. Using digital image analysis techniques on multiple thin sections, the three-dimensional shape-preferred orientation (SPO) of populations of mineral phases were calculated. Low-field anisotropy of magnetic susceptibility (AMS) measurements were used as a proxy for the mineral fabric of the ferromagnetic phases (e.g., magnetite). In addition, a new technique---high-field AMS---was used to isolate the paramagnetic component of the fabric (e.g., silicate fabric). Each fabric analysis technique was then compared to observable field fabrics as a framework for interpretation. In the Insizwa sill, magnetic properties were used to corroborate vertical petrologic zonation and distinguish sub-units within lithologically defined units. Abrupt variation in magnetic properties provides evidence supporting the formation of the Insizwa sill by separate magma intrusions. Low-field AMS fabrics in the Sonju Lake intrusion exhibit consistent SW-plunging lineations and SW-dipping foliations. These fabric orientations provide evidence that the cumulate layers in the intrusion were deposited in a dynamic environment, and indicate magma flowed from southwest to northeast, parallel to the pre-existing rift structures. In the Palisades sill, the magnetite SPO and low-field AMS lineation have developed orthogonal to

  8. Magnetostriction and palæomagnetism of igneous rocks

    USGS Publications Warehouse

    Graham, John W.; Buddington, A.F.; Balsley, J.R.

    1959-01-01

    IN a recent communication, Stott and Stacey1 report on a “crucial experiment” from which they conclude: “This excellent agreement between the dip and the directions of artificial thermoremanent magnetization of the stressed and unstressed rocks indicates that large systematic errors due to magnetostriction are most improbable in igneous rocks of types normally used for palæomagnetic work”. This experiment was intended to test the proposals2 and measurements3 bearing on the role of magnetostriction in rock magnetism. We present here our reasons for believing that the experiment was not crucial and that the conclusion is not justified.

  9. Distinct Igneous APXS Rock Compositions on Mars from Pathfinder, MER and MSL

    NASA Technical Reports Server (NTRS)

    Gellert, Ralf; Arvidson, Raymond; Clark, Benton, III; Ming, Douglas W.; Morris, Richard V.; Squyres, Steven W.; Yen, Albert S.

    2015-01-01

    The alpha particle x-ray spectrometer (APXS) on all four Mars Rovers returned geochemical data from about 1000 rocks and soils along the combined traverses of over 50 kilometers. Here we discuss rocks likely of igneous origin, which might represent source materials for the soils and sediments identified along the traverses. Adirondack-type basalts, abundant in the plains of Gusev Crater, are primitive, olivine bearing basalts. They resemble in composition the basaltic soils encountered at all landing sites, except the ubiquitous elevated S, Cl and Zn in soils. They have been postulated to represent closely the average Martian crust composition. The recently identified new Martian meteorite Black Beauty has similar overall geochemical composition, very distinct from the earlier established SNC meteorites. The rim of the Noachian crater Endeavour, predating the sulfate-bearing Burns formation at Meridiani Planum, also resembles closely the composition of Adirondack basalts. At Gale Crater, the MSL Curiosity rover identified a felsic rock type exemplified by the mugearitic float rock JakeM, which is widespread along the traverse at Gale. While a surprise at that time, possibly related more evolved, alkaline rocks had been previously identified on Mars. Spirit encountered the Wishstone rocks in the Columbia Hills with approx. 6% Na2O+K2O, 15 % Al2O3 and low 12% FeO. Pathfinder rocks with elevated K and Na and >50% SiO2 were postulated to be andesitic. Recently Opportunity encountered the rock JeanBaptisteCharbonneau with >15% Al2O3, >50% SiO2 and approx. 10% FeO. A common characteristic all these rocks is the very low abundance of Cr, Ni and Zn, and an Fe/Mn ratio of about 50, indicating an unaltered Fe mineralogy. Beside these likely igneous rock types, which occurred always in several rocks, a few unique rocks were encountered, e.g. Bounce Rock, a pyroxene-bearing ejecta rock fragment resembling the Shergottite EETA 79001B meteorite. The APXS data can be used to

  10. Application of Sr and O isotope relations to the petrogenesis of the alkaline rocks of the Red Hill complex, New Hampshire, USA

    USGS Publications Warehouse

    Foland, K.A.; Friedman, I.

    1977-01-01

    The Red Hill ring complex in central New Hampshire is composed of apparently cogenetic syenites, nepheline-sodalite syenite, and granite. The ages and petrogenetic relations among five of the six recognized units have been investigated by rubidiumstrontium and oxygen isotope analysis of whole rocks and separated minerals. Whole-rock samples from three syenite units are consistent with a single Rb-Sr isochron which gives an age of 198??3 m.y. and an initial (87Sr/86Sr)o ratio of 0.70330??0.00016 (??2 sigma; ??=1.42?? 10-11y-1). However, Sr isotope data for two other units, nepheline syenite and granite, are not consistent with this isochron but rather indicate higher initial ratios which range from 0.7033 to about 0.707. Whole-rock O isotope analyses give ??18O values which range from+6.2 to+9.3??? Sr and O isotope analyses on mineral separates indicate that observed whole-rock variations in (87Sr/86Sr)o are primary and are not due to any secondary process. The fact that the isotope systematics correlate with rock type, suggests that crustal interaction is likely to have played a significant role in the development of this over-and undersaturated association. Such process(es), while still not fully delineated, could be of fundamental importance to the genesis of associations of critically undersaturated and oversaturated intrusives. The data support the idea that interaction between magmas and crustal materials strongly influenced the compositional relations of similar complexes elsewhere including those of the White Mountain magma series. ?? 1977 Springer-Verlag.

  11. Intrusive large igneous provinces below sedimentary basins: An example from the Exmouth Plateau (NW Australia)

    NASA Astrophysics Data System (ADS)

    Rohrman, Max

    2013-08-01

    igneous provinces (LIPs) are commonly characterized by extrusion of huge outpourings of flood basalts. However, some LIPs associated with thick sedimentary basins display mainly intrusive sill and dike complexes and a relative absence of extrusives as evidenced on the Exmouth Plateau. Here a breakup-related 150 km × 400 km sill complex imaged on seismic reflection data intruded mainly Triassic sedimentary rocks between the Late Jurassic and the Early Cretaceous. The sill complex is most likely sourced by a mafic or an ultramafic magma chamber, seismically imaged as a high-velocity body (HVB) and covering ~16 × 104 km2. This magma chamber is located at the base of the crust and did not generate extrusives. Simple hydrostatic calculations suggest that melt became vertically arrested in the basin sediments, primarily owing to a reduction in the magmatic overpressure gradient as a result of the differences between fracture and melt gradients controlled by upward decreasing densities of the basin fill. Furthermore, magma overpressures at the source between 5 and 20 MPa are required to explain the presence of sill complexes at 4-11 km depth, indicating that the HVB is the source of the sill/dike complex on the Exmouth Plateau. The extent and outline of the HVB places constraints on the origin of magmatism and LIP formation. In combination with published data, the results suggest a thermal anomaly (upwelling or plume) source for the observed magmatism.

  12. The role of igneous sills in shaping the Martian uplands

    NASA Technical Reports Server (NTRS)

    Wilhelms, D. E.; Baldwin, R. J.

    1989-01-01

    Relations among geologic units and landforms suggest that igneous sills lie beneath much of the intercrater and intracrater terrain of the Martian uplands. The igneous rocks crop out along the upland-lowland front and in crater floors and other depressions that are low enough to intersect the sill's intrusion horizons. It is suggested that heat from the cooling sills melted some of the ice contained in overlying fragmental deposits, creating valley networks by subsurface flow of the meltwater. Terrains with undulatory, smooth surfaces and softened traces of valleys were created by more direct contact with the sills. Widespread subsidence following emplacement of the sills deformed both them and the nonvolcanic deposits that overlie them, accounting for the many structures that continue from ridged plains into the hilly uplands. Crater counts show that the deposit that became valleyed, softened, and ridged probably began to form (and to acquire interstitial ice) during or shortly after the Middle Noachian Epoch, and continued to form as late as the Early Hesperian Epoch. The upper layers of this deposit, many of the visible valleys, and the ridged plains and postulated sills all have similar Early Hesperian ages. Continued formation of valleys is indicated by their incision of fresh-appearing crater ejecta. The dependence of valley formation on internal processes implies that Mars did not necessarily have a dense early atmosphere or warm climate.

  13. Post-igneous redistribution of components in eucrites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.

    1993-01-01

    In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.

  14. The role of igneous sills in shaping the Martian uplands

    NASA Astrophysics Data System (ADS)

    Wilhelms, D. E.; Baldwin, R. J.

    Relations among geologic units and landforms suggest that igneous sills lie beneath much of the intercrater and intracrater terrain of the Martian uplands. The igneous rocks crop out along the upland-lowland front and in crater floors and other depressions that are low enough to intersect the sill's intrusion horizons. It is suggested that heat from the cooling sills melted some of the ice contained in overlying fragmental deposits, creating valley networks by subsurface flow of the meltwater. Terrains with undulatory, smooth surfaces and softened traces of valleys were created by more direct contact with the sills. Widespread subsidence following emplacement of the sills deformed both them and the nonvolcanic deposits that overlie them, accounting for the many structures that continue from ridged plains into the hilly uplands. Crater counts show that the deposit that became valleyed, softened, and ridged probably began to form (and to acquire interstitial ice) during or shortly after the Middle Noachian Epoch, and continued to form as late as the Early Hesperian Epoch. The upper layers of this deposit, many of the visible valleys, and the ridged plains and postulated sills all have similar Early Hesperian ages. Continued formation of valleys is indicated by their incision of fresh-appearing crater ejecta. The dependence of valley formation on internal processes implies that Mars did not necessarily have a dense early atmosphere or warm climate.

  15. Extra-terrestrial igneous granites and related rocks: A review of their occurrence and petrogenesis

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard

    2012-11-01

    vast majority of granitic materials recognised so far in the extra-terrestrial record are characterised by ferroan A-type compositions, characterised by high to very high K2O and medium CaO contents, sodic varieties being exceedingly rare. Textural evidence of graphic quartz-alkali feldspar intergrowths within crystallised products suggests that they are igneous in origin and crystallised quickly from a liquid. In water-depleted to water-free environments, fluorine and chlorine can play significant roles, as their effects on liquidus temperatures and crystallising assemblages are nearly identical to those of water. The distribution of alkalis and alkaline earths cannot be related only to extensive crystal fractionation, but is likely induced by supplementary silicate liquid immiscibility. Medium-temperature silicate liquid immiscibility is well known as a mode of differentiation in experimental petrology studies at very low pressures on systems dominated by Fe, Ti, K, and P as major elements. The ultimate question is, therefore, not whether granite (s.l.) occurs in any given planetary body, but if sufficient volumes of granitic materials could have been produced to constitute stable continental nuclei.

  16. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  17. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  18. Mafic and felsic igneous rocks at Gale crater

    NASA Astrophysics Data System (ADS)

    Sautter, Violaine; Cousin, Agnès; Mangold, Nicolas; Toplis, Michael; Fabre, Cécile; Forni, Olivier; Payré, Valérie; Gasnault, Olivier; Ollila, Anne; Rapin, William; Fisk, Martin; Meslin, Pierre-Yves; Wiens, Roger; Maurice, Sylvestre; Lasue, Jérémie; Newsom, Horton; Lanza, Nina

    2015-04-01

    The Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian terrains on Mars. The rover encountered a great variety of igneous rocks to the west of the Yellow Knife Bay sedimentary unit (from sol 13 to 800) which are float rocks or clasts in conglomerates. Textural and compositional analyses using MastCam and ChemCam Remote micro Imager (RMI) and Laser Induced Breakdown Spectroscopy (LIBS) with a ˜300-500 µm laser spot lead to the recognition of 53 massive (non layered) igneous targets, both intrusive and effusive, ranging from mafic rocks where feldspars form less than 50% of the rock to felsic samples where feldspar is the dominant mineral. From morphology, color, grain size, patina and chemistry, at least 5 different groups of rocks have been identified: (1) a basaltic class with shiny aspect, conchoidal frature, no visible grains (less than 0.2mm) in a dark matrix with a few mm sized light-toned crystals (21 targets) (2) a porphyritic trachyandesite class with light-toned, bladed and polygonal crystals 1-20 mm in length set in a dark gray mesostasis (11 targets); (3) light toned trachytes with no visible grains sometimes vesiculated or forming flat targets (6 targets); (4) microgabbro-norite (grain size < 1mm) and gabbro-norite (grain size >1 mm) showing dark and light toned crystals in similar proportion ( 8 targets); (5) light-toned diorite/granodiorite showing coarse granular (>4 mm) texture either pristine or blocky, strongly weathered rocks (9 rock targets). Overall, these rocks comprise 2 distinct geochemical series: (i) an alkali-suite: basanite, gabbro trachy-andesite and trachyte) including porphyritic and aphyric members; (ii) quartz-normative intrusives close to granodioritic composition. The former looks like felsic clasts recently described in two SNC meteorites (NWA 7034 and 7533), the first Noachian breccia sampling the martian regolith. It is geochemically consistent with differentiation of liquids produced by low

  19. Rb-Sr age of lunar igneous rocks 62295 and 14310

    NASA Technical Reports Server (NTRS)

    Mark, R. K.; Lee-Hu, C.-N.; Wetherill, G. W.

    1974-01-01

    Measurements of Rb-Sr ages of crystallization performed on igneous lunar highland rocks 62295 and 14310 are reported. Lunar sample 62295 is a mesostasis-rich spinel-troctolite very-high-alumina basalt exhibiting a variable igneous structure. Sample 14310 is a feldspathic KREEP-rich basalt. The determined ages probably date the cooling of shock melts.

  20. The "Key" Method of Identifying Igneous and Metamorphic Rocks in Introductory Laboratory.

    ERIC Educational Resources Information Center

    Eves, Robert Leo; Davis, Larry Eugene

    1987-01-01

    Proposes that identification keys provide an orderly strategy for the identification of igneous and metamorphic rocks in an introductory geology course. Explains the format employed in the system and includes the actual key guides for both igneous and metamorphic rocks. (ML)

  1. The Search for Igneous Materials at the Viking Landing Sites

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Dale-Bannister, M.; Guinnes, E. A.

    1985-01-01

    The use of Viking Lander 6 channel (0.4 to 1.1 microns) images to identify igneous materials is discussed. Movies of synthetic image cubes demonstrate that there are a number of contrast reversals between soils and certain rocks. Typically, large, angular rocks are brighter than the surrounding soils in the shortest wavelengths, and much darker than the soils at longest wavelengths. These results, which seem difficult to explain solely on the basis of photometric effects related to local lighting and viewing, are consistent with the presence of Fe+2 bearing silicates at the rock surfaces, producing relatively moderate absorptions in the blue and green parts of the spectrum, but more significant absorptions near about 1.0 micrometer (e.g., Fe+2 bearing pyroxenes). The soils, on the other hand, have signatures consistent with strong Fe+3 related absorptions at shorter wavelengths (e.g., Fe+3 bearing oxides or hydroxides).

  2. Primary igneous rocks on Mars: Composition and distribution

    NASA Technical Reports Server (NTRS)

    Singer, Robert B.; Mcsween, Harry Y., Jr.

    1991-01-01

    The present knowledge of the crustal composition of Mars is synthesized and implications discussed for in-situ resource utilization. Sources of information include remote sensing observations, Viking XRF chemical measurements, and characteristics of the SNC meteorites (which most researchers now believe originated on Mars). There are a number of lines of evidence that abundant ferrous-iron rich igneous crustal rocks (and derivative soils) are available at or very near the current Martian surface at many locations on the planet. Most of these exposures show spectroscopic evidence for abundant pyroxene, consistent with basaltic compositions. The SNC meteorites, which have basaltic compositions, were also studied extensively. Interpretations of Mars crustal chemistry and mineralogy (petrology) based on these various sources are reviewed, and their consistencies and differences are discussed.

  3. Evolution of the martian mantle as recorded by igneous rocks

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; McSween, H. Y.

    2013-12-01

    Martian igneous rocks provide our best window into the current state of the martian mantle and its evolution after accretion and differentiation. Currently, those rocks have been examined in situ by rovers, characterized in general from orbiting spacecraft, and analyzed in terrestrial laboratories when found as meteorites. However, these data have the potential to bias our understanding of martian magmatism, as most of the available meteorites and rover-analyzed rocks come from the Amazonian (<2 Ga) and Hesperian (~3.65 Ga) periods respectively, while igneous rocks from the Noachian (>3.8 Ga) have only been examined by orbiters and as the unique meteorite ALH 84001. After initial differentiation, the main planetary-scale changes in the structure of Mars which impact igneous compositions are cooling of the planet and thickening of the crust with time. As the shergottite meteorites give ages <500 Ma1, they might be expected to represent thick-crust, recent volcanism. Using spacecraft measurements of volcanic compositions and whole rock compositions of meteorites, we demonstrate that the shergottite meteorites do not match the composition of the igneous rocks composing the young volcanoes on Mars, particularly in their silica content, and no crystallization or crustal contamination trend reproduces the volcanoes from a shergottite-like parent magma. However, we show that the shergottite magmas do resemble older martian rocks in composition and mineralogy. The Noachian-aged meteorite ALH 84001 has similar radiogenic-element signatures to the shergottites and may derive from a similar mantle source despite the age difference2. Thus, shergottite-like magmas may represent melting of mantle sources that were much more abundant early in martian history. We propose that the shergottites represent the melting products of an originally-hydrous martian mantle, containing at least several hundred ppm H2O. Dissolved water can increase the silica content of magmas and thus

  4. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  5. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks.

    PubMed

    Moura, C L; Artur, A C; Bonotto, D M; Guedes, S; Martinelli, C D

    2011-07-01

    This paper reports the natural radioactivity of Brazilian igneous rocks that are used as dimension stones, following the trend of other studies on the evaluation of the risks to the human health caused by the rocks radioactivity as a consequence of their use as cover indoors. Gamma-ray spectrometry has been utilized to determine the (40)K, (226)Ra and (232)Th activity concentrations in 14 rock types collected at different quarries. The following activity concentration range was found: 12.18-251.90 Bq/kg for (226)Ra, 9.55-347.47 Bq/kg for (232)Th and 407.5-1615.0 Bq/kg for (40)K. Such data were used to estimate Ra(eq), H(ex) and I(γ), which were compared with the threshold limit values recommended in literature. They have been exceeded for Ra(eq) and H(ex) in five samples, where the highest indices corresponded to a rock that suffered a process of ductile-brittle deformation that caused it a microbrecciated shape. The exhalation rate of Rn and daughters has also been determined in slabs consisting of rock pieces ~10 cm-long, 5 cm-wide and 3 cm-thick. It ranged from 0.24 to 3.93 Bq/m(2)/h and exhibited significant correlation with eU (=(226)Ra), as expected. The results indicated that most of the studied rocks did not present risk to human health and may be used indoors, even with low ventilation. On the other hand, igneous rocks that yielded indices above the threshold limit values recommended in literature may be used outdoors without any restriction or indoors with ample ventilation. PMID:21459585

  6. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks.

    PubMed

    Moura, C L; Artur, A C; Bonotto, D M; Guedes, S; Martinelli, C D

    2011-07-01

    This paper reports the natural radioactivity of Brazilian igneous rocks that are used as dimension stones, following the trend of other studies on the evaluation of the risks to the human health caused by the rocks radioactivity as a consequence of their use as cover indoors. Gamma-ray spectrometry has been utilized to determine the (40)K, (226)Ra and (232)Th activity concentrations in 14 rock types collected at different quarries. The following activity concentration range was found: 12.18-251.90 Bq/kg for (226)Ra, 9.55-347.47 Bq/kg for (232)Th and 407.5-1615.0 Bq/kg for (40)K. Such data were used to estimate Ra(eq), H(ex) and I(γ), which were compared with the threshold limit values recommended in literature. They have been exceeded for Ra(eq) and H(ex) in five samples, where the highest indices corresponded to a rock that suffered a process of ductile-brittle deformation that caused it a microbrecciated shape. The exhalation rate of Rn and daughters has also been determined in slabs consisting of rock pieces ~10 cm-long, 5 cm-wide and 3 cm-thick. It ranged from 0.24 to 3.93 Bq/m(2)/h and exhibited significant correlation with eU (=(226)Ra), as expected. The results indicated that most of the studied rocks did not present risk to human health and may be used indoors, even with low ventilation. On the other hand, igneous rocks that yielded indices above the threshold limit values recommended in literature may be used outdoors without any restriction or indoors with ample ventilation.

  7. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence

  8. U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: A geodynamic perspective

    NASA Astrophysics Data System (ADS)

    Millonig, Leo J.; Gerdes, Axel; Groat, Lee A.

    2012-11-01

    U-Pb and Th-Pb ages of zircons from seven meta-carbonatite and three meta-alkaline rock samples provide evidence for three distinct episodes of carbonatite and alkaline magmatism in the southern Canadian Cordillera spanning a period of ~ 460 Ma. The earliest, Neoproterozoic event occurred at ~ 800-700 Ma and coincides with the postulated initial break-up of Rodinia. The second, previously undocumented, event of carbonatitic magmatism is constrained to the Late Cambrian at ~ 500 Ma and corresponds to a period of extensional tectonics that affected the western continental margin of North America from the Canadian Cordillera to the southwestern United States. The youngest and most prevalent period of alkaline igneous activity occurred in Late Devonian to Early Carboniferous times at ~ 360-340 Ma and resulted from extensional tectonics, presumably caused by slab rollback. In addition, different episodes of amphibolite-facies metamorphism subsequently affected the igneous rocks between ~ 155 and 50 Ma. This dataset puts new constraints on the timing of carbonatite and alkaline igneous activity and the evolution of (ancestral) North America's western continental margin from Neoproterozoic to Carboniferous times.

  9. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  10. Alkaline galvanic cell

    SciTech Connect

    Inoue, T.; Maeda, Y.; Momose, K.; Wakahata, T.

    1983-10-04

    An alkaline galvanic cell is disclosed including a container serving for a cathode terminal, a sealing plate in the form of a layered clad plate serving for an anode terminal to be fitted into the container, and an insulating packing provided between the sealing plate and container for sealing the cell upon assembly. The cell is provided with a layer of epoxy adduct polyamide amine having amine valence in the range of 50 to 400 and disposed between the innermost copper layer of the sealing plate arranged to be readily amalgamated and the insulating packing so as to serve as a sealing agent or liquid leakage suppression agent.

  11. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  12. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    SciTech Connect

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  13. Cosmogenic 3He in igneous and fossil tooth enamel fluorapatite

    NASA Astrophysics Data System (ADS)

    Farley, K. A.; Cerling, T. E.; Fitzgerald, P. G.

    2001-02-01

    Igneous fluorapatite samples from a suite of six granitic rocks from the Transantarctic Mountains have high 3He concentrations (to 5×10 9 atoms g -1) and high 3He/ 4He ratios (to 9×10 -7). These values are far higher than those found in several hundred igneous apatites from elsewhere around the world and are higher than can be attributed to nuclear reactions on 6Li. This 3He is almost certainly derived from cosmic ray reactions in rocks with high exposure ages at high latitude and elevation. Several samples of fossil tooth enamel fluorapatite from the Turkana Basin of Kenya are similarly rich in 3He, with up to 1×10 7 atoms 3He g -1 and 3He/ 4He ratios up to 4×10 -6. Again, this 3He is most logically attributed to cosmic ray reactions. Provided that cosmogenic 3He, like radiogenic 4He, is quantitatively retained in fluorapatite under Earth surface conditions, routine 3He exposure dating of this common phase may be possible. Based on its chemical composition, the 3He production rate in fluorapatite is about 100 atoms g -1 yr -1 at sea level and high latitude. Using this rate the apatites from the Transantarctic Mountains have apparent exposure ages of 0.5-6.2 Myr, in agreement with values elsewhere in the range. The fossil tooth enamel samples have apparent exposure ages ranging from a few up to 130 kyr. Such high exposure ages suggest some of these fossils may be lag deposits with a very long residence time at or near the Earth's surface. 3He exposure ages can provide insights to the depositional and reworking history of enamel-bearing fossils. At present the major limitations to 3He exposure dating of fluorapatite are purification of sufficient amounts of material and measurement of small amounts of 3He in the presence of large quantities of 4He. In addition, further work is necessary to establish the nucleogenic 3He background in fluorapatite.

  14. Germanium isotopic variations in igneous rocks and marine sediments

    NASA Astrophysics Data System (ADS)

    Rouxel, Olivier; Galy, Albert; Elderfield, Henry

    2006-07-01

    A new technique for the precise and accurate determination of Ge stable isotope compositions has been developed and applied to silicate rocks and biogenic opal. The analyses were performed using a continuous flow hydride generation system coupled to a MC-ICPMS. Samples have been purified through anion- and cation-exchange resins to separate Ge from matrix elements and eliminate potential isobaric interferences. Variations of 74Ge/ 70Ge ratios are expressed as δ74Ge values relative to our internal standard and the long-term external reproducibility of the data is better than 0.2‰ for sample size as low as 15 ng of Ge. Data are presented for igneous and sedimentary rocks, and the overall variation is 2.4‰ in δ74Ge, representing 12 times the uncertainty of the measurements and demonstrating that the terrestrial isotopic composition of Ge is not unique. Co-variations of 74Ge/ 70Ge, 73Ge/ 70Ge and 72Ge/ 70Ge ratios follow a mass-dependent behaviour and imply natural isotopic fractionation of Ge by physicochemical processes. The range of δ74Ge in igneous rocks is only 0.25‰ without systematic differences among continental crust, oceanic crust or mantle material. On this basis, a Bulk Silicate Earth reservoir with a δ74Ge of 1.3 ± 0.2‰ can be defined. In contrast, modern biogenic opal such as marine sponges and authigenic glauconite displayed higher δ74Ge values between 2.0‰ and 3.0‰. This suggests that biogenic opal may be significantly enriched in light isotopes with respect to seawater and places a lower bound on the δ74Ge of the seawater to +3.0‰.This suggests that seawater is isotopically heavy relative to Bulk Silicate Earth and that biogenic opal may be significantly fractionated with respect to seawater. Deep-sea sediments are within the range of the Bulk Silicate Earth while Mesozoic deep-sea cherts (opal and quartz) have δ74Ge values ranging from 0.7‰ to 2.0‰. The variable values of the cherts cannot be explained by binary mixing

  15. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    F. Perry; B. Youngs

    2000-11-06

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both footprints are presented in this AMR. In addition, the

  16. Complete Analytical Data for Samples of Jurassic Igneous Rocks in the Bald Mountain Mining District, Nevada

    USGS Publications Warehouse

    du Bray, Edward A.

    2009-01-01

    This report presents all petrographic, major oxide, and trace element data for a set of 109 samples collected during an investigation of Jurassic igneous rocks in the Bald Mountain mining district, Nevada. Igneous rocks in the district include the Bald Mountain stock, quartz-feldspar porphyry dikes, basaltic andesite dikes, aplite sills, and rare lamprophyre dikes. These rocks, although variably altered near intrusion-related mineral deposits, are fresh in many parts of the district. Igneous rocks in the district are hosted by Paleozoic sedimentary rocks.

  17. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  18. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  19. Rapid magma emplacement in the Karoo Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Corfu, Fernando; Polteau, Stéphane; Hammer, Øyvind; Planke, Sverre

    2012-04-01

    Understanding the dynamics of continental Large Igneous Provinces (LIPs) relies on precise dating of basaltic rocks. LIP research has traditionally focused on dating lavas, often neglecting the volumetrically important sill intrusions in underlying sedimentary basins. Here we present U-Pb zircon (and baddeleyite) ages for fourteen new samples of Karoo LIP sills and dykes spaced by as much as 1100 km across the half million square kilometer Karoo Basin. The samples yield remarkably coherent ages ranging from 183.0 ± 0.5 to 182.3 ± 0.6 myr. Probability modeling indicates that basin scale emplacement took place within an interval of about 0.47 myrs (less than 0.90 myrs with 95% confidence), and could even have represented a single magma emplacement event. Combining the new ages with the estimated volume of sills in the Karoo Basin gives an emplacement rate of 0.78 km3/yr, which is higher than previous estimates. Upper crustal magma storage may account for these high rates. The results challenge the view that melt emplacement in a sedimentary basin is a prolonged process, support a scenario of pulsating catastrophic events within a narrow time frame, and strengthens the hypothesis linking LIPs and sill emplacement to global environmental crises.

  20. The Igneous SPICEs Suite: Old Programs with a New Look

    NASA Astrophysics Data System (ADS)

    Davenport, J. D.

    2013-12-01

    Understanding the chemistry of magma is important for understanding how the planets differentiated into crusts, rocky mantles, and metallic cores. Magma formation and crystallization can be modeled using computer programs. A valuable and useful set of programs was developed by John Longhi (Lamont-Doherty Earth Observatory, Palisades, New York). John Longhi generously shared these programs widely with colleagues, but they were written in Fortran by John for his own use, and not as user-friendly research tools. As a major part of my Masters thesis at the University of Notre Dame, I was using the programs to do numerous calculations of the crystallization of the lunar magma ocean, the deep, global magma layer surrounding the Moon when it formed. It occurred to me that it would make my life easier if the programs were more straightforward, so working with others at Notre Dame and elsewhere, including John Longhi, I converted the programs for use with MATLAB, a powerful mathematical program. The revisions (Simulating Planetary Igneous Crystallization Environments, SPICEs) have a simple graphical interface for ease of input and output, yet use the same rigorous calculations in the original Longhi programs. My goal is to make the programs more widely used for research and education.

  1. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    2005-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Our lunar research concentrates on the rare pristine (unmixed) samples that reflect the original genetic diversity of the early crust. Among HED basalts (eucrites and clasts in howardites), we distinguish as pristine the small minority that escaped the pervasive thermal metamorphism of the parent asteroid's crust. We have found a correlation between metamorphically pristine HED basalts and the similarly small minority of compositionally evolved "Stannern trend" samples, which are enriched in incompatible elements and titanium compared to main group eucrites, and yet have relatively high mg ratios. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; siderophile compositions of the lunar and martian mantles; and planetary bulk compositions and origins.

  2. Calcium isotopes in igneous rocks and the origin of granite

    SciTech Connect

    Marshall, B.D.; DePaolo, D.J. )

    1989-04-01

    The K-Ca radioactive parent-daughter system provides a tool for tracing the origins of igneous rocks. It is complementary to other isotopic systems because as stoichiometric constituents of major minerals, the concentrations of K and Ca, and the K/Ca ratio in rocks, are simply related to mineralogy. In this paper the authors report the first high-precision calcium isotopic analyses of continental granitic rocks, island arc rocks, and mid-ocean ridge basalts. These data show that mid-ocean ridge basalts have the low {sup 40}Ca/{sup 42}Ca ratios expected for the Earth's mantle, but that island arc rocks have slightly higher {sup 40}Ca/{sup 42}Co ratios indicative of crustal calcium in their magma sources. Many granitic rocks have high initial {sup 40}Ca/{sup 42}Ca ratios, and in conjunction with independent evidence for the age of the crustal sources, these ratios provide constraints on the K/Ca ratios, and in turn on the silica contents and residual mineralogy, of the deep crustal magma sources.

  3. Thermal diffusivity of igneous rocks at elevated pressure and temperature

    SciTech Connect

    Durham, W.B.; Mirkovich, V.V.; Heard, H.C.

    1987-10-10

    Thermal diffusivity measurements of seven igneous rocks were made to temperatures of 400 /sup 0/C and pressures of 200 MPa. The measuring method was based on the concept of cylindrical symmetry and periodic heat pulses. The seven rocks measured were Westerly (Rhode Island) granite, Climax Stock (Nevada) quartz monzonite, Pomona (Washington) basalt, Atikokan (Ontario, Canada) granite, Creighton (Ontario, Canada) gabbro, East Bull Lake (Ontario, Canada) gabbro, and Stripa (Sweden) granite. The diffusivity of all the rocks showed a positive linear dependence on inverse temperature and, excluding the East Bull Lake gabbro, showed a linear dependence on quartz content. (Quartz content varied from 0 to 31% by volume.) Diffusivity in all cases rose or remained steady with increasing confining pressure. The pressure effect was strongest at lowest pressures and vanished by levels between 10 and 100 MPa, depending on rock type. The pressure effect (measured as a percentage change in diffusivity) is stronger in the four rocks of granite composition than in the three of basaltic composition. Our results agree well with existing thermal diffusivity measurements at atmospheric pressure.

  4. Large Igneous Provinces, Sulfur Aerosols, and Initiation of Snowball Earth

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Wordsworth, R. D.

    2015-12-01

    The events that led to the initiation of Snowball Earth remain poorly understood. Proposed scenarios include a methane addiction, a biological innovation that led to an increase in organic carbon burial and anaerobic remineralization, or an increase in global weatherability due to a paleogeography with a preponderance of low latitude continents, and the subareal implacement of large igneous provinces (LIPs) at the equator. The Franklin LIP was emplaced between 730 and 710 Ma and covers an area of over 2.25 Mkm2 with lavas, sills, and dikes extending over much of northern Laurentia from Alaska through northern Canada to Greenland and potentially to Siberia. The most precise geochronological constraints on the Franklin LIP overlap with the onset of the Sturtian Snowball Earth glaciation, which began between 717 and 716 Ma and marked the first glaciation in over 1 billion years. The Franklin LIP is the largest preserved Neoproterozoic LIP and one of the largest in Earth History. Additionally, it was emplaced at equatorial latitudes with associated sills that invaded epicontinental sulfur evaporite basins, potentially maximizing environmental effects. Here we explore the hypothesis that the Sturtian Snowball Earth was initiated in part by an increase in planetary albedo from the conversion of volcanic SO2/H2S emissions to tropospheric and stratospheric sulfate aerosols through a combination of geochemical and modeling studies.

  5. Diverse Igneous Protolith Contributions to Sediments in Gale Crater: Variable Metasomatism of the Mars Mantle

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Izawa, M. R. M.; Thomas, A. P.; Thompson, L.; Gellert, R.

    2016-08-01

    Igneous float rocks and least altered basaltic sedimentary bedrock examined in Gale Crater provide insight to the petrogenesis of the crystalline basement and suggest the mantle source was alkali and Ni-enriched by an oxidizing metasomatic event.

  6. Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Pt. 1

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W. (Editor); Papike, James J. (Editor)

    1996-01-01

    This volume contains abstracts of papers that have been accepted for presentation at the Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, October 16-18, 1996, in Houston, Texas.

  7. Igneous geology of the Carlin trend, Nevada: The importance of Eocene magmatism in gold mineralization

    NASA Astrophysics Data System (ADS)

    Ressel, Michael Walter, Jr.

    Igneous rocks of five ages are present in the Carlin trend, Nevada, and include: (1) Paleozoic basalt of the Roberts Mountains allochthon, (2) the Jurassic (˜158 Ma) Goldstrike intrusive complex, which includes the Goldstrike diorite laccolith and abundant dikes and sills, (3) a Cretaceous (112 Ma) granite stock, (4) lavas and intrusions of the Emigrant Pass volcanic field and widespread epizonal plugs and dikes of Eocene (˜40-36 Ma) age that range from rhyolite through basalt, and (5) Miocene (15 Ma) rhyolite lava and tuff. Jurassic and Eocene igneous rocks are by far the most important volumetrically and are spatially associated with nearly all ore deposits of the Carlin trend. This study focuses on the field relations, isotopic dating, and geochemistry of Eocene dikes that intrude sedimentary rocks in many deposits of the Carlin trend, because they are the youngest pre-mineral rocks and have simpler alteration histories than other host rocks. In the Beast, Genesis, Deep Star, Betze-Post, Rodeo-Goldbug, Meikle-Griffin, and Dee-Storm deposits, Eocene dikes are altered, commonly mineralized, and locally constitute ore. Gold-bearing dikes and sedimentary rocks have similar ore mineralogy, including arsenian pyrite, marcasite, and arsenopyrite, with late barite and stibnite. At Beast, as much as half the ore is hosted in a 37.3 Ma rhyolite dike. Post-gold alunite is ˜18.6 Ma. At Meikle and Griffin, porphyritic dacite dikes yield concordant U/Pb zircon and 40Ar/39Ar biotite emplacement ages of ˜39.2 Ma, and illite from the same QSP-altered dacite, with as much 9 ppm Au, yields similar, although imprecise 40Ar/39Ar ages. Thus, gold mineralization at these deposits closely followed emplacement of Eocene dikes. Carlin-type gold deposits in northeastern Nevada have been variously interpreted as partly syngenetic with Paleozoic carbonate rocks, products of Mesozoic contraction and metamorphism with or without significant magmatism, and of Tertiary age and related or

  8. Aspects of igneous activity significant to a repository at Yucca Mountain, Nevada

    SciTech Connect

    Krier, D. J.; Perry, F. V.

    2004-01-01

    Location, timing, volume, and eruptive style of post-Miocene volcanoes have defined the volcanic hazard significant to a proposed high-level radioactive waste (HLW) and spent nuclear fuel (SNF) repository at Yucca Mountain, Nevada, as a low-probability, high-consequence event. Examination of eruptive centers in the region that may be analogueues to possible future volcanic activity at Yucca Mountain have aided in defining and evaluating the consequence scenarios for intrusion into and eruption above a repository. The probability of a future event intersecting a repository at Yucca Mountain has a mean value of 1.7 x 10{sup -8} per year. This probability comes from the Probabilistic Volcanic Hazard Assessment (PVHA) completed in 1996 and updated to reflect change in repository layout. Since that time, magnetic anomalies representing potential buried volcanic centers have been identified fiom magnetic surveys; however these potential buried centers only slightly increase the probability of an event intersecting the repository. The proposed repository will be located in its central portion of Yucca Mountain at approximately 300m depth. The process for assessing performance of a repository at Yucca Mountain has identified two scenarios for igneous activity that, although having a very low probability of occurrence, could have a significant consequence should an igneous event occur. Either a dike swarm intersecting repository drifts containing waste packages, or a volcanic eruption through the repository could result in release of radioactive material to the accessible environment. Ongoing investigations are assessing the mechanisms and significance of the consequence scenarios. Lathrop Wells Cone ({approx}80,000 yrs), a key analogue for estimating potential future volcanic activity, is the youngest surface expression of apparent waning basaltic volcanism in the region. Cone internal structure, lavas, and ash-fall tephra have been examined to estimate eruptive volume

  9. Thermal aureoles of igneous intrusions: some possible indications of hydrothermal convective cooling

    SciTech Connect

    Parmentier, E.M.; Schedl, A.

    1981-01-01

    The size and shape of metamorphic aureoles is investigated as a possible indicator of hydrothermal convective cooling of epizonal igneous intrusions. A simple family of numerical models illustrates the effect of convective cooling on maximum temperatures attained in the country rock surrounding an intrusion. Boundary layer approximations have also been applied to describe convection of vaporizing groundwater near the contact of an intrusion early in its cooling history. Maximum temperature isotherms are taken to reflect the width and shape of thermal aureoles defined by preserved mineral assemblages as appears to be reasonable based on several well-studied conductively cooled intrusions. The thermal aureoles of intrusions for which oxygen and hydrogen isotope data indicate convective groundwater circulation have been examined on the basis of the simple numerical and boundary layer models. The shape of the low temperature alteration aureole of the well-mapped El Salvador porphyry copper deposit suggests convective cooling of a permeable intrusion. The width of the low temperature (greenschist) aureole of the Mull intrusive complex can be explained by convective cooling of permeable intrusive rock. The narrow high temperature (amphibolite) aureole of the Cuillin gabbro on Skye can be explained by strong convective cooling; but the low temperature (greenschist) aureole is wide enough to be consistent with conductive cooling, thus suggesting decreasing permeabilities during the cooling history. This is consistent with oxygen isotope sampling and other geologic observations.

  10. Evaluation of and new completion recommendations for a fractured, crystalline, igneous reservoir, Texas Panhandle

    SciTech Connect

    Weimer, B.A.; Manwaring, M.S. )

    1987-02-01

    In the Panhandle field of Texas, the lowest stratigraphic producing formation is a crystalline basement rock. The igneous rock is productive when it is naturally fractured sufficiently to hold hydrocarbons trapped in the same structure as the expansive Panhandle field. Research work to understand the crystalline reservoir better focused on the fracturing, mineralogy, and production potential of the basement interval. This trap is a true fractured reservoir; it has no more than 1% primary porosity in the nonfractured rock. The mineralogy of the host rock and fracture-filling minerals was established from drill and core samples. The host rock is a complex of granodiorite, dacite, and gabbroic diorite. Scanning electron microscopy, x-ray diffraction, and optical work confirmed the occurrence of at least 12 secondary fracture-fill minerals. Fluid inclusion analysis established formation temperatures for many of the minerals and allowed postulation of a detailed sequence of formation. The character of the fracture in differing host petrologies and the occurrence of clay minerals coating fracture surfaces were deemed to be critical factors in hydrocarbon production. New and specific enhancement treatments were designed for the subject reservoir, and these recommendations were used in a test well. Results from the test were favorable and appear to confirm the ideas formed from this work. The new recommended treatments are less expensive than current practices and indicate potential for greater ultimate recoveries of oil.

  11. Survey of Large, Igneous-Textured Inclusions in Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Ruzicka, A. M.

    2013-12-01

    Ordinary (O) chondrites are a class of primitive stony meteorites, and as a group comprise our most abundant samples of early solar system materials. Unique to O chondrites are igneous-textured inclusions up to 4 cm in diameter; about an order of magnitude larger than the much more abundant chondrules. These inclusions are almost always highly depleted in metal and sulfide relative to their host meteorite, but but otherwise have diverse characteristics. They exhibit a large range of textures, mineralogies, and bulk compositions, suggesting a variety of formation processes. They all crystallized from large melt volumes, the origins of which are poorly understood. Models proposed for their formation include (1) shock melting of ordinary chondrites with an associated loss of metal and sulfide; (2) melting of vapor-fractionated condensate mixture; (3) chondrule formation involving a larger melt production volume than typical for chondrules; and (4) igneous differentiation occurring within planetesimals sampled by ordinary chondrite parent bodies. Polished thin sections of inclusions from several O-chondrites have been examined with optical light microscopy (OLM) using a Leica DM 2500 petrographic microscope. Petrographic data such as texture, grain sizes and shapes were collected for the inclusions and their hosts in order to facilitate comparisons. Texturally, the inclusions were determined to fall into one of three distinct textural categories: porphyritic, fine granular, and skeletal. Mean grain sizes are on the order of 100 um for both microporphyritic and fine granular inclusions, with microporphyritic inclusions showing a much wider range of grain sizes. The largest grains in the microporphyritic inclusions are on average ~0.25 mm, with the grains of the mesostasis <100 microns. Skeletal olivine textures are defined as being dominated by crystals that are an order of magnitude longer across one direction than the other (e.g., 1 mm x 100 um). Five inclusions have

  12. Ca Isotopic Ratios in Igneous Rocks: Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huang, S.; Farkas, J.; Jacobsen, S. B.

    2009-12-01

    Calcium (Ca) is the 5th most abundant element on the Earth, and it is an important geochemical and cosmochemical tracer. It has six isotopes and only H and He have a larger percentage mass difference (Δm/m) between the heaviest and the lightest isotopes. Systematic Ca isotopic studies have mostly focused on low-temperature geochemical processes, and most Ca isotopic analyses have been applied on modern and ancient marine carbonates and sulphates, documenting large and systematic isotopic variations, which were used to infer the chemical evolution of seawater. Detailed work on igneous rocks is very limited. Here we show two examples of how stable Ca isotopic ratios can be a useful geochemical tool in understanding igneous processes. Ca isotopic fractionation between coexisting clinopyroxene and orthopyroxene from mantle peridotites: We report Ca isotopic ratios on co-existing clino- and ortho-pyroxenes from Kilbourne Hole and San Carlos mantle peridotites. The 44Ca/40Ca in orthopyroxenes is ~0.5 per mil heavier than that in co-existing clinopyroxenes. Combined with published Ca isotopic data on low-temperature Ca-bearing minerals (calcite, aragonite and barite), we show that the fractionation of Ca isotopes between Ca-bearing minerals (at both low-temperature and high-temperature) is primarily controlled by the strength of Ca-O bond in the minerals. The mineral with shorter (i.e., stronger) Ca-O bond yields heavier Ca isotopic ratio. Using our measured 44Ca/40Ca in mantle pyroxenes and the relative proportions of major Ca-bearing minerals in the upper mantle, the estimated 44Ca/40Ca of the upper mantle is 1.1 per mil heavier relative to the NIST 915a, ~0.1 to 0.2 per mil higher than basalts. Ca isotopic variation in Hawaiian shield lavas: Large geochemical and isotopic variations have been observed in lavas forming the large tholeiitic shields of Hawaiian volcanoes, with lavas from the surface of the Koolau volcano (Makapuu-stage) defining one compositional and

  13. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  14. Vigrishinite, Zn2Ti4 - x Si4O14(OH,H2O,□)8, a new mineral from the Lovozero alkaline complex, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Britvin, S. N.; Zubkova, N. V.; Chukanov, N. V.; Bryzgalov, I. A.; Lykova, I. S.; Belakovskiy, D. I.; Pushcharovsky, D. Yu.

    2013-12-01

    A new mineral vigrishinite, epistolite-group member and first layer titanosilicate with species-defining Zn, was found at Mt. Malyi Punkaruaiv, in the Lovozero alkaline complex, Kola Peninsula, Russia. It occurs in a hydrothermally altered peralkaline pegmatite and is associated with microcline, ussingite, aegirine, analcime, gmelinite-Na, and chabazite-Ca. Vigrishinite forms rectangular or irregularly shaped lamellae up to 0.05 × 2 × 3 cm flattened on [001]. They are typically slightly split and show blocky character. The mineral is translucent to transparent and pale pink, yellowish-pinkish or colorless. The luster is vitreous. The Mohs' hardness is 2.5-3. Vigrishinite is brittle. Cleavage is {001} perfect. D meas = 3.03(2), D calc = 2.97 g/cm3. The mineral is optically biaxial (-), α = 1.755(5), β = 1.82(1), γ = 1.835(8), 2 V meas = 45(10)°, 2 V calc = 50°. IR spectrum is given. The chemical composition (wt %; average of 9 point analyses, H2O is determined by modified Penfield method) is as follows: 0.98 Na2O, 0.30 K2O, 0.56 CaO, 0.05 SrO, 0.44 BaO, 0.36 MgO, 2.09 MnO, 14.39 ZnO, 2.00 Fe2O3, 0.36 Al2O3, 32.29 SiO2, 29.14 TiO2, 2.08 ZrO2, 7.34 Nb2O5, 0.46 F, 9.1 H2O, -0.19 O=F2, total is 101.75. The empirical formula calculated on the basis of Si + Al = 4 is: H7.42(Zn1.30Na0.23Mn0.22Ca0.07Mg0.07K0.05Ba0.02)Σ1.96(Ti2.68Nb0.41Fe{0.18/3+}Zr0.12)Σ3.39(Si3.95Al0.05)Σ4 20.31F0.18. The simplified formula is: Zn2Ti4- x Si4O14(OH,H2O,□)8 ( x < 1). Vigrishinite is triclinic, space group P , a = 8.743(9), b = 8.698(9), c = 11.581(11)Å, α = 91.54(8)°, β = 98.29(8)°, γ = 105.65(8)°, V = 837.2(1.5) Å3, Z = 2. The strongest reflections in the X-ray powder pattern ( d, Å, - I[ hkl]) are: 11.7-67[001], 8.27-50[100], 6.94-43[01, 10], 5.73-54[11, 002], 4.17-65[020, 2, 200], and 2.861-100[30, 22, 004, 11]. The crystal structure model was obtained on a single crystal, R = 0.171. Vigrishinite and murmanite are close in the structure of the TiSiO motif, but

  15. Linking mantle plumes, large igneous provinces and environmental catastrophes.

    PubMed

    Sobolev, Stephan V; Sobolev, Alexander V; Kuzmin, Dmitry V; Krivolutskaya, Nadezhda A; Petrunin, Alexey G; Arndt, Nicholas T; Radko, Viktor A; Vasiliev, Yuri R

    2011-09-15

    Large igneous provinces (LIPs) are known for their rapid production of enormous volumes of magma (up to several million cubic kilometres in less than a million years), for marked thinning of the lithosphere, often ending with a continental break-up, and for their links to global environmental catastrophes. Despite the importance of LIPs, controversy surrounds even the basic idea that they form through melting in the heads of thermal mantle plumes. The Permo-Triassic Siberian Traps--the type example and the largest continental LIP--is located on thick cratonic lithosphere and was synchronous with the largest known mass-extinction event. However, there is no evidence of pre-magmatic uplift or of a large lithospheric stretching, as predicted above a plume head. Moreover, estimates of magmatic CO(2) degassing from the Siberian Traps are considered insufficient to trigger climatic crises, leading to the hypothesis that the release of thermogenic gases from the sediment pile caused the mass extinction. Here we present petrological evidence for a large amount (15 wt%) of dense recycled oceanic crust in the head of the plume and develop a thermomechanical model that predicts no pre-magmatic uplift and requires no lithospheric extension. The model implies extensive plume melting and heterogeneous erosion of the thick cratonic lithosphere over the course of a few hundred thousand years. The model suggests that massive degassing of CO(2) and HCl, mostly from the recycled crust in the plume head, could alone trigger a mass extinction and predicts it happening before the main volcanic phase, in agreement with stratigraphic and geochronological data for the Siberian Traps and other LIPs. PMID:21921914

  16. Thermal conductivity anisotropy of metasedimentary and igneous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Chapman, David S.; van Wagoner, Thomas M.; Armstrong, Phillip A.

    2007-05-01

    Thermal conductivity anisotropy was determined for three sets of metasedimentary and igneous rocks from central Utah, USA. Most conductivity measurements were made in transient mode with a half-space, line source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kpar) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kpar and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady state mode. Anisotropy is defined as kpar/kperp. Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for Price Canyon sedimentary samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming [1994] that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  17. Roots of Magmatic Systems of Large Continental Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.

    2014-12-01

    It is consensus now that appearance of the large igneous provinces (LIP) is considered with ascending of mantle superplumes. It is evident that beneath LIPs was not exited magma oceans and adiabatic melting occurred in heads of protuberances on their surface (local, or secondary plumes), which can reach relatively shallow levels. The least known element of magmatic system is area of magma generation and meltedsources. Important information about it is contained in the mantle xenoliths in alkali basalts. They are represented by two series: (1) "green": spinel peridotite (maily lherzolite) and minor spinel pyroxenite (websterite), and (2) "black" (veins in the peridotite matrix): wehrlite, Al-Ti-augite and hornblende clinopyroxenite, hornblendite, phlogopitite, etc, which crystallized from fluid-saturated melts or high-density fluid. Very likely, that these fluids, enriched in Fe, Ti, alkalis and incompatible elements, were parts of intergranular material of original plume material and were released due to its decompression; evidently, they provided specific composition of plume-related melts. Both types of xenoliths represent material of plume head and accordingly - the melting substratum. One of problem of plume-related magmatism is coexisting of alkali and tholeiitic basalts, which origin often considered with different PT conditions. However, this situation can be explained another way. Because fluid components, acting jointly or separately, impregnated the peridotite matrix nonuniform, it led to heterogeneous composition of smelted magmas, and primary melts can have different composition even though be forming at similar PT conditions. According to Yoder and Tilley (1962), even small differences in SiO2 content lead to different ways in evolution of magmas due to critical plane of silica undersaturation. As a result, one magmas will develop to Ne enrichment (alkali basalts) and another - to silica direction (tholeiite basalts.

  18. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    F. Perry; R. Youngs

    2004-10-14

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.

  19. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; Wooden, J. L.; Cheadle, M. J.; John, B. E.

    2015-12-01

    Over 5300 recent SHRIMP-RG analyses of trace elements (TE) in igneous zircon have been compiled and classified based on their original tectono-magmatic setting to empirically evaluate "geochemical fingerprints" unique to those settings. Immobile element geochemical fingerprints used for lavas are applied with the same rational to zircon, including consideration of mineral competition on zircon TE ratios, and new criteria for distinguishing mid-ocean ridge (MOR), magmatic arc, and ocean island (and other plume-influenced) settings are proposed. The elemental ratios in zircon effective for fingerprinting tectono-magmatic provenance are systematically related to lava composition from equivalent settings. Existing discrimination diagrams using zircon U/Yb versus Hf or Y do not distinguish TE-enriched ocean island settings (i.e., Iceland, Hawaii) from magmatic arc settings. However, bivariate diagrams with combined cation ratios involving U-Nb-Sc-Yb-Gd-Ce provide a more complete distinction of zircon from these settings. On diagrams of U/Yb versus Nb/Yb, most MOR, ocean island, and kimberlite zircon define a broad "mantle-zircon array"; arc zircon defines a parallel array offset to higher U/Yb. Distinctly low U/Yb ratios of MOR zircon (typically <0.1) mirror their parental magmas and long-term incompatible element depletion of the MORB mantle. Plume-influenced sources are distinguished from MOR by higher U/Yb, U/Nb, Nb/Yb, and Nb/Sc. For zircon with U/Yb > 0.1, high Sc/Yb separates arc settings from low-Sc/Yb plume-influenced sources. The slope of scandium enrichment trends in zircon differ between MOR and continental arc settings, likely reflecting the involvement of amphibole during melt differentiation. Scandium is thus also critical for discriminating provenance, but its behavior in zircon probably reflects contrasting melt fractionation trends between tholeiitic and calc-alkaline systems more than compositional differences in primitive magmas sourced at each

  20. The Iron Hill (Powderhorn) Carbonatite Complex, Gunnison County, Colorado - A Potential Source of Several Uncommon Mineral Resources

    USGS Publications Warehouse

    Van Gosen, Bradley S.

    2009-01-01

    A similar version of this slide show was presented on three occasions during 2008: two times to local chapters of the Society for Mining, Metallurgy, and Exploration (SME), as part of SME's Henry Krumb lecture series, and the third time at the Northwest Mining Association's 114th Annual Meeting, held December 1-5, 2008, in Sparks (Reno), Nevada. In 2006, the U.S. Geological Survey (USGS) initiated a study of the diverse and uncommon mineral resources associated with carbonatites and associated alkaline igneous rocks. Most of these deposit types have not been studied by the USGS during the last 25 years, and many of these mineral resources have important applications in modern technology. The author chose to begin this study at Iron Hill in southwestern Colorado because it is the site of a classic carbonatite complex, which is thought to host the largest known resources of titanium and niobium in the United States.

  1. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  2. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  3. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  4. The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.

    The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration

  5. An 40Ar/39Ar geochronology on a mid-Eocene igneous event on the Barton and Weaver peninsulas: Implications for the dynamic setting of the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Zheng, Xiang-Shen; Lee, Jong I. K.; Choe, Won Hie; Evans, Noreen; Zhu, Ri-Xiang

    2009-12-01

    The genesis of basaltic to andesitic lavas, mafic dikes, and granitoid plutons composing the subaerial cover on the Barton and Weaver peninsulas, Antarctica, is related to arc formation and subduction processes. Precise dating of these polar rocks using conventional 40Ar/39Ar techniques is compromised by the high degree of alteration (with loss on ignition as high as 8%). In order to minimize the alteration effects we have followed a sample preparation process that includes repeated acid leaching, acetone washing, and hand picking, followed by an overnight bake at 250°C. After this procedure, groundmass samples can yield accurate age plateaus consisting of 70%-100% of the total 39Ark released using high-resolution heating schedules. The different rock types studied on the Barton and Weaver peninsulas yielded almost coeval ages, suggesting a giant igneous event in the Weaver and Barton peninsulas at 44.5 Ma. A compilation of newly published ages indicate that this event took place throughout the whole South Shetland Islands, suggesting a dynamic incident occurred at this stage during the arc evolution history. We related this igneous event to a mantle delamination mechanism during Eocene times. The delamination process began at ˜52 Ma, and the resultant upwelling of asthenosphere baffled the subduction of Phoenix plate, causing an abrupt decrease in convergence rate. Then multiple magmatic sources were triggered, resulting in a culminating igneous activity during 50-40 Ma with a peak at ˜45 Ma along the archipelago. The delamination also caused the extension regime indicated by the dike swarm, plugs and sills all over the archipelago, and the uplift of Smith metamorphic complex and Livingston Island. Delamination process may have finished at some time during 40-30 Ma, leaving a weak igneous activity at that stage and thereafter. The convergence rate then recovered gradually, as indicated by the magnetic anomaly identifications. This model is supported by seismic

  6. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.

  7. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock. PMID:26669148

  8. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an

  9. Patterns and origin of igneous activity around the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Foley, S. F.; Link, K.; Tiberindwa, J. V.; Barifaijo, E.

    2012-01-01

    Tertiary and later igneous activity is common on and around the Tanzanian craton, with primitive magma compositions ranging from kimberlites and varieties of picrites through nephelinites, basanites and alkali basalts. This review focuses on elucidating the conditions of origin of the melts, addressing the question of the state and involvement of the Tanzanian cratonic lithosphere in magma genesis. The Tanzanian craton is anomalous with a surface elevation of >1100 m reflecting buoyancy supported by a subcratonic plume whose effects are seen in the volcanics of both western and eastern rift branches. Magmatism on the craton and at its edge has high K/Na and primitive melts show fractionation dominated by olivine. Slightly further from the craton pyroxene fractionation dominates and K/Na ratios in the magmas are lower. Off-craton melts are nephelinites, basanites and alkali basalts with low K/Na. Potassium enrichment in the melts correlates with the occurrence of phlogopite in mantle-derived xenoliths, and also with carbonate in the magmas. This is attributed to melting at >140 km depths of mixed source regions containing phlogopite pyroxenite and peridotite, whereby the carbonate is derived from oxidation of diamonds concentrated near the base of the cratonic lithosphere. Mixed source regions are required by arrays of radiogenic isotopes such as Os and Sr in the volcanic rocks. The temporal progression of lamproites to phlogopite + carbonate-rich rocks to melilitites, nephelinites and alkali basalts seen during the erosion of the North Atlantic craton are seen around the Tanzanian craton as the coeval occurrence kimberlites, kamafugites and related rocks, nephelinites and alkali basalts showing spatial instead of temporal variation. This is due to the different stages of development of rifting around the craton: in northwestern Uganda and northern Tanzania, K-rich volcanism occurs at the craton edge, whereas nephelinites, basanites and alkali basalts occur where

  10. The behaviour of copper isotopes during igneous processes

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Moynier, F.; Harvey, J.; Burton, K. W.

    2015-12-01

    Application of Cu isotopes to high temperature systems has recently gained momentum and has the potential for probing sulphide fractionation during planetary differentiation [1]. This requires robust estimates for planetary reservoirs, and a fundamental understanding of how igneous processes affect Cu isotopes; this study aims to tackle the latter. Cogenetic suites affected by both fractionation crystallisation and cumulate formation were analysed to study such effects on Cu isotopes. In S-undersatured systems, Cu behaves incompatibly during melt evolution and the Cu isotope composition of such melt is invariant over the differentiation sequence. In contrast, S-saturated systems show resolvable Cu isotope variations relative to primitive melt. Such variations are minor but imply a slightly heavy Cu isotope composition for continental crust compared to BSE, consistent with granite data [2]. Although olivine accumulation does not affect Cu isotopes, spinel-hosted Cu is isotopically light relative to the bulk. Analysis of variably melt-depleted cratonic peridotites shows that partial melting can affect Cu isotope composition in restite, with the depleted samples isotopically light compared to BSE. This could be due to residual spinel and/or incongruent melting of sulphides - individual sulphides picked from a single xenolith reveal a range of Cu isotope compositions, dependent on composition. Although partial melting may fractionate Cu isotopes, models suggest most mantle-derived melt will have δ65Cu ≈ BSE, as most source Cu will be transferred to the melt. Small degree melts such as ocean island basalts are predicted to be isotopically heavier than MORB, if derived from a primitive mantle source. OIBs have a range of Cu isotope compositions: some are heavier than MORB as predicted; however, some have much lighter compositions. Since Cu isotopes can be significantly fractionated in the surface environment [e.g. 3] OIB Cu isotopic variations may be linked to

  11. The pre-Caledonian Large Igneous Province and the North Atlantic Wilson Cycle

    NASA Astrophysics Data System (ADS)

    Tegner, Christian; Andersen, Torgeir B.; Corfu, Fernando; Planke, Sverre; Jørgen Kjøll, Hans; Torsvik, Trond H.

    2016-04-01

    Magmatism of the first known rifting phase of the North Atlantic Wilson Cycle is surprisingly well preserved in the Caledonian nappes of central Scandinavia. The Särv and Seve Nappes are characterised by spectacular dyke complexes originally emplaced into continental sediments along the rifted margin of Iapetus. The intensity and structure of the pre-Caledonian Dyke Complex is comparable to that of the present passive margins of the North Atlantic large igneous province (NALIP) and U-Pb ages of 610-590 Ma suggest magmatism was short-lived. It can be described as a pre-Caledonian large igneous province (CLIP). To constrain the origin of CLIP magmatism we: (1) re-visited the dyke complexes of the Sarek, Kebnekaise and Tornetrask mountains of North Sweden; (2) compiled new and published geochemical data for the more than 950 km long, magma-rich segment of the Scandinavian Caledonides; and (3) extended reconstructions of the paleo-position of Baltica back to 600 Ma. Although the appearance of the dykes ranges from garnet amphibolite gneiss to pristine magmatic intrusions, all bulk rock compositions largely reflect the original magmatic rock. The compiled dataset includes 584 analyses that essentially forms a coherent suite of tholeiitic ferrobasalt (2-12 wt% MgO, 45-54 wt% SiO2; 6-16 wt% FeOtot; 0.7-4.0 wt% TiO2) akin to LIP basalts such as those of NALIP (61-54 Ma). A few samples (<20) are significantly contaminated with crust, but most are largely uncontaminated. The delta Nb value is a proxy for geochemical enrichment based on Nb-Zr-Y systematics and was defined for the present-day North Atlantic system to distinguish enriched Iceland basalts (positive delta Nb) from normal MORB basalts (negative delta Nb). The CLIP dykes are dominantly enriched with positive delta Nb (-0.07 to +0.9) in the central and southern portion, but stretching to more negative values (-0.6 to +0.5) in the northern portion (Sarek, Kebnekaise, Tornetrask). The few available rare earth element

  12. Hydrocarbon occurrences in igneous and metamorphic rocks: Plays of the 1990s

    SciTech Connect

    Harrelson, D.W.

    1989-09-01

    A review of available geologic literature has indicated numerous references detailing the occurrences of hydrocarbon in igneous and metamorphic rocks. Notable among these references is a paper by Chung-Hsiang P'an and a group of papers edited by Sidney Powers. Collectively, these papers conclude a biogenic source for hydrocarbons, most of which occur in (1) weathered igneous and metamorphic reservoir rocks that are higher than the source rocks (e.g., Amarillo field) or (2) igneous and metamorphic rocks that exert structural or stratigraphic control on the reservoir or source rocks (e.g., Jackson dome and the Wiggins anticline-Hancock ridge). It should be noted that a new twist on the abiogenic origin of some inert hydrocarbon gases (i.e., helium and nitrogen) proposes a degassing of igneous and metamorphic rocks from sources in the underlying mantle. Recent european super-deep tests (e.g., the Siljan Ring and the Kola SG-3 testholes) have attempted, with mixed results, to verify this theory. Drilling for these deep igneous and metamorphic prospects today is considered at or below economic basement or worse - a rank wildcat. However, these plays should become increasingly commercial in the 1990s as deeper drilling technology progresses, the current oil glut is eliminated, and more exotic deep gas prospects become accepted.

  13. Middle Jurassic to early Cretaceous igneous rocks along eastern North American continental margin

    SciTech Connect

    Jansa, L.F.; Pe-Piper, G.

    1988-03-01

    Late Middle Jurassic and Early Cretaceous mafic dikes, sills, flows, and local volcaniclastic sediments are intercalated within continental shelf sediments from the Baltimore Canyon Trough northward to the Grand Banks of Newfoundland. The igneous rocks on the eastern North American margin are mainly alkali basalts of intraplate affinity. The late Middle Jurassic igneous activity was of short duration, at about 140 Ma, and was restricted to Georges Bank where it led to construction of several volcanic cones. The main period of igneous activity was concentrated at about 120 Ma in the Aptian/Berremian. The activity consists of dike swarms in Baltimore Canyon, occasional dikes on the Scotian Shelf, and the growth of stratovolcanoes on the Scotian Shelf and Grand Banks. Younger dikes (approx. 95 Ma) also are present on the Grand Banks. With regard to oil exploration on the continental margin, care must be taken to properly identify igneous and volcaniclastic rocks on mechanical logs, drill cuttings, and cores. Reflection seismic profiles can be used to map the areal extent of sills, flows, and low-angle dikes, which commonly show distinctive seismic responses. However, steeply dipping dikes generally produce little, if any, seismic response. Isotopic-age determinations of igneous rocks, combined with biostratigraphic-age determinations of adjacent strata, are invaluable for stratigraphic correlation, establishing chronology of seismic sequences, and analysis of basin sedimentation and tectonic history. 9 figures, 2 tables.

  14. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB. PMID:17783739

  15. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB.

  16. Mathiasite-loveringite and priderite in mantle xenoliths from the Alto Paranaíba Igneous Province, Brazil: genesis and constraints on mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Almeida, Vidyã; Janasi, Valdecir; Svisero, Darcy; Nannini, Felix

    2014-12-01

    Alkali-bearing Ti oxides were identified in mantle xenoliths enclosed in kimberlite-like rocks from Limeira 1 alkaline intrusion from the Alto Paranaíba Igneous Province, southeastern Brazil. The metasomatic mineral assemblages include mathiasite-loveringite and priderite associated with clinopyroxene, phlogopite, ilmenite and rutile. Mathiasite-loveringite (55-60 wt.% TiO2; 5.2-6.7 wt.% ZrO2) occurs in peridotite xenoliths rimming chromite (˜50 wt.% Cr2O3) and subordinate ilmenite (12-13.4 wt.% MgO) in double reaction rim coronas. Priderite (Ba/(K+Ba)< 0.05) occurs in phlogopite-rich xenoliths as lamellae within Mg-ilmenite (8.4-9.8 wt.% MgO) or as intergrowths in rutile crystals that may be included in sagenitic phlogopite. Mathiasite-loveringite was formed by reaction of peridotite primary minerals with alkaline melts. The priderite was formed by reaction of peridotite minerals with ultrapotassic melts. Disequilibrium textures and chemical zoning of associated minerals suggest that the metasomatic reactions responsible for the formation of the alkali-bearing Ti oxides took place shortly prior the entrainment of the xenoliths in the host magma, and is not connected to old (Proterozoic) mantle enrichment events.

  17. Supercontinents, Plate Tectonics, Large Igneous Provinces and Deep Mantle Heterogeneities

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Steinberger, B.; Burke, K.; Smethurst, M. A.

    2008-12-01

    The formation and break-up of supercontinents is a spectacular demonstration of the Earth's dynamic nature. Pangea, the best-documented supercontinent, formed at the end of the Palaeozoic era (320 Ma) and its dispersal, starting in the Early Jurassic (190 Ma), was preceded by and associated with widespread volcanic activity, much of which produced Large Igneous Provinces (LIPs), but whether any of the heat or material involved in the generation of LIP rocks comes from greater depths has remained controversial. Two antipodal Large Low Shear wave Velocity Provinces with centre of mass somewhat south of the equator (African and Pacific LLSVPs), isolated within the faster parts of the deep mantle dominate all global shear- wave tomography models. We have tested eight global models and two D" models: They all show that deep- plume sourced hotspots and most reconstructed LIPs for the last 300 million years project radially downwards to the core-mantle-boundary near the edges of the LLSVPs showing that the plumes that made those hotspots and LIPS came only from those plume generation zones. This is a robust result because it is observed in multiple reference frames, i.e. fixed/moving hotspot and palaeomagnetic frames, and in the latter case whether the effect of True Polar Wander (TPW) is considered or not. Our observations show that the LLSVPs must have remained essentially stable in their present position for the last 300 million years. LIPs have erupted since the Archean and may all have been derived from the margins of LLSVPs but whether the African and Pacific LLSVPs have remained the same throughout Earth's history is less certain although analogous structures on Mars do indicate long-term stability on that planet. Deep mantle heterogeneities and the geoid have remained very stable for the last 300 million years, and the possibility is therefore open for speculating on links to Pangea assembly. In a numerical model, Zhong et al. (2007, EPSL) argued that Pangea

  18. Crystal Size Distributions in Igneous rocks: Where are we now?

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2003-12-01

    in either slope of intercept is significant and can be related to other parameters. Concave down CSDs, with no small crystals, are commonly encountered in porphyritic, oikocrystic and plutonic rocks. This texture may be produced by textural coarsening (Ostwald ripening, annealing): this occurs when the magma is maintained close to the mineral liquidus. In this situation the nucleation rate is zero, but growth rates are significant. The classic LSW model is not the only solution possible: more modern solutions, such as Communicating Neighbours may be more appropriate. Variable degrees of textural coarsening will produce CSDs that appear to rotate about a single point. This again reflects closure. Concave up CSDs with no lower size limit are very common. They do not generally have a lognormal or fractal size distribution. They can be produced by mixing of two or more magmas, or crystallisation under several different conditions of undercooling. They can also result from alternations of nucleation and growth followed by textural coarsening. Crystal accumulation and fraction should modify existing CSDs in a predictable manner. An exact solution to this problem has not yet been developed, but simplistic models suggest that CSDs should rotate upwards about the size origin for accumulation and downwards for fractionation. However, clear evidence for such effects has not yet been observed, even in well-layered rocks. There are many igneous systems still to be explored using CSDs. An exiting new domain may be the application of CSDs in experimental petrology.

  19. Mantle Redox Conditions in the North Atlantic Igneous Province

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Gras, M. A.; Lesher, C. E.

    2004-12-01

    The North Atlantic igneous province (NAIP) has long been viewed as a region of anomalous mantle upwelling related to plume activity, continental rifting, and a heterogeneous mantle source. Prior to continental rifting in the Tertiary, the northern portion of the region was the site of closure of the Iapetus ocean basin. This tectonic event may have contributed to heterogeneities within the upper mantle and altered its oxidation state relative to the ambient mantle. Vanadium has been shown to be a useful indicator of redox conditions due to its multiple valence states (e.g. [1-2]). In mantle minerals, vanadium becomes increasingly incompatible under more oxidizing conditions [3]. Because both scandium and vanadium are moderately incompatible during melting, the Sc/V ratio of primitive basalts can be used to investigate the oxidation state of the mantle [1-3]. We have examined the Sc/V ratios of primitive lavas from the mid-Atlantic ridge (MAR), Iceland, and the East Greenland margin to determine if there are spatial or temporal variations in the oxidation state of the NAIP mantle. The Sc/V ratios for MAR basalts are 0.13-0.20 (GEOROC chemical database); while Icelandic basalts range from 0.10-0.25 with an average of 0.16 (1 σ =0.05). The entire range of Sc/V ratios of the Paleogene East Greenland basalts is 0.07-0.17 with an average of 0.10 (1 σ = 0.05). The Sc/V ratios of Icelandic basalts are similar to MAR basalts, but the East Greenland lavas are distinctly lower than both the MAR and Iceland. The Sc/V ratio also can vary as a function of mean pressure of melting (i.e. spinel versus garnet lherzolite). To test the relative importance of melting systematics, source composition, and oxygen fugacity on the Sc/V systematics for NAIP basalts, we incorporated the oxygen-fugacity-dependent V mineral-melt partitioning data of [3] into the polybaric decompression melting model REEBOX [4]. The best-fit model parameters for the majority of the Iceland and MAR basalts

  20. New low-Ni (igneous?) particles among the C and C? types of cosmic dust

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.

    1993-03-01

    Low-Ni particles with major element abundances, optical properties, and morphologies sufficiently similar to chondritic interplanetery dust particles (IDP's) to receive JSC Cosmic Dust Catalog classifications of C or C?-types were shown to have trace element contents and mineralogies similar to igneous material. Examination of the JSC Catalog EDX spectra by Cooke et al. has shown that 13 percent of the C-type and 38 percent of the C?-type particles are potentially low-Ni particles. Two new low-Ni particles were identified, and it was shown that an additional fragment from the L2002*C cluster has an igneous composition. A newly analyzed fragment of the W7066*A cluster has a chondritic composition. The W7066*A cluster is important because it has yielded a fragment of igneous composition and another fragment having high concentrations of He and Ne suggesting an extraterrestrial origin.

  1. Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite

    NASA Technical Reports Server (NTRS)

    Okada, Akihiko; Keil, Klaus; Taylor, G. Jeffrey; Newsom, Horton

    1988-01-01

    Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body.

  2. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt.

    PubMed

    Abbady, Adel G E; El-Arabi, A M; Abbady, A

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 microWm(-3) (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 microWm(-3) (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites. PMID:16120480

  3. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt.

    PubMed

    Abbady, Adel G E; El-Arabi, A M; Abbady, A

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 microWm(-3) (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 microWm(-3) (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites.

  4. Source and magma mixing processes in continental subduction factory: Geochemical evidence from postcollisional mafic igneous rocks in the Dabie orogen

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zhao, Zi-Fu; Zheng, Yong-Fei; Zhang, Juan

    2015-03-01

    Postcollisional mafic igneous rocks commonly exhibit petrological and geochemical heterogeneities, but their origin still remains enigmatic. While source mixing is substantial due to the crust-mantle interaction during continental collision, magma mixing is also significant during postcollisional magmatism. The two processes are illustrated by Early Cretaceous mafic igneous rocks in the Dabie orogen. These mafic rocks show arc-like trace element distribution patterns and enriched Sr-Nd-Pb isotope compositions, indicating their origination from enriched mantle sources. They have variable whole-rock ɛNd(t) values of -17.6 to -5.2 and zircon ɛHf(t) values of -29.0 to -7.7, pointing to source heterogeneities. Such whole-rock geochemical features are interpreted by the source mixing through melt-peridotite reaction in the continental subduction channel. Clinopyroxene and plagioclase megacrystals show complex textural and compositional variations, recording three stages of mineral crystallization during magma evolution. Cpx-1 core has low Cr and Ni but high Ba, Rb and K, indicating its crystallization from a mafic melt (Melt 1) derived from partial melting of hydrous peridotite rich in phlogopite. Cpx-1 mantle and Cpx-2 exhibit significantly high Cr, Ni and Al2O3 but low Rb and Ba, suggesting their crystallization from pyroxenite-derived mafic melt (Melt 2). Whole-rock initial 87Sr/86Sr ratios of gabbro lies between those of Pl-1core (crystallized from Melt 1) and Pl-1 mantle and Pl-2 core (crystallized from Melt 2), providing isotopic evidence for magma mixing between Melt 1 and Melt 2. Taken together, a heterogeneously enriched mantle source would be generated by the source mixing due to reaction of the overlying subcontinental lithospheric mantle wedge peridotite with felsic melts derived from partial melting of different rocks of the deeply subducted continental crust during the continental collision. The magma mixing would occur between mafic melts that were

  5. Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.

    2016-01-01

    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.

  6. Emplacement and Eruption Style in the Franklin Large Igneous Province, Victoria Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Bedard, J. H.; Williamson, N.; Dell'Oro, T. A.; Hayes, B.; Hryciuk, M.; Winpenny, A.; Scoates, J. S.; Weis, D. A.; Nabelek, P. I.; Naslund, H. R.; MacDonald, W. D.

    2011-12-01

    The Neoproterozoic Franklin large igneous province preserves up to 1.1 km thickness of basaltic volcanics (Natkusiak Fm.). The Natkusiak volcanics include basal agglutinate and local hyaloclastite breccias and pillows, lensoid or sheet flows, some picritic, and lahar deposits that seem to infill paleo-valleys. The overlying main series lavas are mostly subareal sheet flows and exhibit cycles of upwardly decreasing MgO. Localized vent facies include unconsolidated scoria and bombs, spatter, and fumarolic malachite/zeolite around native Cu veins. Lateral trace element chemical heterogeneity implies eruption through multiple vents with distinct plumbing systems. The underlying exposed 3-4 km of the Shaler Supergroup are dolostones, sandstones, gypsum evaporites and shales, which are riddled with sills (most 20-50m, up to 100m). Sills constitute 50-75% of the section in most places, and belong to two distinct geochemical subtypes. A heterogeneous LREE-enriched facies includes sills with olivine-rich bases. A more homogeneous diabasic subtype has flatter REE patterns and occurs higher in the section. The oft-reported saucer-shaped sill morphology does not occur in the Franklin sills, which tend to be concordant over 10s of km distance. In many places, up-section transgressions appear to be structurally controlled by pre-existing faults that guided magma ascent and may have modulated reactivation and injection of olivine-rich slurries into pre-existing sills. The roof-zones of upward transgressions are injected with arcuate dikes on various scales (1m to 1 km), and are often associated with cataclasites, oxide-sulfide skarns and calc-silicates. These reflect the complexity of melt-driven fracture propagation, varying host ductility, fluctuation of magma pressure, and expulsion of melt and fluids from cooling sills. Some of these intrusions are enriched in sulphide minerals, possibly the result of assimilation of S-rich host rocks.

  7. Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah

    USGS Publications Warehouse

    Jackson, M.D.; Pollard, D.D.

    1990-01-01

    A sequence of sedimentary rocks about 4 km thick was bent, stretched and uplifted during the growth of three igneous domes in the southern Henry Mountains. Mount Holmes, Mount Ellsworth and Mount Hillers are all about 12 km in diameter, but the amplitudes of their domes are about 1.2, 1.85 and 3.0 km, respectively. These mountains record successive stages in the inflation of near-surface diorite intrusions that are probably laccolithic in origin. The host rocks deformed along networks of outcrop-scale faults, or deformation bands, marked by crushed grains, consolidation of the porous sandstone and small displacements of sedimentary beds. Zones of deformation bands oriented parallel to the beds and formation contacts subdivided the overburden into thin mechanical layers that slipped over one another during doming. Measurements of outcrop-scale fault populations at the three mountains reveal a network of faults that strikes at high angles to sedimentary beds which themselves strike tangentially about the domes. These faults have normal and reverse components of slip that accommodated bending and stretching strains within the strata. An early stage of this deformation is displayed at Mount Holmes, where states of stress computed from three fault samples correlate with the theoretical distribution of stresses resulting from bending of thin, circular, elastic plates. Field observations and analysis of frictional driving stresses acting on horizontal planes above an opening-mode dislocation, as well as the paleostress analysis of faulting, indicate that bedding-plane slip and layer flexure were important components of the early deformation. As the amplitude of doming increased, radial and circumferential stretching of the strata and rotation of the older faults in the steepening limbs of the domes increased the complexity of the fault patterns. Steeply-dipping, map-scale faults with dip-slip displacements indicate a late-stage jostling of major blocks over the central

  8. Modeling the evolution of Sm and Eu abundances during lunar igneous differentiation

    NASA Technical Reports Server (NTRS)

    Weill, D. F.; Mckay, G. A.; Kridelbaugh, S. J.; Grutzeck, M.

    1974-01-01

    The current work presents models for the evolution of europium and samarium abundances during lunar igneous processes. The effect of probable variations in lunar temperature and oxygen fugacity, mineral-liquid distribution coefficients, and the crystallization or melting progression are considered in the model calculations. Changes in the proportions of crystallizing phases strongly influence the evolution of trace element abundances during fractional crystallization, and models must include realistic estimates of the major phase equilibria during crystallization. The results are applied to evaluating the possibility of generating KREEP-rich materials by lunar igneous processes.

  9. Distribution of Igneous Rocks in Medina and Uvalde Counties, Texas, as Inferred from Aeromagnetic Data

    USGS Publications Warehouse

    Smith, David V.; McDougal, Robert R.; Smith, Bruce D.; Blome, Charles D.

    2008-01-01

    A high-resolution aeromagnetic survey was flown in 2001 over Medina and Uvalde Counties, Texas, as part of a multi-disciplinary investigation of the geohydrologic framework of the Edwards aquifer in south-central Texas. The objective of the survey was to assist in mapping structural features that influence aquifer recharge and ground-water flow. The survey revealed hundreds of magnetic anomalies associated with igneous rocks that had previously been unmapped. This report presents an interpretation of the outcrops and subcrops of igneous rocks, based upon procedures of matched-filtering and potential field modeling.

  10. A Lithospheric Origin for the Elk Creek Carbonatite Complex, SE Nebraska?

    NASA Astrophysics Data System (ADS)

    Farmer, G. L.

    2015-12-01

    The Elk Creek carbonatite complex in southeastern Nebraska is part of a widespread Cambrian-Ordovician alkali igneous event that affected much of North America during and after the break-up of the Rodinian supercontinent. We conducted whole rock and mineral Nd, Sr, Pb and Hf isotopic analyses of drill cores obtained from this complex in order to assess the source regions of the parental carbonatite magma. Low precision laser ablation U-Pb age determinations from individual zircon grains separated from carbonate-rich "syenites" range from 480 +/- 20 Ma to 540+/- 14 Ma. Whole rock Nd, Sr and Pb isotopic compositions all plot on Cambrian (~550 Ma) isochrons, implying that the carbonatites crystallized from melts with homogeneous radiogenic isotopic compositions. Initial ɛNd and ɛHf are well defined at ~+2 and ~0, respectively, while initial 87Sr/86Sr values are more variable and range from 0.7028 to 0.7058. The contemporaneously emplaced State Line kimberlites in the Front Range of north central Colorado share the same Nd and Sr isotopic compositions imply that sources of these rocks were similar and geographically widespread. Overall, the isotopic compositions are those expected from "Group 1" alkaline igneous rocks, usually interpreted as derivates from the sublithospheric mantle. Cretaceous-Tertiary alkaline rocks in North America generally belong to "Group 1" and may have originated in this fashion (Genet et al., 2014, Earth Planet. Sci. Lett.). An alternative possibility is that the Cambrian-Ordovician carbonatites and kimberlites were derived from underlying, carbonated portions of the lithospheric mantle that formed after the original stabilization of the latter in the Paleoproterozoic. Nd and Hf depleted mantle model ages for the Elk Creek and State Line alkaline rocks range from ~0.8 Ga to ~1.1 Ga and allow the possibility that both sets of intrusive rocks represent melting of mantle metasomatized either during or after the assembly of Rodinia. Widespread

  11. Thermal evolution of igneous rocks of the Upper Rhine Graben area and their relation to tectonic processes

    NASA Astrophysics Data System (ADS)

    Link, K.; Rahn, M.; Keller, J.

    2003-04-01

    The Upper Rhine Graben (URG) extends over a distance of 300 km from Basel (Switzerland) to Frankfurt (Germany) with an average width of 30--40 km. It is the central segment of the European Cenozoic rift system. The occurrence of Middle Eocene lake deposits is attributed to initial rifting. The main rifting phase started at the end of the Eocene and was followed by prominent uplift in the southern URG area in Miocene time (Schumacher, 2002). The igneous products in the investigated area are mainly primitive, mantle-derived alkaline basaltic rocks, occurring, in most cases, as dikes. The majority of the volcanics are found on the eastern graben shoulder with a concentration in the Freiburg area and the highest frequency in the northern part. No dikes are observed along the main border faults. Previously published K/Ar total rock age data were interpreted as intrusion ages (for review see Keller et al., 2002) and suggest a first activity peak in the Upper Cretaceous, a maximum in Eocene time and a further pronounced peak in the Miocene. This age range doubles the length of the assumed period of graben formation. Apatite fission track dating was applied to selected dikes and nearby country rocks. The temporal relation between volcanic events and the URG shoulder uplift was constrained by comparison of the fission track data of the dikes and country rocks. Important differences in respect to this relation exist among the different rift shoulder segments (Black Forest, Vosges, Palatinate Forest and Odins Forest). References: Keller, J., Kraml, M. &Henjes-Kunst, F. (2002): Schweiz. Mineral. Petrogr. Mitt. 82, 121-130. Schumacher, M.E. (2002): Tectonics, 21: 1-17.

  12. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  13. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  14. Effect of bulk chemistry in the spectral variability of igneous rocks in VIS-NIR region: Implications to remote compositional mapping

    NASA Astrophysics Data System (ADS)

    Nair, Archana M.; Mathew, George

    2014-08-01

    In the present study, a range of igneous rocks with weight percentage of silica ranging from 45% to 70% were used to generate reflectance spectra in the VIS-NIR region. The laboratory generated reflectance spectra of these rocks were used to study the effect of chemical composition and mineralogy on the spectral properties. The characteristic spectral features were evaluated based on the mineralogical and chemical characteristics of the rocks. The main spectral features in the VIS-NIR region are the 0.7 μm absorption band due to the inter valance charge transfer between Fe2+ and Fe3+ termed as Band F, the 1 μm broad absorption band from Fe2+ at the octahedral sites in pyroxene termed as Band I, the 1.9 μm and 2.3 μm narrow absorption bands due to H2O or OH functional group in hydrated minerals. The 2 μm absorption feature (Band II; Cloutis and Gaffey, 1991) is observed as a weak feature in all the mafic rocks. The analysis of Band I with the bulk chemistry and mineralogy, we observed a positive correlation to the bulk Ca abundance. Rocks with high bulk calcic content exemplify Band I as a prominent spectral feature towards longer wavelength. Consequently, basalt, gabbro and anorthositic rocks show Band I as a strong feature. However, rocks with low bulk Calcic content show Band I as weak absorption feature observed towards shorter wavelength. Thus, igneous rocks of alkaline affinity have subdued Band I feature that appears towards shorter wavelength. The analysis of Band F with the bulk chemistry and mineralogy showed a positive correlation to the bulk Fe abundance. The results of the present study have implications towards remote compositional mapping and lithological discrimination for Planetary Studies.

  15. Fe, Ti and P (FTP) Rich Igneous Clasts in the Martian Polymict Breccia NWA 7034

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Hsu, W.

    2016-08-01

    A relatively large FTP (Fe-Ti oxide and phosphate rich) igneous clast was reported in the first recognized martian polymict breccia NWA 7034. It has extremely low SiO2 content (33.7 wt%) and high P2O5 content (6.7 wt%).

  16. Siderophile and volatile trace elements in 72255 and 72275. [meteoritic and igneous composition of lunar rocks

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Ganapathy, R.; Higuchi, H.; Anders, E.

    1974-01-01

    Of six samples from boulder 1 at Station 2, four contain a unique meteoritic component, which is attributed to the Crisium projectile. The other two samples are meteorite free, igneous rocks: an unusual, alkali- and Ge-rich pigeonitic basalt, and an alkali-poor norite of unexceptional trace element chemistry.

  17. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  18. Probablistic Analyses of Waste Package Quantities Impacted by Potential Igneous Disruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Wallace, M. G.; Iuzzolina, H.

    2005-12-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in

  19. PROBABILISTIC ANALYSES OF WASTE PACKAGE QUANTITIES IMPACTED BY POTENTIAL IGNEOUS DISRUPTION AT YUCCA MOUNTAIN

    SciTech Connect

    M.G. Wallace

    2005-08-26

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift were intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km{sup 2} , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed

  20. Igneous and Ore-Forming Processes at the Roots of Giant - Ultra-Mafic Pluming System: the Seiland Igneous Comples, Norway

    NASA Astrophysics Data System (ADS)

    Larsen, R. B.; Iljina, M.; Schanke, M.

    2012-12-01

    SIP covers an area of 5500 km2 in N. Norway. 50 % of the volume comprises mafic layered or homogenous plg+px+Fe-Ti±ol gabbros. 25 % of the area comprises ultramafic intrusions, mostly peridotite and subsidiary pyroxenite and hornblendite. 25 % comprises calc-alkaline and alkaline plutons, respectively. Ultramafic plutons intersect gabbros and calc-alkaline plutons. Recent zircon U/Pb geochronology imply that SIP formed at 560-570 Ma, with mafic- and ultramafic rocks being emplaced in <4 Ma (Roberts et al., Geol. Mag, 2007). Geothermobarometry of contact metamorphic mineral assemblages, implies minimum depth of 20-30 kilometres. Accordingly, the Seiland province arguably provides a unique cross section through the deep-seated parts of a huge magmatic plumbing system. Sulphide Cu-Ni-(PGE) deposits are intimately associated with the ultramafic rock suite. One deposit from Stjernøy comprises sulphide dissiminations at the floor of a peridotitic pluton, another deposit occur at the floor of the Reinfjord ultramafic layered complex in the far West of SIP and the third deposit comprises vertical sulphide dykes in the interior of a hornblendite on the Øksfjord peninsula. Currently, only the Reinfjord deposit is studied in detail. The Reinfjord intrusions is layered and develops from olivine clinopyroxenites in the Lower Zone to wherlite in the Middle Zone to wehrlites and dunite in the Upper Zone. Earlier studies suggest parental melts with pyroxenitic compositions whereas the dunites and wherlites formed by fractional crystallization (Bennet et al., Bull. NGU, 405, 1-41). During our fieldwork we observed spectacular examples of cumulus structures, not previously reported, and including modally layered and modally graded dunite/wherlite, cross-bedding, slumping and mush-diapirs. Finally we saw an example of magma-replenishment where an olivine pyroxenitic magma was emplaced in to and mixed with the contemporary olivine/wherlite mushes!. The country rock gabbros were

  1. Complex igneous processes and the formation of the primitive lunar crustal rocks

    NASA Technical Reports Server (NTRS)

    Longhi, J.; Boudreau, A. E.

    1979-01-01

    Crystallization of a magma ocean with initial chondritic Ca/Al and REE ratios such as proposed by Taylor and Bence (TB, 1975), is capable of producing the suite of primitive crustal rocks if the magma ocean underwent locally extensive assimilation and mixing in its upper layers as preliminary steps in formation of an anorthositic crust. Lunar anorthosites were the earliest permanent crustal rocks to form the result of multiple cycles of suspension and assimilation of plagioclase in liquids fractionating olivine and pyroxene. There may be two series of Mg-rich cumulate rocks: one which developed as a result of the equilibration of anorthositic crust with the magma ocean; the other which formed in the later stages of the magma ocean during an epoch of magma mixing and ilmenite crystallization. This second series may be related to KREEP genesis. It is noted that crystallization of the magma ocean had two components: a low pressure component which produced a highly fractionated and heterogeneous crust growing downward and a high pressure component which filled in the ocean from the bottom up, mostly with olivine and low-Ca pyroxene.

  2. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    USGS Publications Warehouse

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous

  3. Possible Biosphere-Lithosphere Interactions Preserved in Igneous Zircon and Implications for Hadean Earth.

    PubMed

    Trail, Dustin; Tailby, Nicholas D; Sochko, Maggie; Ackerson, Michael R

    2015-07-01

    Granitoids are silicic rocks that make up the majority of the continental crust, but different models arise for the origins of these rocks. One classification scheme defines different granitoid types on the basis of materials involved in the melting/crystallization process. In this end-member case, granitoids may be derived from melting of a preexisting igneous rock, while other granitoids, by contrast, are formed or influenced by melting of buried sedimentary material. In the latter case, assimilated sedimentary material altered by chemical processes occurring at the near surface of Earth-including biological activity-could influence magma chemical properties. Here, we apply a redox-sensitive calibration based on the incorporation of Ce into zircon crystals found in these two rock types, termed sedimentary-type (S-type) and igneous-type (I-type) granitoids. The ∼400 Ma Lachlan Fold Belt rocks of southeastern Australia were chosen for investigation here; these rocks have been a key target used to describe and explore granitoid genesis for close to 50 years. We observe that zircons found in S-type granitoids formed under more reducing conditions than those formed from I-type granitoids from the same terrain. This observation, while reflecting 9 granitoids and 289 analyses of zircons from a region where over 400 different plutons have been identified, is consistent with the incorporation of (reduced) organic matter in the former and highlights one possible manner in which life may modify the composition of igneous minerals. The chemical properties of rocks or igneous minerals may extend the search for ancient biological activity to the earliest period of known igneous activity, which dates back to ∼4.4 billion years ago. If organic matter was incorporated into Hadean sediments that were buried and melted, then these biological remnants could imprint a chemical signature within the subsequent melt and the resulting crystal assemblage, including zircon.

  4. Possible Biosphere-Lithosphere Interactions Preserved in Igneous Zircon and Implications for Hadean Earth.

    PubMed

    Trail, Dustin; Tailby, Nicholas D; Sochko, Maggie; Ackerson, Michael R

    2015-07-01

    Granitoids are silicic rocks that make up the majority of the continental crust, but different models arise for the origins of these rocks. One classification scheme defines different granitoid types on the basis of materials involved in the melting/crystallization process. In this end-member case, granitoids may be derived from melting of a preexisting igneous rock, while other granitoids, by contrast, are formed or influenced by melting of buried sedimentary material. In the latter case, assimilated sedimentary material altered by chemical processes occurring at the near surface of Earth-including biological activity-could influence magma chemical properties. Here, we apply a redox-sensitive calibration based on the incorporation of Ce into zircon crystals found in these two rock types, termed sedimentary-type (S-type) and igneous-type (I-type) granitoids. The ∼400 Ma Lachlan Fold Belt rocks of southeastern Australia were chosen for investigation here; these rocks have been a key target used to describe and explore granitoid genesis for close to 50 years. We observe that zircons found in S-type granitoids formed under more reducing conditions than those formed from I-type granitoids from the same terrain. This observation, while reflecting 9 granitoids and 289 analyses of zircons from a region where over 400 different plutons have been identified, is consistent with the incorporation of (reduced) organic matter in the former and highlights one possible manner in which life may modify the composition of igneous minerals. The chemical properties of rocks or igneous minerals may extend the search for ancient biological activity to the earliest period of known igneous activity, which dates back to ∼4.4 billion years ago. If organic matter was incorporated into Hadean sediments that were buried and melted, then these biological remnants could imprint a chemical signature within the subsequent melt and the resulting crystal assemblage, including zircon. PMID

  5. Distinguishing peperite from other sediment-matrix igneous breccias: Lessons from the Iberian Pyrite Belt

    NASA Astrophysics Data System (ADS)

    Rosa, Carlos J. P.; McPhie, Jocelyn; Relvas, Jorge M. R. S.

    2016-04-01

    Breccias composed of coarse monomictic porphyritic igneous clasts and fine-grained matrix are common in subaqueous volcanic successions. We use the descriptive name "sediment-matrix igneous breccia" for this facies and have recognized at least five different origins among examples in the Iberian Pyrite Belt: (1) peperite; (2) sediment-infill volcanic breccia; (3) mud-matrix resedimented hyaloclastite; (4) mud-rich water-settled fiamme breccia; and (5) apparent sediment-matrix igneous breccia. Because the components and textures are similar, discriminating among the different origins can be very difficult. Both peperite and sediment-infill volcanic breccia can occur along top contacts of thick intervals of felsic coherent and monomictic breccia facies. The presence of peperite indicates that the contact is intrusive, whereas the presence of sediment-infill volcanic breccia indicates that the contact is depositional. Hence, correct distinction between peperite and sediment-infill volcanic breccia is an important means of discriminating felsic intrusions from felsic lavas and domes. The distinction underpins the reconstruction of volcanic centers and facies architecture, and the ordering of volcanic, intrusive, sedimentary and mineralizing events in ancient submarine volcanic successions. In addition, in volcanic-hosted massive sulfide districts such as the Iberian Pyrite Belt, paleoseafloor positions are considered highly prospective for massive sulfide ore bodies. Correct interpretation of sediment-matrix igneous breccias is also important in this context, because sediment-infill volcanic breccia, mud-matrix resedimented hyaloclastite and mud-rich water-settled fiamme breccia all form or are deposited at the seafloor, and hence delineate paleoseafloor positions. In contrast, peperite and apparent sediment-matrix igneous breccias form subsurface and do not delineate paleoseafloor positions.

  6. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  7. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  8. Igneous layering in the peralkaline intrusions ,Kola Peninsula :leading role of gravitational differentiation

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N..

    2012-04-01

    In the center of Kola Peninsula there are two large layered intrusions of agpaitic nepheline syenites - Khibina and Lovozero. . The Khibina alkaline massif (Kola Peninsula,Russia) hosts the world's largest and economically most important apatite deposit. The Khibina massif is a complex multiphase body built up from a number of ring-like and conical intrusions. The apatite bearing intrusion is ring-like and is represented by a layered body of ijolitic composition with a thickness of about 1 - 2 km. The upper zone is represented by different types of apatite ores. These rocks consist of 60-90% euhedral very small (tenths of mm)apatite crystals. The lower zone has mostly ijolitic composition. The lower zone grades into underlying massive urtite consisting of 75-90% large (several mm) euhedral nepheline. Our experimental studies of systems with apatite demonstrated the near-eutectic nature of the apatite-bearing intrusion, resulting in practically simultaneous crystallization of nepheline, apatite and pyroxene. The mathematical model of the formation of the layered apatite-bearing intrusion based on the processes of sedimentation under the conditions of steady state convection taking account of crystal sizes is proposed. Under the conditions of steady-state convection large crystals of nepheline continuously had been settling forming massive underlying urtite whereas smaller crystals of pyroxenes, nepheline and apatite had been stirred in the convecting melt. During the cooling the intensity of convection decreased causing a settling of smaller crystals of nepheline and pyroxene and later very small crystalls of apatite in the upper part of alkaline magma chamber. The Lovozero massif, the largest of the Globe layered peralkaline intrusion, comprises super-large rare-metal (Nb, Ta, REE) deposit. The main ore mineral is loparite (Na, Ce, Ca)2 (Ti, Nb)2O6 which was mined during many years. The composition of cumulus loparite changed systematically upward through the

  9. Catalytic activity of ruthenium(III) on the oxidation of an anticholinergic drug-atropine sulfate monohydrate by copper(III) periodate complex in aqueous alkaline medium - decarboxylation and free radical mechanism.

    PubMed

    Byadagi, Kirthi S; Nandibewoor, Sharanappa T; Chimatadar, Shivamurti A

    2013-01-01

    Atropine sulfate monohydrate (ASM) is an anticholinergic drug, having a wide spectrum of activity. Hence, the kinetics of oxidation of ASM by diperiodatocuperate (DPC) in the presence of micro (10-6) amounts of Ru(III) catalyst has been investigated spectrophotometrically in aqueous alkaline medium at I = 0.50 mol dm-3. The reaction between DPC and ASM exhibits 1:2 stoichiometry (ASM:DPC) i. e., one mole of ASM require two moles of DPC to give products. The main oxidation products were confirmed by spectral studies. The reaction is first order with respect to [DPC] and [Ru(III)], while the order with respect to [ASM] and [OH-] was less than unity. The rates decreased with increase in periodate concentration. The reaction rates revealed that Ru(III) catalyzed reaction was about seven-fold faster than the uncatalyzed reaction. The catalytic constant (KC) was also determined at different temperatures. A plausible mechanism is proposed. The activation parameters with respect to slow step of the mechanism were calculated and the thermodynamic quantities were also determined. Kinetic experiments suggest that [Cu(H2IO6)(H2O)2] is the reactive Cu(III) species and [Ru(H2O)5OH]2+ is the reactive Ru(III) species. PMID:24169716

  10. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  11. Igneous composition vaiations determined by ChemCam along Curiosity's traverse from Bradbury to Rocknest area at Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Sautter, Violaine; MSL Science Team

    2013-04-01

    , defined by bedded and light toned fractured rocks characteristic of the Glenelg-Yellowknife bay area. It is characterized by stratified outcrops where layered dark rocks alternate with light-toned cross-bedded units. Throughout these strata the rocks appear significantly finer grained compared to zone I. They may show sandstone-like texture (Bathurst Inlet) and vesicular to laminated morphology. Aeolian ripples replace gravels. Textural changes in the rocks translate chemically to compositions that are lower in Si and Al, and higher in Fe and K compared to zone I, consistent with under-saturated basaltic compositions close to basanite. Zone II is rather complex, showing evidence of lava flows on one hand and ambiguous rock textures on the other hand. The latter may be interpreted as lithification of sediments from an igneous source corresponding either to some explosive type of volcanism or deriving from complex sedimentary processes. In conclusion zone I appears to reveal feldspar-rich crustal bedrock for the first time on Mars, which may come the crater rim. Zone II, dominated by iron- and potassium-rich undersaturated basaltic compositions, result from a complex sequence of processes not yet fully understood.

  12. 3D Seismic Studies of Igneous Intrusions, Taranaki Basin, off-shore west New Zealand

    NASA Astrophysics Data System (ADS)

    Harbor, R. L.; Chrisitiansen, E. H.; Keach, R. W.

    2008-12-01

    Several off-shore volcano-plutonic complexes are imaged in a detailed 3D seismic survey acquired by Pogo New Zealand/Plains Exploration. The new data provide insight into the sizes, shapes, and wall rock deformation associated with the emplacement of plutons. The seismic survey, conducted in 2005, covers 1700 km2 and was processed with modern techniques used in hydrocarbon exploration. The images and structures have to be interpreted with care because of distortions caused by "velocity pull ups" created by the large seismic wave velocity contrast between sediment and igneous rock. The magmatic rocks may be part of the Mohakatino Volcanic Centre (15 to 1.5 Ma) that intrudes and partially fills the Taranaki graben, which began to form in the Cretaceous. Imaged plutons range from less than 1 to as much as 12 km across. The intrusions are steep-sided and do not resemble sills, but their bases are poorly resolved. The top of the largest complex is sharply delineated and marked by multiple apophyses as much as 2 km across and hundreds of meters high. Deformation along the sides of the intrusion is dominated by of a faulted rim anticline, with apparent dips of 45° or higher. Dips decrease rapidly away from the intrusion but doming extends several hundred meters from the margins. A series of high-angle faults fan out from the margin of the pluton and cut the folded strata along the margin. These faults terminate against the margins of the intrusion, extend as much as 1 pluton diameter away from the margin, and then merge with "regional" faults that are part of the Taranaki graben. Offset along these radiating faults is on the order of a few hundred meters. Strata on the top of the complex are thinned but are deformed into a faulted dome with an amplitude of about 1 km. Steep, dip-slip faults form a semi-radial pattern in the roof rocks but are strongly controlled by the regional stress field as many of the faults are sub-parallel to those that form the graben. The longest

  13. Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America

    NASA Astrophysics Data System (ADS)

    Hauff, Folkmar; Hoernle, Kaj; van den Bogaard, Paul; Alvarado, Guillermo; Garbe-Schönberg, Dieter

    2000-05-01

    The age and origin of magmatic complexes along the Pacific Coast of Central America have important implications for the origin and tectonic evolution of this convergent plate margin. Here we present new 40Ar/39Ar laser age dates, major and trace element data, and initial Sr-Nd-Pb isotope ratios. The 124-109 Ma tholeiitic portions of the Santa Elena complex formed in a primitive island arc setting, believed to be part of the Chortis subduction zone. The geochemical similarities between the Santa Elena and Tortugal alkaline volcanic rocks suggest that Chortis block may extend south of the Hess Escarpment. The Nicoya, Herradura, Golfito, and Burica complexes and the tholeiitic Tortugal unit formed between 95 and 75 Ma and appear to be part of the Caribbean Large Igneous Province, thought to mark the initiation of the Galápagos hotspot. The Quepos and Osa complexes (65-59 Ma) represent accreted sections of an ocean island and an aseismic ridge, respectively, interpreted to reflect part of the Galápagos paleo-hotspot track. An Oligocene unconformity throughout Central America may be related to the mid-Eocene accretion of the Quepos and Osa complexes.

  14. Paleozoic and Paleoproterozoic Zircon in Igneous Xenoliths Assimilated at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Vazquez, J. A.; Wooden, J. L.

    2010-12-01

    Historically active Redoubt Volcano is a basalt-to-dacite cone constructed upon the Jurassic-early Tertiary Alaska-Aleutian Range batholith. New SHRIMP-RG U-Pb age and trace-element concentration results for zircons from gabbroic xenoliths and crystal-rich andesitic mush from a late Pleistocene pyroclastic deposit indicate that ~310 Ma and ~1865 Ma igneous rocks underlie Redoubt at depth. Two gabbros have sharply terminated prismatic zircons that yield ages of ~310 Ma. Zircons from a crystal mush sample are overwhelmingly ~1865 Ma and appear rounded due to incomplete dissolution. Binary plots of element concentrations or ratios show clustering of data for ~310-Ma grains and markedly coherent trends for ~1865-Ma grains; e.g., ~310-Ma grains have higher Eu/Eu* than most of the ~1865-Ma grains, the majority of which form a narrow band of decreasing Eu/Eu* with increasing Hf content which suggests that ~1865-Ma zircons come from igneous source rocks. It is very unlikely that detrital zircons from a metasedimentary rock would have this level of homogeneity in age and composition. One gabbro contains abundant ~1865 Ma igneous zircons, ~300-310 Ma fluid-precipitated zircons characterized by very low U and Th concentrations and Th/U ratios, and uncommon ~100 Ma zircons. We propose that (1) ~310 Ma gabbro xenoliths from Redoubt Volcano belong to the same family of plutons dated by Aleinikoff et al. (USGS Circular 1016, 1988) and Gardner et al. (Geology, 1988) located ≥500 km to the northeast in basement rocks of the Wrangellia and Alexander terranes and (2) ~1865 Ma zircons are inherited from igneous rock, potentially from a continental fragment that possibly correlates with the Fort Simpson terrane or Great Bear magmatic zone of the Wopmay Orogen of northwestern Laurentia. Possibly, elements of these Paleoproterozoic terranes intersected the Paleozoic North American continental margin where they may have formed a component of the basement to the Wrangellia

  15. Normal and anomalous AMS fabrics in gabbroic sills: examples from the Karoo Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Lehman, A.; Ferre, E. C.; Maes, S. M.; Geissman, J. W.; Marsh, M. C.; Mare, L. P.; Marsh, J.

    2010-12-01

    The magnetic fabric of plutonic rocks has often been used as a proxy for magma flow. Yet, a number of studies suggest that the relationship between the principal axes of the anisotropy of magnetic susceptibility (AMS) and the flow referencial axes are not simple. Several case studies on mafic dikes have shown that complications may arise from the contribution of single domain (SD) magnetite grains, imbricated symmetric fabrics along dike margins and post-solidification thermal stresses. Fewer investigations have been dedicated to subhorizontal tabular intrusions despite the fact that they could also yield valuable clues regarding the various processes that might cause anomalous AMS fabrics. The Karoo Large Igneous Province in South Africa hosts a remarkably impressive set of undeformed, stacked gabbroic sills that were intruded parallel to bedding in the Karoo Basin. The sills range in thickness from about 1 m up to 1000 m and have a relatively constant petrological composition of gabbros and gabbro-norites. Theses sills are distributed throughout the whole Karoo Basin and were emplaced at various stratigraphic heights / depths in the Karoo stratigraphic column. Oriented core samples were collected from 30 different sills and yielded 1598 specimens for AMS, AARM and paleomagnetic measurements. The low-field magnetic susceptibility Km ranges widely from about 100 to 20,000 x 10-6 [SI], while the degree of anisotropy P' ranges from 1.01 to 1.10. A broad correlation between Km and P' is observed. Thermomagnetic experiments reveal that the main magnetic carrier is titanomagnetite with variable ulvöspinel content. This is confirmed by measurement of hysteresis properties that also indicate that titanomagnetite in general has a pseudo-single domain grain size. The directional data is consistent with the nearly horizontal attitude of the sill in 23 out of 30 sills, with subvertical K3 axes. In 5 out of 30 sills, K3 axes are subhorizontal, characterized by scattered

  16. Assessing the volcanic styles of the North Atlantic Igneous Province and their potential implications for the PETM

    NASA Astrophysics Data System (ADS)

    Jerram, Dougal; Reynolds, Peter; Jones, Morgan; Svensen, Henrik; Planke, Sverre; Millett, John; Galland, Olivier; Angkasa, Syahreza; Schofield, Nick; Howell, John

    2016-04-01

    In order to understand the role that large igneous provinces play in changing climatic conditions, it is important to constrain the different styles of volcanism and their volumes, both temporally and spatially. Regional variations in palaeo-environment as well as different volcanic materials (basic-acidic) can all have effects on the eruption styles, and determine whether eruptions effectively release gases into the atmosphere and hydrosphere. The North Atlantic Igneous Province (NAIP) covers a vast area as well as a significant time span, having formed at 60-55 Ma. Importantly, its' formation is implicated in the climatic perturbations at the Palaeocene-Eocene Thermal Maximum (PETM). The products of volcanism in the NAIP range from lava flows and hyaloclastites to more explosive tephra forming eruptions from both basaltic and more evolved eruptions. The explosive end member styles of both mafic and felsic volcanism also produce ash beds in the rock record at key times. Hydrothermal vent structures which are predominantly related with the emplacement of large (>1000 km3) intrusions into the subvolcanic basins in the NAIP are another style of eruption, where climate-forcing gases can be transferred into the atmosphere and hydrosphere. In this case, the types and volumes of gas produced by intrusions is heavily dependent on the host-rock sediment properties that they intrude through. The distribution of vent structures can be shown to be widespread on both the Norwegian and the Greenland margins of the NAIP. In this overview we assess the main eruption styles, deposits and their distribution within the NAIP using mapped examples from offshore seismic data as well as outcrop analogues, highlighting the variability of these structures and their deposits. As the availability of 3D data from offshore and onshore increases, the full nature of the volcanic stratigraphy from the subvolcanic intrusive complexes, through the main eruption cycles into the piercing vent

  17. Influence of Landscape Morphology and Vegetation Cover on the Sampling of Mixed Igneous Bodies

    NASA Astrophysics Data System (ADS)

    Perugini, Diego; Petrelli, Maurizio; Poli, Giampiero

    2010-05-01

    A plethora of evidence indicates that magma mixing processes can take place at any evolutionary stage of magmatic systems and that they are extremely common in both plutonic and volcanic environments (e.g. Bateman, 1995). Furthermore, recent studies have shown that the magma mixing process is governed by chaotic dynamics whose evolution in space and time generates complex compositional patterns that can span several length scales producing fractal domains (e.g. Perugini et al., 2003). The fact that magma mixing processes can produce igneous bodies exhibiting a large compositional complexity brings up the key question about the potential pitfalls that may be associated with the sampling of these systems for petrological studies. In particular, since commonly only exiguous portions of the whole magmatic system are available as outcrops for sampling, it is important to address the point whether the sampling may be considered representative of the complexity of the magmatic system. We attempt to address this crucial point by performing numerical simulations of chaotic magma mixing processes in 3D. The numerical system used in the simulations is the so-called ABC (Arnold-Beltrami-Childress) flow (e.g. Galluccio and Vulpiani, 1994), which is able to generate the contemporaneous occurrence of chaotic and regular streamlines in which the mixing efficiency is differently modulated. This numerical system has already been successfully utilized as a kinematic template to reproduce magma mixing structures observed on natural outcrops (Perugini et al., 2007). The best conditions for sampling are evaluated considering different landscape morphologies and percentages of vegetation cover. In particular, synthetic landscapes with different degree of roughness are numerically reproduced using the Random Mid-point Displacement Method (RMDM; e.g. Fournier et al., 1982) in two dimensions and superimposed to the compositional fields generated by the magma mixing simulation. Vegetation

  18. Petrogenetic and Geotectonic Study of Early Formed (Triassic?) Volcanics in Ophiolitic Complexes in Central Greece: Examples from Koziakas, Othris, Iti and Kallidromo Regions

    NASA Astrophysics Data System (ADS)

    Koutsovitis, P.; Magganas, A.; Pomonis, P.; Karipi, S.; Tsikouras, B.

    2009-04-01

    The early formed volcanics occurring in ophiolitic complexes in Central Greece are suggested to be mostly of Triassic age. They occur within Triassic sedimentary sequences as well as in mélange formations, being interpreted to be parts of the Pindos Ocean, which formed after breakup of a Gondwana continental margin. In the studied regions of Koziakas, Othris, Iti and Kallidromo the volcanic rocks consist mainly of pillow lavas with extreme variable geochemical affinities (alkaline, tholeiitic and calc-alkaline) and in rare cases ultramafic lavas. The igneous sequence is complemented by another wide compositional range rocks consisting of wehrlites, mafic subvolcanic rocks (picrites, transitional boninites, dolerites) and pyroclastic tuffs compositionally intermediate to felsic. The alkaline lavas are present in Othris in close association with tholeiitic pillow lavas and within mélange formations in the regions of Koziakas, Iti and Kallidromo. In the Triassic formations of Othris most of the igneous rocks are represented by pillow lavas which are mainly tholeiitic, ranging in composition from E-MORB (most lavas) to IAT types. Similar E-MORB volcanic rocks are not present in Koziakas, Iti and Kallidromo regions. The calc-alkaline lavas have a broad composition which varies from basaltic to trachyandesitic and felsic. They occur sandwiched between middle Triassic sedimentary formations in Koziakas, in melange formations in central Othris, while they are missing in Iti and Kallidromo. The ultramafic lavas, which are accompanied by picrites, transitional boninites and dolerites, are found in Othris only, intruding the E-MORB pillow lavas. Geochemical and mineralogical data evaluation as well as petrogenetic modelling show the formation of the studied compositionally wide, unusual rock association can be explained through complex and multistage events, which have taken place in a rift- and subduction-related geotectonic environment of the Pindos Ocean in Middle

  19. Floor-fractured crater models for igneous crater modification on Venus

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    Although crater modification on the Earth, Moon, and Mars results from surface erosion and crater infilling, a significant number of craters on the Moon also exhibit distinctive patterns of crater-centered fracturing and volcanism that can be modeled as the result of igneous crater modification. Here, we consider the possible effects of Venus surface conditions on this model, describe two examples of such crater modification, and then briefly discuss the constraints these craters place on conditions at depth.

  20. Mantle origin of the Emeishan large igneous province from an analysis of residual gravity anomalies

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Zhang, Z.; Mooney, W. D.; Fan, W.; Zhong, Q.; Badal, J.

    2013-12-01

    The Emeishan large igneous province (ELIP) is the only verified large igneous province in China. It covers an area of 250,000 km2 from the eastern margin of the Tibetan Plateau to the western margin of the Yangtze block. Most studies on ELIP are from geochemistry and tectonics, but the deep origin of the ELIP is still unclear. In this study, we investigate the residual gravity anomaly in South China and its relationship to the Emeishan large igneous province with constrains of lithospheric structure from deep seismic sounding profiles, deep seismic reflection surveys, and a variety of broadband seismic observations acquired in South China in the last several decades. Our working scheme consists of removing the respective gravitational effects due to: (1) the sediments, and undulations of the (2) crystalline basement, (3) upper crust; (4) Moho and (5) lithospheric thickness. We have thus obtained the residual gravity anomaly of the ELIP and surrounding region, striking positive residual anomaly with maximum value of 140 mGal is observed at the ELIP region. We use the conjugate gradient method to locate the deep origins of the residual gravity data. As a result, our preferred model consists of a positive cylindrical density anomaly that provides a fit to the residual gravity anomaly observed in ELIP. As the distance increases from the inner zone of the ELIP to the outer zone, the positive residual gravity decreases. Hence, in our model, the density anomaly decreases from about 0.06 g/cm3 beneath the inner zone to about 0.03 g/cm3 beneath the outer zone. The residual gravity and our preferred density anomaly provide new evidence, along with the seismic data and geochemical data, to confirm the domal structure of the Permian mantle plume that gave rise to the Emenshan Large Igneous Province.

  1. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Yong-Fei; Zhao, Zi-Fu

    2016-01-01

    Geophysical and petrological data indicate destruction of the cratonic lithosphere in North China in the Mesozoic, resulting in replacement of the ancient subcontinental lithospheric mantle (SCLM) by the juvenile SCLM. However, it remains to be answered when the craton destruction would have been terminated in the Mesozoic. This question is resolved by studying the two types of mafic igneous rocks with contrasting geochemical compositions from North China. The first type of mafic igneous rock shows arc-like trace element distribution patterns and enriched radiogenic Sr-Nd isotope compositions, with emplacement ages spanning from the Triassic to Early Cretaceous. The mafic magmatism is absent in a period from ~ 200 Ma to ~ 135 Ma, recording the thinning of cratonic lithosphere due to the westward flat subduction of the Paleo-Pacific slab beneath the North China Craton. In contrast, the second type of mafic igneous rocks exhibits oceanic island basalts (OIB)-like trace element distribution patterns and relatively depleted radiogenic Sr-Nd isotope compositions, with emplacement ages spanning from the Early Cretaceous to Cenozoic. Zircon U-Pb dating yields an age of ~ 121 Ma for the geochemical transformation between the two types of mafic igneous rocks. This age marks a dramatic demarcation in the composition of their mantle sources. As such, the nature of mantle lithosphere in North China was changed from the ancient SCLM to the juvenile SCLM at ~ 121 Ma. Thus, this age not only signifies the tectonic transition from the enriched mantle to the depleted mantle in the Early Cretaceous, but also dates the termination of peak decratonization in North China. Therefore, the craton destruction in the Early Cretaceous is temporally and spatially associated with the dramatic changes in the geochemical composition of mantle lithosphere.

  2. Lithospheric mantle evolution monitored by overlapping large igneous provinces: Case study in southern Africa

    NASA Astrophysics Data System (ADS)

    Jourdan, F.; Bertrand, H.; Féraud, G.; Le Gall, B.; Watkeys, M. K.

    2009-02-01

    Most of the studies on the large igneous provinces (LIPs) focus on Phanerozoic times, and in particular, those related to the disruption of Pangea (e.g. CAMP, Karoo, Parana-Etendeka) while Precambrian LIPs (e.g. Ventersdorpf, Fortescue) remain less studied. Although the investigation of Precambrian LIPs is difficult because they are relatively poorly preserved, assessment of their geochemical characteristics in parallel with younger overlapping LIP is fundamental for monitoring the evolution of the mantle composition through time. Recent 40Ar/ 39Ar dating of the Okavango giant dyke swarm (and related sills) in southern Africa showed that ~ 90% of the dykes were emplaced at 179 ± 1 Ma and belong to the Karoo large igneous province whereas ~ 10% of dykes yielded Proterozoic ages (~ 1-1.1 Ga). Here, we provide new major, trace and rare earth elements analyses of the low-Ti Proterozoic Okavango dyke swarm (PODS) that suggest, combined with age data, a cognate origin with the 1.1 Ga Umkondo large igneous province (UIP), southern Africa. The geochemical characteristics of the PODS and UIP basalts are comparable to those of overlapping low-Ti Karoo basalts, and suggest that both LIPs were derived from similar enriched mantle sources. A mantle plume origin for these LIPs is not easily reconciled with the geochemical dataset and the coincidence of two compositionally similar mantle plumes acting 900 Myr apart is unlikely. Instead, we propose that the Umkondo and Karoo large igneous provinces monitored the slight evolution of a shallow enriched lithospheric mantle from Proterozoic to Jurassic.

  3. Extensional tectonics during the igneous emplacement of the mafic-ultramafic rocks of the Barberton greenstone belt

    NASA Technical Reports Server (NTRS)

    Dewit, M. J.

    1986-01-01

    The simatic rocks (Onverwacht Group) of the Barberton greenstone belt are part of the Jamestown ophiolite complex. This ophiolite, together with its thick sedimentary cover occupies a complex thrust belt. Field studies have identified two types of early faults which are entirely confined to the simatic rocks and are deformed by the later thrusts and associated folds. The first type of fault (F1a) is regional and always occurs in the simatic rocks along and parallel to the lower contacts of the ophiolite-related cherts (Middle Marker and equivalent layers). These fault zones have previously been referred to both as flaser-banded gneisses and as weathering horizons. In general the zones range between 1-30m in thickness. Displacements along these zones are difficult to estimate, but may be in the order of 1-100 km. The structures indicate that the faults formed close to horizontal, during extensional shear and were therefore low angle normal faults. F1a zones overlap in age with the formation of the ophiolite complex. The second type of faults (F1b) are vertical brittle-ductile shear zones, which crosscut the complex at variable angles and cannot always be traced from plutonic to overlying extrusive (pillowed) simatic rocks. F1b zones are also apparently of penecontemporaneous origin with the intrusive-extrusive igneous processs. F1b zones may either represent transform fault-type activity or represent root zones (steepened extensions) of F1a zones. Both fault types indicate extensive deformation in the rocks of the greenstone belt prior to compressional overthrust tectonics.

  4. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  5. Igneous processes and dike swarms: Magnetic signatures in the Solar System

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.

    2015-12-01

    Large igneous provinces (LIP) are common in planetary environments: at Mars, Venus, Mercury, Io, and of course the Earth and its Moon. Dike swarms are often associated with LIPs, and are one of the only remaining signatures of a LIP in old, eroded settings. On Earth, dike swarms are often recognized by their magnetic signatures. The World Digital Magnetic Anomaly Map (version 2, 2015) is now based on a higher resolution 5 km grid, so many more dike swarms are apparent. We review this latest compilation. Several new high resolution planetary magnetic data sets have also recently become available, and we review evidence for igneous processes, and dikes, in these new data sets. We also review the prospect for new planetary magnetic data sets that might further elucidate igneous processes. At Mars, for example, we have photogeologic evidence for a host of dike swarms, but because of the high altitude of the magnetic data sets, no magnetic evidence exists. A new technique based on remotely sensing the magnetic field of the atomic Na in micro-meteorite ablation layers offers the promise of improving the spatial resolution by a factor of 2-4 at Mars.

  6. The Anisotropy of Magnetic Susceptibility of Igneous Rocks: Lessons From Obsidians and Pyroclastic Deposits

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2013-05-01

    The anisotropy of magnetic susceptibility (AMS) of igneous rocks differs from that of other lithologies in several aspects that are related to their characteristics of emplacement history. Nevertheless, within the group of igneous rocks there are also differences on emplacement mechanisms that can lead to specific and distinctive AMS signatures. In this work, a review of the most important emplacement regimes is made, paying special attention to the extreme conditions represented by obsidians and pyroclastic deposits. These two extreme emplacement regimes are controlled mainly by the viscosity of the fluid phase, but the differences in AMS signatures also includes other differences in the nature of the ferromagnetic grains that are present in the rocks during emplacement. For example, the results of this work indicate that the AMS can be associated to a population of ferromagnetic minerals of a submicroscopic size, despite of which it can be very well defined and yield large degrees of anisotropy. It is suggested that the AMS associated to such population of small grains might indeed be the origin of the AMS of other igneous rocks that have an optically observable fraction of mineral grains, although until present it had been overlooked in most instances. As it had been suggested before, use of tests designed to identify the contribution of a superparamagnetic fraction (SP) in the magnetic properties of a rock can help us to identify the presence of such a SP-related AMS in other cases.

  7. Igpet software for modeling igneous processes: examples of application using the open educational version

    NASA Astrophysics Data System (ADS)

    Carr, Michael J.; Gazel, Esteban

    2016-09-01

    We provide here an open version of Igpet software, called t-Igpet to emphasize its application for teaching and research in forward modeling of igneous geochemistry. There are three programs, a norm utility, a petrologic mixing program using least squares and Igpet, a graphics program that includes many forms of numerical modeling. Igpet is a multifaceted tool that provides the following basic capabilities: igneous rock identification using the IUGS (International Union of Geological Sciences) classification and several supplementary diagrams; tectonic discrimination diagrams; pseudo-quaternary projections; least squares fitting of lines, polynomials and hyperbolae; magma mixing using two endmembers, histograms, x-y plots, ternary plots and spider-diagrams. The advanced capabilities of Igpet are multi-element mixing and magma evolution modeling. Mixing models are particularly useful for understanding the isotopic variations in rock suites that evolved by mixing different sources. The important melting models include, batch melting, fractional melting and aggregated fractional melting. Crystallization models include equilibrium and fractional crystallization and AFC (assimilation and fractional crystallization). Theses, reports and proposals concerning igneous petrology are improved by numerical modeling. For reviewed publications some elements of modeling are practically a requirement. Our intention in providing this software is to facilitate improved communication and lower entry barriers to research, especially for students.

  8. Correlation of palaeomagnetic directions constrains eruption rate of large igneous provinces

    NASA Astrophysics Data System (ADS)

    Suttie, Neil; Biggin, Andrew J.; Holme, Richard

    2014-02-01

    The rate of eruption of lava flows in large igneous provinces is a highly controversial topic with implications for the processes by which mass extinctions of life occurred throughout the Phanerozoic. It is also an extremely difficult parameter to measure, but may be accessed through the correlation of palaeomagnetic directions recorded in neighbouring lava flows. The next-neighbour correlation can be described by a single additional parameter which can be evaluated by constructing a suitable covariance matrix. It is found to be a useful proxy for the rate of eruption of Cenozoic lavas from the North Atlantic igneous province and has the potential to help constrain the eruptive histories of other large igneous provinces. Significant next-neighbour correlation is revealed even in the absence of grouping of directions, giving a method of detecting changing eruption rates when there are no magnetostratigraphic markers. Significant correlation is found over timescales of tens of thousands of years in volcanic datasets making it doubtful that records of recent secular variation over shorter timescales can be used as a model for palaeosecular variation. By eliminating next-neighbour correlation, it is demonstrated how estimates of palaeosecular variation may be derived, with formal confidence limits, allowing robust comparisons to be made between sites. Using this method we show that the angular dispersion of the field dropped significantly during the 2.5 million year long polarity chron C24r.

  9. Testing Models for the Origin of the Paraná-Etendeka Igneous Province

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.

    2015-12-01

    The Paraná-Etendeka igneous province and associated magmatism, including the Walvis Ridge, the Tristan da Cunha archipelago, and the Rio Grande Rise, has been variously attributed to passive response to intraplate extension or to a deep-mantle plume postulated to currently underlie the island of Tristan da Cunha. The volcanic region is one of only three in the world where a Large Igneous Province is associated with subsequent time-progressive volcanism. Multi-disciplinary methods have been applied to test the various hypotheses for its genesis. These include study of the vertical crustal motions precursory to flood volcanism, the spatial distribution and time-history of volcanism, the synchronous deformation and volcanism in the adjacent African and South American plates, the fabric of the sea floor, the seismic structure of the mantle, and the geochemical composition of the lavas. Models inspired by the huge array of observational data available have been further explored using numerical modeling of mantle convection. In this paper I shall review data and models that bear on the formation of the Paraná-Etendeka igneous province, and discuss ways to interpret and test them.

  10. Voluminous silicic eruptions during late Permian Emeishan igneous province and link to climate cooling

    NASA Astrophysics Data System (ADS)

    Yang, Jianghai; Cawood, Peter A.; Du, Yuansheng

    2015-12-01

    Silicic eruptive units can constitute a substantive component in flood-basalts-dominated large igneous provinces, but usually constitute only a small proportion of the preserved volume due to poor preservation. Thus, their environmental impact can be underestimated or ignored. Establishing the original volume and potential climate-sensitive gas emissions of silicic eruptions is generally lacking for most large igneous provinces. We present a case study for the ˜260 Ma Emeishan province, where silicic volcanic rocks are a very minor component of the preserved rock archive due to extensive erosion during the Late Permian. Modal and geochemical data from Late Permian sandstones derived from the province suggest that silicic volcanic rocks constituted some ˜30% by volume of the total eroded Emeishan volcanic source rocks. This volume corresponds to > 3 ×104 km3 on the basis of two independent estimate methods. Detrital zircon trace element and Hf isotopic data require the silicic source rocks to be formed mainly by fractional crystallization from associated basaltic magmas. Based on experimental and theoretical calculations, these basalt-derived ˜104 km3 silicic eruptions released ˜1017 g sulfur gases into the higher atmosphere and contribute to the contemporaneous climate cooling at the Capitanian-Wuchiapingian transition (˜260 Ma). This study highlights the potentially important impact on climate of silicic eruptions associated with large igneous province volcanism.

  11. Ages of igneous and hydrothermal events in the Round Mountain and Manhattan gold districts, Nye County, Nevada.

    USGS Publications Warehouse

    Shawe, D.R.; Marvin, R.F.; Andriessen, P.A.M.; Mehnert, H.H.; Merritt, V.M.

    1986-01-01

    Isotopic age determinations of rocks and minerals separated from them are applied to refining and correlating the geological history of igneous and mineralizing events in a part of the Basin and Range province. -G.J.N.

  12. Geochemistry at Gale from ChemCam: Implications for Martian Igneous and Sedimentary Processes and for Habitability

    NASA Astrophysics Data System (ADS)

    Wiens, R. C.; Maurice, S.; Blaney, D. L.; Grotzinger, J. P.; Mangold, N.; Clegg, S.; Sautter, V.; Bridges, J.; Bridges, N.; Clark, B.; D'Uston, C.; Dyar, M. D.; Edgar, L.; Ehlmann, B.; Forni, O.; Fabre, C.; Gasnault, O.; Herkenhoff, K.; Johnson, J.; Leveille, R.; Newsom, H.; Vaniman, D.; Cousin, A.; Deflores, L.; Lanza, N.; Lasue, J.; Meslin, P.-Y.; Pinet, P.; Schroeder, S.; Rapin, W.; Fisk, M. R.; Melikechi, N.; Mezzacappa, A.; Le Deit, L.; Le Mouelic, S.; Nachon, M.; Gordon, S.; Toplis, M.; Jackson, R.; Williams, J.; Williams, A.

    2014-07-01

    Gale crater contains a diversity of igneous float rocks, clasts of which are found in conglomerates. Sandstones and mudstones do not reflect this local felsic material. Hydrogen, F, Li, major and trace elements yield new clues to Mars geologic history.

  13. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: insight from basement igneous rocks of the Erlian Basin

    NASA Astrophysics Data System (ADS)

    Bonnetti, Christophe; Cuney, Michel; Bourlange, Sylvain; Deloule, Etienne; Poujol, Marc; Liu, Xiaodong; Peng, Yunbiao; Yang, Jianxing

    2016-05-01

    Carboniferous-Permian, Triassic and Jurassic igneous basement rocks around the Erlian Basin in northeast China have been investigated through detailed mineralogical, whole-rock geochemistry, geochronological data and Sm-Nd isotope studies. Carboniferous-Permian biotite granites and volcanic rocks belong to a calc-alkaline association and were emplaced during the Late Carboniferous-Early Permian (313 ± 1-286 ± 2 Ma). These rocks are characterised by positive ɛNd(t) (3.3-5.3) and fairly young T DM model ages (485-726 Ma), suggesting a dominant derivation from partial melting of earlier emplaced juvenile source rocks. Triassic biotite granites belong to a high-K calc-alkaline association and were emplaced during the Middle Triassic (243 ± 3-233 ± 2 Ma). Their negative ɛNd(t) (-2 to -0.1) and higher T DM model ages (703-893 Ma) suggest a contribution from Precambrian crust during the magma generation processes, leading to a strong enrichment in K and incompatible elements such as Th and U. Highly fractionated magmas crystallised in U-rich biotite (up to 21 ppm U) and two-mica granites. In biotite granite, the major U-bearing minerals are uranothorite and allanite. They are strongly metamict and the major part of their uranium (90 %) has been released from the mineral structure and was available for leaching. Mass balance calculations show that the Triassic biotite granites may have, at least, liberated ˜14,000 t U/km3 and thus correspond to a major primary uranium source for the U deposits hosted in the Erlian Basin.

  14. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  15. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  16. Silicon Isotope Fractionation During Acid Water-Igneous Rock Interaction

    NASA Astrophysics Data System (ADS)

    van den Boorn, S. H.; van Bergen, M. J.; Vroon, P. Z.

    2007-12-01

    Silica enrichment by metasomatic/hydrothermal alteration is a widespread phenomenon in crustal environments where acid fluids interact with silicate rocks. High-sulfidation epithermal ore deposits and acid-leached residues at hot-spring settings are among the best known examples. Acid alteration acting on basalts has also been invoked to explain the relatively high silica contents of the surface of Mars. We have analyzed basaltic-andesitic lavas from the Kawah Ijen volcanic complex (East Java, Indonesia) that were altered by interaction with highly acid (pH~1) sulfate-chloride water of its crater lake and seepage stream. Quantitative removal of major elements during this interaction has led to relative increase in SiO2 contents. Our silicon isotope data, obtained by HR-MC-ICPMS and reported relative to the NIST RM8546 (=NBS28) standard, show a systematic increase in &δ&&30Si from -0.2‰ (±0.3, 2sd) for unaltered andesites and basalts to +1.5‰ (±0.3, 2sd) for the most altered/silicified rocks. These results demonstrate that silicification induced by pervasive acid alteration is accompanied by significant Si isotope fractionation, so that alterered products become isotopically heavier than the precursor rocks. Despite the observed enrichment in SiO2, the rocks have experienced an overall net loss of silicon upon alteration, if Nb is considered as perfectly immobile. The observed &δ&&30Si values of the alteration products appeared to correlate well with the inferred amounts of silicon loss. These findings would suggest that &28Si is preferentially leached during water-rock interaction, implying that dissolved silica in the ambient lake and stream water is isotopically light. However, layered opaline lake sediments, that are believed to represent precipitates from the silica-saturated water show a conspicuous &30Si-enrichment (+1.2 ± 0.2‰). Because anorganic precipitation is known to discriminate against the heavy isotope (e.g. Basile- Doelsch et al., 2006

  17. The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc

    NASA Astrophysics Data System (ADS)

    Andonaegui, Pilar; Arenas, Ricardo; Albert, Richard; Sánchez Martínez, Sonia; Díez Fernández, Rubén; Gerdes, Axel

    2016-06-01

    The upper allochthonous units of NW Iberian Massif contain an extensive Cambrian magmatism (c. 500 Ma), covering felsic to mafic compositions. The magmatic activity generated large massifs of granitoids and gabbros, with calc-alkaline and tholeiitic compositions respectively. Petrological and geochemical features of these massifs are characteristic of volcanic arc. The plutons intruded siliciclastic sedimentary series deposited in the periphery of the West Africa Craton. U-Pb/Hf isotopic compositions of detrital zircon in the siliciclastic host series, indicate continental arc activity between c. 750 Ma and c. 500 Ma. It was characterized by a large variety of isotopic sources, including from very old continental input, even Archean, to the addition of a significant amount of juvenile mafic material. These isotopic sources experienced an extensive mixing that explains the composition and isotopic features (εHft from - 50 until + 15) of the represented Cambrian plutons. The Cambrian igneous rocks of the upper units of NW Iberia are related to the latest activity of the Avalonian-Cadomian arc. From the Middle Cambrian arc activity in the periphery of Gondwana was replaced by pronounced extension associated with the development of continental rifting, which finally led to separation of the microcontinent Avalonia. Subsequent drifting of Avalonia to the North caused progressive opening one of the main Paleozoic ocean, the Rheic Ocean.

  18. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, USA

    NASA Astrophysics Data System (ADS)

    Shelton, K. L.; Burstein, I. B.; Hagni, R. D.; Vierrether, C. B.; Grant, S. K.; Hennigh, Q. T.; Bradley, M. F.; Brandom, R. T.

    1995-08-01

    Previous studies of galena and sphalerite from Paleozoic MVT deposits in the Viburnum Trend, southeast Missouri documented large variations in δ34S values throughout the ore-forming event. The present study of Cu-Fe-sulfides reveals a similar δ34S variation that reflects two end-member sulfur reservoirs whose relative importance varied both temporally and spatially. More 34S-enriched sulfides (δ34S approaching 25‰) indicate introduction of sulfur from basinal sedimentary sources, whereas more 32S-enriched sulfides (δ34S < 5‰) may reflect fluids moving through underlying granitic basement. Two areas containing Precambrian, igneous-hosted FeCu mineralization in southeast Missouri (West and Central Domes of Boss-Bixby) were investigated to elucidate their relationship to Cu-rich MVT orebodies hosted nearby within the overlying Cambrian Bonneterre Dolomite. Mineralization at Boss-Bixby is composed of an early phase of iron oxide deposition followed by Cu-Fe-sulfides. The Central Dome is faulted and its mineralization is more fracture-controlled than the typically podiform ores of the West Dome. The δ34S values of West Dome sulfides are 0.9 to 6.5‰ and pyrite-chalcopyrite indicate a temperature of 525° ± 50 °C. These data indicate an igneous source of sulfur during Precambrian ore deposition. In contrast, δ34S values of Central Dome sulfides are 9.4 to 20.0‰ and pyrite-chalcopyrite indicate temperatures of 275° ± 50 °C. Similar δ34S values are obtained for chalcopyrite from the overlying MVT deposits. We speculate that deeply circulating, basin-derived MVT fluids mobilized sulfur and copper from the underlying igneous basement and redeposited them in overlying Curich MVT orebodies, as well as overprinting earlier Precambrian sulfides of the Central Dome with a later, Paleozoic MVT sulfur isotope signature. Many models for MVT fluid circulation in the Midcontinent region of North America assume that igneous basement rocks are an impermeable boundary

  19. Alkaline Water and Longevity: A Murine Study.

    PubMed

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of "deceleration aging factor" as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models.

  20. Early-Middle Paleozoic subduction-collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China

    NASA Astrophysics Data System (ADS)

    Pei, Fu-Ping; Zhang, Ying; Wang, Zhi-Wei; Cao, Hua-Hua; Xu, Wen-Liang; Wang, Zi-Jin; Wang, Feng; Yang, Chuan

    2016-09-01

    To constrain the Early-Middle Paleozoic tectonic evolution of the south-eastern segment of the Central Asian Orogenic Belt (CAOB), we undertook zircon U-Pb dating and analyzed major and trace elements and zircon Hf isotope compositions of Late Cambrian to Middle Devonian igneous and metasedimentary rocks in central Jilin Province, NE China. LA-ICP-MS zircon U-Pb dating indicates that the Early-Middle Paleozoic magmatism in central Jilin Province can be divided into four episodes: Late Cambrian (ca. 493 Ma), Middle Ordovician (ca. 467 Ma), Late Ordovician-Early Silurian (ca. 443 Ma), and Late Silurian-Middle Devonian (425-396 Ma). The progression from subduction initiation to maturity is recorded by Late Cambrian low-K tholeiitic meta-diabase, Middle Ordovician medium-K calc-alkaline pyroxene andesite, and Late Ordovician to Early Silurian low-K tonalite, which all have subduction-related characteristics and formed in an evolving supra-subduction zone setting. Late Silurian to Middle Devonian calc-alkaline igneous rocks, with the lithological association of granodiorite, monzogranite, rhyolite, dacite, and trachydacite, show progressively increasing K2O contents from medium K to shoshonite series. Furthermore, the Early-Middle Devonian monzogranites are characterized by high K2O, Sr/Y, and [La/Yb]N values, indicating they were generated by the melting of thickened lower crust. These results suggest a transition from subduction to post-orogenic setting during the Late Silurian-Middle Devonian. Our interpretation is supported by the maximum age of molasse deposition in the Zhangjiatun member of the Xibiehe Formation. Overall, we suggest that Late Cambrian tholeiitic meta-diabase, Middle Ordovician pyroxene andesite, and Late Ordovician-Early Silurian tonalite formed above the northward-subducting and simultaneously seaward-retreating of Paleo-Asian Ocean plate. Subsequently, the northern arc collided with the North China Craton and post-orogenic extension occurred

  1. Distribution and origin of igneous rocks from the landward slopes of the Mariana Trench: Implications for its structure and evolution

    SciTech Connect

    Bloomer, S.H.

    1983-09-10

    The landward slope of the Mariana Trench is composed largely of igneous rocks. Serpentinites and serpentinized ultramafic rocks occur at nearly all structural levels on the slope from depths of 8000 to 1200 m. Seamountlike features on the trench slope break are the surface expression of serpentinite diapirs. Cumulate and massive gabbros are found; several varieties of volcanic rocks are common including boninites, altered and metamorphosed basalts, andesites, and dacites. The chemical characteristics of the volcanic rocks indicate that nearly all are products of island arc volcanism. Together with the gabbros, these volcanic rocks represent what is probably a late Eocene arc complex. These rocks were probably the first volcanic products to result from the subduction of the Pacific plate beneath the Phillippine Sea plate; their exposure on the trench slope today implies a significant amount of tectonic erosion of the landward slope since Eocene time. Most of this removal of material appears to have occurred during the early stages of subduction. There are isolated occurrences on the landward slope of rock assemblages including alkalic basalts, chert, hyaloclastites, upper Cretaceous siliceous sediments, and shallow water limestones. These assemblages are very similar to rocks dredged from seamounts on the offshore flank of the trench, and their presence on the landward slope suggests that since the cessation of vigorous tectonic erosion, there has been episodic accretion of seamount fragments to the landward slope.

  2. Origin of lithological zoning in Alaskan-type complexes: Studies from the Duke Island and Annette Island Complexes in southeastern Alaska

    NASA Astrophysics Data System (ADS)

    Thakurta, J.; Ripley, E.; Li, C.; Stifter, E.

    2011-12-01

    Alaskan-type complexes are small, cone-shaped, ultramafic to mafic, alkaline igneous intrusive bodies which commonly occur in linear groups along the trends of major orogenic belts and subduction zones as in southeastern Alaska and the Ural Mountains in Russia. Many of these complexes are characterized by nearly concentric lithological zoning from dunite in the core followed by successive zones of wehrlite, olivine clinopyroxenite and more silicic rocks towards the rim. The Duke Island and Annette Island Complexes are two Alaskan-type complexes located in the southern tip of the Alaskan panhandle. The former is characterized by multiple lithological zones with a distorted concentric arrangement, but the latter is a single intrusion of dunite, without any noticeable development of concentric zonal structures. Both complexes have been modeled to be the products of crystal accumulation from a differentiating parental magma with the composition of picrite or ankaramite. The compositions of the residual liquids are andesitic and this is consistent with the view that the Alaskan-type complexes represent magma reservoirs for andesitic eruptions of subduction zone volcanoes. Structural and petrological relationships between the lithological units at the Duke Island Complex indicate multiple magmatic inputs from an underlying staging magma chamber in a dynamic flow through system. Evidence of magmatic differentiation is observed at the level of the intrusion and also at the level of the staging magma chamber. Conversely, the dunite unit at Annette Island is a product of rapid magmatic uplift and relatively insignificant magmatic differentiation. The spectacular development of grain-size layering and magmatic flow structures at Duke Island and on a limited scale at Annette Island clearly indicate crystallization in a dynamic magma chamber environment.

  3. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  4. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  5. The design of alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Strasser, K.

    1990-01-01

    Alkaline fuel cells recently developed have yielded satisfactory operation even in the cases of their use of mobile and matrix-type electrolytes; the advantages of realistic operation have been demonstrated by a major West German manufacturer's 100 kW alkaline fuel cell apparatus, which was operated in the role of an air-independent propulsion system. Development has begun for a spacecraft alkaline fuel cell of the matrix-electrolyte configuration.

  6. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  7. Feldspar-Bearing Igneous Rocks at Gale: A ChemCam Campaign

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Fabre, C.; Toplis, M.; Wiens, R. C.; Gasnault, O.; Forni, O.; Mangold, N.

    2014-09-01

    We present the first in situ evidences of feldspar-rich rocks ranging from granodioritic and alkalin effusive rocks (trachy basalts and syenitic liquids). Implication for primitive noachain crust will be discussed.

  8. The Nature and Origin of the ~1.88 Ga Circum-Superior Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Minifie, M.; Kerr, A. C.; Ernst, R. E.

    2009-12-01

    The Circum-Superior Large Igneous Province (LIP) is composed of a discontinuous belt of magmatic rocks, predominantly mafic-ultramafic in composition, circumscribing the cratonic margins of the Superior Province in the Canadian Shield for >3000 km. In addition to the cratonic margin magmatism, magmatic rocks of the same age are found in the interior of the craton in the form of mafic-ultramafic dykes and also carbonatite complexes along the Kapuskasing Structural Zone. Recent U-Pb geochronological studies have shown a tight age grouping for these magmatic rocks between 1885 and 1864 Ma. Previous studies have treated the various segments of the Circum-Superior LIP individually and models on the origin of the magmatism include seafloor spreading, back-arc basin rifting, foredeep basin flexure, volcanic arc activity, transtension in pull-apart basins, and mantle plume activity. This study is the first to create a cohesive geochemical and Sr-Nd-Pb-Hf-Os isotopic database for the whole of the Circum-Superior LIP and to assess its petrogenesis as a single entity. The geochemical and isotopic evidence strongly favour a mantle plume origin for the Circum-Superior LIP magmatism. A common trace element signature, very much like that of the Ontong Java oceanic plateau, is persistent throughout most of this LIP. Most samples possess Zr/Y and Nb/Y ratios almost identical to Ontong Java and other oceanic plateau lavas. Utilisation of the PRIMELT2 software of Herzberg & Asimow (2008) shows that the parental magmas of the Circum-Superior LIP were derived from ~30-35% pooled fractional melting of a source composition similar to that of primitive mantle with 1% continental crust extracted from it at mantle potential temperatures ranging from 1515 to 1610° C. Basalts from islands in Hudson Bay possess slightly enriched trace element profiles with small positive Nb anomalies and highlight a degree of heterogeneity within the plume source. The Circum-Superior LIP magmatic rocks

  9. Radiolysis of actinides and technetium in alkaline media

    SciTech Connect

    Delegard, C.H., Westinghouse Hanford

    1996-07-10

    The {gamma}-radiolysis of aerated alkaline aqueous solutions of Np(V), Np(VI), Pu(VI), Tc(IV), Tc(V), and TC(VII) was studied in the absence of additives and in the presence of CO{sub 3}{sup 2-}, NO{sub 3}{sup -}, NO{sub 2}{sup -}, EDTA, formate, and other organic compounds. The radiolytic reduction of Np(V), Np(VI), Pu(VI), and TC(VII) under different experimental conditions was examined in detail. The addition of EDTA, formate, and alcohols was found to considerably increase the radiation-chemical reduction yields. The formation of the Np(V) peroxo complex was observed in the {gamma}-radiolysis of alkaline aqueous solutions of Np (VI) in the presence of nitrate.

  10. The Origin of Tholeiitic and Calc-Alkaline Trends in Arc Magmas

    NASA Astrophysics Data System (ADS)

    Luffi, P. I.; Lee, C.

    2012-12-01

    It has long been recognized that tholeiitic (TH, high-Fe/Mg) and calc-alkaline (CA, low-Fe/Mg) magmatic series define the two most important igneous differentiation trends shaping Earth's crust. While oceanic crust formation at mid-ocean ridges is typically confined to a TH trend, arc magmatism at convergent margins, considered to significantly contribute to continent formation, generates both TH and CA trends. Thus, the origin of these trends - a key issue to understanding how continental crust forms - is matter of ongoing debate. Prevalent factors thought to contribute to the TH-CA duality are: 1) redox conditions (oxygen fugacity, fO2) and H2O contents in magmas, which control the onset and abundance of high-Fe/Mg oxide mineral fractionation; 2) crystallization depths that regulate the fractionating solid assemblage and thereby the solid/liquid Kd(Fe-Mg). Relying on an extensive geochemical dataset of modern arc volcanics and thermodynamic phase equilibria modeling, here we examine the validity and relative importance of these factors in arc petrogenesis. First, to discriminate igneous rocks more efficiently, we formulate an improved CA/TH index solely based on FeO-MgO systematics. We then confirm on a quantitative basis that, on regional scales, arcs formed on thick crust tend to be more calk-alkaline than those emplaced on thinner crust are, and show that the effect of fO2 on the CA/TH index in arc magmas is more significant than that of H2O. Importantly, we demonstrate that CA trends typical for continental arcs only form when crystal fractionation is accompanied by the assimilation of oxidized crustal components; in the absence of buffering oxidized assimilants fractionating magmas follow a TH trend more common in island arcs, irrespective of their H2O content and initial fO2 level. We find that high-pressure fractionation of amphibole and garnet in arc magmas occurs too late to have a significant influence on the CA/TH index; in addition, garnet-melt and

  11. Igneous rocks of Arctic Ocean deep sea ridges: new data on petrology, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Shevchenko, Sergey; Sergeev, Sergey; Belyatsky, Boris; Shatov, Vitaly; Petrov, Eugeny

    2015-04-01

    The aggregate results of studies of igneous rocks, collected from the central part of the Arctic Ocean during scientific marine expeditions «Arctic-2000, 2005, 2007 and 2012» are presented and discussed in the frame of modern understanding of High Polar Arctic tectonic constraint. Petrological, geochemical and isotope-geochronological studies of more than 500 samples have shown that the sedimentary rocks are of dominated population among the rock fragments dredged from deep-sea bottom, and represented by metamorphosed dolomite and quartz sandstone, limestone, sometimes with the Devonian - Permian fauna. Igneous rocks are 10-15% only (Archean and Paleoproterozoic gneissouse granites and gabbro, Neoproterozoic dolerite) and metamorphic rocks (green shales, metabasites, gneisses). Apparently, these rocks are part of the acoustic basement underlying the Late Mesozoic - Cenozoic layered loose sediments. In addition to the dredged fragments of the ancient mafic rocks, some samples were taken as a core during deep-water drilling in the northern and southern slopes of the Mendeleev Ridge and represented by trachybasalts, marking the border of Late-Cenozoic deposit cover and acoustic basement and quite similar in composition to those of Early-Late Cretaceous basalts form northward of the Chukchi Plateau seamounts, Alpha Ridge, Franz Josef Land, De Long islands and other parts of the large igneous province of the High Arctic (HALIP). Video-filming of Mendeleev Ridge escarps proofs the existing of rock outcrops and supports local origin of most of the rock fragments found in the sampling areas. Thus the continental type of the earth's crust of the Central Arctic Ridges basement is based on all obtained results of our study of sea-bottom excavated rock material.

  12. Classification of mafic clasts from mesosiderites: Implications for endogenous igneous processes

    SciTech Connect

    Rubin, A.E. ); Mittlefehldt, D.W. )

    1992-02-01

    The authors have analyzed thirteen igneous pebbles from the Vaca Muerta, EET87500, and Bondoc mesosiderites by electron microprobe and instrumental neutron activation and combined these data with literature data for forty-three analyzed mesosiderite clasts. They classify these well-characterized clasts into the following five principal groups: (1) Polygenic and monogenic cumulates (39%) are coarse-grained gabbros that are highly depleted in incompatible elements (relative to H chondrites); they formed at moderate depth either as residues of low-degree partial melting of pre-existing cumulate eucrites or as cumulates from parent melts similar to cumulate eucrites. (2) Polygenic basalts (30%) are finer-grained rocks with positive europium anomalies, La/Lu ratios < 1, and lower rare earth element abundances than basaltic eucrites. It seems likely that these rocks were formed near their parent body surface by remelting mixtures of major amounts of basaltic eucrites and lesser amounts of cumulate eucrites. (3) Quench-textured rocks comprise two compositional groups, (a) those which resemble basaltic eucrites (5%), and (b) those which resemble cumulate eucrites (2%). The quench-textured rocks are probably monogenic; they formed most likely when small-scale impacts at their parent body surface totally melted small amounts of basaltic or cumulate eucrite material. (4) Monogenic basalts (11%) resemble basaltic eucrites and formed by endogenous igneous processes on the mesosiderite parent body (MPB). (5) Ultramafic rocks are cumulates consisting mainly of large crystals of orthopyroxene (9%) or olivine (4%). Orthopyroxenite clasts closely resemble diogenites and were formed most likely by endogenous igneous processes.

  13. Diverse sources for igneous blocks in Franciscan melanges, California Coast Ranges

    SciTech Connect

    MacPherson, G.J. ); Phipps, S.P. ); Grossman, J.N. )

    1990-11-01

    Igneous blocks in Franciscan melanges are of three chemical-petrologic types: (1) tholeiitic basalts of both arc and spreading center origin, with depletions in light relative to heavy rare-earth elements, 3% > TiO{sub 2} > 1%, high Y/Zr and Y/Ti ratios, and relict augites that generally have low Al and Ti and well-defined iron-enrichment trends; (2) basalts of probable seamount origin with marked enrichments in light relative to heavy rare-earth elements, 5% > TiO{sub 2} > 1%, lower Y/Zr and Y/Ti than (1), and Ti-Al-rich augites showing little if any iron-enrichment trends; and (3) hypabyssal intrusives having SiO{sub 2} > 52%, TiO{sub 2} < 1%, flat or only slightly fractionated rare-earth-abundance patterns, and diopsidic augites that are very low in Ti and Al and show no iron-enrichment trends. All of the blocks are metamorphosed; most are undeformed pumpellyite-bearing greenstones, and a few contain sodic amphibole {plus minus} lawsonite {plus minus} sodic pyroxene. The melanges are probably olistostromal in origin, deriving their igneous block detritus both from the downgoing Pacific plate (ocean floor basalts and seamounts) and from the hanging wall of the Franciscan trench (basalts and arc-related silic intrusive rocks). The silicic intrusive rocks and some of the basalts are eroded fragments of the fore-arc crust that ultimately become the Coast Range Ophiolite. These fragments were incorporated into the Franciscan trench fill and subducted. Results suggest that the igneous blocks in ophiolitic melanges provide important information about melange formation and about the tectonics and paleogeography of the regions in which the melanges are found.

  14. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  15. Geochemistry of igneous rocks associated with ultramafic-mafic-hosted Cu (Co, Ni, Au) VMS deposits from the Main Uralian Fault (Southern Urals, Russia)

    NASA Astrophysics Data System (ADS)

    Nimis, Paolo; Omenetto, Paolo; Buschmann, Bernd; Jonas, Peter; Simonov, Vladimir A.

    2010-11-01

    Ultramafic-mafic- and ultramafic-hosted Cu (Co, Ni, Au) volcanogenic massive sulfide (VMS) deposits from ophiolite complexes of the Main Uralian Fault, Southern Urals, are associated with island arc-type igneous rocks. Trace element analyses show that these rocks are geochemically analogous to Early Devonian boninitic and island arc tholeiitic rocks found at the base of the adjacent Magnitogorsk volcanic arc system, while they are distinguished both from earlier, pre-subduction volcanic rocks and from later volcanic products that were erupted in progressively more internal arc settings. The correlation between the sulfide host-rocks and the earliest volcanic units of the Magnitogorsk arc suggests a connection between VMS formation and infant subduction-driven intraoceanic magmatism.

  16. Diverse, Alkali-Rich Igneous and Volcaniclastic Rocks Reflect a Metasomatised Mantle Beneath Gale Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Baker, M. B.; Berger, J. A.; Fisk, M. R.; Gellert, R.; McLennan, S. M.; Newcombe, M. E.; Stolper, E. M.; Thompson, L. M.

    2014-12-01

    Although Curiosity landed in a sedimentary setting, geochemical compositions determined by Alpha Particle X-ray Spectrometer (APXS) and ChemCam suggest that major element concentrations of some rocks were little modified by chemical weathering, and in these cases, the bulk (>70%) of the crystalline components determined by ChemMin are igneous. Gale rocks can therefore largely preserve the composition of their igneous protoliths and provide insight into the crystalline basement exposed in the north crater rim. Four end-member compositions are recognized on the basis of APXS analyses. (1) The diverse, evolved Jake M class (n=12) of inferred igneous origin includes float blocks and cobbles. Jake M rocks are phonotephritic/mugearitic to trachyandesitic and characterized by low MgO contents (3.0-5.7 wt%) and high Al and alkalis, particularly Na2O (up to 7.35 wt%). (2) The Bathurst class of siltstones to coarse sandstones (n=13) occurs as dark-toned float and bedded outcrop and is basaltic to trachybasaltic, ranging to high K2O (up to 3.8 wt%). Alteration of the protolith(s) or during diagenesis may have affected this class. (3) The Darwin class of conglomerates to coarse sandstones (n=10) has high Na and Al, likely reflecting a sodic plagioclase-rich mineralogy, but with higher Fe than Jake M class (13.0-17.1 vs. 6.0-12.5 wt%). (4) The low alkali "normal" Mars basaltic composition is typified by the Portage soils (n=6) and the John Klein class (n=13; includes the Sheepbed mudstone). Some degree of mixing and/or contamination with this low alkali basaltic compositon has affected all APXS analyses. Overall, Gale rocks are strongly enriched in total alkalis (at the same MgO) relative to basaltic shergottites and many have higher K2O than igneous rocks analyzed by Spirit and Opportunity, suggesting that the mantle beneath Gale is alkali-rich (likely as a result of a metasomatic event) and that alkalis are heterogeneously distributed in the planet's interior.

  17. Lead isotope systematics of some igneous rocks from the Egyptian Shield

    NASA Technical Reports Server (NTRS)

    Gillespie, J. G.; Dixon, T. H.

    1983-01-01

    Lead isotope data on whole-rock samples and two feldspar separates for a variety of Pan-African (late Precambrian) igneous rocks for the Egyptian Shield are presented. It is pointed out that the eastern desert of Egypt is a Late Precambrian shield characterized by the widespread occurrence of granitic plutons. The lead isotope ratios may be used to delineate boundaries between Late Precambrian oceanic and continental environments in northeastern Africa. The samples belong to three groups. These groups are related to a younger plutonic sequence of granites and adamellites, a plutonic group consisting of older tonalites to granodiorites, and the Dokhan volcanic suite.

  18. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule.

  19. Solid Inclusions in Au-nuggets, genesis and derivation from alkaline rocks of the Guli Massif, Northern Siberia

    NASA Astrophysics Data System (ADS)

    Dvorani, Sami N.

    2016-04-01

    A total of 112 Au-nuggets, collected from alluvial placer deposits of the Ingarinda River from the Guli massif, located in northem Siberia, Russia, were investigated. The Guli massif consists of a huge dunite-clinopyroxenite complex (the largest complex in the world), an alkaline to highly alkaline rock suite (melilite, nephelinite, ijolite) enveloping the dunite and carbonatite intrusions, associated with disseminated schlieren type chromitite and Au-Ag, Pt placer deposits. The nuggets are characterized by various sizes and shapes and show chemical compositions Au, Au-Ag and AuCu, typical for a derivate of carbon-atites and/or ultramafic complexes. A great variety of oxide, silicate, REE-minerals, carbonate and sulphide inclusions have been detected in the nuggets, which are identical in mineralogy and chemical composition to mineral constituents of the alkaline to highly alkaline rock suite surrounding the Guli dunite core complex thus, considered as the source for Au-nuggets.

  20. Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.

    1992-01-01

    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.

  1. K-Ar ages of allochthonous mafic and ultramafic complexes and their metamorphic aureoles, Western Brooks Range, Alaska

    SciTech Connect

    Boak, J.L.; Turner, D.L.; Wallace, W.K.; Moore, T.E.

    1985-04-01

    New K-Ar ages from allochthonous mafic and ultramafic complexes of the western Brooks Range (Brooks Range ophiolite) show that igneous rocks yielded ages nearly identical to those of underlying metamorphic aureole rocks. Dated rocks of the Misheguk igneous sequence from Tumit Creek consist of (1) hornblende gabbro with minor greenschist and lower grade alteration, hornblende age 147.2 +/- 4.4 Ma; and (2) hornblende-bearing diorite, also slightly altered, age 155.8 +/- 4.7 Ma. Both samples come from presumed higher levels of the Misheguk sequence. Dated samples of metamorphic aureole rocks come from outcrops near Kismilot Creek and lie structurally beneath the Iyikrok Mountain peridotite body. The rocks consist of amphibolite and garnet-bearing biotite-hornblende gneiss considered to be metamorphosed Copter igneous sequence and related sedimentary rocks. Hornblende ages are 154.2 +/- 4.6 Ma and 153.2 +/- 4.6 Ma. metamorphism is clearly related to the structurally overlying perioditite, as the degree of alteration decreases downward. The authors suggest that the K-Ar ages of these rocks represent the effects of thermal metamorphism post-dating igneous crystallization, and are related to tectonic emplacement of the complex. Earlier K-Ar data on igneous rocks give similar ages and have been interpreted as reflecting tectonothermal events. The age of igneous crystallization of the mafic and ultramafic rocks of the Misheguk igneous sequence remains uncertain.

  2. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    SciTech Connect

    Tinglu, G.; Ghosh, A.; Ghosh, B.K.

    1984-08-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G (IgG) complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table.

  3. Mackenzie igneous events, Canada: Middle Proterozoic hotspot magmatism associated with ocean opening

    NASA Astrophysics Data System (ADS)

    LeCheminant, A. N.; Heaman, L. M.

    1989-12-01

    U sbnd Pb ages have been obtained for the Muskox intrusion and the Mackenzie dyke swarm. The age of a pyroxenite from the layered series of the intrusion is 1270 ± 4Ma. Baddeleyite fractions from four widely-spaced Mackenzie diabases define a single discordia line with an upper intercept age of 1267 ± 2Ma. The dyke age of 1267 Ma provides a precise time-marker for much of the northwestern Canadian Shield. Mackenzie intrusive events were coeval with eruption of Coppermine River flood basalts in the Coppermine homocline. The short time-span, large volume and specific focus of Mackenzie igneous events suggest that magmatism occurred above a large hotspot caused by the presence of a mantle plume. We infer that magmatism was initiated when rifting breached a large domal uplift supported by the plume-generated hotspot. The uplift-subsidence record in the Coppermine homocline is predicted by numerical models for rifting above hot asthenospheric mantle leading to ocean opening. An array of five large gravity anomalies north of the homocline may outline a region of stretched continental crust extensively intruded by Mackenzie mafic igneous bodies.

  4. Igneous inclusions from ordinary chondrites: High temperature cumulates and a shock melt

    NASA Astrophysics Data System (ADS)

    Sack, Richard O.; Ghiorso, Mark S.; Wang, Ming-Sheng; Lipschutz, Michael E.

    1994-12-01

    We report microprobe, instrumental neutron activation analysis, and radiochemical neutron activation analysis data for three large igneous inclusions in the Yamato (Y-)75097, Y-793241, and Y-794046 ordinary chondrites. The inclusions in the first two chondrites are troctolitic cumulates that have undergone appreciable reactions with their hosts either during emplacement and/or cooling. Olivine-spinel Fe-Mg exchange pairs in these two inclusions record equilibration temperatures of about 710 C, and these temperatures are similar to those exhibited by mineral pairs in the Y-75097 and Y-793241 hosts. The inclusion in Y-794046 is texturally unique, consisting of fine-grained, randomly distributed olivines, coarse (approximately 2 mm) fascicular pyroxene laths, and angular pockets of maskelynite/plagioclase feldspar. The phase compositions are readily interpreted as having resulted from extremely rapid, essentially isochemical cooling to temperatures less than 1000 C of a melt with an initial temperature greater than 1670 C. We suggest that this igneous inclusion formed in-situ by shock.

  5. Thermal neutron absorption cross sections for igneous rocks: Newberry Caldera, Oregon

    SciTech Connect

    Lysne, P.

    1990-01-01

    The thermal neutron absorption cross sections of geologic materials are of first-order importance to the interpretation of pulsed neutron porosity logs and of second-order importance to the interpretation of steady-state porosity logs using dual detectors. Even in the latter case, uncertainties in log response can be excessive whenever formations are encountered that possess absorption properties appreciably greater than the limestones used in most tool calibrations. These effects are of importance to logging operations directed at geothermal applications where formation vary from igneous to sedimentary and which may contain solution-deposited minerals with very large cross-section values. Most measurements of cross-section values for geologic materials have been made for hydrocarbon production applications. Hence, the specimen materials are sedimentary and clean in the sense that they are not altered by geothermal fluids. This investigation was undertaken to measure cross-section values from a sequence of igneous materials obtained from a single hole drilled in an active hydrothermal system. 3 refs., 1 fig.

  6. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    PubMed

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-01-01

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins. PMID:24301173

  7. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  8. K/Na ratio of Cenozoic igneous rocks of the western United States

    USGS Publications Warehouse

    Moore, J.G.

    1962-01-01

    The potassium and sodium content of chemically analysed Cenozoic igneous rocks from about 150 areas of the western United States has been examined. For each area a plot of the molecular proportion K2O (K2O + Na2O) [Niggli's k-value] is shown, and the projected k-value determined at 50 and 60 weight per cent SiO2. The k-values are plotted and contoured on maps of the western United States. These maps show that potassium is least abundant relative to total alkali (when rocks of the same SiO2 content are compared) in a zone along the Pacific Coast, becomes more abundant eastward, and is highest in the Colorado Plateau and Northern Rocky Mountains. These k-value variations can be related to regional variations in the abundance of certain trace elements and of different types of older granitic rocks, and to Bouguer gravity maps. This correspondence indicates that the alkali ratio of Cenozoic igneous rocks is closely related to the character of the crust where the rocks are formed. ?? 1962.

  9. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction

    PubMed Central

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-01-01

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins. PMID:24301173

  10. Paleogene time scale miscalibration: Evidence from the dating of the North Atlantic igneous province

    NASA Astrophysics Data System (ADS)

    Jolley, David W.; Clarke, Benjamin; Kelley, Simon

    2002-01-01

    Igneous activity in the North Atlantic igneous province began with the arrival of the proto-Iceland plume beneath the lithosphere in early Cenozoic time. Sediments between and equivalent to the oldest lavas contain an influx of a diagnostic pollen flora, an influx of the dinocyst Apectodinium, a benthic foraminiferal extinction, nannofossil zone NP9, and a carbon isotope excursion associated with the late Paleocene thermal maximum (LPTM). Lavas immediately overlying the LPTM strata (54.98 Ma on the current time scale), yield U-Pb and Ar-Ar isotopic dates between 57.5 and 60.54 Ma, highlighting a dating discrepancy of up to 5 m.y. Recognition of this disparity, as well as our biostratigraphical correlation, places the LPTM within the early phase of widespread northeast Atlantic margin basaltic volcanism. A later volcanic phase, equivalent to the seaward-dipping reflector series, terminates at 54 Ma. The onset of 60 Ma basaltic volcanism can be linked to ocean water mass perturbations, and the release of ocean-floor methane hydrates thought responsible for the LPTM.

  11. The role of igneous and metamorphic processes in triggering mass extinctions and Earth crises

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Planke, Sverre; Polozov, Alexander G.; Jerram, Dougal; Jones, Morgan T.

    2016-04-01

    Mass extinctions and transient climate events commonly coincide in time with the formation of Large igneous provinces (LIPs). The end-Permian event coincides with the Siberian Traps, the end-Triassic with the Central Atlantic Magmatic Event (CAMP), the Toarcian with the Karoo LIP, and the Paleocene-Eocene Thermal Maximum (PETM) with the North Atlantic Igneous Province. Although the temporal relationship between volcanism and the environmental crises has been known for decades, the geological processes linking LIPs to these environmental events are strongly debated: Explosive LIP volcanism should lead to short term cooling (not long term warming), mantle CO2 is too 13C-enriched to explain negative 13C carbon isotope excursions from sedimentary sequences, the LIP volcanism is poorly dated and apparently lasts much longer that the associated environmental events, large portions of the LIPs remain poorly explored, especially the sub-volcanic parts where sills and dikes are emplaced in sedimentary host rocks, and thus gas flux estimates from contact aureoles around sill intrusions are often poorly constrained. In this presentation, we discuss the status of LIP research with an emphasis on the sub volcanic processes. We show that potential for degassing of greenhouse gases, aerosols, and ozone destructive gases is substantial and can likely explain the triggering of both climatic events and mass extinctions.

  12. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    PubMed

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-12-04

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  13. Trace element partitioning in rock forming minerals of co-genetic, subduction-related alkaline and tholeiitic mafic rocks in the Ural Mountains, Russia

    NASA Astrophysics Data System (ADS)

    Krause, J.; Brügmann, G. E.; Pushkarev, E. V.

    2009-04-01

    The partitioning of trace elements between rock forming minerals in igneous rocks is largely controlled by physical and chemical parameters e.g. temperature, pressure and chemical composition of the minerals and the coexisting melt. In the present study partition coefficients for REE between hornblende, orthopyroxene, feldspars, apatite and clinopyroxene in a suite of co-genetic alkaline and tholeiitic mafic rocks from the Ural Mountains (Russia) were calculated. The results give insights to the influence of the chemical composition of the parental melt on the partitioning behaviour of the REE. Nepheline-bearing, alkaline melanogabbros (tilaites) are assumed to represent the most fractionated products of the melt that formed the ultramafic cumulates in zoned mafic-ultramafic complexes in the Ural Mountains. Co-genetic with the latter is a suite of olivine gabbros, gabbronorites and hornblende gabbros formed from a tholeiitic parental melt. Negative anomalies for the HFSE along with low Nb and Ta contents and a positive Sr anomaly indicate a subduction related origin of all parental melts. The nepheline gabbros consist predominantly of coarse-grained clinopyroxene phenocrysts in a matrix of fine grained clinopyroxene, olivine, plagioclase, K-feldspar and nepheline with accessory apatite. The tholeiitic gabbros have equigranular to porphyric textures with phenocrysts of olivine, pyroxene and hornblende in a plagioclase rich matrix with olivine hornblende, pyroxene and accessory apatite. Element concentrations of adjacent matrix grains and rims of phenochrysts were measured with LA-ICPMS. The distribution of REE between hornblende and clinopyroxene in the tholeiitic rocks is similar for most of the elements (DHbl•Cpx(La-Tm) = 2.7-2.8, decreasing to 2.6 and 2.4 for Yb and Lu, respectively). These values are about two times higher than published data (e.g. Ionov et al. 1997). Partition coefficients for orthopyroxene/clinopyroxene systematically decrease from the HREE

  14. Optimization of the in-situ U-Pb age dating method via LA-Quadrupole-ICP-MS with applications to the timing of U-Zr-Mo mineralization in the Poços de Caldas Alkaline Complex, SE Brazil

    NASA Astrophysics Data System (ADS)

    Takenaka, Lynthener Bianca; Lana, Cristiano; Scholz, Ricardo; Nalini, Herminio Arias, Jr.; de Abreu, Adriana Tropia

    2015-10-01

    The high spatial resolution of the LA-ICP-MS systems allows rapid extraction of vital isotopic information from individual growth zones of minerals. This paper describes in detail the optimization of a relatively inexpensive LA-ICP-MS system consisting of a UV 213 Laser Ablation and a Quadrupole ICP-MS. The results of optimization take into account laser energy, beam diameter, frequency and ICP-MS gas conditions. The optimized conditions were tested for precision and accuracy on a number of well-characterized zircons, commonly used as primary and secondary quality control standards. The acquisition of the U-Pb data is carried out in automated mode (pre-set points) for up to 12 h/day with only minimal operator presence. Individual U-Pb zircon analysis lasts 80 s. The 2σ uncertainties of the standards ranged between 1.4 and 8.2%, and overall their relative deviations ranged from 0.02 to 0.87%. The results are comparable to techniques that use more complex and time-consuming approaches such as LA-MC-ICP-MS and ion-microprobe. We have applied this method to obtain ages of numerous granitoid rocks from the Southern São Francisco Craton and a well-known Archean granitoid of the Kaapvaal Craton, South Africa. We furthermore provide the first results of U-Pb age dating of U-Zr-Mo mineralization in the Poços de Caldas Alkaline Complex, SE Brazil, with a U-Pb age of 85 ± 3 Ma for zircon-bearing hydrothermal veins.

  15. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  16. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  17. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  18. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  19. Tracing the Cambro-Ordovician ferrosilicic to calc-alkaline magmatic association in Iberia by in situ U-Pb SHRIMP zircon geochronology (Gredos massif, Spanish Central System batholith)

    NASA Astrophysics Data System (ADS)

    Díaz-Alvarado, Juan; Fernández, Carlos; Chichorro, Martim; Castro, Antonio; Pereira, Manuel Francisco

    2016-06-01

    U-Pb geochronological study of zircons from nodular granites and Qtz-diorites comprising part of Variscan high-grade metamorphic complexes in Gredos massif (Spanish Central System batholith) points out the significant presence of Cambro-Ordovician protoliths among the Variscan migmatitic rocks that host the Late Carboniferous intrusive granitoids. Indeed, the studied zone was affected by two contrasted tectono-magmatic episodes, Carboniferous (Variscan) and Cambro-Ordovician. Three main characteristics denote a close relation between the Cambro-Ordovician protholiths of the Prado de las Pozas high-grade metamorphic complex, strongly reworked during the Variscan Orogeny, and other Cambro-Ordovician igneous domains in the Central Iberian Zone of the Iberian Massif: (1) geochemical features show the ferrosilicic signature of nodular granites. They plot very close to the average analysis of the metavolcanic rocks of the Ollo de Sapo formation (Iberia). Qtz-diorites present typical calc-alkaline signatures and are geochemically similar to intermediate cordilleran granitoids. (2) Both Qtz-diorite and nodular granite samples yield a significant population of Cambro-Ordovician ages, ranging between 483 and 473 Ma and between 487 and 457 Ma, respectively. Besides, (3) the abundance of zircon inheritance observed on nodular granites matches the significant component of inheritance reported on Cambro-Ordovician metagranites and metavolcanic rocks of central and NW Iberia. The spatial and temporal coincidence of both peraluminous and intermediate granitoids, and specifically in nodular granites and Qtz-diorite enclaves of the Prado de las Pozas high-grade complex, is conducive to a common petrogenetic context for the formation of both magmatic types. Tectonic and geochemical characteristics describe the activity of a Cambro-Ordovician arc-back-arc tectonic setting associated with the subduction of the Iapetus-Tornquist Ocean and the birth of the Rheic Ocean. The extensional

  20. The High Arctic Magnetic High - The Geophysical Manifestation of a Large (1.36 x 10e6 km2) and Voluminous (5-10 x 10e6 km3) Igneous Province

    NASA Astrophysics Data System (ADS)

    Saltus, Richard; Oakey, Gordon; Miller, Elizabeth; Jackson, Ruth

    2013-04-01

    comparable wavelength patterns in the complex, basin and range - style bathymetry of the Alpha and Mendeleev Ridges. Although there are many open questions regarding the development of this crustal domain, the broad geophysical expression of this feature show that it represents a substantial portion of the high Arctic crust and, as a large igneous province, a significant influx of mass and heat during its formation. Any successful model for the tectonic development of the Amerasian Basin must account for the effects of these fluxes on the strength and composition of the crust.

  1. Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30'S), Chile

    NASA Astrophysics Data System (ADS)

    Marschik, Robert; Fontignie, Denis; Chiaradia, Massimo; Voldet, Pia

    2003-10-01

    Early Cretaceous plutonic rocks exposed south of Copiapó form part of the Coastal Batholith of northern Chile. These rocks intrude arc-derived volcanic and volcaniclastic rocks and marine limestones that were deposited in the Early Cretaceous Atacama backarc basin. The Copiapó plutonic complex consists mainly of calc-alkaline, medium- to coarse-grained diorite, granodiorite, tonalite, monzodiorite, and quartz monzonite. The plutonic rocks are subalkaline to alkaline, metaluminous, magnetite-series, volcanic arc, I-type granitoids. Batholithic magmas are a heat, potential fluid, metal, and sulphur source for the hydrothermal iron oxide-rich Cu-Au mineralization in the Candelaria-Punta del Cobre district. Ore-related hydrothermal alteration affected large portions of the Copiapó complex. The least altered batholithic rocks have initial 87Sr/ 86Sr of 0.703070-0.703231; initial 143Nd/ 144Nd of 0.512733-0.512781; and 206Pb/ 204Pb, 207Pb/ 204Pb, and 208Pb/ 204Pb of 18.428-18.772, 15.550-15.603, and 38.127-38.401, respectively. The δ18O values for these rocks range from +6.9 to +8.6‰. Isotope signatures and trace element distributions suggest that the magmas are mantle derived. A subduction fluid-modified mantle source may explain the geochemical characteristics of the Copiapó complex. The ascent of magmas occurred along deep-rooted structures without significant crustal contamination, though minor contamination by relatively young (e.g. Jurassic) igneous rocks during ascent is possible. Intrusive rocks with high-K to shoshonitic characteristics probably represent residual liquids of less evolved magmas. The regional geologic context suggests that the plutons of the Copiapó complex were emplaced at a relatively shallow crustal level of 2-3 km.

  2. An outline of tectonic, igneous, and metamorphic events in the Goshute-Toano Range between Silver Zone Pass and White Horse Pass, Elko County, Nevada; a history of superposed contractional and extensional deformation

    USGS Publications Warehouse

    Ketner, Keith Brindley; Day, Warren C.; Elrick, Maya; Vaag, Myra K.; Zimmerman, Robert A.; Snee, Lawrence W.; Saltus, Richard W.; Repetski, John E.; Wardlaw, Bruce R.; Taylor, Michael E.; Harris, Anita G.

    1998-01-01

    Seven kinds of fault-bounded tracts are described. One of the tracts provides a good example of Mesozoic contractional folding and faulting; six exemplify various aspects of Miocene extensional faulting. Massive landslide deposits resulting from Tertiary faulting are described. Mesozoic intrusive rocks and extensive exposures of Miocene volcanic rocks are described and dated. The age ranges of stratigraphic units were based on numerous conodont collections, and ages of igneous rocks were determined by argon/argon and fission-track methods. The geologic complexity of the Goshute-Toano Range provides opportunities for many additional productive structural studies.

  3. Investigation of aluminum gate CMP in a novel alkaline solution

    NASA Astrophysics Data System (ADS)

    Cuiyue, Feng; Yuling, Liu; Ming, Sun; Wenqian, Zhang; Jin, Zhang; Shuai, Wang

    2016-01-01

    Beyond 45 nm, due to the superior CMP performance requirements with the metal gate of aluminum in the advanced CMOS process, a novel alkaline slurry for an aluminum gate CMP with poly-amine alkali slurry is investigated. The aluminum gate CMP under alkaline conditions has two steps: stock polishing and fine polishing. A controllable removal rate, the uniformity of aluminum gate and low corrosion are the key challenges for the alkaline polishing slurry of the aluminum gate CMP. This work utilizes the complexation-soluble function of FA/O II and the preference adsorption mechanism of FA/O I nonionic surfactant to improve the uniformity of the surface chemistry function with the electrochemical corrosion research, such as OCP-TIME curves, Tafel curves and AC impedance. The result is that the stock polishing slurry (with SiO2 abrasive) contains 1 wt.% H2O2,0.5 wt.% FA/O II and 1.0 wt.% FA/O I nonionic surfactant. For a fine polishing process, 1.5 wt.% H2O2, 0.4 wt.% FA/O II and 2.0 wt.% FA/O I nonionic surfactant are added. The polishing experiments show that the removal rates are 3000 ± 50 Å/min and 1600 ± 60 Å/min, respectively. The surface roughnesses are 2.05 ± 0.128 nm and 1.59 ± 0.081 nm, respectively. A combination of the functions of FA/O II and FA/O I nonionic surfactant obtains a controllable removal rate and a better surface roughness in alkaline solution.

  4. Composite seal reduces alkaline battery leakage

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Plitt, K. F.

    1965-01-01

    Composite seal consisting of rubber or plastic washers and a metal washer reduces alkaline battery leakage. Adhesive is applied to each washer interface, and the washers are held together mechanically.

  5. Ratiometric electrochemical detection of alkaline phosphatase.

    PubMed

    Goggins, Sean; Naz, Christophe; Marsh, Barrie J; Frost, Christopher G

    2015-01-11

    A novel ferrocene-derived substrate for the ratiometric electrochemical detection of alkaline phosphatase (ALP) was designed and synthesised. It was demonstrated to be an excellent electrochemical substrate for the ALP-labelled enzyme-linked immunosorbent assay (ELISA).

  6. Evaluation of the alkaline electrolysis of zinc

    SciTech Connect

    Meisenhelder, J.H.; Brown, A.P.; Loutfy, R.O.; Yao, N.P.

    1981-05-01

    The alkaline leach and electrolysis process for zinc production is compared to the conventional acid-sulfate process in terms of both energy saving and technical merit. In addition, the potential for industrial application of the alkaline process is discussed on the basis of present market conditions, possible future zinc market scenarios, and the probability of increased secondary zinc recovery. In primary zinc production, the energy-saving potential for the alkaline process was estimated to be greater than 10%, even when significantly larger electrolysis current densities than those required for the sulfate process are used. The principal technical advantages of the alkaline process are that it can handle low-grade, high-iron-content or oxidized ores (like most of those found in the US) in a more cost- and energy-efficient manner than can the sulfate process. Additionally, in the electrowinning operation, the alkaline process should be technically superior because a dendritic or sponge deposit is formed that is amenable to automated collection without interruption of the electrolysis. Also, use of the higher current densities would result in significant capital cost reductions. Alkaline-based electrolytic recovery processes were considered for the recycling of zinc from smelter baghouse dusts and from the potential source of nickel/zinc electric-vehicle batteries. In all comparisons, an alkaline process was shown to be technically superior and, particularly for the baghouse dusts, energetically and economically superior to alternatively proposed recovery methods based on sulfate electrolysis. It is concluded that the alkaline zinc method is an important alternative technology to the conventional acid zinc process. (WHK)

  7. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  8. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  9. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  10. Controlled intracellular proteolysis during postpartal involution of the uterus: characterization and regulation of an alkaline proteinase.

    PubMed

    Roth, M; Hoechst, M; Afting, E G

    1981-01-01

    The postpartal involution of the uterus is predominantly due to cellular hypotrophy. This implies an intracellular proteolytic system which must be carefully controlled pre and post partum. We have characterized and partially purified a proteinase with an alkaline pH-optimum of activity and a proteinase inhibitor protein which inhibits this proteinase very strongly. The alkaline proteinase copurifies with the actomyosin complex of the uterine myometrium and degrades the actomyosin complex with a concomitant loss of its myosin-ATPase activity. The alkaline proteinase is a very labile enzyme, markedly sensitive to SH-group modifying agents and has very high molecular weight at the present state of purification. This proteolytic enzyme could specifically be separated from the main components of the actomyosin complex by extraction with low ionic strength phosphate buffers. The proteinase inhibitor protein may control the activity of this alkaline proteinase during pregnancy and involution. The inhibitor protein raises 15-fold during pregnancy, possibly blocks important steps of intracellular proteolysis and permits organ growth. The dramatic fall of the inhibitor protein activity after parturition, which precedes the loss of weight, could release the proteolytic system, including the alkaline proteinase, and permits controlled intracellular degradation.

  11. Petrological, geochemical, and stable isotope constraints on the genesis of the Miocene igneous rocks of Chetaibi and Cap de Fer (NE Algeria)

    NASA Astrophysics Data System (ADS)

    Laouar, R.; Boyce, A. J.; Arafa, M.; Ouabadi, A.; Fallick, A. E.

    2005-06-01

    Miocene igneous rocks (diorites, andesites, dacites, rhyolites and microgranites) of Chetaibi and Cap de Fer massif, NE Algeria, are high-K calc-alkaline to shoshonitic rocks. Fresh diorites have δ 34S and δ 18O values ranging between -2.5‰ and +5.9‰, +6.5‰ and +6.7‰ respectively, indicating a mantle origin. The relatively low δ 34S values (-5.4‰ to -12.2‰) and high δ 18O (+8.3‰ to +9.0‰) of altered diorites indicate the input of a crustal component to the initial magma. The microgranites' I-type signature is indicated by the geochemical data and the δ 34S and δ 18O values of -1.2‰ and -3.6‰, and +7.8‰ to +10.4‰ respectively. The andesites show a large variation of δ 34S, between -33.2‰ and +25.7‰. Massive andesites with δ 34S between +6.8‰ and +7.6‰ preserve a 34S-enriched mantle signature. The δ 34S of the lava flows between +25.7‰ and +25.8‰ are attributed to open system magma degassing, whereas the low δ 34S of two andesitic dyke samples (-13.7‰ and -33.2‰) strongly suggest a crustal sulphur input. High δ 18O (+9.2‰ to +15.7‰) of andesites indicate post-magmatic alteration (mainly silicification); the flyschs with δ 18O between of +13.3‰ and +21.7‰ are most likely the contaminant. Quartz veins within the andesites gave a δ 18O value of +23.0‰ while silica-filling vesicles yielded a value of +13.8‰. Initial Sr-isotope data are rather high for all the rocks (diorites: 0.707-0.708, andesites: 0.707-0.710, and microgranites and rhyolites: 0.717-0.719), and because geochemical and stable isotope data do not indicate a substantial amount of crustal assimilation, an extensive enrichment of the mantle source by subducted sediments is called for. A metasomatized-mantle source, characterized by high radiogenic Sr and relatively high δ 18O, has also been indicated for the genesis of similar Tertiary igneous rocks in the Western Mediterranean basin, e.g. the Volcanic Province of southeasten Spain [Benito, R

  12. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  13. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  14. Potential temperature, upwelling rate and eclogite in the formation of the North Atlantic large igneous province

    NASA Astrophysics Data System (ADS)

    Brown, E. L.; Lesher, C. E.

    2010-12-01

    The volumes and compositions of basalts generated by adiabatic decompression melting of the Earth’s mantle depend on mantle potential temperature (T_P), upwelling rate and the fertility of the mantle source. The relative importance of these factors in generating the high productivity magmatism of the Paleogene - Recent North Atlantic large igneous province (NAIP) remains controversial. Each has been proposed as a primary factor in the region. To assess the significance of these mechanisms in NAIP magmatism, we apply our forward melting model, REEBOX PRO, which simulates the melting of a heterogeneous source comprised of peridotite and eclogite lithologies. The model accounts for the thermodynamics of adiabatic decompression melting of a heterogeneous source using constraints from laboratory melting experiments. Input values of T_P and eclogite abundance are used to calculate the buoyancy of the mantle source and maximum upwelling rates. Source buoyancy constrains the maximum amount of eclogite in the mantle source that can ascend beneath the rift axis. All melts generated within the melting regime are pooled to form magmatic crust according to the residual column method. Using the model, variations in magmatic crustal thickness (from geophysics) as a function of eclogite content (from geochemistry) can be related to T_P and upwelling rate. Models with no thermal anomaly, that call on either enhanced upwelling rates due to plate separation (edge - driven convection) or the melting of abundant (> 30%) eclogite at “ambient” T_P (1325 °C), cannot generate the observed igneous crustal thicknesses around the province. Rather, elevated mantle T_P (minimum thermal anomaly ~ 85 - 195 °C) and associated buoyancy - driven upwelling are needed to explain the volume of igneous crust in the province. Involvement of eclogite, while necessary to explain the compositions of many NAIP lavas, does not significantly enhance melt production. These factors, coupled with the long

  15. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the

  16. Building the EarthChem System for Advanced Data Management in Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Lehnert, K.; Walker, J. D.; Carlson, R. W.; Hofmann, A. W.; Sarbas, B.

    2004-12-01

    Several mature databases of geochemical analyses for igneous rocks are now available over the Internet. The existence of these databases has revolutionized access to data for researchers and students allowing them to extract data sets customized to their specific problem from global data compilations with their desktop computer within a few minutes. Three of the database efforts - PetDB, GEOROC, and NAVDAT - have initiated a collaborative effort called EarthChem to create better and more advanced and integrated data management for igneous geochemistry. The EarthChem web site (http://www.earthchem.org/) serves as a portal to the three databases and information related to EarthChem activities. EarthChem participants agreed to establish a dialog to minimize duplication of effort and share useful tools and approaches. To initiate this dialog, a workshop was run by EarthChem in October, 2003 to discuss cyberinfrastructure needs in igneous geochemistry (workshop report available at the EarthChem site). EarthChem ran an information booth with database and visualization demonstrations at the Fall 2003 AGU meeting (and will have one in 2004) and participated in the May 2003 GERM meeting in Lyon, France where we provided the newly established Publishers' Round Table a list of minimum standards of data reporting to ease the assimilation of data into the databases. Aspects of these suggestions already have been incorporated into new data policies at Geochimica et Cosmochimica Acta and Chemical Geology (Goldstein et al. 2004), and are under study by the Geological Society of America. EarthChem presented its objectives and activities to the Solid Earth Sciences community at the Annual GSA Meeting 2003 (Lehnert et al, 2003). Future plans for EarthChem include expanding the types and amounts of data available from a single portal, giving researchers, faculty, students, and the general public the ability to search, visualize, and download geochemical and geochronological data for a

  17. New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction

    NASA Astrophysics Data System (ADS)

    Zhao, Lixin; Dai, Shifeng; Graham, Ian T.; Li, Xiao; Zhang, Beibei

    2016-11-01

    A previous study suggested that the lowest Xuanwei Formation is derived from weathered clastic materials of silicic composition from the Emeishan large igneous province (ELIP) based on chemostratigraphic correlations (Al2O3/TiO2 ratios) between the two. In this study, we have adopted the model that the Emeishan mantle plume commenced and terminated within a short duration and have investigated the detailed mineralogy and geochemistry of carefully sampled rocks from the lower sections of the Xuanwei Formation, eastern Yunnan Province, Southwest China. These samples are intensely argillized and characterized by high proportions of clay minerals and quartz. The samples with Al2O3/TiO2 > 7 from the lowest Xuanwei Formation have an anomalous natural gamma response and high concentrations of Nb, Ta, Zr, Hf, Th, U, Ga and REY (rare earth elements and yttrium). Our results suggest that the samples with Al2O3/TiO2 > 7 from the lowest Xuanwei Formation represent felsic volcanic tuff instead of acidic clasts as originally proposed. The lowest Xuanwei Formation and the Wangpo Bed are the felsic tuffaceous layers interbedded with clastic rocks derived from the Emeishan high-Ti basalts. Such volcanic layers most likely represent ELIP felsic tuff originated from the extrusive equivalent of Nb-Zr-enriched alkaline syenitic magmatism at the waning stage of Emeishan mantle plume activity. This study has verified the existence of extensive alkaline felsic volcanism of early Late Permian age. Such alkaline volcanism may have been catastrophic and have contributed to the end-Guadalupian mass extinction.

  18. The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes

    NASA Astrophysics Data System (ADS)

    Vander Auwera, Jacqueline; Berza, Tudor; Gesels, Julie; Dupont, Alain

    2016-04-01

    We provide new whole-rock major and trace elements as well as 87Sr/86Sr and 143Nd/144Nd isotopic data of a suite of samples collected in the Late Cretaceous volcanic and plutonic bodies of the Apuseni Mts. (Romania) that belong to the Banatitic Magmatic and Metallogenic Belt, also called the Apuseni-Banat-Timok-Srednogorie belt. The samples define a medium- to high-K calc-alkaline differentiation trend that can be predicted by a three-step fractional crystallization process which probably took place in upper crustal magma chambers. Published experimental data indicate that the parent magma (Mg# = 0.47) of the Apuseni Mts. trend could have been produced by the lower crustal differentiation of a primary (in equilibrium with a mantle source) magma. The Late Cretaceous magmatic rocks of the Apuseni Mts. and Banat display overlapping major and trace element trends except that Sr is slightly lower and Ga is higher in the Apuseni Mts. parent magma. This difference can be accounted for by fractionating plagioclase-bearing (Apuseni Mts.) or amphibole-bearing (Banat) cumulates during the lower crustal differentiation of the primary magma to the composition of the parent magma of both trends. This, together with results obtained on the Late Cretaceous igneous rocks from the Timok area in Eastern Serbia, further suggests variation of the water content of the primary magma along and across the belt. The Apuseni Mts. versus the Banat samples display different isotopic compositions that likely resulted from the assimilation of two distinct crustal contaminants, in agreement with their emplacement in two separate mega-units of Alpine Europe.

  19. Hydrothermal alteration and zeolitization of the Fohberg phonolite, Kaiserstuhl Volcanic Complex, Germany

    NASA Astrophysics Data System (ADS)

    Weisenberger, Tobias Björn; Spürgin, Simon; Lahaye, Yann

    2014-11-01

    The subvolcanic Fohberg phonolite (Kaiserstuhl Volcanic Complex, Germany) is an economic zeolite deposit, formed by hydrothermal alteration of primary magmatic minerals. It is mined due to the high (>40 wt%) zeolite content, which accounts for the remarkable zeolitic physicochemical properties of the ground rock. New mineralogical and geochemical studies are carried out (a) to evaluate the manifestation of hydrothermal alteration, and (b) to constrain the physical and chemical properties of the fluids, which promoted hydrothermal replacement. The alkaline intrusion is characterized by the primary mineralogy: feldspathoid minerals, K-feldspar, aegirine-augite, wollastonite, and andradite. The rare-earth elements-phase götzenite is formed during the late-stage magmatic crystallization. Fluid-induced re-equilibration of feldspathoid minerals and wollastonite caused breakdown to a set of secondary phases. Feldspathoid minerals are totally replaced by various zeolite species, calcite, and barite. Wollastonite breakdown results in the formation of various zeolites, calcite, pectolite, sepiolite, and quartz. Zeolites are formed during subsolidus hydrothermal alteration (<150 °C) under alkaline conditions. A sequence of Ca-Na-dominated zeolite species (gonnardite, thomsonite, mesolite) is followed by natrolite. The sequence reflects an increase in and decrease in of the precipitating fluid. Low radiogenic 87Sr/86Sr values indicate a local origin of the elements necessary for secondary mineral formation from primary igneous phases. In addition, fractures cut the intrusive body, which contain zeolites, followed by calcite and a variety of other silicates, carbonates, and sulfates as younger generations. Stable isotope analysis of late-fracture calcite indicates very late circulation of meteoric fluids and mobilization of organic matter from surrounding sedimentary units.

  20. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  1. The Martian ocean: First acid, then alkaline

    NASA Astrophysics Data System (ADS)

    Schaefer, M. W.

    1993-09-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  2. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    PubMed

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595

  3. In Situ Measurements of Natural Radioactivity in Selected Igneous Rocks of the Opava Mountain Region

    NASA Astrophysics Data System (ADS)

    Dżaluk, Agnieszka; Malczewski, Dariusz; Żaba, Jerzy; Dziurowicz, Maria

    2014-09-01

    In situ gamma-ray measurements of four igneous rocks were taken in the Opava Mountains (Eastern Sudetes, Poland). The activity of naturally occurring radionuclides was measured using a portable GX3020 gamma-ray spectrometry workstation. The activity concentrations of 40K varied from 914 ± 17 Bqkg-1 (gneiss, Kamienna Góra) to 2019 ± 37 Bqkg-1 (weathered granite, Sławniowice), while those of 232Th from 7.5 ± 0.6 Bqkg-1 (weathered granite, Sławniowice) to 68 ± 0.9 Bqkg-1 (migmatitic gneiss, Nadziejów). The activities associated with 238U decay series ranged from 10 ± 0.4 Bqkg-1 (weathered granite, Sławniowice) to 62 ± 1.6 Bqkg-1 (gneiss, Kamienna Góra). The results will be used in compiling Radiological Atlas of the Sudetes

  4. An Igneous Origin for Features of a Candidate Crater-Lake System in Western Memnonia, Mars

    NASA Technical Reports Server (NTRS)

    Leverington, D. W.; Maxwell, T. A.

    2004-01-01

    The association of channels, inner terraces, and delta-like features with Martian impact craters has previously been interpreted as evidence in favor of the past existence of crater lakes on Mars. However, examination of a candidate crater-lake system in western Memnonia suggests instead that its features may have formed through igneous processes involving the flow and ponding of lava. Accumulations of material in craters and other topographic lows throughout much of the study region have characteristics consistent with those of volcanic deposits, and terraces found along the inner flanks of some of these craters are interpreted as having formed through drainage or subsidence of volcanic materials. Channels previously identified as inlets and outlets of the crater-lake system are interpreted instead as volcanic rilles. These results challenge previous interpretations of terrace and channel features in the study region and suggest that candidate crater lakes located elsewhere should be reexamined.

  5. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    PubMed

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  6. Evolution of KREEP - Further petrologic evidence. [igneous rocks from Apollo 15 site

    NASA Technical Reports Server (NTRS)

    Crawford, M. L.; Hollister, L. S.

    1977-01-01

    It is hypothesized that KREEP samples from the Apollo 15 site are igneous. To support the hypothesis, comparisons are made with other crystalline KREEP samples, especially 14310. It is noted that the low siderophile element content and lack of high pressure phenocrysts in the Apollo 15 KREEP may be indications of a slower rise of KREEP melt to the surface, when contrasted with sample 14310. Gravitational separation of Fe-Ni metal is proposed as a mechanism to account for the depletion of siderophile elements relative to the Si-rich component. It is further suggested that KREEP may be the parent of Apollo 12 and 15 basalts, as well as of granitic rocks, due to the liquid immiscibility occurring during the KREEP melt crystallization, and the subsequent independent evolution of the components.

  7. Classification of mafic clasts from mesosiderites - Implications for endogenous igneous processes

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Mittlefehldt, David W.

    1992-01-01

    Results are presented from an analysis of 13 igneous pebbles from the Vaca Muerta, EET87500, and Bondoc mesosiderites, using electron microprobe and instrumental neutron activation techniques. These data, combined with literature data on compositions of 43 mesosiderite clasts were used to compile a classification scheme for the various types of mafic silicate clasts that occur in mesosiderites. These clasts were classified into five principal groups: (1) polygenic and monogenic cumulates (30 percent); (2) polygenic basalts (30 percent); (3) quench-textured rocks, comprising two compositional subgroups (those which resemble basaltic eucrites (5 percent), and those which resemble cumulate eucrites (2 percent)); (4) monogenic basalts (11 percent); and (5) ultramafic rocks, consisting mainly of large crystals of orthopyroxene (9 percent) or olivine (4 percent). The conditions under which these clasts were formed are discussed.

  8. Venus - Chemical weathering of igneous rocks and buffering of atmospheric composition

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lewis, J. S.

    1982-01-01

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.

  9. Venus: chemical weathering of igneous rocks and buffering of atmospheric composition.

    PubMed

    Nozette, S; Lewis, J S

    1982-04-01

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.

  10. Thermal-infrared spectra and chemical analyses of twenty-six igneous rock samples

    USGS Publications Warehouse

    Vincent, R.K.; Rowan, L.C.; Gillespie, R.E.; Knapp, C.

    1975-01-01

    Emittance spectra in the 7.5 ??m to 14 ??m wavelength region and chemical compositions of 26 igneous rocks are reported. Experimental measurements on the rocks were made under simulated daytime field conditions. Some surface silicate contaminants, such as clayey silt, significantly altered the spectral emittance of a fresh sample, whereas, for these samples, hydrous and anhydrous ferric oxide weathering products did not mask important silicate spectral information. In the 11.75 ??m to 13.75 ??m wavelength region, the mean emittance of all the silicate samples was 0.956 ?? 0.008, except for periodtite, which had an average emittance of 0.895. This region of uniform emittance should be useful in remote sensing experiments for the separation of the effects of temperature and chemical composition on the spectral emittance of silicate rocks. ?? 1976.

  11. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust

    PubMed Central

    Salas, Everett C.; Bhartia, Rohit; Anderson, Louise; Hug, William F.; Reid, Ray D.; Iturrino, Gerardo; Edwards, Katrina J.

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595

  12. 3D seismic interpretation of subsurface eruptive centers in a Permian large igneous province, Tazhong Uplift, central Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Jiangfeng; Zhu, Wenbin; Guan, Da; Zhu, Beibei; Yuan, Liansheng; Xiang, Xuemei; Su, Jinbao; He, Jingwen; Wu, Xinhui

    2015-12-01

    A 1445-km2 high-resolution 3D seismic reflection dataset is used to analyze the Permian large igneous province in the subsurface of the Tazhong area in the central Tarim Basin in northwestern China. Constrained by the synthetic seismograms of four wells, the top and base of the igneous rocks were identified in the seismic data. Seven large volcanic craters, each >10 km2 in area, have been discovered via the application of coherency and amplitude attributes. The thickness and volume of the igneous rocks were obtained by time-depth transformation. In the study area, all of the igneous rocks, with thicknesses from 120 to 1133 m, were formed by eruptions in the Early Permian. These events produced huge erupted volumes (178 km3) and multiple closely spaced volcanic edifices (<13 km). These features suggest that the study area may be the part of the eruptive center of the Permian igneous rocks in the Tarim Basin.

  13. Igneous and Sedimentary Compositions from Four Landing Sites on Mars from the Alpha Particle X-Ray Spectrometer (APXS)

    NASA Technical Reports Server (NTRS)

    Gellert, R.; Arvidson, R. E.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R. W.; Squyres, S. W.; VanBommel, S.; Yen, A. S.

    2016-01-01

    The APXS - supported and promoted strongly by Heinrich Waenke - on all four Mars Rovers has returned compositional data from about 1000 rocks and soil targets along the combined traverses of over 60 kilometers. Providing precise and accurate bulk chemistry with typically 16 quantified elements, the APXS is a powerful and versatile tool that when combined with the ability to traverse to key rocks and soils has provided critical information needed to understand the geologic evolution of Mars. APXS data allow comparisons among landing sites, provide ground truth for orbiters and connections back to SNC meteorites. The soils and dust are basaltic in character and represent the average Mars composition similar to Adirondack basalts from Gusev crater but with unambiguous elevated and correlated S, Cl and Zn contents. At all four landing sites the APXS found several rocks with a felsic composition. The similarity is best assessed in a logarithmic ratio plot of rock normalized to the average soil composition (Fig.1). High alkaline, Al, and low Mg, Fe, low S, Cl and Ni, Zn as well as an Fe/Mn ratio of approximately 50 indicate a likely unaltered and igneous origin. Sediments, e.g. the Burns formation, with approximately 25 wt% SO3 at Meridiani Planum have been documented over 10s of kilometers (Fig. 2). This formation is compositionally homogeneous, but showing the removal of MgSO4 and a threefold increase in Cl downhill in 2 craters. The degraded rim of the Noachian crater Endeavour resembles average Mars crust, with local Ca, Mg and Fe sulfate alteration and elevated Mn, some felsic rocks, and high Al, Si and low Fe rocks, possibly indicating clays. Unusual soils at Gusev crater in the area surrounding Home Plate include some very rich in ferric sulfate salts (up to 35 wt% SO3) and some with 90% wt% SiO2, possibly indicating fumerolic activities. Rocks in the Columbia Hills show significant signs of alteration including elevated S, Cl and Br in the abraded interior. At

  14. A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust.

    PubMed

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Lazor, Peter; Broman, Curt; Belivanova, Veneta; Marone, Federica

    2015-01-01

    We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites-remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust. PMID:26488482

  15. A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust

    PubMed Central

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Lazor, Peter; Broman, Curt; Belivanova, Veneta; Marone, Federica

    2015-01-01

    We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites—remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust. PMID:26488482

  16. Application of spatially weighted Technology for mapping intermediate and felsic igneous rocks in Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Zhang, Daojun

    2016-04-01

    Magmatic activity is of great significance to mineralization not only for heat and fluid it provides, but also for parts of material source it brings. Due to the cover of soil and vegetation and its spatial nonuniformity detected singals from the ground's surface may be weak and of spatial variability, and this brings serious challenges to mineral exploration in these areas. Two models based on spatially weighted technology, i.e., local singularity analysis (LSA) and spatially weighted logistic regression (SWLR) are applied in this study to deal with this challenge. Coverage cannot block the migration of geochemical elements, it is possible that the geochemical features of soil above concealed rocks can be different from surrounding environment, although this kind of differences are weak; coverage may also weaken the surface expression of geophysical fields. LSA is sensitive to weak changes in density or energy, which makes it effective to map the distribution of concealed igneous rock based on geochemical and geophysical properties. Data integration can produce better classification results than any single data analysis, but spatial variability of spatial variables caused by non-stationary coverage can greatly affect the results since sometimes it is hard to establish a global model. In this paper, SWLR is used to integrate all spatial layers extracted from both geochemical and geophysical data, and the iron polymetallic metallogenic belt in sours-west of Fujian Province is used as s study case. It is found that LSA technique effectively extracts different sources of geologic anomalies; and the spatial distribution of intermediate and felsic igneous rocks delineated by SWLR shows higher accuracy compared with the result obtained via global model.

  17. A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust.

    PubMed

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Lazor, Peter; Broman, Curt; Belivanova, Veneta; Marone, Federica

    2015-01-01

    We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites-remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.

  18. Stable Isotope Constraints on the Ocean from Hydrothermally-altered Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Gregory, R. T.

    2007-12-01

    The 18O/16O ratio of the ocean provides an important constraint on the global geochemical cycles in the Precambrian Earth. The oxygen isotope ratio of the ocean is most likely buffered near its present day value as long as plate tectonics is operative. A quasi-steady state value for oxygen isotopes is reached on a 100 Myr timescale after the onset of plate tectonics. Hydrothermally-altered igneous rocks constrain the oxygen and hydrogen isotope value of the hydrosphere back through time. Whereas, the oxygen isotope composition of seawater owes its value to the competition between low temperature chemical weathering and mid-ocean ridge hydrothermal exchange, there is no such process for hydrogen isotopes. Changes in the oxygen isotope ratio of seawater should be reflected in hydrothermally altered rocks by the presence of low or high 18O exchanged igneous rocks with normal δD values. The distribution of D and 18O in hydrothermally rocks is used to infer the position of the meteoric water line back through time. Results from the Phanerozoic, the Proterozoic, and the Archean fail to confirm the hypothesis that the global oceans were ever strongly 18O-depleted. The meteoric water line is anchored to the isotopic composition of seawater, the isotope standard for both oxygen and hydrogen isotopes. The ability to use sedimentary rocks or other proxies for climate depend upon the variation in the stable isotopic composition of seawater. Thus far, the hydrothermal record does not support the existence of low 18O oceans. This suggests that low 18O values observed in carbonates and cherts result from either precipitation from oceans with higher temperature or from bodies of water isolated from the open ocean.

  19. Geochemical distinctions between igneous carbonate, calcite cements, and limestone xenoliths (Polino carbonatite, Italy): spatially resolved LAICPMS analyses

    NASA Astrophysics Data System (ADS)

    Rosatelli, G.; Wall, F.; Stoppa, F.; Brilli, M.

    2010-11-01

    Petrography-controlled laser ablation inductively coupled plasma mass spectrometry (LAICPMS) analyses of carbonate in fresh shallow level sub-volcanic Polino monticellite calcio-carbonatite tuffisite have been performed to assess the geochemical differences between fresh igneous, epigenetic carbonates and sedimentary accidental fragments. Igneous calcite has consistently high LREE/HREE ratios (La/Yb N , 15-130) due to high LREE (ΣLREE, 425-1,269 ppm). Secondary calcite cements are characterized by progressively lower and more variable trace element contents, with lower LREE/HREE ratios. A distinguishing geochemical feature is progressively increasing negative Ce anomalies observed through coarse secondary calcite that can be related to the surface environment processes. The limestone accidental fragments in the tuffisite have trace element contents almost two orders of magnitude lower than igneous carbonate and low LREE (ΣLREE < 9.5 ppm) with low LREE/HREE fractionation (La/Yb N ratios < 18). The stable isotope composition of different carbonate types is consistent with their formation in different environments. The tuffisitization processes during diatreme formation under high CO2-OH fugacity conditions may account for the differences noted in the igneous carbonates.

  20. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province—Results of new aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Døssing, A.; Jackson, H. R.; Matzka, J.; Einarsson, I.; Rasmussen, T. M.; Olesen, A. V.; Brozena, J. M.

    2013-02-01

    The history of the 2.5 million km2 Amerasia Basin (sensu lato) is in many ways the least known in the global tectonic system. Radically different hypotheses proposed to explain its origin are supported only by inconclusive and/or indirect observations and several outstanding issues on the origin of the Basin remain unaddressed. The difficulty lies in the geodynamic evolution and signature of the Basin being overprinted by excess volcanism of the Alpha-Mendeleev Ridge complex, part of the High Arctic Large Igneous Province (HALIP) and one of the largest (>1 million km2) and most intense magmatic and magnetic complexes on Earth. Here, we present the results of a 550,000 km2 aerogeophysical survey over the poorly explored Lomonosov Ridge (near Greenland) and adjoining Amerasia and Eurasia Basins that provides the first direct evidence for consistent linear magnetic features between the Alpha and Lomonosov Ridges, enabling the tectonic origin of both the Amerasia Basin and the HALIP to be constrained. A landward Lower Cretaceous (∼138-125(120) Ma) giant dyke swarm (minimum 350×800 km2) and tentative oceanward Barremian (or alternatively lower Valanginian-Barremian) seafloor spreading anomalies are revealed. Prior to Cenozoic opening of the Eurasia Basin the giant dyke swarm stretched from Franz Josef Land to the southern Alpha Ridge and possibly further to Queen Elisabeth Islands, Canada. The swarm points towards a 250-km-wide donut-shaped anomaly on the southern Alpha Ridge, which we propose was the centre of the HALIP mantle plume, suggesting that pronounced intrusive activity, associated with an Alpha Ridge mantle plume, took place well before the Late Cretaceous Superchron and caused continental breakup in the northern Amerasia Basin. Our results imply that at least the southern Alpha Ridge as well as large parts of the area between the Lomonosov and southern Alpha Ridges are highly attenuated continental crust formed by poly-phase breakup with LIP volcanic