Science.gov

Sample records for alkaline igneous province

  1. The Late Cretaceous Alkaline Igneous Province in the Iberian Peninsula, and its tectonic significance

    NASA Astrophysics Data System (ADS)

    Rock, N. M. S.

    1982-04-01

    The Iberian Province consists of the following: the three subvolcanic, syenitic, major intrusive complexes of Monchique, Sines and Sintra in W. and SW Portugal, together with their basanitic/lamprophyric minor intrusive suites; basanitic volcanic complexes around Lisbon; at least some of a widespread suite of basanitic to theralitic minor intrusives in west central Portugal; about 80 small basanitic/lamprophyric to nepheline syenitic intrusions scattered through the Pyrenees, NE Spain, the French Corbières, and off the coast of NW Spain; and the Ormonde Seamount of the Gorringe Bank off the SW coast of Portugal. Most of these occurrences have been dated isotopically or from field evidence as Late Cretaceous. Geological and petrological details of the various occurrences are compiled and reviewed. Primary basanitic magmas were probably parental to the entire Province, and generated syenitic magmas by differentiation processes; oversaturated rocks were produced by alkali loss and perhaps also by crustal involvement. The Iberian Province is related to the opening of the N. Atlantic, specifically that of the Bay of Biscay.

  2. Magmatic systems of large continental igneous province

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2014-05-01

    Large igneous provinces (LIPs) of the modern type are known from the middle Paleoproterozoic and have a great abundance in the Phanerozoic. The most researches considered their appearance with ascending of the mantle thermochemical superplumes which provided simultaneously eruption of the same type of lavas on the huge territories. Judging on presence among them different subprovinces, formation of concrete magmatic systems were linked with protuberances (secondary plumes) on the superplumes surfaces. We suggest that origin of such plumes was linked with local enrichment of upper part of the superplumes head beneath roofing by fluid components; it led to lowering of the plume material density and initiated ascending of the secondary plumes. As a result, their heads, where partial melting occurred, can reach the level of the upper crust as it follows from absence of lower-crustal rocks among xenoliths in basalts, although mantle xenoliths existed in them. Important feature of LIPs is presence of two major types of mafic lavas: (1) geochemical-enriched alkali Fe-Ti basalts and picrites, and (2) basalts of normal alkalinity (tholeiites) with different contents of TiO2. At that the first type of mafites are usually typical for lower parts of LIPs which initially developed as continental rifts, whereas the second type composed the upper part of the traps' cover. Magmatic systems of the LIPs are subdivided on three levels of different deep: (1) zones of magma generation, (2) areas of transitional magma chambers where large often layered intrusive bodies are formed, and (3) areas on surface where lava eruptions and subvolcanic intrusions occurred. All these levels are linked by feeder dykes. The least known element of the system is area of magma generation, and, especially, composition of melting substratum. Important information about it is contained in aforementioned mantle xenoliths in alkali basalts and basanites. They practically everywhere are represented by two

  3. Large igneous provinces linked to supercontinent assembly

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Santosh, M.; Luo, Zhaohua; Hao, Jinhua

    2015-04-01

    Models for the disruption of supercontinents have considered mantle plumes as potential triggers for continental extension and the formation of large igneous provinces (LIPs). An alternative hypothesis of top-down tectonics links large volcanic eruptions to lithospheric delamination. Here we argue that the formation of several LIPs in Tarim, Yangtze, Lhasa and other terranes on the Eurasian continent was coeval with the assembly of the Pangean supercontinent, in the absence of plumes rising up from the mantle transition zone or super-plumes from the core-mantle boundary. The formation of these LIPs was accompanied by subduction and convergence of continents and micro-continents, with no obvious relation to major continental rifting or mantle plume activity. Our model correlates LIPs with lithospheric extension caused by asthenospheric flow triggered by multiple convergent systems associated with supercontinent formation.

  4. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  5. Northeast Atlantic Igneous Province volcanic margin development

    NASA Astrophysics Data System (ADS)

    Mjelde, R.; Breivik, A. J.; Faleide, J. I.

    2009-04-01

    Early Eocene continental breakup in the NE Atlantic Volcanic Province (NAIP) was associated with voluminous extrusive and intrusive magmatism, and initial seafloor spreading produced anomalously thick oceanic crust. Recent publications based on crustal-scale wide-angle seismic data show that there is a positive correlation between igneous crustal thickness (H) and average P-wave velocity (Vp) on all investigated margins in the NAIP. Vp can be used as a proxy for crustal composition, which can be related to the mode of mantle melting. A positive H-Vp correlation indicates that excessive mantle melting the first few million years after breakup was driven by an initial increased temperature that cools off as seafloor spreading develops, consistent with a mantle plume model. Variations in mantle composition can explain excess magmatism, but will generate a negative H-Vp correlation. Active mantle convection may increase the flux of mantle rocks through the melting zone above the rate of passive corner flow, which can also produce excessive magmatism. This would produce little H-Vp correlation, and place the curve lower than the passive flow melting curve in the diagram. We have compiled earlier published results with our own analyses of published and unpublished data from different groups to look for systematic variations in the mantle melting mode along the NAIP margins. Earlier studies (Holbrook et al., 2002, White et al, 2008) on the southeast Greenland conjugate system, indicate that the thick igneous crust of the southern NAIP (SE Greenland ? Hatton Bank) was dominated by increased mantle temperature only, while magmatism closer to the southern side of and including the Greenland-Iceland-Færøy Ridge (GIFR) was created by combined temperature increase and active mantle convection. Recent publications (Breivik et al., 2008, White et al, 2008) north of the GIFR for the Norway Basin segment, indicate temperature dominated magmatism between the Jan Mayen Fracture

  6. Some Environmental Consequences of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.

    2009-12-01

    The formation of large igneous provinces (LIPs)—continental flood basalts, ‘volcanic’ margins, and oceanic plateaus—may impact the atmosphere, oceans, and biosphere by rapidly releasing huge amounts of particulates, magmatic volatiles (CO2, SO2, Cl, F, etc.), and potentially volatiles (CO2, CH4, SO2, etc.) from intruded sediments (e.g., carbonates, organic-rich shales, evaporites). A key factor affecting the magnitude of volatile release is whether eruptions are subaerial or marine; hydrostatic pressure inhibits vesiculation and degassing of relatively soluble volatile components (H2O, S, Cl, F) in deep water submarine eruptions, although low solubility components (CO2, noble gases) are mostly degassed even at abyssal depths. Directly or indirectly, such injections may cause changes in the atmosphere/ocean system that can lead to perturbations of atmosphere/ocean chemistry, circulation, ecology, and biological productivity. These changes can be global in extent, particularly if environmental conditions were at or near a threshold state or tipping point. LIPs may have been responsible for some of the most dramatic and rapid changes in the global environment. For example, between ~145 and ~50 Ma, the global ocean was characterized by chemical and isotopic variations (especially in C and Sr isotope ratios, trace metal concentrations, and biocalcification), relatively high temperatures, high relative sea level, episodic deposition of black shales (oceanic anoxic events), high production of hydrocarbons, mass extinctions of marine organisms, and radiations of marine flora and fauna. Temporal correlations between the intense pulses of igneous activity associated with LIP formation and environmental changes suggest more than pure coincidence. The 1783-84 eruption of Laki on Iceland provides the only historical record of the type of volcanism that constructs transient LIPs. Although Laki produced a basaltic lava flow representing only ~1% of the volume of a typical

  7. Paleomagnetism of large igneous provinces: case-study from West Greenland, North Atlantic igneous province

    NASA Astrophysics Data System (ADS)

    Riisager, Janna; Riisager, Peter; Pedersen, Asger Ken

    2003-09-01

    We present new paleomagnetic and multi-model stereo photogrammetry data from lava sequences in the West Greenland part of the North Atlantic igneous province (NAIP). The joint analyses of paleomagnetic and photogrammetric data yield a well-defined paleomagnetic pole located at Lat=73.6°N, Long=160.5°E ( N=44, α95=6.2°, K=13.1; age ˜61-55 Ma), which is statistically indistinguishable from a pole recently obtained for the Eurasian part of the NAIP on Faroe Islands [Riisager et al., Earth Planet. Sci. Lett. 201 (2002) 261-276]. Combining the two datasets we obtain a joint NAIP paleomagnetic pole in Greenland coordinates: Lat=71.1°N, Long=161.1°E ( N=87, α95=4.3°, K=13.6; age ˜61-54 Ma). The results presented here represent the first study in which photogrammetry profiles were photographed at the exact same locations where paleomagnetic fieldwork was carried out, and a direct flow-to-flow comparison of the two datasets is possible. Photogrammetry is shown to be particularly useful because of (i) highly precise dip/strike measurements and (ii) detailed 'field observations' that can be made in the laboratory. Highly precise determination of the structural attitude of well-exposed Kanisut Mb lava sequences demonstrates that their apparently reliable in-field dip/strike measurements typically are up to ˜6° wrong. Erroneous dip/strike readings are particularly problematic as they offset paleomagnetic poles without affecting their confidence limits. Perhaps more important for large igneous provinces is the recognition of a variable temporal relationship between consecutive lava flows. We demonstrate how correct interpretation of paleosecular variation, facilitated by the detailed photogrammetry analysis, is crucial for the rapidly emplaced Vaigat Formation lavas. Inaccurate tectonic correction, non-averaged paleosecular variation and unrecognized excursional directions may, perhaps, explain why coeval paleomagnetic poles from large igneous provinces are often

  8. Petrochemical nature of baradangua alkaline igneous complex, Orissa, India

    NASA Astrophysics Data System (ADS)

    Das, Madhumita; Acharya, S.

    The Baradangua alkaline complex on the southern bank of the Brahmani river, Orissa, strikes E-W with steep southerly dips, in conformity with the regional trend of the litho units of the Eastern Ghat Mobile Belt of this sector. The nepheline syenite, a hypersolvus rock, comprises potash feldspar, nepheline, plagioclase and calcite, with biotite as the dominant mafic mineral. The agpaitic index [ {( Na2O + K2O) }/{Al2O3} mol prop] ranges from 0.43 to 0.74 in the nepheline syenites, indicating their miaskitic nature. Field, petrography and geochemistry suggest a magmatic origin for nepheline syenites, the differentiation pattern being reflected by the distribution of the trace elements.

  9. Large Igneous Provinces, Sulfur Aerosols, and Initiation of Snowball Earth

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Wordsworth, R. D.

    2015-12-01

    The events that led to the initiation of Snowball Earth remain poorly understood. Proposed scenarios include a methane addiction, a biological innovation that led to an increase in organic carbon burial and anaerobic remineralization, or an increase in global weatherability due to a paleogeography with a preponderance of low latitude continents, and the subareal implacement of large igneous provinces (LIPs) at the equator. The Franklin LIP was emplaced between 730 and 710 Ma and covers an area of over 2.25 Mkm2 with lavas, sills, and dikes extending over much of northern Laurentia from Alaska through northern Canada to Greenland and potentially to Siberia. The most precise geochronological constraints on the Franklin LIP overlap with the onset of the Sturtian Snowball Earth glaciation, which began between 717 and 716 Ma and marked the first glaciation in over 1 billion years. The Franklin LIP is the largest preserved Neoproterozoic LIP and one of the largest in Earth History. Additionally, it was emplaced at equatorial latitudes with associated sills that invaded epicontinental sulfur evaporite basins, potentially maximizing environmental effects. Here we explore the hypothesis that the Sturtian Snowball Earth was initiated in part by an increase in planetary albedo from the conversion of volcanic SO2/H2S emissions to tropospheric and stratospheric sulfate aerosols through a combination of geochemical and modeling studies.

  10. Did North Atlantic Igneous Province igneous sills trigger or maintain Paleocene Eocene Thermal Maximum global warming?

    NASA Astrophysics Data System (ADS)

    Fernandes, Karina; Jones, Stephen M.; Schofield, Nick; Clayton, Geoff

    2010-05-01

    Igneous sills of the North Atlantic Igneous Province (NAIP) were intruded into organic-rich sediments, generating methane and carbon dioxide by thermal maturation. These greenhouse gases escaped to the ocean and atmosphere through hydrothermal vents above the sills that have been observed on seismic reflection data and by drilling. It has been suggested that the NAIP sills provided a significant component of the greenhouse gases that forced warming during the Paleocene Eocene Thermal Maximum (PETM). Here we consider whether methane released by NAIP sills could have triggered, as well as maintained, the PETM warming. Warming resulting from the PETM trigger began a few thousand years before the major upheaval in the carbon cycle that was associated with the PETM itself. Recent organic geochemical investigations have suggested that methane was involved in the trigger. Since the lifetime of methane in the atmosphere was approximately one decade during the Paleocene, the triggering methane pulse probably contained on the order of 100 Gt or more of carbon and was probably released in a period of c. 10 years or less. We use recent field observations of fluidized country rocks around sills to speculate on a model for sill emplacement, greenhouse gas generation and escape. The observation of fluidized sediments associated with lobe and finger structures along inward-dipping sections of many sills suggests that these sill rims propagated laterally by fluidizing a restricted volume of country rock, allowing the magma to advance into the fluidized region as a viscous fingering front. At this stage, the fluidized region was not connected to the surface by a conduit, so greenhouse gases could not escape rapidly. Eventually, as the sill rim propagated laterally and upward, a hydrothermal conduit was initiated and propagated rapidly upward to the surface. This model, based on field observations implies that the gases which initially escaped up the hydrothermal conduit were

  11. Linking mantle plumes, large igneous provinces and environmental catastrophes.

    PubMed

    Sobolev, Stephan V; Sobolev, Alexander V; Kuzmin, Dmitry V; Krivolutskaya, Nadezhda A; Petrunin, Alexey G; Arndt, Nicholas T; Radko, Viktor A; Vasiliev, Yuri R

    2011-09-14

    Large igneous provinces (LIPs) are known for their rapid production of enormous volumes of magma (up to several million cubic kilometres in less than a million years), for marked thinning of the lithosphere, often ending with a continental break-up, and for their links to global environmental catastrophes. Despite the importance of LIPs, controversy surrounds even the basic idea that they form through melting in the heads of thermal mantle plumes. The Permo-Triassic Siberian Traps--the type example and the largest continental LIP--is located on thick cratonic lithosphere and was synchronous with the largest known mass-extinction event. However, there is no evidence of pre-magmatic uplift or of a large lithospheric stretching, as predicted above a plume head. Moreover, estimates of magmatic CO(2) degassing from the Siberian Traps are considered insufficient to trigger climatic crises, leading to the hypothesis that the release of thermogenic gases from the sediment pile caused the mass extinction. Here we present petrological evidence for a large amount (15 wt%) of dense recycled oceanic crust in the head of the plume and develop a thermomechanical model that predicts no pre-magmatic uplift and requires no lithospheric extension. The model implies extensive plume melting and heterogeneous erosion of the thick cratonic lithosphere over the course of a few hundred thousand years. The model suggests that massive degassing of CO(2) and HCl, mostly from the recycled crust in the plume head, could alone trigger a mass extinction and predicts it happening before the main volcanic phase, in agreement with stratigraphic and geochronological data for the Siberian Traps and other LIPs.

  12. Characterization of Arctic Highly Magnetic Domains - the Geophysical Expression of Inferred Large Igneous Province(s)

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G.; Miller, E. L.; Jackson, R.

    2012-12-01

    The magnetic anomalies of the high arctic are dominated by a large domain (1000 x 1700 km; the High Arctic Magnetic High, HAMH) consisting of numerous high-amplitude magnetic high ridges with a complex set of orientations and by other smaller, but still fundamentally highly magnetic, domains. The magnetic potential anomaly field (also known as pseudogravity) of the HAMH shows a single large intensity high and underscores the crustal-scale thickness of this geophysical feature (which also forms a prominent anomaly on satellite magnetic maps). The seafloor morphology of this region includes the complex linear trends of the Alpha and Mendeleev ridges, but the magnetic expression of this domain extends beyond the complex bathymetry to include areas where Canada Basin sediments have covered the complex basement topography. The calculated magnetic effect of the bathymetric ridges matches some of the observed magnetic anomalies, but not others. We have analyzed and modeled the distinctive HAMH and other smaller magnetic high domains to generate estimates of their volume and to characterize the directionality of their component features. Complimentary processing and modeling of high arctic gravity anomalies allows characterization of the density component of these geophysical features. Spatially, the HAMH encompasses the Alpha and Mendeleev "ridges," that are considered to represent a major mafic igneous province. The term "Alpha-Mendeleev Large Igneous Province" is given to a domain mapped by tracing magnetic anomalies in a recent map published by AAPG (Grantz and others, 2009). On this map the province is described as "alkali basalt with ages between 120 and 90 Ma". New seismic and bathymetric data, collected as part of on-going research efforts for definition of extended continental shelf, are revealing new details about the Alpha ridge. One interesting development is the possible identification of a supervolcano that may represent a major locus of igneous activity. In

  13. Variations in the Pb isotope composition in polyformational magmatic rocks of the Ketkap-Yuna igneous province of the Aldan Shield: Evidence for mantle-crust interaction

    NASA Astrophysics Data System (ADS)

    Polin, V. F.; Dril, S. I.; Khanchuk, A. I.; Velivetskaya, T. A.; Vladimirova, T. A.; Il'ina, N. N.

    2016-06-01

    The Pb isotope composition of polyformational Mesozoic igneous rocks of the Ketkap-Yuna igneous province (KYIP) and lower crustal metamorphic rocks of the Batomga granite-greenstone area (the complex of the KYIP basement) of the Aldan Shield was studied for the first time. Based on the data obtained, several types of material sources participating in petrogenetic processes were distinguished. The mantle source identified as PREMA is registered in most of the igneous formations and predominates in mafic alkaline rocks. According to the isotope characteristics, the upper crustal source corresponds to a source of the "Orogen" type by the model of "plumbotectonics" or to the average composition of the continental crust by the Stacey-Kramers model. The lower crust is the third material source; however, the type of lower crustal protolith involved in the igneous process is still not defined, which makes difficult to estimate its role in the petrogenetic processes.

  14. Mantle Redox Conditions in the North Atlantic Igneous Province

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Gras, M. A.; Lesher, C. E.

    2004-12-01

    The North Atlantic igneous province (NAIP) has long been viewed as a region of anomalous mantle upwelling related to plume activity, continental rifting, and a heterogeneous mantle source. Prior to continental rifting in the Tertiary, the northern portion of the region was the site of closure of the Iapetus ocean basin. This tectonic event may have contributed to heterogeneities within the upper mantle and altered its oxidation state relative to the ambient mantle. Vanadium has been shown to be a useful indicator of redox conditions due to its multiple valence states (e.g. [1-2]). In mantle minerals, vanadium becomes increasingly incompatible under more oxidizing conditions [3]. Because both scandium and vanadium are moderately incompatible during melting, the Sc/V ratio of primitive basalts can be used to investigate the oxidation state of the mantle [1-3]. We have examined the Sc/V ratios of primitive lavas from the mid-Atlantic ridge (MAR), Iceland, and the East Greenland margin to determine if there are spatial or temporal variations in the oxidation state of the NAIP mantle. The Sc/V ratios for MAR basalts are 0.13-0.20 (GEOROC chemical database); while Icelandic basalts range from 0.10-0.25 with an average of 0.16 (1 σ =0.05). The entire range of Sc/V ratios of the Paleogene East Greenland basalts is 0.07-0.17 with an average of 0.10 (1 σ = 0.05). The Sc/V ratios of Icelandic basalts are similar to MAR basalts, but the East Greenland lavas are distinctly lower than both the MAR and Iceland. The Sc/V ratio also can vary as a function of mean pressure of melting (i.e. spinel versus garnet lherzolite). To test the relative importance of melting systematics, source composition, and oxygen fugacity on the Sc/V systematics for NAIP basalts, we incorporated the oxygen-fugacity-dependent V mineral-melt partitioning data of [3] into the polybaric decompression melting model REEBOX [4]. The best-fit model parameters for the majority of the Iceland and MAR basalts

  15. Isotopic ages for alkaline igneous rocks, including a 26 Ma ignimbrite, from the Peshawar plain of northern Pakistan and their tectonic implications

    NASA Astrophysics Data System (ADS)

    Ahmad, Irshad; Khan, Shuhab; Lapen, Thomas; Burke, Kevin; Jehan, Noor

    2013-01-01

    New isotopic ages on zircons from rocks of the Peshawar Plain Alkaline Igneous Province (PPAIP) reveal for the first time the occurrence of ignimbritic Cenozoic (Oligocene) volcanism in the Himalaya at 26.7 ± 0.8 Ma. Other new ages confirm that PPAIP rift-related igneous activity was Permian and lasted from ˜290 Ma to ˜250 Ma. Although PPAIP rocks are petrologically and geochemically typical of rifts and have been suggested to be linked to rifting on the Pangea continental margin at the initiation of the Neotethys Ocean, there are no documented rift-related structures mapped in Permian rocks of the Peshawar Plain. We suggest that Permian rift-related structures have been dismembered and/or reactivated during shortening associated with India-Asia collision. Shortening in the area between the Main Mantle Thrust (MMT) and the Main Boundary Thrust (MBT) may be indicative of the subsurface northern extension of the Salt Range evaporites. Late Cenozoic sedimentary rocks of the Peshawar Plain deposited during and after Himalayan thrusting occupy a piggy-back basin on top of the thrust belt. Those sedimentary rocks have buried surviving evidence of Permian rift-related structures. Igneous rocks of the PPAIP have been both metamorphosed and deformed during the Himalayan collision and Cenozoic igneous activity, apart from the newly recognized Gohati volcanism, has involved only the intrusion of small cross-cutting granitic bodies concentrated in areas such as Malakand that are close to the MMT. Measurements on Chingalai Gneiss zircons have confirmed the occurrence of 816 ± 70 Ma aged rocks in the Precambrian basement of the Peshawar Plain that are comparable in age to rocks in the Malani igneous province of the Rajasthan platform ˜1000 km to the south.

  16. Voluminous silicic eruptions during late Permian Emeishan igneous province and link to climate cooling

    NASA Astrophysics Data System (ADS)

    Yang, Jianghai; Cawood, Peter A.; Du, Yuansheng

    2015-12-01

    Silicic eruptive units can constitute a substantive component in flood-basalts-dominated large igneous provinces, but usually constitute only a small proportion of the preserved volume due to poor preservation. Thus, their environmental impact can be underestimated or ignored. Establishing the original volume and potential climate-sensitive gas emissions of silicic eruptions is generally lacking for most large igneous provinces. We present a case study for the ∼260 Ma Emeishan province, where silicic volcanic rocks are a very minor component of the preserved rock archive due to extensive erosion during the Late Permian. Modal and geochemical data from Late Permian sandstones derived from the province suggest that silicic volcanic rocks constituted some ∼30% by volume of the total eroded Emeishan volcanic source rocks. This volume corresponds to > 3 ×104 km3 on the basis of two independent estimate methods. Detrital zircon trace element and Hf isotopic data require the silicic source rocks to be formed mainly by fractional crystallization from associated basaltic magmas. Based on experimental and theoretical calculations, these basalt-derived ∼104 km3 silicic eruptions released ∼1017 g sulfur gases into the higher atmosphere and contribute to the contemporaneous climate cooling at the Capitanian-Wuchiapingian transition (∼260 Ma). This study highlights the potentially important impact on climate of silicic eruptions associated with large igneous province volcanism.

  17. Geochemistry of the Kalkarindji Magmas: Insights into the Source of the Oldest Phanerozoic Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Ware, B. D.; Jourdan, F.; Hodges, K.; Tessalina, S.; Chiaradia, M.; Evins, L.; Gole, M.

    2014-12-01

    The Kalkarindji continental flood basalt province (CFBP) of northern Australia is the oldest Phanerozoic large igneous province (LIP) in the world. The extent of this Middle Cambrian LIP has been estimated to at least 2.1 x 106 km2 with exposures in Western Australia, Northern Territory, Queensland, and South Australia. The research into Kalkarindji is still in its infancy with only a handful of studies published. The rocks of the Kalkarindji province occur as lava flows, sills, dykes, and volcanic tuffs. Kalkarindji has been linked to an extinction event at the Early-Middle Cambrian boundary. The Kalkarindji province displays Low-Ti values and high SiO2 values compared to other large igneous provinces, enriched 87Sr/86Sr values, and low 187Os/188Os. This project presents a large data set of new geochemical analyses of the various constituents of the Kalkarindji CFBP. Source mixing calculations, assimilation and fractionation models, coupled with Monte Carlo simulations were carried out to understand the petrogenesis of the province. The trace element and 87Sr/86Sr values indicate a contribution of enriched crustal-like material into the source region; however, the Os values fall into typical mantle ranges. These geochemical patterns suggest that the mantle source(s) of the Kalkarindji CFBP has been directly enriched at some stage of history, before the emplacement of the province. This study will provide further insights into the magma source and origin processes needed to create one of the world's largest and oldest Phanerozoic large igneous provinces.

  18. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: Age and geological constraints from North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Tappe, S.; Heaman, L.; Knudsen, M. F.

    2013-12-01

    Age, compositional and geological data show the High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan orogeny. New 40Ar-39Ar and U-Pb dating provides emplacement ages of 71-68 Ma for most of the Kap Washington alkaline volcanics of North Greenland, but with activity continuing down to 61 Ma. A thermal resetting age of 49-47 Ma is also identified in 40Ar-39Ar whole-rock data for trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting, interpreted as a result of Eurekan compressional tectonism. The formation of the tholeiitic suite (130-80 Ma) appears to be associated with the opening of the Canada Basin and may have involved mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay. The alkaline and tholeiitic suites of the High Arctic may therefore be unrelated. It is striking that High Arctic volcanism terminates at about the same time (c. 60 Ma) as magmatism in the North Atlantic Large Igneous Province begins. We suggest this is a corollary of a change from extensional to compressional tectonism in the High Arctic. In the period when Greenland moved together with Eurasia (>60 Ma), the separation from North America resulted in rift-related alkaline magmatism in the High Arctic. When Greenland subsequently moved as a separate plate (60-35 Ma), overlapping spreading on both sides pushed it northwards and volcanism in the High Arctic stopped due to compression. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  19. The Late Ordovician crisis: the Large Igneous Province hypothesis tested by global carbon cycle modeling.

    NASA Astrophysics Data System (ADS)

    Lefebvre, Vincent; Servais, Thomas; François, Louis; Averbuch, Olivier

    2010-05-01

    The causes of the well-known Late Ordovician-Hirnantian glaciation remain largely debated. This global cooling event is generally attributed to a severe decrease of atmospheric pCO2 during a time of general greenhouse climate but its duration is not fully determined. The climate perturbation is synchronous with one of the biggest biotic crisis of the Earth history. Some authors have shown that, considering the Ashgillian paleogeography, a drop in pCO2 below a threshold of 8x to 10x PAL (Present Atmospheric Level) may induce a decrease in temperature in high latitudes so that the installation of an ice-sheet on Gondwana could be possible. Such a process requires an intensification of silicate weathering and/or organic carbon burial that are the two major processes potentially driving a decrease in atmospheric pCO2 at the geologic time scale. The Late Ordovician is known to be a period of high mantellic activity marked by a lack of reversal magnetic field and high volcanic activity. Barnes (2004) and Courtillot and Olson (2007) link this process to a superplume event that may give rise to continental basalt flooding. In the present study, we tested this hypothesis with a global carbon cycle numerical box-model coupled with an Energy Balance Climate Model. The Model is an upgrade of that used by Grard et al. (2005) to simulate the environmental impact of the Siberian traps at the P/T boundary. The configuration of the box-model has been set using the Late Ordovician paleogeography. In each oceanic box, the model calculates the evolution of carbon, phosphorus and oxygen concentrations and alkalinity. It also calculates atmospheric pCO2, atmospheric and oceanic δ13C. We tested different scenarios of Large Igneous Province (LIP) emplacements and organic carbon cycle interactions simulating atmospheric pCO2 drops of amplitude large enough to produce the Hirnantian glaciation. We show that the hypothesis of low latitude LIP well accounts for the Late Ordovician climate

  20. Magmatic complexes of the Urals as suspect parts of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Puchkov, Victor

    2016-10-01

    Petrogenetic, geochemical studies and isotope age determinations of flood basalts, dolerites, trachybasalts, picrite-basalts, rapakivi granites, layered mafic-ultramafic intrusions and also alkaline and carbonatite magmatic complexes of the Urals permit to put forward a preliminary list of objects - “candidates” at being attributed to Large Igneous Provinces (LIPs) - manifestations of superplume activity. Their petro-geochemical properties distinguish them from spreading and subduction types, and are closer to epicontinental rift zones. They are characterized by wide areas of development and very short periods of activity. In the Southern Urals near the base of the Lower Riphean (Uppermost Paleoproterozoic and Lower Mesoproterozoic) there are volcanic deposits of the Navysh Subformation, represented by trachybasalts. The age of the unit was determined as 1752 ± llMa. Volcanic rocks of the age level of 1750-1780 Ma are developed not only in some other places of Baltica, but also in the Northern Africa, Siberia, Laurentia (parts of Nuna supercontinent). Therefore, they may belong to a LIP. Higher up the section of the Riphean, at the base of the Middle Riphean (Mid-Mesoproterozoic), rhyolites of the basalt-rhyolite Mashak Formation were dated as 1380-1385 Ma. The same ages have also rapakivi granites, layered gabbro, carbonatites and dolerite dykes developed in the Southern Urals and encountered in boreholes of the East European platform; magmatic rocks of the same age are traced to Laurentia and Siberian cratons and date the beginning of Nuna supercontinent break-up. Less confidently we may speak of the younger Neoproterozoic magmatic complexes of the Southern Urals as LIPs, dated as ca. 720 Ma and 680 Ma (Arshinian and Kiryabinka complexes); they need a further study. The next in the succession of magmatic episodes, represented by subalkaline volcanics, is connected with a rift process that started at ca. 490 Ma, that led to oceanic spreading and formation of

  1. Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites

    USGS Publications Warehouse

    Flohr, M.J.K.; Ross, M.

    1990-01-01

    Syenites from the Magnet Cove alkaline igneous complex form a diverse mineralogical and geochemical suite. Compositional zoning in primary and late-stage minerals indicates complex, multi-stage crystallization and replacement histories. Residual magmatic fluids, rich in F, Cl, CO2 and H2O, reacted with primary minerals to form complex intergrowths of minerals such as rinkite, fluorite, V-bearing magnetite, F-bearing garnet and aegirine. Abundant sodalite and natrolite formed in pegmatitic segregations within nepheline syenite where Cl- and Na-rich fluids were trapped. During autometasomatism compatible elements such as Mn, Ti, V and Zr were redistributed on a local scale and concentrated in late-stage minerals. Early crystallization of apatite and perovskite controlled the compatible behavior of P and Ti, respectively. The formation of melanite garnet also affected the behaviour of Ti, as well as Zr, Hf and the heavy rare-earth elements. Pseudoleucite syenite and garnet-nepheline syenite differentiated along separate trends, but the two groups are related to the same parental magma by early fractionation of leucite, the presumed precursor of intergrowths of K-feldspar and nepheline. The Diamond Jo nepheline syenite group defines a different differentiation trend. Sphene-nepheline syenite, alkali syenite and several miscellaneous nepheline syenites do not consistently plot with the other syenite groups or each other on element and oxide variation diagrams, indicating that they were derived from still other parental syenite magmas. Mineral assemblages indicate that relatively high f{hook};O2, at or above the fayalite-magnetite-quartz buffer, prevailed throughout the crystallization history of the syenites. ?? 1990.

  2. Anisotropy of the Magnetic Susceptibility of the Alnö alkaline and carbonatite igneous complex

    NASA Astrophysics Data System (ADS)

    Andersson, M.; Almqvist, B.; Malehmir, A.; Troll, V. R.; Snowball, I.; Lougheed, B.

    2013-12-01

    The Alnö igneous complex in central Sweden is one of the largest (radius ~2.5 km) of the few well-known alkaline and carbonatite ring-intrusions in the world. The lithologies span from alkaline silicate rocks (nepheline syenite, ijolite, and pyroxenite) to a range of carbonatite dykes (e.g. sövite) with variable composition. The depth extent, dip, and dip direction of the alkaline and carbonatite rocks have been inferred from surface geological mapping, and a dome-shaped magma chamber with the roof at ~2 km below the palaeosurface was inferred to have supplied steeply dipping radial dykes and (shallowly dipping) cone sheets. Recent high-resolution reflection seismic profiles and gravity and ground magnetic measurements suggest, in turn, a saucer-shaped magma chamber at ~3 km depth below present day land surface. To provide further insight into the internal flow mechanics of these dykes and into their emplacement mechanisms, we have measured the anisotropy of magnetic susceptibility (AMS). About 250 samples from 119 oriented cores were collected with a handheld drilling machine from 26 localities within the Alnö complex. Prior to preparation of discrete samples for AMS, the cores were measured for their density and for ultrasonic P- and S-wave velocities. Most of the sampling locations lie on a transect through the intrusion. Three locations have been sampled in detail, to determine the variation of AMS within individual carbonatite dykes. The AMS of samples were measured in low-field, using a KLY-2 Kappabridge. Bulk magnetic susceptibility ranges from 3.01e-5 to 2.50e-1 SI, and correlates with lithology. The sövites have the widest range of susceptibility (average 4.32e-2, with a range from 3.01e-5 to 2.50e-1 SI), whereas fenites have the lowest average susceptibility (average 2.06e-3, with a range from 9.86e-5 to 1.47e-2 SI); nepheline-syenite, ijolite and pyroxenite have susceptibilities between these two end member lithologies. Sövite consists mainly of

  3. Plume or no plume: Emeishan Large Igneous Province in Southwest China revisited from receiver function analysis

    NASA Astrophysics Data System (ADS)

    He, Chuansong; Santosh, M.; Wu, Jianping; Chen, Xuanhua

    2014-07-01

    The Late Permian Emeishan Large Igneous Province at the western margin of the Yangtze craton and eastern Tibet is popularly regarded as the signature of mantle plume impingement onto the lithosphere. In this study, we investigate the crustal structure and upper mantle discontinuities of this region by employing H-k stacking of receiver function and depth domain receiver function. Our results image the mantle transition zone. However, no vestiges of any mantle plume upwelling in this area are recorded in our results, and the region is characterized by a largely cold domain. In contrast, our data reveal a region of lower crustal delamination that coincides with the cold mantle transition zone. We therefore suggest that the delaminated lower crustal material was recycled into the upper mantle or the mantle transition zone, turning the latter into a cold domain. The delamination of the lower crust might have also led to asthenospheric upwelling and plume-like upwelling from the mantle transition zone that generated the basalts in the Emeishan Large Igneous Province.

  4. Three-dimensional imaging of impact of a large igneous province with a subduction zone

    NASA Astrophysics Data System (ADS)

    Reyners, Martin; Eberhart-Phillips, Donna; Upton, Phaedra; Gubbins, David

    2017-02-01

    How the thickened crust of a large igneous province on an incoming oceanic plate is accommodated at a subduction zone remains an open question. New Zealand is one of the few places to study this, as at ca. 105 Ma the ca. 35 km-thick Hikurangi Plateau impacted the Gondwana subduction zone in what is now the South Island. Here we report on results from a forty-station portable seismograph array in the southern South Island, designed to delineate the leading edge of the subducted plateau. Three-dimensional images of Vp and Vp/Vs reveal the southwestern part of the plateau was a relatively narrow salient, and the first part to be subducted. The plateau then rotated clockwise about this salient until the southern edge of the plateau was parallel to subduction strike and subduction ceased at ca. 100 Ma. Our results suggest that the global-scale plate reorganization event at 105-100 Ma was due to a cessation of subduction caused by the Hikurangi Plateau choking the Gondwana subduction zone, rather than the subduction of mid ocean ridges as previously proposed. The choking of Gondwana subduction by the plateau also led to a concentration of slab pull in the adjacent subducted oceanic crust, explaining the episode of basin opening and intraplate magmatism there that occurred at the same time. Our study underlines the havoc caused by impact of a large igneous province with a subduction zone.

  5. Fixed Hot-spots Gone With Wind? Clues From Paleomagnetic Investigations of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Ernesto, M.

    2013-05-01

    Paleomagnetic studies of Ocean Drilling Program (ODP) 197 on samples from the Emperor-Hawaiian seamount chain suggested that these rocks formed much farther north than the hotspot currently beneath Hawaii. These findings indicate that the hotspot, once thought to be fixed beneath the Earth's crust, actually jumped southward rapidly. Here we report paleomagnetic evidence that is consistence with these findings and suggests that rapid hotspots motion (also southward jumps) occurred while the massive Ontong Java (OJP), Kerguelen Plateau (KP), and Parana Magmatic Province (PMP) large igneous provinces formed. The paleomagnetic paleolatitude for the OJP is ~20 farther north than those predicted by the Louisville hotspot model. The difference between the paleomagnetic and hotspot calculated paleolatitudes cannot be explained by true polar wander estimates derived from other lithospheric plates. Our results are therefore consistent with and extend the Emperor-Hawaiian hotspot features in the northern Pacific Ocean that suggest Late Cretaceous to Eocene motion of Pacific hotspots. Compared to the latitude of the Kerguelen hotspot, the paleolatitudes of the central and northern Kerguelen Plateau obtained by ODP Leg 183 are further north. This difference also indicates a southward movement of the Kerguelen hotspot since the Cretaceous relative to the spin axis of the Earth. Numerical modeling of plume conduit motion in a large-scale mantle flow also predicts southward motion of the Kerguelen hotspot, which is consistent with paleomagnetic results. Likewise, paleomagnetic results from PMP reveal significant southward movement of the Tristan da Cunha hotspot in the Cretaceous. Elucidating how large igneous province formation and mantle dynamics are related and whether hotspots moved at comparable rates during other times are challenges for future research.

  6. Potential temperature, upwelling rate and eclogite in the formation of the North Atlantic large igneous province

    NASA Astrophysics Data System (ADS)

    Brown, E. L.; Lesher, C. E.

    2010-12-01

    The volumes and compositions of basalts generated by adiabatic decompression melting of the Earth’s mantle depend on mantle potential temperature (T_P), upwelling rate and the fertility of the mantle source. The relative importance of these factors in generating the high productivity magmatism of the Paleogene - Recent North Atlantic large igneous province (NAIP) remains controversial. Each has been proposed as a primary factor in the region. To assess the significance of these mechanisms in NAIP magmatism, we apply our forward melting model, REEBOX PRO, which simulates the melting of a heterogeneous source comprised of peridotite and eclogite lithologies. The model accounts for the thermodynamics of adiabatic decompression melting of a heterogeneous source using constraints from laboratory melting experiments. Input values of T_P and eclogite abundance are used to calculate the buoyancy of the mantle source and maximum upwelling rates. Source buoyancy constrains the maximum amount of eclogite in the mantle source that can ascend beneath the rift axis. All melts generated within the melting regime are pooled to form magmatic crust according to the residual column method. Using the model, variations in magmatic crustal thickness (from geophysics) as a function of eclogite content (from geochemistry) can be related to T_P and upwelling rate. Models with no thermal anomaly, that call on either enhanced upwelling rates due to plate separation (edge - driven convection) or the melting of abundant (> 30%) eclogite at “ambient” T_P (1325 °C), cannot generate the observed igneous crustal thicknesses around the province. Rather, elevated mantle T_P (minimum thermal anomaly ~ 85 - 195 °C) and associated buoyancy - driven upwelling are needed to explain the volume of igneous crust in the province. Involvement of eclogite, while necessary to explain the compositions of many NAIP lavas, does not significantly enhance melt production. These factors, coupled with the long

  7. Evidence for alkaline igneous activity and associated metasomatism in the Reelfoot rift, south-central Midcontinent, U. S. A

    SciTech Connect

    Goldhaber, M.B.; Diehl, S.F.; Sutley, S.J. ); Flohr, M.J.K. )

    1993-03-01

    Alkaline igneous magmatism is commonly associated with intracontinental rifts such as the Reelfoot rift (RR). Direct evidence for alkaline magmatism in the area of the RR occurs as lamprophyre and syenite encountered in deep wells. The authors' new studies of lamprophyres and sedimentary rocks from wells in the region provide additional examples of alkaline magmatism and emphasize the effects of related metasomatism. Sedimentary rocks in the Dow Chemical No. 1 Garrigan well, which is not known to contain lamprophyre dikes, probably also were metasomatically altered, as they contain authigenic fluorapatite, Ce-phosphates, and other REE-rich minerals. Enrichments of incompatible and large ion lithophile elements commonly associated with alkaline magmatism occur in the New Madrid test well, near the crest of the Pascola Arch. The carbonate-free fraction of Paleozoic rocks in this well is highly enriched in Nb (500 ppm), Ba (> 5,000 ppm), La (500 ppm), Th (1,000 ppm), and F (2,400 ppm). Abundant inclusion-rich potassium-feldspar cement in a nearby well may also be the result of alkaline metasomatism. Fluorite and elevated F concentrations are found in several wells in the RR, and contrast with stratigraphically correlative platform carbonates of the Ozark uplift, which lack F enrichment. Well and spring water samples above the RR are enriched in fluorine (as much as 5,000 ppb) compared to samples away from the rift which typically have concentrations two orders of magnitude smaller. The data and observations are consistent with relatively widespread alkaline metasomatism, which was associated with the intrusion of alkaline magmas in the RR.

  8. Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events

    NASA Astrophysics Data System (ADS)

    Kravchinsky, Vadim A.

    2012-04-01

    This paper assesses data from recently described major Paleozoic large igneous provinces (LIPs), mostly in Northern Eurasia. The 10 LIPs reviewed form a unimodal distribution in terms of volume. Eight LIPs have an initial modal volume greater than 0.1 × 106 km3. The rift associated basalts of 2 LIPs from the end of the Late Cambrian Period and the end of the Late Ordovician Period do not occupy a large volume. Some of the provinces were discovered or rediscovered relatively recently and dating is still approximate, but most provinces fit a simple model in which volcanism persisted on the order of 10-20 Myr, often resulting in continental break-up. Correlation between LIP ages and the ages of geological events in the Paleozoic Era that reflect mass extinctions and oceanic anoxia agrees with correlations suggested by Courtillot (1994) and Courtillot and Renne (2003) for the Cenozoic and Mesozoic eras, considering that the absolute dating of some Paleozoic LIPs needs to be strengthened in the future.

  9. Reassembling the Ontong Java-Manihiki-Hikurangi large igneous province: Insights and challenges

    NASA Astrophysics Data System (ADS)

    Chandler, M. T.; Wessel, P.; Taylor, B.; Sager, W. W.

    2012-12-01

    The tectonic history of ~30% of the Pacific plate south of Equator which formed during the Cretaceous Normal Supercron is difficult to establish due to its lack of a lineated magnetic anomaly pattern. This region, including the Ontong Java, Manihiki, and Hikurangi large igneous provinces, as well as the interlying Ellice Basin and Osbourn Trough, lacks active seafloor spreading centers and has thus been largely neglected by seagoing research scientists. Nonetheless, the CNS South Pacific may prove to be important for understanding Pacific history. Ontong Java's mean basement paleolatitude measurement differs from absolute plate model (APM) reconstructions for the plateau by ~8--19 degrees (Chandler et al. (2012)), indicating that either current APM models are erroneous, substantial plume drift or true polar wander occurred, or that Ontong Java experienced unrecognized motion early in its history. In support of the latter are recent findings that little to no Louisville plume drift occurred after ~70 Ma (Gee et al. (2011)), that true polar wander estimates for the ~125 Ma Ontong Java vicinity are negligible (Steinberger and Torsvik (2008)), and our recent observation of a 2:1 bias between Ontong Java's paleolatitude and latitude differences (Chandler and Wessel (2011), Chandler et al. (In prep)). These differences, computed among ODP Sites 807 and 1183 - 1187, suggest significant clockwise rotation of ~40 degrees since Ontong Java's formation at ~125 Ma. Although this rotation does not resolve the paleolatitude discrepancy it does suggest that Ontong Java's paleolatitudes may not be suitable for constraining Pacific APM. Seafloor formed at the Osbourn Trough and in the Ellice Basin make up much of the CNS South Pacific. These regions exhibit fossil spreading centers believed responsible for the breakup of Earth's largest known igneous province, the Ontong Java-Manihiki-Hikurangi super-plateau (e.g., Taylor (2006), Chandler et al. (2012)). Understanding this little

  10. Seismic volcanostratigraphy of the western Indian rifted margin: The pre-Deccan igneous province

    NASA Astrophysics Data System (ADS)

    CalvèS, GéRôMe; Schwab, Anne M.; Huuse, Mads; Clift, Peter D.; Gaina, Carmen; Jolley, David; Tabrez, Ali R.; Inam, Asif

    2011-01-01

    The Indian Plate has been the focus of intensive research concerning the flood basalts of the Deccan Traps. Here we document a volcanostratigraphic analysis of the offshore segment of the western Indian volcanic large igneous province, between the shoreline and the first magnetic anomaly (An 28 ˜63 Ma). We have mapped the different crustal domains of the NW Indian Ocean from stretched continental crust through to oceanic crust, using seismic reflection and potential field data. Two volcanic structures, the Somnath Ridge and the Saurashtra High, are identified, extending ˜305 km NE-SW in length and 155 km NW-SE in width. These show the internal structures of buried shield volcanoes and hyaloclastic mounds, surrounded by mass-wasting deposits and volcanic sediments. The structures observed resemble seismic images from the North Atlantic and northwest Australia, as well as volcanic geometries described for Réunion and Hawaii. The geometry and internal seismic facies within the volcanic basement suggest a tholeiitic composition and subaerial to shallow marine emplacement. At the scale of the western Indian Plate, the emplacement of this volcanic platform is constrained by structural lineations associated with rifting. By reviewing the volcanism in the Indian Ocean and plate reconstruction of the area, the timing of the volcanism can be associated with eruption of a pre-Deccan continental flood basalt (˜75-65.5 Ma). The volcanic platform in this study represents an addition of 19-26.5% to the known volume of the West Indian Volcanic Province.

  11. Intrusive LIPs: Deep crustal magmatic processes during the emplacement of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Karlstrom, L.

    2011-12-01

    Large Igneous Provinces (LIPs) are characterized by magmatic activity on two distinct timescales. While these provinces have total active lifetimes of order 10-30 Ma, most of the erupted volume is emplaced within <1 Ma in many cases. The latter timescale is likely controlled by magmatic intrusion/evolution processes within the deep crust. We present seismic evidence for 5-15 km thick Moho-level ultramafic intrusive/cumulate layers underlying Phanerozoic LIPs worldwide [Ridley and Richards, 2010]. These deep crustal bodies are both observed and predicted to have volumes at least as large as the extrusive components of flood volcanism. The evidence for these layers is particularly clear for oceanic LIPs (plateaus). We hypothesize that thermally activated creep of the lower crust due to magma chamber emplacement controls a transition from largely extrusive to largely intrusive magmatism during mantle plume impingement on the lithosphere [Karlstrom and Richards, 2011]. We explore this hypothesis by modeling the thermomechanical evolution of Moho-level magma chambers. Comparing the timescale for viscoelastic relaxation of intrusion-related stresses with the timescale for sill formation and magma differentiation, we find that fracture processes leading to diking from Moho levels may plausibly be shut off on a timescale of ~1 Ma. Continued melt influx therefore results in intrusive magmatism, which may be manifest as plateau growth in oceanic settings. We suggest that maximum intrusion size may be limited by crustal thickness, resulting in smaller volume individual eruptions in oceanic versus continental LIPs.

  12. Application of spatially weighted Technology for mapping intermediate and felsic igneous rocks in Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Zhang, Daojun

    2016-04-01

    Magmatic activity is of great significance to mineralization not only for heat and fluid it provides, but also for parts of material source it brings. Due to the cover of soil and vegetation and its spatial nonuniformity detected singals from the ground's surface may be weak and of spatial variability, and this brings serious challenges to mineral exploration in these areas. Two models based on spatially weighted technology, i.e., local singularity analysis (LSA) and spatially weighted logistic regression (SWLR) are applied in this study to deal with this challenge. Coverage cannot block the migration of geochemical elements, it is possible that the geochemical features of soil above concealed rocks can be different from surrounding environment, although this kind of differences are weak; coverage may also weaken the surface expression of geophysical fields. LSA is sensitive to weak changes in density or energy, which makes it effective to map the distribution of concealed igneous rock based on geochemical and geophysical properties. Data integration can produce better classification results than any single data analysis, but spatial variability of spatial variables caused by non-stationary coverage can greatly affect the results since sometimes it is hard to establish a global model. In this paper, SWLR is used to integrate all spatial layers extracted from both geochemical and geophysical data, and the iron polymetallic metallogenic belt in sours-west of Fujian Province is used as s study case. It is found that LSA technique effectively extracts different sources of geologic anomalies; and the spatial distribution of intermediate and felsic igneous rocks delineated by SWLR shows higher accuracy compared with the result obtained via global model.

  13. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence

  14. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere

    USGS Publications Warehouse

    Saunders, A.D.; Jones, S.M.; Morgan, L.A.; Pierce, K.L.; Widdowson, M.; Xu, Y.G.

    2007-01-01

    The timing and duration of surface uplift associated with large igneous provinces provide important constraints on mantle convection processes. Here we review geological indicators of surface uplift associated with five continent-based magmatic provinces: Emeishan Traps (260??million years ago: Ma), Siberian Traps (251??Ma), Deccan Traps (65??Ma), North Atlantic (Phase 1, 61??Ma and Phase 2, 55??Ma), and Yellowstone (16??Ma to recent). All five magmatic provinces were associated with surface uplift. Surface uplift can be measured directly from sedimentary indicators of sea-level in the North Atlantic and from geomorpholocial indicators of relative uplift and tilting in Yellowstone. In the other provinces, surface uplift is inferred from the record of erosion. In the Deccan, North Atlantic and Emeishan provinces, transient uplift that results from variations in thermal structure of the lithosphere and underlying mantle can be distinguished from permanent uplift that results from the extraction and emplacement of magma. Transient surface uplift is more useful in constraining mantle convection since models of melt generation and emplacement are not required for its interpretation. Observations of the spatial and temporal relationships between surface uplift, rifting and magmatism are also important in constraining models of LIP formation. Onset of surface uplift preceded magmatism in all five of the provinces. Biostratigraphic constraints on timing of uplift and erosion are best for the North Atlantic and Emeishan Provinces, where the time interval between significant uplift and first magmatism is less than 1??million years and 2.5??million years respectively. Rifting post-dates the earliest magmatism in the case of the North Atlantic Phase 1 and possibly in the case of Siberia. The relative age of onset of offshore rifting is not well constrained for the Deccan and the importance of rifting in controlling magmatism is disputed in the Emeishan and Yellowstone

  15. Al-in-olivine thermometry evidence for the mantle plume origin of the Emeishan large igneous province

    NASA Astrophysics Data System (ADS)

    Xu, Rong; Liu, Yongsheng

    2016-12-01

    The Emeishan large igneous province (ELIP) is renowned for its world-class Ni-Cu-(PGE) deposits and its link with the Capitanian mass extinction. The ELIP is generally thought to be associated with a deep mantle plume; however, evidence for such a model has been challenged through geology, geophysics and geochemistry. In many large igneous province settings, olivine-melt equilibrium thermometry has been used to argue for or against the existence of plumes. However, this method involves large uncertainties such as assumptions regarding melt compositions and crystallisation pressures. The Al-in-olivine thermometer avoids these uncertainties and is used here to estimate the temperatures of picrites in the ELIP. The calculated maximum temperature (1440 °C) is significantly ( 250 °C) higher than the Al-in-olivine temperature estimated for the average MORB, thus providing compelling evidence for the existence of thermal mantle plumes in the ELIP.

  16. Ages and petrogenetic significance of igneous mangerite-charnockite suites associated with massif anorthosites, Grenville Province

    SciTech Connect

    Emslie, R.F.; Hunt, P.A. )

    1990-03-01

    U-Pb ages of zircon fractions of major anorthosite-mangerite-charnockite-granite (AMCG) igneous suites imply that this magmatism inaugurated what is widely regarded as the Grenvillian event between about 1.16 and 1.12 Ga ago over about two-thirds of the Grenville Province east, northeast, and southeast of the Central Metasedimentary Belt. Pre-Grenvillian AMCG suites about 1.36 and 1.64 Ga old have much more restricted distribution. An apparent time lag of about 0.05 to 0.10 Ga is indicated between culmination of AMCG magmatism and the widely recognized Grenvillian metamorphic peak (about 1.10 to 1.03 Ga), perhaps the most distinctive hallmark of the Grenville event. The time lag is consistent with conductive heating of thick subcontinental lithosphere that began with initiation of AMCG magmatism and continued until geotherms rose sufficiently to produce granulites in much of the lower to middle crust. Tectonic crustal thickening did not likely occur until later in the sequence of events, perhaps after some cooling from the metamorphic peak. Compressive forces were externally applied, possibly at a distant plate margin, while the continental lithosphere was still thermally weakened from preceding magmatic-metamorphic culminations.

  17. Silicic ash beds bracket Emeishan Large Igneous province to < 1 m.y. at ~ 260 Ma

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Cawood, Peter A.; Hou, Ming-Cai; Yang, Jiang-Hai; Ni, Shi-Jun; Du, Yuan-Sheng; Yan, Zhao-Kun; Wang, Jun

    2016-11-01

    Claystone beds directly below and above the Emeishan basalts in SW China formed around the Guadalupian-Lopingian (G - L) boundary. Zircons from both levels give U-Pb ages of 260 Ma, and are identical within-error to ages reported for the Emeishan Large Igneous Province (LIP). The claystones lack Nb - Ta anomalies on primitive mantle normalized elemental diagrams; zircons from these claystones have a geochemical affinity to within-plate-type magmas. These features, combined with the strong negative Eu anomalies in the zircons and high Al2O3/TiO2 ratios, indicate that claystones around the G - L boundary have a silicic volcanic component related to Emeishan LIP. Zircons from the underlying claystone bed have much higher U/Yb and Th/Nb ratios and lower εHf(t) values than those overlying the LIP, suggesting that early-stage silicic volcanic rocks had a higher crustal contamination or assimilation during magmatic processes. In terms of stratigraphic correlation, our data demonstrate that silicic eruptions occurred not only at the end, but also at the beginning of the Emeishan LIP, and the overall duration of the main basaltic phase was short (< 1 m.y).

  18. Shallow drilling investigation of contact relationships in the Wichita Mountains igneous province

    SciTech Connect

    Gilbert, M.C.; Hogan, J.P. . School of Geology and Geophysics); Luza, K. )

    1993-02-01

    Within the Wichita Mountains Igneous Province, a variety of mineralogically, texturally and compositionally diverse hybrid rock types (i.e. gabbro-diorites, monzonites and granodiorites) crop out at gabbro-grants contacts. Possible coeval sedimentary rocks associated with crustal rifting are restricted to a few scattered, isolated exposures of a mineralogically variable group of meta-quartzites (Meers Quartzite). Typically these outcrops of meta-quartzite are of limited areal extent and are surrounded by either gabbro, granite, rhyolite or a combination of these rock types. However, the origin of both the hybrid rock types and the Meers Quartzite remains enigmatic because outcrops containing complete and clear contact relationships are extremely rare. At present, direct testing of models is difficult as complete exposure of contacts between these units is extremely rare due to deposition of younger sedimentary units and severe degradation by weathering. Poor condition of existing samples has hampered geochemical and other petrologic methods in evaluating models. Four potential drilling sites have been selected where critical contacts between major geologic units are interpreted to be present in the shallow subsurface (<300 ft.). Objectives of drilling are (1) direct observation of contacts between rock units by retrieval of a complete core sample from the drill hole, (2) retrieval of freshest possible rock material for petrographic and geochemical analysis and (3) retrieval of a complete transect beginning in Mount Scott Granite or Meers Quartzite across the hybrid rock zone and into the substrate gabbro to document variations associated with the transition.

  19. The Mozambique Ridge - A Large Igneous Province with a Complicated Emplacement History

    NASA Astrophysics Data System (ADS)

    Fischer, M. D.; Uenzelmann-Neben, G.

    2015-12-01

    The Mozambique Ridge (MozR), a supposed part of the South African Large Igneous Province (LIP) in the southwestern Indian Ocean, consists of four major geomorphological units associated with multiple phases of volcanic activity between 140 Ma and 120 Ma. High-resolution seismic reflection data collected in 2014 reveals various magmatic centres within each of the geomorphological units. Intra-basement reflections can be identified up to several hundred ms TWT below top of basement. These are interpreted to represent massive lava flow units, which are characteristic of oceanic plateau eruptions. Additionally to primary volcanic features associated with the initial formation of the different segments of the MozR we identify secondary volcanic features indicating magmatic reactivation after its initial build-up. The internal reflections generally dip away from their magmatic centres and individual reflectors are typically traced for 5-15 km. Several faults cutting through basement and older sedimentary units are interpreted as extensional tectonic features.Our observations hence provide further arguments for a LIP origin of the MozR. Still, this LIP obviously was subject to multiple magmatic and tectonic phases during its development, which we may relate with the opening of the South African gateway associated with Gondwana break-up and the separation of MozR from the conjugate parts of the proposed South African LIP. Further investigations will show whether more recent deformation can be traced back to further propagation of the East African Rift system.

  20. Paleomagnetic directional groups and paleointensity from the flood basalt in the Tarim large igneous province: implications for eruption frequency

    NASA Astrophysics Data System (ADS)

    Usui, Yoichi; Tian, Wei

    2017-01-01

    We present paleomagnetic secular variation and paleointensity from the Early Permian Tarim large igneous province, NW China. The studied sections comprise a total of 400 m of basaltic flows. Paleomagnetic directions were determined for 11 flows. Four successive flows with a cumulative thickness of 150 m showed a statistically identical paleomagnetic direction. Assuming a paleosecular variation speed similar to that of the present day, the 150-m-thick basalt was estimated to have erupted within the past few centuries. Paleointensity experiments were performed on both whole-rock and single plagioclase samples. Although alterations during the experiment and/or weak remanence degraded the data quality, the flows with the same paleomagnetic direction revealed similar paleointensity estimates, supporting the hypothesis that the eruption of these flows was rapid. More generally, flows from the Lower Kupukuziman Formation seem to record lower paleointensity compared to flows from the overlying Kaipaizileike Formation. [Figure not available: see fulltext. Caption: Left the extent of the Tarim large igneous province. Center in-situ paleomagnetic directions obtained from the Tarim large igneous province. Subashi and Yingan represents directions reported in a previous research. Right tilt-corrected paleomagnetic directions. Tight clustering of the direction indicate fast eruption relative to the paleomagnetic secular variation (PSV) speed.

  1. Record of the Pacific Large Low Shear Velocity Province Upwellings Preserved in the Cretaceous Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Madrigal, P.; Gazel, E.; Flores, K. E.; Bizimis, M.; Jicha, B. R.

    2015-12-01

    As the surface expression of deep mantle dynamics, Large Igneous Provinces (LIPs) are associated with the edges of large low shear velocity provinces (LLSVP) rooted at the core-mantle boundary. Instabilities in the LLSVP can cause periodic upwellings of material in the form of mantle plumes, which impact the lithosphere forming LIPs. However, the time frames of these massive lava outpourings are still uncertain. While continental LIPs are more readily accessible, oceanic LIPs have only been studied through drilling and sampling of fragments accreted to continental margins or island arcs, hence, they are relatively less understood. The impact of oceanic LIPs on oceanic biota is conspicuously recorded in global occurrences of black shale deposits that evidence episodes of anoxia and mass extinctions shortly after the formation of LIPs that ultimately can affect life on the entire planet. Our new geochemical and geochronological data of accreted Pacific LIPs found in the coasts of Nicoya Peninsula in Costa Rica record three LIP pulses possibly reflecting upwelling periods of the LLSVP at 140, 120 and 90 Ma. In order to test different models of origin of these LIPS, we created a complete reconstruction of the Pacific Plate configuration from the Mid-Jurassic to Upper-Cretaceous to show the existing correlation between upwelling pulses at edges of the Pacific LLSVP, oceanic anoxic events and the age from Pacific LIPs. We propose that since the formation of the Pacific plate at circa 175-180 Ma, a series of upwellings that interacted with mid-ocean ridge systems separated by 10-20 Ma have affected the planet periodically forming oceanic LIPs that still can be found today on the Pacific seafloor and accreted along the plate margins.

  2. The pre-Caledonian Large Igneous Province and the North Atlantic Wilson Cycle

    NASA Astrophysics Data System (ADS)

    Tegner, Christian; Andersen, Torgeir B.; Corfu, Fernando; Planke, Sverre; Jørgen Kjøll, Hans; Torsvik, Trond H.

    2016-04-01

    Magmatism of the first known rifting phase of the North Atlantic Wilson Cycle is surprisingly well preserved in the Caledonian nappes of central Scandinavia. The Särv and Seve Nappes are characterised by spectacular dyke complexes originally emplaced into continental sediments along the rifted margin of Iapetus. The intensity and structure of the pre-Caledonian Dyke Complex is comparable to that of the present passive margins of the North Atlantic large igneous province (NALIP) and U-Pb ages of 610-590 Ma suggest magmatism was short-lived. It can be described as a pre-Caledonian large igneous province (CLIP). To constrain the origin of CLIP magmatism we: (1) re-visited the dyke complexes of the Sarek, Kebnekaise and Tornetrask mountains of North Sweden; (2) compiled new and published geochemical data for the more than 950 km long, magma-rich segment of the Scandinavian Caledonides; and (3) extended reconstructions of the paleo-position of Baltica back to 600 Ma. Although the appearance of the dykes ranges from garnet amphibolite gneiss to pristine magmatic intrusions, all bulk rock compositions largely reflect the original magmatic rock. The compiled dataset includes 584 analyses that essentially forms a coherent suite of tholeiitic ferrobasalt (2-12 wt% MgO, 45-54 wt% SiO2; 6-16 wt% FeOtot; 0.7-4.0 wt% TiO2) akin to LIP basalts such as those of NALIP (61-54 Ma). A few samples (<20) are significantly contaminated with crust, but most are largely uncontaminated. The delta Nb value is a proxy for geochemical enrichment based on Nb-Zr-Y systematics and was defined for the present-day North Atlantic system to distinguish enriched Iceland basalts (positive delta Nb) from normal MORB basalts (negative delta Nb). The CLIP dykes are dominantly enriched with positive delta Nb (-0.07 to +0.9) in the central and southern portion, but stretching to more negative values (-0.6 to +0.5) in the northern portion (Sarek, Kebnekaise, Tornetrask). The few available rare earth element

  3. The Whitsunday Volcanic Province, Central Queensland, Australia: lithological and stratigraphic investigations of a silicic-dominated large igneous province

    NASA Astrophysics Data System (ADS)

    Bryan, S. E.; Ewart, A.; Stephens, C. J.; Parianos, J.; Downes, P. J.

    2000-06-01

    Contrary to general belief, not all large igneous provinces (LIPs) are characterised by rocks of basaltic composition. Silicic-dominated LIPs, such as the Whitsunday Volcanic Province of NE Australia, are being increasingly recognised in the rock record. These silicic LIPs are consistent in being: (1) volumetrically dominated by ignimbrite; (2) active over prolonged periods (40-50 m.y.), based on available age data; and (3) spatially and temporally associated with plate break-up. This silicic-dominated LIP, related to the break-up of eastern continental Gondwana, is also significant for being the source of >1.4×10 6 km3 of coeval volcanogenic sediment preserved in adjacent sedimentary basins of eastern Australia. The Whitsunday Volcanic Province is volumetrically dominated by medium- to high-grade, dacitic to rhyolitic lithic ignimbrites. Individual ignimbrite units are commonly between 10 and 100 m thick, and the ignimbrite-dominated sequences exceed 1 km in thickness. Coarse lithic lag breccias containing clasts up to 6 m diameter are associated with the ignimbrites in proximal sections. Pyroclastic surge and fallout deposits, subordinate basaltic to rhyolitic lavas, phreatomagmatic deposits, and locally significant thicknesses of coarse-grained volcanogenic conglomerate and sandstone are interbedded with the ignimbrites. The volcanic sequences are intruded by gabbro/dolerite to rhyolite dykes (up to 50 m in width), sills and comagmatic granite. Dyke orientations are primarily from NW to NNE. The volcanic sequences are characterised by the interstratification of proximal/near-vent lithofacies such as rhyolite domes and lavas, and basaltic agglomerate, with medial to distal facies of ignimbrite. The burial of these near-vent lithofacies by ignimbrites, coupled with the paucity of mass wastage products such as debris-flow deposits indicates a low-relief depositional environment. Furthermore, the volcanic succession records a temporal change in: (1) eruptive styles

  4. Emplacement and Eruption Style in the Franklin Large Igneous Province, Victoria Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Bedard, J. H.; Williamson, N.; Dell'Oro, T. A.; Hayes, B.; Hryciuk, M.; Winpenny, A.; Scoates, J. S.; Weis, D. A.; Nabelek, P. I.; Naslund, H. R.; MacDonald, W. D.

    2011-12-01

    The Neoproterozoic Franklin large igneous province preserves up to 1.1 km thickness of basaltic volcanics (Natkusiak Fm.). The Natkusiak volcanics include basal agglutinate and local hyaloclastite breccias and pillows, lensoid or sheet flows, some picritic, and lahar deposits that seem to infill paleo-valleys. The overlying main series lavas are mostly subareal sheet flows and exhibit cycles of upwardly decreasing MgO. Localized vent facies include unconsolidated scoria and bombs, spatter, and fumarolic malachite/zeolite around native Cu veins. Lateral trace element chemical heterogeneity implies eruption through multiple vents with distinct plumbing systems. The underlying exposed 3-4 km of the Shaler Supergroup are dolostones, sandstones, gypsum evaporites and shales, which are riddled with sills (most 20-50m, up to 100m). Sills constitute 50-75% of the section in most places, and belong to two distinct geochemical subtypes. A heterogeneous LREE-enriched facies includes sills with olivine-rich bases. A more homogeneous diabasic subtype has flatter REE patterns and occurs higher in the section. The oft-reported saucer-shaped sill morphology does not occur in the Franklin sills, which tend to be concordant over 10s of km distance. In many places, up-section transgressions appear to be structurally controlled by pre-existing faults that guided magma ascent and may have modulated reactivation and injection of olivine-rich slurries into pre-existing sills. The roof-zones of upward transgressions are injected with arcuate dikes on various scales (1m to 1 km), and are often associated with cataclasites, oxide-sulfide skarns and calc-silicates. These reflect the complexity of melt-driven fracture propagation, varying host ductility, fluctuation of magma pressure, and expulsion of melt and fluids from cooling sills. Some of these intrusions are enriched in sulphide minerals, possibly the result of assimilation of S-rich host rocks.

  5. Land Bridges and Oceanic Gateways: the Importance of Large Igneous Provinces in Reconstructing Paleobathymetry

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Seton, M.; Cooper, A.

    2015-12-01

    Accurate reconstructions of global and regional paleobathymetry are important for understanding changing patterns of paleo-ocean circulation and climate over geological timescales. Large Igneous Provinces (LIPs) have erupted throughout the world's oceans, creating important bathymetric expressions on the seafloor and temporally exposed land. Global plate tectonic reconstructions of mid-ocean ridges, LIPs, and plumes have demonstrated that the formation of LIPs repeatedly occur at specific ridge-plume interaction locations over periods of tens of millions of years. Due to the shallow depth of mid-ocean ridges relative to the abyssal plains, the formation of LIPs at these locations increases the likelihood of the creation of sub-aerial regions that exist for millions of years before subsiding. Here, we assess the time-varying size, shape, location and depth of LIPs globally and incorporate them into maps of predicted paleo-bathymetry. We focus on accurate estimation of the paleo-bathymetry of oceanic LIPs by taking into account the temporal plume swell that affects the wider region around each LIP, with a likely significant affect on the surface height of both onshore and offshore regions. We ground truth our estimations using a variety of marine data, particularly results from ocean drilling. Of particular interest is the present-day southern Indian Ocean (offshore eastern Antarctica) where the Bouvet, Marion and Kerguelen plumes interact with the Southwest Indian mid-ocean ridge. As West Gondwana broke apart, continental Antarctica slowly moved away from this stationary line of ridge-plume interactions, with the newly formed oceanic crust of the southern Indian and Atlantic Oceans overlying these locations instead. Thus, since the Jurassic parts of East Antarctica and the adjacent Atlantic and Indian oceans have been repeatedly affected by the formation of LIPs at ridge-plume interactions, and our results suggest the potential for landbridges or significant islands

  6. Playing jigsaw with large igneous provinces - a plate-tectonic reconstruction of Ontong Java Nui

    NASA Astrophysics Data System (ADS)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele; Werner, Reinhard

    2015-04-01

    Ontong Java Nui is a Cretaceous large igneous province (LIP), which was rifted apart into various smaller plateaus shortly after its emplacement around 125 Ma in the central Pacific. It incorporated the Ontong Java Plateau, the Hikurangi Plateau and the Manihiki Plateau as well as multiple smaller fragments, which have been subducted. Its size has been estimated to be approximately 0.8% of the Earth's surface. A volcanic edifice of this size has potentially had a great impact on the environment such as its CO2 release. The break-up of the "Super"-LIP is poorly constrained, because the break-up and subsequent seafloor spreading occurred within the Cretaceous Quiet Period. The Manihiki Plateau is presumably the centerpiece of this "Super"-LIP and shows by its margins and internal fragmentation that its tectonic and volcanic activity is related to the break-up of Ontong Java Nui. By incorporating two new seismic refraction/wide-angle reflection lines across two of the main sub-plateaus of the Manihiki Plateau, we can classify the break-up modes of the individual margins of the Manihiki Plateau. The Western Plateaus experienced crustal stretching due to the westward motion of the Ontong Java Plateau. The High Plateau shows sharp strike-slip movements at its eastern boundary towards an earlier part of Ontong Java Nui, which is has been subducted, and a rifted margin with a strong volcanic overprint at its southern edges towards the Hikurangi Plateau. These observations allow us a re-examination of the conjugate margins of the Hikurangi Plateau and the Ontong Java Plateau. The repositioning of the different plateaus leads to the conclusion that Ontong Java Nui was larger (~1.2% of the Earth's surface at emplacement) than previously anticipated. We use these finding to improve the plate tectonic reconstruction of the Cretaceous Pacific and to illuminate the role of the LIPs within the plate tectonic circuit in the western and central Pacific.

  7. Reassembling the Paleogene Eocene North Atlantic igneous province: New paleomagnetic constraints from the Isle of Mull, Scotland

    NASA Astrophysics Data System (ADS)

    Ganerød, Morgan; Smethurst, Mark A.; Rousse, Sonia; Torsvik, Trond H.; Prestvik, Tore

    2008-07-01

    The paleomagnetic data sets from the British Tertiary Igneous Province (BTIP) have recently been criticized as being unreliable and discordant with data from elsewhere in the North Atlantic Igneous Province (NAIP) [Riisager et al. Earth Planet. Sci. Lett. 201 (2002) 261-276; Riisager et al. Earth Planet. Sci. Lett. 214 (2003) 409-425]. We offer new paleomagnetic data for the extensive lava flow sequence on the Isle of Mull, Scotland, and can confirm the paleomagnetic pole positions emanating from important earlier studies. Our new north paleomagnetic pole position for Eurasia at 59 ± 0.2 Ma has latitude 73.3°N, longitude 166.2°E (dp/dm = 5.2/7.0). A re-evaluation and an inter-comparison of the paleomagnetic database emanating from the NAIP were carried out to test for sub-province consistency. We find a general agreement between the Eurasian part of NAIP (BTIP and Faeroes) and East Greenland data. However a compilation of West Greenland data displays a large and unexplained dispersion. We speculate on if this is related to different sense of block rotation of the Tertiary West Greenland constituents. Combining all data from the NAIP constituents, give a pole position at 75.0°N, 169.9°E ( N = 25, K = 84.3, A95 = 3.2) in Eurasian reference frame.

  8. 3D seismic interpretation of subsurface eruptive centers in a Permian large igneous province, Tazhong Uplift, central Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Jiangfeng; Zhu, Wenbin; Guan, Da; Zhu, Beibei; Yuan, Liansheng; Xiang, Xuemei; Su, Jinbao; He, Jingwen; Wu, Xinhui

    2016-11-01

    A 1445-km2 high-resolution 3D seismic reflection dataset is used to analyze the Permian large igneous province in the subsurface of the Tazhong area in the central Tarim Basin in northwestern China. Constrained by the synthetic seismograms of four wells, the top and base of the igneous rocks were identified in the seismic data. Seven large volcanic craters, each >10 km2 in area, have been discovered via the application of coherency and amplitude attributes. The thickness and volume of the igneous rocks were obtained by time-depth transformation. In the study area, all of the igneous rocks, with thicknesses from 120 to 1133 m, were formed by eruptions in the Early Permian. These events produced huge erupted volumes (178 km3) and multiple closely spaced volcanic edifices (<13 km). These features suggest that the study area may be the part of the eruptive center of the Permian igneous rocks in the Tarim Basin.

  9. Constraining the History of the North Atlantic Igneous Province: a Palaeomagnetic and Geochronologic Ballad in the British Tertiary Volcanics.

    NASA Astrophysics Data System (ADS)

    Ganerød, M.; Rousse, S.; Smethurst, M.; Prestvik, T.

    2006-12-01

    Large Igneous Provinces (LIP), overwhelmingly of basaltic affinity constitute the surface expressions of catastrophically rapid dissipation of large quantities of internal heat. Subsequent to their extrusion, most LIPs have changed position in the Earth's surface due to plate motions. With an estimated volume of ca 107 km3 the North Atlantic Igneous Province (NAIP) represents the third largest magmatic event on Earth during the last 150 Myr. The NAIP formed during two major magmatic phases: a pre- break-up phase (62-58 Ma) and a syn- break-up phase (56-54 Ma) contemporaneous with the onset of North Atlantic sea-floor spreading. The formation of the NAIP has been linked to the proto-Icelandic plume through paleogeographic reconstructions and geochemical observations. Since the late 1980's much of the research focus on the NAIP has been guided by the understanding of the genetic relationship between North Atlantic magmatism that began in the earliest Palaeocene, the genesis/position of the Iceland Hotspots and/or related mantle plume(s) through the Cenozoic, and the change at c. 54 Ma from a long period of continental rifting and thinning of sea- floor spreading. However, despite the number of data available, the temporal and physio-chemical ties between NAIP rocks, hotspot motion and continental break-up have not been demonstrated to fit a single regionally applicable and consistent geodynamic model. For example, discrepancies between recent palaeomagnetic poles from western Greenland and the Faeroe Islands (Riisager et al. 2002a,b) and older data from the British Tertiary Igneous Province (BTIP) have questioned the reliability of the latest. Therefore, to ultimately understand the Tertiary evolution of the North Atlantic, extensive palaeomagnetic and 40Ar/39Ar sampling on the lava fields of the British Igneous Provinces (Isle of Skye, Isle of Mull, Antrim Plateau) has been initiated. Our findings are in agreement with older published poles from the BTIP and support

  10. Creep of mafic dykes infiltrated by melt in the lower continental crust (Seiland Igneous Province, Norway)

    NASA Astrophysics Data System (ADS)

    Degli Alessandrini, G.; Menegon, L.; Malaspina, N.; Dijkstra, A. H.; Anderson, M. W.

    2017-03-01

    A dry mafic dyke from a continental lower-crustal shear zone in the Seiland Igneous Province (northern Norway) experienced syn-kinematic melt-rock interaction. Viscous shearing occurred at T ≈ 800 °C, P ≈ 0.75-0.95 GPa and was coeval with infiltration of felsic melt from adjacent migmatitic metapelites. The dyke has a mylonitic microstructure where porphyroclasts of orthopyroxene, clinopyroxene and plagioclase are wrapped by a fine-grained (4-7 μm) polyphase mixture of clinopyroxene + orthopyroxene + plagioclase + quartz + ilmenite ± K-feldspar ± apatite. Microstructural observations and electron backscatter diffraction analysis indicate that the porphyroclasts deformed by a combination of dislocation glide and fracturing, with only a limited record of dislocation creep, recovery and dynamic recrystallization. We identified diffusion creep as the dominant deformation mechanism in the mixture based on the small grain size, phase mixing and weak crystallographic preferred orientation of all phases (interpreted as the result of oriented grain growth during viscous flow). The polyphase mixture did not form by dynamic recrystallization or by mechanical fragmentation of the porphyroclasts, but rather by melt-rock interaction. Thermodynamic models indicate that the syn-kinematic mineral assemblage results from the chemical interaction between a pristine mafic dyke and ca. 10 vol.% of felsic melt infiltrating from the adjacent partially molten metapelites. Extrapolation of laboratory-derived flow laws to natural conditions indicates that the formation of interconnected layers of fine-grained reaction products deforming by diffusion creep induces a dramatic weakening in the mafic granulites, with strain rates increasing up to 2-3 orders of magnitude. The reaction weakening effect is more efficient than the weakening associated with melt-assisted diffusion creep in the presence of up to 10 vol.% of infiltrated melt without formation of fine-grained reaction products

  11. Provenance of bentonite layers in the Palaeocene strata of the Central Basin, Svalbard: implications for magmatism and rifting events around the onset of the North Atlantic Igneous Province

    NASA Astrophysics Data System (ADS)

    Jones, Morgan T.; Eliassen, Gauti T.; Shephard, Grace E.; Svensen, Henrik H.; Jochmann, Malte; Friis, Bjarki; Augland, Lars E.; Jerram, Dougal A.; Planke, Sverre

    2016-11-01

    A fold-and-thrust belt developed between Greenland and Svalbard during the Palaeogene, with an associated foreland basin forming in what is now Spitsbergen. This Central Basin is comprised of the Van Mijenfjorden Group, a 2.3 km thick sandstone-shale dominated succession that contains prominent and laterally continuous bentonite layers in the lower formations. These altered tephra layers can be used as stratigraphic markers that connect the basin development with regional explosive volcanism and changes to relative plate motions. We sampled and analysed bentonites from nine borehole cores across the Central Basin. Each layer shows evidence of alteration, with mobile elements such as alkali and alkali earth metals particularly disrupted. However, immobile elements including rare earth elements (REE) and preserved igneous minerals retain a magmatic signature, allowing for comparisons with potential volcanic sources to be made. The majority of bentonites are both evolved and strongly alkaline, with chemical signatures that are much closer to the continental rift events around Ellesmere Island and North Greenland than to the early activity of the North Atlantic Igneous Province (NAIP). There is a clear difference between tephra layers in the mid Palaeocene versus late Palaeocene strata. The early bentonites have a REE signature comparable to the volcanics of the Kap Washington Group exposed in North Greenland. The later bentonites have likely come from volcanic centres in the Nares Strait that are also the source of abundant volcaniclastic sediments in the Judge Daly Promontory, Ellesmere Island. These findings suggest that a mid to late Palaeocene change in locus of volcanic provenance may reflect changes in relative plate motions related to the formation of the West Spitsbergen fold-and-thrust belt and the emplacement of the NAIP. However, the lack of bentonites matching NAIP sources suggests that explosive volcanism was of insufficient magnitude to lead to

  12. New insights into the lowest Xuanwei Formation in eastern Yunnan Province, SW China: Implications for Emeishan large igneous province felsic tuff deposition and the cause of the end-Guadalupian mass extinction

    NASA Astrophysics Data System (ADS)

    Zhao, Lixin; Dai, Shifeng; Graham, Ian T.; Li, Xiao; Zhang, Beibei

    2016-11-01

    A previous study suggested that the lowest Xuanwei Formation is derived from weathered clastic materials of silicic composition from the Emeishan large igneous province (ELIP) based on chemostratigraphic correlations (Al2O3/TiO2 ratios) between the two. In this study, we have adopted the model that the Emeishan mantle plume commenced and terminated within a short duration and have investigated the detailed mineralogy and geochemistry of carefully sampled rocks from the lower sections of the Xuanwei Formation, eastern Yunnan Province, Southwest China. These samples are intensely argillized and characterized by high proportions of clay minerals and quartz. The samples with Al2O3/TiO2 > 7 from the lowest Xuanwei Formation have an anomalous natural gamma response and high concentrations of Nb, Ta, Zr, Hf, Th, U, Ga and REY (rare earth elements and yttrium). Our results suggest that the samples with Al2O3/TiO2 > 7 from the lowest Xuanwei Formation represent felsic volcanic tuff instead of acidic clasts as originally proposed. The lowest Xuanwei Formation and the Wangpo Bed are the felsic tuffaceous layers interbedded with clastic rocks derived from the Emeishan high-Ti basalts. Such volcanic layers most likely represent ELIP felsic tuff originated from the extrusive equivalent of Nb-Zr-enriched alkaline syenitic magmatism at the waning stage of Emeishan mantle plume activity. This study has verified the existence of extensive alkaline felsic volcanism of early Late Permian age. Such alkaline volcanism may have been catastrophic and have contributed to the end-Guadalupian mass extinction.

  13. Petrology and mineralogy of the La Peña igneous complex, Mendoza, Argentina: An alkaline occurrence in the Miocene magmatism of the Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Pagano, Diego Sebastián; Galliski, Miguel Ángel; Márquez-Zavalía, María Florencia; Colombo, Fernando

    2016-04-01

    The La Peña alkaline igneous complex (LPC) is located in the Precordillera (32°41‧34″ S - 68°59‧48″ W) of Mendoza province, Argentina, above the southern boundary of the present-day flat-slab segment. It is a 19 km2 and 5 km diameter subcircular massif emplaced during the Miocene (19 Ma) in the Silurian-Devonian Villavicencio Fm. The LPC is composed of several plutonic and subvolcanic intrusions represented by: a cumulate of clinopyroxenite intruded by mafic dikes and pegmatitic gabbroic dikes, isolated bodies of malignite, a central intrusive syenite that develops a wide magmatic breccia in the contact with clinopyroxenite, syenitic and trachytic porphyries, a system of radial and ring dikes of different compositions (trachyte, syenite, phonolite, alkaline lamprophyre, tephrite), and late mafic breccias. The main minerals that form the LPC, ordered according to their abundance, are: pyroxene (diopside, hedenbergite), calcium amphibole (pargasite, ferro-pargasite, potassic-ferro-pargasite, potassic-hastingsite, magnesio-hastingsite, hastingsite, potassic-ferro-ferri-sadanagaite), trioctahedral micas (annite-phlogopite series), plagioclase (bytownite to oligoclase), K-feldspar (sanidine and orthoclase), nepheline, sodalite, apatite group minerals (fluorapatite, hydroxylapatite), andradite, titanite, magnetite, spinel, ilmenite, and several Cu-Fe sulfides. Late hydrothermal minerals are represented by zeolites (scolecite, thomsonite-Ca), epidote, calcite and chlorite. The trace element patterns, coupled with published data on Sr-Nd-Pb isotopes, suggest that the primary magma of the LPC was generated in an initially depleted but later enriched lithospheric mantle formed mainly by a metasomatized spinel lherzolite, and that this magmatism has a subduction-related signature. The trace elements pattern of these alkaline rocks is similar to other Miocene calc-alkaline occurrences from the magmatic arc of the Southern Central Andes. Mineral and whole

  14. The Mantle Plume Hypothesis Pro and Con: Evidence from Earth's Most Voluminous Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Ingle, S.; Coffin, M. F.

    2004-12-01

    Mantle plumes are upwellings of large volumes of mantle material in focused conduits, the leading ends of which are referred to as plume heads. Large igneous provinces (LIPs) are suspected to form from magmatism resulting from plume head decompression melting, but, evidence for this theory for the origins of LIPs is mixed. We have now reached the point of having either to modify the theory to fit characteristics of individual LIPs or to abandon the theory and search for a more unifying explanation. A case study of the two biggest LIPs on Earth - the Ontong Java Plateau (OJP) in the western equatorial Pacific Ocean, and the Kerguelen Plateau / Broken Ridge (KPBR) in the southern Indian Ocean - allows us to examine key predictions of mantle plume theory, including: (1) subaerial eruption of large portions of oceanic LIPs (2) large extents of partial melting in the plume head, resulting in tholeiitic basalt-type magmas, coupled with (3) rapid formation of the LIP, (4) post-formation subsidence comparable to normal oceanic lithosphere, and (5) the presence of a hotspot track and/or an active hotspot. The KPBR formed largely above sea level over a protracted time period ( ˜120 Ma - present) in the growing Indian Ocean basin. Early Cretaceous melts were derived from a heterogeneous source, complicated by subsequent local assimilation of continental crust. Most lavas recovered from the plateau are tholeiitic, but alkalic and evolved volcanics occur in several, widespread locations. Subsidence of the plateau has followed predictions for normal oceanic lithosphere. A prominent hotspot track, the Ninetyeast Ridge, connects Broken Ridge with Early Cretaceous continental basalts on the eastern margin of India. The Kerguelen hotspot is still active today, creating Heard and MacDonald Islands on the central plateau. The OJP was constructed well below sea level on existing Pacific lithosphere. Nearly the entire volume of magma is believed to have been created instantaneously, at

  15. The Impact on Environment of Large Igneous Provinces is Controlled by the Types of Sediment They Intrude.

    NASA Astrophysics Data System (ADS)

    Ganino, C.; Arndt, N. T.

    2008-12-01

    Some but not all large igneous provinces (LIP) coincide with global warming episodes and major mass extinctions. The Cretaceous-Tertiary mass extinction coincides with flood volcanism in the Deccan province of India; the Permian-Triassic extinction with the emplacement of the Siberian Traps; and the End-Guadalupian mass extinction with the Emeishan LIP. In contrast, the enormous oceanic plateaus and the Karoo flood basalts had lesser effect on the biosphere. It has been suggested that the cooling effect of volcanic ash and sulphate aerosols injected into the stratosphere during Plinian eruptions may be the main cause of mass extinctions but the volume of erupted basalt of each large igneous province does not correlate well with the extent of mass extinction. An alternative explanation is that the global climatic changes associated with large igneous provinces are related to the volatiles released during the low-temperature contact metamorphism of the intruded rocks. Svensen et al. (2004, Nature 429, 542; 2007, EPSL 257, 554) have suggested that low- temperature destabilization of organic matter releases large amounts of CH4 and CO2. Here we propose that high-temperature contact metamorphism of carbonates and evaporites release immense quantities of greenhouse and toxic gases (CO2, SO2). The Panzhihua mafic-ultramafic sill, part of the Emeishan LIP, intruding the dolostones of the Sichuan Basin 261 Ma ago. The formation of periclase during high-temperature contact metamorphism of carbonates released at least ~62500 Gt CO2 and additional CO2 was released by lower temperature reactions such as the formation of calc-silicates or the degradation of organic matter. In contrast, the amount of magmatic CO2 released from the Emeishan lavas and intrusions, estimated using the approach of Self et al. (2006, EPSL 248, 518), was less than a third of sediment-derived CO2. The gases probably vented to the atmosphere on a short timescale, utilizing the permeability structure

  16. Syn- and post-orogenic alkaline magmatism in a continental arc: Along-strike variations in the composition, source, and timing of igneous activity in the Ross Orogen, Antarctica

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, G.; Cottle, J. M.

    2013-12-01

    Neoproterozoic-Paleozoic convergence and subduction along the margin of East Gondwana (Australia, New Zealand, Antarctica) resulted in a belt of deformed and metamorphosed sedimentary rocks and batholith-scale igneous intrusions comparable in size to the present day Andes. Mid-crustal levels of this belt, known as the Ross Orogen in Antarctica, are exposed in the basement of the Cenozoic Transantarctic Mountains, providing snapshots of the intrusive magma system of a major continental arc. Whole rock major- and trace-element geochemistry, Hf isotopes in zircon, and U-Pb geochronology have identified along-strike variations in the composition, source, and timing of magmatism along ~200 km of the southern Victoria Land segment of the orogen. There is an apparent younging of the igneous activity from south to north. New U-Pb ages for intrusive rocks from the Koettlitz Glacier Alkaline Province (KGAP) reveal that igneous activity spanned ca. 565-500 Ma (~30 m.y. longer than previously recognized), while immediately to the north in the Dry Valleys area most igneous activity was confined to a relatively short period (ca. 515-495 Ma). Alkaline and subalkaline igneous rocks occur in both the Dry Valleys area and the KGAP, but alkaline rocks in the Dry Valleys are restricted to the latest phase of magmatism. Na-alkaline rocks in the KGAP, including nepheline syenites, carbonatites, and A-type granites, range in age from ca. 545-500 Ma and overlap in age with more typical subduction/collision-related I- and S-type granites elsewhere in southern Victoria Land. Strong enrichments in the LILE and LREE and high LILE/HFSE and LREE/HREE of samples from the KGAP reveal a source enriched in aqueous-mobile elements, potentially a strongly metasomatized mantle wedge beneath the arc. In the Dry Valleys area, rocks with alkali-calcic composition constitute only the youngest intrusions (505-495 Ma), apparently reflecting a shift to post-orogenic magmatism. Zircons from Dry Valleys

  17. Modulation of Cenozoic climate by weathering of large igneous provinces on continents drifting through equatorial humid belt

    NASA Astrophysics Data System (ADS)

    Muttoni, G.; Kent, D. V.

    2011-12-01

    total emission of CO2 from modern volcanoes (Gerlach, 2011 Eos). In contrast, large igneous provinces like that 250 Ma Siberian Traps that remained in higher (cooler) latitudes or the 130 Ma Parana located in the tropical arid belt are not major sponges of CO2. And on the supply side, there is presently little subduction of equatorial bulge sediments save for Central America. We conclude that consumption of CO2 by igneous provinces with highly weatherable mafic rocks that drift into the equatorial humid belt is an important and quite possibly the determinant process for modulating levels of pCO2.

  18. Geological evolution of the Coombs Allan Hills area, Ferrar large igneous province, Antarctica: Debris avalanches, mafic pyroclastic density currents, phreatocauldrons

    NASA Astrophysics Data System (ADS)

    Ross, Pierre-Simon; White, James D. L.; McClintock, Murray

    2008-05-01

    The Jurassic Ferrar large igneous province of Antarctica comprises igneous intrusions, flood lavas, and mafic volcaniclastic deposits (now lithified). The latter rocks are particularly diverse and well-exposed in the Coombs-Allan Hills area of South Victoria Land, where they are assigned to the Mawson Formation. In this paper we use these rocks in conjunction with the pre-Ferrar sedimentary rocks (Beacon Supergroup) and the lavas themselves (Kirkpatrick Basalt) to reconstruct the geomorphological and geological evolution of the landscape. In the Early Jurassic, the surface of the region was an alluvial plain, with perhaps 1 km of mostly continental siliciclastic sediments underlying it. After the fall of silicic ash from an unknown but probably distal source, mafic magmatism of the Ferrar province began. The oldest record of this event at Allan Hills is a ≤ 180 m-thick debris-avalanche deposit (member m1 of the Mawson Formation) which contains globular domains of mafic igneous rock. These domains are inferred to represent dismembered Ferrar intrusions emplaced in the source area of the debris avalanche; shallow emplacement of Ferrar magmas caused a slope failure that mobilized the uppermost Beacon Supergroup, and the silicic ash deposits, into a pre-existing valley or basin. The period which followed ('Mawson time') was the main stage for explosive eruptions in the Ferrar province, and several cubic kilometres of both new magma and sedimentary rock were fragmented over many years. Phreatomagmatic explosions were the dominant fragmentation mechanism, with magma-water interaction taking place in both sedimentary aquifers and existing vents filled by volcaniclastic debris. At Coombs Hills, a vent complex or 'phreatocauldron' was formed by coalescence of diatreme-like structures; at Allan Hills, member m2 of the Mawson Formation consists mostly of thick, coarse-grained, poorly sorted layers inferred to represent the lithified deposits of pyroclastic density currents

  19. Early-Middle Paleozoic subduction-collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China

    NASA Astrophysics Data System (ADS)

    Pei, Fu-Ping; Zhang, Ying; Wang, Zhi-Wei; Cao, Hua-Hua; Xu, Wen-Liang; Wang, Zi-Jin; Wang, Feng; Yang, Chuan

    2016-09-01

    To constrain the Early-Middle Paleozoic tectonic evolution of the south-eastern segment of the Central Asian Orogenic Belt (CAOB), we undertook zircon U-Pb dating and analyzed major and trace elements and zircon Hf isotope compositions of Late Cambrian to Middle Devonian igneous and metasedimentary rocks in central Jilin Province, NE China. LA-ICP-MS zircon U-Pb dating indicates that the Early-Middle Paleozoic magmatism in central Jilin Province can be divided into four episodes: Late Cambrian (ca. 493 Ma), Middle Ordovician (ca. 467 Ma), Late Ordovician-Early Silurian (ca. 443 Ma), and Late Silurian-Middle Devonian (425-396 Ma). The progression from subduction initiation to maturity is recorded by Late Cambrian low-K tholeiitic meta-diabase, Middle Ordovician medium-K calc-alkaline pyroxene andesite, and Late Ordovician to Early Silurian low-K tonalite, which all have subduction-related characteristics and formed in an evolving supra-subduction zone setting. Late Silurian to Middle Devonian calc-alkaline igneous rocks, with the lithological association of granodiorite, monzogranite, rhyolite, dacite, and trachydacite, show progressively increasing K2O contents from medium K to shoshonite series. Furthermore, the Early-Middle Devonian monzogranites are characterized by high K2O, Sr/Y, and [La/Yb]N values, indicating they were generated by the melting of thickened lower crust. These results suggest a transition from subduction to post-orogenic setting during the Late Silurian-Middle Devonian. Our interpretation is supported by the maximum age of molasse deposition in the Zhangjiatun member of the Xibiehe Formation. Overall, we suggest that Late Cambrian tholeiitic meta-diabase, Middle Ordovician pyroxene andesite, and Late Ordovician-Early Silurian tonalite formed above the northward-subducting and simultaneously seaward-retreating of Paleo-Asian Ocean plate. Subsequently, the northern arc collided with the North China Craton and post-orogenic extension occurred

  20. A record of igneous evolution in Elysium, a major martian volcanic province

    NASA Astrophysics Data System (ADS)

    Susko, David; Karunatillake, Suniti; Kodikara, Gayantha; Skok, J. R.; Wray, James; Heldmann, Jennifer; Cousin, Agnes; Judice, Taylor

    2017-02-01

    A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading.

  1. A record of igneous evolution in Elysium, a major martian volcanic province

    PubMed Central

    Susko, David; Karunatillake, Suniti; Kodikara, Gayantha; Skok, J. R.; Wray, James; Heldmann, Jennifer; Cousin, Agnes; Judice, Taylor

    2017-01-01

    A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading. PMID:28233797

  2. A record of igneous evolution in Elysium, a major martian volcanic province.

    PubMed

    Susko, David; Karunatillake, Suniti; Kodikara, Gayantha; Skok, J R; Wray, James; Heldmann, Jennifer; Cousin, Agnes; Judice, Taylor

    2017-02-24

    A major knowledge gap exists on how eruptive compositions of a single martian volcanic province change over time. Here we seek to fill that gap by assessing the compositional evolution of Elysium, a major martian volcanic province. A unique geochemical signature overlaps with the southeastern flows of this volcano, which provides the context for this study of variability of martian magmatism. The southeastern lava fields of Elysium Planitia show distinct chemistry in the shallow subsurface (down to several decimeters) relative to the rest of the martian mid-to-low latitudes (average crust) and flows in northwest Elysium. By impact crater counting chronology we estimated the age of the southeastern province to be 0.85 ± 0.08 Ga younger than the northwestern fields. This study of the geochemical and temporal differences between the NW and SE Elysium lava fields is the first to demonstrate compositional variation within a single volcanic province on Mars. We interpret the geochemical and temporal differences between the SE and NW lava fields to be consistent with primary magmatic processes, such as mantle heterogeneity or change in depth of melt formation within the martian mantle due to crustal loading.

  3. The North Atlantic Igneous Province reconstructed and its relation to the Plume Generation Zone: the Antrim Lava Group revisited

    NASA Astrophysics Data System (ADS)

    Ganerød, M.; Smethurst, M. A.; Torsvik, T. H.; Prestvik, T.; Rousse, S.; McKenna, C.; van Hinsbergen, D. J. J.; Hendriks, B. W. H.

    2010-07-01

    Large igneous provinces (LIPs) have recently been suggested to originate at the edges of low-velocity zones on the core mantle boundary (Plume Generation Zones). If true, LIPs can potentially be used to constrain paleolongitude in plate tectonic reconstructions. To validate the hypothesis, it is essential to study LIPs of which the paleolongitude can be constrained by other methods, such as hotspot reference frames. An ideal candidate to this end is the early Cenozoic North Atlantic Igneous Province (NAIP). Despite being the largest volcanic unit of the British Tertiary Igneous Province (BTIP, part of the NAIP), the age and paleoposition of the Antrim Lava Group (ALG) in Northern Ireland, which is key to the NAIP as a whole, was hitherto poorly constrained. In this paper, we therefore present an integrated high-resolution paleomagnetic and geochronological study. The ALG is divided into three formations: the Lower Basalt Formation (LBF), Interbasaltic Formation (IBF) and the Upper Basalt Formation (UBF). The IBF is mostly lateritic and encloses the Tardree rhyolite. We offer new age constraints from all three formations using the 40Ar/39Ar method and propose that 62.6 +/- 0.3, 61.3 +/- 0.3 and 59.6 +/- 0.3 Ma (1σ, internal uncertainties) are sound estimates of the age of emplacement of the LBF, Tardree rhyolite (IBF) and UBF, respectively. This constrains the nominal duration of emplacement of the ALG to 3 +/- 0.6 Ma (1σ). This reevaluation of the magnetic signature in the ALG revealed reverse polarity remanence in all three formations and an overall paleomagnetic north pole at latitude 78.9°N, longitude 167°E (A95 = 6.3; age ~61 Ma) in the European reference system. This appears consistent with paleomagnetic poles from the rest of the NAIP; both in Europe and Greenland, as well as predictions from modern apparent polar wander paths. The new radiometric ages span magnetochron C26r, C27n and C27r. The normal polarity chron C27n most probably occurred during the

  4. Assessing the volcanic styles of the North Atlantic Igneous Province and their potential implications for the PETM

    NASA Astrophysics Data System (ADS)

    Jerram, Dougal; Reynolds, Peter; Jones, Morgan; Svensen, Henrik; Planke, Sverre; Millett, John; Galland, Olivier; Angkasa, Syahreza; Schofield, Nick; Howell, John

    2016-04-01

    In order to understand the role that large igneous provinces play in changing climatic conditions, it is important to constrain the different styles of volcanism and their volumes, both temporally and spatially. Regional variations in palaeo-environment as well as different volcanic materials (basic-acidic) can all have effects on the eruption styles, and determine whether eruptions effectively release gases into the atmosphere and hydrosphere. The North Atlantic Igneous Province (NAIP) covers a vast area as well as a significant time span, having formed at 60-55 Ma. Importantly, its' formation is implicated in the climatic perturbations at the Palaeocene-Eocene Thermal Maximum (PETM). The products of volcanism in the NAIP range from lava flows and hyaloclastites to more explosive tephra forming eruptions from both basaltic and more evolved eruptions. The explosive end member styles of both mafic and felsic volcanism also produce ash beds in the rock record at key times. Hydrothermal vent structures which are predominantly related with the emplacement of large (>1000 km3) intrusions into the subvolcanic basins in the NAIP are another style of eruption, where climate-forcing gases can be transferred into the atmosphere and hydrosphere. In this case, the types and volumes of gas produced by intrusions is heavily dependent on the host-rock sediment properties that they intrude through. The distribution of vent structures can be shown to be widespread on both the Norwegian and the Greenland margins of the NAIP. In this overview we assess the main eruption styles, deposits and their distribution within the NAIP using mapped examples from offshore seismic data as well as outcrop analogues, highlighting the variability of these structures and their deposits. As the availability of 3D data from offshore and onshore increases, the full nature of the volcanic stratigraphy from the subvolcanic intrusive complexes, through the main eruption cycles into the piercing vent

  5. Environmental implication of subaqueous lava flows from a continental Large Igneous Province: Examples from the Moroccan Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    El Ghilani, S.; Youbi, N.; Madeira, J.; Chellai, E. H.; López-Galindo, A.; Martins, L.; Mata, J.

    2017-03-01

    The Late Triassic-Early Jurassic volcanic sequence of the Central Atlantic Magmatic Province (CAMP) of Morocco is classically subdivided into four stratigraphic units: the Lower, Middle, Upper and Recurrent Formations separated by intercalated sediments deposited during short hiatuses in volcanic activity. Although corresponding to a Large Igneous Province formed in continental environment, it contains subaqueous lava flows, including dominant pillowed flows but also occasional sheet flows. We present a study of the morphology, structure and morphometry of subaqueous lava flows from three sections located at the Marrakech High-Atlas (regions of Aït-Ourir, Jbel Imzar and Oued Lhar-Herissane), as well as an analysis of the sediments, in order to characterize them and to understand their environmental meaning. The analysis of clays by the diffraction method X-ray revealed the presence of illite, mica, phengite, céladonite, talc and small amounts of quartz, hematite, calcite and feldspar, as well as two pairs of interbedded irregular (chlorite Smectite/chlorite-Mica). Fibrous minerals such as sepiolite and palygorskite were not detected. The peperite of Herissane region (Central High Atlas) provided an excellent overview on the factors favoring the magma-sediment interaction. These are the products of a mixture of unconsolidated or poorly consolidated sediments, low permeability with a low viscosity magma. The attempt of dating palynology proved unfortunately without results.

  6. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, SW China

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Wang, Xinsong; Xu, Yue

    2015-04-01

    The Jinshajiang-Red River alkaline igneous belt in the eastern Indian-Asian collision zone, of southwestern China, hosts abundant, economically important Cu-Mo-Au mineralization of Cenozoic age. Major- and trace-element compositions of titanites from representative Cu-mineralized intrusions determined by LA-ICP-MS show higher values for Fe2O3/Al2O3, ΣREE + Y, LREE/HREE, Ce/Ce*, (Ce/Ce*)/(Eu/Eu*), U, Th, Ta, Nb and Ga, and lower values for Al2O3, CaO, Eu/Eu*, Zr/Hf, Nb/Ta and Sr than those for titanites from barren intrusions. Different ΣREE + Y, LREE/HREE, U, Th, Ta and Nb values of titanites between Cu-mineralized and barren intrusions were controlled mainly by the coexisting melt compositions. However, different Sr concentrations and negative Eu anomalies of titanites between Cu-mineralized and barren intrusions were most probably caused by different degrees of crystallization of feldspar from melts. In addition, different Ga concentrations and positive Ce anomalies of titanites between Cu-mineralized and barren intrusions were most likely caused by different magmatic fO2 conditions. Pronounced compositional differences of titanites between Cu-mineralized and barren intrusions can provide a useful tool to help discriminate between ore-bearing and barren intrusions at an early stage of exploration, and, thus, have a potential application in exploration for porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, and to other areas.

  7. Large igneous provinces and organic carbon burial: Controls on global temperature and continental weathering during the Early Cretaceous

    NASA Astrophysics Data System (ADS)

    Bodin, Stéphane; Meissner, Philipp; Janssen, Nico M. M.; Steuber, Thomas; Mutterlose, Jörg

    2015-10-01

    There is an abundance of evidence for short intervals of cold climatic conditions during the Early Cretaceous. However, the lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale synthesis of these putative "cold snap" episodes, as well as a more holistic approach to Early Cretaceous climate changes. We present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the Berriasian-middle Albian from the Vocontian Basin (SE France). This dataset clearly demonstrates three intervals of cold climatic conditions during the Early Cretaceous (late Valanginian-earliest Hauterivian, late early Aptian, latest Aptian-earliest Albian). Each of these intervals is associated with rapid and high amplitude sea-level fluctuations, supporting the hypothesis of transient growth of polar ice caps during the Early Cretaceous. As evidenced by positive carbon isotope excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a relatively good match between the timing and size of large igneous province eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in driving Early Cretaceous climate change. From a long-term perspective, the coupling of global paleotemperature and seawater strontium isotopic ratio during the Early Cretaceous is best explained by temperature-controlled changes of continental crust weathering rates.

  8. Evolution of Early Cretaceous Paleotemperatures: A Balance Between Global Carbon Burial Rates and Large Igneous Provinces Activity

    NASA Astrophysics Data System (ADS)

    Bodin, S.; Meissner, P.; Janssen, N. M. M.; Steuber, T.; Mutterlose, J.

    2014-12-01

    The lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale comprehension, as well as a more holistic approach, to Early Cretaceous climate changes. We present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the Berriasian to middle Albian from the Vocontian Basin (SE France). Integrated with paleontological and sedimentological evidences, this dataset clearly demonstrates that three intervals of cold climatic conditions have taken place during the Early Cretaceous greenhouse world. More specifically, these are taken place during (1) the late Valanginian-earliest Hauterivian, (2) the late early Aptian and (3) the latest Aptian - earliest Albian. Each of these intervals is associated with high amplitude sea-level fluctuations, pointing at transient installations of polar ice caps. As evidenced by carbon isotope positive excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a very good match between the timing and size of large igneous provinces eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in the making of Mesozoic climate change. On a long-term perspective, during the Early Cretaceous, the coupling of global paleotemperature and seawater strontium isotopic ratio is best explained by temperature-controlled changes of continental crust weathering rates.

  9. Evolution of Early Cretaceous paleotemperatures: A balance between global carbon burial rates and large igneous provinces activity

    NASA Astrophysics Data System (ADS)

    Bodin, Stephane; Meissner, Philipp; Janssen, Nico; Steuber, Thomas; Mutterlose, Jörg

    2015-04-01

    The lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale comprehension, as well as a more holistic approach, to Early Cretaceous climate changes. Here we present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the late Berriasian - middle Albian from the Vocontian Basin (SE France). Integrated with paleontological and sedimentological evidences, this dataset clearly demonstrates that three intervals of cold climatic conditions have taken place during the Early Cretaceous greenhouse world. More specifically, these have taken place during (1) the late Valanginian-earliest Hauterivian, (2) the late early Aptian and (3) the latest Aptian - earliest Albian. Each of these intervals is associated with high amplitude sea-level fluctuations, pointing at transient installations of polar ice caps. As evidenced by carbon isotope positive excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a very good match between the timing and size of large igneous provinces eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in the making of Mesozoic climate change. On a long-term perspective, during the Early Cretaceous, the coupling of global paleotemperature and seawater strontium isotopic ratio is best explained by temperature-controlled changes of continental crust weathering rates.

  10. Anatomy of a deep crustal volcanic conduit system; The Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    NASA Astrophysics Data System (ADS)

    Grant, Thomas B.; Larsen, Rune B.; Anker-Rasch, Lars; Grannes, Kim Rune; Iljina, Markku; McEnroe, Suzanne; Nikolaisen, Even; Schanche, Mona; Øen, Endre

    2016-05-01

    The Reinfjord Ultramafic Complex, Seiland Igneous Province represents a lower crustal magma chamber (25-30 km depth) that likely records a deep conduit system for mantle derived melts ascending through the continental crust. It consists of cumulates of dunite, wehrlite, olivine clinopyroxene as well as subordinate lherzolite and websterites, intruded into gabbro-norite and metasediment gneisses. Field, petrographic and geochemical data show that the intrusion developed through fractional crystallization and interactions between new batches of magma and partially solidified cumulates. This resulted in a 'reverse fractionation sequence' whereby cumulates became progressively more MgO and olivine rich with time. Contamination by partial melting of the gabbro-norite is evident in the marginal zones, but is limited in the central parts of the intrusion. Interrupted crystallization sequences of olivine → olivine + clinopyroxene and the absence of significant amounts of more evolved melts, suggests that large volumes of melt passed through the system to shallower levels in the crust leaving behind the cumulate sequences observed at Reinfjord. Therefore, the Reinfjord Ultramafic Complex represents a deep crustal conduit system, through which mantle derived melts passed. The parent melts are likely to have formed from partial melting of mantle with residual garnet and clinopyroxene.

  11. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas

    USGS Publications Warehouse

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.

    2009-01-01

    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that

  12. Phlogopite- and clinopyroxene-dominated fractional crystallization of an alkaline primitive melt: petrology and mineral chemistry of the Dariv Igneous Complex, Western Mongolia

    NASA Astrophysics Data System (ADS)

    Bucholz, Claire E.; Jagoutz, Oliver; Schmidt, Max W.; Sambuu, Oyungerel

    2014-04-01

    We present field relationships, petrography, and mineral major and trace element data for the Neoproterozoic Dariv Igneous Complex of the Altaids of Western Mongolia. This unique complex of high-K plutonic rocks is composed of well-exposed, km-scale igneous intrusions of wehrlites, phlogopite wehrlites, apatite-bearing phlogopite clinopyroxenites, monzogabbros, monzodiorites, and clinopyroxene-bearing monzonites, all of which are intruded by late stage lamprophyric and aplitic dikes. The biotite-dominated igneous complex intrudes depleted harzburgitic serpentinite. The observed lithological variability and petrographic observations suggest that the plutonic rocks can be ascribed to a fractionation sequence defined by olivine + clinopyroxene ± Fe-Ti oxides → phlogopite + apatite → K-feldspar + plagioclase → amphibole + quartz. Notably, phlogopite is the dominant hydrous mafic mineral. Petrogenesis of the observed lithologies through a common fractionation sequence is supported by a gradual decrease in the Mg# [molar Mg/(Fetotal + Mg) × 100] of mafic minerals. Crystallization conditions are derived from experimental phase petrology and mineral chemistry. The most primitive ultramafic cumulates crystallized at ≤0.5 GPa and 1,210-1,100 °C and oxygen fugacity ( fO2) of +2-3 ∆FMQ (log units above the fayalite-quartz-magnetite buffer). Trace element modeling using clinopyroxene and apatite rare earth element compositions indicates that the dominant mechanism of differentiation was fractional crystallization. The trace element composition of a parental melt was calculated from primitive clinopyroxene compositions and compares favorably with the compositions of syn-magmatic lamprophyres that crosscut the fractionation sequence. The parental melt composition is highly enriched in Th, U, large ion lithophile elements, and light rare earth elements and has a pronounced negative Nb-Ta depletion, suggestive of an alkaline primitive melt originating from a subduction

  13. Crustally derived granites in Dali, SW China: new constraints on silicic magmatism of the Central Emeishan Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Peate, David W.; Guo, Zhaojie; Liu, Runchao; Du, Wei

    2017-03-01

    We have identified a new crustally derived granite pluton that is related to the Emeishan Large Igneous Province (ELIP). This pluton (the Wase pluton, near Dali) shows two distinct SHRIMP zircon U-Pb age groups ( 768 and 253 Ma). As it has an intrusive relationship with Devonian limestone, the younger age is interpreted as its formation, which is related to the ELIP event, whereas the 768 Ma Neoproterozoic-aged zircons were inherited from Precambrian crustal component of the Yangtze Block, implying the pluton has a crustally derived origin. This is consistent with its peraluminous nature, negative Nb-Ta anomaly, enrichment in light rare earth elements, high 87Sr/86Sr(i) ratio (0.7159-0.7183) and extremely negative ɛ(Nd)(i) values (-12.15 to -13.70), indicative of melts derived from upper crust materials. The Wase pluton-intruded Devonian strata lie stratigraphically below the Shangcang ELIP sequence, which is the thickest volcanic sequence ( 5400 m) in the whole ELIP. The uppermost level of the Shangcang sequence contains laterally restricted rhyolite. Although the rhyolite has the same age as the Wase pluton, its geochemical features demonstrate a different magma origin. The rhyolite displays moderate 87Sr/86Sr(i) (0.7053), slightly negative ɛ(Nd)(i) (-0.18) and depletions in Ba, Cs, Eu and Sr, implying derivation from differentiation of a mantle-derived mafic magma source. The coexistence of crustally and mantle-derived felsic systems, along with the robust development of dike swarms, vent proximal volcanics and thickest flood basalts piles in Dali, shows that the Dali area was probably where the most active Emeishan magmatism had once existed.

  14. Garnet granulite xenoliths from the Northern Baltic shield- The underplated lower crust of a palaeoproterozoic large igneous province

    USGS Publications Warehouse

    Kempton, P.D.; Downes, H.; Neymark, L.A.; Wartho, J.A.; Zartman, R.E.; Sharkov, E.V.

    2001-01-01

    Garnet granulite facies xenoliths hosted in Devonian lamprophyres from the Kola Peninsula are interpreted to represent the high-grade metamorphic equivalents of continental flood tholeiites, emplaced into the Baltic Shield Archaean lower crust in early Proterozoic time. Geochronological data and similarities in major and trace element geochemistry suggest that the xenoliths formed during the same plume-related magmatic event that created a widespread Palaeoproterozoic large igneous province (LIP) at 2.4-2.5 Ga. They are, thus, the first samples of the lower crust of a Palaeo-proterozoic LIP to be studied in petrological detail. The suite includes mafic granulites (gar + cpx + rutile ?? plag ?? opx ?? phlog ?? amph), felsic granulites (plag + gar + cpx + rutile ?? qtz ?? Kspar ?? phlog ?? amph) and pyroxenites (?? phlog ?? amph), but mafic garnet granulites predominate. Although some samples are restites, there is no evidence for a predominance of magmatic cumulates, as is common for Phanerozoic lower-crustal xenolith suites. Metasediments are also absent. Phlogopite and/or amphibole occur in xenoliths of all types and are interpreted to be metasomatic in origin. The K-rich metasomatic event occurred at ?????0 Ga, and led to substantial enrichment in Rb, K, LREE/HREE, Th/U, Th/Pb and, to a lesser extent, Nb and Ti. The fluids responsible for this metasomatism were probably derived from a second plume that arrived beneath the region at this time. Evidence for partial melting of mafic crust exists in the presence of migmatitic granulites. The timing of migmatization overlaps that of metasomatism, and it is suggested that migmatization was facilitated by the metasomatism. The metamorphism, metasomatism and migmatization recorded in the Kola granulite xenoliths may be representative of the processes responsible for converting Archaean LIP-generated proto-continents into continental crust.

  15. Advancing Late Mesoproterozoic Paleogeography With New Constraints From The Keweenawan Rift And The Umkondo Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Swanson-Hysell, N.; Kilian, T. M.; Bowring, S. A.; Hanson, R. E.; Burgess, S. D.; Ramezani, J.

    2014-12-01

    Laurentia and Kalahari are currently interpreted as independently moving continents ca. 1110 million years ago that subsequently became conjoined in the supercontinent Rodinia. Their relative positions and orientations are dependent both on the directional comparison of paleomagnetic poles and geomagnetic polarity choices for those poles. In this contribution, we use newly developed and existing paleomagnetic and geochronological data from both the ca. 1110-1085 Ma Midcontinent Rift of Laurentia and the ca. 1109 Ma Umkondo Large Igneous Province (LIP) of Kalahari to present improved constraints on relations between the two continents. Previous mean poles for the Umkondo LIP have been either calculated by taking the mean of regional submeans or at the site level which is problematic given the preponderance of multiple sites from single individual cooling units. We report a new Umkondo grand mean pole that is the mean of the virtual geomagnetic poles (VGPs) of individual cooling units and is reinforced with new data from ~20 previously unstudied Umkondo sills from Botswana. This approach yields a pole whose position and uncertainty are the most robust calculated to date. The portion of Laurentia's Mesoproterozoic apparent polar wander path (APWP) known as the Logan Loop and Keweenawan Track partially overlaps in age with the Umkondo pole and is of central importance in efforts to reconstruct late Mesoproterozoic paleogeography. Ongoing debates as to the geometry and timing of Rodinia assembly critically hinge on the comparison of paleomagnetic poles from other continents to the Keweenawan record. We present an updated compilation for the Keweenawan Track APWP using an improved chronostratigraphic context enabled by new geochronological and paleomagnetic data. Ongoing improvements and time-calibration of this record further constrains the rate of Laurentia's motion and provides opportunities for increased rigor in the determination of relative paleogeographic

  16. Mantle-derived sources of syenites from the A-type igneous suites - New approach to the provenance of alkaline silicic magmas

    NASA Astrophysics Data System (ADS)

    Litvinovsky, B. A.; Jahn, B. M.; Eyal, M.

    2015-09-01

    Granite is generally dominant in A-type igneous suites but these frequently include also alkali feldspar- and peralkaline- syenite and quartz syenite. Such syenites can provide essential information about magma sources and mode of generation of A-type silicic magma. This paper addresses the petrogenesis of syenites based on comparisons between the Mongolian-Transbaikalian Belt, Russia (MTB), and the northern Arabian-Nubian Shield (ANS) as exposed in the Sinai Peninsula, Egypt and adjacent areas of southern Israel. The syenitic rocks from MTB and ANS are characterized by high alkali content (Na2O + K2O = 10.5 to 12.5 wt.%) and are assigned to alkaline metaluminous and peralkaline granitoids. Peralkaline syenites are generally richer in Na and contain slightly less K and Ba than are metaluminous granitoids. REE abundances are similar in all types of syenites. The Eu/Eu* ratios range commonly from 0.35 to 0.65, although higher values, up to 1.15, attributed to presence of accumulated Afs and minor Pl, also occur in some plutons. The geochemical and Sr-Nd isotope characteristics of associated syenite, granite and monzogabbro from five igneous suites ( 80 samples) suggest that the main rock types, silicic and mafic, are cogenetic in each suite. Syenite magmas were produced from mantle-derived source with little, if any silicic crustal component. The generation of abundant A-type granite and syenite magmas in the young juvenile crust (ANS) argues that old continental crust is not required for generation of highly alkaline silicic magmas, as commonly advocated. The most probable source of both syenite and granite was mantle-derived K-rich shoshonitic monzogabbro. The bimodal character of the A-type suites suggests that partial melting of monzogabbro, rather than fractional crystallization of basic magma, accompanied with enrichment of a cumulate phase in the mafic units, was the dominant mode of granitoid magma formation. Granite magmas were produced in the lower crust at

  17. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    NASA Astrophysics Data System (ADS)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  18. The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Gumsley, A. P.; de Kock, M. O.; Rajesh, H. M.; Knoper, M. W.; Söderlund, U.; Ernst, R. E.

    2013-08-01

    In this paper, we present geochronological, geochemical and palaeomagnetic results from the Hlagothi Complex and a NW-trending dolerite dyke swarm on the southeastern region of the Kaapvaal Craton in northern KwaZulu-Natal, South Africa. The Hlagothi Complex consists of layered sills of meta-peridotite, pyroxenite and gabbro intruding into the Pongola Supergroup. U-Pb baddeleyite ages on the Hlagothi Complex and a NW-trending dyke of 2866 ± 2 Ma and 2874 ± 2 Ma, respectively, reveal a ca. 2.87 Ga magmatic event on the southeastern Kaapvaal Craton. The geochemical signature of the Hlagothi Complex recognises two discrete groupings, with a magmatic source that is chemically distinct from those of the older rift-related Nsuze and Dominion groups. Additional units on the Kaapvaal Craton can be linked with this new ‘Hlagothi' event based on spatial and temporal association, and geochemistry: 1) the Thole Complex, 2) parts of the Usushwana Complex, and 3) flood basalts within the Mozaan Group and Central Rand Group. The association between all these units suggests a previously unrecognised large igneous province in the southeastern Kaapvaal Craton. Our palaeomagnetic data identifies a possible primary magnetisation within the least-altered lithologies of the Hlagothi Complex (with a virtual geographic pole at 23.4°N, 53.4°E, dp = 8.2° and dm = 11.8°). The bulk of samples however, displayed two episodes of remagnetisation. These are likely to be associated with 2.85 to 2.75 Ga aged granitoids across the southeastern Kaapvaal Craton, and tectonic activity in the nearby Meso- to Neoproterozoic Namaqua-Natal mobile belt. A short-lived (≤ 8 Ma) mantle plume is proposed to have caused the ca. 2.87 Ga magmatism, and also may well have controlled sedimentation within the Pongola-Witwatersrand basin. Volcanism during uplift would have been fed through a series of feeder dykes and sills, of which the Hlagothi Complex and NW-trending dykes are part of.

  19. Geophysical analysis of the Alpha-Mendeleev ridge complex: Characterization of the High Arctic Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Oakey, G. N.; Saltus, R. W.

    2016-11-01

    The Alpha-Mendeleev ridge complex is a first-order physiographic and geological feature of the Arctic Amerasia Basin. High amplitude "chaotic" magnetic anomalies (the High Arctic Magnetic High Domain or HAMH) are associated with the complex and extend beyond the bathymetric high beneath the sediment cover of the adjacent Canada and Makarov-Podvodnikov basins. Residual marine Bouguer gravity anomalies over the ridge complex have low amplitudes implying that the structure has minimal lateral density variability. A closed pseudogravity (magnetic potential) contour around the ridge complex quantifies the aerial extent of the HAMH at 1.3 × 106 km2. We present 2D gravity/magnetic models for transects across the Alpha Ridge portion of the complex constrained with recently acquired seismic reflection and refraction data. The crustal structure is modeled with a simple three-layer geometry. Large induced and remanent magnetization components were required to fit the observed magnetic anomalies. Density values for the models were based on available seismic refraction P-wave velocities. The 3000 kg/m3 lower crustal layer is interpreted as a composite of the original crustal protolith and deep (ultramafic) plutonic intrusions related to a plume sourced (High Arctic) LIP. The 2900 kg/m3 mid-crustal and 2600 kg/m3 upper-crustal layers are interpreted as the combined effect of sills, dikes, and flows. Volumetric estimates of the volcanic composition include (at least) 6 × 106 km3 for the mid- and upper-crust and between 13 × 106 and 17 × 106 km3 within the lower crust - for a total of 20 × 106 km3. We compare the magnetic structure, pseudogravity, and volumetric estimates for the HAMH portion of the HALIP with global large igneous province analogs and discuss implications for Arctic tectonics. Our results show that the closest analog to the HAMH/HALIP is the Kerguelen Plateau, which is considered a continental plateau intensively modified by plume-related volcanism.

  20. Geothermobarometry for ultramafic assemblages from the Emeishan Large Igneous Province, Southwest China and the Nikos and Zulu Kimberlites, Nunavut, Canada

    NASA Astrophysics Data System (ADS)

    Zhao, D.

    2009-05-01

    To understand and contrast the origins of ultramafic assemblages from basaltic and kimberlitic rocks and their associated deposits, such as V-Ti magnetite and Ni-Cu-(PGE) sulfide deposits and diamond, applicable thermobarometers were evaluated and applied to the ultramafic assemblages from the Emeishan Large Igneous Province (ELIP), Southwest China and from the Nikos and Zulu Kimberlites of Nunavut, Canada. The ELIP is located in the Yangtze Block, Southwest China and composed of Permian Emeishan Flood basalt (EFB) and associated layered mafic-ultramafic intrusions. Some of these intrusions host V-Ti magnetite deposits; while others contain Ni-Cu-(PGE) sulfide deposits. It is not clear why some intrusions host magnetite deposits and others contain sulfide deposits. The P-T conditions for the ultramafic assemblages from the mafic-ultramafic intrusions in the ELIP were calculated in order to understand the origins and the associated mineral deposits. The ultramafic assemblages are peridotite, olivine pyroxenite, pyroxenite in the layered intrusions and the common minerals include spinel, olivine, clinopyroxene, orthopyroxene, and minor magnetite and ilmenite. Using a two pyroxene thermometer and a Ca-Mg exchange barometer between olivine and clinopyroxene, a spinel-olivine-clinopyroxene-orthopyroxene assemblage from the Xinjie intrusion yields a T-P of 905°C and 17 kbar; and a similar assemblage from the Jinbaoshan intrusion yields a T-P of 1124°C and 31 kbar. The Nikos kimberlite, near Elwin Bay on Somerset Island, is located at the northeast end of the northeast-southwest kimberlite zone; and the Zulu kimberlite is located on the neighboring Brodeur Peninsula of Baffin Island, Nunavut. The ultramafic assemblages from the Canadian Kimberlites include garnet lherzolite, garnet-spinel lherzolite, spinel lherzolite, dunite, garnet websterite, spinel websterite and garnet clinopyroxenite. The calculated P-T conditions are in the range of 760 to 1180°C and 25 to 60

  1. Origin of Siletzia, a Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.

    2015-12-01

    Siletzia is a Paleogene large igneous province (LIP) forming the oceanic basement of coastal OR, WA and S. BC that was accreted to North America (NAM) in the early Eocene. Crustal thickness from seismic refraction ranges from 10 to 32 km, with 16 km of pillow and subaerial basalt exposed on the Olympic Peninsula. At 1.7-2.4 x 106 km3, Siletzia is at least 10 times the volume of the Columbia River flood basalts. U-Pb and 40Ar/39Ar ages, global coccolith (CP) zones, and magnetostratigraphy allow correlation of Siletzia with the 2012 geomagnetic polarity time scale. Siletzia was erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Siletzia's composition, great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms accompanied the voluminous tholeiitic to highly alkalic Tillamook magmatic episode in the forearc (41.6 Ma; CP14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in GPlates. In most reference frames, the YHS is ~ 500km offshore S. OR, near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS could have provided the 56-49 Ma source on the Farallon plate for Siletzia, which in the model accretes to NAM by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, may have formed on the adjacent Kula (or Resurrection) plate and accreted to British Columbia at about the same time. Following accretion, the leading edge of NAM overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous 42-34 Ma Tillamook episode and forearc extension. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the likely hotspot track on NAM.

  2. Origin of Siletzia, an Accreted Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.; Wooden, J.

    2014-12-01

    Siletzia as named by Irving (1979) is a Paleogene large igneous province forming the oceanic basalt basement of coastal OR, WA and S. BC that was accreted to North America in the early Eocene. U-Pb (magmatic, detrital zircon) and 40Ar/39Ar ages constrained by mapping, global coccolith (CP) zones, and magnetic polarities permit correlation of basalts with the geomagnetic polarity time scale of Gradstein et al. (2012). Siletzia was rapidly erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Magmatism continued until ca. 46 Ma with emplacement of a basalt sill complex during or shortly after accretion. Siletzia's great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms mark the Tillamook magmatic episode in the forearc (41.6 Ma; CP zone 14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in an open source plate modeling program. In most reference frames, the YHS is on or near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS thus could have provided a 56-49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time. Following accretion of Siletzia, the leading edge of North America overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous high-Ti tholeiitic to alkalic magmatism of the 42-34 Ma Tillamook episode and extension in the forearc. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the probable hotspot track on North

  3. Re-examining the doming uplift model of Emeishan Large Igneous Province (SW China): evidence from high-resolution conodont biostratigraphy and sedimentology

    NASA Astrophysics Data System (ADS)

    Yadong, S.; Wignall, P. B.; Ali, J. R.; Widdowson, M.; Bond, D. P.; Lai, X.

    2010-12-01

    The Middle Permian Emeishan large igneous province of SW China is regard by many as providing the quintessential example of kilometre-scale pre-eruption domal uplift associated with mantle plume impingement on the base of the lithosphere. The key line of evidence for this has been the purported deep erosion profile of the Maokou Formation platform carbonates that lie directly beneath the central and inner parts of the volcanic pile. We have tested this interpretation by carrying out conodont age dating and facies analysis on the uppermost beds of the Maokou Formation across these central regions, together with the limestones that are intercalated within the basal lava flows. The investigated sections (from Yunnan, Sichuan, Guizhou and Guangxi provinces) span locations from directly below the centre of the igneous province, to several hundred kilometres beyond its margins. The results show that eruptions began in the Jinogondolella altudaensis Zone (~263 Ma) of the Middle Capitanian Stage, and subsequently greatly increased in extent and volume in the J. xuanhanensis Zone (~262 Ma) (Sun et al., 2010). Most importantly, at most locations within the terrain, and many locations beyond its margins, there appears to have been platform subsidence (not uplift) with deep-water facies (radiolarian cherts, submarine fans) developing immediately prior to the initial volcanism (J. altudaensis Zone). Accordingly, pre-eruption uplift must have been muted because over large areas of the terrain the basal flows rest conformably on a variety of Maokou sedimentary facies. By contrast, the clearest evidence for an emergence surface occurs around the flanks of the province in the J. xuanhanensis Zone. This is after the initial onset of eruptions, and coincides with the regional eustatic fall (Sun et al., 2010). Furthermore, pillow lavas, hydromagmatic deposits and interflow limestone/reef packages are commonly seen around the terrain indicating a strong marine influence at the early

  4. A 1.78 Ga large igneous province in the North China craton: The Xiong'er Volcanic Province and the North China dyke swarm

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Zhai, Mingguo; Ernst, Richard E.; Guo, Jinghui; Liu, Fu; Hu, Bo

    2008-03-01

    The 1.78 Ga Xiong'er Volcanic Province (XVP) and coeval North China giant mafic Dyke Swarm (NCDS) are the most important magmatic events occurring after the amalgamation of the North China craton (NCC). The XVP consists of 3-7 km of extrusive volcanics and some feeder dykes/sills located along the southern margin of the NCC and extending over an area > 0.06 M km 2. Compositions vary from basalt to rhyolite, but are predominantly intermediate in terms of silica content. There are also minor sedimentary intercalations and pyroclastic units. The sedimentary interlayers indicate an environment changing from continental-facies to oceanic-facies up-section. The XVP is characterized by fractional crystallization from an EM I type mantle source, and both continental arc (Andean-type) and rift environments have been proposed. The NCDS is widespread in the central NCC with an outcrop area > 0.1 M km 2, and are exposed at variable depths up to 20 km (deepest in the north). Dyke compositions vary from basalt to andesite and dacite, but are dominantly mafic, and comprise two series of magmatism. Previous studies revealed that the NCDS recorded assimilation and fractional crystallization of an EM I type magma source, with a minor DM contribution in the younger magmas. Both syn-collisional and intra-continental anorogenic environments have been proposed. Spatial and petrogenic correlations suggest a cogenetic relationship between the NCDS and XVP, and considered together, they define a Large Igneous Province (LIP) of > 0.1 M km 2 in area and > 0.1 M km 3 in volume, which is also notable for its continuous compositional range from mafic to felsic (with no gap at intermediate compositions). The petrology is explained by a common magma source that undergoes a silica-poor and iron-enriched fractionation trend at depth followed by a silica-rich and iron-poor fractionation trend in shallow-level magma conduits (dykes) and surface lavas. A mantle plume is favored as the cause of this

  5. Dating the onset and nature of the Middle Permian Emeishan large igneous province eruptions in SW China using conodont biostratigraphy and its bearing on mantle plume uplift models

    NASA Astrophysics Data System (ADS)

    Sun, Yadong; Lai, Xulong; Wignall, Paul B.; Widdowson, Mike; Ali, Jason R.; Jiang, Haishui; Wang, Wei; Yan, Chunbo; Bond, David P. G.; Védrine, Stéphanie

    2010-09-01

    The Middle Permian Emeishan large igneous province of SW China has provided the quintessential example of the phenomenon of kilometre-scale pre-eruption domal uplift associated with mantle plume impingement on the base of the lithosphere. One key line of evidence is an interpreted zone of truncation of the platform carbonates belonging to the Maokou Formation that underlies the volcanic pile. Here we test this interpretation by conodont age dating the uppermost beds of the Maokou Formation in sections from Yunnan, Sichuan, Guizhou and Guangxi provinces, which span locations from the inner part of the igneous province to several hundred kilometres beyond its margins. The results show that eruptions began in the Jinogondolella altudaensis Zone (˜ 263 Ma) of the Middle Capitanian Stage and greatly increased in extent and volume in the J. xuanhanensis Zone (˜ 262 Ma). Pre-eruption uplift was muted, and most locations within the terrain and at many locations beyond its margins witnessed platform collapse (not uplift) with deep-water facies (radiolarian cherts and submarine fans) developing in the J. altudaensis Zone. The clearest evidence for an emergence surface occurs around the margins of the province in the J. xuanhanensis Zone. This is after the initial onset of eruptions and marks either a eustatic sequence boundary or a brief pulse of tectonic uplift contemporaneous with volcanism. As with recent studies on the basal volcanic successions of the Emeishan LIP, kilometre-scale plume-related domal uplift prior to Emeishan eruptions is not supported by these data; rather a more complex interaction between plume and lithosphere with minor localized uplift and subsidence is inferred.

  6. Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: Implications for the nature of hotspots and mantle plumes

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey V.; Tarduno, John A.

    2010-09-01

    One of the striking exceptions to the mantle plume head-tail hypothesis that seeks to explain magmatism of large igneous provinces (LIPs) and hotspot tracks is the ~250 million-year-old Siberian Traps. The lack of a clear hotspot track linked to this LIP has been one motivation to explore non-plume alternative mechanisms. Here, we use a paleomagnetic Euler pole analysis to constrain the location of the Siberian Traps at the time of their eruption. The reconstructed position coincides with the mantle region that also saw eruption of the ~ 61-58 million year-old North Atlantic Igneous Province (NAIP). Together with LIP volume estimates, this reconstruction poses a dilemma for some non-plume models: the partial-melts needed to account for the Siberian Traps should have depleted the enriched upper mantle source that is in turn crucial for the later formation of the NAIP. The observations instead suggest the existence of a long-lived (>250 million-year-long) lower mantle chemical and/or thermal anomaly, and significant temporal changes in mantle plume flux.

  7. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt

  8. Platinum-group element signatures in the North Atlantic Igneous Province: Implications for mantle controls on metal budgets during continental breakup

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Kerr, Andrew C.

    2015-09-01

    The North Atlantic Igneous Province (NAIP) is a large igneous province (LIP) that includes a series of lava suites erupted from the earliest manifestations of the (proto)-Icelandic plume, through continental rifting and ultimate ocean opening. The lavas of one of these sub-provinces, the British Palaeogene Igneous Province (BPIP), were some of the first lavas to be erupted in the NAIP and overlie a thick crustal basement and sedimentary succession with abundant S-rich mudrocks. We present the first platinum-group element (PGE) and Au analyses of BPIP flood basalts from the main lava fields of the Isle of Mull and Morvern and the Isle of Skye, in addition to a suite of shallow crustal dolerite volcanic plugs on Mull, and other minor lavas suites. BPIP lavas display both S-saturated and S-undersaturated trends which, coupled with elevated PGE abundances (> MORB), suggest that the BPIP is one of the most prospective areas of the NAIP to host Ni-Cu-PGE-(Au) mineralisation in conduit systems. Platinum-group element, Au and chalcophile element abundances in lavas from West and East Greenland, and Iceland, are directly comparable to BPIP lavas, but the relative abundances of Pt and Pd vary systematically between lavas suites of different ages. The oldest lavas (BPIP and West Greenland) have a broadly chondritic Pt/Pd ratio ( 1.9). Lavas from East Greenland have a lower Pt/Pd ratio ( 0.8) and the youngest lavas from Iceland have the lowest Pt/Pd ratio of the NAIP ( 0.4). Hence, Pt/Pd ratio of otherwise equivalent flood basalt lavas varies temporally across the NAIP and appears to be coincident with the changing geodynamic environment of the (proto)-Icelandic plume through time. We assess the possible causes for such systematic Pt/Pd variation in light of mantle plume and lithospheric controls, and suggest that this reflects a change in the availability of lithospheric mantle Pt-rich sulphides for entrainment in ascending plume magmas. Hence the precious metal systematics

  9. The Etendeka Igneous Province: magma types and their stratigraphic distribution with implications for the evolution of the Paraná-Etendeka flood basalt province

    NASA Astrophysics Data System (ADS)

    Marsh, J. S.; Ewart, A.; Milner, S. C.; Duncan, A. R.; Miller, R. McG.

    2001-02-01

    Detailed geochemical and field data for the volcanic sequence and intrusions of the Etendeka Igneous Province are used to construct a stratigraphic framework for petrogenetic interpretation of the evolution of the Etendeka-Paraná continental flood volcanic event. Geochemical and petrographic characterization of over 1,000 analyzed samples allows 8 mafic and 17 silicic magma types to be recognized. Both silicic and mafic types can be grouped into high-Ti and low-Ti suites on the basis of elevated Ti relative to other elements. The mafic magmas are: Khumib (high-Ti), Tafelberg, Kuidas, Horingbaai, Huab, Tafelkop, Albin, and Esmeralda (all low-Ti). Amongst the silicic types, the Goboboseb, Springbok, Wereldsend, Grootberg, and Beacon low-Ti quartz latites, and the Nil Desperandum high-Ti latite have been described previously. In addition, the Hoas (low-Ti), Nadas, Sechomib, and Hoarusib, (all high-Ti) latites and the Fria (low-Ti), Sarusas, Ventura, Khoraseb, Naudé, and Elliott (all high-Ti) quartz latites are described for the first time here. There is a marked provinciality in the distribution of the high- and low-Ti suites, with the former concentrated in the Northern Etendeka region and the latter dominant in the Southern Etendeka. Stratigraphic distribution of magma types allows two new formations to be defined in the Northern Etendeka - the Khumib Formation of basaltic flows and the Skeleton Coast Formation dominated by silicic sheets. The geochemical provinciality hampers precise correlations between Northern and Southern Etendeka. Available evidence suggests that the lower part of the Awahab Formation in the Southern Etendeka is coeval with the lower part of the Khumib Formation and that the silicic units in the upper part of the Tafelberg Formation probably correlate with the Skeleton Coast Formation. The paucity of Khumib dykes in relation to Tafelberg dykes and their field relationships with regard to the volcanic sequence in the Northern Etendeka

  10. The Southern Urals Large Igneous Province with an age of approximately 1380 Ma: Precision U-Pb ID-TIMS constraints

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Tichomirowa, M.; Maslov, A. V.

    2016-06-01

    The formation of the Large Igneous Province (LIP) approximately 1380 Ma old in the South Urals was related to the Mashak riftogenic event in the Bashkir meganticlinorium, which was synchronous with the emplacement of different magmatic bodies (the Berdyaush pluton of rapakivi granites and associated rocks, the Main dike of the Bakal ore field, and the Medvedev, Guben, and Kusa massifs, among others) localized among sedimentary deposits of the Burzyan and Yurmatin Groups representing Lower and Middle Riphean type units of northern Eurasia. The U-Pb ID-TIMS age of 1379.6 Ma (MSWD = 1.3) obtained with an accuracy of ±2.9 Ma (confidence interval 95%) combined with the available published U-Pb ID-TIMS data constrain the age and duration of the Early-Middle Riphean pulse in the LIP formation in the Southern Urals.

  11. Influence of Large Igneous Provinces on Svalbard tectonics and sedimentation from the Late Mesozoic through Cenozoic: Insight from (U-Th)/He zircon and apatite thermochronology

    NASA Astrophysics Data System (ADS)

    Barnes, Christopher; Schneider, David; Majka, Jaroslaw

    2016-04-01

    Svalbard, the northwestern sub-aerial exposure of the Barents Shelf, offers significant insight into the geodynamics of the High Arctic. The tectonics and sedimentation on Svalbard from the Late Mesozoic through Cenozoic can be attributed to two Large Igneous Provinces: the High Arctic Large Igneous Province (HALIP; 130-90 Ma) and the North Atlantic Large Igneous Province (NAIP; 62-55 Ma). The relationship between the HALIP and the tectonics of the High Arctic remains somewhat unclear, whereas the NAIP is directly linked to opening of the North Atlantic Ocean. This study attempts to establish links between the HALIP and geodynamics of the High Arctic, and reveals the far-field tectonic consequences of the NAIP on Svalbard and the High Arctic. We focus on the Southwestern Caledonian Basement Terrane of Svalbard, characterized by the West Spitsbergen Fold and Thrust Belt, formed during the Eurekan Orogeny (c. 55-33 Ma). Crystalline basement was sampled from four regions (Prins Karls Forland, Oscar II Land, Wedel Jarlsberg Land, and Sørkapp Land) for the purpose of zircon and apatite (U-Th)/He thermochronometry which allows for resolution of thermal events below 200°C. We forward model our datasets using HeFTy software to produce temperature-time histories for each of these regions, and compare these thermal models with Svalbard stratigraphy to resolve the geodynamics of Svalbard from the Late Mesozoic through Cenozoic. The Cretaceous stratigraphy of Svalbard is characterized by a short-lived Mid-Cretaceous sub-aerial unconformity (c. 129 Ma) and a significant Late Cretaceous unconformity (c. 105-65 Ma). Our thermal models reveal a Mid-Cretaceous heating event, suggesting an increasing geothermal gradient coeval with development of the first unconformity. This may indicate that short-lived domal-uplift, related to the arrival of the HALIP plume, was a primary control on Svalbard tectonics and sedimentary deposition throughout the Mid-Cretaceous. Late Cretaceous

  12. Petrology, geochemistry, and mineralogy of pyroxene and pegmatitic carbonatite and the associated fluorspar deposit at Okorusu alkaline igneous carbonatite complex, Namibia

    NASA Astrophysics Data System (ADS)

    Shivdasan, Purnima Ashok

    Field observations, petrography, electron microprobe analysis (EPMA), geothermometry, and geochemical analyses (ICP-MS and XRF) of the fluorspar deposit associated with the Late Cretaceous alkaline igneous-carbonatite complex at Okorusu (Namibia) have identified two previously unrecognized types of carbonatites, namely pyroxene and pegmatitic carbonatites. These carbonatites exhibit interesting textural characteristics, with the pyroxene carbonatite exhibiting occasional bands of diopside alternating with coarse-grained calcite-rich bands, and pegmatitic carbonatite having the same mineralogy but much coarser texture. Both types of carbonatites are closely spatially associated. Ulvospinel ex-solution lamellae were recognized in magnetite crystals within the pyroxene and pegmatitic carbonatite. Stable isotope determinations for calcite crystals separated from pegmatitic carbonatites, pyroxene carbonatites, and marbles indicate that the carbonatites are primary in origin. Cathodoluminescence microscopy (CL) and emission spectrography of the carbonatites indicated that the carbonate mineral is almost entirely calcite rather than dolomite, and there are at least two generations of calcite. CL study of fenites, which are metasomatised Precambrian metasedimentary rocks, intruded by carbonatites reveal that fenitization is mostly incipient, marked by the introduction of Fe3+ activated feldspars. Geothermometric determination from EPMA of apatite and biotite in pyroxene carbonatite provided a range of 537--409°C except in one sample which clearly indicated later hydrothermal alteration. The temperature range is similar to a previous titaniferous magnetite-ilmenite temperature determination and is interpreted to represent magmatic crystallization. Trace element patterns of carbonatites are largely consistent with the results of previous studies, although phosphorus values are anomalously high because of apatite. As one of only two producing carbonatite-related fluorspar

  13. A new grand mean palaeomagnetic pole for the 1.11 Ga Umkondo large igneous province with implications for palaeogeography and the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Swanson-Hysell, N. L.; Kilian, T. M.; Hanson, R. E.

    2015-12-01

    We present a new grand mean palaeomagnetic pole (Plong: 222.1°, Plat: -64.0°, A95: 2.6°, N = 49) for the ca. 1110 Ma Umkondo large igneous province (LIP) of the Kalahari Craton. New palaeomagnetic data from 24 sills in Botswana and compiled reprocessed existing data are used to develop a palaeomagnetic pole as the Fisher mean of cooling unit virtual geomagnetic poles (VGPs). The mean and its associated uncertainty provide the best-constrained pole yet developed for the province. Comparing data from individual cooling units allows for evaluation of palaeosecular variation at this time in the Mesoproterozoic. The elongation of the population of VGPs is consistent with that predicted by the TK03.GAD model lending support to the dipolar nature of the field in the late Mesoproterozoic. In our new compilation, 4 of 59 (˜7 per cent) of the igneous units have northerly declinations while the rest are south-directed indicating that a geomagnetic reversal occurred during magmatic activity. Interpreting which of these polarities corresponds with a normal or reversed geomagnetic field relative to other continents can constrain the relative orientations between cratons with time-equivalent data. This interpretation is particularly important in comparison to Laurentia as it bears on Kalahari's involvement and position in the supercontinent Rodinia. The dominance of south-directed declinations within the Umkondo Province was previously used to suggest that these directions are the same polarity as reversed directions from the early magmatic stage of the Keweenawan Midcontinent Rift of Laurentia. Two Umkondo sills with northerly declinations have U-Pb baddeleyite ages of ca. 1109 Ma that are temporally close to dated Midcontinent Rift units having reversed directions. Based on this comparison, and palaeomagnetic data from younger units in the Kalahari Craton, we favour the option in which the sites with northerly declinations from the Umkondo Province correspond to the

  14. Immiscible Fe- and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): Implications for the origin of bi-modal igneous suites in large igneous provinces

    NASA Astrophysics Data System (ADS)

    Liu, Ping-Ping; Zhou, Mei-Fu; Ren, Zhongyuan; Wang, Christina Yan; Wang, Kun

    2016-09-01

    The Emeishan large igneous province (ELIP) in SW China is characterized by voluminous high-Ti and low-Ti basalts and spatially associated Fe-Ti oxide-bearing mafic-ultramafic and syenitic/granitic intrusions. The Baima layered mafic intrusion in the central part of the ELIP is surrounded by syenitic and granitic rocks and contains a Lower Zone of interlayered Fe-Ti oxide ores, troctolites and clinopyroxenites and an Upper Zone of isotropic olivine gabbros and gabbros (UZa) and apatite gabbros and Fe-Ti-P oxide ores (UZb). Polycrystalline mineral inclusions, for the first time, were observed in primocryst plagioclase from the basal part of the UZa through to the top of the UZb and consist mostly of clinopyroxene, plagioclase, magnetite, ilmenite and apatite with minor orthopyroxene, sulfide and hornblende. These minerals are commonly anhedral and form irregular shapes. Daughter plagioclase usually crystallizes on the walls of host primocryst plagioclase and has An contents typically 3-6 An% lower than the host plagioclase. Daughter clinopyroxene has similar Mg# but lower TiO2 and Al2O3 contents than primocryst clinopyroxene. These polycrystalline mineral inclusions are considered to crystallize from melts contemporaneous with host plagioclase. The compositional differences between daughter and primocryst minerals can be attributed to equilibrium crystallization in a closed system of the trapped melt inclusions in contrast to fractional crystallization and possible magma replenishment in an open system typical for primo-cumulates of large layered intrusions. Heated and homogenized melt inclusions have variable SiO2 (33-52 wt%), CaO (7-20 wt%), TiO2 (0.1-12 wt%), FeOt (5-20 wt%), P2O5 (0.2-10 wt%) and K2O (0-2.2 wt%). The large ranges of melt compositions are interpreted to result from heterogeneous trapping of different proportions of immiscible Si-rich and Fe-Ti-rich silicate liquids, together with entrapment of various microphenocrysts. The separation of micrometer

  15. Flow dynamics in mid-Jurassic dikes and sills of the Ferrar large igneous province and implications for long-distance magma transport

    NASA Astrophysics Data System (ADS)

    Airoldi, Giulia M.; Muirhead, James D.; Long, Sylvan M.; Zanella, Elena; White, James D. L.

    2016-06-01

    Magma flow paths in sill-fed dikes of the Ferrar large igneous province (LIP), contrast with those predicted by classic models of dike transport in LIPs and magmatic rift settings. We examine anisotropy of magnetic susceptibility (AMS) flow paths in dike networks at Terra Cotta Mountain and Mt. Gran, which intruded at paleodepths of 2.5 and 1.5 km. These intrusions (up to 30 m thick) exhibit irregular, interconnected dike-sill geometries and adjoin larger sills ( 200-300 m thick) at different stratigraphic levels. Both shallowly dipping and sub-vertical magma flow components are interpreted from AMS measurements across individual intrusions, and often match macroscopic flow indicators and variations in dike attitudes. Flow paths suggest that intrusive patterns and magma flow directions depended on varying stress concentrations and rotations during dike and sill propagation, whereas a regional extensional tectonic control was negligible or absent. Unlike giant dike swarms in LIPs elsewhere (e.g., 1270 Ma MacKenzie LIP), dikes of the Ferrar LIP show no regionally consistent vertical or lateral flow patterns, suggesting these intrusion were not responsible for long-distance transport in the province. In the absence of regionally significant, colinear dike swarms, or observed intrusions at crustal depths ≥ 4 km, we suggest that long distance magma transport occurred in sills within Beacon Supergroup sedimentary rocks. This interpretation is consistent with existing geochemical data and thermal constraints, which support lateral magma flow for 3,500 km across the Gondwana supercontinent before freezing.

  16. The basaltic volcanism of the Dumisseau Formation in the Sierra de Bahoruco, SW Dominican Republic: A record of the mantle plume-related magmatism of the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Joubert, Marc; Abad, Manuel; Pérez-Valera, Fernando; Gabites, Janet

    2016-06-01

    The basaltic volcanism of the Dumisseau Fm in the Sierra de Bahoruco, SW Dominican Republic, offers the opportunity to study, on land, the volcanism of the Caribbean Large Igneous Province (CLIP). It consists of an at least 1.5 km-thick sequence of submarine basaltic flows and pyroclastic deposits, intruded by doleritic dykes and sills. Three geochemical groups have been identified: low-Ti tholeiites (group I); high-Ti transitional basalts (group II); and high-Ti and LREE-enriched alkaline basalts (group III). These geochemical signatures indicate a plume source for all groups of basalts, which are compositionally similar to the volcanic rocks that make up various CLIP fragments in the northern region of the Caribbean Plate. Trace element modelling indicates that group I magmas are products of 8-20% melting of spinel lherzolite, group II magmas result 4-10% melting of a mixture of spinel and garnet lherzolite, and group III basalts are derived by low degrees (0.05-4%) of melting of garnet lherzolite. Dynamic melting models suggest that basalts represent aggregate melts produced by progressive decompression melting in a mantle plume. There is no compositional evidence for the involvement of a Caribbean supra-subduction zone mantle or crust in the generation of the basalts. Two 40Ar/39Ar whole-rock ages reflect the crystallisation of group II magmas at least in the late Campanian (~ 74 Ma) and the lower Eocene (~ 53 Ma). All data suggest that the Dumisseau Fm is an emerged fragment of the CLIP, which continues southward through the Beata Ridge

  17. Neoproterozoic anorogenic magmatism in the Southern Bahia Alkaline Province of NE Brazil: U-Pb and Pb-Pb ages of the blue sodalite syenites

    NASA Astrophysics Data System (ADS)

    Rosa, Maria de Lourdes da Silva; Conceição, Herbet; Macambira, Moacir José Buenano; Galarza, Marco Antonio; Cunha, Mônica Pringsheim; Menezes, Rita Cunha Leal; Marinho, Moacyr Moura; Filho, Basílio Elesbão da Cruz; Rios, Débora Correia

    2007-08-01

    Blue sodalite syenite is a rare rock, and the Southern Bahia Alkaline Province (SBAP) is the only place in Brazil where economic deposits are found. This province forms part of the Archaean to Paleoproterozoic São Francisco craton, and contains a few batholiths, a large number of stocks and hundreds of dykes. Its southern part lies close to the tectonic contact between the craton and the Neoproterozoic Araçuaí mobile melt. Blue sodalite-bearing syenites are found in almost all the igneous bodies of the SBAP as dykes or pegmatitic masses hosted by nepheline syenite. Economically viable quantities for the production of dimension stones are found only in the Floresta Azul alkaline complex, the Itaju do Colônia and Rio Pardo stocks and the Itarantim batholith.U-Pb ages obtained for titanite from Itaju do Colônia (732 ± 8 Ma) and Rio Pardo (714 ± 8) and Pb-Pb evaporation ages of zircon from Floresta Azul (696 ± 3 Ma) and Itarantim (722 ± 5 Ma). The geochronology of the SBAP shows that the anorogenic alkaline magmatism persisted for at least 58 Ma, demonstrating an extensional tectonic environment in the southern part of the São Francisco craton at this time. The data show that the rift phase which preceded the formation of the Araçuaí orogen was active until at least 700 Ma. The reported ages are similar to those found for the nepheline syenite host bodies, which supports the conclusions of the previous petrologic study demonstrating that blue sodalite is formed during the crystallization of these bodies. Two different processes are involved. In the magmatic process, sodalite occurs as disseminated and interstitial crystals among alkali feldspar crystals, and is associated with calcite and cancrinite formed by destabilization of nepheline. In the metasomatic process, discontinuous bands of sodalite are in sharp contact with nepheline syenite pegmatite, and its crystal aggregates often contain relict textures of nepheline and albite been replaced by sodalite.

  18. Crystallization Pressures of Alkaline Magmas of the Kula Volcanic Province, Western Turkey

    NASA Astrophysics Data System (ADS)

    Solpuker, U.; Kilinc, A. I.

    2013-12-01

    PProducts of Quaternary sodic alkaline volcanism in western Anatolia is mainly observed around Kula region. The Kula Volcanic Province experienced three episodes of alkaline volcanism. We used the MELTS algorithm to model the evolution path of the Kula magmas by imposing fractional crystallization as a constraint and retrieved the initial system pressure using clinopyroxene geobarometer. We showed that the use of clinopyroxene geobarometer and the MELTS algorithm in combination can be used to estimate the initial water content of magma and the oxygen fugacity of the system. Pressure estimates for the most of the clinopyroxenes are between 12 to 7 kbar. The estimated crystallization temperatures decrease from the first episode to the third episode. The first episode magmas crystallized around Moho but the crystallization depths of the later episode magmas can increase up to 15-20 km below Moho. The calculated crystallization temperatures decrease from the first episode to the third episode. Isobaric fractional crystallization modeling using the MELTS algorithm constrained the fractionation conditions of Kula magmas. The initial water content of the magmas decreases from the first episode (4 wt.%) to third episode (2 wt. %). Under hydrous conditions and oxygen fugacity equals to QFM+2, up to 26 wt % fractional crystallization of olivine, clinopyroxene, spinel and apatite is required to generate the compositional diversity of the KVP magmas.

  19. Lithofacies analysis of basic lava flows of the Paraná igneous province in the south hinge of Torres Syncline, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Barreto, Carla Joana Santos; de Lima, Evandro Fernandes; Scherer, Claiton Marlon; Rossetti, Lucas de Magalhães May

    2014-09-01

    The Paraná igneous province records the volcanism of the earlier Cretaceous that preceded the fragmentation of the Gondwana supercontinent. Historically, investigations of these rocks prioritized the acquisition of geochemical and isotopic data, considering the volcanic pile as a monotonous succession of tabular flows. This work provides a detailed analysis of the emplacement conditions of these basic volcanic rocks, applying the facies analysis method integrated to petrographic and geochemical data. The Torres Syncline is a NW-SE tectonic structure, located in southern Brazil, where a thick sequence of the Paraná-Etendeka volcanic rocks is well preserved. This study was performed in the south hinge of the syncline, where the basaltic lava flows are divided into three lithofacies associations: early compound pahoehoe, early simple pahoehoe and late simple rubbly. The first lavas that erupted were more primitive compound pahoehoe flow fields composed of olivine basalts with higher MgO contents and covered the sandstones of the Botucatu Formation. The emplacement of compound pahoehoe flow fields is possibly related to intermittent low effusion rates, whereas the emplacement of simple pahoehoe is related to sustained low effusion rates with continuous supply. The thick simple rubbly lavas are associated with high effusion rates and were formed during the main phase of volcanism in the area. The absence of paleosoils between the lavas and lithofacies associations suggests that the successive emplacement of the lava flows occurred in a relatively short time gap. Geochemically, the lithofacies associations are low-TiO2 and belong to Gramado magma type. The lavas of the south hinge of the Torres Syncline have a similar evolution when compared to other Continental Basaltic Provinces with earlier compound flows at the base and thicker simple flows in the upper portions.

  20. A New Sample Transect through the Sierra Madre Occidental Silicic Large Igneous Province in Southern Chihuahua State, Mexico: First Stratigraphic, Petrologic, and Geochemical Results

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Davila Harris, P.; Brown, S. R.; Anderson, L.; Moreno, N.

    2014-12-01

    We completed a field sampling transect across the northern Sierra Madre Occidental silicic large igneous province (SMO) in December 2013. Here we present the first stratigraphic, petrological, and geochemical data from the transect between Hidalgo del Parral and Guadalupe y Calvo, Chihuahua, Mexico. This is the first new transect across the SMO in 25 years and the only one between existing NE - SW transects at Chihuahua - Hermosillo and Durango - Mazatlan. The 245 km-long transect along Mexican Highway 24 crosses the boundary between the extended (Basin and Range) and non-extended (Sierra Madre Occidental plateau) parts of the SMO, and allows sampling of previously undescribed Oligocene (?) - early Miocene (?) rhyolitic ignimbrites and lavas, and occasional post-rhyolite, Miocene (?) SCORBA basaltic andesite lavas. 54 samples of rhyolitic ignimbrites (40) and lavas (7), and basaltic andesite lavas (7) were sampled along the transect, including 8 canyon sections with more than one unit. The ignimbrites are overwhelming rhyodacitic (plagioclase and hornblende or biotite phyric) or rhyolitic (quartz (+/- sanidine) in additon to plagioclase and hornblende or biotite phyric) and sparsely to highly phyric. Preliminary petrographic (phenocryst abundances) and geochemical (major and trace element) will be presented and compared to existing data from elsewhere in the SMO. Future work will include U-Pb zircon dating and whole rock and in-zircon radiogenic isotopes analyses.

  1. The geochemical effects of olivine slurry replenishment and dolostone assimilation in the plumbing system of the Franklin Large Igneous Province, Victoria Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Hayes, Ben; Lissenberg, C. Johan; Bédard, Jean H.; Beard, Charlie

    2015-02-01

    The Neoproterozoic (~723-716 Ma) Franklin Large Igneous Province exposed on Victoria Island in the Canadian Arctic is comprised of a sill-dominated magma plumbing system overlain by the coeval Natkusiak flood basalts. We have investigated three sections, separated by a total of >50 km of distance, of a sill (the Fort Collinson Sill Complex) emplaced just above a prominent sedimentary marker unit. The sill is characterized by a basal olivine-enriched layer (OZ: up to 55 % olivine) and an upper gabbroic unit. The observed diversity of olivine compositions in the OZ implies that bulk-rock MgO versus FeO arrays reflect accumulation of a heterogeneous olivine crystal cargo. We suggest that the OZ was formed as a late olivine slurry replenishment in a partially crystallized gabbroic sill, propagating for over 50 km along strike. This interpretation is consistent with Pb-isotope data, which show that at least three geochemically distinct magmas were emplaced into the Fort Collinson Sill Complex. The OZs exhibit a gradual westward evolution toward more Fe-rich bulk compositions. This is best explained by progressive mixing of the replenishing olivine slurry with a resident gabbroic mush during westward flow. Pb-isotopic signatures suggest that magmas near the inferred conduit feeder assimilated small amounts (<10 %) of dolostone country rock, which may have locally buffered olivine compositions to high-Fo contents.

  2. Magnetic subdomains of the High Arctic Magnetic High - Speculations and implications for understanding of the High Arctic Large Igneous Province and related tectonics.

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G. N.

    2015-12-01

    The crustal magnetic anomaly pattern for the high Arctic is dominated by a 1.3 x 106 km2 roughly oval domain of magnetic high, the High Arctic Magnetic High (HAMH) that includes numerous linear and curvi-linear shorter wavelength magnetic highs and lows with no single overall trend. Previous workers (including us) have associated this magnetic domain with the intrusive and extrusive mafic rocks of the High Arctic Large Igneous Province (HALIP). The HAMH shows the HALIP to be roughly the same size as other more well-known LIPs such as the Deccan Traps. The broad crustal magnetic character of LIPs is similar (and distinctive from non-LIP regions) worldwide. We identify 5 general subdomains and further distinguish 2 or 3 sections within each subdomain. We examine matched filter magnetic anomaly depth slices and the bathymetric and gravimetric expression of each sub-domain. Subdomains I and II associated respectively with the Mendeleev and Alpha Ridges have the deepest crustal roots. Subdomain III spans most of the central HAMH between I and II and has a distinctly less magnetic core. Subdomain IV on the Canadian margin side appears transitional to the relatively non-magnetic deep Canada Basin. Subdomain V is a zone of parallel magnetic highs at 90 degrees to the trend of the adjacent Lomonosov Ridge. Subdomains I and II may represent the deep cores of two smaller mantle plume heads that contributed to the overall HALIP. The presence of two plumes might serve to explain the two separate clusters of age dates (80 - 90 Ma and 120 - 130 Ma) found on igneous rocks surrounding and dredged from the HALIP region, and two stratigraphic sequence boundaries and extinction events associated with those time ranges. The boundaries between the magnetic subdomains might coincide with tectonic zones related to the post-LIP complex tectonic history of the Amerasian basin. A linear, through-going boundary that bisects the HAMH and runs perpendicular to the trend of the Lomonosov ridge

  3. The Bero Volganic Group: New Lithological, Stratigraphic, and Geochemical Data of this Extension of the Parana-Etendeka Igneous Province into SW Angola with Implications

    NASA Astrophysics Data System (ADS)

    Marsh, J.; Swart, R.

    2015-12-01

    The Bero Volcanic Group, an extension of the Etendeka-Paraná Igneous Province into SW Angola, forms the eroded basement to the on-shore Namibe Basin, an Early Cretaceous-Cenozoic terrestrial and marine sedimentary sequence. The igneous suite outcrops between latitudes 14.68o and 15.25o S and comprises quartz latite rheoignimbrites/lavas, tholeiitic basaltic lavas, pyroclastic/volcaniclastic deposits, minor aeolian sandstones, and mafic tholeiitic dykes and gabbroic sheets. Quartz latite lithologies dominate. In the Rio Bero area in the S quartz latites are underlain by several thin flows of basalt interbedded with, and underlain by, thin discontinuous lenses of aeolian sandstone. This sequence is consistent with the general stratigraphic sequence in the northern Etendeka of Namibia. To the N basalts and aeolian sandstones are absent and the quartz latites lie directly on Precambrian basement rocks in places. To date, data for a quartz latite correlated with a Chapecó rhyolites of the Paraná are available from only one locality in Angola. This study's wider sampling and major and trace element and radiogenic isotope analysis reveals the following: (1) all mafic rocks are high-Ti, the lavas being equivalent to the Khumiba/Urubici type; (2) mafic dykes cutting the quartz latites having affinities to the Paranapanema-Ribeira mafic lavas; (3) five quartz latite geochemical types are present, three of which are known from Etendeka/Paraná (Sarusas/Guarapuava, Khoraseb/Ourinhos and Ventura) and their stratigraphic relationships in Angola are consistent with those in the Etendeka and Paraná; (4) their Angolan occurrence significantly extends the area covered by, and potential eruptive volumes of, these silicic types; (5) two other quartz latite types are unknown in the Etendeka and Paraná and are probably products of low-volume, local eruptions. The Chinguau type is geochemically similar to the low-Ti quartz lalites of the southern Etendeka but has lower Epsilon Nd

  4. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Serrano, Lina; Ferrari, Luca; Martínez, Margarita López; Petrone, Chiara Maria; Jaramillo, Carlos

    2011-09-01

    The genesis of the Caribbean Large Igneous Province (CLIP) has been associated to the melting of the Galapagos plume head at ~ 90 Ma or to the interaction between the plume and the Caribbean slab window. Gorgona Island, offshore western Colombia, is an accreted fragment of the CLIP and its highly heterogeneous igneous suite, ranging from enriched basalts to depleted komatiites and picrites, was assumed to have formed at ~ 89 Ma from different part of the plume. Here we present new geologic, geochronologic and geochemical data of Gorgona with significant implications for the formation of the CLIP. A new set of 40Ar- 39Ar ages documents a magmatic activity spanning the whole Late Cretaceous (98.7 ± 7.7 to 64.4 ± 5 Ma) followed by a shallower, picritic pyroclastic eruption in the Paleocene. Trace element and isotope geochemistry confirm the existence of an enriched (EDMM: La/Sm N ≥ 1 and ɛNd i of 5.7 to 7.8) and a depleted (DMM: La/Sm N < 1 and ɛNd i of 9.5 to 11.3) mantle sources. A progressive increase in the degree of melting and melt extraction with time occurred in both groups. Petrologic modeling indicates that low but variable degrees of wet melting (< 5%) of an EDMM can produce the LREE-enriched rocks. Higher degree of melting (> 10%) of a mixed DMM + EDMM (40 to 60%) may reproduce the more depleted rocks with temperatures in the range of ambient mantle in absence of plumes. Our results contradict the notion that the CLIP formed by melting of a plume head at ~ 90 Ma. Multiple magmatic pulses over several tens of Ma in small areas like Gorgona, also recognized in other CLIP areas, suggest a long period of diffuse magmatism without a clear pattern of migration. The age span of this magmatism is broadly concurrent with the Caribbean slab window. During this time span the Farallon oceanic lithosphere (later becoming the Caribbean plate) advanced eastward ~ 1500 km, overriding the astenosphere feeding the proto-Caribbean spreading ridge. This hotter mantle

  5. 1.1 Ga K-rich alkaline plutonism in the SW Grenville Province

    NASA Astrophysics Data System (ADS)

    Corriveau, Louise; Heaman, Larry M.; Marcantonio, Franco; van Breemen, Otto

    1990-09-01

    U-Pb zircon and baddeleyite dating of six syenitic stocks establishes that the ultrapotassic, potassic alkaline and shoshonitic magmatism with island-arc affinities in the Central Metasedimentary Belt (CMB) of the southwestern Grenville Province, Canada took place between 1089 and 1076 Ma, along a 400-km-long, northeast-trending plutonic belt. These ages indicate that ultrapotassic rocks with arc affinities are not unique to the Phanerozoic. West to east emplacement ages along a northern and southern cross-section of this belt range from 1083±2 Ma (Kensington), through 1081±2 Ma (Lac Rouge) to 1076{-1/+3}Ma (Loranger) in the north, and from 1089{-3/+4}Ma (loon Lake) and 1088±2 Ma (Calabogie), to 1076±2 Ma (Westport) in the south. Although closely spaced in time, in detail these ages suggest a slight younging of this magmatic activity to the southeast. Integration of the geochronological data with the spatial extent and potassic character of the plutons shows that the K-rich alkaline suite is distinct from the nepheline-syenite belt of the Bancroft terrane and from the syenite-monzonite suite of the Frontenac terrane of the CMB, and it is considered to be a magmatic episode unique to the Elzevir terrane and its Gatineau segment. The timing and the postmetamorphic emplacement of these plutons indicate that the regional greenschist to granulite-facies metamorphism of the country rock (precise age unknown) is older than 1089 Ma throughout the entire Elzevir terrane. The potassic magmatism is interpreted as the initiation of the 1090 1050 Ma Ottawan Orogeny in the Elzevir terrane; thus, the regional metamorphism in this terrane, previously assigned to the Ottawan Orogeny, is an earlier event. The contemporaneous emplacement of this postmetamorphic plutonic belt with Keweenawan volcanism is at variance with current tectonic models which consider the Keweenawan rift to be formed at the same time as regional metamorphism in the CMB.

  6. The High Arctic Magnetic High - The Geophysical Manifestation of a Large (1.36 x 10e6 km2) and Voluminous (5-10 x 10e6 km3) Igneous Province

    NASA Astrophysics Data System (ADS)

    Saltus, Richard; Oakey, Gordon; Miller, Elizabeth; Jackson, Ruth

    2013-04-01

    The High Arctic Magnetic High (HAMH) dominates the magnetic anomaly field of the Earth north of about 75°N; this magnetic domain consists of very high amplitude magnetic highs and lows with variable orientations. The HAMH is visible on satellite magnetic compilations (e.g., MF6) with anomaly amplitudes greater than 200 nT indicating it is a globally significant feature. The magnetic potential of this magnetic feature is a single large intensity high indicative of a large volume of magnetic material in the crust. The map area of this magnetic domain is roughly 1.36 x 10e6 km2. Geographically the HAMH lies within the Amerasian Basin adjacent to the Lomonosov Ridge, encompasses the region of the Alpha and Mendeleev Ridges, and extends beneath the northern portions of the Canada Basin. Ocean floor geomorphology, limited seismic and sonobouy data, sparse dredge samples, and dated samples from the perimeter of the Arctic Ocean are consistent with the interpretation of the HAMH as the geophysical manifestation of a Large Igneous Province. The designation "High Arctic Large Igneous Province (HALIP)" has been applied to portions of the Arctic perimeter based on geologic mapping and sampling. The designation "Alpha/Mendeleev Large Igneous Province (AMLIP)" has been applied to the offshore Alpha/Mendeleev region (e.g., Grantz et al., 2009) with boundaries defined, in large part, by magnetic anomaly patterns. We have constructed 2D and 3D models of the HAMH to investigate the structure and geometry of this significant crustal feature. We estimate the overall volume of magnetic material as between 5-10 x 10e6 km3. The area and volume of this feature are comparable with estimates for the Deccan Traps and the North Atlantic Igneous Province, but are significantly smaller than the Kerguellen or Ontong Java Plateaus (based on tables in Coffin and Eldholm, 1994). In detail we find significant correlation between shorter wavelength portions of this magnetic feature and the

  7. Tectonic setting of basic igneous and metaigneous rocks of Borborema Province, Brazil using multi-dimensional geochemical discrimination diagrams

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2015-03-01

    Fifteen multi-dimensional diagrams for basic and ultrabasic rocks, based on log-ratio transformations, were used to infer tectonic setting for eight case studies of Borborema Province, NE Brazil. The applications of these diagrams indicated the following results: (1) a mid-ocean ridge setting for Forquilha eclogites (Central Ceará domain) during the Mesoproterozoic; (2) an oceanic plateau setting for Algodões amphibolites (Central Ceará domain) during the Paleoproterozoic; (3) an island arc setting for Brejo Seco amphibolites (Riacho do Pontal belt) during the Proterozoic; (4) an island arc to mid-ocean ridge setting for greenschists of the Monte Orebe Complex (Riacho do Pontal belt) during the Neoproterozoic; (5) within-plate (continental) setting for Vaza Barris domain mafic rocks (Sergipano belt) during the Neoproterozoic; (6) a less precise arc to continental rift for the Gentileza unit metadiorite/gabbro (Sergipano belt) during the Neoproterozoic; (7) an island arc setting for the Novo Gosto unit metabasalts (Sergipano belt) during Neoproterozoic; (8) continental rift setting for Rio Grande do Norte basic rocks during Miocene.

  8. Zeolite parageneses in the North Atlantic igneous province: Implications for geotectonics and groundwater quality of basaltic crust

    SciTech Connect

    Neuhoff, P.S.; Fridriksson, T.; Bird, D.K.

    2000-01-01

    Zeolites are among the most common products of chemical interaction between groundwaters and the Earth's crust during diagenesis and low-grade metamorphism. The unique crystal structures of zeolites result in large molar volumes, high cation-exchange capacities, and reversible dehydration. These properties influence both the stability and chemistry of zeolites in geologic systems, leading to complex parageneses and compositional relationships that provide sensitive indicators of physicochemical conditions in the crust. Observations of zeolite occurrence in Tertiary basaltic lavas in the North Atlantic region indicate that individual zeolite minerals are distributed in distinct, depth-controlled zones that parallel the paleosurface of the plateau basalts and transgress the lava stratigraphy. The zeolite zones are interpreted to have formed at the end of burial metamorphism of the lavas. Relative timing relations between various mineral parageneses and crustal-scale deformal features indicate that the minerals indicative of the zeolite zones formed within 1 million years after cessation of volcanism. Empirical correlation between the depth distribution of zeolite zones and the temperatures of formation of zeolites in geothermal systems provides estimates of regional thermal gradients and heat flow in flood-basalt provinces. Similarly, the orientations of zeolite zones can be used to distinguish synvolcanic and post-volcanic crustal deformation. Because zeolites that characterize the individual zones display different ion-exchange selectivities for various cations, reactions between groundwaters and zeolites in basaltic aquifers can result in depth-controlled zones where individual elements are concentrated in the crust. This is established for Sr, which is concentrated by at least an order of magnitude in heulandite, resulting in an overall SR enrichment of lavas in the heulandite-stilbite zeolite zone.

  9. Linking the geological record for large igneous provinces and hotspots with tomography-based numerical models of thermal convection in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Glisovic, P.; Forte, A. M.; Rowley, D. B.; Simmons, N. A.; Grand, S. P.

    2013-12-01

    Current tomographic imaging of the 3-D structure in Earth's interior reveals several large-scale anomalies of strongly reduced seismic velocity in the deep lower mantle, in particular beneath the Perm region in Western Siberia, the East Pacific Rise, the West Pacific (Caroline Islands), the Southwest Indian Ocean, as well as under Western and Southern Africa. We have carried out mantle dynamic simulations (Glisovic et al., GJI 2012) of the evolution of these large-scale structures that directly incorporate robust constraints provided by joint seismic-geodynamic inversions of mantle density structure with further constraints provided by mineral physics data (Simmons et al., GJI 2009, JGR 2010). These tomography-based convection simulations also incorporate constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) and are characterized by Earth-like Rayleigh numbers. The convection simulations provide a detailed insight into the very-long-time evolution of the buoyancy of these lower-mantle anomalies. We find, in particular, that the buoyancy associated with the 'Perm Anomaly' generates a very long-lived hot upwelling or 'superplume' that is connected to the paleomagnetic location of the Siberian Traps (Smirnov & Tarduno, EPSL 2010) and also to location of North Atlantic Igneous Provinces (i.e., the opening of North Atlantic Ocean). These convection simulations (both backwards and forwards in time) also reveal stable and long-lived plume-like upwellings under the East Pacific Rise, as previously identified by Rowley et al. (AGU 2011, Nature - in review), in particular beneath the Easter & Pitcairn hotspots. Finally we also provide detailed reconstructions of the 65 Myr evolution of the 'Reunion plume' that gave rise to the Deccan Traps.

  10. Spatiotemporal reconstruction of Late Mesozoic silicic large igneous province and related epithermal mineralization in South China: Insights from the Zhilingtou volcanic-intrusive complex

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Guang; Ni, Pei; Zhao, Chao; Wang, Xiao-Lei; Li, Pengfei; Chen, Hui; Zhu, An-Dong; Li, Li

    2016-11-01

    Silicic large igneous provinces (SLIPs) generally reflect large-scale melting of lower crustal materials and represent significant metal reservoirs. The South China Block-Coastal Region (SCB-CR) SLIP hosts several large epithermal deposits. To better understand these deposits, we document the spatiotemporal framework of the host SLIP across the SCB-CR. Using zircon U-Pb dating and geochemical and isotopic analysis, we identify four stages of emplacement. Stage 1 felsophyre (circa 149 Ma) shows a chemical affinity to highly fractionated I-type granites. Stages 2 and 3 of low-Mg felsic volcanics (circa 128 to 111 Ma) and stage 4 felsite (circa 100 Ma) have higher ɛHf(t) and ɛNd(t) values than stage 1 felsophyre, suggesting a significant contribution of newly underplated juvenile crust to the magma sources. Stage 4 diabase (circa 101 Ma) was likely produced by melting of subduction˗metasomatized asthenospheric mantle. Together with reliable published data, we build a new spatiotemporal framework of volcanics and infer that the majority of the SCB-CR SLIP was related to the gradual northwestward subduction of the Izanagi plate beneath South China in a continental arc setting during circa 170 to 110 Ma, and minor contribution was from the eastward retreat of the subducting slab in a back-arc setting during circa 110 to 90 Ma. We conclude that the large-scale epithermal mineralization was generated by melting of the metal-rich, thin (30-40 km), newly underplated hydrous juvenile crust during the tectonic transition from arc to back-arc settings.

  11. Decoupling of Mg-C and Sr-Nd-O isotopes traces the role of recycled carbon in magnesiocarbonatites from the Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Chen, Lili; Ke, Shan; Xu, Lijuan

    2017-04-01

    The Tarim Large Igneous Province in NW China hosts numerous magmatic carbonatite dikes along its northern margin. The carbonatites are composed mainly of dolomite (90 vol.%) and minor calcite (5 vol.%), with apatite, barite, celestine, aegirine, monazite and bastnaesite as accessory minerals. The rocks correspond to magnesiocarbonatites with a compositional range of 13.73-19.59 wt.% MgO, and 20.03-30.11 wt.% CaO, along with 1.65-3.31 wt.% total Fe2O3, 0.02-2.39 wt.% SiO2 and other minor elements, such as P2O5, Na2O and K2O. These magnesiocarbonatites are characterized by extreme enrichment in incompatible elements with high total rare earth element (REE) contents of 372-36965 ppm. The strontium [(87Sr/86Sr)i = 0.70378-0.70386], neodymium [εNd(t) = +2.51 - +3.59] and oxygen (δ18OV-SMOW = 5.9‰-8.0‰) isotope values of these rocks are consistent with a mantle origin, whereas the magnesium (δ26Mg = -1.09‰ to -0.85‰) and carbon (δ13CV-PDB = -4.1‰ to -5.9‰) isotopes are decoupled from mantle values and reflect signature of recycled sedimentary carbonates. Global plate tectonic models predict that sedimentary carbonates in convergent margins are subducted to deep domains in the mantle, with phase transitions from calcite/dolomite to magnesite, and eventually to periclase/perovskite. The involvement of a mantle plume enhances the normal mantle geotherms and promotes decomposition reactions of magnesite. The decoupling of Mg-C and Sr-Nd-O isotopes in the mangesiocarbonatites provides insights on the origin of carbonatites, and also illustrates a case of interaction between mantle plume and subduction-related components.

  12. The deep crustal structure of the mafic-ultramafic Seiland Igneous Province of Norway from 3-D gravity modelling and geological implications

    NASA Astrophysics Data System (ADS)

    Pastore, Zeudia; Fichler, Christine; McEnroe, Suzanne A.

    2016-12-01

    The Seiland Igneous Province (SIP) is the largest complex of mafic and ultramafic intrusions in northern Fennoscandia intruded at ca. 580-560 Ma. The depth extent and the deep structure of the SIP are mainly unknown apart from three profiles modelled by gravity and refraction seismic data. Utilizing 3-D gravity modelling, a complex model of the deep subsurface structure of the SIP has been developed. The structure is presented in a multiprofile model ranging from the surface to the Moho. The mafic/ultramafic rocks of the SIP are modelled with densities of 3100 and 3300 kg m-3, the surrounding rocks by densities of 2700 and 2900 kg m-3 for upper and lower crust, respectively. This density model explains the pronounced positive Bouguer gravity anomaly of up to 100 mGal above background. Its minimum volume is estimated from the subsurface model to 17 000 km3 and as such we revise downwards the earlier estimations of 25 000 km3. The new subsurface model suggests that most of the SIP has a thickness between 2 and 4 km. An area with roots in an annular pattern is found and two deep-reaching roots have been identified located below the islands of Seiland and Sørøy. The depth of these roots is estimated to approximatively 9 km. The SIP is presently interpreted to be in the Caledonian Kalak Nappe Complex and the roots depth constrains its minimum thickness which is larger than earlier estimated. Furthermore, the rather undisturbed shape of the annular root pattern indicates that the SIP has not been subjected to strong tectonic reworking during the Caledonian orogeny.

  13. Triggers on sulfide saturation in Fe-Ti oxide-bearing, mafic-ultramafic layered intrusions in the Tarim large igneous province, NW China

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Wang, Christina Yan; Xu, Yi-Gang; Xing, Chang-Ming; Ren, Ming-Hao

    2016-08-01

    Three Fe-Ti oxide-bearing layered intrusions (Mazaertag, Wajilitag, and Piqiang) in the Tarim large igneous province (NW China) have been investigated for understanding the relationship of sulfide saturation, Platinum-group element (PGE) enrichment, and Fe-Ti oxide accumulation in layered intrusions. These mafic-ultramafic layered intrusions have low PGE concentrations (<0.4 ppb Os, <0.7 ppb Ir, <1 ppb Ru, <0.2 ppb Rh, <5 ppb Pt, and <8 ppb Pd) and elevated Cu/Pd (2.2 × 104 to 3.3 × 106). The low PGE concentrations of the rocks are mainly attributed to PGE-depleted, parental magma that was produced by low degrees of partial melting of the mantle. The least contaminated rocks of the Mazaertag and Wajilitag intrusions have slightly enriched Os isotopic compositions with γOs(t = 280 Ma) values ranging from +13 to +23, indicating that the primitive magma may have been generated from a convecting mantle, without appreciable input of lithospheric mantle. The Mazaertag and Wajilitag intrusions have near-chondritic γOs(t) values (+13 to +60) against restricted ɛ Nd(t) values (-0.4 to +2.8), indicating insignificant crustal contamination. Rocks of the Piqiang intrusion have relatively low ɛ Nd(t) values of -3.1 to +1.0, consistent with ˜15 to 25 % assimilation of the upper crust. The rocks of the Mazaertag and Wajilitag intrusions have positive correlation of PGE and S, pointing to the control of PGE by sulfide. Poor correlation of PGE and S for the Piqiang intrusion is attributed to the involvement of multiple sulfide-stage liquids with different PGE compositions or sulfide-oxide reequilibration on cooling. These three layered intrusions have little potential of reef-type PGE mineralization. Four criteria are summarized in this study to help discriminate between PGE-mineralized and PGE-unmineralized mafic-ultramafic intrusions.

  14. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: Implications for mantle source characteristics and plume-lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Zhang, Dongyang; Ke, Shan

    2015-04-01

    The nephelinite exposed in the Wajilitage area in the northwestern margin of the Tarim large igneous province (TLIP), Xinjiang, NW China display porphyritic textures with clinopyroxene, nepheline and olivine as the major phenocryst phases, together with minor apatite, sodalite and alkali feldspar. The groundmass typically has cryptocrystalline texture and is composed of crystallites of clinopyroxene, nepheline, Fe-Ti oxides, sodalite, apatite, rutile, biotite, amphibole and alkali feldspar. We report rutile SIMS U-Pb age of 268 ± 30 Ma suggesting that the nephelinite may represent the last phase of the TLIP magmatism, which is also confirmed by the field relation. The nephelinite shows depleted Sr-Nd isotopic compositions with age-corrected 87Sr/86Sr and εNd(t) values of 0.70348-0.70371 and + 3.28 to + 3.88 respectively indicating asthenospheric mantle source. Based on the reconstructed primary melt composition, the depth of magma generation is estimated as 115-140 km and the temperatures of mantle melting as 1540-1575 °C. The hotter than normal asthenospheric mantle temperature suggests the involvement of mantle thermal plume. The Mg isotope values display a limited range of δ26Mg from - 0.35 to - 0.55‰, which are lower than the mantle values (- 0.25‰). The Mg isotopic compositions, combined with the Sr-Nd isotopes and major and trace element data suggest that the Wajilitage nephelinite was most likely generated by low-degree partial melting of the hybridized carbonated peridotite/eclogite source, which we correlate with metasomatism by subducted carbonates within the early-middle Paleozoic convergent regime. A plume-lithosphere model is proposed with slight thinning of the lithosphere and variable depth and degree of melting of the carbonated mantle during the plume-lithosphere interaction. This model also accounts for the variation in lithology of the TLIP.

  15. Origin of extremely PGE-rich mafic magma system: An example from the Jinbaoshan ultramafic sill, Emeishan large igneous province, SW China

    NASA Astrophysics Data System (ADS)

    Wang, Christina Yan; Zhou, Mei-Fu; Qi, Liang

    2010-09-01

    The ~ 260 Ma Jinbaoshan sill is part of the Permian Emeishan large igneous province in SW China and is mainly composed of wehrlite and hosts a PGE deposit containing ~ 45 tonnes of Pt and Pd with ore grades ranging from 1 to 5 ppm Pt + Pd. The sill is composed of several PGE-rich horizons at different stratigraphic heights. A ~ 5 m-thick PGE-rich horizon at the base of the sill, which is underlain by a chromite-rich, PGE-poor layer, accounts for 44% of the total ore reserve. The Jinbaoshan sill is rich in PGEs with Ir ranging from 1.7 to 138 ppb, Ru from 0.9 to 39 ppb, Rh from 3.1 to 133 ppb, and a total Pt and Pd from 76 to 5371 ppb. All the rocks from the sill display primitive mantle-normalized chacophile element patterns enriched in PGEs relative to Ni and Cu. The low Cu/Pd ratios (20 to 1938) of the rocks relative to the primitive mantle (Cu/Pd = 7000) imply that there was no sulfide fractionation of the magmas. The PGE enrichment of the sill indicates that it formed from extremely PGE-rich magmas. Modeling results show that such PGE-rich magmas likely resulted from a multistage-dissolution upgrading process in an open magma conduit system. Large amounts of chromite crystallization triggered sulfide saturation when PGE-rich magmas emplaced into the upper magma chamber of the system. Settling and sorting of chromite and most sulfide liquids along with olivine resulted in the formation of the largest PGE-rich horizon at the base of the sill. The rest minor sulfide liquid accumulated to form PGE-rich horizons in the middle part of the sill aided by turbulence and convection within the magma chamber.

  16. The Fragmented Manihiki Plateau - Key Region for Understanding the Break-up of the "Super" Large Igneous Province Ontong Java Nui

    NASA Astrophysics Data System (ADS)

    Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.

    2014-12-01

    The Manihiki Plateau of the western Pacific is one of the world - wide greatest Large Igneous Province (LIP) on oceanic crust. It is assumed that the Manihiki Plateau was emplaced as the centerpiece of the "Super-LIP" Ontong Java Nui by multiple volcanic phases during the Cretaceous Magnetic Quiet Period. The subsequent break-up of Ontong Java Nui led to fragmentation of the Manihiki Plateau into three sub-plateaus, which all exhibit individual relicts of the "Super-LIP" break-up. We examine two deep crustal seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the Western Plateaus and the High Plateau. Modeling of P- and S-wave velocities reveals surprising differences in the crustal structure between the two sub-plateaus. Whereas the High Plateau shows a constant crustal thickness of 20 km, relicts of multiple volcanic phases and break-up features at its margins, the model of the Western Plateaus reveals a crustal thickness decreasing from 17 km to only 9 km. There is only little evidence of secondary phases of volcanic activity. The main upper crustal structure on the Western Plateaus consists of fault systems and sedimentary basins. We infer that the High Plateau experienced phases of strong secondary volcanism, and that tectonic deformation was limited to its edges. The Western Plateaus, on the contrary, were deformed by crustal stretching and underwent only little to no secondary volcanism. This indicates that the two main sub-plateaus of the Manihiki Plateau experienced a different geological history and have played their individual parts in the break-up history of Ontong Java Nui.

  17. No pre-eruptive uplift in the Emeishan large igneous province: New evidences from its 'inner zone', Dali area, Southwest China

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Guo, Zhaojie; Liu, Runchao; Liu, Dongdong; Du, Wei

    2014-01-01

    The Permian Emeishan large igneous province (ELIP) in Southwest China has been considered a typical example of crustal domal uplift caused by mantle plume upwelling prior to the onset of volcanism. However, this model has been questioned by the discovery of hydromagmatic volcaniclastic deposits formed in a marine environment, located near the central ELIP area (the 'inner zone') which is inferred to be the zone of maximum uplift. The volcanology of the inner zone has thus far been poorly documented, fueling the debate about whether or not pre-eruptive uplift occurred prior to plume upwelling. Understanding the volcanology of this inner zone is therefore critical in constraining the eruption environment of the central ELIP. Our work has revealed new volcanological observations in the inner zone (Dali area), which can systematically constrain volcanism and paleoenvironment. The Basal Succession of the sequence is a thick pillow lavas pile with hyaloclastites, implying an initial deeper submarine stage of eruptions. Limestones and submarine fallout tuffs are interbedded with these pillow lavas. Above that, abundant mafic volcaniclastic products developed, which contain palagonite-rimmed lapilli-tuffs, base surge deposits and peperites, suggesting hydroclastic volcanism in a shallower submarine environment. The Upper Succession of the sequence preserves columnar-jointed lava flows and subaerial fallout tuffs, reflecting subaerial volcanism after the volcanic center emerged above the sea level. These abundant and systematic natures of this evidence suggest that the initial volcanism of the central ELIP occurred in a deep submarine environment. The submarine-to-subaerial transition is caused by progressive emplacement of voluminous magmatic products infilling the inner zone during the continuous emplacement of ELIP, rather than by crustal doming prior to the onset of volcanisms.

  18. Joint pre-stack depth migration and travel-time tomography applied to a deep seismic profile across the northern Barents Sea igneous province

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Faleide, Jan Inge; Sakulina, Tamara; Krupnova, Natalia; Dergunov, Nikolai

    2015-04-01

    The mainly Permo-Triassic North Barents Sea Basin is considered as a superdeep intracratonic basin containing over 20 km of sedimentary material. This basin was strongly affected by magmatism attributed to the formation of the Early Cretaceous High Arctic Large Igneous Province. Dolerite dikes, sills, and lava flows are observed in the northern Barents Sea and on the islands of Svalbard and Franz Josef Land. Some dike swarms can be traced over hundreds of kilometers using high-resolution airborne magnetic data. In the North Barents Sea Basin, the dikes fed giant sill complex emplaced into organic-rich Triassic siliciclastic rocks. The sill complex creates a major challenge for seismic imaging masking the underlying strata. In this contribution, we first perform refraction and reflection travel-time tomography using wide-angle ocean-bottom seismometer data (with receivers deployed every 10 km) along the 4-AR profile (Sakulina et al. 2007, Ivanova et al. 2011). The resulting tomographic model is then used to construct a background velocity model for the pre-stack depth migration. We show that the use of a combined velocity model for the time and depth imaging based on travel-time tomography and RMS velocities constitutes a substantial improvement with respect to a standard processing workflow providing a more coherent seismic structure of this volcanic province. The interpretation of multichannel seismic and high-resolution magnetic data together with P-wave velocity and density anomalies allow to create a model for the system of magmatic feeders in the crystalline basement of the northern Barents Sea region. Sakulina, T.S., Verba, M.L., Ivanova, N.M., Krupnova, N.A., Belyaev I.V., 2007. Deep structure of the north Barents-Kara Region along 4AR transect (Taimyr Peninsula - Franz Joseph Land). In: Models of the Earth's crust and upper mantle after deep seismic profiling. Proceedings of the international scientific-practical seminar. Rosnedra, VSEGEI. St

  19. Mantle heterogeneity during the formation of the North Atlantic Igneous Province: Constraints from trace element and Sr-Nd-Os-O isotope systematics of Baffin Island picrites

    NASA Astrophysics Data System (ADS)

    Kent, A. J. R.; Stolper, E. M.; Francis, D.; Woodhead, J.; Frei, R.; Eiler, J.

    2004-11-01

    Sr-Nd-Os-O isotope and major and trace element data from ˜62 Ma picrites from Baffin Island constrain the composition of mantle sources sampled at the inception of North Atlantic Igneous Province (NAIP) magmatism. We recognize two compositional types. Depleted (N-type) lavas have low 87Sr/86Sri (0.702990-0.703060) and 187Os/188Osi (0.1220-0.1247) and high 143Nd/144Ndi (0.512989-0.512999) and are depleted in incompatible elements relative to primitive mantle. Enriched (E-type) lavas have higher 87Sr/86Sri (0.703306-0.703851) and 187Os/188Osi (0.1261-0.1303), lower 143Nd/144Ndi (0.512825-0.512906), and incompatible element concentrations similar to, or more enriched than, primitive mantle. There is also a subtle difference in oxygen isotope composition; E-type lavas are marginally lower in δ18Oolivine value (5.16-4.84‰) than N-type lavas (5.15-5.22‰). Chemical and isotopic variations between E- and N-type lavas are inconsistent with assimilation of crust and/or subcontinental lithospheric mantle and appear to instead reflect mixing between melts derived from two distinct mantle sources. Strontium-Nd-O isotope compositions and incompatible trace element abundances of N-type lavas suggest these are largely derived from the depleted upper mantle. The 187Os/188Osi ratios of N-type lavas can also be explained by such a model but require that the depleted upper mantle had γOs of approximately -5 to -7 at 62 Ma. This range overlaps the lowest γOs values measured in abyssal peridotites. Baffin Island lava compositions are also permissive of a model involving recharging of depleted upper mantle with 3He-rich material from the lower mantle (Stuart et al., Nature, 424, 57-59, 2003), with the proviso that recharge had no recognizable effect on the lithophile trace element and Sr-Nd-Os-O isotope composition. The origin of the enriched mantle component sampled by Baffin Island lavas is less clear but may be metasomatized and high-temperature-altered recycled oceanic

  20. Major compositional provinces on Mars: a record of igneous processes and H2O-rock interactions

    NASA Astrophysics Data System (ADS)

    Rogers, D.; Hamilton, V. E.

    2011-12-01

    The spatial distribution of surface compositions provides critical information needed to understand the formation of Martian crustal materials as well as the interactions between the surface, atmosphere, and hydrosphere. To this end, we present a new global map of major compositional provinces on Mars. The map was derived by applying statistical methods to new mineral distributions derived from Mars Global Surveyor Thermal Emission Spectrometer (TES) data. The new mineral distributions [1] were calculated using a larger set of olivine and pyroxene compositions, and at a higher spatial resolution (8 pixels per degree), relative to previous global studies [e.g, 2]. Consistent with previous results [2], we find that: A) Syrtis Major and circum-Tharsis volcanic plains are compositionally distinct from other, older highland surfaces, B) lowland materials exhibit elevated abundance of "high-silica" phases (amorphous silica and/or poorly crystalline silicates), and C) northern Acidalia surfaces are compositionally distinct from those in southern Acidalia. New findings include the following: D) northwestern Syrtis Major shield materials are enriched in feldspar relative to southern Syrtis Major, E) within Thaumasia and Aonium Plana (Hesperian aged plains), there are possibly 3 different classes of mineral assemblage, and F) heavily cratered Noachian terrains including Terra Meridiani, Tyrrhena Terra, and Cimmeria Terra can be divided into at least two classes based on relative abundance of plagioclase and low-Ca pyroxene. These new reported classes exhibit spatial coherency over a scale of at least tens of km; select areas were verified using spectral ratios from individual TES orbits that cross compositional class boundaries. These spatial trends in mineral assemblage may partially reflect global variations in melt generation and magmatic processes, and may also partially reflect spatial variation in precipitation, erosion, and/or ice-related alteration. For example, the

  1. Hf isotope compositions and chronology of magmatic zircons from Tarim continental flood basalts: implications for magmatic evolution of the Early Permian Tarim Large Igneous Province in NW China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, Z.; Yu, X.; Langmuir, C. H.; Yang, S.; Chen, H.

    2013-12-01

    The Early Permian Tarim Large Igneous Province (TLIP) in the Tarim cratonic block of northwestern China has been largely regarded to be genetically linked with a mantle plume. Recently, some euhedral zircon crystals with magmatic growth zoning have been obtained from the Tarim continental flood basalts (TCFB) for detailed U-Pb chronological and genetic study. The zircons have the concordant 206Pb/238U ages of 297~283 Ma, coinciding with the previously reported whole-rock 40K/39Ar and 40Ar/39Ar ages (292~283 Ma) of their host basalts. In-situ LA-MC-ICPMS Lu-Hf isotopic analyses of Early Permian zircons from the Keping area of the TCFB reveal that the zircons from two basalt sub-groups (Groups 1a, 1b) have a narrow range of 176Hf/177Hf ratios between 0.282422 and 0.282568. Their corresponding ɛHf(t) (t = 290 Ma) values (-6.8~-1.4) are generally lower than their host basalts (-2.3~2.1), and distinctively different from the intrusive rocks (3.0~7.1) and their zircons (4.9~8.8) from the TLIP and the Precambrian crustal rocks (<-18) in the Tarim block. Combined with their embayed margins produced by magmatic corrosion, these zircons may have crystallized in a concealed pluton shortly prior to the extrusion of basalts and been captured as xenocrysts by the rapidly erupted basaltic lavas. Almost the same ɛHf(t) values between the corroded and uncorroded zircons suggest that the zircons have preserved the initial Hf isotopic compositions from their original source region. Moreover, the very close but relatively higher ɛHf(t) values from the zircons than the inferred sub-continental lithospheric mantle (SCLM) beneath Tarim in the Early Permian [ɛHf(t) = -8.7~-5.2; t = 290 Ma] indicate that the zircons were probably originated from the SCLM with minor addition of depleted mantle magmas during the mantle source partial melting. Both the zircons and their host basalts have almost the same formation ages (~290 Ma) and Hf TDM model ages (ca. 1300~1000 Ma), suggesting that

  2. Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria Dyke Swarm on the margin of a large igneous province in eastern Africa

    NASA Astrophysics Data System (ADS)

    Mäkitie, Hannu; Data, Gabriel; Isabirye, Edward; Mänttäri, Irmeli; Huhma, Hannu; Klausen, Martin B.; Pakkanen, Lassi; Virransalo, Petri

    2014-09-01

    A comprehensive description of the petrography, geochemical composition, Sm-Nd data and intrinsic field relationships of a giant arcuate Mesoproterozoic mafic dyke swarm in SW Uganda is presented for the first time. The swarm is ∼100 km wide and mainly hosted in the Palaeoproterozoic Rwenzori Belt between the Mesoproterozoic Karagwe-Ankole Belt and the Archaean Uganda Block. The dykes trend NW-SE across Uganda, but can be correlated across Lake Victoria to another set of arcuate aeromagnetic anomalies that continue southwards into Tanzania, resulting in a remarkably large semi-circular swarm with an outer diameter of ∼500 km. We propose that this unique giant dyke structure be named the Lake Victoria Dyke Swarm (LVDS). The dykes are tholeiites with Mg numbers between 0.69 and 0.44, and with inherited marked negative Nb and P anomalies in spider diagrams. Two dykes provide Sm-Nd mineral ages of 1368 ± 41 Ma and 1374 ± 42 Ma, with initial εNd values of -2.3 and -3.2, and 87Sr/86Sr ratios of ∼0.706-0.709. Geotectonic discrimination diagrams for the swarm exhibit more arc type than within-plate tectonic signatures, but this is in accordance with systematic enrichments in LREE, U and Th in the dolerites, more likely due to the involvement of the continental lithosphere during their petrogenesis. The LVDS is coeval with a regional ∼1375 Ma bimodal magmatic event across nearby Burundi, Rwanda and NW Tanzania, which can collectively be viewed as a large igneous province (LIP). It also indicates that the nearby Karagwe-Ankole Belt sequences - bracketed between 1.78 and 1.37 Ga and assumed by some to have been deposited within intracratonic basins - were capped by flood basalts that have subsequently been removed by erosion. Different geochemical signatures (e.g. LaN/SmN) suggest that most of the arcuate swarm was derived from an enriched SCLM, whereas related intrusions in the centre of this semi-circular segment have more or less enriched asthenospheric mantle

  3. Geochemical and Isotopic Variations of Three Basalt Groups in the Early Permian Tarim Large Igneous Province (NW China): Implications for Plume-Lithosphere Interaction

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, Z.; Langmuir, C. H.; Yang, S.; Chen, H.; Yu, X.; Zou, S.

    2014-12-01

    Several lines of geological, petrological and geochemical evidence have supported that the Early Permian Tarim Large Igneous Province (LIP) in the Tarim cratonic block of northwestern China were generated by a mantle plume. However, the over 200,000 km2 Tarim continental flood basalts, as the dominant part of the Tarim LIP, show little geochemical and isotopic features similar to those plume-derived intrusive rocks in this region. This is mainly because that their parental magmas were more or less contaminated by the thick crust during ascending. Modeling by trace element and Nd isotopic compositions further suggest that the three basalt groups (Groups 1a, 1b and 2) in the Tarim LIP have experienced variable degree of crustal contamination (i.e., Group 1b > Group 1a > Group 2). After eliminating the effect of crustal contamination, the widespread Group 1 basalts (including both Groups 1a and 1b) would have relatively uniform ɛNd(t) values of ca. -1.7. This indicates that they were more likely to be produced by partial melting of some enriched mantle components in the sub-continental lithospheric mantle (SCLM) beneath the Tarim block, probably due to conductive heating that resulted from an incubating mantle plume. The Group 2 basalts, on the other hand, were only found in a small region but display a relatively higher and wider range of ɛNd(t) values roughly between -1.7 and 0.8 (if without crustal contamination). This may suggest that during the generation of Group 2 basalts, the upwelling mantle plume not only provided an enormous amount of heat, but also continuously injected isotopically depleted plume components into the isotopically enriched magma source region in the SCLM. The source isotopic heterogeneity of three basalt groups and other various Tarim LIP rocks (e.g., picrites, ultramafic-mafic intrusive rocks and syenitic rocks), with their ɛNd(t) values varying between ca. -5 and 5, may correlate with the plume-lithosphere interaction during the

  4. Middle Miocene nepheline-bearing mafic and evolved alkaline igneous rocks at House Mountain, Arizona Transition Zone, north-central Arizona

    SciTech Connect

    Wittke, J.; Holm, R.F.; Ranney, W.D.R. . Dept. of Geology)

    1993-04-01

    The Middle Miocene House Mountain shield volcano is located on the northern margin of the Arizona Transition Zone, about 7 km SW of Sedona, AZ. Deep erosion has exposed internal structural and stratigraphic relationships of the volcano. Mapping documents two igneous suites: (1) alkali basalt to trachyte and alkali-feldspar syenite, and (2) olivine melanephelinite, nepheline monzodiorite, nepheline monzosyenite and nepheline syenite. The rocks of the first suite occur as dikes and flows, which, with a thick pyroclastic section, are the principal units of the volcano. The melanephelinite is nonvesicular and intruded as a large irregular dike and several smaller dikes. The nepheline-bearing syenitic rocks, which are phaneritic with nepheline and clinopyroxene crystals up to 1 cm in diameter, occur as pods and sheets within the melanephelinite. Also within the melanephelinite are wispy leucocratic segregations, syenitic fracture-fillings, and ocelli. The largest phaneritic sheet is [approx]18 m thick; it displays crude subhorizontal compositional banding and vuggy surfaces. The latter indicate that the magmas were fluid-rich. Compositions intermediate between the melanephelinite and syenitic rocks have not been found. Although the syenitic rocks are coarse-grained, mapping indicates the they are near the summit of the volcano and were probably emplaced at a depth of less than 1 km, possibly of only a few hundred meters. The field relationships of the phaneritic rocks can be explained by ascent and coalescence of immiscible syenitic liquids within the melanephelinite dike. Calculated density contrasts between melanephelinite and syenitic liquids exceed 0.2 g/cm[sup 3].

  5. U-Pb ages, geochemistry, C-O-Nd-Sr-Hf isotopes and petrogenesis of the Catalão II carbonatitic complex (Alto Paranaíba Igneous Province, Brazil): implications for regional-scale heterogeneities in the Brazilian carbonatite associations

    NASA Astrophysics Data System (ADS)

    Guarino, Vincenza; Wu, Fu-Yuan; Melluso, Leone; de Barros Gomes, Celso; Tassinari, Colombo Celso Gaeta; Ruberti, Excelso; Brilli, Mauro

    2016-09-01

    The Catalão II carbonatitic complex is part of the Alto Paranaíba Igneous Province (APIP), central Brazil, close to the Catalão I complex. Drill-hole sampling and detailed mineralogical and geochemical study point out the existence of ultramafic lamprophyres (phlogopite-picrites), calciocarbonatites, ferrocarbonatites, magnetitites, apatitites, phlogopitites and fenites, most of them of cumulitic origin. U-Pb data have constrained the age of Catalão I carbonatitic complex between 78 ± 1 and 81 ± 4 Ma. The initial strontium, neodymium and hafnium isotopic data of Catalão II (87Sr/86Sri = 0.70503-0.70599; ɛNdi = -6.8 to -4.7; 176Hf/177Hf = 0.28248-0.28249; ɛHfi = -10.33 to -10.8) are similar to the isotopic composition of the Catalão I complex and fall within the field of APIP kimberlites, kamafugites and phlogopite-picrites, indicating the provenance from an old lithospheric mantle source. Carbon isotopic data for Catalão II carbonatites (δ13C = -6.35 to -5.68 ‰) confirm the mantle origin of the carbon for these rocks. The origin of Catalão II cumulitic rocks is thought to be caused by differential settling of the heavy phases (magnetite, apatite, pyrochlore and sulphides) in a magma chamber repeatedly filled by carbonatitic/ferrocarbonatitic liquids (s.l.). The Sr-Nd isotopic composition of the Catalão II rocks matches those of APIP rocks and is markedly different from the isotopic features of alkaline-carbonatitic complexes in the southernmost Brazil. The differences are also observed in the lithologies and the magmatic affinity of the igneous rocks found in the two areas, thus demonstrating the existence of regional-scale heterogeneity in the mantle sources underneath the Brazilian platform.

  6. Millennia of magmatism recorded in crustal xenoliths from alkaline provinces in Southwest Greenland

    NASA Astrophysics Data System (ADS)

    Smit, Matthijs A.; Waight, Tod E.; Nielsen, Troels F. D.

    2016-10-01

    Mantle-derived CO2-rich magma ascends rapidly through the lithospheric column, supporting upward transport of large mantle-xenoliths and xenocryst (>30 vol%) loads to the (sub-)surface within days. The regional magmatism during which such pulses occur is typically well characterized in terms of general duration and regional compositional trends. In contrast, the time-resolved evolution of individual ultramafic dyke and pipe systems is largely unknown. To investigate this evolution, we performed a geochemical and speedometric analysis of xenoliths from ultramafic (aillikite) dykes in two Neoproterozoic alkaline provinces in West Greenland: 1) Sarfartôq, which overlies Archean ultra-depleted SCLM and yielded ultra-deep mineral indicators, and 2) Sisimiut, where the SCLM is refertilized and deep xenoliths (>120 km) are lacking. We focused on the rare and understudied crustal xenoliths, which preserve a rich record of melt injection. The xenoliths are derived from 25-36 km depth and were transported to the sub-surface within 4 ± 1h (Fe-in-rutile speedometry), during which they were exposed to the magmatic temperature of 1 , 015 ± 50°C (Zr-in-rutile thermometry). Garnet major-element speedometry shows that before the xenolith-ascent stage the lower crust had already been exposed to a variety of magmas for 700 (Sarfartôq) and 7,100 (Sisimiut) years. The Sisimiut samples contain exotic carbonate- and sulfide-rich assemblages, which occurred during the early stages of melt infiltration. Absence of such exotic assemblages and the faster magmatic development at Sarfartôq are tentatively linked to higher decarbonation kinetics in the more depleted SCLM at this location. The data reveal the so far unrecognized pre-eruptive development of ultramafic systems. This stage involves non-steady state melt-silicate interaction between ascending magmas and the immediate SCLM wall-rock, during which the composition of both is modified. The progress and duration of this interaction

  7. Late Permian basalts in the northwestern margin of the Emeishan Large Igneous Province: Implications for the origin of the Songpan-Ganzi terrane

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Zhaochong; Santosh, M.; LÜ, Linsu; Han, Liu; Liu, Wei; Cheng, Zhiguo

    2016-07-01

    SHRIMP zircon U-Pb ages, geochemical and Sr-Nd isotopic data are reported for two types of basalts (Type I and Type II) from a Permian volcanic-pyroclastic succession in the Tubagou section, Baoxing area along the southeastern margin of the Songpan-Ganzi terrane (SGT) in the Sichuan province of SW China. Zircons from the uppermost basaltic flows yield crystallization age of 257.3 ± 2.0 Ma, which may represent the time of culmination the basaltic eruption. Type I shows alkaline affinity with εNd(t) values of + 2.4 to + 2.9, and is characterized by oceanic island basalt (OIB)-type light rare earth element (LREE) and trace-element patterns. In contrast, Type II rocks are tholeiitic, and close to initial rift tholeiite (IRT)-like REE and trace element patterns, and are relatively depleted in highly incompatible elements with slightly negative Nb-Ta anomaly. The εNd(t) values of Type II are between + 1.8 to + 2.2. The geochemical characteristics suggest the Type I has not been significantly crustally contaminated, whereas Type II maybe have experienced minor crustal contamination. Clinopyroxene crystallization temperature is ~ 80-120°C higher than that of the normal asthenospheric mantle, implying anomalous thermal input from mantle source and a possible plume-head origin for the Tubagou lava. The geochemical and isotopic fes, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruptions, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruption and continental rifting suggest that continental break-up and the opening of an extensional basin was probably related to the Late Permian Emeishan plume, which triggered the breakup between the SGT and the Yangtze craton.

  8. Carbonate- and silicate-rich globules in the kimberlitic rocks of northwestern Tarim large igneous province, NW China: Evidence for carbonated mantle source

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Santosh, M.; Hou, Tong; Zhang, Dongyang

    2014-12-01

    We report carbonate- and silicate-rich globules and andradite from the Wajilitage kimberlitic rocks in the northwestern Tarim large igneous province, NW China. The carbonate-rich globules vary in size from 1 to 3 mm, and most have ellipsoidal or round shape, and are composed of nearly pure calcite. The silicate-rich globules are elliptical to round in shape and are typically larger than the carbonate-rich globules ranging from 2 to several centimeters in diameter. They are characterized by clear reaction rims and contain several silicate minerals such as garnet, diopside and phlogopite. The silicate-rich globules, reported here for the first time, are suggested to be related to the origin of andradite within the kimberlitic rocks. Our results show that calcite in the carbonate-rich globules has a high XCa (>0.97) and is characterized by extremely high concentrations of the total rare earth elements (up to 1500 ppm), enrichment in Sr (8521-10,645 ppm) and LREE, and remarkable depletion in Nd, Ta, Zr, Hf and Ti. The calcite in the silicate-rich globules is geochemically similar to those in the carbonate-rich globules except the lower trace element contents. Garnet is dominantly andradite (And59.56-92.32Grs5.67-36.03Pyr0.36-4.61Spe0-0.33) and is enriched in light rare earth elements (LREEs) and relatively depleted in Rb, Ba, Th, Pb, Sr, Zr and Hf. Phlogopite in the silicate-rich globules has a high Mg# ranging from 0.93 to 0.97. The composition of the diopside is Wo45.82-51.39En39.81-49.09Fs0.88-0.95 with a high Mg# ranging from 0.88 to 0.95. Diopside in the silicate-rich globules has low total rare earth element (REE) contents (14-31 ppm) and shows middle REE- (Eu to Gd), slight light REE- and heavy REE-enrichment with elevated Zr, Hf and Sr contents and a negative Nb anomaly in the normalized diagram. The matrix of the kimberlitic rocks are silica undersaturated (27.92-29.31 wt.% SiO2) with low Al2O3 (4.51-5.15 wt.%) and high CaO (17.29-17.77 wt.%) contents. The

  9. The "Large" in Large Igneous Provinces: Using Digital Geological Maps to Determine the Area, Magma Flux, and Potential Environmental Impact of the Wrangellia Flood Basalts

    NASA Astrophysics Data System (ADS)

    Scoates, J. S.; Greene, A. R.; Weis, D. A.

    2010-12-01

    Large igneous provinces (LIPs), such as continental flood basalts and oceanic plateaus, are formed by relatively short duration, massive outpourings of basalt in intraplate settings. Their emplacement has been associated with global climatic and biotic change (e.g., end-Permian Siberian LIP). The magmatic products of a LIP typically cover an area >1 Mkm2, however erosion and exhumation may substantially reduce the original area and volume of a LIP, especially oceanic plateaus that have been tectonically dispersed during accretion (e.g., Caribbean, Wrangellia). The availability of digital geologic maps from government geologic surveys now allows for measuring the precise areal distribution of remnant LIP-products, which is essential information for estimating total volumes and ultimately potential environmental effects. The Wrangellia flood basalts represent one of the best-exposed accreted oceanic plateaus on Earth. This Triassic LIP is exposed in numerous fault-bound blocks in a belt extending discontinuously for 2300 km in the Pacific Northwest of North America. It contains exposures of submarine and subaerial volcanic rocks representing composite stratigraphic thicknesses of 3.5-6 km. From recently compiled digital geologic maps (British Columbia, Yukon, Alaska), the mapped exposures of the Wrangellia flood basalts are relatively small (25,256 km2 with 75% from Vancouver Island), which leads to minimum calculated erupted volumes of up to 1.4 x 105 km3 and an estimated magma flux of 0.03 km3/yr. The original areal distribution was substantially greater, perhaps by an order of magnitude or more, as the outcrop extent does not include regions covered by younger strata and surficial deposits nor does it account for the volcanic component of the terrane that may have been subducted. However, even this minimum volumetric output rate is comparable to recent estimates of long-term volumetric eruption rates for ocean islands such as Iceland (0.02-0.04 km3/yr) and Hawaii

  10. Epithermal mineralization controlled by synextensional magmatism in the Guazapares Mining District of the Sierra Madre Occidental silicic large igneous province, Mexico

    NASA Astrophysics Data System (ADS)

    Murray, Bryan P.; Busby, Cathy J.

    2015-03-01

    We show here that epithermal mineralization in the Guazapares Mining District is closely related to extensional deformation and magmatism during the mid-Cenozoic ignimbrite flare-up of the Sierra Madre Occidental silicic large igneous province, Mexico. Three Late Oligocene-Early Miocene synextensional formations are identified by detailed volcanic lithofacies mapping in the study area: (1) ca. 27.5 Ma Parajes formation, composed of silicic outflow ignimbrite sheets; (2) ca. 27-24.5 Ma Témoris formation, consisting primarily of locally erupted mafic-intermediate composition lavas and interbedded fluvial and debris flow deposits; (3) ca. 24.5-23 Ma Sierra Guazapares formation, composed of silicic vent to proximal ignimbrites, lavas, subvolcanic intrusions, and volcaniclastic deposits. Epithermal low-to intermediate-sulfidation, gold-silver-lead-zinc vein and breccia mineralization appears to be associated with emplacement of Sierra Guazapares formation rhyolite plugs and is favored where pre-to-synvolcanic extensional structures are in close association with these hypabyssal intrusions. Several resource areas in the Guazapares Mining District are located along the easternmost strands of the Guazapares Fault Zone, a NNW-trending normal fault system that hosts most of the epithermal mineralization in the mining district. This study describes the geology that underlies three of these areas, which are, from north to south: (1) The Monte Cristo resource area, which is underlain primarily by Sierra Guazapares formation rhyolite dome collapse breccia, lapilli-tuffs, and fluvially reworked tuffs that interfinger with lacustrine sedimentary rocks in a synvolcanic half-graben bounded by the Sangre de Cristo Fault. Deposition in the hanging wall of this half-graben was concurrent with the development of a rhyolite lava dome-hypabyssal intrusion complex in the footwall; mineralization is concentrated in the high-silica rhyolite intrusions in the footwall and along the

  11. New Geochemical and Isotopic Evidence for Igneous Activity at the Triassic-Jurassic Boundary: the Effects of Volcanism in the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Coe, A. L.

    2001-12-01

    Although the Triassic-Jurassic (T-J) boundary marks one of the `big five' extinction events of the Phanerozoic, the processes driving global change at that time remain obscure. The main contenders include substantial volcanic activity, large meteorite impacts, and major tectonic realignment. Recent results from high-precision Ar-Ar and U-Pb dating suggest that a major phase of volcanic activity, associated with the breakup of Pangea, started ~200 Ma ago in the so-called Central Atlantic magmatic province (Marzoli et al., Science 284, p. 616, 1999). However, it is often hard to accurately assess the global impact of this volcanic activity because of the difficulties in correlating igneous ages with the changes in the sedimentary successions which in practice define the position of the T-J boundary, and because of the difficulties in estimating the volume and extent of volcanic activity. In this study, we have adopted a new approach by determining the Mo, Re and platinum group element (PGE) abundances, and Os isotope compositions, of a suite of fully marine organic-rich mudrocks from three T-J boundary sections in the U.K. One of these sections (St. Audrie's Bay, Somerset) has been proposed as a candidate GSSP for the T-J boundary. The underlying rationale is that organic-rich mudrocks concentrate these elements from seawater, and reflect the particular geochemical and isotopic characteristics of seawater on a global scale at the time of mudrock deposition. Because the Re and PGE signatures of chondritic meteorites and terrestrial volcanism are distinctive, as are the signatures they impart to seawater, the patterns of these elements in well-preserved mudrock samples should help to define both the timing and nature of environmental change at the T-J boundary. Our new results show that Os abundances in marine mudrocks increased more than five-fold in the latest Triassic; Re abundances started to rise at the same time and had increased by up to 2 orders of magnitude in

  12. Chalcophile element geochemistry and petrogenesis of high-Ti and low-Ti magmas in the Permian Emeishan large igneous province, SW China

    NASA Astrophysics Data System (ADS)

    Wang, Christina Yan; Zhou, Mei-Fu; Qi, Liang

    2011-02-01

    Sulfide-poor mafic layered intrusions, sills/dykes and lava flows in the Funing region, SW China, are part of the ~260 Ma Emeishan large igneous province. They belong to either a high-Ti group (TiO2 = 1.6-4.4 wt%) with elevated Ti/Y ratios (351-1,018), or a low-Ti group (TiO2 < 1.2 wt%) with low Ti/Y ratios (133-223). This study investigates the role of fractionation of olivine, chromite and sulfide on the distributions of chalcophile elements, Ni, Cu and PGE, of the high-Ti and low-Ti group rocks at Funing. The high-Ti group rocks contain 1.6-5.3 ppb Pt + Pd, 0.06-0.43 ppb Ir and 0.01-0.13 ppb Ru, and show relative constant (Cu/Pd)PM ratios (4.0-9.7) and a negative correlation between Ni/Pd and Cu/Ir ratios. Fractionated IPGE/PPGE patterns and very negative Ru anomalies of the high-Ti group rocks, together with low Fo values (59-62 mol%) of olivine, indicate that the high-Ti magmas may have experienced fractionation of olivine and chromite under S-undersaturated condition. Based on the PGE concentrations, the low-Ti group rocks can be further divided into two subgroups; a high-PGE low-Ti subgroup and a low-PGE low-Ti subgroup. The high-PGE low-Ti group rocks are rich in MgO (10-20 wt%), but Fo values of olivine from the rocks are low (74-76 mol%). The rocks contain highly variable PGE (Pt + Pd = 1.7-88 ppb, Ir = 0.05-1.3 ppb), Ni (179 -1,380 ppm) and Cu (59-568 ppm). They have Cu/Zr ratios >1, low (Y/Pd)PM ratios (0.2-7.1) and nearly constant (Cu/Pd)PM ratios (1.5-3.8). The even and parallel chalcophile element patterns of the high-PGE low-Ti subgroup rocks are likely a result of olivine-dominated fractionation under S-undersaturated condition. The low-PGE low-Ti group rocks have low MgO (4.5-8.9 wt%) and very poor PGE (Pt + Pd 0.5-1.6 ppb, Ir 0.004-0.02 ppb) with low Cu/Zr ratios (0.1-0.5), high (Y/Pd)PM (26-70) and variable (Cu/Pd)PM ratios (2.8-14). The trough-like chalcophile element patterns of the low-PGE low-Ti subgroup rocks indicate that the magmas were

  13. Magmas and magmatic rocks: An introduction to igneous petrology

    SciTech Connect

    Middlemost, E.A.K.

    1986-01-01

    This book melds traditional igneous petrology with the emerging science of planetary petrology to provide an account of current ideas on active magmatic and volcanic processes, drawing examples from all igneous provinces of the world as well as from the moon and planets. It reviews the history and development of concepts fundamental to modern igneous petrology and includes indepth sections on magmas, magnetic differentiation and volcanology.

  14. The importance of late- and post-orogenic crustal growth in the early Proterozoic: Evidence from Sm-Nd isotopic studies of igneous rocks in the Makkovik Province, Canada

    NASA Astrophysics Data System (ADS)

    Kerr, Andrew; Fryer, Brian J.

    1994-07-01

    Sm-Nd isotopic studies suggest that large tracts of 1900-1700 Ma old crust in Laurentia-Baltica is of 'juvenile' origin. This crust has generally been ascribed to arc magmatism, sustained over long periods, and most conceptual models for crustal growth emphasize this process. The late- to post-orogenic granitoid rocks that areally dominate many ancient orogenic belts are commonly viewed as anatectic derivatives of the earlier arc-type crust. However, in regions of short crustal residence, the time resolution of isotopic tracers, such as the Sm-Nd system, does not permit discrimination between this model and continued growth of the crust during post-orogenic magmatism. The relative contributions of recycled crust and new, mantle-derived material in late- to post-orogenic magmas can only be assessed where they also transect much older crustal blocks. The Nd isotopic signatures of 1800-1720 Ma igneous suites in the Makkovik Province define such a boundary between an Archean craton and a juvenile Proterozoic domain. In the juvenile domain, the Nd signatures of most igneous suites are equivocal (initial epsilon(sub Nd) = 0 to +2), and they could be anatectic derivatives of slightly older orthogneisses; however, addition of new, mantle-derived material is documented by 'A-type' granites with initial epsilon(sub Nd) up to +4. In the cratonic domain, temporally and compositionally equivalent igneous suites mostly have initial epsilon(sub Nd) of -7 to -3, significantly above local Archean basement, which has epsilon(sub Nd) of -15 at 1800 Ma. Conservative calculations suggest that most of these suites contain more than 50% new, mantle-derived material. These results suggest significant crustal growth via late-stage magmatism, and direct interaction of mantle-derived magmas and lower crustal rocks. In contrast, 1650 Ma igneous suites lack clear systematic variation in epsilon(sub Nd), and are interpreted as representing crustal growth via later, distal, arc-type magmatism

  15. Two mantle sources, two plumbing systems: Tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province

    USGS Publications Warehouse

    Arndt, N.; Chauvel, C.; Czamanske, G.; Fedorenko, V.

    1998-01-01

    Rocks of two distinctly different magma series are found in a ???4000-m-thick sequence of lavas and tuffs in the Maymecha River basin which is part of the Siberian flood-volcanic province. The tholeiites are typical low-Ti continental flood basalts with remarkably restricted, petrologically evolved compositions. They have basaltic MgO contents, moderate concentrations of incompatible trace elements, moderate fractionation of incompatible from compatible elements, distinct negative Ta(Nb) anomalies, and ??Nd values of 0 to + 2. The primary magmas were derived from a relatively shallow mantle source, and evolved in large crustal magma chambers where they acquired their relatively uniform compositions and became contaminated with continental crust. An alkaline series, in contrast, contains a wide range of rock types, from meymechite and picrite to trachytes, with a wide range of compositions (MgO from 0.7 to 38 wt%, SiO2 from 40 to 69 wt%, Ce from 14 to 320 ppm), high concentrations of incompatible elements and extreme fractionation of incompatible from compatible elements (Al2O3/TiO2 ??? 1; Sm/Yb up to 11). These rocks lack Ta(Nb) anomalies and have a broad range of ??Nd values, from -2 to +5. The parental magmas are believed to have formed by low-degree melting at extreme mantle depths (>200 km). They bypassed the large crustal magma chambers and ascended rapidly to the surface, a consequence, perhaps, of high volatile contents in the primary magmas. The tholeiitic series dominates the lower part of the sequence and the alkaline series the upper part; at the interface, the two types are interlayered. The succession thus provides evidence of a radical change in the site of mantle melting, and the simultaneous operation of two very different crustal plumbing systems, during the evolution of this flood-volcanic province. ?? Springer-Verlag 1998.

  16. Emplacement of kamafugite lavas from the Goiás alkaline province, Brazil: constraints from whole-rock simulations

    NASA Astrophysics Data System (ADS)

    Junqueira-Brod, Tereza Cristina; Gaspar, José Carlos; Brod, José Affonso; Jost, Hardy; Barbosa, Elisa Soares Rocha; Kafino, Camilla Vasconcelos

    2005-03-01

    The Late Cretaceous Goiás alkaline province (GAP) is composed of alkaline plutonic bodies (north), diatremes with subordinate flows, dykes, and plugs (central), and dominant lava flows and pyroclastics (south). In this work, we describe field and petrographic aspects of coherent kamafugites from Santo Antônio da Barra in the southern GAP and Águas Emendadas in the central GAP. Intensive variables inferred from simulations using whole-rock chemical data constrain the behavior of these kamafugitic magmas from their origin in the mantle to their final emplacement as upper-crust magma chambers, diatreme structures, and lava flows. In most cases, the evidence indicates that differentiation in both deep- and shallow-seated magma chambers intervened in their evolution. The discordance between the Precambrian basement and the Phanerozoic sedimentary rocks is the most likely site where the shallow chambers were established, whereas the deeper chambers were probably located in the upper crust. CO 2 seems to be the most important volatile phase. An interplay of various possible evolution paths involving crystal fractionation, magma mixing, and liquid immiscibility may explain the range of observed features in GAP kamafugites.

  17. Kamafugitic diatremes: their textures and field relationships with examples from the Goiás alkaline province, Brazil

    NASA Astrophysics Data System (ADS)

    Junqueira-Brod, Tereza Cristina; Gaspar, José Carlos; Brod, José Affonso; Kafino, Camilla Vasconcelos

    2005-03-01

    Kamafugitic rocks intruded the Precambrian basement and Phanerozoic sediments at the northeast border of the Paraná basin as part of the Late Cretaceous Goiás alkaline province (GAP). Plutonic complexes dominate the north of the province, whereas lavas and pyroclastic rocks prevail in the south. The central GAP is characterized by kamafugitic diatremes, which may crop out continuously for up to 850 m and consist of a central breccia body, surrounded and overlain by lava flows and crosscut by dykes. The breccias contain some special spheroidal juvenile fragments—namely, accretionary and armored lapilli, frozen droplets, spinning droplets, and wrapped fragments—whose textural and mineralogical aspects are described in detail. Irregularly shaped tuff pockets that occur within the breccias contain textures and structures similar to those of subaerial surge deposits and formed in confined, high gas to solid+liquid ratio domains in the conduit. Diatreme emplacement affected the country rock through thermal metamorphism, development of columnar jointing, and formation of peperite-like mixtures. There is no evidence of phreatomagmatic activity in the diatremes, and CO 2, rather than H 2O, seems to have been the major volatile component of the kamafugitic magmas. This finding implies that features such as accretionary lapilli and peperites are not exclusively associated with H 2O-dominated processes.

  18. Central Appalachian Valley and Ridge Province Cenozoic igneous activity and its relation in space and time with the Late Jurassic rift-to-drift-related alkalic dikes

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Schultz, L.; Hendriks, B. W.; Harbor, D. J.; Connors, C. D.

    2011-12-01

    A Swarm of Late Jurassic alkalic intrusions, geographically limited mainly to the Augusta County in western Virginia has been studied geochemically. These dykes were emplaced along a northwest-southeast cross-strike basement fracture zone during Mesozoic extension. However, not all igneous rocks in Virginia are Jurassic; published K-Ar ages already suggested an Eocene age activity around Monterey, VA. We systematically sampled and studied these rocks geochemically and used the Ar-Ar dating technique to define a more precise age for this youngest volcanic activity East of the Mississippi. The younger igneous bodies have traditionally been interpreted as intrusive bodies representing old plumbing systems of eroded volcanic centers. This hypothesis is based on studies of aphanitic to porphyritic and occasionally vesicular hard rocks from quarries and road cuts. Pyroclastic deposits have mainly been neglected during theses earlier studies. However additional petrographic studies of volcanic sediments are able to shed light not only on the volcanic nature of these pyroclastic rocks but also on eruption mechanisms and magma crust interactions. Our petrographic studies indicate that these volcanic sediments contain different clasts of igneous and sedimentary country rocks (sandstones and limestones of different formations), fresh glass shards and crystals of predominantly pyroxene, hornblende and micas. A previously unmapped, massive, m-thick andesitic pyroclastic deposit has been studied in detail to shed light on the formation of theses volcanic sediments. Field relations and observations (e.g. denser rock fragments are enriched in the lower part of the sequence and bedding is largely parallel to the present topography) are consistent with a massive welded ignimbrite. As a result, surface erosion after the eruption must be less significant than previously believed and some rocks are clearly volcanic in nature. Petrogenetically the Jurassic magmas are much more alkalic

  19. Multiple shallow level sill intrusions coupled with hydromagmatic explosive eruptions marked the initial phase of Ferrar large igneous province magmatism in northern Victoria Land, Antarctica

    USGS Publications Warehouse

    Viereck-Goette, L.; Schöner, R.; Bomfleur, B.; Schneider, J.

    2007-01-01

    Field data gathered during GANOVEX IX (2005/2006) in Northern Victoria Land, Antarctica, indicate that volcaniclastic deposits of phreatomagmatic eruptions (so-called Exposure Hill Type events) are intercalated with fluvial deposits of Triassic-Jurassic age at two stratigraphic levels. Abundant scoriaceous spatter (locally welded) indicates a hawaiian/strombolian component. Breccia-filled diatremes, from which volcaniclastic deposits were sourced, are rooted in sills which intruded wet sediments. The deposits are thus subaerial expressions of initial Ferrar magmatism involving intrusion of multiple shallow-level sills. Due to magma-sediment interaction abundant clastic dikes are developed that intrude the sediments and sills. All igneous components in the volcaniclastic deposits are andesitic in composition, as are the chilled margins of the sills. They are more differentiated than the basaltic andesites of the younger effusive section of Kirkpatrick plateau lavas which in northern Victoria Land start with pillow lavas and small volume lava flows from volcanic necks.

  20. Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico

    USGS Publications Warehouse

    Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; Gehrels, G.E.; Wooden, J.L.

    2008-01-01

    New U-Pb zircon ages, geochemistry, and Nd isotopic data are presented from three localities in the Paleoproterozoic Mazatzal province of southern New Mexico, United States. These data help in understanding the source regions and tectonic setting of magmatism from 1680 to 1620 Ma, the timing of the Mazatzal orogeny, the nature of postorogenic maginatism, Proterozoic plate tectonics, and provide a link between Mazatzal subblocks in Arizona and northern New Mexico. The data indicate a period from 1680 to 1650 Ma in which juvenile felsic granitoids were formed, and a later event between 1646 and 1633 Ma, when these rocks were deformed together with sedimentary rocks. No evidence of pre-1680 Ma rocks or inherited zircons was observed. The igneous rocks have ENd(t) from -1.2 to +4.3 with most between +2 and +4, suggesting a mantle source or derivation from similar-aged crust. Nd isotope and trace element concentrations are consistent with models for typical are magmatism. Detrital zircon ages from metasedimentary rocks indicate that sedimentation occurred until at least 1646 Ma. Both local and Yavapai province sources contributed to the detritus. All of the samples older than ca. 1650 Ma are deformed, whereas undeformed porphyroblasts were found in the contact aureole of a previously dated 1633 Ma gabbro. Regionally, the Mlazatzal orogeny occurred mainly between 1654 and 1643 Ma, during final accretion of a series of island arcs and intervening basins that may have amalgamated offshore. Rhyolite magmatism in the southern Mazatzal province was coeval with gabbro intrusions at 1633 Ma and this bimodal magmatism may have been related to extensional processes following arc accretion. ?? 2007 Geological Society of America.

  1. A Strongly Calc-alkaline Suite in the Midst of the Tholeiitic Columbia River Basalt Province: Implications for Generating the Calc-alkaline Trend Without Subduction Processes

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2012-12-01

    The mid-Miocene lavas of the Strawberry Volcanics (SV), distributed over 3,400 km2 in NE Oregon, comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The volcanic suite is mainly composed of calc-alkaline (CA) basaltic andesite and andesite, yet tholeiitic (TH) lavas of basalt to andesite occur as well. The SV lies in the heart of nearly coeval flood basalts of the Columbia River province of the Pacific Northwest. The unique combination of strongly CA rocks of the SV in a non-subduction setting provide an excellent opportunity to study controls on inducing CA evolution in the midst of a TH province and independent of processes taking places at an active subduction zone. New 40Ar/39Ar ages indicate CA basaltic andesites to andesites of the SV erupted at least from 14.78±0.13 Ma to 12.44±0.12 Ma demonstrating that CA magmatism of the SV was ongoing during the eruptions of the tholeiitic Wanapum Basalt member of the Columbia River Basalt Group (CRBG). This range will likely be extended to even older ages in the future because existent age dates did not include samples from near the base of the SV. Thickness of intermediate lavas flows of the SV range from 15 m to as thin as 2 m and lavas are characterized by mostly phenocryst poor lithologies. When phenocrysts are abundant they are very small suggesting growth late during eruption. Single lava flow sections can include on the order of 30 conformable flows, testifying to a vigorous eruption history. The thickest andesitic sections are located in the glacially carved mountains of the Strawberry Mountain Wilderness (i.e. Strawberry Mountain, High Lake, and Slide Lake) where several vent complexes are exposed, which are delineated by dikes and plugs with finely interlocking plutonic textures, cross-cutting SV lava flows. Dikes generally strike NW-SE. Subtle variations in major and trace element compositions exist between TH and CA lavas of the SV. The CA lavas of the SV are

  2. Petrology and U-PB geochronology of the Robertson River Igneous Suite, Blue Ridge province, Virginia - Evidence for multistage magmatism associated witn an early episode of Laurentian rifting

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.

    1996-01-01

    The Late Neoproterozoic (735-702 Ma) Robertson River Igneous Suite includes at least eight plutons ranging in composition from syenogranite to alkali feldspar granite to alkali feldspar syenite. These plutons intruded Mesoproterozoic (1.2-1.0 Ga) gneissic basement of the Blue Ridge anticlinorium in northern and central Virginia during an early episode of Laurentian rifting. Robertson River plutons range in composition from metaluminous to peralkaline and, relative to other granite types, exhibit compositional characteristics of A-type granitoids including (1) marked enrichment in Nb, Zr, Y, REE (except Eu), and Ga, (2) high Ga/Al and FeO(total)/MgO, and (3) depletion of Ba and Sr. High Ga/Al ratios are particularly diagnostic of the suite and serve as an effective discriminant between originally metaluminous and peralkaline bulk compositions, providing a useful proxy for widely used indicators based on major elements that are prone to remobilization. U-Pb isotopic analyses of zircons indicate that the suite was emplaced in two pulses, occurring at 735 to 722 and 706 to 702 Ma. Metaluminous magmas were emplaced during both pulses, formed most of the main batholith, and fractionated as independent, time-correlative groups. Peralkaline magmas were emplaced only during the final pulse, formed a volcanic center that erupted unknown quantities of rhyolite, and experienced a style of fractionation similar to the metaluminous types. Differences in Ce/Nb, Y/Nb, and Yb/Ta ratios suggest that the metaluminous and peralkaline magmas were derived from different sources. The Robertson River Igneous Suite is part of a regional group of Late Neoproterozoic (760-700 Ma) plutons including at least 20 other A-type granitoid bodies exposed throughout the Laurentian terrane of Virginia and northwestern North Carolina. Like the Robertson River, most of the other granitoids are metaluminous in composition, typically form multi-intrusive, elongate plutons, and are not geographically

  3. Lunar igneous intrusions.

    PubMed

    El-Baz, F

    1970-01-02

    Photographs taken from Apollo 10 and 11 reveal a number of probable igneous intrusions, including three probable dikes that crosscut the wall and floor of an unnamed 75-kilometer crater on the lunar farside. These intrusions are distinguished by their setting, textures, structures, and brightness relative to the surrounding materials. Recognition of these probable igneous intrusions in the lunar highlands slupports the indications of the heterogeneity of lunar materials and the plausibility of intrusive igneous activity, in addition to extrusive volcanism, on the moon.

  4. Oxygen isotope evolution of the Lake Owyhee volcanic field, Oregon, and implications for the low-δ18O magmatism of the Snake River Plain-Yellowstone hotspot and other low-δ18O large igneous provinces

    NASA Astrophysics Data System (ADS)

    Blum, Tyler B.; Kitajima, Kouki; Nakashima, Daisuke; Strickland, Ariel; Spicuzza, Michael J.; Valley, John W.

    2016-11-01

    The Snake River Plain-Yellowstone (SRP-Y) hotspot track represents the largest known low-δ18O igneous province; however, debate persists regarding the timing and distribution of meteoric hydrothermal alteration and subsequent melting/assimilation relative to hotspot magmatism. To further constrain alteration relations for SRP-Y low-δ18O magmatism, we present in situ δ18O and U-Pb analyses of zircon, and laser fluorination δ18O analyses of phenocrysts, from the Lake Owyhee volcanic field (LOVF) of east-central Oregon. U-Pb data place LOVF magmatism between 16.3 and 15.4 Ma, and contain no evidence for xenocrystic zircon. LOVF δ18O(Zrc) values demonstrate (1) both low-δ18O and high-δ18O caldera-forming and pre-/post-caldera magmas, (2) relative increases in δ18O between low-δ18O caldera-forming and post-caldera units, and (3) low-δ18O magmatism associated with extension of the Oregon-Idaho Graben. The new data, along with new compilations of (1) in situ zircon δ18O data for the SRP-Y, and (2) regional δ18O(WR) and δ18O(magma) patterns, further constrain the thermal and structural associations for hydrothermal alteration in the SRP-Y. Models for low-δ18O magmatism must be compatible with (1) δ18O(magma) trends within individual SRP-Y eruptive centers, (2) along axis trends in δ18O(magma), and (3) the high concentration of low-δ18O magmas relative to the surrounding regions. When considered with the structural and thermal evolution of the SRP-Y, these constraints support low-δ18O magma genesis originating from syn-hotspot meteoric hydrothermal alteration, driven by hotspot-derived thermal fluxes superimposed on extensional tectonics. This model is not restricted to continental hotspot settings and may apply to several other low-δ18O igneous provinces with similar thermal and structural associations.

  5. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  6. Geochemistry of tertiary alkaline rocks of the Eastern Trans-Pecos Magmatic Province, Texas

    NASA Astrophysics Data System (ADS)

    Nelson, Dennis O.; Nelson, Kerri L.; Reeves, Keith D.; Mattison, G. David

    1987-09-01

    The Trans-Pecos Magmatic Province (TPMP) is an alkalic field that was active between 48-17 Ma. Rocks of two subprovinces in the eastern alkalic belt of the TPMP, the Big Bend region and the Davis Mountains, have been analyzed for major and trace element concentrations in order to determine what magmatic processes operated to influence the compositional evolution of the magmas, and to explore what relationship existed between the silica-oversaturated evolved rocks and the silica-undersaturated mafic rocks. Similar compositional trends exist in both subprovinces, implying that the evolved rocks are genetically related to the mafic rocks, and that the differentiation processes were broadly reproducible spatially and temporally. Four stages of evolution have been identified: Stage I, alkali basalt to trachyte; stage II, trachyte to quartz trachyte; stage III, quartz trachyte to rhyolite/comendite; and stage IV, rhyolite/comendite to high-silica rhyolite/comendite. These stages were identified by discontinuities in trends on variation diagrams; within stages I and II, more than one subtrend exist. Stage I can best be modeled as the result of simple crystal fractionation with minor magma replenishment. Two subtrends within this stage indicate that variations in the processes or their rates may have occurred. Stage II exhibits both closed- and open-system behavior. The open system behavior consists of combined fractionation-assimilation and episodic mixing of stage II and stage I magmas. Stages III and IV evolved under open system processes of combined fractionation-assimilation, with the assimilant having compositional characteristics of a shale-dominated sedimentary assemblage. The four stages and subtrends within the stages occur in both subprovinces. Further, some subtrends comprise rocks that differ in age by as much as 10 m.y. In each subprovince, the stratigraphy indicates a random interlaying of rocks of the different stages, generally erupted from more than one

  7. Cosmic markers, 40Ar/ 39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province

    NASA Astrophysics Data System (ADS)

    Courtillot, V.; Gallet, Y.; Rocchia, R.; Féraud, G.; Robin, E.; Hofmann, C.; Bhandari, N.; Ghevariya, Z. G.

    2000-10-01

    Bhandari et al. [Bhandari et al., Geophys. Res. Lett. 22 (1995) 433-436; Bhandari et al., Geol. Soc. Am. Spec. Paper 307 (1996) 417-424] reported the discovery of iridium-bearing sediments sandwiched between basalt flows in the Anjar area (Kutch province, India). They concluded that the signature of the K/T impact had been recorded and that onset of volcanism in the Deccan traps preceded the K/T boundary, excluding the possibility of a causal connection. This paper reports complementary analyses of Anjar outcrops by a joint Indo-French team, where we focused on cosmic markers (iridium and spinels) in the intertrappean sediments and 40Ar/ 39Ar dating and paleomagnetism of the lava flows. Anomalous Ir concentrations (up to 0.4 ng/g) are confirmed, with up to three thin and patchy enriched layers which cannot be traced throughout the exposed sections. Despite careful search, no Ni-rich spinels were found. Eight basalt samples provided 40Ar/ 39Ar results, four on plagioclase bulk samples, four on whole rocks. Spectra for whole rocks all indicate some amount of disturbance, and ages based on plagioclase bulk samples seem to be consistently more reliable [Hofmann et al., Earth Planet. Sci. Lett. 180 (2000) 13-28]. The three flows underlying the Ir-bearing sediments are dated at ˜66.5 Ma, and two overlying flows at ˜65 Ma. Magnetic analyses (both thermal and by alternating fields) uncovered clear reversed primary components in the upper flows, and more disturbed normal components in the lower flows, with evidence for an additional reversed component. There are reports [Bajpai, Geol. Soc. India Mem. 37 (1996) 313-319; Bajpai, J. Geol. Soc. London 157 (2000) 257-260] that the intertrappean sediments contain uppermost Maastrichtian dinosaur and ostracod remains above the uppermost Ir-bearing level, and may not be mechanically disturbed. We propose the following scenario to interpret these multiple field and analytical observations. Deccan trap volcanism started within

  8. Kamafugitic diatremes: facies characterisation and genesis—examples from the Goiás Alkaline Province, Brazil

    NASA Astrophysics Data System (ADS)

    Junqueira-Brod, Tereza Cristina; Brod, José Affonso; Gaspar, José Carlos; Jost, Hardy

    2004-09-01

    This paper describes the internal organisation of two diatremes (Águas Emendadas and Neuzinha) and one small breccia-filled conduit (Tigre) in the central portion of the Late Cretaceous Goiás Alkaline Province (GAP), central Brazil, and explores the criteria for facies recognition. The GAP kamafugitic diatremes are emplaced into Carboniferous sandstones of the Aquidauana Formation, at the northern margin of the Paraná Basin. They are usually elliptical structures, not longer than 900 m, filled with breccia and partially covered by thin kamafugitic to basanitic lava flows. The breccias are dominated by juvenile pyroclasts, with subordinate amounts of cognate fragments and xenoliths. In addition to variations in ash and lapilli proportions, juvenile fragment types may be used to discriminate genetic processes and the corresponding pyroclastic deposits. An extensive field, textural and compositional dataset was analysed by multivariate statistical techniques. Combined with field observations, this allowed us to define a set of facies for kamafugitic diatremes, and, more importantly, to understand the internal structure of the studied bodies and to cross-correlate them. Seven distinct facies were recognised. The Fluidised Conduit Facies (FCF) represents high-energy, strongly fluidised but only moderately fragmented systems. It occurs in a confined environment, and is typical of deeper parts of the conduit, before the actual diatreme level is reached by the ascending fluidised magma. Large amounts of spinning droplets are formed within this region. The Fluidised Conduit-Diatreme Facies (FCDF) is characteristic of intermediate depths in the conduit, where highly fluidised and highly fragmented systems produce large amounts of ash. Spinning droplets decrease in abundance, ordinary juvenile fragments become very common, and xenoliths from the country rock in the immediate vicinity of the diatreme are present. The Fluidised Fragmented Facies (FFF) and the Magmatic

  9. [Micirobial diversity and screening of antitumor activity of actinomycete strains from saline and alkaline environments in the Qinghai Province, P. R. China].

    PubMed

    Chen, Yi-Guang; Jiang, Yi; Li, Wen-Jun; Cui, Xiao-Long; Xu, Li-Hua

    2007-10-01

    Soil and sediment samples were collected from saline and alkaline soils or lakes in the Qinghai Province, northwestern China. 145 actinomycete strains were isolated using Glucose-Peptone-Yeast extract agar (GPY) and ISP medium 2 agar supplemented with 1.0 - 3.0 mol/L NaCl at pH 7.5 - 10. The antitumor activities in vitro of the fermentation broth extracts from the 145 test strains were detected in 6 human tumor cell lines (gastric cancer GXF251L, lung cancer LXFL529L, mammary cancer MAXF401NL, melanoma cancer MEXF462NL, renal cancer RXF486L and uterus cancer UXF1138L). Out of 145 test strains, 26 strains were positive in antitumor activities (17.9%), among them 19 strains belong to the genus Nocardiopsis, 7 strains belong to the genus Streptomyces. Then 8 antitumor-positive strains were submitted for 16S rRNA gene amplification and phylogenetic analysis after a comparison of antitumor activities, morphological, physiological characteristics and whole cell amino acids analysis. The results suggested that strain YIM 80139 is a member of a known Streptomyces species S. griseus, while strain YIM 80038 may represent a potential new Streptomyce species, and that the other 6 strains may represent 4 potential new species of the genus Nocardiopsis. The results presented above showed that actinomycetes isolated from saline and alkaline samples are important resources for bioactive compounds, and the abundant microbial diversity in the saline and alkaline environments in the Qinghai Province, Northwestern China is attractive for further investigation.

  10. Geochemical and Sr-Nd-Pb Isotopic Insights of the Low-Ti basalts from Paraná-Etendeka Igneous Province, Southern Brazil: Constraints on Petrogenesis and the Role of Crustal Contamination

    NASA Astrophysics Data System (ADS)

    Raposo, I.; Barreto, C. J.; Lima, E. F. D.; Lafon, J. M.; Sommer, C. A.; Waichel, B. L.

    2015-12-01

    The south hinge of the Torres Syncline in southernmost Brazil hosts a volcanic succession of pahoehoe and rubbly Gramado-type lavas belonging to the ~132 Ma Paraná-Etendeka Igneous Province. We employ local-scale stratigraphy in three distinct profiles (Santa Cruz do Sul-Herveiras, Morro da Cruz and Lajeado geologic sections) as guidelines for geochemical and Sr-Nd-Pb isotope studies in order to discuss the petrogenesis of lava flows in a single magma type and to quantitatively evaluate the role of crustal contamination and the potential contaminants involved. In all profiles, the lava flows exhibit compositions ranging from basalt to andesite with tholeiitic affinity. The compositional and isotopic variations are not systematic according to stratigraphy, implying that the magma chamber could have undergone periodic replenishments or distinct magma pulses through time or multiple plumbling systems may have existed. The andesites (SiO2 55-58 wt.%) with ponded pahoehoe morphology represent evolved melts at early stages of volcanism with strong susceptibility to crustal contamination as they established pathways to the surface. The olivine basalts (SiO2 47-50 wt.%) and basaltic andesites (SiO2 51-56 wt.%) showing compound morphology and simple pahoehoe morphology, respectively, could be explained by longer time residence of liquids in the crust with higher degrees of crustal assimilation than the ponded pahoehoe lavas. The basaltic andesites (SiO2 52-56 wt. %) with rubbly morphology are related to late differentiation process in shallow magma chambers. Crustal assimilation process accounts for the high initial 87Sr/86Sr ratios at 0.707798-0.715751, very low ɛNd between -8.36 and -5.41, high 206Pb/204Pb ratios at 18.424-18.865, with intermediate 207Pb/204Pb and 208Pb/204Pb ratios at 15.649-15.710 and 38.618-39.369, respectively. The isotopic variations require assimilation of both Paleoproterozoic and Neoproterozoic contaminants at variable degrees.

  11. Melt inclusions in the olivine from the Nantianwan intrusion: Implications for the parental magma of Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions of the ∼260 Ma Emeishan large igneous province (SW China)

    NASA Astrophysics Data System (ADS)

    Zhang, Le; Ren, Zhong-Yuan; Wang, Christina Yan

    2017-02-01

    Olivine-hosted melt inclusions provide an archive of the parental magma and early magma history that is unavailable from bulk-rock analyses of cumulates. For those olivine-bearing mafic-ultramafic intrusions, a combined in situ analysis of major elements and Pb isotopic compositions for the melt inclusions and host olivine crystals may provide an effective way to understand the nature of the parental magma of the intrusions. In this study, we take the Nantianwan intrusion in the Emeishan large igneous province (SW China) as an example to analyze the melt inclusions and the host olivine. The Nantianwan intrusion is mainly composed of gabbronorite, with minor olivine gabbro. The olivine crystals in the olivine gabbro have Fo contents varying from 81.1 to 89.2 and Ni from 0.05 to 0.30 wt.%. The melt inclusion hosted in the most Mg-rich olivine has 50.9 wt.% SiO2, 1.0 wt.% TiO2, 15.1 wt.% MgO and 2.9 wt.% Na2O + K2O, indicating that the parental magma of the intrusion was of high-Mg basaltic composition. The melt inclusions overall have 208Pb/206Pb ratios of 2.0567-2.1032 and 207Pb/206Pb of 0.8287-0.8481, similar to the Pb isotopic compositions of the Emeishan flood basalts and consistent with insignificant crustal contamination. Given that the Nantianwan intrusion contains the most Mg-rich olivine among the Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions in the Emeishan LIP, we infer that the composition of the melt inclusion in the most Mg-rich olivine from the Nantianwan intrusion may represent the least evolved parental magma of the Ni-Cu-(PGE) sulfide-bearing mafic-ultramafic intrusions in the Emeishan LIP. This can be further used to constrain the magma process related to Ni-Cu-(PGE) sulfide mineralization.

  12. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf isotopes of the Wajilitag alkali mafic dikes, and associated diorite and syenitic rocks: Implications for magmatic evolution of the Tarim large igneous province

    NASA Astrophysics Data System (ADS)

    Zou, Si-Yuan; Li, Zi-Long; Song, Biao; Ernst, Richard E.; Li, Yin-Qi; Ren, Zhong-Yuan; Yang, Shu-Feng; Chen, Han-Lin; Xu, Yi-Gang; Song, Xie-Yan

    2015-01-01

    The Early Permian Tarim large igneous province (Tarim LIP) consists mainly of basaltic lavas, mafic-ultramafic intrusions including dikes and, syenite bodies in the Tarim Basin, NW China. A major unit of the Tarim LIP, the Wajilitag intrusive complex, consists of olivine pyroxenite, clinopyroxenite and gabbro units (from bottom to top), diorite and syenite rocks occurred in the upper part of the complex and alkali mafic dikes intrude the clinopyroxenite phase. Here we report the zircon U-Pb age and Hf isotopes, geochemical characteristics and Sr-Nd-Pb isotopic data of the alkali mafic dikes, and diorite, aegirine-nepheline syenite and syenite porphyry units in the Wajilitag intrusive complex. Zircons from the diorite and alkali mafic rocks yield concordant crystallization ages of 275.2 ± 1.2 Ma and 281.4 ± 1.7 Ma, respectively. The diorite and syenitic rocks in Wajilitag area have a narrow range of SiO2 contents (51.9-57.3 wt.%), and are enriched in total alkalis (Na2O + K2O = 8.3-14.3 wt.%), among which the aegirine-nepheline syenite and syenite porphyry have the geochemical affinity of A-type granites. The alkali mafic rocks and syenitic rocks have high Al2O3 (19.4-21.1 wt.%), Zr, Hf, Ba contents, total rare earth element abundances and LREE/HREE ratios and low Mg# value, K, P and Ti contents. Diorites have lower Al2O3 contents, total REE abundances and LREE/HREE ratios and higher Mg# values than the alkali mafic rocks and syenitic rocks. The diorites and syenitic rocks have low initial 87Sr/86Sr ratios (0.7034-0.7046), and high εNd(t) values (0.1-4.1) and zircon εHf(t) values (- 0.9-4.4). All the diorites and syenitic rocks show the 206Pb/204Pb ratios ranging of 18.0-19.5, 207Pb/204Pb of 15.4-15.6 and 208Pb/204Pb of 38.0-39.9. Sr-Nd isotopic ratios indicate a FOZO-like mantle source for the diorite and syenitic rocks, similar to that of the mafic-ultramafic rocks in the Wajilitag complex. In contrast, zircon Hf isotopes of basalt and syenite elsewhere in the

  13. Britholite-group minerals as sensitive indicators of changing fluid composition during pegmatite formation: evidence from the Keivy alkaline province, Kola peninsula, NW Russia

    NASA Astrophysics Data System (ADS)

    Zozulya, Dmitry R.; Lyalina, Lyudmila M.; Savchenko, Yevgeny E.

    2017-01-01

    The Keivy alkaline province, Kola Peninsula, NW Russia, consists of vast alkali granite massifs and several dike-like nepheline syenite bodies. It contains numerous rare-metal occurrences, formed by a complex sequence of magmatic, late-magmatic and post-magmatic (including pegmatitic) processes. The Sakharjok nepheline syenite pegmatite contains a remarkably diverse number of britholite group minerals, pointing to different physico-chemical conditions in the fluid. REE and actinides distribution in the host rock indicates that the late-magmatic (and pegmatitic) fluids were alkaline, with significant amounts of F and CO2. From REE and F variations of the britholite group minerals possible fluid compositions at different stages are suggested. The earliest fluorbritholite-(Ce) formed locally from a late magmatic, high temperature F-rich fluid. Fluorbritholite-(Y) presumably crystallized from a F-bearing and CO2-rich fluid; marked F saturation resulted in precipitation of abundant fluorite due to a temperature drop. Variations in REE and F contents in the most abundant fluorcalciobritholite indicate a successive decrease of F in the fluid during its evolution. The relationship between intergrown fluorapatite and fluorcalciobritholite and the presence of zones with a REE-rich fluorapatite between them indicate a continuous to sudden crystallization in this mineral sequence. The crystallization of the latest "calciobritholite" is related to the input into the fluid of CO2 and/or H2O.

  14. Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot

    USGS Publications Warehouse

    Wells, Ray; Bukry, David; Friedman, Richard; Pyle, Douglas; Duncan, Robert; Haeussler, Peter; Wooden, Joe

    2014-01-01

    Siletzia is a basaltic Paleocene and Eocene large igneous province in coastal Oregon, Washington, and southern Vancouver Island that was accreted to North America in the early Eocene. New U-Pb magmatic, detrital zircon, and 40Ar/39Ar ages constrained by detailed field mapping, global nannoplankton zones, and magnetic polarities allow correlation of the volcanics with the 2012 geologic time scale. The data show that Siletzia was rapidly erupted 56–49 Ma, during the Chron 25–22 plate reorganization in the northeast Pacific basin. Accretion was completed between 51 and 49 Ma in Oregon, based on CP11 (CP—Coccolith Paleogene zone) coccoliths in strata overlying onlapping continental sediments. Magmatism continued in the northern Oregon Coast Range until ca. 46 Ma with the emplacement of a regional sill complex during or shortly after accretion. Isotopic signatures similar to early Columbia River basalts, the great crustal thickness of Siletzia in Oregon, rapid eruption, and timing of accretion are consistent with offshore formation as an oceanic plateau. Approximately 8 m.y. after accretion, margin parallel extension of the forearc, emplacement of regional dike swarms, and renewed magmatism of the Tillamook episode peaked at 41.6 Ma (CP zone 14a; Chron 19r). We examine the origin of Siletzia and consider the possible role of a long-lived Yellowstone hotspot using the reconstruction in GPlates, an open source plate model. In most hotspot reference frames, the Yellowstone hotspot (YHS) is on or near an inferred northeast-striking Kula-Farallon and/or Resurrection-Farallon ridge between 60 and 50 Ma. In this configuration, the YHS could have provided a 56–49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed contemporaneously on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time

  15. Volcanic rocks of the Mendeleev Ridge (Arctic Ocean) - evidences for existence of the large igneous provinces within Arctic region: on the data of the High Arctic Russian Expedition "Arctic-2012"

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Kremenetsky, Alexander; Gusev, Evgeny; Shevchenko, Sergey; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Rodionov, Nikolay

    2013-04-01

    During the complex geological-geophysical survey within August-October 2012 cruise of the Russian Expedition "Arctica-2012" on 9 sampling station (dredge, box-corer, drill-core) spaced on 450 km from the south to north alongside the Mendeleev Ridge were recovered more than 100 kg submarine volcanic rocks (which is represented about 10-15% of the total recovered bottom material), from calc-alkaline basalts, normal and subalkaline tholeites till andesite-dacites, typical lavas with glassy matrix and volcanic breccias, tuff-breccias and subvolcanic dolerites. We have studied 4 volcanic samples which are drill-cored (30-60 cm) of basement rocks at the depths of 2000-2500 m (79° and 83°N) or consolidate fragments of 30 kg weight collected at the steep escarpments with >45° slopes, three of them are tholeitic basalts (SiO2: 45.4-50.7, Al2O3: 13.7-21.7, MgO: 3.4-4.8, TiO2: 2.5-2.8, CaO: 4.7-11.4, Fe2O3: 5.9-14.4, Na2O: 2.9-3.8, K2O: 0.5-2.1 %), but the other one - is tuffobreccia with angular fragments of crystallized basalts and dolerites, and hydrated carbonatized (LOI up to 20%, ??2 - 35%) matrix. Isotopic and geochemical characteristics of the sample studied (low degree of REE fractionation: Cen/Ybn 1.6-2.2, moderate enrichment of HREE - 10-15×?1, low ratios of highly incompatible trace elements: Th/Ce = 0.03-0.04, Th/Nb = 0.14-0.16, Ce/Nb = 1.0-4.1) are very similar to those of high-Ti alkaline basalts of continental traps (CFB) connected with large mantle plume activities [Arndt et al., 1998; Hofmann, 1988] and close to the earlier discovered basalts from Chukcha borderland [Mukasa et al., 2009, 2012]. Measured Sr, Nd ? Pb isotope compositions of basalts vary from moderately enriched to moderately depleted compositions (143Nd/144Nd= 0.512706 - 0.512887, 87Sr/86Sr=0.704127-0.708580, 206Pb/204Pb=18.66-19.07, 207Pb/204Pb= 15.51-15.65, 208Pb/204Pb=38.42-39.20), reflecting different stages of secondary alterations, melt contamination by sedimentary material of host

  16. Emplacement of the La Peña alkaline igneous complex, Mendoza, Argentina (33° S): Implications for the early Miocene tectonic regime in the retroarc of the Andes

    NASA Astrophysics Data System (ADS)

    Pagano, D. S.; Galliski, M. A.; Márquez-Zavalía, M. F.

    2014-03-01

    The La Peña alkaline complex (LPC) of Miocene age (18-19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400-2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW-SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N-S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R‧), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW-SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by

  17. Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust-mantle interaction and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong

    2014-10-01

    In situ zircon U-Pb ages and Hf isotopic data, major and trace elements, and Sr-Nd-Pb isotopic compositions are reported for Nanshanping alkaline rocks from the Zijingshan district in southwestern Fujian Province (the Interior or Western Cathaysia Block) of South China. The Nanshanping alkaline rocks, which consist of porphyritic quartz monzonite, porphyritic syenite, and syenite, revealed a Late Cretaceous age of 100-93 Ma. All of the rocks show high SiO2, K2O + Na2O, and LREE but low CaO, Fe2O3T, MgO, and HFSE (Nb, Ta, P, and Ti) concentrations. These rocks also exhibit uniform initial 87Sr/86Sr ratios of 0.7078 to 0.7087 and εNd(t) values of -4.1 to -7.2, thus falling within the compositional field of Cretaceous basalts and mafic dikes occurring in the Cathaysia Block. Additionally, these rocks display initial Pb isotopic compositions with a 206Pb/204Pbi ratio of 18.25 to 18.45, a 207Pb/204Pbi ratio of 15.63 to 15.67, and a 208Pb/204Pbi ratio of 38.45 to 38.88. Combined with the zircon Hf isotopic compositions (εHf(t) = -11.7 to -3.2), which are different from those of the basement rocks, we suggest that Nanshanping alkaline rocks were primarily derived from a subduction-related enriched mantle source. High Rb/Sr (0.29-0.65) and Zr/Hf (37.5-49.2) but relatively low Ba/Rb (4.4-8.1) ratios suggest that the parental magmas of these rocks were most likely formed via partial melting of a phlogopite-bearing mantle source with carbonate metasomatism. The relatively high SiO2 (62.35-70.79 wt.%) and low Nb/Ta (10.0-15.3) ratios, positive correlation between SiO2 and (87Sr/86Sr)I, and negative correlation between SiO2 and εNd(t) of these rocks suggest that the crustal materials were also involved in formation of the Nanshanping alkaline rocks. Combined with geochemical and isotopic features, we infer magmatic processes similar to AFC (assimilation and fractional crystallization) involving early fractionation of clinopyroxene and olivine and subsequent fractionation of

  18. Fluid inclusion studies on the Koraput Alkaline Complex, Eastern Ghats Province, India: Implications for mid-Neoproterozoic granulite facies metamorphism and exhumation

    NASA Astrophysics Data System (ADS)

    Nanda, J.; Panigrahi, M. K.; Gupta, S.

    2014-03-01

    Following ultrahigh temperature granulite metamorphism at ˜1 Ga, the Eastern Ghats Province of India was intruded by the Koraput Alkaline Complex, and was subsequently re-metamorphosed in the granulite facies in the mid-Neoproterozoic time. Fluid inclusion studies were conducted on silica undersaturated alkali gabbro and syenites in the complex, and a pre-metamorphic pegmatitic granite dyke that intrudes it. High density (1.02-1.05 g/cc), pseudo-secondary pure CO2 inclusions are restricted to metamorphic garnets within the gabbro and quartz within the granite, whereas moderate (˜0.92-0.95 g/cc) and low density (˜0.75 g/cc) secondary inclusions occur in garnet, magmatic clinopyroxene, plagioclase, hornblende and quartz. The isochores calculated for high density pseudo-secondary inclusions pass very close to the peak metamorphic window (˜8 kbar, 750 °C), and are interpreted to represent the fluid present during peak metamorphism that was entrapped by the growing garnet. Microscopic round inclusions of undigested, relict calcite in garnet suggest that the CO2 present during metamorphism of the complex was internally derived through carbonate breakdown. Pure to low salinity (0.00-10.1 wt% NaCl equivalent) aqueous intra-/intergranular inclusions showing unimodal normal distribution of final ice-melting temperature (Tm) and temperature of homogenization (Th) are present only in quartz within the granite. These represent re-equilibrated inclusions within the quartz host that were entrapped at the metamorphic peak. Rare, chemically precipitated graphite along the walls of carbonic inclusions is interpreted as a post-entrapment reaction product formed during decompression. The fluid inclusion evidence is consistent with rapid exhumation of a thickened lower crust following the mid-Neoproterozoic granulite facies metamorphic event. The study suggests that mantle CO2, transported by alkaline magma into the crust, was locked up within carbonates and released during

  19. Origins of Igneous Layering

    NASA Astrophysics Data System (ADS)

    Marsh, Bruce

    Anyone who has ever seen a photo of a layered intrusion, let alone visited one first hand, or even seen a thin section from one, cannot help but be impressed by the stunning record of crystal growth and deposition. Such bodies stand as majestic monuments of undeniable evidence that intricate magmatic processes exist, processes that couple crystallization, convection, and crystal sorting to form rocks so highly ordered and beautiful that they are a wonder to behold. These are the altars to which petrologists must carry their conceived petrologic processes for approval.Although significant in number, the best layered intrusions seem to be found almost always in remote places. Their names, Bushveld, Muskox, Kiglapait, Stillwater, Duke Island, Skaergaard, Rhum, ring through igneous petrology almost as historic military battles (Saratoga, Antietam, Bull Run, Manassas, Gettysburg) do through American history. People who have worked on such bodies are almost folk heros: Wager, Deer, Brown, Jackson, Hess, Irvine, McBirney, Morse; these names are petrologic household words. Yet with all this fanfare and reverence, layered instrusions are nearly thought of as period pieces, extreme examples of what can happen, but not generally what does. This is now all changing with the increasing realization that these bodies are perhaps highly representative of all magmatic bodies. They are simply more dynamically complete, containing more of the full range of interactions, and of course, exposing a more complete record. They are one end of a spectrum containing lava flows, lava lakes, large sills, plutons, and layered intrusions. This book uniquely covers this range with an abundance of first-hand field observations and a good dose of process conceptualization, magma physics, and crystal growth kinetics.

  20. Ages of igneous and hydrothermal events in the Round Mountain and Manhattan gold districts, Nye County, Nevada.

    USGS Publications Warehouse

    Shawe, D.R.; Marvin, R.F.; Andriessen, P.A.M.; Mehnert, H.H.; Merritt, V.M.

    1986-01-01

    Isotopic age determinations of rocks and minerals separated from them are applied to refining and correlating the geological history of igneous and mineralizing events in a part of the Basin and Range province. -G.J.N.

  1. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  2. Did in-place rotation of South America during the Early Cretaceous create both the early South Atlantic rift/salt basin and the Paraná-Etendeka large igneous province? Peter Szatmari1 and Edison J. Milani1 1Petrobras Research Center (CENPES) Geological Research & Development (PDGEO), Ilha do Fundão, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    Szatmari, P.; Milani, E.

    2012-12-01

    Large igneous provinces with continental flood basalts, some related to rifting, have been traditionally attributed to mantle plume heads rising from the lower mantle. The early Cretaceous South Atlantic rift, an archetype of plate tectonics, and the Paraná-Etendeka continental flood basalts on land outside the rift, formed as South America rotated clockwise about a pole in its northeastern tip (Rabinowitz & LaBrecque, 1979), away from Africa and toward the subduction zone on its Pacific margin. This rotation opened the early South Atlantic southward while it kept the Equatorial Atlantic gateway to the Central Atlantic and the Tethys closed by compression. Rifting started in the late Jurassic in the extreme south, near the subduction zone at the continent's southern tip. It rapidly propagated NNE, mainly along inherited late Proterozoic (mostly Ediacaran) fold belts, and reached what has later become the eastern end of the Equatorial margin still in latest Jurassic time. Massive mostly basaltic volcanism peaked about 20 Ma later in Hauterivian time (136 to 130 Ma), forming dike swarms which, in the south, are accompanied by flood basalts of the Paraná-Etendeka large igneous province. The massive rise of mostly tholeiitic magma resulted from hotspot-like high temperatures prevailing beneath the cold and thick Gondwana lithosphere that had remained unbroken since Proterozoic times for about 400 Ma. Early basalt dike swarms trending E-W and SE-NW were transversal to the rift. They are two-three hundred kilometers long and 1000-2000 km apart, penetrating far into the continent's unrifted lithosphere and cutting through all inherited Proterozoic structures that controlled rifting. The successive basalt dike swarms (and their individual dikes) increase in thickness to the southwest, away from the continent's pole of rotation, as does the width of the rift. The E-W-trending Ceará-Mirim dike swarm occurs in the extreme northeast of the continent. Further southwest the

  3. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos

    2016-10-01

    An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 < ΔFQM < +2.0). On the other hand, the RPSD plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.

  4. Ionium dating of igneous rocks.

    PubMed

    Kigoshi, K

    1967-05-19

    Local fractionation of uranium and thorium, between minerals within a sample of igneous rock at the time of crystallization, makes it possible to date its solidification by use of ionium and uranium. Results on samples of granite, pumice, and lava suggest that this method of dating is reliable.

  5. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  6. Synchronous alkaline and subalkaline magmatism during the late Neoproterozoic-early Paleozoic Ross orogeny, Antarctica: Insights into magmatic sources and processes within a continental arc

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, Graham; Cottle, John M.

    2016-10-01

    Extensive exposure of intrusive igneous rocks along the Ross orogen of Antarctica-an ancient accretionary orogen on the margin of East Gondwana-provides an exceptional opportunity to study continental arc magmatism. There is significant petrologic and geochemical variability in igneous rocks within a 500-km-long segment of the arc in southern Victoria Land. The conspicuous occurrence of carbonatite and alkaline silicate rocks (nepheline syenite, A-type granite, and alkaline mafic rocks) adjacent to large complexes of subalkaline granitoids is not adequately explained by traditional models for continental arc magmatism. Extensive geochemical analysis (> 100 samples) and zircon U-Pb geochronology (n = 70) confirms that alkaline and carbonatitic magmatism was partially contemporaneous with the emplacement of large subduction-related igneous complexes in adjacent areas. Major pulses of subalkaline magmatism were compositionally distinct and occurred at different times along the arc. Large bodies of subalkaline orthogneiss and granite (sensu lato) were emplaced over similar time intervals (ca. 25 Myr) to the north (ca. 515-492 Ma) and south (ca. 550-525 Ma) of the alkaline magmatic province, although the initiation of these major pulses of magmatism was offset by ca. 35 Myr. Alkaline and carbonatitic magmatism spanned at least ca. 550-509 Ma, overlapping with voluminous subalkaline magmatism in adjacent areas. The most primitive rocks from each area have similarly enriched trace element compositions, indicating some common characteristics of the magma sources along the arc. The samples from the older subalkaline complex have invariably low Sr/Y ratios (< 40), consistent with relatively shallow magma generation and differentiation. The younger subalkaline complex and subalkaline rocks within the area of the alkaline province extend to higher Sr/Y ratios (up to 300), indicative of generation and differentiation at deeper levels. The significant spatial and temporal

  7. Igneous Graphite in Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.

  8. Multiple origins for the Middle Jurassic to Early Cretaceous high-K calc-alkaline I-type granites in northwestern Fujian province, SE China and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Chang; Jiang, Yao-Hui; Liu, Zheng; Ni, Chun-Yu; Qing, Long; Zhang, Qiao; Zhu, Shu-Qi

    2016-03-01

    A comprehensive study of zircon U-Pb dating and in situ Hf isotopes, whole-rock major and trace element geochemistry and Sr-Nd isotopes was carried out for three late Mesozoic granitic plutons (Waitun, Shipi and Taiyuan) in northwestern Fujian province, SE China. We assess the origin of the granites and their relationship to the evolution of the late Mesozoic volcanic-intrusive complex belt in SE China. LA-ICP-MS zircon U-Pb dating shows that three plutons were emplaced in the Middle Jurassic to Early Cretaceous (168-109 Ma), in which the Waitun and Shipi plutons are intrusive complexes. All the plutons are composed of high-K calc-alkaline I-type granites with a great diversity in elemental and isotopic compositions. The granites have SiO2 contents of 68.3-78.5 wt.%, showing a gradual decrease in initial 87Sr/86Sr (0.7181 to 0.7091) and increase in εNd (T) (- 16.7 to - 8.1) and εHf (T) (in-situ zircon) (- 20.6 to - 6.9) with decreasing emplacement ages. Geochemical data suggest that the Middle Jurassic ( 168 Ma) Waitun granites are of purely crustal origin, derived by partial melting of a mixed source of Paleoproterozoic metaigneous ( 78%) and metasedimentary ( 22%) rocks at a depth of 30-40 km triggered by underplating of basaltic magma. Mixing of such crustal melts with about 10% basaltic magma could account for the origin of the Late Jurassic ( 161 Ma) Waitun granites. The Late Jurassic ( 156 Ma) Shipi and Early Cretaceous ( 134 Ma) Taiyuan granites were produced by extensive fractional crystallization of primary crustal melts, the source of which show relatively high proportion ( 82%) of metaigneous rocks. The Early Cretaceous ( 109 Ma) Shipi granites were generated by partial melting of a mixed source of Paleoproterozoic metaigneous ( 92%) and metasedimentary ( 8%) rocks at a depth of 30 km plus additional ( 15%) input from coeval basaltic magma. The granites were formed in a continental arc setting induced by northwestward subduction of the Paleo

  9. Magma storage of an alkali ultramafic igneous suite from Chamberlindalen, SW Svalbard

    NASA Astrophysics Data System (ADS)

    Gołuchowska, Karolina; Barker, Abigail K.; Czerny, Jerzy; Majka, Jarosław; Manecki, Maciej; Farajewicz, Milena; Dwornik, Maciej

    2016-10-01

    An alkali mafic-ultramafic igneous suite of composite intrusions, lenses and associated greenstones are hosted by Neoproterozoic metasedimentary sequences in Chamberlindalen, Southwest Svalbard. This study focuses on the alkali igneous suite of Chamberlindalen with a view to determining the conditions of magma storage. The rocks from Chamberlindalen display cumulate textures, are highly magnesian and are classified as alkaline by the occurrence of kaersutite. They have textures that indicate cocrystallization of primary magmatic minerals such as diopside, kaersutite-ferrokaersutite and biotite-phlogopite in different proportions. The historic magma plumbing system for the alkaline cumulates has been reconstructed by thermobarometry. Diopside and kaersutite crystallization in the alkaline cumulates show a dominant level of magma storage between 30 and 50 km in the subcontinental lithospheric mantle.

  10. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  11. Mineral Detector for Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Ishikawa, S. T.; Hart, S. D.; Gulick, V. C.

    2010-12-01

    We present a Raman spectral analysis tool that uses machine learning algorithms to classify pure minerals in igneous rocks. Experiments show greater than 90% accuracy classifying a test set of pure minerals against a database of similar reference minerals using an artificial neural network. Efforts are currently underway to improve this tool for use as a mineral detector in rock samples, an important milestone toward autonomously classifying rocks based on spectral, and previous imaging work. Although pure mineral classification has been widely successful, applying the same methods to rocks is difficult because the spectra may represent a combination of multiple, and often competing, mineral signatures. In such cases some minerals may appear with more intensity than others resulting in masking of weaker minerals. Furthermore, with our particular spectrometer (852 nm excitation, ~50 micron spot size), minerals such as potassium feldspar fluoresce, both obscuring its characteristic Raman features and suppressing those of weaker minerals. For example, plagioclase and quartz, two key minerals for determining the composition of igneous rocks, are often hidden by minerals such as potassium feldspar and pyroxene, and are consequently underrepresented in the spectral analysis. These technicalities tend to skew the perceived composition of a rock from its actual composition. Despite these obstacles, an experiment involving a training set of 26 minerals (plagioclase, potassium feldspar, pyroxene, olivine, quartz) and a test set of 57 igneous rocks (basalt, gabbro, andesite, diorite, dacite, granodiorite, rhyolite, granite) shows that generalizations derived from their spectral data are consistent with expected trends: as rock composition goes from felsic to mafic there is a marked increase in the detection of minerals such as plagioclase and pyroxene along with a decrease in the detection of minerals such as quartz and potassium feldspar. The results suggest that phaneritic

  12. 40Ar/39Ar ages and Sr-Nd-Pb isotopic compositions of alkaline and tholeiitic rocks from the northern Deccan Traps

    NASA Astrophysics Data System (ADS)

    Marzoli, A.; Parisio, L.; Jourdan, F.; Melluso, L.; Sethna, S. F.; Bellieni, G.

    2015-12-01

    The Deccan large igneous province in India was emplaced close to the Cretaceous-Paleogene boundary (K-Pg; 66.0 Ma) and is formed by tholeiitic and alkaline rocks. Definition of the origin of Deccan magmatism and of its environmental impact relies on precise and accurate geochronological analyses. We present new 40Ar/39Ar ages from the northern sector of the province. In this area, tholeiitic and alkaline rocks were contemporaneously emplaced at 66.60±0.35 to 65.25±0.29 Ma in the Phenai Mata area, while rocks from Rajpipla and Mt. Pavagadh yielded ages ranging from 66.40±2.80 to 64.90±0.80 Ma. Indistinguishable ages for alkaline and tholeiitic magmatism, coupled with distinct major and trace element and Sr-Nd-Pb isotopic compositions suggest that distinct mantle sources, necessary for the two magmatic series were synchronously active. The new ages are compared with previous ages, which were carefully screened and filtered and then recalculated in order to be comparable. The entire data set of geochronological data does not support a time-related migration of the magmatism related to the northward Indian Plate movement relative to the Reunion mantle plume. The main phase of magmatism, including the newly dated rocks from the Northern Deccan occurred across the K-Pg boundary, confirming a causal link between the emplacement of the province and the K-Pg mass extinction.

  13. Teaching Igneous Geology in Physical Geography: Some Recommendations.

    ERIC Educational Resources Information Center

    Powell, William E.

    1982-01-01

    The most common igneous minerals and their diagnostic properties, which the author considers the most significant and pragmatic aspect of igneous geology for physical geography students, are discussed. The nature of igneous geology is also examined. (RM)

  14. Kinetics of crystallization of igneous rocks

    SciTech Connect

    Kirkpatrick, R.J.

    1981-01-01

    The geochemistry of igneous rocks is discussed, with the primary objectives of bringing together the theories underlying the kinetics of crystallization of igneous rocks and illustrating the use of these theories in understanding experimental and observational data. The primary purpose of the chapter is to introduce current thinking about the kinetics of igneous rocks and to provide a basis for understanding other work. A basic assumption made in the discussion is that the rate of any chemical reaction, including the crystallization of igneous rocks, is zero at equilibrium and proceeds at a finite rate only at a finite deviation from equilibrium. As such, an understanding of the processes operating in igneous rocks requires an understanding of how deviation from equilibrium affects the rates and mechanisms of the processes occurring during crystallization. These processes are detailed, with special emphasis given to nucleation and crystal growth. (JMT)

  15. Ureilites are not igneous differentiates

    NASA Technical Reports Server (NTRS)

    Clayton, Robert N.; Mayeda, Toshiko K.

    1988-01-01

    Although most all meteorites are as old as the solar system (4.5 billion years), they can be subdivided into primitive and evolved groups, depending on the extent of their chemical and physical processing. Primitive meteorites, most of which are chondrites, are assemblages of dust and millimeter-sized pellets from the presolar nebula, which were not extensively heated and processed since their assembly. Thus they provide information about the conditions in the nebular cloud. Many of the evolved meteorites are achondrites, which are igneous rocks produced by melting on or within an asteroidal object known as the parent body. A major unsolved problem in solar system studies is identification of the source of heat which led to melting of the achondrites. The role of oxygen isotopes in establishing genetic relationships among meteorites is examined.

  16. On the Basic Principles of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2014-12-01

    How and why Differentiation occurs has dominated Igneous Petrology since its beginning (~1880) even though many of the problems associated with it have been thoroughly solved. Rediscovery of the proverbial wheel with new techniques impedes progress. As soon as thin section petrography was combined with rock and mineral chemistry, rock diversity, compositional suites, and petrographic provinces all became obvious. The masterful 1902 CIPW norm in a real sense solved the chemical mystery of differentiation: rocks are related by the addition and subtraction of minerals in the anciently appreciated process of fractional crystallization. Yet few believed this, even after phase equilibria arrived. Assimilation, gas transfer, magma mixing, Soret diffusion, immiscibility, and other processes had strong adherents, even though by 1897 Becker conclusively showed the ineffectiveness of molecular diffusion in large-scale processes. The enormity of heat to molecular diffusion (today's Lewis no.) should have been convincing; but few paid attention. Bowen did, and he refined and restated the result; few still paid attention. And in spite of his truly masterful command of experiment and field relations in promoting fractional crystallization, Fenner and others fought him with odd arguments. The beauty of phase equilibria eventually dominated at the expense of knowing the physical side of differentiation. Bowen himself saw and struggled with the connection between physical and chemical processes. Progress has come from new concepts in heat transfer, kinetics, and slurry dynamics. The key approach is understanding the dynamic competition between spatial rates of solidification and all other processes. The lesson is clear: Scholarship and combined field, laboratory and technical expertise are critical to understanding magmatic processes. Magma is a limitlessly enchanting and challenging material wherein physical processes buttressed by chemistry govern.

  17. Geophysical evidence of a Large Igneous Province (LIP) in the West Antarctic Rift System (WARS), and its potential influence on the stability of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2010-12-01

    The WAIS flows through the volcanically active WARS. The inland rift shoulder ranges from 4-5 km elevation, (5-7 km relief, the greatest in the world); it is coincident with the Transantarctic Mountains from northern Victoria land bordering the Ross Sea, south along the west and south side of the Ross Ice Shelf to the Horlick Mountains. It forms the boundary between East and West Antarctica in this area, but diverges to the Ellsworth Mountains and forms the inland boundary of the WAIS and WARS there. Throughout the WARS shoulder to the Horlick Mountains, exposures of mostly late Cenozoic alkaline volcanic rocks are reported, as is the case in the coastal Marie Byrd Land area on the Southern Ocean aide of the WARS. The Transantarctic Mountains, continue at a much lower elevation (2000-750 m) to form the boundary between East and West Antarctica in the Filchner Ice Shelf area. Aeromagnetic and radar ice-sounding surveys over the WAIS indicated numerous high-amplitude (100->1000 nT),5-50-km width, shallow-source, magnetic anomalies over a very extensive area (>500,000 km2 ) that has been interpreted as evidence of mostly subglacial volcanic eruptions (“volcanic centers”). Behrendt et al, (2005, 2008) interpreted these anomalies as >1000 "volcanic centers" requiring high remanent normal (and at least 10% reversed) magnetizations in the present field direction. These data were interpreted to show that >80% of the anomaly sources at the bed of the WAIS, were modified by the moving ice, requiring a younger age than the WAIS (~25 Ma). Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS. Although exposed volcanoes surrounding the WAIS extend in age to ~34 Ma., Mt Erebus (<1 Ma), Mt. Melbourne (<0.26 Ma), and Mt. Takahe (<0.1 Ma) are examples of active volcanoes in the WAIS area. However, most "volcanic centers" are buried beneath the WAIS. If only a very small percentage of these >1000

  18. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  19. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits

    USGS Publications Warehouse

    du Bray, Edward A.

    2014-01-01

    The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.

  20. Les granitoïdes hercyniens post-collisionnels du Maroc oriental : une province magmatique calco-alcaline à shoshonitiqueThe post-collisional Hercynian granitoids from eastern Morocco: a calc-alkaline to shoshonitic magmatic province

    NASA Astrophysics Data System (ADS)

    El Hadi, Hassan; Tahiri, Abdelfatah; Reddad, Aicha

    2003-11-01

    The post-collisional Hercynian granitoids crop out in the easternmost part of the Moroccan Hercynian belt. Petrographical and geochemical studies show a composition similarity in the various granitoids. The granitoids belong to per-aluminous and metaluminous magmatic associations. They have evolved according to a scheme similar to high-K calc-alkaline to shoshonitic associations. To cite this article: H. El Hadi et al., C. R. Geoscience 335 (2003).

  1. Magnetic fabric constraints of the emplacement of igneous intrusions

    NASA Astrophysics Data System (ADS)

    Maes, Stephanie M.

    Fabric analysis is critical to evaluating the history, kinematics, and dynamics of geological deformation. This is particularly true of igneous intrusions, where the development of fabric is used to constrain magmatic flow and emplacement mechanisms. Fabric analysis was applied to three mafic intrusions, with different tectonic and petrogenetic histories, to study emplacement and magma flow: the Insizwa sill (Mesozoic Karoo Large Igneous Province, South Africa), Sonju Lake intrusion (Proterozoic Midcontinent Rift, Minnesota, USA), and Palisades sill (Mesozoic rift basin, New Jersey, USA). Multiple fabric analysis techniques were used to define the fabric in each intrusive body. Using digital image analysis techniques on multiple thin sections, the three-dimensional shape-preferred orientation (SPO) of populations of mineral phases were calculated. Low-field anisotropy of magnetic susceptibility (AMS) measurements were used as a proxy for the mineral fabric of the ferromagnetic phases (e.g., magnetite). In addition, a new technique---high-field AMS---was used to isolate the paramagnetic component of the fabric (e.g., silicate fabric). Each fabric analysis technique was then compared to observable field fabrics as a framework for interpretation. In the Insizwa sill, magnetic properties were used to corroborate vertical petrologic zonation and distinguish sub-units within lithologically defined units. Abrupt variation in magnetic properties provides evidence supporting the formation of the Insizwa sill by separate magma intrusions. Low-field AMS fabrics in the Sonju Lake intrusion exhibit consistent SW-plunging lineations and SW-dipping foliations. These fabric orientations provide evidence that the cumulate layers in the intrusion were deposited in a dynamic environment, and indicate magma flowed from southwest to northeast, parallel to the pre-existing rift structures. In the Palisades sill, the magnetite SPO and low-field AMS lineation have developed orthogonal to

  2. Calc-Alkaline magmatism associated with lithospheric extension in the Eocene and Miocene of the Pacific Northwest, U. S. A

    SciTech Connect

    Hooper, P.R.; Bailey, D.G.; Holder, G.A.M.; Urbanzcyk, K.M. . Dept. of Geology)

    1993-04-01

    A basic tenet of igneous petrology is that calc-alkaline suites are created in the subduction process and that extension is associated with alkalic and bimodal suites. Tectonic models of older terranes often use calc-alkaline suites as sure evidence of subduction. Eocene magmatism in the Pacific Northwest and Miocene volcanism associated with the northern limits of the Basin and Range province appear to contradict these tenets and so to raise reservations concerning their use in developing tectonic models. In northeast Washington State, extension in the Eocene is evidenced by gneissic core complexes and grabens. Recent precise dating of structures and magmatism (plutons, dikes and lavas) leaves no doubt that magmatism and extension are products of the same process. South of the Columbia Plateau, in the Miocene, the Powder River volcanic field consists of basalts, andesites, dacites and rhyolites erupted within the La Grande and Baker grabens; the magmatism clearly coincidental with graben development at ca. 14 Ma. Both basalts and more silicic flows have the typical subduction-related trace element signature. In neither province is progression from calc-alkaline to bimodal volcanism apparent. Both the Eocene and Miocene suites are associated with alkalic rocks. The authors suggest that in areas such as the western Cordillera extension causes the partial melting of sources which already carry the subduction-related signature. This could be crust (intermediate to more silicic magmas) or a depleted subcontinental mantle enriched during an earlier subduction event (basalts); that is, that while calc-alkaline rocks are associated with subduction, they may not require contemporaneous subduction, as is usually assumed.

  3. Tectonomagmatic evolution of the Archaean basement of the Quadrilátero Ferrífero province (southeast Brazil): the tonalite-trondhjemite-granodiorite (TTG) to calc-alkaline granodiorite-granite transition

    NASA Astrophysics Data System (ADS)

    Farina, Federico; Albert, Capucine; Lana, Cristiano; Stevens, Gary; Moreira, Hugo; Hippertt, João Pedro

    2014-05-01

    The Archaean Southern São Francisco craton (Quadrilátero Ferrífero, Brazil) is a typical dome-and-keel province characterized by kilometer-scale gneiss-granitic domes surrounded by elongated keels of folded supracrustal rocks. The tectonomagmatic evolution of the three largest domes in the craton (namely the Bação, Bonfim and Belo Horizonte domes) occurred between 3200 and 2700 Ma. The domes expose several phases of TTG gneisses and plutons intruded by leucogranite sheets, pegmatitic dykes and bodies of calc-alkaline ("potassic") granodiorite and granite. LA-ICP-MS zircon U-Pb data allow three main periods of magmatism to be defined. These are described as the Santa Barbara (SB), Rio das Velhas I (RVI) and Rio das Velhas II (RVII) events (Lana et al., 2013). The oldest discernable evolution of the craton began at 3200 Ma (SB event) with the formation of TTG gneisses that are poorly preserved in the exposed record. This event is also attested by the occurrence of inherited zircons in younger TTGs as well as by the fact that zircons with a ca. 3200 Ma age represent a significant subset in the detrital zircon population of the greenstone belt succession. This evidence suggests that the Palaeoarchaean TTG crust has been reworked as well as eroded during tectonic denudation. The following magmatic event (RVI), which generated most of the TTG crust of the Southern São Francisco craton, took place between 2930-2870 Ma. Gneisses formed during this event have geochemical features similar to the middle-pressure TTG group defined by Moyen (2010) suggesting that they formed in equilibrium with a garnet-rich, plagioclase-poor amphibole-bearing residuum. These TTGs have K2O/Na2O between 0.3 and 0.7, Sr content between 250-500 ppm and Sr/Y lower than 150. Finally, the RVII event occurred between 2780-2700 Ma producing both TTG-like) and potassic (calc-alkaline) granitoids. In particular, calc-alkaline granitoids, distributed over an area of ˜25,000 km2, were emplaced

  4. Variations in magmatic processes among igneous asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, M. J.

    1991-01-01

    Six asteroid classes (types V, E, A, R, M, S) are composed primarily of differentiated assemblages produced by igneous processes within their parent planetesimals. These are identified by surface materials which deviate from a chondritic composition to a degree that require igneous chemical fractionation processes. There are large variations among these igneous asteroids in the peak temperatures attained, in the efficiency of magmatic phase separation, and in the depth within the original parent body exposed at the present surface. These variations provide important constraints on the nature of asteroidal heating events, on the differentiation processes within small planetary bodies, and on the disruption of those parent bodies. Variations due to depth within the parent body and due to degree of magmatic differentiation are detailed.

  5. Theoretical petrology. [of igneous and metamorphic rocks

    NASA Technical Reports Server (NTRS)

    Stolper, E.

    1979-01-01

    In the present paper, some areas of growing interest in the American efforts in petrology during the 1975-1978 quadrennium are reviewed. In igneous petrology, studies of structures and thermodynamic properties of silicate melts and of kinetics of igneous processes are in a period of rapid growth. Plate tectonic concepts have had (and will no doubt continue to have) an important influence by focusing interest on specific problems and by providing a framework for the understanding of petrogenesis. An understanding of mantle processes and evolution through the integration of petrological, geophysical, and geochemical constraints has been developed over the past 20 years, and will undoubtedly provide direction for future petrological studies.

  6. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  7. Sudbury Igneous Complex: Impact melt or igneous rock? Implications for lunar magmatism

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.

    1992-01-01

    The recent suggestion that the Sudbury Igneous Complex (SIC) is a fractionated impact melt may have profound implications for understanding the lunar crust and the magmatic history of the Moon. A cornerstone of much current thought on the Moon is that the development of the lunar crust can be traced through the lineage of 'pristine' igneous rocks. However, if rocks closely resembling those from layered igneous intrusions can be produced by differentiation of a large impact melt sheet, then much of what is thought to be known about the Moon may be called into question. This paper presents a brief evaluation of the SIC as a differentiated impact melt vs. endogenous igneous magma and possible implications for the magmatic history of the lunar crust.

  8. Late Proterozoic and Silurian alkaline plutons within the southeastern New England Avalon zone

    SciTech Connect

    Hermes, O.D. ); Zartman, R.E. )

    1992-07-01

    Distinct pulses of quartz-bearing, alkaline plutonism and volcanism are known to have occurred in the Avalon zone of southeastern New England during the Late Ordovician, Early Silurian, Devonian, and Carboniferous. Zircon separates from the Franklin and Dartmouth plutons demonstrate that two additional, previously unrecognized periods of alkaline magmatism occurred. The Franklin pluton yields an age of 417 {plus minus} 6 Ma (Late Silurian), whereas the Dartmouth pluton is Late Proterozoic (595 {plus minus} 5 Ma) and markedly older than the other plutons of alkaline affinity. The new ages further emphasize the episodic nature and long-term duration of such alkaline igneous events within the southeastern New England Avalon zone. The Dartmouth pluton may represent a post-collisional alkaline granite emplaced in the Late Proterozoic, almost immediately after a major period of calcalkaline igneous activity that accompanied plate convergence and continental accretion. The abrupt change from orogenic calcalkaline igneous activity to post-collisional alkaline granite, followed by younger episodes of anorogenic emplacement, is remarkably similar to igneous events reported from pan-African mobile belts widespread throughout Africa. In addition, parts of the Dartmouth pluton exhibit features indicative of mixing and commingling of felsic and mafic melts that are associated with coevally formed mylonitic fabrics. Because these fabrics are conformable to those in adjacent gneisses, but discordant with Alleghanian fabrics in the nearby Carboniferous Narragansett basin, they represent some of the best candidates for pre-Alleghanian structures thus far identified in the southeastern New England Avalon zone.

  9. Is phosphorus predictably incompatible in igneous processes?

    NASA Technical Reports Server (NTRS)

    Goodrich, C. A.; Barnes, S.

    1984-01-01

    Siderophile element abundances are central to recent models for core formation in the Earth and Moon and the origin of the Moon. It is important to identify siderophile elements whose behavior in igneous processes is predictable, so that primary mantle abundances can be deduced by subtracting out the effects of igneous processes. Newsom's model for core formation in the Moon requires subchondritic P, and suggests that P was depleted due to volatility. Experiments were conducted to determine P olivine/liquid distribution coefficients. Preliminary results indicate that P can be compatible with olivine during rapid cooling, but is not during isothermal crystallization with long growth times, and tends to be expelled during annealing. It is therefore not likely that P is compatible under any widespread igneous conditions, and the incompatible behavior of P in lunar crustal rocks can be safety assumed. In addition, low fO2 is insufficient to cause P compatibility, so it is unlikely that P-rich silicates formed during the early evolution of the Earth or Moon. These results indicate that P is depleted in the Moon.

  10. Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyarvi (Kola Peninsula, Russia). A LA-ICP-MS study of apatite

    NASA Astrophysics Data System (ADS)

    Brassinnes, S.; Balaganskaya, E.; Demaiffe, D.

    2005-11-01

    The nature of the petrogenetic links between carbonatites and associated silicate rocks is still under discussion (i.e., [ Gittins J., Harmer R.E., 2003. Myth and reality of the carbonatite-silicate rock "association". Period di Mineral. 72, 19-26.]). In the Paleozoic Kola alkaline province (NW Russia), the carbonatites are spatially and temporally associated to ultramafic cumulates (clinopyroxenite, wehrlite and dunite) and alkaline silicate rocks of the ijolite-melteigite series [ Kogarko, L.N., 1987. Alkaline rocks of the eastern part of the Baltic Shield (Kola Peninsula). In: Fitton, J.G., and Upton, B.G.J. (eds). Alkaline igneous rocks. Geol. Soc. Special Publication 30, 531-544; Kogarko, L.N., Kononova, V.A., Orlova, M.P., Woolley, A.R., 1995. Alkaline rocks and carbonatites of the world. Part 2. Former USSR. Chapman and Hall, London, 225 pp; Verhulst, A., Balaganskya, E., Kirnarsky, Y., Demaiffe, D., 2000. Petrological and geochemical (trace elements and Sr-Nd isotopes) characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion (Kola Peninsula, NW Russia). Lithos 51, 1-25; Dunworth, E.A., Bell, K., 2001. The Turiy Massif, Kola Peninsula, Russia; isotopic and geochemical evidence for a multi-source evolution. J. Petrol. 42, 377-405; Woolley, A.R., 2003. Igneous silicate rocks associated with carbonatites: their diversity, relative abundances and implications for carbonatite genesis. Period. di Mineral. 72, 9-17)]. In the small (≈ 20 km 2) Vuoriyarvi massif, apatite is typically a liquidus phase during the magmatic evolution and so it can be used to test genetic relationships. Trace elements contents have been obtained for both whole rocks and apatite (by LA-ICP-MS). The apatites define a single continuous chemical evolution marked by an increase in REE and Na (belovite-type of substitution, i.e., 2Ca 2+ = Na + + REE 3+). This evolution possibly reflects a fractional crystallisation process of a single batch of isotopically

  11. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  12. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  13. Petrological and Geochemical Studies of the Igneous Rocks at Cerro EL Borrego, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Estrada, V. M.; Espejel-Garcia, V. V.; Villalobos-Aragon, A.

    2013-05-01

    Cerro El Borrego, which is a hill composed of igneous rocks, is located 13.7 km to the SW of Chihuahua city, in northern Mexico. The coordinates of the hill are 28° 11' 07'' N latitude and 105° 33' 23'' W longitude. The study area is within the Basin and Range Physiographic Province, characterized by a complex tectonic-structural pattern, such as elongated ranges with folds and igneous rock formations of Paleogene age. A lava flow of Oligocene age is part of the large volcanic and plutonic activity at the early times of the Cenozoic, which occurred to the NW portion of Mexico. In Cerro El Borrego, the rocks that outcrop are middle Oligocene's rhyolitic tuff to the NW of the hill, while to its SE there is a Pleistocene polymictic conglomerate. Previous work shows different interpretations about the origin and composition of the igneous rocks at Cerro El Borrego. This project includes whole rock and textural analyses, which helped to discern the petrogenesis of these rocks. Preliminary petrographic analyses indicate that the Cerro El Borrego, is a structural dome, and its feldspar-rich rocks contain large crystals that can be appreciated without a microscope. The presence of a porphyritic texture, suggest a sallow intrusion origin. A preliminary conclusion is that Cerro El Borrego is a shallow depth intrusive body with a syenitic composition derived from the Oligocene plutonic activity.

  14. The role of igneous and metamorphic processes in triggering mass extinctions and Earth crises

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Planke, Sverre; Polozov, Alexander G.; Jerram, Dougal; Jones, Morgan T.

    2016-04-01

    Mass extinctions and transient climate events commonly coincide in time with the formation of Large igneous provinces (LIPs). The end-Permian event coincides with the Siberian Traps, the end-Triassic with the Central Atlantic Magmatic Event (CAMP), the Toarcian with the Karoo LIP, and the Paleocene-Eocene Thermal Maximum (PETM) with the North Atlantic Igneous Province. Although the temporal relationship between volcanism and the environmental crises has been known for decades, the geological processes linking LIPs to these environmental events are strongly debated: Explosive LIP volcanism should lead to short term cooling (not long term warming), mantle CO2 is too 13C-enriched to explain negative 13C carbon isotope excursions from sedimentary sequences, the LIP volcanism is poorly dated and apparently lasts much longer that the associated environmental events, large portions of the LIPs remain poorly explored, especially the sub-volcanic parts where sills and dikes are emplaced in sedimentary host rocks, and thus gas flux estimates from contact aureoles around sill intrusions are often poorly constrained. In this presentation, we discuss the status of LIP research with an emphasis on the sub volcanic processes. We show that potential for degassing of greenhouse gases, aerosols, and ozone destructive gases is substantial and can likely explain the triggering of both climatic events and mass extinctions.

  15. Introduction to the Apollo collections. Part 1: Lunar igneous rocks

    NASA Technical Reports Server (NTRS)

    Mcgee, P. E.; Warner, J. L.; Simonds, C. H.

    1977-01-01

    The basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.

  16. Igneous rocks from Apollo 16 rake samples

    NASA Technical Reports Server (NTRS)

    Dowty, E.; Keil, K.; Prinz, M.

    1974-01-01

    Results are reported for a study of seven holocrystalline feldspathic rocks (including a spinel troctolite and six melt rocks) and one mare basalt clast from the Apollo-16 rake samples. The composition and grain structure of each rock is described in detail. Only the spinel troctolite is considered a good candidate for a primary igneous cumulate formed during the original differentiation of the lunar crust. It is shown that the melt rocks probably resulted from shock melting followed by rapid crystallization of heterogeneous highland material and that compositional variations are probably due to mixing of various amounts of heterogeneous cumulates and KREEP components. It is suggested that the mare basalt clast may have been derived from Mare Fecunditatis, although the nearest mare to the Apollo-16 site is Nectaris.

  17. Number of Waste Package Hit by Igneous Intrusion

    SciTech Connect

    M. Wallace

    2004-10-13

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios.

  18. The Ultra-alkaline Magmatism of Italy: May It Help To Exclude Westward Subduction of The Adriatic Lithosphere?

    NASA Astrophysics Data System (ADS)

    Lavecchia, G.; Boncio, P.; Creati, N.

    The Intra-Apennines Ultra-Alkaline Province (IUP) of Italy is considered in order to constrain the geodynamic setting of peninsular Italy and to define the shape of the underlying lithosphere-asthenosphere boundary. The IUP is located within the active intra-Apennine belt of extension and rifting and lies at the outer border of a large mantle upwelling which extends from the Tyrrhenian-Tuscan extensional zone to the inner border of the Apennines of Italy. The IUP shares magmatic features (major- and trace-element characteristics) and volcanic style (form and dimensions of centres) with most famous carbonatite provinces, such as the SW Uganda (Fort Portal) and Gregory Rift ones. 87Sr/86Sr 0.710-0.711, 143Nd/144Nd 0.512, 206Pb/204Pb 19 is similar to values measured for the HK-series of the Ro- man Comagmatic Province (RCP). In both cases, the high radiogenic content has been most commonly interpreted as evidence for contamination with a sedimentary compo- nent derived from subduction of the Adriatic lithosphere. However, extreme undersat- urated SiO2 and very high Mg# role out any physical dilution with crustal material. At the same time, radiogenic isotope values exceeds EMII (e.g. pelagic sediments) end- member value implying >100% contaminant proportion, which is a paradox. High Sr and Nd isotopic values are also typical of cratonic rocks such as lamproites and kimberlites and may be related to an ancient reservoir within the mantle completely unrelated to subduction. The relatively uniform geochemical and isotopic composition of the here considered ultra-alkaline and ultra-potassic rocks is well distinct from the mantle source of the MORB-type and calc-alkaline Plio-Quaternary occurrences of Italy (e.g. Tyrrhenian basalts and K-series of the RCP), thus suggesting an origin from a distinct, deep and well mixed reservoir, possibly located within the asthenosphere. Considering that a low-velocity anomaly (LVA) down to a depth of about 600-700 km is observed beneath

  19. Petrogenesis of the Bashisuogong bimodal igneous complex in southwest Tianshan Mountains, China: Implications for the Tarim Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Ma, Yuan; Zhang, Zhaochong; Huang, He; Santosh, M.; Cheng, Zhiguo

    2016-11-01

    The Bashisuogong (BSSG) complex is located in the tectonic transition zone between South Tianshan Collisional Belt (STCB) and Tarim Block (TB). The complex is composed of a mafic unit (mainly including gabbro and diabase) and a felsic unit (mainly composed of quartz syenite and alkali granite), both of which are crosscut by several diabase and alkali granite dykes. Here we present LA-ICP-MS zircon U-Pb data which show that the two units were emplaced coevally at 276 Ma. The rocks from the two units display a wide SiO2 gap, implying a typical bimodal magmatic feature. The petrographic and geochemical evidence such as mafic microgranular enclave (MME) within the syenite, negative linear correlations between SiO2 and some major elements, and a wide range of (87Sr/86Sr)i suggest that the syenite formed via magma mixing process. The positive εNd(t) values (+ 5.42 to + 5.66 for gabbro and + 4.70 to + 5.02 for diabase) and OIB-like geochemical features of the mafic unit indicate that the parent magma was derived from asthenospheric mantle or mantle plume. The felsic unit shows higher contents of SiO2, K2O and total alkalis. Their trace element patterns are characterized by Rb, Y, Zr and Hf enrichment, and high 10,000 Ga/Al ratios, indicating an A1-type affinity. The syenite shows εNd(t) values in the range of - 0.15 to + 0.30 and zircon εHf(t) values of + 1.68 to + 5.10, whereas the alkali granite has εNd(t) values of - 2.10 to - 1.92 and εHf(t) values of - 4.10 to + 0.32. The two stage Hf isotope model ages of zircon grains in the syenite are older than 1.0 Ga, whereas those of the alkali granite are even older (> 1.3 Ga). Our results suggest that the alkali granite was generated by partial melting of a Neoproterozoic gabbroic source. Zircon grains in the A1-type felsic intrusions yield high Zr saturation temperature (728-983 °C). Although the OIB-like affinities and high temperature zircon grains of the BSSG complex suggest a genetic link with the Tarim mantle plume, considering the Late Carboniferous-Early Permian A-type granites commonly occurring in the STCB, Altay and circum-Junggar region as narrow linear belts, we correlate the magmatism with post-collisional setting rather than a mantle plume event. The effect of Tarim mantle plume might not have reached beyond the north of Tianshan.

  20. Igneous rock from Severnyi Kolchim (H3) chondrite: Nebular origin

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Brandstaetter, F.; Kurat, G.

    1993-01-01

    The discovery of lithic fragments with compositions and textures similar to igneous differentiates in unequilibrated ordinary chondrites (UOC's) and carbonaceous chondrites (CC's) has been interpreted as to suggest that planetary bodies existed before chondrites were formed. As a consequence, chondrites (except, perhaps CI chondrites) cannot be considered primitive assemblages of unprocessed nebular matter. We report about our study of an igneous clast from the Severnyi Kolchim (H3) chondrite. The results of the study are incompatible with an igneous origin of the clast but are in favor of a nebular origin similar to that of chondrules.

  1. Effect of igneous intrusive bodies on sedimentary thermal maturity

    SciTech Connect

    Wang, X.; Lerche, I.; Walter, C. )

    1989-09-01

    The high temperatures of igneous intrusives cause localized thermal maturity of sediments far in excess of the regional variation. Previous studies have shown that igneous bodies cool in less than about 1 million years for all but the most exceptional geological conditions. Three case studies are provided which show how the increase in thermal maturity around an igneous body can be used to assess the temperature of the intrusive at emplacement and also the time of intrusion. Corollative implications for localized hydrocarbon generation, migration, and accumulation are also discussed briefly.

  2. On the weathering of Martian igneous rocks

    NASA Technical Reports Server (NTRS)

    Dreibus, G.; Waenke, H.

    1992-01-01

    Besides the young crystallization age, one of the first arguments for the martian origin of shergottite, nakhlite, and chassignite (SNC) meteorites came from the chemical similarity of the meteorite Shergotty and the martian soil as measured by Viking XRF analyses. In the meantime, the discovery of trapped rare gas and nitrogen components with element and isotope ratios closely matching the highly characteristic ratios of the Mars atmosphere in the shock glasses of shergottite EETA79001 was further striking evidence that the SNC's are martian surface rocks. The martian soil composition as derived from the Viking mission, with its extremely high S and Cl concentrations, was interpreted as weathering products of mafic igneous rocks. The low SiO2 content and the low abundance of K and other trace elements in the martian soils point to a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust. However, the chemical evolution of the martian regolith and soil in respect to surface reaction with the planetary atmosphere or hydrosphere is poorly understood. A critical point in this respect is that the geochemical evidence as derived from the SNC meteorites suggests that Mars is a very dry planet that should have lost almost all its initially large water inventory during its accretion.

  3. Igneous intrusions in coal-bearing sequences

    SciTech Connect

    Gurevich, A.B.; Shishlov, S.B.

    1987-08-01

    Intrusions of various compositions, sizes, and shapes have been observed in 115 out of 620 coal basins or deposits on all the continents. They are mainly subvolcanic and hypabyssal, with depths of emplacement estimated as ranging from a few hundred meters to 6 km, but usually 3-4 km. Compositionally, 42% are basic, 31% intermediate, 23% acid, and 4% ultrabasic. Mafic (and related) rock types include dolerites, trachydolerites, gabbro-dolerites, gabbro-monzonites, monzonites, diabases, gabbrodiabases, and less often gabbros and basalts (subvolcanic bodies). These mafic intrusions occur in coal formations of various ages from Carboniferous through Neogene, but predominate in Paleozoic (47%) and Cenozoic beds (45%). They also occur in coal formations of all genetic types, apart from those on ancient stable platforms, where there are no signs of intrusive activity. The mafic intrusions are almost everywhere associated with comagmatic lavas and tuffs (mainly in the younger strata), and the coal beds themselves are to some extent enriched in pyroclastic material, particularly in the upper horizons. This paper gives a worldwide review of igneous intrusions in coal beds. 24 references.

  4. Evaporatic-source model for igneous-related Fe oxide (REE-Cu-Au-U) mineralization

    SciTech Connect

    Barton, M.D.; Johnson, D.A.

    1996-03-01

    We propose that many igneous-related Fe oxide-rich (REE-Cu-Au-U-bearing) deposits form by hydrothermal processes involving evaporitic ligand sources, either coeval salars or older evaporites. These deposits are abundant in both Phanerozoic and Proterozoic extensional continental and continent-margin settings. They commonly form in global arid zones, but they also occur where magmatism is superimposed upon older evaporites. Magmatic compositions exert only second-order control, mainly on alteration mineralogy and on element abundances. Hot S-poor brines generated by interaction with evaporitic materials are consistent with geologic settings and help rationalize the distinctive element enrichments (siderophile, lithophile) and hydrothermal alteration (sodic, locally alkaline) found in these systems. This model contrasts with immiscible oxide melt and magmatic-hydrothermal origins commonly proposed for these deposits, although all three mechanisms can occur. 31 refs., 3 figs., 1 tab.

  5. Insights into Igneous Geochemistry from Trace Element Partitioning

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Hanson, B. Z.

    2001-01-01

    Partitioning of trivalent elements into olivine are used to explore basic issues relevant to igneous geochemistry, such as Henry's law. Additional information is contained in the original extended abstract.

  6. High crystallization temperatures indicated for igneous rocks from tranquillity base.

    PubMed

    Skinner, B J

    1970-01-30

    Complex intergrowths of troilite (FeS) and iron in the igneous rocks from Tranquillity Base contain 8.4 percent native iron by volume. The intergrowths were derived from an initially homogeneous sulfide liquid that separated immiscibly from the magma at 1140 degrees C or above. Textures show that the sulfide liquid formed late in the crystallization and cooling history of the igneous rocks and after the major ilmenite and pyroxene had formed.

  7. Igneous rocks of Arctic Ocean deep sea ridges: new data on petrology, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Shevchenko, Sergey; Sergeev, Sergey; Belyatsky, Boris; Shatov, Vitaly; Petrov, Eugeny

    2015-04-01

    The aggregate results of studies of igneous rocks, collected from the central part of the Arctic Ocean during scientific marine expeditions «Arctic-2000, 2005, 2007 and 2012» are presented and discussed in the frame of modern understanding of High Polar Arctic tectonic constraint. Petrological, geochemical and isotope-geochronological studies of more than 500 samples have shown that the sedimentary rocks are of dominated population among the rock fragments dredged from deep-sea bottom, and represented by metamorphosed dolomite and quartz sandstone, limestone, sometimes with the Devonian - Permian fauna. Igneous rocks are 10-15% only (Archean and Paleoproterozoic gneissouse granites and gabbro, Neoproterozoic dolerite) and metamorphic rocks (green shales, metabasites, gneisses). Apparently, these rocks are part of the acoustic basement underlying the Late Mesozoic - Cenozoic layered loose sediments. In addition to the dredged fragments of the ancient mafic rocks, some samples were taken as a core during deep-water drilling in the northern and southern slopes of the Mendeleev Ridge and represented by trachybasalts, marking the border of Late-Cenozoic deposit cover and acoustic basement and quite similar in composition to those of Early-Late Cretaceous basalts form northward of the Chukchi Plateau seamounts, Alpha Ridge, Franz Josef Land, De Long islands and other parts of the large igneous province of the High Arctic (HALIP). Video-filming of Mendeleev Ridge escarps proofs the existing of rock outcrops and supports local origin of most of the rock fragments found in the sampling areas. Thus the continental type of the earth's crust of the Central Arctic Ridges basement is based on all obtained results of our study of sea-bottom excavated rock material.

  8. The Choiyoi Group from central Argentina: a subalkaline transitional to alkaline association in the craton adjacent to the active margin of the Gondwana continent

    NASA Astrophysics Data System (ADS)

    Llambías, Eduardo J.; Quenardelle, Sonia; Montenegro, Teresita

    2003-08-01

    Permian and Lower Triassic igneous rocks from La Pampa province, central Argentina, are part of the Choiyoi Group, whose extension in Argentina exceeds 500,000 km 2. In La Pampa, the distribution of these outcrops occurs along a NW-SE belt that cuts obliquely across the N-S structures of the Lower Paleozoic rocks. The basement of the Choiyoi Group in western La Pampa consists of Mesoproterozoic to Lower Paleozoic rocks that form part of the exotic Cuyania terrane. In central La Pampa, the basement consists of Lower Paleozoic igneous and metamorphic rocks affected by the Lower Paleozoic Famatinian orogeny. The Choiyoi Group from La Pampa shares features with the Choiyoi Group elsewhere, such as an abundance of mesosilicic to silicic ignimbrites, subvolcanic domes, and granite plutons emplaced at sallow levels. In La Pampa, we recognize two suites: shoshonitic and trachydacitic to rhyolitic. The shoshonite suite is overlain by trachydacites and rhyolites. The plutonic rocks that belong to the cupola of the intrusive bodies are monzogranitic. The most significant difference between the Choiyoi Group from La Pampa and that from the Cordillera Frontal and the San Rafael block is that the San Rafael orogenic phase (Lower Permian) is not obvious in La Pampa. Therefore, we cannot attribute to the Choiyoi Group a postorogenic character, as in the Cordillera Frontal or the San Rafael Block. This difference in the tectonic setting is reflected in the composition of the igneous rocks of La Pampa, in that they generally have a higher alkali content with respect to silica, a weak enrichment in TiO 2, and a depletion in CaO. Both suites are transitional from subalkaline to alkaline series. The shoshonitic suite is rich in clinopyroxene and apatite. Whole-rock compositions have high content of P 2O 5 (0.5-3.9%) and Sr (1320-1890 ppm). Zr is weakly enriched (273-502 ppm), and Nb (29-37 ppm) is depleted. The Th (16-45 ppm) and U (3-14 ppm) content is high. We postulate a crustal

  9. Geochemical Behavior of Selenium in Igneous Systems

    NASA Astrophysics Data System (ADS)

    Jenner, F. E.; Mavrogenes, J. A.; Arculus, R. J.; O'Neill, H. S.

    2008-12-01

    Selenium (Se) is generally assumed to behave much like sulfur (S) in igneous systems. However, it is unclear how valid this assumption is considering that so little is known about the geochemical behaviour of Se. Constraining the range in Se and S concentrations of mantle-derived magmas is important to studies of: core segregation; the composition of late-accreted material; collisional erosion models; processes of mantle melting in various tectonic environments; and recycling of lithospheric components into the mantle, to mention only a few. Previous estimates of the S/Se of primitive and depleted mantle assume that S-Se are similar to Zr-Hf and Nb-Ta in their geochemical coherence, and that S/Se of the Earth's mantle is chondritic (Palme and O"Neill 2003 and references therein). Due to the low abundances of Se in mantle-derived rocks and the lack of calibration materials for routine analysis (i.e. NIST 612), this assumption remains unchallenged. Using a combination of SHRIMP, electron probe, and LA-ICP-MS techniques the concentration of Se in NIST 612 and BCR-2G was obtained to permit rapid in situ LA-ICP-MS analysis of Se concentrations in volcanic glasses. We have obtained Se, S, major and comprehensive trace element data for volcanic glasses from a global range of tectonic settings (mid-ocean ridges, ocean island, island arc and back-arc basins) to improve understanding of the behaviour of Se during igneous processes (e.g. partial melting, fractional crystallisation, and volatile phase separation). Analysis of a range of mid-ocean ridge glasses shows that Se behaves as an incompatible element, but is decoupled from S as the S/Se extends to values well in excess of the chondritic estimate (i.e. 2528; Palme and O"Neill 2003). During back-arc basin and island-arc magmatism, the abundance, systematics and S/Se are diverse. For example, at a specific MgO content, the absolute abundance of Se varies with depletion of the mantle source. Within back-arc suites derived

  10. Charge Generation and Propagation in Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    2000-01-01

    Resistivity changes, ground potentials, electromagnetic (EM) and luminous signals prior to or during earthquakes have been reported, in addition to ground uplift and tilt, and to changes in the seismic wave propagation parameters. However, no physical model exists that ties these diverse phenomena together. Through time-resolved impacts experiments it has been observed that, when igneous rocks (gabbro, diorite, granite) are impacted at low velocities (approx. 100 m/sec), highly mobile electronic charge carriers are generated, spreading from a small volume near the impact point, causing electric potentials, EM and light emission. The rock becomes momentarily conductive. When impacted at higher velocities (approx. 1.5 km/sec), the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. At the same time, the rock volume is filled with mobile charge carriers, and a positive surface potential is registered. During the next 1-2 msec the surface potential oscillates, due to electron injection from ground. These observations are consistent with positive holes, e.g. defect electrons in the O(2-) sublattice, that can travel via the O 2p-dominated valence band of the silicate minerals at the speed of a phonon-mediated charge transfer. Before activation, the positive hole charge carriers lay dormant in form of positive hole pairs, PHP, electrically inactive, chemically equivalent to peroxy links in the structures of constituent minerals. PHPs are introduced by way of hydroxyl (O3Si-OH) incorporated into nominally anhydrous minerals when they crystallize in water-laden environments. Given that sound waves of even relatively low intensity appear to cause PHPs dissociation, thus generating mobile positive holes, it is proposed that microfracturing during rock deformation cause PHP dissociation. Depending on where and how much the rock volume is stressed, the positive holes are expected to form fluctuating charge clouds in the

  11. Organic protomolecule assembly in igneous minerals.

    PubMed

    Freund, F; Staple, A; Scoville, J

    2001-02-27

    CH stretching bands, nu(CH), in the infrared spectrum of single crystals of nominally high purity, of laboratory-grown MgO, and of natural upper mantle olivine, provide an "organic" signature that closely resembles the symmetrical and asymmetrical C--H stretching modes of aliphatic -CH(2) units. The nu(CH) bands indicate that H(2)O and CO(2), dissolved in the matrix of these minerals, converted to form H(2) and chemically reduced C, which in turn formed C--H entities, probably through segregation into defects such as dislocations. Heating causes the C--H bonds to pyrolyze and the nu(CH) bands to disappear, but annealing at 70 degrees C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to C(x) chains, x = 4, with the terminal C atoms anchored to the MgO matrix by bonding to two O(-). Allowing H(2) to react with such C(x) chains leads to [O(2)C(CH(2))(2)CO(2)] or similar precipitates. It is suggested that such C(x)--H(y)--O(z) entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus, it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks, the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of life.

  12. Organic protomolecule assembly in igneous minerals

    PubMed Central

    Freund, Friedemann; Staple, Aaron; Scoville, John

    2001-01-01

    C—H stretching bands, νCH, in the infrared spectrum of single crystals of nominally high purity, of laboratory-grown MgO, and of natural upper mantle olivine, provide an “organic” signature that closely resembles the symmetrical and asymmetrical C—H stretching modes of aliphatic —CH2 units. The νCH bands indicate that H2O and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C—H entities, probably through segregation into defects such as dislocations. Heating causes the C—H bonds to pyrolyze and the νCH bands to disappear, but annealing at 70°C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x = 4, with the terminal C atoms anchored to the MgO matrix by bonding to two O−. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx—Hy—Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus, it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks, the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of life. PMID:11226206

  13. Organic Protomolecule Assembly in Igneous Minerals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Staple, Aaron; Scoville, John

    2001-01-01

    C-H stretching bands in the infrared spectrum of single crystals of nominally high purity, laboratory-grown MgO and of natural upper mantle olivine provide an "organic" signature that closely resembles the symmetrical and asymmetrical C-H stretching modes of aliphatic -CH2- units. The C-H stretching bands indicate that H20 and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C-H entities, probably through segregation into defects such as dislocations. Heating causes the C-H bonds to pyrolyze and the C-H stretching bands to disappear, but annealing at 70 C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x less than or equal to 4, with the terminal C atoms anchored to the MgO matrix by bonding to two U. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx-Hy-Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and of the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of Life.

  14. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  15. Effects of Compositional and Structural Variations on Log Responses in Igneous and Metamorphic Rocks

    NASA Astrophysics Data System (ADS)

    Pechnig, R.; Bartetzko, A.; Delius, H.

    2001-12-01

    Petrophysical in-situ data of several boreholes drilled igneous and metamorphic rocks of continental and oceanic basement were analyzed in order to characterize and classify the occurring rock types. Since physical properties of crystalline rocks are controlled by both, compositional and structural features, one objective of this study was to develop methods to detect and quantify matrix effects. The comparison of mineralogical and geochemical core data with wireline data reveal following systematic observations: (1) Mafic rocks (e.g. oceanic basalts, volcanic island basalts, gabbros and amphibolites) generally have low contents of radioactive minerals. This is in particular valid for mafic rocks from the upper and lower oceanic crust. Slight increases in gamma-ray are related to an enrichment in potassium due to seafloor alteration. In contrast to this uniform, mantle source controlled rocks, extrusives and re-sedimented material from ocean islands and large igneous provinces show a large scatter in gamma-ray responses as a result of their more complex evolution. Mafic rocks recovered from boreholes into continental crust, are characterized by high gamma-ray values, due to enrichment of thorium and uranium during regional metamorphism. In contrast to the mafic plutonic and metamorphic rocks, where the density and p-wave velocity is controlled by the mineralogical composition, the physical parameters of mafic volcanic rocks are strongly affected by fracturing and vesicularity. Density, p-wave velocity and electrical resistivity logs are significantly lowered depending on the degree of vesicularity and fracturing. (2) Acid to intermediate igneous rocks and orthogneisses are distinguishable from paragneisses by their log responses despite showing a similar geochemical composition. The main difference occurs for the relation of the gamma-ray log to the density and neutron porosity log. The gamma-ray in paragneisses is controlled by the amount of phyllosilicates, which

  16. On some fundamentals of igneous petrology

    NASA Astrophysics Data System (ADS)

    Marsh, Bruce D.

    2013-09-01

    The age-old process of crystal fractionation leading to the diversity of the igneous rocks and Earth itself is an exceedingly well-understood chemical process in magmatism and physical chemistry. But the broader physical aspects of this and related processes have proven elusive on many fronts, especially in its relation to the spatial variations in rock composition, texture, and macroscopic features like layering. Magmatic systems, be they volcanic, dikes, sills, or plutons, are generally analyzed with a problem at hand and an end result in mind. The processes invoked to solve these problems, which are most often purely chemical, are often unique to each problem with few if any general principles emerging that are central to understanding the wider perspective of magmatic processes and problems. An attempt is made at the outset to provide a list of inviolate Magmatic First Principles that are relevant to analyzing most magmatic problems. These involve: initial conditions; critical crystallinity; solidification fronts; transport and emplacement fluxes; phenocrysts, xenocrysts, primocrysts; crystal size; layering and crystal sorting; thermal convection; magmatic processes are physical. Along with these principles, two reference magmatic systems are suggested where the initial conditions and outcome are unequivocal: the Sudbury impact melt sheet and the Hawaiian lava lakes. Sudbury formed in ~5 min by superheated magma crystallized to a near uniform sequence, while the tiny lava lakes, formed of crystal-laden slurries, form a highly differentiated layered sequence. The major difference is in the initial conditions of formation, especially the nature of the input materials. The challenge is to construct and analyze magmatic systems (i.e., magma chambers, sills, dikes, and lavas) using these reference end members and the suggested principles. The Hawaiian 500,000 year volcanic record exhibits what can be expected as input materials, namely a highly varied output of

  17. 40Ar/39Ar dates from alkaline intrusions of the northern Crazy Mountains, south-central Montana

    NASA Astrophysics Data System (ADS)

    Harlan, S. S.

    2005-05-01

    interval of time at about 50.1 Ma. The dates from the alkaline rocks are somewhat older than dates from the subalkaline Big Timber stock in the southern Crazy Mountains, which gave biotite 40Ar/39Ar dates of about 49.3 Ma (du Bray and Harlan, 1996). However, because these dates represent cooling through closure temperatures of about 350° C, they are minimum estimates for the age of the stock. The limited span of 40Ar/39Ar dates between the alkaline and subalkaline rocks of the Crazy Mountains intrusions (i.e., 50.6 to 49.2 Ma) indicates that the magmas represented by these different geochemical groups were closely associated in both time and space, with emplacement occurring in as little as 1.5 Ma. On a regional scale, the 49-51 Ma age is similar to that of most of the igneous centers of the Central Montana alkalic province and is coeval with the peak of widespread volcanism in the Absaroka-Gallatin volcanic field immediately to the south of the Crazy Mountains Basin.

  18. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European

  19. Origin of igneous meteorites and differentiated asteroids

    NASA Astrophysics Data System (ADS)

    Scott, E.; Goldstein, J.; Asphaug, E.; Bottke, W.; Moskovitz, N.; Keil, K.

    2014-07-01

    Introduction: Igneously formed meteorites and asteroids provide major challenges to our understanding of the formation and evolution of the asteroid belt. The numbers and types of differentiated meteorites and non-chondritic asteroids appear to be incompatible with an origin by fragmentation of numerous Vesta-like bodies by hypervelocity impacts in the asteroid belt over 4 Gyr. We lack asteroids and achondrites from the olivine-rich mantles of the parent bodies of the 12 groups of iron meteorites and the ˜70 ungrouped irons, the 2 groups of pallasites and the 4--6 ungrouped pallasites. We lack mantle and core samples from the parent asteroids of the basaltic achondrites that do not come from Vesta, viz., angrites and the ungrouped eucrites like NWA 011 and Ibitira. How could core samples have been extracted from numerous differentiated bodies when Vesta's basaltic crust was preserved? Where is the missing Psyche family of differentiated asteroids including the complementary mantle and crustal asteroids [1]? Why are meteorites derived from far more differentiated parent bodies than chondritic parent bodies even though C and S class chondritic asteroids dominate the asteroid belt? New paradigm. Our studies of meteorites, impact modeling, and dynamical studies suggest a new paradigm in which differentiated asteroids accreted at 1--2 au less than 2 Myr after CAI formation [2]. They were rapidly melted by 26Al and disrupted by hit-and-run impacts [3] while still molten or semi-molten when planetary embryos were accreting. Metallic Fe-Ni bodies derived from core material cooled rapidly with little or no silicate insulation less than 4 Myr after CAI formation [4]. Fragments of differentiated planetesimals were subsequently tossed into the asteroid belt. Meteorite evidence for early disruption of differentiated asteroids. If iron meteorites were samples of Fe-Ni cores of bodies that cooled slowly inside silicate mantles over ˜50--100 Myr, irons from each core would have

  20. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  1. Uranium and other element analyses of igneous rocks of Arkansas

    SciTech Connect

    Steele, K.F.

    1982-05-01

    Seventy-six samples of igneous rocks representing a variety of rock types and locations in Arkansas were analyzed by neutron activation analysis for the elements U, Th, Na, Al, Sc, Ti, V, Mn, Fe, La, Ce, Sm, Eu, Dy, Yb, Lu, and Hf. Samples were collected from the major igneous intrusions at Granite Mountain, Bauxite, Magnet Cove, Potash Sulfur Springs, and Murfreesboro, representing various syenites, lamprophyres, carbonatite, kimberlite, and periodotite. To make the data available for public use without further delay, this report is being issued without the normal technical and copy editing.

  2. Igneous Petrogenesis of Tequila Volcano, Western Mexico

    NASA Astrophysics Data System (ADS)

    Vázquez-Duarte, A.; Gómez-Tuena, A.; Díaz-Bravo, B.

    2011-12-01

    Tequila volcano belongs to a Quaternary volcanic chain that runs in parallel to the Middle American Trench, but that have been constructed within the so-called Tepic-Zacoalco rift: an extensional tectonic structure that has been active for the past 3.5 Ma. This unusual tectonic setting, and the existence of a high-resolution stratigraphy for the Tequila Volcanic Field (Lewis-Kenedi, 2005, Bull Volcanol), provide an excellent opportunity to study andesite petrogenesis. New comprehensive geochemical data allow the recognition of at least four different magmatic series around Tequila: 1) The Santa Rosa intraplate basalts (1.0 - 0.2 Ma), a volcanic plateau constructed along the Santiago River Fault north of Tequila volcano. These Na-alkaline basalts are olivine-phyric, have negligible subduction signatures (Ba/Nb= 11.75 - 49.36), and display Sr-Nd-Pb isotopic compositions that correlate with fractionation indexes, probably indicating melt-crust interactions. 2) A group of vitreous domes and flows of dacitic to rhyolitic compositions, mostly contemporaneous to the Santa Rosa basalts, that were emplaced on the periphery of Tequila volcano. These rocks can have very low Sr and Eu contents but their isotopic compositions are remarkably constant and similar to the Santa Rosa basalts, probably indicating a genetic link through low pressure fractionation in the stability field of plagioclase. 3) The main edifice of Tequila volcano (~0.2 Ma) is made of two pyroxene andesites and dacites with strong subduction signatures (Ba/Nb= 53-112), that inversely correlate with MgO contents, but that follow a diverging evolutionary trend as the rest of the sequences. The isotopic compositions of Tequila main edifice can extend to slightly more enriched values, but do not correlate with fractionation indexes, thus indicating provenance from a different source. 4) The youngest activity on Tequila volcano (~0.09 Ma) is represented by amphibole bearing andesites that erupted through the

  3. Disruptive event analysis: volcanism and igneous intrusion

    SciTech Connect

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  4. Mind Over Magma: The Story of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Snyder, Don

    2004-01-01

    In the centuries that enquiring minds have studied and theorized about igneous rocks, much progress has been made, both in accumulating observations and in developing theories. Yet, writing a history of this progress is a daunting undertaking. The volume of the literature is vast and in multiple languages; the various lines of inquiry are diverse and complex; and the nomenclature is sometimes abstruse. On top of these challenges, many of its principal issues have yet to find a definitive consensus. With the exception of a few topical studies, historians of science have virtually avoided the subject. In Mind Over Magma: The Story of Igneous Petrology, Davis Young has taken on the challenge of writing a comprehensive survey of the study of igneous rocks, and the result has been a remarkable book of meticulous scholarship. Igneous petrology is a vast subject, and it is not obvious how best to organize its history. Young takes a topical approach, generally grouping together various studies by either the problem being investigated or the method of attack. These topics span the earliest times to the present, with an emphasis on recurring themes, such as the causes of magmatic diversity and the origins of the granitic rocks. The range of topics includes most of the subjects central to the field over its history. As much as is practical, topics are discussed in chronological order, and along the way, the reader is treated to biographical sketches of many of the key contributors. This organization proves effective in dealing with the multitude of concepts.

  5. Winter Ice and Snow as Models of Igneous Rock Formation.

    ERIC Educational Resources Information Center

    Romey, William D.

    1983-01-01

    Examines some features of ice and snow that offer teachers and researchers help in understanding many aspects of igneous processes and configurations. Careful observation of such processes as melting, decay, evolution, and snow accumulation provide important clues to understanding processes by which many kinds of rocks form. (Author/JN)

  6. The Formation of Igneous CAIs and Chondrules by Impacts?

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Love, Stanley G.

    2001-01-01

    Numerous challenges exist with forming the igneous spheres found within chondrites via collision events in the early solar nebula. We explore these challenges and discuss potential methods to overcome them. Collision models should be received cautiously. Additional information is contained in the original extended abstract.

  7. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  8. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  9. Multiple explosive rhyolite/trachyte eruptions of alkaline-peralkaline Nemrut and dacite/rhyolite eruptions of neighboring subduction zone-related Süphan volcano over 600 000 years: the East Anatolian tephra province

    NASA Astrophysics Data System (ADS)

    Schmincke, H.-U.; Sumita, M.; Paleovan scientific Team

    2012-04-01

    The active Nemrut stratovolcano (2918 m asl) (Eastern Anatolia) is topped by a spectacular caldera and dominates the area west of huge Lake Van that covers its lower flanks. The stratovolcano has been active explosively for at least ca. 600 ka based on drilling evidence (ICDP Paleovan project). We have identified, correlated and compositionally characterized some 40 fallout sheets on land - none previously known - the largest ones probably with magma volumes exceeding 30 km3(DRE). The alkaline to peralkaline tephras are dominated by anorthoclase, Fe-rich clinopyroxene and fayalite with quartz and aenigmatite in some. Large-volume comenditic to pantelleritic rhyolite eruptions occurred in intervals of 20 000 - 40 000 years with smaller volume trachytic tephra deposits in between reflecting overall fairly constant magma transfer rates periodically fractionating to highly evolved rhyolite in larger magma reservoirs. Many of the ca. 10 widespread ignimbrite sheets, nearly all newly recognized, commonly followed on the heels of rhyolitic fallout sheets. They are more mafic than the underlying fallout deposits, magma mixing being common. Widespread spectacular agglutinates represent a late phase of the youngest large-volume fallout/ignimbrite eruption at ca. 30 ka. Active Süphan stratovolcano (4158 m asl), some 50 km NE of Nemrut and bordering Lake Van to the north, is dominated in contrast by subduction-related chemistry and mineralogy, smaller-volume eruptions and more advanced crystallization of magmas prior to eruption. Chief phenocrysts comprise complex disequilibrium assemblages of clinopyroxene, hypersthene, olivine, strongly zoned plagioclase, biotite and/or amphibole and common clots of fractionating phases. Many of the highly viscous and crystal-laden Süphan magmas were emplaced as domes and debris avalanches next to fallout sheets and ignimbrites. The dominant NE direction of fan axes of partial isopach maps of ca. 15 major fallout deposits reflecting

  10. Towards a comprehensive classification of igneous rocks and magmas

    NASA Astrophysics Data System (ADS)

    Middlemost, Eric A. K.

    1991-08-01

    The IUGS Subcommission on the Systematics of Igneous Rocks has recently published an excellent book on the classification of these rocks. This event has shifted the vexed question of classification towards the top of the agenda in igneous petrology. Over the years the Subcommission has used many different criteria to establish the positions of the boundaries between the various common igneous rocks. It now has to adopt a holistic approach and develop a comprehensive, coherent classification that is purged of all the minor anomalies that arise between the various classifications that it has approved. It is appreciated that the Subcommission's classification was never intended to have any genetic implications; however, it is suggested that an ideal classification should he presented in such a way that it is able to group rocks into an order that directs attention to petrogenetic relationships between individual rocks and larger groups of rocks. Unfortunately, many of the Subcommission's definitions are Earth chauvinistic; for example, igneous rocks are defined as being those rocks that solidified from a molten state either within or on the surface of the Earth. Nowhere in the book is it acknowledged that during the past 20 years, while the Subcommission has been framing its many recommendations, a whole new science of planetary petrology has subsumed classical petrology. In any new edition of the book, the Subcommission should acknowledge that rocks are essentially the solid materials of which planets, natural satellites and other broadly similar cosmic bodies are made. The Subcommission should also explicitly recognise that igneous rocks can be divided into either a main sequence of essentially common rocks or a number of supplementary clans of special rocks that evolved outside the main sequence. It is hoped that in the near future the Subcommission will rescind its recommendation that the TAS classification should be regarded as an adjunct to its more traditional

  11. U-Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa

    NASA Astrophysics Data System (ADS)

    Mungall, James E.; Kamo, Sandra L.; McQuade, Stewart

    2016-11-01

    Layered intrusions represent part of the plumbing systems that deliver vast quantities of magma through the Earth's crust during the formation of large igneous provinces, which disrupt global ecosystems and host most of the Earth's endowment of Pt, Ni and Cr deposits. The Rustenburg Layered Suite of the enormous Bushveld Igneous Complex of South Africa has been presumed to have formed by deposition of crystals at the floor of a subterranean sea of magma several km deep and hundreds of km wide called a magma chamber. Here we show, using U-Pb isotopic dating of zircon and baddeleyite, that individual chromitite layers of the Rustenburg Layered Suite formed within a stack of discrete sheet-like intrusions emplaced and solidified as separate bodies beneath older layers. Our U-Pb ages and modelling necessitate reassessment of the genesis of layered intrusions and their ore deposits, and challenge even the venerable concept of the magma chamber itself.

  12. U–Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa

    PubMed Central

    Mungall, James E.; Kamo, Sandra L.; McQuade, Stewart

    2016-01-01

    Layered intrusions represent part of the plumbing systems that deliver vast quantities of magma through the Earth's crust during the formation of large igneous provinces, which disrupt global ecosystems and host most of the Earth's endowment of Pt, Ni and Cr deposits. The Rustenburg Layered Suite of the enormous Bushveld Igneous Complex of South Africa has been presumed to have formed by deposition of crystals at the floor of a subterranean sea of magma several km deep and hundreds of km wide called a magma chamber. Here we show, using U–Pb isotopic dating of zircon and baddeleyite, that individual chromitite layers of the Rustenburg Layered Suite formed within a stack of discrete sheet-like intrusions emplaced and solidified as separate bodies beneath older layers. Our U–Pb ages and modelling necessitate reassessment of the genesis of layered intrusions and their ore deposits, and challenge even the venerable concept of the magma chamber itself. PMID:27841347

  13. U-Pb geochronology documents out-of-sequence emplacement of ultramafic layers in the Bushveld Igneous Complex of South Africa.

    PubMed

    Mungall, James E; Kamo, Sandra L; McQuade, Stewart

    2016-11-14

    Layered intrusions represent part of the plumbing systems that deliver vast quantities of magma through the Earth's crust during the formation of large igneous provinces, which disrupt global ecosystems and host most of the Earth's endowment of Pt, Ni and Cr deposits. The Rustenburg Layered Suite of the enormous Bushveld Igneous Complex of South Africa has been presumed to have formed by deposition of crystals at the floor of a subterranean sea of magma several km deep and hundreds of km wide called a magma chamber. Here we show, using U-Pb isotopic dating of zircon and baddeleyite, that individual chromitite layers of the Rustenburg Layered Suite formed within a stack of discrete sheet-like intrusions emplaced and solidified as separate bodies beneath older layers. Our U-Pb ages and modelling necessitate reassessment of the genesis of layered intrusions and their ore deposits, and challenge even the venerable concept of the magma chamber itself.

  14. Martian Igneous Geochemistry: The Nature of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.

    2012-01-01

    Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).

  15. Igneous Consequence Modeling for the TSPA-SR

    SciTech Connect

    John McCord

    2001-10-29

    The purpose of this technical report is to develop credible, defendable, substantiated models for the consequences of igneous activity for the TSPA-SR Model. The effort will build on the TSPA-VA and improve the quality of scenarios and depth of the technical basis underlying disruptive events modeling. Computational models for both volcanic eruptive releases (this is an event that results in ash containing waste being ejected from Yucca Mountain) and igneous intrusion groundwater releases (this is an event that reaches the repository level, impacts the waste packages, and produces releases from waste packages damaged by igneous activity) will be included directly in the TSPA calculations as part of the TSPA-SR Model. This Analysis Model Report (AMR) is limited to development of the conceptual models for these two scenarios. The mathematical implementation of these conceptual models will be done within the TSPA-SR Model. Thus, this AMR will not include any model results or sensitivity analyses. Calculation of any doses resulting from igneous releases will also be done within the TSPA-SR model, as will the probabilistic weighting of these doses. Calculation and analysis of the TSPA-SR Model results for igneous disruption are, therefore, outside the scope of this activity. The reason for not running the mathematical models as part of this AMR is that the models are integrated within the TSPA-SR model and, thus, any model simulations and the corresponding results are out of the scope of this AMR. The scope of this work as defined in the development plan (CRWMS M&O 2000j) involves using data that has been extracted from existing sources to design and support the TSPA-SR models for the transport of radionuclides following igneous disruption of the repository. The development plan states ''applications of the code in this analysis will be limited to testing of the code and sensitivity analyses during analysis design.'' In contrast to the development plan, the ASHPLUME

  16. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1974-01-01

    Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  17. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1977-01-01

    Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  18. Log evaluation of oil-bearing igneous rocks

    SciTech Connect

    Khatchikian, A.

    1983-12-01

    The evaluation of porosity, water saturation and clay content of oilbearing igneous rocks with well logs is difficult due to the mineralogical complexity of this type of rocks. The log responses to rhyolite and rhyolite tuff; andesite, dacite and zeolite tuff; diabase and basalt have been studied from examples in western Argentina and compared with values observed in other countries. Several field examples show how these log responses can be used in a complex lithology program to make a complete evaluation.

  19. Felsic Igneous Rocks at Gale Crater : a Comparison with Lithic Clasts in NWA 7533

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Wiens, R. C.; Toplis, M. J.; Cousin, A.; Forni, O.; Fabre, C.

    2014-12-01

    Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian rocks. In Hummocky plain, more than half of the igneous floats rocks are highly alkaline rocks (Stolper et al. doi: 101126/science.12239463, Schmidt et al. doi: 10.1002/2013JE004481) and feldspar-bearing rocks (Sautter et al. doi: 10.1002/2013JE00447). ChemCam observations at sub-millimeter scale show that these samples contain a significant feldspar component, either associated with LCP in gabbroic texture or with augite in effusive rocks defining an alkaline K-feldspar-bearing suite: basanite, trachy-andesite with porphyritic texture and syenitic rock with apahnitic texture. This series likely resulted from differentiation of liquids produced by low degrees of partial melting of primitive mantle. These rocks are float rocks or occurred as clast in conglomerate suggesting a provenance from Gale crater rim. NWA 7533 is the first Noachian breccia sampling the southern hemisphere Martian regolith. It is a polymict breccia with leucocratic clasts including zircon with 4.4 Ga ages Humayun et al., doi :10.1038/nature). The alkali basaltic evolved clasts contain two feldspars (alkali and plagioclase) and modal recombination gives a basaltic trachy-andesite, gabbroic, trachy-andesite and mugearite clast (Agee et al. doi: 10.1126/science. 1228858). Noritic clasts contain andesine, LCP, and Cr-magnetite. The monzonitic/mugearitic-evolved clasts are composed of alkali feldspar, plagioclase, augite, Ti-Magnetite, Cl-apatite and zircon. These clasts would represent products of Martian crust emplaced at 4.5 Ga and re-melted at 4.4 Ga (Humayun et al., doi :10.1038/nature). The leucocratic clasts of the Noachian SNC breccia will be compared with evolved lithology encountered at Gale crater and products of Noachian magmatism will be discussed.

  20. A Comparison of Microbial Communities from Deep Igneous Crust

    NASA Astrophysics Data System (ADS)

    Smith, A. R.; Flores, G. E.; Fisk, M. R.; Colwell, F. S.; Thurber, A. R.; Mason, O. U.; Popa, R.

    2013-12-01

    Recent investigations of life in Earth's crust have revealed common themes in organism function, taxonomy, and diversity. Capacities for hydrogen oxidation, carbon fixation, methanogenesis and methanotrophy, iron and sulfur metabolisms, and hydrocarbon degradation often predominate in deep life communities, and crustal mineralogy has been hypothesized as a driving force for determining deep life community assemblages. Recently, we found that minerals characteristic of the igneous crust harbored unique communities when incubated in the Juan de Fuca Ridge flank borehole IODP 1301A. Here we present attached mineral biofilm morphologies and a comparison of our mineral communities to those from a variety of locations, contamination states, and igneous crustal or mineralogical types. We found that differences in borehole mineral communities were reflected in biofilm morphologies. Olivine biofilms were thick, carbon-rich films with embedded cells of uniform size and shape and often contained secondary minerals. Encrusted cells, spherical and rod-shaped cells, and tubes were indicative of glass surfaces. We also found that the attached communities from incubated borehole minerals were taxonomically more similar to native, attached communities from marine and continental crust than to communities from the aquifer water that seeded it. Our findings further support the hypothesis that mineralogy selects for microbial communities that have distinct phylogenetic, morphological, and potentially functional, signatures. This has important implications for resolving ecosystem function and microbial distributions in igneous crust, the largest deep habitat on Earth.

  1. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  2. Methane release from igneous intrusion of coal during Late Permian extinction events

    SciTech Connect

    Retallack, G.J.; Jahren, A.H.

    2008-01-15

    Unusually large and locally variable carbon isotope excursions coincident with mass extinctions at the end of the Permian Period (253 Ma) and Guadalupian Epoch (260 Ma) can be attributed to methane outbursts to the atmosphere. Methane has isotopic values {delta}{sup 13}C low enough to reduce to feasible amounts the carbon required for isotopic mass balance. The duration of the carbon isotopic excursions and inferred methane releases are here constrained to < 10,000 yr by counting annual varves in lake deposits and by estimating peat accumulation rates. On paleogeographic maps, the most marked carbon isotope excursions form linear arrays back to plausible methane sources: end-Permian Siberian Traps and Longwood-Bluff intrusions of New Zealand and end-Guadalupian Emeishan Traps of China. Intrusion of coal seams by feeder dikes to flood basalts could create successive thermogenic methane outbursts of the observed timing and magnitude, but these are unreasonably short times for replenishment of marine or permafrost sources of methane. Methane released by fracturing and heating of coal during intrusion of large igneous provinces may have been a planetary hazard comparable with bolide impact.

  3. Shatsky Rise: Constraining Duration of Volcanism in a Jurassic Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Heaton, D. E.; Koppers, A. A.

    2013-12-01

    Here we present new high-precision 40Ar/39Ar ages from Shatsky Rise, an oceanic plateau (2.7 × 106 km3) composed of three large volcanic edifices: TAMU, ORI and Shirsov Massif. TAMU Massif (~144.8 × 1.2 Ma; Mahoney et al., 2004) was the first to form at the intersection of an ancient triple junction and is now considered to be the largest singular shield volcano ever to have formed on Earth (Sager et al. 2013; accepted for publication in Nature Geosciences). ORI and Shirsov Massif appear to have formed later in time, following the northward migration of the triple junction. However, it remains unclear whether mechanisms involved in the formation of this triple junction and related mid-ocean ridge volcanism created Shatsky Rise, or whether a plume source is required to explain its significant size and volume. With the age determinations presented here we will attempt to constrain the duration of magmatism, reveal the eruption rates of the Shatsky Rise shield volcanoes, and determine the nature of the age progression along the Shatsky Rise massifs, if it exists. In addition, we will relate the Shatsky Rise volcanic history to the formation of numerous seamounts on and around the Shatsky Rise area. Overall, 50 groundmass and plagioclase separates from across Shatsky Rise and the related seamounts were carefully picked and processed. Thirty-four samples were analyzed from TAMU massif, coming from IODP Expedition 324 Site U1347 (17 samples), ODP Leg 198 Site 1213B (14 samples) and dredging cruise TN037 (3 samples). Seventeen samples were analyzed from ORI Massif, coming from IODP Expedition 324 Sites U1349 and U1350 (16 samples) and a single dredge along the flank of the massif from TN037 (1 sample). Four samples were analyzed from Shirsov Massif, all from IODP Expedition 324 Site U1346. Samples were variably altered but were treated with an extensive acid leaching regimen (Koppers et al., 2004), including 2 x 15 minutes of 5% HF treatments for plagioclases. Samples were then analyzed on an Argus VI noble gas multi-collector mass spectrometer in the 40Ar/39Ar Geochronology Lab at Oregon State University.

  4. Potential Future Igneous Activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Cline, M.; Perry, F. V.; Valentine, G. A.; Smistad, E.

    2005-12-01

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgement, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 X 10-8 per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. U.S. Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 X 10-8 be evaluated. Two consequence scenarios are considered; 1) igneous intrusion-groundwater transport case and 2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the contents of

  5. Potential Future Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    M. Cline; F. Perry; G. Valentine; E. Smistad

    2005-05-26

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10{sup -8} per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10{sup -8} be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the

  6. Igneous and tectonic evolution of Venusian and terrestrial coronae

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Komatsu, G.

    1992-01-01

    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions.

  7. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    SciTech Connect

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  8. Distinct Igneous APXS Rock Compositions on Mars from Pathfinder, MER and MSL

    NASA Technical Reports Server (NTRS)

    Gellert, Ralf; Arvidson, Raymond; Clark, Benton, III; Ming, Douglas W.; Morris, Richard V.; Squyres, Steven W.; Yen, Albert S.

    2015-01-01

    The alpha particle x-ray spectrometer (APXS) on all four Mars Rovers returned geochemical data from about 1000 rocks and soils along the combined traverses of over 50 kilometers. Here we discuss rocks likely of igneous origin, which might represent source materials for the soils and sediments identified along the traverses. Adirondack-type basalts, abundant in the plains of Gusev Crater, are primitive, olivine bearing basalts. They resemble in composition the basaltic soils encountered at all landing sites, except the ubiquitous elevated S, Cl and Zn in soils. They have been postulated to represent closely the average Martian crust composition. The recently identified new Martian meteorite Black Beauty has similar overall geochemical composition, very distinct from the earlier established SNC meteorites. The rim of the Noachian crater Endeavour, predating the sulfate-bearing Burns formation at Meridiani Planum, also resembles closely the composition of Adirondack basalts. At Gale Crater, the MSL Curiosity rover identified a felsic rock type exemplified by the mugearitic float rock JakeM, which is widespread along the traverse at Gale. While a surprise at that time, possibly related more evolved, alkaline rocks had been previously identified on Mars. Spirit encountered the Wishstone rocks in the Columbia Hills with approx. 6% Na2O+K2O, 15 % Al2O3 and low 12% FeO. Pathfinder rocks with elevated K and Na and >50% SiO2 were postulated to be andesitic. Recently Opportunity encountered the rock JeanBaptisteCharbonneau with >15% Al2O3, >50% SiO2 and approx. 10% FeO. A common characteristic all these rocks is the very low abundance of Cr, Ni and Zn, and an Fe/Mn ratio of about 50, indicating an unaltered Fe mineralogy. Beside these likely igneous rock types, which occurred always in several rocks, a few unique rocks were encountered, e.g. Bounce Rock, a pyroxene-bearing ejecta rock fragment resembling the Shergottite EETA 79001B meteorite. The APXS data can be used to

  9. Igneous rocks of the West Sakhalin Terrane of Sakhalin Island

    NASA Astrophysics Data System (ADS)

    Grannik, V. M.

    2016-10-01

    It has been determined that the Rozhdestvenka Formation of the West Sakhalin Terrane composed of Late Mesozoic igneous rocks is a fragment of the accretionary prism of the Rebun-Kabato-Moneron-Samarga island-arc system. Volcanic eruptions, as well as destruction of the Rebun-Kabato-Moneron-Samarga island-arc and the East Sikhote-Alin volcano plutonic marginal continental belt, were the sources of pyroclastic and clastic material entering the sedimentary basin, where the Pobedinsk and Krasnoyarka suites of the West Sakhalin Terrane were formed.

  10. Magnetostriction and palæomagnetism of igneous rocks

    USGS Publications Warehouse

    Graham, John W.; Buddington, A.F.; Balsley, James R.

    1959-01-01

    IN a recent communication, Stott and Stacey1 report on a “crucial experiment” from which they conclude: “This excellent agreement between the dip and the directions of artificial thermoremanent magnetization of the stressed and unstressed rocks indicates that large systematic errors due to magnetostriction are most improbable in igneous rocks of types normally used for palæomagnetic work”. This experiment was intended to test the proposals2 and measurements3 bearing on the role of magnetostriction in rock magnetism. We present here our reasons for believing that the experiment was not crucial and that the conclusion is not justified.

  11. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  12. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  13. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  14. The role of igneous sills in shaping the Martian uplands

    NASA Technical Reports Server (NTRS)

    Wilhelms, D. E.; Baldwin, R. J.

    1989-01-01

    Relations among geologic units and landforms suggest that igneous sills lie beneath much of the intercrater and intracrater terrain of the Martian uplands. The igneous rocks crop out along the upland-lowland front and in crater floors and other depressions that are low enough to intersect the sill's intrusion horizons. It is suggested that heat from the cooling sills melted some of the ice contained in overlying fragmental deposits, creating valley networks by subsurface flow of the meltwater. Terrains with undulatory, smooth surfaces and softened traces of valleys were created by more direct contact with the sills. Widespread subsidence following emplacement of the sills deformed both them and the nonvolcanic deposits that overlie them, accounting for the many structures that continue from ridged plains into the hilly uplands. Crater counts show that the deposit that became valleyed, softened, and ridged probably began to form (and to acquire interstitial ice) during or shortly after the Middle Noachian Epoch, and continued to form as late as the Early Hesperian Epoch. The upper layers of this deposit, many of the visible valleys, and the ridged plains and postulated sills all have similar Early Hesperian ages. Continued formation of valleys is indicated by their incision of fresh-appearing crater ejecta. The dependence of valley formation on internal processes implies that Mars did not necessarily have a dense early atmosphere or warm climate.

  15. Post-igneous redistribution of components in eucrites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.

    1993-01-01

    In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.

  16. Do the Columbia Hills of Gusev Crater Represent a Layered Igneous Intrusion on Mars?

    NASA Astrophysics Data System (ADS)

    Francis, D.

    2009-12-01

    The Martian Rover Spirit has now collected some 60 whole-rock chemical analyses on rock outcrops and boulders on its traverse from its landing site on the Gusev crater plains into the nearby Columbia Hills. Although Fe-rich “basaltic” compositions dominate the data set, there is a relatively wide range of mafic compositions that define a striking trend of increasing Fe with increasing Mg, and a small subset of ultramafic compositions at higher Mg. Although many of the analyzed samples have been shown to have experienced the effects of acidic chemical weathering, only the minor elements S, P, and K appear to have been seriously disturbed. Comparisons of analyses of rocks before and after abrasion suggests that it is unlikely that the co-variation between Fe and Mg in the Spirit whole rock analyses is a weathering effect. Despite the coherence of the array of Spirit data in Fe-Mg space, however, no plausible crystal fractionation model can explain the decrease in Fe with Mg within the mafic samples, nor relate the ultramafic samples to the mafic ones, if the samples of the data set are assumed to represent volcanic compositions defining a liquid line of descent. This reflects a fundamental inconsistency between the compositions of the olivine present (Fo~50-60), as estimated by Mössbauer analysis, and that predicted on the basis of Fe/Mg partitioning (Fo ~ 80). Positively correlated linear arrays in Fe - Mg space are, however, a common feature of whole rock data collected across cyclic feldspar-rich and mafic-rich cumulates in layered igneous intrusions. In such cyclically layered sequences, the whole rock compositions reflect magmatic crystal sorting, and scatter along mixing lines between the compositions of dominant cumulate phases. There is in fact a striking correspondence between the Fe-Mg array of Spirit data and those of dunite to troctolite cumulate layers in the Fe-rich Lac Raudot Troctolite Complex of the Grenville Province of Québec. If the Spirit

  17. Subsurface Structure of the Bushveld Igneous Complex, South Africa: An Application of Geophysics

    NASA Astrophysics Data System (ADS)

    Vallejo, G.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Falzone, C.; Guandique, J.; Emry, E.; Webb, S. J.; Nyblade, A.

    2014-12-01

    South Africa is host to the largest single known platinum group metal supply in the world. The Bushveld Igneous Complex, spanning 300x400 kilometers, hosts hundreds of years' worth of platinum, chromite, vanadium, and other ore. Its wealth of these metals is tied directly to the large layered igneous intrusion that formed roughly 2061 million years ago. The extraction of platinum is vital to the industrial world - as these metals are widely used in the automotive industry, dental restorations, computer technology, in addition to many other applications. In collaboration with the Africa Array geophysics field school and the Penn State Summer Research Opportunities Program (SROP), we surveyed the Modikwa mine located along the border of the provinces of Mpumalanga and Limpopo in South Africa. The following techniques were applied to survey the area of interest: seismic refraction and reflection, gravity, magnetics, electrical resistivity, and electromagnetics. The data collected were used to determine the depth to bedrock and to identify potential mining hazards from dykes and faults in the bedrock. Several areas were studied and with the combination of the above-mentioned methods several possible hazards were identified. One broad, major dyke that was located in a prior aeromagnetic survey and several previously undetected, parallel, minor dykes were identified in the region. The overburden thickness was determined to be ̴4-5 meters in some regions, and as thin as several centimeters in others. This section of rock and soil lies above an area where platinum will likely be mined in the future. The removal of overburden can be accomplished by using power shovels or scrapers; while remaining material can be contained with the use of galvanized steel culverts. Additionally, a number of joints were located that may have allowed water to accumulate underground. The models created from the data permit us to estimate which hazards could be present in different parts of the

  18. Record of massive upwellings from the Pacific large low shear velocity province

    PubMed Central

    Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian

    2016-01-01

    Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ∼10–20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption. PMID:27824054

  19. Record of massive upwellings from the Pacific large low shear velocity province

    NASA Astrophysics Data System (ADS)

    Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E.; Bizimis, Michael; Jicha, Brian

    2016-11-01

    Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ~10-20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.

  20. Record of massive upwellings from the Pacific large low shear velocity province.

    PubMed

    Madrigal, Pilar; Gazel, Esteban; Flores, Kennet E; Bizimis, Michael; Jicha, Brian

    2016-11-08

    Large igneous provinces, as the surface expression of deep mantle processes, play a key role in the evolution of the planet. Here we analyse the geochemical record and timing of the Pacific Ocean Large Igneous Provinces and preserved accreted terranes to reconstruct the history of pulses of mantle plume upwellings and their relation with a deep-rooted source like the Pacific large low-shear velocity Province during the Mid-Jurassic to Upper Cretaceous. Petrological modelling and geochemical data suggest the need of interaction between these deep-rooted upwellings and mid-ocean ridges in pulses separated by ∼10-20 Ma, to generate the massive volumes of melt preserved today as oceanic plateaus. These pulses impacted the marine biota resulting in episodes of anoxia and mass extinctions shortly after their eruption.

  1. Magmatic Evolution of the Skye Igneous Center, Western Scotland

    NASA Astrophysics Data System (ADS)

    Fowler, S. J.; Bohrson, W. A.; Spera, F. J.

    2003-12-01

    Geochemically complex igneous suites are the result of interplay between deep and crustal-level processes. Quantitatively modeling the contribution that crustal-level processes such as magma recharge, crustal assimilation, and fractional crystallization have is critical for developing realistic models of how magma transport/storage systems evolve. The Energy-Constrained Recharge, Assimilation, and Fractional Crystallization simulator (EC-RAFC, Spera & Bohrson, 2001, 2002; Bohrson & Spera, 2001, 2003) provides a means to model thermal, compositional, and magma volume data for complex magmatic systems. The Skye igneous center, western Scotland, spanning the period 60.53 +/- 0.08 Ma - 53.5 +/- 0.8 Ma and characterized by a well-documented suite of lavas and intrusive rocks of picritic to granitic composition, is the first natural data set to which the EC-RAFC model has been applied in detail. Based on analysis of published field, stratigraphic, petrographic, and chemical data, we propose that the Skye Tertiary magmatic sequence be divided into four petrogenetically related lineages. EC-RAFC results indicate that each lineage is characterized by a unique parental magma that has undergone distinct episodes of RAFC. Model results, constrained by published data on the nature of the crust beneath Skye, indicate that the character of the assimilant changes upsection, suggesting that the associated magma reservoirs migrated to shallower levels as the magmatic system matured. The magmatic products of each group also record the fingerprint of multiple episodes of magma recharge, where the character of the recharge magma also evolves with time. The image of the magma transport system that emerges is one in which magma is initially intruded at lower crustal levels and undergoes a distinct RAFC episode. Residual magma from this event then migrates to shallower levels, where mid-crustal wallrock is assimilated; recharge magma is characterized by increasingly crustal chemical and

  2. Mafic and felsic igneous rocks at Gale crater

    NASA Astrophysics Data System (ADS)

    Sautter, Violaine; Cousin, Agnès; Mangold, Nicolas; Toplis, Michael; Fabre, Cécile; Forni, Olivier; Payré, Valérie; Gasnault, Olivier; Ollila, Anne; Rapin, William; Fisk, Martin; Meslin, Pierre-Yves; Wiens, Roger; Maurice, Sylvestre; Lasue, Jérémie; Newsom, Horton; Lanza, Nina

    2015-04-01

    The Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian terrains on Mars. The rover encountered a great variety of igneous rocks to the west of the Yellow Knife Bay sedimentary unit (from sol 13 to 800) which are float rocks or clasts in conglomerates. Textural and compositional analyses using MastCam and ChemCam Remote micro Imager (RMI) and Laser Induced Breakdown Spectroscopy (LIBS) with a ˜300-500 µm laser spot lead to the recognition of 53 massive (non layered) igneous targets, both intrusive and effusive, ranging from mafic rocks where feldspars form less than 50% of the rock to felsic samples where feldspar is the dominant mineral. From morphology, color, grain size, patina and chemistry, at least 5 different groups of rocks have been identified: (1) a basaltic class with shiny aspect, conchoidal frature, no visible grains (less than 0.2mm) in a dark matrix with a few mm sized light-toned crystals (21 targets) (2) a porphyritic trachyandesite class with light-toned, bladed and polygonal crystals 1-20 mm in length set in a dark gray mesostasis (11 targets); (3) light toned trachytes with no visible grains sometimes vesiculated or forming flat targets (6 targets); (4) microgabbro-norite (grain size < 1mm) and gabbro-norite (grain size >1 mm) showing dark and light toned crystals in similar proportion ( 8 targets); (5) light-toned diorite/granodiorite showing coarse granular (>4 mm) texture either pristine or blocky, strongly weathered rocks (9 rock targets). Overall, these rocks comprise 2 distinct geochemical series: (i) an alkali-suite: basanite, gabbro trachy-andesite and trachyte) including porphyritic and aphyric members; (ii) quartz-normative intrusives close to granodioritic composition. The former looks like felsic clasts recently described in two SNC meteorites (NWA 7034 and 7533), the first Noachian breccia sampling the martian regolith. It is geochemically consistent with differentiation of liquids produced by low

  3. Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge, Alabama Appalachians

    SciTech Connect

    Drummond, M.S. . Geology Dept.); Allison, D.T. . Geology Dept.); Tull, J.F. . Geology Dept.); Bieler, D.B. . Geology Dept.)

    1994-03-01

    A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derived from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.

  4. Tectonic significance of Neoproterozoic magmatism of Nakora area, Malani igneous suite, Western Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Vallinayagam, G.

    2014-05-01

    Three magmatic phases are distinguished in the Neoproterozoic Nakora Ring Complex (NRC) of Malani Igneous Suite (MIS), namely (a) Extrusive (b) Intrusive and (c) Dyke phase. Magmatism at NRC initiated with minor amount of (basic) basalt flows and followed by the extensive/voluminous acid (rhyolites-trachytes) flows. The ripple marks are observed at the Dadawari area of NRC in tuffaceous rhyolite flow which suggests the aqueous condition of flows deposition. The emplacement of the magma appears to have been controlled by a well defined NE-SW tectonic lineament and cut by radial pattern of dykes. These NE-SW tectonic lineaments are the linear zones of crustal weakness and high heat flow. The spheroidal and rapakivi structures in the Nakora acid volcanics indicate the relationship between genetic link and magma mixing. Basalt-trachyte-rhyolite association suggests that the large amount of heat is supplied to the crust from the magma chamber before the eruption. The field (elliptical/ring structures), mineralogical and geochemical characteristics of Nakora granites attest an alkaline character in their evolution and consistent with within plate tectonic setting. The emplacement of these granites and associated volcanics is controlled by ring structures, a manifestation of plume activity and cauldron subsidence, an evidence of extensional tectonic environment. NRC granites are the product of partial melting of rocks similar to banded gneiss from Kolar Schist Belt of India. The present investigations suggest that the magmatic suites of NRC rocks are derived from a crustal source and the required heat supplied from a mantle plume.

  5. Rb-Sr age of lunar igneous rocks 62295 and 14310

    NASA Technical Reports Server (NTRS)

    Mark, R. K.; Lee-Hu, C.-N.; Wetherill, G. W.

    1974-01-01

    Measurements of Rb-Sr ages of crystallization performed on igneous lunar highland rocks 62295 and 14310 are reported. Lunar sample 62295 is a mesostasis-rich spinel-troctolite very-high-alumina basalt exhibiting a variable igneous structure. Sample 14310 is a feldspathic KREEP-rich basalt. The determined ages probably date the cooling of shock melts.

  6. The "Key" Method of Identifying Igneous and Metamorphic Rocks in Introductory Laboratory.

    ERIC Educational Resources Information Center

    Eves, Robert Leo; Davis, Larry Eugene

    1987-01-01

    Proposes that identification keys provide an orderly strategy for the identification of igneous and metamorphic rocks in an introductory geology course. Explains the format employed in the system and includes the actual key guides for both igneous and metamorphic rocks. (ML)

  7. U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: A geodynamic perspective

    NASA Astrophysics Data System (ADS)

    Millonig, Leo J.; Gerdes, Axel; Groat, Lee A.

    2012-11-01

    U-Pb and Th-Pb ages of zircons from seven meta-carbonatite and three meta-alkaline rock samples provide evidence for three distinct episodes of carbonatite and alkaline magmatism in the southern Canadian Cordillera spanning a period of ~ 460 Ma. The earliest, Neoproterozoic event occurred at ~ 800-700 Ma and coincides with the postulated initial break-up of Rodinia. The second, previously undocumented, event of carbonatitic magmatism is constrained to the Late Cambrian at ~ 500 Ma and corresponds to a period of extensional tectonics that affected the western continental margin of North America from the Canadian Cordillera to the southwestern United States. The youngest and most prevalent period of alkaline igneous activity occurred in Late Devonian to Early Carboniferous times at ~ 360-340 Ma and resulted from extensional tectonics, presumably caused by slab rollback. In addition, different episodes of amphibolite-facies metamorphism subsequently affected the igneous rocks between ~ 155 and 50 Ma. This dataset puts new constraints on the timing of carbonatite and alkaline igneous activity and the evolution of (ancestral) North America's western continental margin from Neoproterozoic to Carboniferous times.

  8. Presentation and interpretation of chemical data for igneous rocks

    USGS Publications Warehouse

    Wright, T.L.

    1974-01-01

    Arguments are made in favor of using variation diagrams to plot analyses of igneous rocks and their derivatives and modeling differentiation processes by least-squares mixing procedures. These methods permit study of magmatic differentiation and related processes in terms of all of the chemical data available. Data are presented as they are reported by the chemist and specific processes may be modeled and either quantitatively described or rejected as inappropriate or too simple. Examples are given of the differing interpretations that can arise when data are plotted on an AEM ternary vs. the same data on a full set of MgO variation diagrams. Mixing procedures are illustrated with reference to basaltic lavas from the Columbia Plateau. ?? 1974 Springer-Verlag.

  9. Evolution of the martian mantle as recorded by igneous rocks

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; McSween, H. Y.

    2013-12-01

    Martian igneous rocks provide our best window into the current state of the martian mantle and its evolution after accretion and differentiation. Currently, those rocks have been examined in situ by rovers, characterized in general from orbiting spacecraft, and analyzed in terrestrial laboratories when found as meteorites. However, these data have the potential to bias our understanding of martian magmatism, as most of the available meteorites and rover-analyzed rocks come from the Amazonian (<2 Ga) and Hesperian (~3.65 Ga) periods respectively, while igneous rocks from the Noachian (>3.8 Ga) have only been examined by orbiters and as the unique meteorite ALH 84001. After initial differentiation, the main planetary-scale changes in the structure of Mars which impact igneous compositions are cooling of the planet and thickening of the crust with time. As the shergottite meteorites give ages <500 Ma1, they might be expected to represent thick-crust, recent volcanism. Using spacecraft measurements of volcanic compositions and whole rock compositions of meteorites, we demonstrate that the shergottite meteorites do not match the composition of the igneous rocks composing the young volcanoes on Mars, particularly in their silica content, and no crystallization or crustal contamination trend reproduces the volcanoes from a shergottite-like parent magma. However, we show that the shergottite magmas do resemble older martian rocks in composition and mineralogy. The Noachian-aged meteorite ALH 84001 has similar radiogenic-element signatures to the shergottites and may derive from a similar mantle source despite the age difference2. Thus, shergottite-like magmas may represent melting of mantle sources that were much more abundant early in martian history. We propose that the shergottites represent the melting products of an originally-hydrous martian mantle, containing at least several hundred ppm H2O. Dissolved water can increase the silica content of magmas and thus

  10. The nakhlite meteorites: Augite-rich igneous rocks from Mars

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    2005-01-01

    The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg' = 63% and rims that are normally zoned to iron enrichment. The core-rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning - sharp rim zoning goes with the most magnesian cores (Mg' = 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. Compared to common basalts, they are rich in Ca, strongly depleted in Al, and enriched in magmaphile (incompatible) elements, including the LREE. Nakhlites contain little pre-terrestrial organic matter. Oxygen isotope ratios are not terrestrial, and are different in anhydrous silicates and in iddingsite. The alteration assemblages all have heavy oxygen and heavy carbon, while D/H values are extreme and scattered. Igneous sulfur had a solar-system isotopic ratio, but in most minerals was altered to higher and lower values. High precision

  11. Primary igneous rocks on Mars: Composition and distribution

    NASA Technical Reports Server (NTRS)

    Singer, Robert B.; Mcsween, Harry Y., Jr.

    1991-01-01

    The present knowledge of the crustal composition of Mars is synthesized and implications discussed for in-situ resource utilization. Sources of information include remote sensing observations, Viking XRF chemical measurements, and characteristics of the SNC meteorites (which most researchers now believe originated on Mars). There are a number of lines of evidence that abundant ferrous-iron rich igneous crustal rocks (and derivative soils) are available at or very near the current Martian surface at many locations on the planet. Most of these exposures show spectroscopic evidence for abundant pyroxene, consistent with basaltic compositions. The SNC meteorites, which have basaltic compositions, were also studied extensively. Interpretations of Mars crustal chemistry and mineralogy (petrology) based on these various sources are reviewed, and their consistencies and differences are discussed.

  12. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  13. The Search for Igneous Materials at the Viking Landing Sites

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Dale-Bannister, M.; Guinnes, E. A.

    1985-01-01

    The use of Viking Lander 6 channel (0.4 to 1.1 microns) images to identify igneous materials is discussed. Movies of synthetic image cubes demonstrate that there are a number of contrast reversals between soils and certain rocks. Typically, large, angular rocks are brighter than the surrounding soils in the shortest wavelengths, and much darker than the soils at longest wavelengths. These results, which seem difficult to explain solely on the basis of photometric effects related to local lighting and viewing, are consistent with the presence of Fe+2 bearing silicates at the rock surfaces, producing relatively moderate absorptions in the blue and green parts of the spectrum, but more significant absorptions near about 1.0 micrometer (e.g., Fe+2 bearing pyroxenes). The soils, on the other hand, have signatures consistent with strong Fe+3 related absorptions at shorter wavelengths (e.g., Fe+3 bearing oxides or hydroxides).

  14. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks.

    PubMed

    Moura, C L; Artur, A C; Bonotto, D M; Guedes, S; Martinelli, C D

    2011-07-01

    This paper reports the natural radioactivity of Brazilian igneous rocks that are used as dimension stones, following the trend of other studies on the evaluation of the risks to the human health caused by the rocks radioactivity as a consequence of their use as cover indoors. Gamma-ray spectrometry has been utilized to determine the (40)K, (226)Ra and (232)Th activity concentrations in 14 rock types collected at different quarries. The following activity concentration range was found: 12.18-251.90 Bq/kg for (226)Ra, 9.55-347.47 Bq/kg for (232)Th and 407.5-1615.0 Bq/kg for (40)K. Such data were used to estimate Ra(eq), H(ex) and I(γ), which were compared with the threshold limit values recommended in literature. They have been exceeded for Ra(eq) and H(ex) in five samples, where the highest indices corresponded to a rock that suffered a process of ductile-brittle deformation that caused it a microbrecciated shape. The exhalation rate of Rn and daughters has also been determined in slabs consisting of rock pieces ~10 cm-long, 5 cm-wide and 3 cm-thick. It ranged from 0.24 to 3.93 Bq/m(2)/h and exhibited significant correlation with eU (=(226)Ra), as expected. The results indicated that most of the studied rocks did not present risk to human health and may be used indoors, even with low ventilation. On the other hand, igneous rocks that yielded indices above the threshold limit values recommended in literature may be used outdoors without any restriction or indoors with ample ventilation.

  15. The ca. 1380 Ma Mashak igneous event of the Southern Urals

    NASA Astrophysics Data System (ADS)

    Puchkov, Victor N.; Bogdanova, Svetlana V.; Ernst, Richard E.; Kozlov, Vjacheslav I.; Krasnobaev, Arthur A.; Söderlund, Ulf; Wingate, Michael T. D.; Postnikov, Alexander V.; Sergeeva, Nina D.

    2013-08-01

    A review of the geochronology, geochemistry and distribution of the 1380 Ma Mashak Large Igneous Province (LIP) of the eastern margin of the East European craton indicates a potential link to a major breakup stage of the Mesoproterozoic supercontinent Columbia (Nuna), link to a major stratigraphic boundary (Lowe-Middle Riphean), and economic significance for hydrocarbons and metallogeny. Specifically, the Mashak event likely has much greater extent than previously realized. Two U-Pb baddeleyite (ID TIMS) age determinations on dolerite sills obtained from borehole (Menzelinsk-Aktanysh-183) confirm the western extent of the Mashak event into the crystalline basement of the East European Craton (1382 ± 2 Ma) and into the overlying Lower Riphean sediments (1391 ± 2 Ma), and the imprecise ages reported elsewhere indicate the possible extension into the Timan region, with an overall areal extent of more than 500,000 km2 (LIP scale). It has tholeiitic compositions and is associated with breakup on the eastern margin of the craton - in addition, precise SHRIMP zircon ages of 1386 ± 5 Ma and 1386 ± 6 Ma (this paper) provide confirmation of previous approximate 1380-1383 Ma zircon age determination of the same formation, and suggest an age of ca. 1.4 Ga for the Lower/Middle Riphean boundary which was formerly considered to be 1350 ± 10 Ma. Contemporaneous magmatic rocks in the northeastern Greenland part of Laurentia (Zig-Zag Dal and Midsommerso formations) and Siberia (Chieress dykes and other dolerites) together with the Mashak event are suggested to be fragments of a single huge LIP and to correspond to breakup stage of the Columbia (Nuna) supercontinent. The Mashak LIP also has some significance, at least in Volgo-Uralia, for hydrocarbons and metallogeny.

  16. Geochemical characteristics of igneous rocks associated with epithermal mineral deposits—A review

    USGS Publications Warehouse

    du Bray, Edward A.

    2017-01-01

    Newly synthesized data indicate that the geochemistry of igneous rocks associated with epithermal mineral deposits varies extensively and continuously from subalkaline basaltic to rhyolitic compositions. Trace element and isotopic data for these rocks are consistent with subduction-related magmatism and suggest that the primary source magmas were generated by partial melting of the mantle-wedge above subducting oceanic slabs. Broad geochemical and petrographic diversity of individual igneous rock units associated with epithermal deposits indicate that the associated magmas evolved by open-system processes. Following migration to shallow crustal reservoirs, these magmas evolved by assimilation, recharge, and partial homogenization; these processes contribute to arc magmatism worldwide.Although epithermal deposits with the largest Au and Ag production are associated with felsic to intermediate composition igneous rocks, demonstrable relationships between magmas having any particular composition and epithermal deposit genesis are completely absent because the composition of igneous rock units associated with epithermal deposits ranges from basalt to rhyolite. Consequently, igneous rock compositions do not constitute effective exploration criteria with respect to identification of terranes prospective for epithermal deposit formation. However, the close spatial and temporal association of igneous rocks and epithermal deposits does suggest a mutual genetic relationship. Igneous systems likely contribute heat and some of the fluids and metals involved in epithermal deposit formation. Accordingly, deposit formation requires optimization of source metal contents, appropriate fluid compositions and characteristics, structural features conducive to hydrothermal fluid flow and confinement, and receptive host rocks, but not magmas with special compositional characteristics.

  17. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    SciTech Connect

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  18. Tungsten anomalies in the Uyaijah ring structure, Kushaymiyah igneous complex, Kingdom of Saudi Arabia - Section A, Geology and geochemistry of the Uyaijah ring structure; Section B, Regional geophysics

    USGS Publications Warehouse

    Theobald, P.K.; Allcott, Glenn H.; Flanigan, Vincent J.; Andeasen, Gordon E.

    1975-01-01

    Anomalous amounts of tungsten, molybdenum, and bismuth are present in the Uyaijah ring structure of the Kushaymiyah igneous complex in the eastern part of the Precambrian shield of the Kingdom of Saudi Arabia. The complex includes four major rock units, the Murdama Group, porphyritic granodiorite, quartz monzonite, alkaline granite, and areas enriched in silica. Structural and compositional relationships among some of the rock units are defined in part by aeromagnetic and gamma-ray spectrometric geophysical data. Geochemical data from -10 +30 mesh surficial debris were primarily related to the composition of the major rock units, whereas data from heavy-mineral concentrates were used to establish the location of tungsten-molybdenum-bismuth anomalies. Two areas of about 40 sq km each are occupied by tungsten-molybdenum-bismuth anomalies interpreted to be related to the alkaline granite. One of these is a contact metasomatic anomaly; the other is related to leakage from an inferred underlying cupola of the alkaline granite. These two anomalous areas are recommended for further investigation

  19. Complete Analytical Data for Samples of Jurassic Igneous Rocks in the Bald Mountain Mining District, Nevada

    USGS Publications Warehouse

    du Bray, Edward A.

    2009-01-01

    This report presents all petrographic, major oxide, and trace element data for a set of 109 samples collected during an investigation of Jurassic igneous rocks in the Bald Mountain mining district, Nevada. Igneous rocks in the district include the Bald Mountain stock, quartz-feldspar porphyry dikes, basaltic andesite dikes, aplite sills, and rare lamprophyre dikes. These rocks, although variably altered near intrusion-related mineral deposits, are fresh in many parts of the district. Igneous rocks in the district are hosted by Paleozoic sedimentary rocks.

  20. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    F. Perry; B. Youngs

    2000-11-06

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both footprints are presented in this AMR. In addition, the

  1. Archaean associations of volcanics, granulites and eclogites of the Belomorian province, Fennoscandian Shield and its geodynamic interpretation

    NASA Astrophysics Data System (ADS)

    Slabunov, Alexander

    2013-04-01

    An assembly of igneous (TTG-granitoids and S-type leucogranites and calc-alkaline-, tholeiite-, kometiite-, boninite- and adakite-series metavolcanics) and metamorphic (eclogite-, moderate-pressure (MP) granulite- and MP amphibolite-facies rocks) complexes, strikingly complete for Archaean structures, is preserved in the Belomorian province of the Fennoscandian Shield. At least four Meso-Neoarchaean different-aged (2.88-2.82; 2.81-2.78; ca. 2.75 and 2.735-2.72 Ga) calc-alkaline and adakitic subduction-type volcanics were identified as part of greenstone belts in the Belomorian province (Slabunov, 2008). 2.88-2.82 and ca. 2.78 Ga fore-arc type graywacke units were identified in this province too (Bibikova et al., 2001; Mil'kevich et al., 2007). Ca.2.7 Ga volcanics were generated in extension structures which arose upon the collapse of an orogen. The occurrence of basalt-komatiite complexes, formed in most greenstone belts in oceanic plateau settings under the influence of mantle plumes, shows the abundance of these rocks in subducting oceanic slabs. Multiple (2.82-2.79; 2.78-2.76; 2.73-2.72; 2.69-2.64 Ga) granulite-facies moderate-pressure metamorphic events were identified in the Belomorian province (Volodichev, 1990; Slabunov et al., 2006). The earliest (2.82-2.79 Ga) event is presumably associated with accretionary processes upon the formation of an old continental crust block. Two other events (2.78-2.76; 2.73-2.72 Ga) are understood as metamorphic processes in suprasubduction setting. Late locally active metamorphism is attributed to the emplacement of mafic intrusions upon orogen collapse. Three groups of crustal eclogites with different age were identified in the Belomorian province: Mesoarchaean (2.88-2.86 and 2.82-2.80 Ga) eclogites formed from MORB and oceanic plateau type basalts and oceanic high-Mg rocks (Mints et al., 2011; Shchipansky at al., 2012); Neoarchaean (2.72 Ga) eclogites formed from MORB and oceanic plateau type basalts. The formation of

  2. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  3. Petrology of Igneous Clasts in Regolithic Howardite EET 87503

    NASA Technical Reports Server (NTRS)

    Hodges, Z. V.; Mittlefehldt, D. W.

    2017-01-01

    The howardite, eucrite and diogenite (HED) clan of meteorites is widely considered to originate from asteroid 4 Vesta, as a result of a global magma ocean style of differentiation. A global magmatic stage would allow silicate material to be well mixed, destroying any initial heterogeneity that may have been present resulting in the uniformity of eucrite and diogenite delta(exp 17)O, for example. The Fe/Mn ratio of mafic phases in planetary basalts can be diagnostic of different source bodies as this ratio is little-affected by igneous processes, so long as the oxygen and sulphur fugacities are buffered. Here, pyroxene Fe/Mn ratios in mafic clasts in howardite EET 87503 have been determined to further evaluate whether the HED parent asteroid is uniform. Uniformity would suggest that the parent asteroid was subject to homogenization prior to the formation of HED lithologies, likely through an extensive melting phase. Whereas, distinct differences may point towards heterogeneity of the parent body.

  4. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    2005-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Our lunar research concentrates on the rare pristine (unmixed) samples that reflect the original genetic diversity of the early crust. Among HED basalts (eucrites and clasts in howardites), we distinguish as pristine the small minority that escaped the pervasive thermal metamorphism of the parent asteroid's crust. We have found a correlation between metamorphically pristine HED basalts and the similarly small minority of compositionally evolved "Stannern trend" samples, which are enriched in incompatible elements and titanium compared to main group eucrites, and yet have relatively high mg ratios. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; siderophile compositions of the lunar and martian mantles; and planetary bulk compositions and origins.

  5. The Igneous SPICEs Suite: Old Programs with a New Look

    NASA Astrophysics Data System (ADS)

    Davenport, J. D.

    2013-12-01

    Understanding the chemistry of magma is important for understanding how the planets differentiated into crusts, rocky mantles, and metallic cores. Magma formation and crystallization can be modeled using computer programs. A valuable and useful set of programs was developed by John Longhi (Lamont-Doherty Earth Observatory, Palisades, New York). John Longhi generously shared these programs widely with colleagues, but they were written in Fortran by John for his own use, and not as user-friendly research tools. As a major part of my Masters thesis at the University of Notre Dame, I was using the programs to do numerous calculations of the crystallization of the lunar magma ocean, the deep, global magma layer surrounding the Moon when it formed. It occurred to me that it would make my life easier if the programs were more straightforward, so working with others at Notre Dame and elsewhere, including John Longhi, I converted the programs for use with MATLAB, a powerful mathematical program. The revisions (Simulating Planetary Igneous Crystallization Environments, SPICEs) have a simple graphical interface for ease of input and output, yet use the same rigorous calculations in the original Longhi programs. My goal is to make the programs more widely used for research and education.

  6. Thermal diffusivity of igneous rocks at elevated pressure and temperature

    SciTech Connect

    Durham, W.B.; Mirkovich, V.V.; Heard, H.C.

    1987-10-10

    Thermal diffusivity measurements of seven igneous rocks were made to temperatures of 400 /sup 0/C and pressures of 200 MPa. The measuring method was based on the concept of cylindrical symmetry and periodic heat pulses. The seven rocks measured were Westerly (Rhode Island) granite, Climax Stock (Nevada) quartz monzonite, Pomona (Washington) basalt, Atikokan (Ontario, Canada) granite, Creighton (Ontario, Canada) gabbro, East Bull Lake (Ontario, Canada) gabbro, and Stripa (Sweden) granite. The diffusivity of all the rocks showed a positive linear dependence on inverse temperature and, excluding the East Bull Lake gabbro, showed a linear dependence on quartz content. (Quartz content varied from 0 to 31% by volume.) Diffusivity in all cases rose or remained steady with increasing confining pressure. The pressure effect was strongest at lowest pressures and vanished by levels between 10 and 100 MPa, depending on rock type. The pressure effect (measured as a percentage change in diffusivity) is stronger in the four rocks of granite composition than in the three of basaltic composition. Our results agree well with existing thermal diffusivity measurements at atmospheric pressure.

  7. Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Pt. 1

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W. (Editor); Papike, James J. (Editor)

    1996-01-01

    This volume contains abstracts of papers that have been accepted for presentation at the Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, October 16-18, 1996, in Houston, Texas.

  8. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  9. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  10. Crystallization trends of precursor pyroxene in ordinary chondrites: Implications for igneous origin of precursor

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Kitamura, M.

    1994-01-01

    Various observations suggest that the precursor of the fine fragments and the relict pyroxene was formed by an igneous process in a grandparent body of the chondrite. Furthermore, the fact that the precursors appear as fragments in the matrix as well as relicts in the chondrule suggests a shock origin for the chondrite by collision of two or more bodies, which had already to some extent undergone igneous differentiation.

  11. Mantle xenocrysts of Chompolo field of the alkaline volcanics, Aldan shield, South Yakutia.

    NASA Astrophysics Data System (ADS)

    Nikolenko, Evgeny; Tychkov, Nikolay; Afanasiev, Valentin

    2015-04-01

    New mineralogical and chemical constraints for 10 dikes, veins (360-800m) and pipes (60-110 m) of Chompolo field discovered in 1957-1958 are discussed. Feld is located within Central Aldan Archean and Paleoproterozoic granulite-orthogneiss superterrane of Aldan-Stanovoy Shield, with peak of metamorphism - 2.1-1.9 Ga (Smelov, Timofeev, 2007). Originally (Shilina and Zeitlin 1959) and later (Kostrovitsky and Garanin 1992, Ashchepkov, Vladykin et al. 2001) these rocks were classified as kimberlites by mineralogy including pyrope, Cr spinel, and Cr diopside. Panina and Vladykin (1994), Davies et al, (2006) identified them as lamprophyres and lamproites. The age of Chompolo rocks is pre-Jurassic (Vladimirov et. al., 1989) dated by 40Ar/39Ar as 164.7±1 Ma (233.7±2.2 next plato)(unpublished Ashchepkov). The Rb-Sr isochron for lamprophyre "intrusions 104" indicate later age of 131±4 Ma (Zaitsev, Smelov, 2010). Magmatic bodies (Aldanskaya, Sputnik, Gornaya, Ogonek, Perevalnaya, Kilier-E) were studied during 2012-2013 fieldworks. Most of igneous rocks occur as inequigranular volcanic breccias with micro- or crypto-crystalline groundmass of K feldspar (up to 16.3 wt.% K2O, up to 3.2 wt.% FeO), chlorite, opaque minerals, melanocratic xenocrysts and phenocrysts (garnet, pyroxene, amphibole, Cr spinel, apatite, zircon, mica), and abundant xenogenic fragments of wallrock and crystalline basement. Garnet chemistry records the presence of mantle and crustal material. Mantle garnets lack the common megacryst, wehrlite, and high-temperature lherzolite varieties. Mantle mineralization prevails in the Aldan dike and the Sputnik, Gornaya, and Ogonek pipes, while crustal and elcogitic material is in the Perevalnaya and Kilier-E pipes. The Cr spinel consists of (in wt%) 3.5 to 50.9 Al2O3, 18.6-63.5 wt% Cr2O3, 6.1 to 19.1 MgO, and 0 to 1.61 TiO2. Al and Cr in spinels are in inverse proportion. The Chompolo alkaline volcanic rocks are most similar to the Central Aldan lamproites in trace

  12. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; Wooden, J. L.; Cheadle, M. J.; John, B. E.

    2015-12-01

    Over 5300 recent SHRIMP-RG analyses of trace elements (TE) in igneous zircon have been compiled and classified based on their original tectono-magmatic setting to empirically evaluate "geochemical fingerprints" unique to those settings. Immobile element geochemical fingerprints used for lavas are applied with the same rational to zircon, including consideration of mineral competition on zircon TE ratios, and new criteria for distinguishing mid-ocean ridge (MOR), magmatic arc, and ocean island (and other plume-influenced) settings are proposed. The elemental ratios in zircon effective for fingerprinting tectono-magmatic provenance are systematically related to lava composition from equivalent settings. Existing discrimination diagrams using zircon U/Yb versus Hf or Y do not distinguish TE-enriched ocean island settings (i.e., Iceland, Hawaii) from magmatic arc settings. However, bivariate diagrams with combined cation ratios involving U-Nb-Sc-Yb-Gd-Ce provide a more complete distinction of zircon from these settings. On diagrams of U/Yb versus Nb/Yb, most MOR, ocean island, and kimberlite zircon define a broad "mantle-zircon array"; arc zircon defines a parallel array offset to higher U/Yb. Distinctly low U/Yb ratios of MOR zircon (typically <0.1) mirror their parental magmas and long-term incompatible element depletion of the MORB mantle. Plume-influenced sources are distinguished from MOR by higher U/Yb, U/Nb, Nb/Yb, and Nb/Sc. For zircon with U/Yb > 0.1, high Sc/Yb separates arc settings from low-Sc/Yb plume-influenced sources. The slope of scandium enrichment trends in zircon differ between MOR and continental arc settings, likely reflecting the involvement of amphibole during melt differentiation. Scandium is thus also critical for discriminating provenance, but its behavior in zircon probably reflects contrasting melt fractionation trends between tholeiitic and calc-alkaline systems more than compositional differences in primitive magmas sourced at each

  13. Survey of Large, Igneous-Textured Inclusions in Ordinary Chondrites

    NASA Astrophysics Data System (ADS)

    Armstrong, K.; Ruzicka, A. M.

    2013-12-01

    Ordinary (O) chondrites are a class of primitive stony meteorites, and as a group comprise our most abundant samples of early solar system materials. Unique to O chondrites are igneous-textured inclusions up to 4 cm in diameter; about an order of magnitude larger than the much more abundant chondrules. These inclusions are almost always highly depleted in metal and sulfide relative to their host meteorite, but but otherwise have diverse characteristics. They exhibit a large range of textures, mineralogies, and bulk compositions, suggesting a variety of formation processes. They all crystallized from large melt volumes, the origins of which are poorly understood. Models proposed for their formation include (1) shock melting of ordinary chondrites with an associated loss of metal and sulfide; (2) melting of vapor-fractionated condensate mixture; (3) chondrule formation involving a larger melt production volume than typical for chondrules; and (4) igneous differentiation occurring within planetesimals sampled by ordinary chondrite parent bodies. Polished thin sections of inclusions from several O-chondrites have been examined with optical light microscopy (OLM) using a Leica DM 2500 petrographic microscope. Petrographic data such as texture, grain sizes and shapes were collected for the inclusions and their hosts in order to facilitate comparisons. Texturally, the inclusions were determined to fall into one of three distinct textural categories: porphyritic, fine granular, and skeletal. Mean grain sizes are on the order of 100 um for both microporphyritic and fine granular inclusions, with microporphyritic inclusions showing a much wider range of grain sizes. The largest grains in the microporphyritic inclusions are on average ~0.25 mm, with the grains of the mesostasis <100 microns. Skeletal olivine textures are defined as being dominated by crystals that are an order of magnitude longer across one direction than the other (e.g., 1 mm x 100 um). Five inclusions have

  14. Integrating isotopic fingerprinting with petrology: how do igneous rocks evolve?

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2002-12-01

    In the title of his seminal work, N.L. Bowen recognized the fundamental importance of magmatic evolution in producing the spectrum of igneous rocks. Indeed it is difficult to imagine a hot highly reactive fluid passing through c. 100 km of a chemically distinct medium (lithosphere) without evolving through cooling, crystallization and interaction with the wall rocks. The fact that magmas evolve - almost invariably through open system processes - has been largely marginalized in the past 30 years by the desire to use them as probes of mantle source regions. This perspective has been driven principally by advances offered by isotope geochemistry, through which components and sources can be effectively fingerprinted. Two fundamental observations urge caution in ignoring differentiation effects; 1) the scarcity of truly primary magmas according to geochemical criteria (recognized long ago by petrologists), and 2) the common occurrence of petrographic criteria attesting to open system evolution. Recent advances in multicollector mass spectrometry permit integration of the powerful diagnostic tools of isotope geochemistry with petrographic observations through accurate and precise analysis of small samples. Laser ablation and microdrilling enable sampling within and between mineral phases. The results of our microsampling investigations give widespread support for open system evolution of magmas, and provide insights into the mechanisms and timescales over which this occurs. For example; 1) core-rim decreases in 87Sr/86Sr in zoned plagioclase crystals from 1982 lavas of El Chichon volcano, Mexico, argue that the zoning and isotopic changes are in response to magma recharge mixing with an originally contaminated resident magma; 2) Single grain and intra-grain isotopic analyses of mineral phases from Ngauruhoe andesites (New Zealand) are highly variable, arguing that bulk rock data reflect mechanical aggregations of components which have evolved in discrete domains of the

  15. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    F. Perry; R. Youngs

    2004-10-14

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.

  16. Thermal conductivity anisotropy of metasedimentary and igneous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Chapman, David S.; van Wagoner, Thomas M.; Armstrong, Phillip A.

    2007-05-01

    Thermal conductivity anisotropy was determined for three sets of metasedimentary and igneous rocks from central Utah, USA. Most conductivity measurements were made in transient mode with a half-space, line source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kpar) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kpar and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady state mode. Anisotropy is defined as kpar/kperp. Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for Price Canyon sedimentary samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming [1994] that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  17. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  18. The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.

    The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration

  19. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB.

  20. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy].

    PubMed

    Wang, Chao; Zhang, Wei-gang; Yan, Zhi-quan

    2015-09-01

    In the field of petroleum exploration, lithology identification of finely cuttings sample, especially high precision identification of igneous rock with similar property, has become one of the geological problems. In order to solve this problem, a new method is proposed based on element analysis of Laser-Induced Breakdown Spectroscopy (LIBS) and Total Alkali versus Silica (TAS) diagram. Using independent LIBS system, factors influencing spectral signal, such as pulse energy, acquisition time delay, spectrum acquisition method and pre-ablation are researched through contrast experiments systematically. The best analysis conditions of igneous rock are determined: pulse energy is 50 mJ, acquisition time delay is 2 μs, the analysis result is integral average of 20 different points of sample's surface, and pre-ablation has been proved not suitable for igneous rock sample by experiment. The repeatability of spectral data is improved effectively. Characteristic lines of 7 elements (Na, Mg, Al, Si, K, Ca, Fe) commonly used for lithology identification of igneous rock are determined, and igneous rock samples of different lithology are analyzed and compared. Calibration curves of Na, K, Si are generated by using national standard series of rock samples, and all the linearly dependent coefficients are greater than 0.9. The accuracy of quantitative analysis is investigated by national standard samples. Element content of igneous rock is analyzed quantitatively by calibration curve, and its lithology is identified accurately by the method of TAS diagram, whose accuracy rate is 90.7%. The study indicates that LIBS can effectively achieve the high precision identification of the lithology of igneous rock.

  1. The behaviour of copper isotopes during igneous processes

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Moynier, F.; Harvey, J.; Burton, K. W.

    2015-12-01

    Application of Cu isotopes to high temperature systems has recently gained momentum and has the potential for probing sulphide fractionation during planetary differentiation [1]. This requires robust estimates for planetary reservoirs, and a fundamental understanding of how igneous processes affect Cu isotopes; this study aims to tackle the latter. Cogenetic suites affected by both fractionation crystallisation and cumulate formation were analysed to study such effects on Cu isotopes. In S-undersatured systems, Cu behaves incompatibly during melt evolution and the Cu isotope composition of such melt is invariant over the differentiation sequence. In contrast, S-saturated systems show resolvable Cu isotope variations relative to primitive melt. Such variations are minor but imply a slightly heavy Cu isotope composition for continental crust compared to BSE, consistent with granite data [2]. Although olivine accumulation does not affect Cu isotopes, spinel-hosted Cu is isotopically light relative to the bulk. Analysis of variably melt-depleted cratonic peridotites shows that partial melting can affect Cu isotope composition in restite, with the depleted samples isotopically light compared to BSE. This could be due to residual spinel and/or incongruent melting of sulphides - individual sulphides picked from a single xenolith reveal a range of Cu isotope compositions, dependent on composition. Although partial melting may fractionate Cu isotopes, models suggest most mantle-derived melt will have δ65Cu ≈ BSE, as most source Cu will be transferred to the melt. Small degree melts such as ocean island basalts are predicted to be isotopically heavier than MORB, if derived from a primitive mantle source. OIBs have a range of Cu isotope compositions: some are heavier than MORB as predicted; however, some have much lighter compositions. Since Cu isotopes can be significantly fractionated in the surface environment [e.g. 3] OIB Cu isotopic variations may be linked to

  2. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an

  3. Hydrocarbon occurrences in igneous and metamorphic rocks: Plays of the 1990s

    SciTech Connect

    Harrelson, D.W.

    1989-09-01

    A review of available geologic literature has indicated numerous references detailing the occurrences of hydrocarbon in igneous and metamorphic rocks. Notable among these references is a paper by Chung-Hsiang P'an and a group of papers edited by Sidney Powers. Collectively, these papers conclude a biogenic source for hydrocarbons, most of which occur in (1) weathered igneous and metamorphic reservoir rocks that are higher than the source rocks (e.g., Amarillo field) or (2) igneous and metamorphic rocks that exert structural or stratigraphic control on the reservoir or source rocks (e.g., Jackson dome and the Wiggins anticline-Hancock ridge). It should be noted that a new twist on the abiogenic origin of some inert hydrocarbon gases (i.e., helium and nitrogen) proposes a degassing of igneous and metamorphic rocks from sources in the underlying mantle. Recent european super-deep tests (e.g., the Siljan Ring and the Kola SG-3 testholes) have attempted, with mixed results, to verify this theory. Drilling for these deep igneous and metamorphic prospects today is considered at or below economic basement or worse - a rank wildcat. However, these plays should become increasingly commercial in the 1990s as deeper drilling technology progresses, the current oil glut is eliminated, and more exotic deep gas prospects become accepted.

  4. Middle Jurassic to early Cretaceous igneous rocks along eastern North American continental margin

    SciTech Connect

    Jansa, L.F.; Pe-Piper, G.

    1988-03-01

    Late Middle Jurassic and Early Cretaceous mafic dikes, sills, flows, and local volcaniclastic sediments are intercalated within continental shelf sediments from the Baltimore Canyon Trough northward to the Grand Banks of Newfoundland. The igneous rocks on the eastern North American margin are mainly alkali basalts of intraplate affinity. The late Middle Jurassic igneous activity was of short duration, at about 140 Ma, and was restricted to Georges Bank where it led to construction of several volcanic cones. The main period of igneous activity was concentrated at about 120 Ma in the Aptian/Berremian. The activity consists of dike swarms in Baltimore Canyon, occasional dikes on the Scotian Shelf, and the growth of stratovolcanoes on the Scotian Shelf and Grand Banks. Younger dikes (approx. 95 Ma) also are present on the Grand Banks. With regard to oil exploration on the continental margin, care must be taken to properly identify igneous and volcaniclastic rocks on mechanical logs, drill cuttings, and cores. Reflection seismic profiles can be used to map the areal extent of sills, flows, and low-angle dikes, which commonly show distinctive seismic responses. However, steeply dipping dikes generally produce little, if any, seismic response. Isotopic-age determinations of igneous rocks, combined with biostratigraphic-age determinations of adjacent strata, are invaluable for stratigraphic correlation, establishing chronology of seismic sequences, and analysis of basin sedimentation and tectonic history. 9 figures, 2 tables.

  5. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt.

    PubMed

    Abbady, Adel G E; El-Arabi, A M; Abbady, A

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 microWm(-3) (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 microWm(-3) (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites.

  6. Timing and chemistry of igneous events associated with the Southern Oklahoma Aulacogen

    NASA Astrophysics Data System (ADS)

    Charles Gilbert, M.

    1983-05-01

    Igneous activity in the Southern Oklahoma Aulacogen of North America was concentrated in the early rifting stages of aulacogen development. The time span over which liquids rose may not have exceeded 50 m.y. and certainly terminated before the Upper Cambrian. Igneous activity began with three basaltic liquids, stratigraphically identifiable but perhaps not all distinct genetically. This was followed by one large rhyolitic-granitic episode of A-type character. One final basaltic event ended the activity. All the basaltic types seem to be tholeiitic showing more kinship with either the older, Proterozoic North American Midcontinental Rift or the northern part of the Cenozoic Rio Grande Rift, than the Cenozoic East African Rift. Two major uplifts occurred: one between the earlier basalts and the rhyolite, and one much later, after all igneous activity was over, in the Pennsylvanian.

  7. New low-Ni (igneous?) particles among the C and C? types of cosmic dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.; Sutton, S. R.; Bajt, S.; Kloeck, W.

    1993-01-01

    Low-Ni particles with major element abundances, optical properties, and morphologies sufficiently similar to chondritic interplanetery dust particles (IDP's) to receive JSC Cosmic Dust Catalog classifications of C or C?-types were shown to have trace element contents and mineralogies similar to igneous material. Examination of the JSC Catalog EDX spectra by Cooke et al. has shown that 13 percent of the C-type and 38 percent of the C?-type particles are potentially low-Ni particles. Two new low-Ni particles were identified, and it was shown that an additional fragment from the L2002*C cluster has an igneous composition. A newly analyzed fragment of the W7066*A cluster has a chondritic composition. The W7066*A cluster is important because it has yielded a fragment of igneous composition and another fragment having high concentrations of He and Ne suggesting an extraterrestrial origin.

  8. Igneous history of the aubrite parent asteroid - evidence from the Norton County enstatite achondrite

    SciTech Connect

    Okada, A.; Keil, K.; Taylor, G.J.; Newsom, H.

    1988-03-01

    Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body. 60 references.

  9. Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite

    NASA Technical Reports Server (NTRS)

    Okada, Akihiko; Keil, Klaus; Taylor, G. Jeffrey; Newsom, Horton

    1988-01-01

    Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body.

  10. Crystal Size Distributions in Igneous rocks: Where are we now?

    NASA Astrophysics Data System (ADS)

    Higgins, M.

    2003-12-01

    in either slope of intercept is significant and can be related to other parameters. Concave down CSDs, with no small crystals, are commonly encountered in porphyritic, oikocrystic and plutonic rocks. This texture may be produced by textural coarsening (Ostwald ripening, annealing): this occurs when the magma is maintained close to the mineral liquidus. In this situation the nucleation rate is zero, but growth rates are significant. The classic LSW model is not the only solution possible: more modern solutions, such as Communicating Neighbours may be more appropriate. Variable degrees of textural coarsening will produce CSDs that appear to rotate about a single point. This again reflects closure. Concave up CSDs with no lower size limit are very common. They do not generally have a lognormal or fractal size distribution. They can be produced by mixing of two or more magmas, or crystallisation under several different conditions of undercooling. They can also result from alternations of nucleation and growth followed by textural coarsening. Crystal accumulation and fraction should modify existing CSDs in a predictable manner. An exact solution to this problem has not yet been developed, but simplistic models suggest that CSDs should rotate upwards about the size origin for accumulation and downwards for fractionation. However, clear evidence for such effects has not yet been observed, even in well-layered rocks. There are many igneous systems still to be explored using CSDs. An exiting new domain may be the application of CSDs in experimental petrology.

  11. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  12. Anorthosites and alkaline rocks from the deep crust of peninsular India

    NASA Technical Reports Server (NTRS)

    Leelanandam, C.; Ratnakar, J.; Reddy, M. Narsimha

    1988-01-01

    The anorthosite and alkaline rock localities in the Precambrian Shield of Peninsular India were reviewed. There are approximately 50 localities of such rocks, generally restricted to the Eastern Ghats mobile belt. The alkaline plutons are typically confined to the margin of the Eastern Ghats. The anorthosites are all greater than 500 sq km, but many exhibit similarities to one another. It was suggested that the anorthosites are associated with cryptic sutures, and are thought to have originated as a result of ponding of basaltic magmas. An analogy was drawn between the Eastern Ghats belt and the Grenville Province of the Canadian Shield.

  13. Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.

    2016-01-01

    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.

  14. Geochemical microanalysis: The link between textural and geochemical characterization of igneous rocks

    NASA Astrophysics Data System (ADS)

    Kent, A. J.

    2003-12-01

    In this presentation I will review recent advances in microanalytical techniques that allow us to directly couple textural and geochemical information to the study of igneous rocks, particularly with respect to the analysis of silicate melt inclusions. Textural examination has long been a mainstay of the classification and petrologic study of igneous materials. The advent of the electron microprobe over 50 years ago allowed textural and geochemical observations to be coupled at small spatial scales and directly related to the physical and chemical conditions of formation and subsequent melt evolution. This resulted in a revolution in the petrological investigation and understanding of igneous rocks that continues today. Recent advances in geochemical microanalysis techniques are providing exciting access to new geochemical information at smaller and smaller spatial scales. These are enabling measurement of the abundances, and in some cases isotopic compositions, of a range of elements in correspondingly smaller sample volumes. A case in point is the study of silicate melt inclusions. Although melt inclusions have been recognized and studied for over a century, there has been a recent surge in interest directly tied to development of techniques capable of performing in-situ analysis of trace element and volatile components at small spatial scales. Melt inclusions allow direct sampling of melts present during crystal formation, and are particularly useful for relating crystal textures and compositions to those of their source melts. Chemical compositions of melt inclusions reveal the diversity of igneous compositions present in igneous systems, and may be combined with textural observations to constrain a wide range of igneous processes, including degassing, assimilation, fractional crystallization and mixing.

  15. Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Michalski, Joseph. R.; Bleacher, Jacob E.

    2014-01-01

    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  16. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    PubMed

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  17. Classification scheme for sedimentary and igneous rocks in Gale crater, Mars

    NASA Astrophysics Data System (ADS)

    Mangold, N.; Schmidt, M. E.; Fisk, M. R.; Forni, O.; McLennan, S. M.; Ming, D. W.; Sautter, V.; Sumner, D.; Williams, A. J.; Clegg, S. M.; Cousin, A.; Gasnault, O.; Gellert, R.; Grotzinger, J. P.; Wiens, R. C.

    2017-03-01

    Rocks analyzed by the Curiosity rover in Gale crater include a variety of clastic sedimentary rocks and igneous float rocks transported by fluvial and impact processes. To facilitate the discussion of the range of lithologies, we present in this article a petrological classification framework adapting terrestrial classification schemes to Mars compositions (such as Fe abundances typically higher than for comparable lithologies on Earth), to specific Curiosity observations (such as common alkali-rich rocks), and to the capabilities of the rover instruments. Mineralogy was acquired only locally for a few drilled rocks, and so it does not suffice as a systematic classification tool, in contrast to classical terrestrial rock classification. The core of this classification involves (1) the characterization of rock texture as sedimentary, igneous or undefined according to grain/crystal sizes and shapes using imaging from the ChemCam Remote Micro-Imager (RMI), Mars Hand Lens Imager (MAHLI) and Mastcam instruments, and (2) the assignment of geochemical modifiers based on the abundances of Fe, Si, alkali, and S determined by the Alpha Particle X-ray Spectrometer (APXS) and ChemCam instruments. The aims are to help understand Gale crater geology by highlighting the various categories of rocks analyzed by the rover. Several implications are proposed from the cross-comparisons of rocks of various texture and composition, for instance between in place outcrops and float rocks. All outcrops analyzed by the rover are sedimentary; no igneous outcrops have been observed. However, some igneous rocks are clasts in conglomerates, suggesting that part of them are derived from the crater rim. The compositions of in-place sedimentary rocks contrast significantly with the compositions of igneous float rocks. While some of the differences between sedimentary rocks and igneous floats may be related to physical sorting and diagenesis of the sediments, some of the sedimentary rocks (e

  18. Distribution of Igneous Rocks in Medina and Uvalde Counties, Texas, as Inferred from Aeromagnetic Data

    USGS Publications Warehouse

    Smith, David V.; McDougal, Robert R.; Smith, Bruce D.; Blome, Charles D.

    2008-01-01

    A high-resolution aeromagnetic survey was flown in 2001 over Medina and Uvalde Counties, Texas, as part of a multi-disciplinary investigation of the geohydrologic framework of the Edwards aquifer in south-central Texas. The objective of the survey was to assist in mapping structural features that influence aquifer recharge and ground-water flow. The survey revealed hundreds of magnetic anomalies associated with igneous rocks that had previously been unmapped. This report presents an interpretation of the outcrops and subcrops of igneous rocks, based upon procedures of matched-filtering and potential field modeling.

  19. Modeling the evolution of Sm and Eu abundances during lunar igneous differentiation

    NASA Technical Reports Server (NTRS)

    Weill, D. F.; Mckay, G. A.; Kridelbaugh, S. J.; Grutzeck, M.

    1974-01-01

    The current work presents models for the evolution of europium and samarium abundances during lunar igneous processes. The effect of probable variations in lunar temperature and oxygen fugacity, mineral-liquid distribution coefficients, and the crystallization or melting progression are considered in the model calculations. Changes in the proportions of crystallizing phases strongly influence the evolution of trace element abundances during fractional crystallization, and models must include realistic estimates of the major phase equilibria during crystallization. The results are applied to evaluating the possibility of generating KREEP-rich materials by lunar igneous processes.

  20. Elevation and igneous crater modification on Venus: Implications for magmatic volatile content

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.

    1993-01-01

    Although most impact craters on Venus preserve nearly pristine crater rim and ejecta features, a small number of craters have been identified showing clear evidence of either igneous intrusion emplacement (floor-fracturing) beneath the crater floor or of volcanically embayed exterior ejecta deposits. Since the volcanically embayed craters consistently occur at higher elevations than the identified floor-fractured craters, this report proposes that igneous crater modification on Venus is elevation dependent. This report describes how regional variations in magmatic neutral buoyancy could produce such elevation dependent crater modification and considers the implications for typical magmatic volatile contents on Venus.

  1. MULTIPLE EPISODES OF IGNEOUS ACTIVITY, MINERALIZATION, AND ALTERATION IN THE WESTERN TUSHAR MOUNTAINS, UTAH.

    USGS Publications Warehouse

    Cunningham, Charles G.; Steven, Thomas A.; Campbell, David L.; Naeser, Charles W.; Pitkin, James A.; Duval, Joseph S.

    1984-01-01

    The report outlines the complex history of igneous activity and associated alteration and mineralization in the western Tushar Mountains, Utah and pointss out implciations for minerals exploration. The area has been subjected to recurrent episodes of igneous intrusion, hydrothermal alteration, and mineralization, and the mineral-resource potential of the different mineralized areas is directly related to local geologic history. The mineral commodities to be expected vary from one hydrothermal system to another, and from one depth to another within any given system. Uranium and molybdenum seem likely to have the greatest economic potential, although significant concentrations of gold may also exist.

  2. Additional 40Ar- 39Ar dating of the basement and the alkaline volcanism of Gorringe Bank (Atlantic Ocean)

    NASA Astrophysics Data System (ADS)

    Féraud, Gilbert; York, Derek; Mével, Catherine; Cornen, Guy; Hall, Chris M.; Auzende, Jean-Marie

    1986-09-01

    40Ar/ 39Ar step heating analyses are reported for a variety of samples from Gorringe Bank (Atlantic Ocean). Flat age spectra for two primary, igneous hornblendes of Gorringe (corresponding to an age of 143 Ma) show that the K-Ar ages obtained on these samples by Prichard and Mitchell [4] are evidently crystallization and not hybrid ages. This sustains the concept of an initiation age of 140 Ma [4] for Gorringe Bank. No support is found for Carpena's suggestion [7] that the formation of Gorringe Bank began 200 Ma ago. Secondary hornblendes from Ormonde seamount rocks appear to have formed shortly after the initiation of the Bank. Precise plateau ages on samples of two alkaline volcanics from Ormonde correspond to the older limit of the alkaline volcanism suggested by Féraud et al. [3,5].

  3. the Deep Biosphere Archaeal Microbial Community in Igneous Ocean Crust

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.

    2014-12-01

    Ridge flank hydrothermal systems represent vast environments that may be habitable by subseafloor microbial life. Oceanic ridge flanks, areas far from the magmatic and tectonic influence of seafloor spreading, comprise one of the largest and least explored microbial habitats on the planet. These potential ecosystems may play a significant role in biogeochemical processes and elemental fluxes that are known to be regulated by these systems. I will discuss the nature of ridge flank hydrothermal environments, and present a framework for delineating a continuum of conditions and processes that are likely to be important for defining subseafloor microbial "provinces." The basis for this framework is three governing conditions that help to determine the nature of subseafloor biomes: crustal age, extent of fluid flow, and thermal state. A brief overview of subseafloor conditions, within the context of these three characteristics for select sites will be described. Technical challenges remain and likely will limit progress in studies of microbial ridge flank hydrothermal ecosystems, which is why it is vital to select and design future studies so as to leverage as much general understanding as possible from work focused at a small number of sites. A characterization framework that perhaps includes alternative or additional physical or chemical characteristics is essential for achieving the greatest benefit from multidisciplinary microbial investigations of oceanic ridge flank hydrothermal systems.

  4. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  5. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  6. Geochemistry and petrogenesis of mafic-ultramafic suites of the Irindina Province, Northern Territory, Australia: Implications for the Neoproterozoic to Devonian evolution of central Australia

    NASA Astrophysics Data System (ADS)

    Wallace, Madeline L.; Jowitt, Simon M.; Saleem, Ahmad

    2015-10-01

    Petrological and geochemical data for magmatic mafic-ultramafic suites of the Irindina and Aileron provinces of the Eastern Arunta region, Northern Territory, Australia constrain the petrogenesis and tectonic setting of magmatic events covering ~ 500 million years. Six geochemically distinct magmatic suites, here named A-F, have been identified and provide evidence of the tectonic history of this region and also are linked to two mineralisation-related magmatic events: the Lloyd Gabbro (Ni-Cu-PGE mineralisation) and the Riddoch Amphibolite (Cyprus-style Cu-Co volcanogenic massive sulphide mineralisation). The whole-rock geochemistry of Suites A and F is indicative of melts derived from a range of mantle depths (garnet to spinel lherzolite) and source enrichment. Suite D is likely related to the ~ 1070 Ma Warakurna/Giles event of central Australia, including the Alcurra (Musgrave) and Stuart (Arunta) dyke swarms, and likely formed through either: a) melting of subduction modified, sub-continental lithospheric mantle (SCLM) by an upwelling mantle plume; or b) a combination of intra-plate tectonic processes involving a long-lived thermal anomaly, lithospheric-scale architecture that focussed magmatism, and large-scale tectonism. Suite F represents more alkaline magmas, derived from a deeper source, but most likely formed during the same Warakurna LIP event (possibly contemporaneously) as Suite D. Suite E (the Riddoch Amphibolite) was most likely emplaced in a back-arc basin (BAB) setting at ~ 600 Ma, coincident with Delamerian subduction and BAB formation along the eastern Proterozoic margin of Australia from Queensland to the eastern Arunta and possibly further south. Subsequent destabilisation of the SCLM underneath the North Australian Craton generated the ~ 510 Ma Kalkarindji LIP in the form of Suite B intrusions that assimilated some of the older Suite E (Riddoch) material. This event is locally known as the ~ 506 Ma Stanovos Igneous Suite and represents the most

  7. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  8. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  9. Siderophile and volatile trace elements in 72255 and 72275. [meteoritic and igneous composition of lunar rocks

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Ganapathy, R.; Higuchi, H.; Anders, E.

    1974-01-01

    Of six samples from boulder 1 at Station 2, four contain a unique meteoritic component, which is attributed to the Crisium projectile. The other two samples are meteorite free, igneous rocks: an unusual, alkali- and Ge-rich pigeonitic basalt, and an alkali-poor norite of unexceptional trace element chemistry.

  10. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  11. Biological energy from the igneous rock enhances cell growth and enzyme activity.

    PubMed

    Lin, Y; Kuo, H; Chen, C; Kuo, S

    2000-08-01

    Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio-organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT-15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation.

  12. Potential Igneous Processes Relevant to the Yucca Mountain Repository: Intrusive-Release Scenario

    SciTech Connect

    Apted, M.; Kozak, M.; Kessler, J.

    2006-07-01

    As part of the Department of Energy's (DOE's) license application for the proposed high level radioactive waste and spent nuclear fuel repository proposed for Yucca Mountain, Nevada, the DOE must provide probabilistic dose estimates after repository closure. These estimates must consider all events and processes that are considered reasonably likely to occur, including potential igneous events [1-4]. Current estimates of the probability of a future igneous event intruding through the proposed repository [5] are just high enough that dose consequences must be estimated. Estimates of igneous-event probability and the extent of any radionuclide release resulting from such an event have drawn considerable attention. In general, these estimates have included multiple, compounded conservatisms resulting in significant predicted dose consequences compared to dose consequences from the nominal release scenarios. This new independent study conducted for the Electric Power Research Institute (EPRI) provides a more realistic estimate of the likelihood and magnitude of doses to the public should such a low-probability event occur [6]. Analyses summarized here indicate that, under any reasonable expected conditions for a magmatic intrusion, the contribution to peak dose from such an igneous intrusion event would not affect peak dose estimates over the long term. (authors)

  13. Construction and evolution of igneous bodies: Towards an integrated perspective of crustal magmatism

    NASA Astrophysics Data System (ADS)

    Annen, Catherine; Blundy, Jonathan D.; Leuthold, Julien; Sparks, R. Stephen J.

    2015-08-01

    Field, geochronological and geophysical studies show that many igneous bodies are emplaced incrementally, growing by accretion of successive magma sheets. The existence of melt reservoirs with a size that exceeds one single increment strongly depends on the sheet emplacement rate, whereas the total volumes of magma that accumulate depend on the volumetric magma flux. Integration of geochronological and field data with numerical simulations suggeststhat those rates can vary dramatically over the growth of an igneous body and that magmas accumulate to form melt-rich magma chambers only during episodes of high magma flux. Heat and mass balance considerations and the large volumes of mafic magma required to generate differentiated melts suggest that most crustal differentiation happens in deep hot zones in the lower crust wherein a wide diversity of melts are produced by crystallisation of mafic parents and concomitant partial melting of the crust. Melt composition is further modified during migration, segregation and ascent, and intermediate compositions can be generated when different types of melt mix. Magma fluxes and intrusion geometry play a fundamental role in igneous body evolution. Thus our knowledge of igneous processes depends ultimately on our understanding of the physics that control magma fluxes into the crust, magma emplacement within the crust and magma migration through the crust.

  14. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    USGS Publications Warehouse

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous

  15. PROBABILISTIC ANALYSES OF WASTE PACKAGE QUANTITIES IMPACTED BY POTENTIAL IGNEOUS DISRUPTION AT YUCCA MOUNTAIN

    SciTech Connect

    M.G. Wallace

    2005-08-26

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift were intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km{sup 2} , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed

  16. Probablistic Analyses of Waste Package Quantities Impacted by Potential Igneous Disruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Wallace, M. G.; Iuzzolina, H.

    2005-12-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in

  17. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  18. Continental igneous rock composition: A major control of past global chemical weathering

    PubMed Central

    Bataille, Clément P.; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-01-01

    The composition of igneous rocks in the continental crust has changed throughout Earth’s history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [(87Sr/86Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of (87Sr/86Sr)seawater variations to the strontium isotopic composition (87Sr/86Sr) in igneous rocks generated through time. We demonstrate that the 87Sr/86Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the 87Sr/86Sr ratio in zircon-bearing igneous rocks. The reconstructed 87Sr/86Sr variations in igneous rocks are strongly correlated with the (87Sr/86Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on (87Sr/86Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the (87Sr/86Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the (87Sr/86Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times. PMID:28345044

  19. Possible Biosphere-Lithosphere Interactions Preserved in Igneous Zircon and Implications for Hadean Earth.

    PubMed

    Trail, Dustin; Tailby, Nicholas D; Sochko, Maggie; Ackerson, Michael R

    2015-07-01

    Granitoids are silicic rocks that make up the majority of the continental crust, but different models arise for the origins of these rocks. One classification scheme defines different granitoid types on the basis of materials involved in the melting/crystallization process. In this end-member case, granitoids may be derived from melting of a preexisting igneous rock, while other granitoids, by contrast, are formed or influenced by melting of buried sedimentary material. In the latter case, assimilated sedimentary material altered by chemical processes occurring at the near surface of Earth-including biological activity-could influence magma chemical properties. Here, we apply a redox-sensitive calibration based on the incorporation of Ce into zircon crystals found in these two rock types, termed sedimentary-type (S-type) and igneous-type (I-type) granitoids. The ∼400 Ma Lachlan Fold Belt rocks of southeastern Australia were chosen for investigation here; these rocks have been a key target used to describe and explore granitoid genesis for close to 50 years. We observe that zircons found in S-type granitoids formed under more reducing conditions than those formed from I-type granitoids from the same terrain. This observation, while reflecting 9 granitoids and 289 analyses of zircons from a region where over 400 different plutons have been identified, is consistent with the incorporation of (reduced) organic matter in the former and highlights one possible manner in which life may modify the composition of igneous minerals. The chemical properties of rocks or igneous minerals may extend the search for ancient biological activity to the earliest period of known igneous activity, which dates back to ∼4.4 billion years ago. If organic matter was incorporated into Hadean sediments that were buried and melted, then these biological remnants could imprint a chemical signature within the subsequent melt and the resulting crystal assemblage, including zircon.

  20. Continental igneous rock composition: A major control of past global chemical weathering.

    PubMed

    Bataille, Clément P; Willis, Amy; Yang, Xiao; Liu, Xiao-Ming

    2017-03-01

    The composition of igneous rocks in the continental crust has changed throughout Earth's history. However, the impact of these compositional variations on chemical weathering, and by extension on seawater and atmosphere evolution, is largely unknown. We use the strontium isotope ratio in seawater [((87)Sr/(86)Sr)seawater] as a proxy for chemical weathering, and we test the sensitivity of ((87)Sr/(86)Sr)seawater variations to the strontium isotopic composition ((87)Sr/(86)Sr) in igneous rocks generated through time. We demonstrate that the (87)Sr/(86)Sr ratio in igneous rocks is correlated to the epsilon hafnium (εHf) of their hosted zircon grains, and we use the detrital zircon record to reconstruct the evolution of the (87)Sr/(86)Sr ratio in zircon-bearing igneous rocks. The reconstructed (87)Sr/(86)Sr variations in igneous rocks are strongly correlated with the ((87)Sr/(86)Sr)seawater variations over the last 1000 million years, suggesting a direct control of the isotopic composition of silicic magmatism on ((87)Sr/(86)Sr)seawater variations. The correlation decreases during several time periods, likely reflecting changes in the chemical weathering rate associated with paleogeographic, climatic, or tectonic events. We argue that for most of the last 1000 million years, the ((87)Sr/(86)Sr)seawater variations are responding to changes in the isotopic composition of silicic magmatism rather than to changes in the global chemical weathering rate. We conclude that the ((87)Sr/(86)Sr)seawater variations are of limited utility to reconstruct changes in the global chemical weathering rate in deep times.

  1. Three-dimensional model of an ultramafic feeder system to the Nikolai Greenstone mafic large igneous province, central Alaska Range

    USGS Publications Warehouse

    Glen, J.M.G.; Schmidt, J.M.; Connard, G.G.

    2011-01-01

    The Amphitheater Mountains and southern central Alaska Range expose a thick sequence of Triassic Nikolai basalts that is underlain by several mafic-ultramafic complexes, the largest and best exposed being the Fish Lake and Tangle (FL-T) mafic-ultramafic sills that flank the Amphitheater Mountains synform. Three-dimensional (3-D) modeling of gravity and magnetic data reveals details of the structure of the Amphitheater Mountains, such as the orientation and thickness of Nikolai basalts, and the geometry of the FL-T intrusions. The 3-D model (50 ?? 70 km) includes the full geographic extent of the FL-T complexes and consists of 11 layers. Layer surfaces and properties (density and magnetic susceptibility) were modified by forward and inverse methods to reduce differences between the observed and calculated gravity and magnetic grids. The model suggests that the outcropping FL-T sills are apparently connected and traceable at depth and reveals variations in thickness, shape, and orientation of the ultramafic bodies that may identify paths of magma flow. The model shows that a significant volume (2000 km3) of ultramafic material occurs in the subsurface, gradually thickening and plunging westward to depths exceeding 4 km. This deep ultramafic material is interpreted as the top of a keel or root system that supplied magma to the Nikolai lavas and controlled emplacement of related magmatic intrusions. The presence of this deep, keel-like structure, and asymmetry of the synform, supports a sag basin model for development of the Amphitheater Mountains structure and reveals that the feeders to the Nikolai are much more extensive than previously known. Copyright 2011 by the American Geophysical Union.

  2. 3D potential-field model of a Triassic Nikolai large igneous province vent, central Alaska Range

    NASA Astrophysics Data System (ADS)

    Glen, J. M.; Schmidt, J. M.; Connard, G. G.

    2009-12-01

    The southern flank of the Alaska Range in south central Alaska exposes a thick, fresh sequence of Middle to Late Triassic Nikolai Greenstone. At least 5 ultramafic intrusive complexes and numerous gabbroic sills of similar age intrude Pennsylvanian to Triassic volcanogenic and sedimentary rocks below the Nikolai. The 2 largest and best exposed ultramafic complexes are the Fish Lake and Tangle ultramafic sills on the north, and south flanks, respectively of the Amphitheater Mountains synform. Three-dimensional (3D) modeling of gravity and magnetic data, using the GMSYS-3D modeling software, shows details of the Amphitheater Mountains structure, Nikolai basalt thickness, and geometry of the apparently connected Fish Lake and Tangle ultramafic sills. Modeling is based on a compilation of existing regional and newly-acquired detailed profile gravity data, a compilation of regional and high-resolution aeromagnetic surveys, and numerous rock-property data (including density, susceptibility, and magnetic remanence measurements of outcrops, hand samples, and drill cores). Eight intersecting 2D models, constructed prior to the 3D model, suggested the presence of an elongate ultramafic keel below the Amphitheater synform axis and extensive gabbroic satellite sills below the Fish Lake and Tangle ultramafic complexes. The 3D model (50x70km) includes the full geographic extent of the Fish Lake and Tangle bodies, as well as parts of the Rainy and Canwell complexes to the north and east of the Amphitheater Mountains. Eleven layers were initially constructed from horizons we exported from the 2D models and gridded to form layer surfaces. Individual 3D model layers were subsequently modified by both forward and inverse methods applied to the layer surfaces and properties (density and magnetic susceptibility) to reduce differences between the observed and calculated gravity and magnetic grids. Up to 2 km of Nikolai basalts form the center of the asymmetric, west-plunging, 50 km long Amphitheater synform. The western end of the synform appears to be terminated by a steep N-S structure; to the west, flat-lying Nikolai basalts up to 2 km thick overlie relatively ultramafic-free metasedimentary rocks. The outcropping Fish Lake and Tangle ultramafic sills, apparently connected beneath the surface, are traceable to 5 km depth, and modeling indicates variations in thickness (1 to 3 km), shape, and orientation which may identify paths of magma flow within the system. The 3D model does not require the discrete keel inferred from the 2D models, but suggests a significant volume of ultramafic material gradually thickening and plunging westward to depths exceeding 4 km. This deep ultramafic material may represent the top of a keel or root that supplied magma to the Nikolai lavas and controlled emplacement of Nikolai-related magmatic intrusions. Although a discrete root is not required, the 3D model is least sensitive at the deepest extents of the complex leaving open the possibility of a root.

  3. Assessing SPO techniques to constrain magma flow: Examples from sills of the Karoo Igneous Province, South Africa

    NASA Astrophysics Data System (ADS)

    Hoyer, Lauren; Watkeys, Michael K.

    2015-08-01

    Shape ellipsoids that define the petrofabrics of plagioclase in Jurassic Karoo dolerite sills in KwaZulu-Natal, South Africa are rigorously constrained using the long axis lengths of plagioclase crystals and ellipse incompatibility. This has been undertaken in order to determine the most effective technique to determine petrofabrics when using the SPO-2003 programme (Launeau and Robin, 2005). The technique of segmenting an image for analysis is scrutinised and as a process is found redundant. A grain size threshold is defined to assist with the varying grain sizes observed within and between sills. Where grains exceed the 0.2 mm size threshold, images should be acquired at a high magnification (i.e., 10 × magnification). Petrofabrics are determined using the foliation and the lineation of the ellipsoid as defined by the maximum and minimum principal axes (respectively) of the resultant ellipsoid. Samples with strongly prolate fabrics are isolated allowing further constraint on the petrofabric to be made. Once the efficacy of the petrofabric determination process has been determined, the resultant foliations (and lineations) then elucidate the most accurate petrofabric attainable. The most accurate petrofabrics will be determined by using the correct magnification when the images are obtained and to run the analyses without segmenting the image. The fabrics of the upper and lower contacts of the Karoo dolerite sills are analysed in detail using these techniques and the fabrics are used as a proxy for magma flow.

  4. Petrogenesis of the Pt-Pd mineralized Jinbaoshan ultramafic intrusion in the Permian Emeishan Large Igneous Province, SW China

    NASA Astrophysics Data System (ADS)

    Tao, Yan; Li, Chusi; Hu, Ruizhong; Ripley, Edward M.; Du, Andao; Zhong, Hong

    2007-03-01

    The Jinbaoshan ultramafic intrusion is a sheet-like body with a thick wehrlite unit in the center and thin pyroxenite units at the margins. PGE are enriched in several disseminated sulfide zones in the intrusion. Olivine from the intrusion has low Fo and depleted Ni contents compared to olivine from coeval Emeishan picrites. Whole rock major and trace element concentrations suggest that the Jinbaoshan wehrlites originally contained <30% trapped liquid. The total amount of sulfide in the rocks exceeds that which could have been dissolved in the trapped liquid. The Jinbaoshan wehrlites are interpreted to represent residual assemblages formed by dissolution of plagioclase by passing magma. No clear evidence of crustal contamination is indicated by S, Nd and Os isotopes. We envision that sulfide saturation occurred at depth due to olivine and chromite crystallization. Immiscible sulfide droplets were transported to the Jinbaoshan conduit where they accumulated and reacted with magma successively passing through the conduit to achieve high PGE concentrations.

  5. 40K- 40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration

    NASA Astrophysics Data System (ADS)

    Chenet, Anne-Lise; Quidelleur, Xavier; Fluteau, Frédéric; Courtillot, Vincent; Bajpai, Sunil

    2007-11-01

    Most mass extinctions coincide in time with outpourings of continental flood basalts (CFB). Some 20 years ago, it was shown [Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.-J., Cappetta, H., 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett. 80, 361-374; Courtillot, V., Feraud, G., Maluski, H., Vandamme, D., Moreau, M.G., Besse, J., 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature 333, 843-846; Duncan, R.A., Pyle, D.G., 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature 333 841-843] that the age of the Deccan traps was close to the Cretaceous-Tertiary (KT) boundary and its duration under 1 Myr. We have undertaken a new geochronological study, using the (unconventional) 40K- 40Ar Cassignol-Gillot technique which is particularly well suited to the potassium-poor Deccan lavas. The mean of 4 determinations from the topmost (Ambenali and Mahabaleshwar) Formations is 64.5 ± 0.6 Ma. They straddle the C29r/C29n reversal boundary for which they provide a new constraint. The mean age of 3 determinations from the oldest (Jawhar) Formation is 64.8 ± 0.6 Ma. The difference in age between top and bottom of a 3500 m composite section, probably comprising 80% of the total Deccan volume, is statistically insignificant, with the overall mean age being 64.7 ± 0.6 Ma ( N = 7). Our results are consistent with the most recent 40Ar/ 39Ar determinations [Knight, K.B., Renne, P.R., Halkett, A., White, N., 2003. 40Ar/ 39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan traps. Earth Planet. Sci. Lett. 208, 85-99; Knight, K.B., Renne, P.R., Baker, J., Waight, T., White, N., 2005. Reply to '40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: Discussion' by A.K. Baksi. Earth Planet. Sci. Lett. 239, 374-382], confirming that there should be no systematic difference between the two methods when they are used in an optimal way. An earlier, smaller but significant, pulse of volcanism between 68 and 67 Ma, extending over at least 500 km in latitude in the northern part of the Deccan CFB has also been identified. After 2 to 3 Ma of quiescence, the second, major phase of volcanism occurred near 65 Ma, expanding over most of the area covered by the first pulse and another 500 km to the South, consistent with drift of India by 300 to 450 km at ˜ 150 mm/yr during the quiescence period. New paleontological data from the remote Rajahmundry section [Keller, G., Adatte, T., Gardin, S., Bartolini, A., Bajpai, S., Humler, E., in prep. The Cretaceous-Tertiary boundary in Deccan Traps of the Krishna-Godavari Basin of southeastern India. EPSL to be submitted] suggest that this second pulse can itself be divided into two major pulses, one starting in C29r and ending at the KT boundary, the second starting in the upper part of C29r and ending within C29n.

  6. Petrology of igneous clasts in Northwest Africa 7034: Implications for the petrologic diversity of the martian crust

    NASA Astrophysics Data System (ADS)

    Santos, Alison R.; Agee, Carl B.; McCubbin, Francis M.; Shearer, Charles K.; Burger, Paul V.; Tartèse, Romain; Anand, Mahesh

    2015-05-01

    The martian meteorite Northwest Africa (NWA) 7034 was examined both petrographically and geochemically using several micro-beam techniques including electron probe microanalysis and secondary ion mass spectrometry. We have identified various clast types of igneous, sedimentary, and impact origin that occur within the breccia, and we define a classification scheme for these materials based on our observations, although our primary focus here is on the petrology of the igneous clasts. A number of different igneous clasts are present in this meteorite, and our study revealed the presence of at least four different igneous lithologies (basalt, basaltic andesite, trachyandesite, and an Fe, Ti, and P (FTP) rich lithology). These lithologies do not appear to be related by simple igneous processes such as fractional crystallization, indicating NWA 7034 is a polymict breccia that contains samples from several different igneous sources. The basalt lithologies are a good match for measured rock compositions from the martian surface, however more exotic lithologies (e.g., trachyandesite and FTP lithologies) show this meteorite contains previously unsampled rock types from Mars. These new rock types provide evidence for a much greater variety of igneous rocks within the martian crust than previously revealed by martian meteorites, and supports recent rover observations of lithologic diversity across the martian surface. Furthermore, the ancient ages for the lithologic components in NWA 7034 indicate Mars developed this lithologic diversity in the early stages of crust formation.

  7. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  8. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  9. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  10. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    SciTech Connect

    Ashwal, L.D. ); Wooden, J.L. )

    1989-03-01

    The River Valley pluton is a ca. 100 km{sup 2} body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An{sub 60-70}) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo{sub 70-80}. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2,377 {plus minus} 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2,185 {plus minus} 105 Ma, which is similar to internal Pb-Pb isochron ages of 2,165 {plus minus} 130 Ma and 2,100 {plus minus} 35 Ma for two igneous-textured rocks. Initial isotopic ratios for the River Valley pluton correspond to single-stage model parameters of {mu} = 8.06, {epsilon}{sub Nd} = O to {minus}3, and I{sub Sr} = 0.7015 to 0.7021. Collectively, these suggest either an enriched mantle source or crustal contamination of a mantle-derived magma. The crustal component involved must have been older and more radiogenic than the majority of rocks exposed at the surface in the nearby Superior Province.

  11. Archean granulite gneisses from eastern Hebei Province, China: rare earth geochemistry and tectonic implications

    NASA Astrophysics Data System (ADS)

    Jahn, Bor-Ming; Zhang, Zong-Qing

    1984-03-01

    The granulite gneisses and their retrograded products of the Qianxi Group from eastern Hebei Province, China, have been investigated for their isotope and trace element geochemistry. A consistent age of about 2.5 AE has been obtained by the Rb-Sr and Sm-Nd whole-rock isochron methods, in agreement with the zircon U-Pb data (Pidgeon 1980; D.Y. Liu, unpubl.). Geochemical arguments from initial isotopic ratios (ISr and INd) and elemental distribution patterns have led us to conclude that this age of about 2.5 AE represents the time of granulite facies metamorphism, which must have followed closely the primary emplacement of their protoliths. Previous claims for early Archean ages (>3.5 AE) of these granulites are not substantiated. The mineral isotope systematics register an important thermal event at about 1.7 AE, roughly corresponding to the time of the widespread Luliang Orogeny (Ma and Wu 1981) or Chungtiao Movement (Huang 1978). The granulites of the Qianxi Group have diverse compositions ranging from ultrabasic through basic-intermediate to acid. Discriminant function calculations suggest that most analyzed samples have igneous parentage. Only a few show characteristics of metasedimentary rocks. The igneous protoliths apparently belong to two series — tholeiitic and calc-alkaline, with the latter dominating in abundance. The majority of the acid granulites have compositions corresponding to tonalite-granodiorite. Except for ultrabasic and metasedimentary rocks, all REE patterns are significantly fractionated with LREE enrichment. The degree of fractionation, as measured by the (La/Yb)N ratios, is most important in the acid granulites. These rocks often show positive Eu anomalies and HREE depletions that are typical of Archean TTG rocks (tonalitetrondhjemite-granodiorite). The existence of komatiites has been previously reported in this region. Although a few rocks have a major element chemistry similar to that for peridotitic komatiites, the lack of associated

  12. Analysis and Discrimination of Sedimentary, Metamorphic, and Igneous Rocks Using Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rai, Ab. Kr.; Maurya, G. S.; Kumar, R.; Pathak, A. K.; Pati, J. K.; Rai, Aw. K.

    2017-01-01

    This study deals with the analysis of rocks using laser-induced breakdown spectroscopy (LIBS) coupled with principal component analysis. The spectra of sedimentary, metamorphic, and igneous rock samples were recorded in the 200-900 nm spectral range. The atomic lines of elements such as Si, Ca, Mg, Fe, Na, and K along with lighter elements, namely C, H, N, and O, were observed in these spectra. Multivariate analysis in combination with LIBS was used to classify the samples. For principal component analysis, a 12 × 5849 data matrix was formed using the results of LIBS. The plot of the analysis revealed similarities between the sedimentary and metamorphic rock samples compared with the igneous rock sample. Thus, the present study demonstrates that LIBS coupled with principal component analysis can become an important tool for rapid classification and in-situ discrimination of rock samples.

  13. Crystal mat-formation as an igneous layering-forming process: Textural and geochemical evidence from the 'lower layered' nepheline syenite sequence of the Ilímaussaq complex, South Greenland

    NASA Astrophysics Data System (ADS)

    Lindhuber, Matthias J.; Marks, Michael A. W.; Bons, Paul D.; Wenzel, Thomas; Markl, Gregor

    2015-05-01

    The lower layered nepheline syenite sequence (kakortokites) of the Mesoproterozoic alkaline to peralkaline Ilímaussaq complex, South Greenland shows spectacular rhythmic meter-scale igneous layering. The 29 exposed units have sharp contacts against each other and each of these units consists of three modally graded layers dominated by arfvedsonitic amphibole, eudialyte-group minerals, and alkali feldspar, respectively. This study uses field observations on changes in mineral orientation, recurrent mineral textures, compositional data from eudialyte-group minerals and amphibole, and settling rate calculations based on a modified Stokes' equation to explain the igneous layering of the kakortokites. We propose that the three major cumulus minerals (amphibole, eudialyte s.l., and alkali feldspar) were separated from each other by density contrasts, resulting in modally graded layers within each unit. The densest of these three minerals (amphibole) formed crystal mats within the cooling magma body. These crystal mats acted as barriers that inhibited large-scale vertical migration of melts and crystals with increasing effectiveness over time. The sub-volumes of magma captured in between the crystal mats evolved largely as geochemically independent sub-systems, as indicated by the observed trends in mineral composition.

  14. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  15. Igneous lithologies on asteroid (4) Vesta mapped using gamma-ray and neutron data

    NASA Astrophysics Data System (ADS)

    Beck, Andrew W.; Lawrence, David J.; Peplowski, Patrick N.; Viviano-Beck, Christina E.; Prettyman, Thomas H.; McCoy, Timothy J.; McSween, Harry Y.; Yamashita, Naoyuki

    2017-04-01

    We use data collected by the Dawn Gamma-Ray and Neutron Detector (GRaND) at Vesta to map compositions corresponding to nearly pure igneous lithologies in the howardite, eucrite, diogenite (HED) meteorite clan (samples likely from Vesta). At the ∼300-km spatial scale of GRaND measurements, basaltic eucrite occurs on only 3% of the surface, whereas cumulate eucrite and orthopyroxenitic diogenite are not detected. The basaltic eucrite region is generally coincident with an area of the surface with thick regolith, elevated H, and moderate crater density, and may represent the best compositional sample of primordial vestan crust. We observe an absence of pure orthopyroxenitic diogenite terrains in the Rheasilvia basin and its ejecta, an observation corroborated by VIR (0.1%), which suggests the south-polar crust was a polymict mixture of igneous lithologies (howardite) at the time of the Rheasilvia impact, or was a thick basaltic eucrite crust with heterogeneously distributed orthopyroxenitic diogenite plutons. The most dominant igneous composition detected (11% of the surface) corresponds to one of the least-abundant igneous lithologies in the HED meteorite collection, the Yamato Type B diogenites (plagioclase-bearing pyroxenites). The distribution of Type B diogenite is spatially correlated with post-Rheasilvia craters in the north-polar region that are in close proximity to the Rheasilvia basin antipode. This suggests that north-polar Type B plutonism may have been associated with the Rheasilvia impact event. We propose that this was either through 1) uplift of pre-existing plutons at the antipode through focusing of Rheasilvia impact stress, or 2) Rheasilvia impact antipodal crustal melting, creating magmas that underwent fractionation to produce Type B plutons.

  16. Classification and Geochemical Characterization of Igneous Rocks: Southern Part of Chihuahua City, Mexico

    NASA Astrophysics Data System (ADS)

    Fontes, I. D.; Espejel-Garcia, V. V.; Villalobos-Aragon, A.

    2013-05-01

    Chihuahua City is the capital of the state with the same name, located in northern Mexico. The city was established near the Chuviscar River, but in the last decades it has been extended to the nearby areas (mountains), with volcanic (rhyolitic tuffs), and sedimentary rocks (limestone). The study area includes areas in the south part of Chihuahua City, where we can still find unbuilt lands and it is possible to appreciate outcrops of igneous rocks. This project includes 5 study spots, which are located about 9 km. far from the south extreme of the city. This research is developed in order to complement the geological information in this area, as there is no is detailed record of it. In the geological map H13-10 (SGM, 1997), it is said that the urban area is covered by Quaternary conglomerates, while exploring the region we have located several igneous rocks outcrops. In three of the sampling points, dark colored intrusive igneous rocks with large crystals appear in blocks without noticeable fractures. While in the other two sampling points, highly fractured blocks of pink aphanitic igneous rocks, showing traces of pyrolusite were observed. The petrographic study shows the two different textures that classify these rocks as extrusive (aphanitic) or intrusive (phaneritic), both with quartz and feldspars being the dominant minerals. Geochemical analyses confirm the felsic composition of the rocks, varying form trachytes to rhyolites. The trace element results show high contents of Sr, Ba, V, Rb, and Zr in trachytic compositions, while there are high concentrations of Mn, W, Rb and Co for rhyolitic compositions.

  17. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Yong-Fei; Zhao, Zi-Fu

    2016-01-01

    Geophysical and petrological data indicate destruction of the cratonic lithosphere in North China in the Mesozoic, resulting in replacement of the ancient subcontinental lithospheric mantle (SCLM) by the juvenile SCLM. However, it remains to be answered when the craton destruction would have been terminated in the Mesozoic. This question is resolved by studying the two types of mafic igneous rocks with contrasting geochemical compositions from North China. The first type of mafic igneous rock shows arc-like trace element distribution patterns and enriched radiogenic Sr-Nd isotope compositions, with emplacement ages spanning from the Triassic to Early Cretaceous. The mafic magmatism is absent in a period from 200 Ma to 135 Ma, recording the thinning of cratonic lithosphere due to the westward flat subduction of the Paleo-Pacific slab beneath the North China Craton. In contrast, the second type of mafic igneous rocks exhibits oceanic island basalts (OIB)-like trace element distribution patterns and relatively depleted radiogenic Sr-Nd isotope compositions, with emplacement ages spanning from the Early Cretaceous to Cenozoic. Zircon U-Pb dating yields an age of 121 Ma for the geochemical transformation between the two types of mafic igneous rocks. This age marks a dramatic demarcation in the composition of their mantle sources. As such, the nature of mantle lithosphere in North China was changed from the ancient SCLM to the juvenile SCLM at 121 Ma. Thus, this age not only signifies the tectonic transition from the enriched mantle to the depleted mantle in the Early Cretaceous, but also dates the termination of peak decratonization in North China. Therefore, the craton destruction in the Early Cretaceous is temporally and spatially associated with the dramatic changes in the geochemical composition of mantle lithosphere.

  18. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: insight from basement igneous rocks of the Erlian Basin

    NASA Astrophysics Data System (ADS)

    Bonnetti, Christophe; Cuney, Michel; Bourlange, Sylvain; Deloule, Etienne; Poujol, Marc; Liu, Xiaodong; Peng, Yunbiao; Yang, Jianxing

    2017-03-01

    Carboniferous-Permian, Triassic and Jurassic igneous basement rocks around the Erlian Basin in northeast China have been investigated through detailed mineralogical, whole-rock geochemistry, geochronological data and Sm-Nd isotope studies. Carboniferous-Permian biotite granites and volcanic rocks belong to a calc-alkaline association and were emplaced during the Late Carboniferous-Early Permian (313 ± 1-286 ± 2 Ma). These rocks are characterised by positive ɛNd( t) (3.3-5.3) and fairly young T DM model ages (485-726 Ma), suggesting a dominant derivation from partial melting of earlier emplaced juvenile source rocks. Triassic biotite granites belong to a high-K calc-alkaline association and were emplaced during the Middle Triassic (243 ± 3-233 ± 2 Ma). Their negative ɛNd( t) (-2 to -0.1) and higher T DM model ages (703-893 Ma) suggest a contribution from Precambrian crust during the magma generation processes, leading to a strong enrichment in K and incompatible elements such as Th and U. Highly fractionated magmas crystallised in U-rich biotite (up to 21 ppm U) and two-mica granites. In biotite granite, the major U-bearing minerals are uranothorite and allanite. They are strongly metamict and the major part of their uranium (90 %) has been released from the mineral structure and was available for leaching. Mass balance calculations show that the Triassic biotite granites may have, at least, liberated ˜14,000 t U/km3 and thus correspond to a major primary uranium source for the U deposits hosted in the Erlian Basin.

  19. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    USGS Publications Warehouse

    McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F.; Herkenhoff, K.; Gellert, Ralf; Stockstill, K.R.; Tornabene, L.L.; Squyres, S. W.; Crisp, J.A.; Christensen, P.R.; McCoy, T.J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-01-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater. Copyright 2006 by the American Geophysical Union.

  20. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    NASA Astrophysics Data System (ADS)

    McSween, H. Y.; Ruff, S. W.; Morris, R. V.; Bell, J. F.; Herkenhoff, K.; Gellert, R.; Stockstill, K. R.; Tornabene, L. L.; Squyres, S. W.; Crisp, J. A.; Christensen, P. R.; McCoy, T. J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-09-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater.

  1. Strength/Brittleness Classification of Igneous Intact Rocks Based on Basic Physical and Dynamic Properties

    NASA Astrophysics Data System (ADS)

    Aligholi, Saeed; Lashkaripour, Gholam Reza; Ghafoori, Mohammad

    2017-01-01

    This paper sheds further light on the fundamental relationships between simple methods, rock strength, and brittleness of igneous rocks. In particular, the relationship between mechanical (point load strength index I s(50) and brittleness value S 20), basic physical (dry density and porosity), and dynamic properties (P-wave velocity and Schmidt rebound values) for a wide range of Iranian igneous rocks is investigated. First, 30 statistical models (including simple and multiple linear regression analyses) were built to identify the relationships between mechanical properties and simple methods. The results imply that rocks with different Schmidt hardness (SH) rebound values have different physicomechanical properties or relations. Second, using these results, it was proved that dry density, P-wave velocity, and SH rebound value provide a fine complement to mechanical properties classification of rock materials. Further, a detailed investigation was conducted on the relationships between mechanical and simple tests, which are established with limited ranges of P-wave velocity and dry density. The results show that strength values decrease with the SH rebound value. In addition, there is a systematic trend between dry density, P-wave velocity, rebound hardness, and brittleness value of the studied rocks, and rocks with medium hardness have a higher brittleness value. Finally, a strength classification chart and a brittleness classification table are presented, providing reliable and low-cost methods for the classification of igneous rocks.

  2. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  3. Igpet software for modeling igneous processes: examples of application using the open educational version

    NASA Astrophysics Data System (ADS)

    Carr, Michael J.; Gazel, Esteban

    2016-09-01

    We provide here an open version of Igpet software, called t-Igpet to emphasize its application for teaching and research in forward modeling of igneous geochemistry. There are three programs, a norm utility, a petrologic mixing program using least squares and Igpet, a graphics program that includes many forms of numerical modeling. Igpet is a multifaceted tool that provides the following basic capabilities: igneous rock identification using the IUGS (International Union of Geological Sciences) classification and several supplementary diagrams; tectonic discrimination diagrams; pseudo-quaternary projections; least squares fitting of lines, polynomials and hyperbolae; magma mixing using two endmembers, histograms, x-y plots, ternary plots and spider-diagrams. The advanced capabilities of Igpet are multi-element mixing and magma evolution modeling. Mixing models are particularly useful for understanding the isotopic variations in rock suites that evolved by mixing different sources. The important melting models include, batch melting, fractional melting and aggregated fractional melting. Crystallization models include equilibrium and fractional crystallization and AFC (assimilation and fractional crystallization). Theses, reports and proposals concerning igneous petrology are improved by numerical modeling. For reviewed publications some elements of modeling are practically a requirement. Our intention in providing this software is to facilitate improved communication and lower entry barriers to research, especially for students.

  4. Criticality Potential of Waste Packages Containing DOE SNF Affected by Igneous Intrusion

    SciTech Connect

    D.S. Kimball; C.E. Sanders

    2006-02-07

    The Department of Energy (DOE) is currently preparing an application to submit to the U.S. Nuclear Regulatory Commission for a construction authorization for a monitored geologic repository. The repository will contain spent nuclear fuel (SNF) and defense high-level waste (DHLW) in waste packages placed in underground tunnels, or drifts. The primary objective of this paper is to perform a criticality analysis for waste packages containing DOE SNF affected by a disruptive igneous intrusion event in the emplacement drifts. The waste packages feature one DOE SNF canister placed in the center and surrounded by five High-Level Waste (HLW) glass canisters. The effective neutron multiplication factor (k{sub eff}) is determined for potential configurations of the waste package during and after an intrusive igneous event. Due to the complexity of the potential scenarios following an igneous intrusion, finding conservative and bounding configurations with respect to criticality requires some additional considerations. In particular, the geometry of a slumped and damaged waste package must be examined, drift conditions must be modeled over a range of parameters, and the chemical degradation of DOE SNF and waste package materials must be considered for the expected high temperatures. The secondary intent of this calculation is to present a method for selecting conservative and bounding configurations for a wide range of end conditions.

  5. Rubidium-87/strontium-87 age of juvinas basaltic achondrite and early igneous activity in the solar system.

    PubMed

    Allégre, C J; Birck, J L; Fourcade, S; Semet, M P

    1975-02-07

    A (4.60+/-0.07)x10(9) year internal isochron has been drawn for the achondrite Juvinas by the rubidium-87/strontium-87 method. Earlier petrographic investigation of achondrites supplemented by a new ion microprobe study of Juvinas strongly suggest an igneous origin for this class of meteorites. The results thus indicate that igneous activity may have rapidly followed the formation of the achondrites' parent body 4.6x10(9) years ago.

  6. The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc

    NASA Astrophysics Data System (ADS)

    Andonaegui, Pilar; Arenas, Ricardo; Albert, Richard; Sánchez Martínez, Sonia; Díez Fernández, Rubén; Gerdes, Axel

    2016-06-01

    The upper allochthonous units of NW Iberian Massif contain an extensive Cambrian magmatism (c. 500 Ma), covering felsic to mafic compositions. The magmatic activity generated large massifs of granitoids and gabbros, with calc-alkaline and tholeiitic compositions respectively. Petrological and geochemical features of these massifs are characteristic of volcanic arc. The plutons intruded siliciclastic sedimentary series deposited in the periphery of the West Africa Craton. U-Pb/Hf isotopic compositions of detrital zircon in the siliciclastic host series, indicate continental arc activity between c. 750 Ma and c. 500 Ma. It was characterized by a large variety of isotopic sources, including from very old continental input, even Archean, to the addition of a significant amount of juvenile mafic material. These isotopic sources experienced an extensive mixing that explains the composition and isotopic features (εHft from - 50 until + 15) of the represented Cambrian plutons. The Cambrian igneous rocks of the upper units of NW Iberia are related to the latest activity of the Avalonian-Cadomian arc. From the Middle Cambrian arc activity in the periphery of Gondwana was replaced by pronounced extension associated with the development of continental rifting, which finally led to separation of the microcontinent Avalonia. Subsequent drifting of Avalonia to the North caused progressive opening one of the main Paleozoic ocean, the Rheic Ocean.

  7. A review of scientific literature examining the mining history, geology, mineralogy, and amphibole asbestos health effects of the Rainy Creek igneous complex, Libby, Montana, USA.

    PubMed

    Bandli, Bryan R; Gunter, Mickey E

    2006-11-01

    This article reviews the past 90 yr of scientific research directed on multiple aspects of the unique geology and environmental health issues surrounding the vermiculite deposit found at Libby, MT. Hydrothermal alteration and extensive weathering of the ultramafic units resulted in the formation of a rich deposit of vermiculite that was mined for 67 yr and used in numerous consumer products in its expanded form. Later intrusions of alkaline units caused hydrothermal alteration of the pyroxenes, resulting in formation of amphiboles. Some of these amphiboles occur in the asbestiform habit and have been associated with pulmonary disease in former miners and mill workers. Identification of these amphibole asbestos minerals has received little attention in the past, but recent work shows that the majority of the amphibole mineral species present may not be any of the amphibole species currently regulated by government agencies. Epidemiological studies on former miners have, nevertheless, shown that the amphibole asbestos from the Rainy Creek igneous complex is harmful; also, a recent study by the Agency for Toxic Substances and Disease Registry shows that residents of Libby who had not been employed in the vermiculite mining or milling operations also appear to have developed asbestos-related pulmonary diseases at a higher rate than the general public elsewhere. Since November 1999, the U.S. Environmental Protection Agency has been involved in the cleanup of asbestos-contaminated sites in and around Libby associated with the mining and processing of vermiculite.

  8. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  9. High precision U-PB geochronology and implications for the tectonic evolution of the Superior Province

    NASA Technical Reports Server (NTRS)

    Davis, D. W.; Corfu, F.; Krogh, T. E.

    1986-01-01

    The underlying mechanisms of Archean tectonics and the degree to which modern plate tectonic models are applicable early in Earth's history continue to be a subject of considerable debate. A precise knowledge of the timing of geological events is of the utmost importance in studying this problem. The high precision U-Pb method has been applied in recent years to rock units in many areas of the Superior Province. Most of these data have precisions of about + or - 2-3 Ma. The resulting detailed chronologies of local igneous development and the regional age relationships furnish tight constraints on any Archean tectonic model. Superior province terrains can be classified into 3 types: (1) low grade areas dominated by meta-volcanic rocks (greenstone belts); (2) high grade, largely metaplutonic areas with abundant orthogneiss and foliated to massive I-type granitoid bodies; and (3) high grade areas with abundant metasediments, paragneiss and S-type plutons. Most of the U-Pb age determinations have been done on type 1 terrains with very few having been done in type 3 terrains. A compilation of over 120 ages indicates that the major part of igneous activity took place in the period 2760-2670 Ma, known as the Kenoran event. This event was ubiquitous throughout the Superior Province.

  10. Whole Rock and Mineral Chemistry from the Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Chau, K. X.; Draper, G.; Sen, G.

    2014-12-01

    The Central Atlantic Magmatic Province (CAMP) was a large igneous province (LIP) emplaced approximately 200 million years ago during the rifting of Pangaea, shortly before the opening of the Atlantic Ocean. Although a comparatively small amount of the original province remains today, the locations of the existing outcrops on four continents (North America, South America, Africa, and Europe) show the extensive reach of igneous activity and indicate that the CAMP was likely one of the biggest LIPs known. Because of the geologic and global significance of this episode, a knowledge of the conditions that generated and emplaced such a large volume of magma would help better understand mantle and tectonic processes. In this study, we compare whole rock and mineral chemistry data from three of the North American outcrops: the Palisades Sill of the Newark Basin in eastern New York and New Jersey, the Centreville Sheet of the Culpeper Basin in northern Virginia, and the York Haven pluton of the Gettysburg Basin in southeastern Pennsylvania. The diabases are quartz-normative theoleiites; their chemistries are indicate high degrees of internal differentiation and thermal disequilbirum, consistent with magma bodies cooling as a closed or near-closed system. The trace element data shows that, although there is evidence to support a deep mantle source for CAMP melts, there is also a shallower component influencing the chemistries of the samples. We interpret this as the signal of an ancient subducted slab through which CAMP melts passed.

  11. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  12. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  13. Models of single-stage concomitant potassium-argon exchange: an interpretation of discordant whole rock K-Ar data from hydrothermally altered igneous rocks of the South Pennine Orefield, U.K.

    NASA Astrophysics Data System (ADS)

    Mitchell, J. G.; Ineson, P. R.

    1988-04-01

    A model of single-stage concomitant potassium and argon exchange is advanced to explain the existence of rectilinear "isochrons" in potassium-argon correlation diagrams produced from suites of altered rocks. Negative isochron intercepts are shown to be a consequence of fractional argon loss which exceeds potassium loss, and it is demonstrated that no information of immediate geological significance can be obtained from the gradient of such an isochron. Bounds to the "primary formation age" and "age of exchange event" may be established using extreme values of the observed potassium content and from estimates based on the inferred petrology and chemistry of the unaltered rock and/or its alteration products. Ten Carboniferous igneous units from the South Pennine Orefield (involving-thirty-eight independent samples) are investigated by means of the model and eight of the units are consistent with a model of potassium and argon exchange occurring in earliest Mesozoic times (ca. 200 Ma). It is argued that this conclusion augments the already substantial body of evidence for an identifiable widespread igneous and hydrothermal province associated with early rifting processes in the North Atlantic.

  14. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province—Results of new aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Døssing, A.; Jackson, H. R.; Matzka, J.; Einarsson, I.; Rasmussen, T. M.; Olesen, A. V.; Brozena, J. M.

    2013-02-01

    The history of the 2.5 million km2 Amerasia Basin (sensu lato) is in many ways the least known in the global tectonic system. Radically different hypotheses proposed to explain its origin are supported only by inconclusive and/or indirect observations and several outstanding issues on the origin of the Basin remain unaddressed. The difficulty lies in the geodynamic evolution and signature of the Basin being overprinted by excess volcanism of the Alpha-Mendeleev Ridge complex, part of the High Arctic Large Igneous Province (HALIP) and one of the largest (>1 million km2) and most intense magmatic and magnetic complexes on Earth. Here, we present the results of a 550,000 km2 aerogeophysical survey over the poorly explored Lomonosov Ridge (near Greenland) and adjoining Amerasia and Eurasia Basins that provides the first direct evidence for consistent linear magnetic features between the Alpha and Lomonosov Ridges, enabling the tectonic origin of both the Amerasia Basin and the HALIP to be constrained. A landward Lower Cretaceous (∼138-125(120) Ma) giant dyke swarm (minimum 350×800 km2) and tentative oceanward Barremian (or alternatively lower Valanginian-Barremian) seafloor spreading anomalies are revealed. Prior to Cenozoic opening of the Eurasia Basin the giant dyke swarm stretched from Franz Josef Land to the southern Alpha Ridge and possibly further to Queen Elisabeth Islands, Canada. The swarm points towards a 250-km-wide donut-shaped anomaly on the southern Alpha Ridge, which we propose was the centre of the HALIP mantle plume, suggesting that pronounced intrusive activity, associated with an Alpha Ridge mantle plume, took place well before the Late Cretaceous Superchron and caused continental breakup in the northern Amerasia Basin. Our results imply that at least the southern Alpha Ridge as well as large parts of the area between the Lomonosov and southern Alpha Ridges are highly attenuated continental crust formed by poly-phase breakup with LIP volcanic

  15. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    NASA Astrophysics Data System (ADS)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  16. Alkaline rocks of Samchampi-Samteran, District Karbi-Anglong, Assam, India

    NASA Astrophysics Data System (ADS)

    Nag, S.; Sengupta, S. K.; Gaur, R. K.; Absar, A.

    1999-03-01

    The Samchampi-Samteran alkaline igneous complex (SAC) is a near circular, plug-like body approximately 12 km2 area and is emplaced into the Precambrian gneissic terrain of the Karbi Anglong district of Assam. The host rocks, which are exposed in immediate vicinity of the intrusion, comprise granite gneiss, migmatite, granodiorite, amphibolite, pegmatite and quartz veins. The SAC is composed of a wide variety of lithologies identified as syenitic fenite, magnetite ± perovskite ± apatite rock, alkali pyroxenite, ijolite-melteigite, carbonatite, nepheline syenite with leucocratic and mesocratic variants, phonolite, volcanic tuff, phosphatic rock and chert breccia. The magnetite ± perovskite ± apatite rock was generated as a cumulus phase owing to the partitioning of Ti, Fe at a shallow level magma chamber (not evolved DI = O1). The highly alkaline hydrous fluid activity indicated by the presence of strongly alkalic minerals in carbonatites and associated alkaline rocks suggests that the composition of original melt was more alkalic than those now found and represent a silica undersaturated ultramafic rock of carbonated olivine-poor nephelinite which splits with falling temperature into two immiscible fractions—one ultimately crystallises as alkali pyroxenite/ijolite and the other as carbonatite. The spatial distribution of varied lithotypes of SAC and their genetic relationships suggests that the silicate and carbonate melts, produced through liquid immiscibility, during ascent generated into an array of lithotypes and also reaction with the country rocks by alkali emanations produced fenitic aureoles (nephelinisation process). Isotopic studies (δ18O and δ13C) on carbonatites of Samchampi have indicated that the δ13C of the source magma is related to contamination from recycled carbon.

  17. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  18. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  19. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  20. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  1. Classification of mafic clasts from mesosiderites: Implications for endogenous igneous processes

    SciTech Connect

    Rubin, A.E. ); Mittlefehldt, D.W. )

    1992-02-01

    The authors have analyzed thirteen igneous pebbles from the Vaca Muerta, EET87500, and Bondoc mesosiderites by electron microprobe and instrumental neutron activation and combined these data with literature data for forty-three analyzed mesosiderite clasts. They classify these well-characterized clasts into the following five principal groups: (1) Polygenic and monogenic cumulates (39%) are coarse-grained gabbros that are highly depleted in incompatible elements (relative to H chondrites); they formed at moderate depth either as residues of low-degree partial melting of pre-existing cumulate eucrites or as cumulates from parent melts similar to cumulate eucrites. (2) Polygenic basalts (30%) are finer-grained rocks with positive europium anomalies, La/Lu ratios < 1, and lower rare earth element abundances than basaltic eucrites. It seems likely that these rocks were formed near their parent body surface by remelting mixtures of major amounts of basaltic eucrites and lesser amounts of cumulate eucrites. (3) Quench-textured rocks comprise two compositional groups, (a) those which resemble basaltic eucrites (5%), and (b) those which resemble cumulate eucrites (2%). The quench-textured rocks are probably monogenic; they formed most likely when small-scale impacts at their parent body surface totally melted small amounts of basaltic or cumulate eucrite material. (4) Monogenic basalts (11%) resemble basaltic eucrites and formed by endogenous igneous processes on the mesosiderite parent body (MPB). (5) Ultramafic rocks are cumulates consisting mainly of large crystals of orthopyroxene (9%) or olivine (4%). Orthopyroxenite clasts closely resemble diogenites and were formed most likely by endogenous igneous processes.

  2. Log-ratio transformed major element based multidimensional classification for altered High-Mg igneous rocks

    NASA Astrophysics Data System (ADS)

    Verma, Surendra P.; Rivera-Gómez, M. Abdelaly; Díaz-González, Lorena; Quiroz-Ruiz, Alfredo

    2016-12-01

    A new multidimensional classification scheme consistent with the chemical classification of the International Union of Geological Sciences (IUGS) is proposed for the nomenclature of High-Mg altered rocks. Our procedure is based on an extensive database of major element (SiO2, TiO2, Al2O3, Fe2O3t, MnO, MgO, CaO, Na2O, K2O, and P2O5) compositions of a total of 33,868 (920 High-Mg and 32,948 "Common") relatively fresh igneous rock samples. The database consisting of these multinormally distributed samples in terms of their isometric log-ratios was used to propose a set of 11 discriminant functions and 6 diagrams to facilitate High-Mg rock classification. The multinormality required by linear discriminant and canonical analysis was ascertained by a new computer program DOMuDaF. One multidimensional function can distinguish the High-Mg and Common igneous rocks with high percent success values of about 86.4% and 98.9%, respectively. Similarly, from 10 discriminant functions the High-Mg rocks can also be classified as one of the four rock types (komatiite, meimechite, picrite, and boninite), with high success values of about 88%-100%. Satisfactory functioning of this new classification scheme was confirmed by seven independent tests. Five further case studies involving application to highly altered rocks illustrate the usefulness of our proposal. A computer program HMgClaMSys was written to efficiently apply the proposed classification scheme, which will be available for online processing of igneous rock compositional data. Monte Carlo simulation modeling and mass-balance computations confirmed the robustness of our classification with respect to analytical errors and postemplacement compositional changes.

  3. Diverse sources for igneous blocks in Franciscan melanges, California Coast Ranges

    SciTech Connect

    MacPherson, G.J. ); Phipps, S.P. ); Grossman, J.N. )

    1990-11-01

    Igneous blocks in Franciscan melanges are of three chemical-petrologic types: (1) tholeiitic basalts of both arc and spreading center origin, with depletions in light relative to heavy rare-earth elements, 3% > TiO{sub 2} > 1%, high Y/Zr and Y/Ti ratios, and relict augites that generally have low Al and Ti and well-defined iron-enrichment trends; (2) basalts of probable seamount origin with marked enrichments in light relative to heavy rare-earth elements, 5% > TiO{sub 2} > 1%, lower Y/Zr and Y/Ti than (1), and Ti-Al-rich augites showing little if any iron-enrichment trends; and (3) hypabyssal intrusives having SiO{sub 2} > 52%, TiO{sub 2} < 1%, flat or only slightly fractionated rare-earth-abundance patterns, and diopsidic augites that are very low in Ti and Al and show no iron-enrichment trends. All of the blocks are metamorphosed; most are undeformed pumpellyite-bearing greenstones, and a few contain sodic amphibole {plus minus} lawsonite {plus minus} sodic pyroxene. The melanges are probably olistostromal in origin, deriving their igneous block detritus both from the downgoing Pacific plate (ocean floor basalts and seamounts) and from the hanging wall of the Franciscan trench (basalts and arc-related silic intrusive rocks). The silicic intrusive rocks and some of the basalts are eroded fragments of the fore-arc crust that ultimately become the Coast Range Ophiolite. These fragments were incorporated into the Franciscan trench fill and subducted. Results suggest that the igneous blocks in ophiolitic melanges provide important information about melange formation and about the tectonics and paleogeography of the regions in which the melanges are found.

  4. Petrochemistry and hydrothermal alteration within the Tyrone Igneous Complex, Northern Ireland: implications for VMS mineralization in the British and Irish Caledonides

    NASA Astrophysics Data System (ADS)

    Hollis, Steven P.; Roberts, Stephen; Earls, Garth; Herrington, Richard; Cooper, Mark R.; Piercey, Stephen J.; Archibald, Sandy M.; Moloney, Martin

    2014-06-01

    Although volcanogenic massive sulfide (VMS) deposits can form within a wide variety of rift-related tectonic environments, most are preserved within suprasubduction affinity crust related to ocean closure. In stark contrast to the VMS-rich Appalachian sector of the Grampian-Taconic orogeny, VMS mineralization is rare in the peri-Laurentian British and Irish Caledonides. Economic peri-Gondwanan affinity deposits are limited to Avoca and Parys Mountain. The Tyrone Igneous Complex of Northern Ireland represents a ca. 484-464 Ma peri-Laurentian affinity arc-ophiolite complex and a possible broad correlative of the Buchans-Robert's Arm belt of Newfoundland, host to some of the most metal-rich VMS deposits globally. Stratigraphic horizons prospective for VMS mineralization in the Tyrone Igneous Complex are associated with rift-related magmatism, hydrothermal alteration, synvolcanic faults, and high-level subvolcanic intrusions (gabbro, diorite, and/or tonalite). Locally intense hydrothermal alteration is characterized by Na-depletion, elevated SiO2, MgO, Ba/Sr, Bi, Sb, chlorite-carbonate-pyrite alteration index (CCPI) and Hashimoto alteration index (AI) values. Rift-related mafic lavas typically occur in the hanging wall sequences to base and precious metal mineralization, closely associated with ironstones and/or argillaceous sedimentary rocks representing low temperature hydrothermal venting and volcanic quiescence. In the ca. 475 Ma pre-collisional, calc-alkaline lower Tyrone Volcanic Group rift-related magmatism is characterized by abundant non-arc type Fe-Ti-rich eMORB, island-arc tholeiite, and low-Zr tholeiitic rhyolite breccias. These petrochemical characteristics are typical of units associated with VMS mineralization in bimodal mafic, primitive post-Archean arc terranes. Following arc-accretion at ca. 470 Ma, late rifting in the ensialic upper Tyrone Volcanic Group is dominated by OIB-like, subalkaline to alkali basalt and A-type, high-Zr rhyolites. These units

  5. Primary Igneous Anhydrite: Progress Since the 1982 El Chichón Eruption (Mexico)

    NASA Astrophysics Data System (ADS)

    Luhr, J. F.

    2006-05-01

    Anhydrite (CaSO4) was confirmed as a stable primary igneous mineral, capable of precipitating from a silicate melt, through petrographic observations of fresh trachyandesitic pumices erupted in the spring of 1982 from El Chichón, a little known, isolated tuff and lava-dome complex in eastern Mexico. The 1982 eruption was also notable for the associated release of an estimated 5-9 megatons of SO2 to the stratosphere and troposphere, as measured by the Total Ozone Mapping Spectrometer. Subsequent years saw confirmation of primary igneous anhydrite in laboratory phase-equilibrium experiments, and anhydrite was also observed in the products of several subsequent explosive eruptions, most importantly dacitic pumices from the massive 15 June 1991 eruption of Mount Pinatubo, in the Philippines. That eruption involved ~5X the mass of magma and ~3X the mass of SO2 release compared to El Chichón's eruption. For both the Pinatubo and El Chichón eruptions, it has been concluded that the sulfur released to the atmosphere was too great in mass to have been dissolved in the erupted melt volume just prior to eruption. In both cases workers advocated the existence of a separate gas phase prior to eruption, where much of the subsequently released sulfur was present. Thus, primary igneous anhydrite has been linked with another important phenomenon: excess sulfur release during volcanic eruptions. This presentation will review other developments concerning primary igneous anhydrite since 1982. These include: (1) other examples of primary anhydrite from volcanic samples (Nevado del Ruiz, Colombia; Lascar, Chile; Sutter Buttes, USA; Eagle Mountain, USA; Shiveluch, Russia; (2) examples of primary anhydrite from plutonic samples (Julcani, Peru; Santa Rita, USA; Cajon Pass Scientific Drillhole, USA); (3) laboratory experiments that have expanded our understanding of the T-P-fO2 conditions of anhydrite stability, melt/vapor partition coefficients for sulfur as a function of these

  6. Lead isotope systematics of some igneous rocks from the Egyptian Shield

    NASA Technical Reports Server (NTRS)

    Gillespie, J. G.; Dixon, T. H.

    1983-01-01

    Lead isotope data on whole-rock samples and two feldspar separates for a variety of Pan-African (late Precambrian) igneous rocks for the Egyptian Shield are presented. It is pointed out that the eastern desert of Egypt is a Late Precambrian shield characterized by the widespread occurrence of granitic plutons. The lead isotope ratios may be used to delineate boundaries between Late Precambrian oceanic and continental environments in northeastern Africa. The samples belong to three groups. These groups are related to a younger plutonic sequence of granites and adamellites, a plutonic group consisting of older tonalites to granodiorites, and the Dokhan volcanic suite.

  7. The Kenna ureilite - An ultramafic rock with evidence for igneous, metamorphic, and shock origin

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.; Brown, H. G.; Keil, K.; Carter, N. L.; Mercier, J.-C. C.; Huss, G.

    1976-01-01

    Ureilites are a rare group of achondrites. They are composed mainly of olivine and pigeonite in a matrix of carbonaceous material, including graphite, lonsdaleite, diamond, and metal. In most respects Kenna is a typical ureilite with the requisite mineralogical and chemical properties of the group. Differences of the Kenna ureilite from previously studied ureilites are related to a greater density, the occurrence of exceedingly minute quantities of feldspar, and a very strong elongation lineation of the silicate minerals. A description is presented of a study which indicates a complex history for Kenna, including igneous, mild metamorphic, and shock processes.

  8. Pre-Elsonian mafic magmatism in the Nain Igneous Complex, Labrador: the bridges layered intrusion

    USGS Publications Warehouse

    Ashwal, L.D.; Wiebe, R.A.; Wooden, J.L.; Whitehouse, M.J.; Snyder, Diane

    1992-01-01

    Decades of work on the pristine, unmetamorphosed, and well exposed anorthositic, mafic and granitic rocks of the Nain igneous complex, Labrador, have led to the conclusion that all plutonic rocks in that area were emplaced in a short time intercal at about 1300 ?? 10 Ma). We report here new isotopic data for mafic intrusive rocks that appear to have crystallized several hundred Ma earlier than the bulk of the plutonic activity in the Nain complex. The Bridges layered intrusion (BLI) is a small (15-20 km2) lens of layered mafic rocks about 1.5 km thick, surrounded and intruded by anorthositic, leuconoritic and leucotroctolitic plutons in the middle of the coastal section of the Nain igneous complex. BLI shows very well developed magmatic structures, including channel scours, slump structures, and ubiquitous modally graded layering. Most rocks, however, show granular textures indicative of recrystallization, presumably caused by emplacement of younger anorthositic rocks. BLI contains cumulate rocks with slightly more primitive mineral compositions (An60-83, Fo66-71) than those of other mafic intrusions in the Nain igneous complex, including Kiglapait. SmNd isotopic data for 7 BLI whole-rocks ranging in composition between olivine melagabbro and olivine leucogabbro yield an age of 1667 ?? 75 Ma, which we interpret as the time of primary crystallization. The internal isotopic systematics of the BLI have been reset, probably by intrusion of adjacent anorthositic plutons. A SmNd mineral isochron (plag, whole-rock, mafics) for a BLI olivine melagabbro gives an age of 1283 ?? 22 Ma, equivalent within error of a mineral array (plag, whole-rock, opx, cpx) for an adjacent, igneous-textured, leuconorite vein (1266 ?? 152 Ma). The initial Nd ratio for BLI corresponds to ??{lunate}Nd = -3.18 ?? 0.44. Other whole-rock samples, however, some with vein-like alteration (Chlorite, serpentine, amphiboles), show ??{lunate}Nd values as low as -9.1, suggesting variable contamination by

  9. Intrusive origin of the Sudbury Igneous Complex: Structural and sedimentological evidence

    NASA Technical Reports Server (NTRS)

    Cowan, E. J.; Schwerdtner, W. M.

    1992-01-01

    In recent years, many geoscientists have come to believe that the Sudbury event was exogenic rather than endogenic. Critical to a recent exogenic hypothesis is the impact melt origin of the Sudbury Igneous Complex (SIC). Such origin implies that the SIC was emplaced before deposition of the Whitewater Group, in contrast to origins in which the SIC postdates the lithification of the Onaping Formation. Structural and sedimentological evidence is summarized herein that supports an intrusion of the SIC after lithification of all Whitewater Group strata, and conflicts with the hypothesis advanced by other researchers.

  10. Synmagmatic deformation in the underplated igneous complex of the Ivrea-Verbano zone

    USGS Publications Warehouse

    Quick, J.E.; Sinigoi, S.; Negrini, L.; Demarchi, G.; Mayer, A.

    1992-01-01

    The Ivrea-Verbano zone, northern Italy, contains an igneous complex up to 10km thick that is thought to have been intruded near the interface between the continental crust and mantle during the late Paleozoic. New data indicate that this complex is pervasively deformed and concentrically foliated. The presence of analogous features in ophiolitic gabbros suggests that emplacement of the Ivrea-Verbano zone plutonic rocks involved large-scale flow of crystal mush in a dynamic, and possibly extensional, tectonic environment. -from Authors

  11. Diverse, Alkali-Rich Igneous and Volcaniclastic Rocks Reflect a Metasomatised Mantle Beneath Gale Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Baker, M. B.; Berger, J. A.; Fisk, M. R.; Gellert, R.; McLennan, S. M.; Newcombe, M. E.; Stolper, E. M.; Thompson, L. M.

    2014-12-01

    Although Curiosity landed in a sedimentary setting, geochemical compositions determined by Alpha Particle X-ray Spectrometer (APXS) and ChemCam suggest that major element concentrations of some rocks were little modified by chemical weathering, and in these cases, the bulk (>70%) of the crystalline components determined by ChemMin are igneous. Gale rocks can therefore largely preserve the composition of their igneous protoliths and provide insight into the crystalline basement exposed in the north crater rim. Four end-member compositions are recognized on the basis of APXS analyses. (1) The diverse, evolved Jake M class (n=12) of inferred igneous origin includes float blocks and cobbles. Jake M rocks are phonotephritic/mugearitic to trachyandesitic and characterized by low MgO contents (3.0-5.7 wt%) and high Al and alkalis, particularly Na2O (up to 7.35 wt%). (2) The Bathurst class of siltstones to coarse sandstones (n=13) occurs as dark-toned float and bedded outcrop and is basaltic to trachybasaltic, ranging to high K2O (up to 3.8 wt%). Alteration of the protolith(s) or during diagenesis may have affected this class. (3) The Darwin class of conglomerates to coarse sandstones (n=10) has high Na and Al, likely reflecting a sodic plagioclase-rich mineralogy, but with higher Fe than Jake M class (13.0-17.1 vs. 6.0-12.5 wt%). (4) The low alkali "normal" Mars basaltic composition is typified by the Portage soils (n=6) and the John Klein class (n=13; includes the Sheepbed mudstone). Some degree of mixing and/or contamination with this low alkali basaltic compositon has affected all APXS analyses. Overall, Gale rocks are strongly enriched in total alkalis (at the same MgO) relative to basaltic shergottites and many have higher K2O than igneous rocks analyzed by Spirit and Opportunity, suggesting that the mantle beneath Gale is alkali-rich (likely as a result of a metasomatic event) and that alkalis are heterogeneously distributed in the planet's interior.

  12. Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.

  13. Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 MM soil particles from 76503

    NASA Astrophysics Data System (ADS)

    Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.

    1992-12-01

    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.

  14. Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.

    1992-01-01

    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.

  15. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  16. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  17. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  18. Two types of alkaline volcanics in the southwestern Iberian margin: The causes of their diversity

    NASA Astrophysics Data System (ADS)

    Chernysheva, E. A.; Matveenkov, V. V.; Medvedev, A. Ya.

    2012-09-01

    The diverse geodynamic conditions of the parental magma's melting are responsible for the compositional diversity of the alkaline volcanics near the southwestern margin of Iberia. The petrological-geochemical data show that the volcanics of the Gorringe Bank originated within the continental plate. The parental melilitite melts depleted in silica and anomalously enriched with trace elements could have been generated only in deep settings with a low degree of metasomatically enriched mantle matter melting. The volcanic melilitite-nephelinite-phonolite series is widespread in alkaline provinces of the Eurasian, African, and other continental plates. The Ampere, Josephine, and other seamounts and islands of the region are largely composed of volcanic rocks belonging to the picrobasalt-hawaiite-mugearite association. Their parental magmas were generated within the oceanic plate at shallower depths under a higher degree of moderately enriched oceanic lithospheric mantle melting. Both series of volcanics were formed under the influence of mantle plumes.

  19. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  20. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  1. The growth of large mafic intrusions: Comparing Niquelândia and Ivrea igneous complexes

    NASA Astrophysics Data System (ADS)

    Correia, Ciro Teixeira; Sinigoi, Silvano; Girardi, Vicente Antonio Vitorio; Mazzucchelli, Maurizio; Tassinari, Colombo Celso Gaeta; Giovanardi, Tommaso

    2012-12-01

    The Niquelândia Complex, Brazil, is one of the world's largest mafic-ultramafic plutonic complexes. Like the Mafic Complex of the Ivrea-Verbano Zone, it is affected by a pervasive high-T foliation and shows hypersolidus deformation structures, contains significant inclusions of country-rock paragneiss, and is subdivided into a Lower and an Upper Complex. In this paper, we present new SHRIMP U-Pb zircon ages that provide compelling evidence that the Upper and the Lower Niquelândia Complexes formed during the same igneous event at ca. 790 Ma. Coexistence of syn-magmatic and high-T subsolidus deformation structures indicates that both complexes grew incrementally as large crystal mush bodies which were continuously stretched while fed by pulses of fresh magma. Syn-magmatic recrystallization during this deformation resulted in textures and structures which, although appearing metamorphic, are not ascribable to post-magmatic metamorphic event(s), but are instead characteristic of the growth process in huge and deep mafic intrusions such as both the Niquelândia and Ivrea Complexes. Melting of incorporated country-rock paragneiss continued producing hybrid rocks during the last, vanishing stages of magmatic crystallization. This resulted in the formation of minor, late-stage hybrid rocks, whose presence obscures the record of the main processes of interaction between mantle magmas and crustal components, which may be active at the peak of the igneous events and lead to the generation of eruptible hybrid magmas.

  2. Zirconolite: A new U-Pb chronometer for mafic igneous rocks

    NASA Astrophysics Data System (ADS)

    Rasmussen, Birger; Fletcher, Ian R.

    2004-09-01

    Precise dates for mafic igneous events are essential for tectonic reconstructions and understanding mantle dynamics, mass extinctions, and paleoclimate. Zirconolite (CaZrTi2O7) is a uranium-bearing accessory mineral, found in a wide range of terrestrial and lunar rocks, that has been largely overlooked as a chronometer. In situ U-Pb geochronology of zirconolite from three dolerite intrusions in Western Australia demonstrates that it yields emplacement ages that are more precise than those obtained from coexisting zircon and baddeleyite. Dikes in the Stirling Range Formation give a zirconolite 207Pb/ 206Pb age of 1218 ± 3 Ma, indistinguishable from the less precise dates obtained from zircon (1215 ± 10 Ma) and baddeleyite (1217 ± 39 Ma) and coincident with dike emplacement in the adjacent craton margin and peak metamorphism in the Albany-Fraser orogen. Zirconolite from the 755 Ma Mundine Well dike swarm yields a 207Pb/206Pb age of 754 ± 5 Ma. Sills intruding the Proterozoic Manganese Group contain zirconolite crystals that give a 207Pb/206Pb age of 523 ± 14 Ma. Despite high U contents (550 ppm to 14,000 ppm) and greenschist facies metamorphism, zirconolite in these samples is apparently unaffected by loss of radiogenic Pb. Because of its remarkable properties for U-Pb geochronology, it may soon become the dominant tool for dating mafic igneous rocks as young as 500 Ma by ion microprobe, and thus will prove especially valuable in reconstructing Precambrian geologic history.

  3. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  4. A trishear model for the deformation of the Sudbury Igneous Complex, Canada

    NASA Astrophysics Data System (ADS)

    Lenauer, Iris; Riller, Ulrich

    2017-04-01

    The Sudbury Igneous Complex (SIC), Canada, is an impact-induced layered sheet of crystalline rocks deformed into an asymmetrical fold basin, the Sudbury Basin. The basin geometry at depth is largely unknown as few attempts were made to quantify displacement and rotation of layer contacts. We propose that the dip of layer contacts and foliation surfaces in the southern SIC can be approximated by trishear fault propagation folding. Trishear deformation accounts for: (1) angular discordances between upper and basal SIC contacts, (2) local overturning of the SIC, (3) progressive steepening of foliation surfaces from NW to SE, (4) strain gradient in the Sudbury Basin sedimentary rocks, and (5) thickness variations in SIC layers. Moreover, the South Range Shear Zone, a zone of moderately strong metamorphic fabrics, coincides with the surface manifestation of the proposed trishear zone. We demonstrate the use of structural data together with forward kinematic modelling to identify the strain distribution within the SIC, rotation of SIC contacts and thickness changes of SIC layers. Backward kinematic modelling provides information on the initial geometry of the SIC and is used to restore the shape of the igneous sheet, showing that the SIC was shortened by approximately 10 km in NW-SE diameter. Most of the shortening was accommodated by 40% reduction in the thickness of the upper SIC layer.

  5. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    PubMed

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-12-04

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins.

  6. Late Triassic, arc-related, potassic igneous rocks in the North American Cordillera

    NASA Astrophysics Data System (ADS)

    Mortimer, N.

    1986-12-01

    Igneous rocks of Late Triassic age are widespread in the Cordillera of western North America and, except in Wrangellia, consist of subduction-related plutonic and volcanic suites. Many of these, including those in the Stikinia, Quesnellia, Rattlesnake Creek, and Jackson terrenes and in southern California, are clinopyroxene rich and belong to high-potassium and shoshonitic rock series, features that are generally absent from older and younger igneous rocks in the same terranes. The Late Triassic subduction-related rocks are exposed in two discontinuous belts that lie east and west of the Cache Creek terrane in Canada and correlative melange terranes farther south. Stratigraphic and structural data suggest that these belts were spatially separate magmatic arcs in Late Triassic time. Tectonic implications of this analysis include an explanation of Middle Jurassic Cordilleran deformation as the result of collision of the western with the eastern belt, absence of Late Triassic links between Stikinia and Quesnellia, disassociation of Stikinia with terranes in northwestern Nevada, and tentative correlation of the Wallowa (Seven Devils) terrane with Stikinia rather than Wrangellia. *Present address: New Zealand Geological Survey, Department of Scientific and Industrial Research, Private Bag, Dunedin, New Zealand

  7. Thermal neutron absorption cross sections for igneous rocks: Newberry Caldera, Oregon

    SciTech Connect

    Lysne, P.

    1990-01-01

    The thermal neutron absorption cross sections of geologic materials are of first-order importance to the interpretation of pulsed neutron porosity logs and of second-order importance to the interpretation of steady-state porosity logs using dual detectors. Even in the latter case, uncertainties in log response can be excessive whenever formations are encountered that possess absorption properties appreciably greater than the limestones used in most tool calibrations. These effects are of importance to logging operations directed at geothermal applications where formation vary from igneous to sedimentary and which may contain solution-deposited minerals with very large cross-section values. Most measurements of cross-section values for geologic materials have been made for hydrocarbon production applications. Hence, the specimen materials are sedimentary and clean in the sense that they are not altered by geothermal fluids. This investigation was undertaken to measure cross-section values from a sequence of igneous materials obtained from a single hole drilled in an active hydrothermal system. 3 refs., 1 fig.

  8. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction

    PubMed Central

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-01-01

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins. PMID:24301173

  9. Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, E.; Mendoza-Borunda, R.

    2014-12-01

    Measurement of the anisotropy of magnetic susceptibility (AMS) of igneous rocks can provide clues concerning their mechanism of formation and in particular are very helpful as flow direction indicators. Unlike other igneous rocks, however, pyroclastic density current deposits (PDCDs) present a challenge in the interpretation of AMS measurements due to the complexity of their mechanism of emplacement. In this paper we review the most common assumptions made in the interpretation of the AMS of PDCD, taking advantage of key lessons obtained from obsidians. Despite the complexities on the mechanism of formation of PDCDs, it is shown that a key element for the fruitful interpretation of AMS is to give proper attention to the various components likely to be involved in controlling their general petrofabric. The anisotropies of ferromagnetic crystals (whether as free phases or embedded within clasts or shards), and those of paramagnetic minerals (mainly ferrosilicates) need to be taken into consideration when interpreting the AMS measurements of PDCDs. Variations of the deposition regime both as a function of position and of time also need to be considered on the interpretations. Nevertheless, if a suitable sampling strategy is adopted, the potential of the AMS method as a petrofabric indicator is maximized.

  10. Igneous inclusions from ordinary chondrites: High temperature cumulates and a shock melt

    NASA Technical Reports Server (NTRS)

    Sack, Richard O.; Ghiorso, Mark, S.; Wang, Ming-Sheng; Lipschutz, Michael E.

    1994-01-01

    We report microprobe, instrumental neutron activation analysis, and radiochemical neutron activation analysis data for three large igneous inclusions in the Yamato (Y-)75097, Y-793241, and Y-794046 ordinary chondrites. The inclusions in the first two chondrites are troctolitic cumulates that have undergone appreciable reactions with their hosts either during emplacement and/or cooling. Olivine-spinel Fe-Mg exchange pairs in these two inclusions record equilibration temperatures of about 710 C, and these temperatures are similar to those exhibited by mineral pairs in the Y-75097 and Y-793241 hosts. The inclusion in Y-794046 is texturally unique, consisting of fine-grained, randomly distributed olivines, coarse (approximately 2 mm) fascicular pyroxene laths, and angular pockets of maskelynite/plagioclase feldspar. The phase compositions are readily interpreted as having resulted from extremely rapid, essentially isochemical cooling to temperatures less than 1000 C of a melt with an initial temperature greater than 1670 C. We suggest that this igneous inclusion formed in-situ by shock.

  11. The Basin and Range Province in Utah, Nevada, and California

    USGS Publications Warehouse

    Nolan, Thomas B.

    1943-01-01

    In this report an attempt has been made to summarize and in places to interpret the published information that was available through 1938 on the geology of those parts of Nevada, California, and Utah that are included in the geologic province known as the Basin and Range province. This region includes most of the Great Basin, from which no water flows to the sea, as well as part of the drainage basin of the lower Colorado River. It is characterized by numerous parallel, linear mountain ranges that are separated from one another by wide valleys or topographic basins. All the major divisions of geologic time are represented by the rocks exposed in this region. The oldest are of pre-Cambrian age and crop out chiefly along the eastern and southern borders. They have been carefully studied at only a few localities, and the correlation and extent of the subdivision so far recognized is uncertain. There appear to be at least three series of pre-Cambrian rocks which are probably separated from one another by profound unconformities. Large masses of intrusive igneous rocks have been recognized only in the oldest series. During the Paleozoic era the region was a part of the Cordilleran geosyncline, and sediments were deposited during all of the major and most of the minor subdivisions of the era. There are thick and widespread accumulations of Cambrian and Ordovician strata, the maximum aggregate thickness possibly exceeding 23,000 feet. The eastern and western boundaries of the province were approximately those of the area of rapid subsidence within the geosyncline, though the axes of maximum subsidence oscillated back and forth during the two periods. The Silurian and Devonian seas, on the other hand, extended beyond the province and, possibly as a consequence, are represented by much thinner sections - of the order of 6,000 feet. At the end of the Devonian period the geosyncline was split by the emergence of a geanticline in western Nevada, and Mississippian and

  12. PVA in Igneous Petrology: The Rosetta Stone for Testing Mixing and Fractionation Models

    NASA Astrophysics Data System (ADS)

    Vogel, T. A.; Ehrlich, R.

    2006-05-01

    One of the major goals of igneous petrology is to evaluate the relative contributions of fractional crystallization and magma mixing (or assimilation) that produce the chemical variations within related igneous units (plutons, sills and dikes, ash-flow tuffs, lavas etc). Mixing and fractional crystallization have often been evaluated by selecting a few variables (major elements, trace elements, isotopes) and modeling the trends. EC-AFC models have been developed to include energy constraints along with selected trace elements and isotopes. Polytopic Vector Analysis (PVA) is a technique that uses all of the chemical variations (major elements and trace elements) in all the samples to determine: (1) the number of end member compositions present in the system, (2) the chemical composition of each end member, and (3) the relative contribution of each end member in each sample from the igneous unit. Each sample in the dataset is described as the sum of some fraction of each end member; therefore each sample is uniquely described by a specific amount of each of the end members. Each end member is defined in the same non negative units as the sample values. Graphical analysis of the output allows the recognition of trends either due to crystal fraction or mixing of separate magma batches (assimilation), as samples form discrete clusters or trends with different variations in end member proportions. Mixing of discrete magma batches is immediately apparent, as samples representing mixed magmas plot between the parent magmas. PVA has been used successfully to identify end members in aqueous geochemistry and petroleum. However, even though it was originally developed in part by igneous petrologists, it has not been thoroughly tested on petrologic problems. In order to evaluate PVA, we selected three igneous units in which fractionation and mixing processes had been identified: (1) glasses from Kilauea Iki drilling, which are unquestionably due to crystal fractionation; (2

  13. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  14. Oxidative mobilization of cerium and uranium and enhanced release of "immobile" high field strength elements from igneous rocks in the presence of the biogenic siderophore desferrioxamine B

    NASA Astrophysics Data System (ADS)

    Kraemer, Dennis; Kopf, Sebastian; Bau, Michael

    2015-09-01

    Polyvalent trace elements such as the high field strength elements (HFSE) are commonly considered rather immobile during low-temperature water-rock interaction. Hence, they have become diagnostic tools that are widely applied in geochemical studies. We present results of batch leaching experiments focused on the mobilization of certain HFSE (Y, Zr, Hf, Th, U and rare earth elements) from mafic, intermediate and felsic igneous rocks in the presence and absence, respectively, of the siderophore desferrioxamine B (DFOB). Our data show that DFOB strongly enhances the mobility of these trace elements during low-temperature water-rock interaction. The presence of DFOB produces two distinct features in the Rare Earths and Yttrium (REY) patterns of leaching solutions, regardless of the mineralogical and chemical composition or the texture of the rock type studied. Bulk rock-normalized REY patterns of leaching solutions with DFOB show (i) a very distinct positive Ce anomaly and (ii) depletion of La and other light REY relative to the middle REY, with a concave downward pattern between La and Sm. These features are not observed in experiments with hydrochloric acid, acetic acid or deionized water. In DFOB-bearing leaching solutions Ce and U are decoupled from and selectively enriched relative to light REY and Th, respectively, due to oxidation to Ce(IV) and U(VI). Oxidation of Ce3+ and U4+ is promoted by the significantly higher stability of the Ce(IV) and U(VI) DFOB complexes as compared to the Ce(III) and U(IV) DFOB complexes. This is similar to the relationship between the Ce(IV)- and Ce(III)-pentacarbonate complexes that cause positive Ce anomalies in alkaline lakes. However, while formation of Ce(IV) carbonate complexes is confined to alkaline environments, Ce(IV) DFOB complexes may produce positive Ce anomalies even in mildly acidic and near-neutral natural waters. Siderophore-promoted dissolution processes also significantly enhance mobility of other 'immobile' HFSE

  15. The relationship between potassic, calc-alkaline and Na-alkaline magmatism in South Italy volcanoes: A melt inclusion approach

    NASA Astrophysics Data System (ADS)

    Schiano, Pierre; Clocchiatti, Robert; Ottolini, Luisa; Sbrana, Alessandro

    2004-03-01

    The present-day tectonic setting of the Tyrrhenian Sea is dominated by the eastward migration of the Tyrrhenian-Appenines subduction system and the existence of a contemporaneous and parallel extensional-compressional regime. This complex setting leads to the occurrence of a wide spectrum of magma-types in the South Italy volcanoes. Here, major and trace-element data for primitive melt inclusions preserved in olivine phenocrysts have been obtained in order to add constraints on the origin of the calc-alkaline magmas from the Aeolian arc (Stromboli and Vulcano islands), the potassic magmas from the Campania Province (Vesuvius and Phlegraean Fields) and the Na-alkaline magmas from Ustica Island. The approach used to determine the possible mantle sources of the trapped melts for each population of melt inclusions is based on the determination of the trace-element incompatibility sequence taken as the relative order of increasing bulk partition coefficients, which depends on the mineralogy of the source and gives direct information about minerals residual at the time of melting. Compositional similarities between the melt inclusions and their host lavas suggest that shallow-level magma contamination did not contribute significantly to the geochemical characteristics of the magma-types encountered in the region. Results of the trace-element modelling indicate that the melt inclusions from the Aeolian Islands and Campania Province volcanoes originate from mantle sources strongly affected by subduction-related metasomatic processes. Trace-element relationships of melt inclusions from Vulcano and Stromboli reflect melting of peridotitic sources that have been enriched by a slab-derived, aqueous fluid formed during dehydratation of K-free phases at shallow to intermediate depths. The negative high-field strength elements (HFSE) anomalies of these inclusions were generated in the absence of any residual phase in which HFSE might be compatible. In addition, their major

  16. Igneous phenocrystic origin of K-feldspar megacrysts in granitic rocks from the Sierra Nevada batholith

    USGS Publications Warehouse

    Moore, J.G.; Sisson, T.W.

    2008-01-01

    Study of four K-feldspar megacrystic granitic plutons and related dikes in the Sierra Nevada composite batholith indicates that the megacrysts are phenocrysts that grew in contact with granitic melt. Growth to megacrystic sizes was due to repeated replenishment of the magma bodies by fresh granitic melt that maintained temperatures above the solidus for extended time periods and that provided components necessary for K-feldspar growth. These intrusions cooled 89-83 Ma, are the youngest in the range, and represent the culminating magmatic phase of the Sierra Nevada batholith. They are the granodiorite of Topaz Lake, the Cathedral Peak Granodiorite, the Mono Creek Granite, the Whitney Granodiorite, the Johnson Granite Porphyry, and the Golden Bear Dike. Megacrysts in these igneous bodies attain 4-10 cm in length. All have sawtooth oscillatory zoning marked by varying concentration of BaO ranging generally from 3.5 to 0.5 wt%. Some of the more pronounced zones begin with resorption and channeling of the underlying zone. Layers of mineral inclusions, principally plagioclase, but also biotite, quartz, hornblende, titanite, and accessory minerals, are parallel to the BaO-delineated zones, are sorted by size along the boundaries, and have their long axes preferentially aligned parallel to the boundaries. These features indicate that the K-feldspar megacrysts grew while surrounded by melt, allowing the inclusion minerals to periodically attach themselves to the faces of the growing crystals. The temperature of growth of titanite included within the K-feldspar megacrysts is estimated by use of a Zr-in-titanite geothermometer. Megacryst-hosted titanite grains all yield temperatures typical of felsic magmas, mainly 735-760 ??C. Titanite grains in the granodiorite hosts marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus. The limited range and igneous values of growth temperatures for megacryst-hosted titanite grains support the

  17. Building the EarthChem System for Advanced Data Management in Igneous Geochemistry

    NASA Astrophysics Data System (ADS)

    Lehnert, K.; Walker, J. D.; Carlson, R. W.; Hofmann, A. W.; Sarbas, B.

    2004-12-01

    Several mature databases of geochemical analyses for igneous rocks are now available over the Internet. The existence of these databases has revolutionized access to data for researchers and students allowing them to extract data sets customized to their specific problem from global data compilations with their desktop computer within a few minutes. Three of the database efforts - PetDB, GEOROC, and NAVDAT - have initiated a collaborative effort called EarthChem to create better and more advanced and integrated data management for igneous geochemistry. The EarthChem web site (http://www.earthchem.org/) serves as a portal to the three databases and information related to EarthChem activities. EarthChem participants agreed to establish a dialog to minimize duplication of effort and share useful tools and approaches. To initiate this dialog, a workshop was run by EarthChem in October, 2003 to discuss cyberinfrastructure needs in igneous geochemistry (workshop report available at the EarthChem site). EarthChem ran an information booth with database and visualization demonstrations at the Fall 2003 AGU meeting (and will have one in 2004) and participated in the May 2003 GERM meeting in Lyon, France where we provided the newly established Publishers' Round Table a list of minimum standards of data reporting to ease the assimilation of data into the databases. Aspects of these suggestions already have been incorporated into new data policies at Geochimica et Cosmochimica Acta and Chemical Geology (Goldstein et al. 2004), and are under study by the Geological Society of America. EarthChem presented its objectives and activities to the Solid Earth Sciences community at the Annual GSA Meeting 2003 (Lehnert et al, 2003). Future plans for EarthChem include expanding the types and amounts of data available from a single portal, giving researchers, faculty, students, and the general public the ability to search, visualize, and download geochemical and geochronological data for a

  18. The Late Cretaceous igneous rocks of Romania (Apuseni Mountains and Banat): the possible role of amphibole versus plagioclase deep fractionation in two different crustal terranes

    NASA Astrophysics Data System (ADS)

    Vander Auwera, Jacqueline; Berza, Tudor; Gesels, Julie; Dupont, Alain

    2016-04-01

    We provide new whole-rock major and trace elements as well as 87Sr/86Sr and 143Nd/144Nd isotopic data of a suite of samples collected in the Late Cretaceous volcanic and plutonic bodies of the Apuseni Mts. (Romania) that belong to the Banatitic Magmatic and Metallogenic Belt, also called the Apuseni-Banat-Timok-Srednogorie belt. The samples define a medium- to high-K calc-alkaline differentiation trend that can be predicted by a three-step fractional crystallization process which probably took place in upper crustal magma chambers. Published experimental data indicate that the parent magma (Mg# = 0.47) of the Apuseni Mts. trend could have been produced by the lower crustal differentiation of a primary (in equilibrium with a mantle source) magma. The Late Cretaceous magmatic rocks of the Apuseni Mts. and Banat display overlapping major and trace element trends except that Sr is slightly lower and Ga is higher in the Apuseni Mts. parent magma. This difference can be accounted for by fractionating plagioclase-bearing (Apuseni Mts.) or amphibole-bearing (Banat) cumulates during the lower crustal differentiation of the primary magma to the composition of the parent magma of both trends. This, together with results obtained on the Late Cretaceous igneous rocks from the Timok area in Eastern Serbia, further suggests variation of the water content of the primary magma along and across the belt. The Apuseni Mts. versus the Banat samples display different isotopic compositions that likely resulted from the assimilation of two distinct crustal contaminants, in agreement with their emplacement in two separate mega-units of Alpine Europe.

  19. Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks

    NASA Astrophysics Data System (ADS)

    Spandler, Carl; Morris, Caitlin

    2016-12-01

    The Toongi Deposit, located in central NSW, Australia, hosts significant resources of Zr, Hf, Nb, Ta, Y and REE within a small (ca. 0.3 km2), rapidly cooled trachyte laccolith. Toongi is part of regional Late Triassic to Jurassic alkaline magmatic field, but is distinguished from the other igneous bodies by its peralkaline composition and economically significant rare metal content that is homogenously distributed throughout the trachyte body. The primary ore minerals are evenly dispersed throughout the rock and include lueshite/natroniobite and complex Na-Fe-Zr-Nb-Y-REE silicate minerals dominated by a eudialyte group mineral (EGM). The EGM occurs in a unique textural setting in the rock, commonly forming spheroidal or irregular-shaped globules, herein called "snowballs", within the rock matrix. The snowballs are often protruded by aegirine and feldspar phenocrysts and contain swarms of fine aegirine and feldspar grains that often form spiral or swirling patterns within the snowball. Secondary ore minerals include REE carbonates, Y milarite, catapleiite and gaidonnayite that fill fractures and vesicles in the rock. Based on bulk-rock geochemical and Nd isotope data, and thermodynamic modelling of magma fractionation, the alkaline rocks of the region are interpreted to represent extrusive to hyperbyssal products of mantle-derived magma that ponded at mid-crustal levels (ca. 0.3 GPa) and underwent extensive fractionation under low-oxygen fugacity conditions. The high Na2O, peralkaline nature of the Toongi Deposit trachyte developed via extensive fractionation of an alkali olivine basalt parental magma initially in the mid-crust and subsequently at shallow levels (ca. 0.1 GPa). This extended fractionation under low fO2 and relatively low H2O-activity conditions limited volatile release and allowed build-up of rare metal contents to ore grades. We speculate that the ore minerals may have originally formed from rare metal-rich sodic-silicate melt that formed immiscible

  20. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1989-01-01

    The River Valley pluton is a ca. 100 km2 body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An60-70) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo70-80. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. Ten samples, including both igneous and deformed lithologies give a Pb-Pb whole-rock isochron of 2560??155Ma, which is our best estimate of the time of primary crystallization. The River Valley pluton is thus the oldest anorthositic intrusive yet reported from the Grenville Province, but is more calcic and augitic than typical massifs, and lacks their characteristic Fe-Ti oxide ore deposits. The River Valley body may be more akin to similar gabbro-anorthosite bodies situated at the boundary between the Archean Superior Province and Huronian supracrustal belt of the Southern Province west of the Grenville Front. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2377 ?? 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2185 ?? 105 Ma, which is similar to internal Pb-Pb isochron ages of 2165 ?? 130 Ma and 2100 ?? 35 Ma for two igneous-textured rocks. It is uncertain whether these ages correspond to a discrete event at this time or represent a partial resetting of the Rb-Sr and Pb

  1. Igneous and Sedimentary Compositions from Four Landing Sites on Mars from the Alpha Particle X-Ray Spectrometer (APXS)

    NASA Technical Reports Server (NTRS)

    Gellert, R.; Arvidson, R. E.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R. W.; Squyres, S. W.; VanBommel, S.; Yen, A. S.

    2016-01-01

    The APXS - supported and promoted strongly by Heinrich Waenke - on all four Mars Rovers has returned compositional data from about 1000 rocks and soil targets along the combined traverses of over 60 kilometers. Providing precise and accurate bulk chemistry with typically 16 quantified elements, the APXS is a powerful and versatile tool that when combined with the ability to traverse to key rocks and soils has provided critical information needed to understand the geologic evolution of Mars. APXS data allow comparisons among landing sites, provide ground truth for orbiters and connections back to SNC meteorites. The soils and dust are basaltic in character and represent the average Mars composition similar to Adirondack basalts from Gusev crater but with unambiguous elevated and correlated S, Cl and Zn contents. At all four landing sites the APXS found several rocks with a felsic composition. The similarity is best assessed in a logarithmic ratio plot of rock normalized to the average soil composition (Fig.1). High alkaline, Al, and low Mg, Fe, low S, Cl and Ni, Zn as well as an Fe/Mn ratio of approximately 50 indicate a likely unaltered and igneous origin. Sediments, e.g. the Burns formation, with approximately 25 wt% SO3 at Meridiani Planum have been documented over 10s of kilometers (Fig. 2). This formation is compositionally homogeneous, but showing the removal of MgSO4 and a threefold increase in Cl downhill in 2 craters. The degraded rim of the Noachian crater Endeavour resembles average Mars crust, with local Ca, Mg and Fe sulfate alteration and elevated Mn, some felsic rocks, and high Al, Si and low Fe rocks, possibly indicating clays. Unusual soils at Gusev crater in the area surrounding Home Plate include some very rich in ferric sulfate salts (up to 35 wt% SO3) and some with 90% wt% SiO2, possibly indicating fumerolic activities. Rocks in the Columbia Hills show significant signs of alteration including elevated S, Cl and Br in the abraded interior. At

  2. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  3. Granodiorite Pluton Formation at the Mid-Cenozoic Never Summer Igneous Complex, North-Central Colorado

    NASA Astrophysics Data System (ADS)

    Jacob, K. H.; Farmer, G.

    2012-12-01

    Field observations, major- and trace-element geochemistry, and Sr and Nd isotopic data were used to assess the petrogenesis of epizonal intrusive rocks and related volcanic rocks from the ~28 Ma Never Summer igneous complex in north-central Colorado. Intrusive igneous rocks at this igneous center consist of an older granodiorite pluton (the Mt Richthofen stock, MRS) that is intruded by the granitic Mt. Cumulus stock. The latter has a uniform bulk composition equivalent to that of high silica rhyolite (~77 wt % SiO2, ɛNd(T) ~ -6). Whole rock studies of the MRS reveal that it is compositionally zoned (55-67 wt % SiO2,ɛNd(T) -0.5 to -5.7, 87Sr/86Sr(T) 0.7049 to 0.7119), with the lowest wt % SiO2 and highest ɛNd(T) occurring along the western margin of the pluton. Field observations, combined with the observed compositional variations, suggest that the pluton was originally a shallowly intruded (< 2 km), ~1 km thick sill that was vertically zoned from a mafic base to more felsic roof. The entire pluton has been tilted ~25 degrees to the west after emplacement. Given the lack of obvious wall-rock assimilation at the level of pluton emplacement, the isotopic variations in the pluton most likely reflect differences in the isotopic compositions of melts from which the pluton was assembled. Obvious field evidence exists for underplating of the developing pluton by mafic, high ɛNd (T) (>-2) melts and illustrates that mafic magmas were present in the uppermost crust and likely participated in pluton formation. The higher wt % SiO2 and lower ɛNd(T) portions of the MRS, however, could not have been derived directly from the mafic magmas in any closed system process. One option is that the MRS ultimately represents the product of mixing of >70 wt % SiO2 melts (+ crystals), analogous to the melts from which the Mt. Cumulus stock crystallized, and underplating mafic magma. This model implies that two primary magmas types, high silica rhyolite and basalt/basaltic andesite

  4. Trace Elements in Igneous Quartz: a new Petrogenetic Tool for the Study of Granite Pegmatite Genesis

    NASA Astrophysics Data System (ADS)

    Larsen, R. B.; Larsen, R. B.; Flem, B.; Henderson, I.; Ihlen, P. M.; Ihlen, P. M.; Lahaye, Y.; Malvik, T.; Prestvik, T.

    2001-12-01

    The trace-element chemistry of quartz is rarely, if ever, considered when evaluating the origin and evolution of silica over-saturated igneous rocks. Analytical obstacles have efficiently prevented in-depth studies of the trace-element chemistry of quartz because the most interesting elements are present at the sub-ppm level and because mineral separation of quartz for traditional solution analysis is a time-consuming process. Also, igneous quartz may contain both fluid and solid inclusions that are difficult to identify during handpicking and may influence the analytical results significantly. However, in the present study we utilised in situ Laser Ablation of quartz specimens with direct introduction of the ablated material in to a double focusing sector field, ICP-MS instrument, and we developed a method that is fine-tuned for the analysis of trace elements in quartz (Flem et al., Chemical Geology, in press). Among the elements covered by the method we have focussed on substitutional trace-elements replacing Si4+ (e.g. Ti, Ge, Al, Fe and P) or elements that represent charge compensators that are accommodated in lattice vacancies or in structural channels (e.g. Li, B, K, Ca, Be). Elements analysed at low, medium and high resolutions include Li, B, Be, Al, Mn, Ge, Rb, Sr, Ba, Pb, Th, Mg, P, Ti, Ca, Cr, Fe and K. 29Si or 30Si, were used as internal standards. In the present study we evaluate the chemical evolution of quartz by comparing with the chemistry of co-existing alkali-feldspar, for which the compositional changes during igneous evolution is well known from the literature. The study includes 75 strongly zoned gadolinite-type REE-Nb-Ta rich chamber pegmatites from two major Neoproterozoic pegmatite fields in SE-Norway. Analysis of alkali-feldspar for major and accessory elements including the REE shows that the pegmatites were formed from progressively more evolved liquids through extreme fractionation of primitive granitic melts. The total concentration of

  5. Venus: chemical weathering of igneous rocks and buffering of atmospheric composition.

    PubMed

    Nozette, S; Lewis, J S

    1982-04-09

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.

  6. Unusual shape of pyrrhotite inclusions in scapolite of igneous rocks from the southernern Urals

    NASA Astrophysics Data System (ADS)

    Korinevsky, V. G.; Korinevsky, E. V.

    2016-12-01

    The unique igneous rock (scapolite-diopside gabbro) from the Ilmeny Mountains in the southern Urals is described. Gabbro fills a segment of dike 1.3 m thick that cuts through calcite-dolomite carbonatite. Medium-grain pyroxenite with scapolite that occurs at selvages gradually passes to scapolite-bearing gabbro in the central part of the dike. Scapolite crystals display surfaces of concurrent growth, which are evidence of their magmatic origin. Scapolite (Me 63-70%) contains numerous pyrrhotite inclusions as platelets 0.001 mm thick oriented parallel to the cleavage plane {100}. The calculated pyrrhotite formula is consistent with its stoichiometry (Fe1-xS). The morphology of the platelets (hexagonal sections) and their optical properties indicate a hexagonal symmetry of pyrrhotite. As follows from the insignificant difference between scapolite grains with and without pyrrhotite inclusions, scapolite and pyrrhotite should be regarded as products of synchronous magmatic melt crystallization.

  7. Evolution of KREEP - Further petrologic evidence. [igneous rocks from Apollo 15 site

    NASA Technical Reports Server (NTRS)

    Crawford, M. L.; Hollister, L. S.

    1977-01-01

    It is hypothesized that KREEP samples from the Apollo 15 site are igneous. To support the hypothesis, comparisons are made with other crystalline KREEP samples, especially 14310. It is noted that the low siderophile element content and lack of high pressure phenocrysts in the Apollo 15 KREEP may be indications of a slower rise of KREEP melt to the surface, when contrasted with sample 14310. Gravitational separation of Fe-Ni metal is proposed as a mechanism to account for the depletion of siderophile elements relative to the Si-rich component. It is further suggested that KREEP may be the parent of Apollo 12 and 15 basalts, as well as of granitic rocks, due to the liquid immiscibility occurring during the KREEP melt crystallization, and the subsequent independent evolution of the components.

  8. Venus - Chemical weathering of igneous rocks and buffering of atmospheric composition

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lewis, J. S.

    1982-01-01

    Data from the Pioneer Venus radar mapper, combined with measurements of wind velocity and atmospheric composition, suggest that surface erosion on Venus varies with altitude. Calcium- and magnesium-rich weathering products are produced at high altitudes by gas-solid reactions with igneous minerals, then removed into the hotter lowlands by surface winds. These fine-grained weathering products may then rereact with the lower atmosphere and buffer the composition of the observed gases carbon dioxide, water vapor, sulfur dioxide, and hydrogen fluoride in some regions of the surface. This process is a plausible mechanism for the establishment in the lowlands of a calcium-rich mineral assemblage, which had previously been found necessary for the buffering of these species.

  9. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust

    PubMed Central

    Salas, Everett C.; Bhartia, Rohit; Anderson, Louise; Hug, William F.; Reid, Ray D.; Iturrino, Gerardo; Edwards, Katrina J.

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 105 cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities. PMID:26617595

  10. In situ Detection of Microbial Life in the Deep Biosphere in Igneous Ocean Crust.

    PubMed

    Salas, Everett C; Bhartia, Rohit; Anderson, Louise; Hug, William F; Reid, Ray D; Iturrino, Gerardo; Edwards, Katrina J

    2015-01-01

    The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

  11. An Igneous Origin for Features of a Candidate Crater-Lake System in Western Memnonia, Mars

    NASA Technical Reports Server (NTRS)

    Leverington, D. W.; Maxwell, T. A.

    2004-01-01

    The association of channels, inner terraces, and delta-like features with Martian impact craters has previously been interpreted as evidence in favor of the past existence of crater lakes on Mars. However, examination of a candidate crater-lake system in western Memnonia suggests instead that its features may have formed through igneous processes involving the flow and ponding of lava. Accumulations of material in craters and other topographic lows throughout much of the study region have characteristics consistent with those of volcanic deposits, and terraces found along the inner flanks of some of these craters are interpreted as having formed through drainage or subsidence of volcanic materials. Channels previously identified as inlets and outlets of the crater-lake system are interpreted instead as volcanic rilles. These results challenge previous interpretations of terrace and channel features in the study region and suggest that candidate crater lakes located elsewhere should be reexamined.

  12. Classification of mafic clasts from mesosiderites - Implications for endogenous igneous processes

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.; Mittlefehldt, David W.

    1992-01-01

    Results are presented from an analysis of 13 igneous pebbles from the Vaca Muerta, EET87500, and Bondoc mesosiderites, using electron microprobe and instrumental neutron activation techniques. These data, combined with literature data on compositions of 43 mesosiderite clasts were used to compile a classification scheme for the various types of mafic silicate clasts that occur in mesosiderites. These clasts were classified into five principal groups: (1) polygenic and monogenic cumulates (30 percent); (2) polygenic basalts (30 percent); (3) quench-textured rocks, comprising two compositional subgroups (those which resemble basaltic eucrites (5 percent), and those which resemble cumulate eucrites (2 percent)); (4) monogenic basalts (11 percent); and (5) ultramafic rocks, consisting mainly of large crystals of orthopyroxene (9 percent) or olivine (4 percent). The conditions under which these clasts were formed are discussed.

  13. Sensitivity of high-elevation streams in the Southern Blue Ridge Province to acidic deposition

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Hudy, M.; Fowler, D.; Van Den Avyle, M.J.

    1987-01-01

    The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 ?eq/? and 6.7) than in first order reaches (64 ?eq/? and 6.4). Ionic concentrations were low, averaging 310 and 340 ?eq/? in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.

  14. Deep structure of the Mount Amram igneous complex, interpretation of magnetic and gravity data

    NASA Astrophysics Data System (ADS)

    Shirman, Boris; Rybakov, Michael; Beyth, Michael; Mushkin, Amit; Ginat, Hanan

    2015-03-01

    The Mt Amram igneous complex (AIC) represents northern tip of the Neoproterozoic Arabian Nubian Shield (ANS). For the first time the AIC deep structure was studied using the gravity, aero and ground magnetic, magnetic susceptibility and density measurements and geological data. Analysing all available data at the Amram area we concluded what only monzonite body can be reason for gravity high and coinciding reduced to pole (RTP) maximum. Geological knowledge allowed suggesting its intrusive character and compact body form. Cluster of inverse solutions (Werner deconvolution) localized this body as initial model for forward modelling. Further iterations (23/4-D forward modelling) clarified the monzonite geometry and properties; the modelling allowed also to investigate the non-uniqueness and estimate also the confident intervals for final solution. The research consists three interconnected stages. At the detailed scale, ground magnetic data suggested three magmatic blocks of few hundred meters shifted dextral about 100 m along the Zefunut fault. Estimated accuracy for geometry of the magnetic bodies is a few tens metres. At the middle scale, quantitative gravity and magnetic interpretations provide model of the monzonite body, which is an order of magnitude more than the volume of the felsic rhyolites and granite rocks. Boundary of the whole monzonite body was estimated with accuracy as a hundred meters. As a result we suggest that the parent magma for the AIC is the monzonite, similar to the model suggested for the Timna Igneous Complex 12 km north of the AIC. The model developed can be applied to evaluate the subsurface volumes of the mafic magmatic rocks in adjacent locations. At the regional scale for exposed the Sinai and Arab Saudi Precambrian crystalline shield our approach allows to understand the apparent contradiction between geological predominantly granite composition (low magnetic rocks) and magnetic data. The aeromagnetic data show number strong

  15. A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust.

    PubMed

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Lazor, Peter; Broman, Curt; Belivanova, Veneta; Marone, Federica

    2015-01-01

    We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites-remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust.

  16. Magmatic-hydrothermal molybdenum isotope fractionation and its relevance to the igneous crustal signature

    NASA Astrophysics Data System (ADS)

    Greber, Nicolas D.; Pettke, Thomas; Nägler, Thomas F.

    2014-03-01

    We analysed the Mo isotope composition of a comprehensive series of molybdenite samples from the porphyry-type Questa deposit (NM, USA), as well as one rhyolite and one granite sample, directly associated with the Mo mineralization. The δ98Mo of the molybdenites ranges between - 0.48‰ and + 0.40‰, with a median at - 0.05‰. The median Mo isotope composition increases from early magmatic (- 0.29‰) to hydrothermal (- 0.05‰) breccia mineralization (median bulk breccia = - 0.17‰) to late stockwork veining (+ 0.22‰). Moreover, variations of up to 0.34‰ are found between different molybdenite crystals within an individual hand specimen. The rhyolite sample with 0.12 μg g- 1 Mo has δ98Mo = - 0.57‰ and is lighter than all molybdenites from the Questa deposit, interpreted to represent the igneous leftover after aqueous ore fluid exsolution. We recognize three Mo isotope fractionation processes that occur between about 700 and 350 °C, affecting the Mo isotope composition of magmatic-hydrothermal molybdenites. ∆1Mo: Minerals preferentially incorporate light Mo isotopes during progressive fractional crystallization in subvolcanic magma reservoirs, leaving behind a melt enriched in heavy Mo isotopes. ∆2Mo: Magmatic-hydrothermal fluids preferentially incorporate heavy Mo isotopes upon fluid exsolution. ∆3Mo: Light Mo isotopes get preferentially incorporated in molybdenite during crystallization from an aqueous fluid, leaving behind a hydrothermal fluid that gets heavier with progressive molybdenite crystallization. The sum of all three fractionation processes produces molybdenites that record heavier δ98Mo compositions than their source magmas. This implies that the mean δ98Mo of molybdenites published so far (~ 0.4‰) likely represents a maximum value for the Mo isotope composition of Phanerozoic igneous upper crust.

  17. A Fungal-Prokaryotic Consortium at the Basalt-Zeolite Interface in Subseafloor Igneous Crust

    PubMed Central

    Ivarsson, Magnus; Bengtson, Stefan; Skogby, Henrik; Lazor, Peter; Broman, Curt; Belivanova, Veneta; Marone, Federica

    2015-01-01

    We have after half a century of coordinated scientific drilling gained insight into Earth´s largest microbial habitat, the subseafloor igneous crust, but still lack substantial understanding regarding its abundance, diversity and ecology. Here we describe a fossilized microbial consortium of prokaryotes and fungi at the basalt-zeolite interface of fractured subseafloor basalts from a depth of 240 m below seafloor (mbsf). The microbial consortium and its relationship with the surrounding physical environment are revealed by synchrotron-based X-ray tomographic microscopy (SRXTM), environmental scanning electron microscopy (ESEM), and Raman spectroscopy. The base of the consortium is represented by microstromatolites—remains of bacterial communities that oxidized reduced iron directly from the basalt. The microstromatolites and the surrounding basalt were overlaid by fungal cells and hyphae. The consortium was overgrown by hydrothermally formed zeolites but remained alive and active during this event. After its formation, fungal hyphae bored in the zeolite, producing millimetre-long tunnels through the mineral substrate. The dissolution could either serve to extract metals like Ca, Na and K essential for fungal growth and metabolism, or be a response to environmental stress owing to the mineral overgrowth. Our results show how microbial life may be maintained in a nutrient-poor and extreme environment by close ecological interplay and reveal an effective strategy for nutrient extraction from minerals. The prokaryotic portion of the consortium served as a carbon source for the eukaryotic portion. Such an approach may be a prerequisite for prokaryotic-eukaryotic colonisation of, and persistence in, subseafloor igneous crust. PMID:26488482

  18. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize