Science.gov

Sample records for alkaline igneous province

  1. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  2. Origin and evolution of overlapping calc-alkaline and alkaline magmas: The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia)

    NASA Astrophysics Data System (ADS)

    Litvinovsky, B. A.; Tsygankov, A. A.; Jahn, B. M.; Katzir, Y.; Be'eri-Shlevin, Y.

    2011-08-01

    The Late Palaeozoic voluminous magmatism in Transbaikalia, Russia (a territory of > 600,000 km 2 to the east of Lake Baikal) is highly diverse and complex. Of special interest are (1) the significant overlap in time between magmatic suites commonly ascribed to post-collisional and within-plate settings and (2) the provenance of the coeval, but distinct, granitoid magmas that are closely spaced within a large region. Magmatic activity lasted almost continuously from ~ 330 Ma to ~ 275 Ma and included five igneous suites occupying a total area of ~ 200,000 km 2: (1) the Barguzin suite of high-K calc-alkaline granite (330-310 Ma); (2 and 3) the coeval Chivyrkui suite of low-silica calc-alkaline granitoids and the Zaza suite of high-K calc-alkaline to alkaline granite and quartz syenite which were emplaced between 305 and 285 Ma; and (4 and 5) the partially overlapped in time Lower-Selenga monzonite-syenite suite (285-278 Ma) and the Early-Kunalei suite of alkali-feldspar and peralkaline quartz syenite and granite (281-275 Ma). The overall increase in alkalinity of the granitoids with time reflects the progress from post-collisional to within-plate settings. However, a ~ 20 m.y. long transitional period during which both calc-alkaline and alkaline granitoids were emplaced indicates the coexistence of thickened (batholiths) and thinned (rift) crustal tracts. Sr-Nd-O isotope and elemental geochemical data suggest that the relative contribution of mantle-derived components to the generation of silicic magmas progressively increased with time. The high-K calc-alkaline granite magmas that formed the Angara-Vitim batholith were generated by high degree melting of supracrustal metamorphic rocks [ɛNd(t) = - 5.7 to - 7.7; δ 18O(Qtz) = 12‰], with minor contribution of H 2O and K from the underplated mafic magma (the convective diffusion model). The coeval calc-alkaline Chivyrkui suite and the transitional to alkaline Zaza suite formed as a result of mixing of crustal silicic

  3. Lithium Isotope Systematics of Rift-related Alkaline Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Halama, R.; McDonough, W. F.; Rudnick, R. L.; Trumbull, R.; Klaudius, J.; Keller, J.; Taubald, H.

    2006-05-01

    Intracontinental alkaline igneous rocks from the Proterozoic Gardar Province (Greenland), the Cretaceous Damaraland Province (Namibia), the Tertiary Kaiserstuhl complex (Germany) and from the Holocene volcano Oldoinyo Lengai (Tanzania) were analyzed to characterize Li isotopic compositions of their mantle sources and to determine the processes affecting δ7Li in alkaline igneous rocks. The inferred mantle Li isotope signatures of the primitive alkaline rocks (δ7Li = +1 to +7) are similar to those of present- day MORB, OIB and carbonatites, and appear to be relatively constant in time and space. Gabbros from the Gardar Province define a relatively small field of Li isotope compositions (δ7Li = +4 to +7). Mineral separates (clinopyroxene, plagioclase) mostly overlap with the whole-rock values, which we interpret to reflect the δ7Li of the mantle sources of the gabbros. Mantle-like δ7Li values are also observed for primitive alkaline rocks from the other regions. Li isotope compositions in more differentiated rocks (syenites, phonolites and rhyolites) are highly variable (+11 to -22 per mil) and reflect a diversity of evolutionary processes that may vary from complex to complex. δ7Li values vary independently of Sr and Nd isotope values and indices of differentiation (e.g. MgO content) or weathering (e.g. LOI). Consistently light δ7Li values (+2 to -22) occur in Gardar syenites associated with a carbonatite. These may be explained by weathering and sub-solidus alteration, as indicated by petrographic observations. Alternatively, fluid-assisted diffusion processes, related to a fenitizing fluid from the carbonatite, may have led to extreme Li isotope fractionation. Whole-rock oxygen isotope analyses will be carried out to evaluate interaction with meteoric water, which would be reflected in a decrease in δ18O compared to magmatic values. The heaviest Li isotopic composition (+11 per mil) was obtained for a rhyolite, probably related to the presence of quartz

  4. Large igneous provinces and mass extinctions

    NASA Astrophysics Data System (ADS)

    Wignall, P. B.

    2001-03-01

    Comparing the timing of mass extinctions with the formation age of large igneous provinces reveals a close correspondence in five cases, but previous claims that all such provinces coincide with extinction events are unduly optimistic. The best correlation occurs for four consecutive mid-Phanerozoic examples, namely the end-Guadalupian extinction/Emeishan flood basalts, the end-Permian extinction/Siberian Traps, the end-Triassic extinction/central Atlantic volcanism and the early Toarcian extinction/Karoo Traps. Curiously, the onset of eruptions slightly post-dates the main phase of extinctions in these examples. Of the seven post-Karoo provinces, only the Deccan Traps coincide with a mass extinction, but in this case, the nature of the biotic crisis is best reconciled with the effects of a major bolide impact. Intraoceanic volcanism may also be implicated in a relatively minor end-Cenomanian extinction crisis, although once again the main phase of volcanism occurs after the crisis. The link between large igneous province formation and extinctions remains enigmatic; volume of extrusives and extinction intensity are unrelated and neither is there any apparent relationship with the rapidity of province formation. Violence of eruptions (proportions of pyroclastics) also appears unimportant. Six out of 11 provinces coincide with episodes of global warming and marine anoxia/dysoxia, a relationship that suggests that volcanic CO 2 emissions may have an important effect on global climate. Conversely, there is little, if any, geological evidence for cooling associated with continental flood basalt eruptions suggesting little long-term impact of SO 2 emissions. Large carbon isotope excursions are associated with some extinction events and intervals of flood basalt eruption but these are too great to be accounted for by the release of volcanic CO 2 alone. Thus, voluminous volcanism may in some circumstances trigger calamitous global environmental changes (runaway greenhouses

  5. Magmatic systems of large continental igneous province

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2014-05-01

    Large igneous provinces (LIPs) of the modern type are known from the middle Paleoproterozoic and have a great abundance in the Phanerozoic. The most researches considered their appearance with ascending of the mantle thermochemical superplumes which provided simultaneously eruption of the same type of lavas on the huge territories. Judging on presence among them different subprovinces, formation of concrete magmatic systems were linked with protuberances (secondary plumes) on the superplumes surfaces. We suggest that origin of such plumes was linked with local enrichment of upper part of the superplumes head beneath roofing by fluid components; it led to lowering of the plume material density and initiated ascending of the secondary plumes. As a result, their heads, where partial melting occurred, can reach the level of the upper crust as it follows from absence of lower-crustal rocks among xenoliths in basalts, although mantle xenoliths existed in them. Important feature of LIPs is presence of two major types of mafic lavas: (1) geochemical-enriched alkali Fe-Ti basalts and picrites, and (2) basalts of normal alkalinity (tholeiites) with different contents of TiO2. At that the first type of mafites are usually typical for lower parts of LIPs which initially developed as continental rifts, whereas the second type composed the upper part of the traps' cover. Magmatic systems of the LIPs are subdivided on three levels of different deep: (1) zones of magma generation, (2) areas of transitional magma chambers where large often layered intrusive bodies are formed, and (3) areas on surface where lava eruptions and subvolcanic intrusions occurred. All these levels are linked by feeder dykes. The least known element of the system is area of magma generation, and, especially, composition of melting substratum. Important information about it is contained in aforementioned mantle xenoliths in alkali basalts and basanites. They practically everywhere are represented by two

  6. Northeast Atlantic Igneous Province volcanic margin development

    NASA Astrophysics Data System (ADS)

    Mjelde, R.; Breivik, A. J.; Faleide, J. I.

    2009-04-01

    Early Eocene continental breakup in the NE Atlantic Volcanic Province (NAIP) was associated with voluminous extrusive and intrusive magmatism, and initial seafloor spreading produced anomalously thick oceanic crust. Recent publications based on crustal-scale wide-angle seismic data show that there is a positive correlation between igneous crustal thickness (H) and average P-wave velocity (Vp) on all investigated margins in the NAIP. Vp can be used as a proxy for crustal composition, which can be related to the mode of mantle melting. A positive H-Vp correlation indicates that excessive mantle melting the first few million years after breakup was driven by an initial increased temperature that cools off as seafloor spreading develops, consistent with a mantle plume model. Variations in mantle composition can explain excess magmatism, but will generate a negative H-Vp correlation. Active mantle convection may increase the flux of mantle rocks through the melting zone above the rate of passive corner flow, which can also produce excessive magmatism. This would produce little H-Vp correlation, and place the curve lower than the passive flow melting curve in the diagram. We have compiled earlier published results with our own analyses of published and unpublished data from different groups to look for systematic variations in the mantle melting mode along the NAIP margins. Earlier studies (Holbrook et al., 2002, White et al, 2008) on the southeast Greenland conjugate system, indicate that the thick igneous crust of the southern NAIP (SE Greenland ? Hatton Bank) was dominated by increased mantle temperature only, while magmatism closer to the southern side of and including the Greenland-Iceland-Færøy Ridge (GIFR) was created by combined temperature increase and active mantle convection. Recent publications (Breivik et al., 2008, White et al, 2008) north of the GIFR for the Norway Basin segment, indicate temperature dominated magmatism between the Jan Mayen Fracture

  7. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  8. Magnetostratigraphy of the Etendeka Large Igneous Province, Namibia.

    NASA Astrophysics Data System (ADS)

    Dodd, S. C.; Muxworthy, A. R.; Mac Niocaill, C.

    2014-12-01

    The Paraná - Etendeka large igneous province (≈ 135 Ma) has not been linked to a known mass extinction event, despite large igneous provinces being postulated as a cause. The reason why some large igneous provinces appear the cause of huge fluctuations in the global biosphere, an example being the link between Siberian trap volcanism and the Permo-Triassic boundary, while others seem to have only a minor effect is still debated. Establishing detailed histories of these large igneous provinces is important for understanding why such variations in effect may occur. Why does the volume of the province not reflect the magnitude of the effects seen? During the early Cretaceous, reversals of Earth's magnetic field were more frequent than at other times in Earth's history. Magnetostratigraphy is therefore a tool capable of providing high resolution constraints on the history and duration of the Paraná - Etendeka large igneous province volcanism. Detailed sampling of the Etendeka volcanic stratigraphy, followed by progressive demagnetisation of 893 specimens, yields 70 individual polarities gained from throughout the central volcanic succession. Correlation of the individual sections sampled reveals a minimum of 16 separate polarities are recorded. Subsequent links to the geomagnetic polarity timescale suggest a minimum province duration of > 1 Myrs, with no obvious period of short, high volume volcanism as is often suggested. A protracted duration (>1Myr) may therefore provide the reason why at least the Paraná - Etendeka appears to have no associated extinction event.

  9. Databases related to Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Ernst, Richard; Pisarevsky, Sergei

    2015-04-01

    Large Igneous Provinces (LIPs) represent large volume (>0.1 Mkm3; often above >1 Mkm3), mainly mafic (-ultramafic) magmatic events of intraplate affinity in both continental and oceanic settings, and are typically of short duration (<5 m.y.) or consist of multiple short pulses over a maximum of a few 10s of m.y. Silicic, carbonatite and kimberlite magmatism may be associated. The young LIP record is dominated by continental flood basalts and oceanic plateaus, but Proterozoic LIPs have typically lost their flood basalt component during erosion, thus exposing the plumbing system of mafic (-ultramafic) dykes, sills and layered intrusions. LIPs occur at a rate of about 1 every 20-30 m.y. back through the Proterozoic, and Archean analogues are also recognized. The LIP record is growing as more events are recognized and the size of known LIPs (even those of those of Mesozoic age) is increasing through targeted U-Pb geochronology. We review databases related to this fast moving field. The LIPs Commission (www.largeigneousprovinces.org) of IAVCEI ongoingly highlights new insights and events through the "LIP of the Month" series. A global 1:5M scale global LIPs ArcGIS database is under construction through Industry and government funded projects (e.g. www.supercontinent.org) and will form a framework for additional thematic databases related to LIPs, including geochemistry, geochronology, and paleomagnetism (GPMDB, MAGIC). LIP databases provide useful constraints for global Precambrian paleogeographic reconstructions, a context for understanding some global and regional environmental changes, and a useful framework for resource exploration (mineral and hydrocarbon). One of the most important aspects of this global LIPs ArcGIS database is that it is integrating data on the volcanic component of LIPs (both flood basalts, and associated ultramafic and silicic volcanism) with data on the plumbing system component in order to develop an understanding of LIPs as an integrated

  10. Ocean anoxia and large igneous provinces

    NASA Astrophysics Data System (ADS)

    Ruhl, Micha; Bjerrum, Christian J.; Canfield, Donald E.; Korte, Christoph; Stemmerik, Lars; Frei, Robert

    2013-04-01

    Earth's history is marked by multiple events of ocean anoxia developing along continental margins and potentially into the open ocean realm. These events often coincide with the emplacement of large igneous provinces (LIPs) on continents, major perturbations of global geochemical cycles and marine (mass) extinction. The geographic and temporal extend and the intensity (ferruginous vs. euxinic) of anoxic conditions is often, however, poorly constraint. This complicates understanding of close coupling between Earth's physical, chemical and biological processes. We studied ocean redox change over two major mass extinction events in Earth history, the Permian-Triassic (at ~252 Ma) and Triassic-Jurassic (at ~201.3 Ma) mass extinctions. Both extinction events are marked by a major perturbation of the global exogenic carbon cycle (and associated major negative carbon isotope excursion (CIE)), likely initiated by carbon outgassing of the Siberian Traps and the Central Atlantic Magmatic Province (CAMP), respectively. We compare Permian-Triassic and Triassic-Jurassic ocean redox change along continental margins in different geographic regions (Permian-Triassic: Greenland, Svalbard, Iran; Triassic-Jurassic: UK, Austria) and discuss its role in marine mass extinction. We show strongly enhanced sedimentary redox-sensitive trace element concentrations (e.g. Mo) during both events. However, increased Permian-Triassic values are in all localities distinctly delayed relative to the associated negative CIE. Triassic-Jurassic values are only delayed in the oceanographically restricted western Germanic basin (UK) while increased Mo-values in the north-western Tethys Ocean (Austria) directly match the onset of the associated negative CIE. Speciation of iron [giving (Fe-HR/ Fe-T) and (Fe(Py)/ Fe-HR)] in the Triassic-Jurassic western Germanic basin (UK) however shows close coupling between the onset of the global carbon cycle perturbation and a shift to anoxic and even euxinic conditions

  11. Some Environmental Consequences of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Coffin, M. F.

    2009-12-01

    The formation of large igneous provinces (LIPs)—continental flood basalts, ‘volcanic’ margins, and oceanic plateaus—may impact the atmosphere, oceans, and biosphere by rapidly releasing huge amounts of particulates, magmatic volatiles (CO2, SO2, Cl, F, etc.), and potentially volatiles (CO2, CH4, SO2, etc.) from intruded sediments (e.g., carbonates, organic-rich shales, evaporites). A key factor affecting the magnitude of volatile release is whether eruptions are subaerial or marine; hydrostatic pressure inhibits vesiculation and degassing of relatively soluble volatile components (H2O, S, Cl, F) in deep water submarine eruptions, although low solubility components (CO2, noble gases) are mostly degassed even at abyssal depths. Directly or indirectly, such injections may cause changes in the atmosphere/ocean system that can lead to perturbations of atmosphere/ocean chemistry, circulation, ecology, and biological productivity. These changes can be global in extent, particularly if environmental conditions were at or near a threshold state or tipping point. LIPs may have been responsible for some of the most dramatic and rapid changes in the global environment. For example, between ~145 and ~50 Ma, the global ocean was characterized by chemical and isotopic variations (especially in C and Sr isotope ratios, trace metal concentrations, and biocalcification), relatively high temperatures, high relative sea level, episodic deposition of black shales (oceanic anoxic events), high production of hydrocarbons, mass extinctions of marine organisms, and radiations of marine flora and fauna. Temporal correlations between the intense pulses of igneous activity associated with LIP formation and environmental changes suggest more than pure coincidence. The 1783-84 eruption of Laki on Iceland provides the only historical record of the type of volcanism that constructs transient LIPs. Although Laki produced a basaltic lava flow representing only ~1% of the volume of a typical

  12. Paleomagnetism of large igneous provinces: case-study from West Greenland, North Atlantic igneous province

    NASA Astrophysics Data System (ADS)

    Riisager, Janna; Riisager, Peter; Pedersen, Asger Ken

    2003-09-01

    We present new paleomagnetic and multi-model stereo photogrammetry data from lava sequences in the West Greenland part of the North Atlantic igneous province (NAIP). The joint analyses of paleomagnetic and photogrammetric data yield a well-defined paleomagnetic pole located at Lat=73.6°N, Long=160.5°E ( N=44, α95=6.2°, K=13.1; age ˜61-55 Ma), which is statistically indistinguishable from a pole recently obtained for the Eurasian part of the NAIP on Faroe Islands [Riisager et al., Earth Planet. Sci. Lett. 201 (2002) 261-276]. Combining the two datasets we obtain a joint NAIP paleomagnetic pole in Greenland coordinates: Lat=71.1°N, Long=161.1°E ( N=87, α95=4.3°, K=13.6; age ˜61-54 Ma). The results presented here represent the first study in which photogrammetry profiles were photographed at the exact same locations where paleomagnetic fieldwork was carried out, and a direct flow-to-flow comparison of the two datasets is possible. Photogrammetry is shown to be particularly useful because of (i) highly precise dip/strike measurements and (ii) detailed 'field observations' that can be made in the laboratory. Highly precise determination of the structural attitude of well-exposed Kanisut Mb lava sequences demonstrates that their apparently reliable in-field dip/strike measurements typically are up to ˜6° wrong. Erroneous dip/strike readings are particularly problematic as they offset paleomagnetic poles without affecting their confidence limits. Perhaps more important for large igneous provinces is the recognition of a variable temporal relationship between consecutive lava flows. We demonstrate how correct interpretation of paleosecular variation, facilitated by the detailed photogrammetry analysis, is crucial for the rapidly emplaced Vaigat Formation lavas. Inaccurate tectonic correction, non-averaged paleosecular variation and unrecognized excursional directions may, perhaps, explain why coeval paleomagnetic poles from large igneous provinces are often

  13. Origins of large igneous provinces: Thermal or chemical? (Invited)

    NASA Astrophysics Data System (ADS)

    Korenaga, J.

    2010-12-01

    Large igneous provinces such as continental flood basalts and oceanic plateaus are commonly believed to be caused by massive thermal anomalies in the mantle, or more specifically, mantle plume heads possibly rising from the core-mantle boundary. The existence of such plume heads is more elusive than that of mantle plumes, because there is no currently ongoing formation of continental flood basalt or oceanic plateau, so potential evidence for plume heads must come from the detailed analysis of their fossil traces, i.e., their melting products represented as igneous crust. Compared to petrological and geochemical inference based on surface lavas, seismological studies on large igneous provinces have the advantage of probing the entire crustal section, thereby providing potentially more robust constraints on primary melt composition and the nature of the source mantle. In this talk, I will review the debates over the North Atlantic igneous province, which includes the Iceland hotspot, as well as discuss the prospects of studying oceanic plateaus for providing key information to resolve the origins of large igneous provinces.

  14. Crustal architecture of a continental large igneous province

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Faleide, Jan Inge; Krupnova, Natalia; Sakoulina, Tamara

    2014-05-01

    The northern Barents Sea was strongly affected by the Cretaceous High Arctic Large Igneous Province through abundant mafic intrusions, eruption of flood basalts, and regional uplift. Recently acquired geophysical data in this region provide a unique opportunity to study in detail crustal architecture of large igneous provinces. A giant dike swarm is identified based on magnetic anomalies coherent over a distance of hundreds of kilometers. Coincident ocean bottom seismometer, multichannel streamer, and gravity data indicate that the surface basalts and shallow sills were associated with feeder systems cross-cutting the entire crust. At the same time, the distribution of dikes exhibits more complex pattern than radially symmetric with respect to the presumable magmatic center in the Alpha Ridge region. Thus, the preferred orientation of dikes could be controlled by both paleostress and pre-existing weaknesses (Early-Late Paleozoic faults). The data do not indicate a thick igneous mafic lower crust while the existence of heavy ultramafic cumulates below the Moho has not been resolved yet. In view of these observations different models of magma transport and related paleo-surface topography are discussed.

  15. Large Igneous Provinces, Sulfur Aerosols, and Initiation of Snowball Earth

    NASA Astrophysics Data System (ADS)

    Macdonald, F. A.; Wordsworth, R. D.

    2015-12-01

    The events that led to the initiation of Snowball Earth remain poorly understood. Proposed scenarios include a methane addiction, a biological innovation that led to an increase in organic carbon burial and anaerobic remineralization, or an increase in global weatherability due to a paleogeography with a preponderance of low latitude continents, and the subareal implacement of large igneous provinces (LIPs) at the equator. The Franklin LIP was emplaced between 730 and 710 Ma and covers an area of over 2.25 Mkm2 with lavas, sills, and dikes extending over much of northern Laurentia from Alaska through northern Canada to Greenland and potentially to Siberia. The most precise geochronological constraints on the Franklin LIP overlap with the onset of the Sturtian Snowball Earth glaciation, which began between 717 and 716 Ma and marked the first glaciation in over 1 billion years. The Franklin LIP is the largest preserved Neoproterozoic LIP and one of the largest in Earth History. Additionally, it was emplaced at equatorial latitudes with associated sills that invaded epicontinental sulfur evaporite basins, potentially maximizing environmental effects. Here we explore the hypothesis that the Sturtian Snowball Earth was initiated in part by an increase in planetary albedo from the conversion of volcanic SO2/H2S emissions to tropospheric and stratospheric sulfate aerosols through a combination of geochemical and modeling studies.

  16. Did North Atlantic Igneous Province igneous sills trigger or maintain Paleocene Eocene Thermal Maximum global warming?

    NASA Astrophysics Data System (ADS)

    Fernandes, Karina; Jones, Stephen M.; Schofield, Nick; Clayton, Geoff

    2010-05-01

    Igneous sills of the North Atlantic Igneous Province (NAIP) were intruded into organic-rich sediments, generating methane and carbon dioxide by thermal maturation. These greenhouse gases escaped to the ocean and atmosphere through hydrothermal vents above the sills that have been observed on seismic reflection data and by drilling. It has been suggested that the NAIP sills provided a significant component of the greenhouse gases that forced warming during the Paleocene Eocene Thermal Maximum (PETM). Here we consider whether methane released by NAIP sills could have triggered, as well as maintained, the PETM warming. Warming resulting from the PETM trigger began a few thousand years before the major upheaval in the carbon cycle that was associated with the PETM itself. Recent organic geochemical investigations have suggested that methane was involved in the trigger. Since the lifetime of methane in the atmosphere was approximately one decade during the Paleocene, the triggering methane pulse probably contained on the order of 100 Gt or more of carbon and was probably released in a period of c. 10 years or less. We use recent field observations of fluidized country rocks around sills to speculate on a model for sill emplacement, greenhouse gas generation and escape. The observation of fluidized sediments associated with lobe and finger structures along inward-dipping sections of many sills suggests that these sill rims propagated laterally by fluidizing a restricted volume of country rock, allowing the magma to advance into the fluidized region as a viscous fingering front. At this stage, the fluidized region was not connected to the surface by a conduit, so greenhouse gases could not escape rapidly. Eventually, as the sill rim propagated laterally and upward, a hydrothermal conduit was initiated and propagated rapidly upward to the surface. This model, based on field observations implies that the gases which initially escaped up the hydrothermal conduit were

  17. Roots of Magmatic Systems of Large Continental Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.

    2014-12-01

    It is consensus now that appearance of the large igneous provinces (LIP) is considered with ascending of mantle superplumes. It is evident that beneath LIPs was not exited magma oceans and adiabatic melting occurred in heads of protuberances on their surface (local, or secondary plumes), which can reach relatively shallow levels. The least known element of magmatic system is area of magma generation and meltedsources. Important information about it is contained in the mantle xenoliths in alkali basalts. They are represented by two series: (1) "green": spinel peridotite (maily lherzolite) and minor spinel pyroxenite (websterite), and (2) "black" (veins in the peridotite matrix): wehrlite, Al-Ti-augite and hornblende clinopyroxenite, hornblendite, phlogopitite, etc, which crystallized from fluid-saturated melts or high-density fluid. Very likely, that these fluids, enriched in Fe, Ti, alkalis and incompatible elements, were parts of intergranular material of original plume material and were released due to its decompression; evidently, they provided specific composition of plume-related melts. Both types of xenoliths represent material of plume head and accordingly - the melting substratum. One of problem of plume-related magmatism is coexisting of alkali and tholeiitic basalts, which origin often considered with different PT conditions. However, this situation can be explained another way. Because fluid components, acting jointly or separately, impregnated the peridotite matrix nonuniform, it led to heterogeneous composition of smelted magmas, and primary melts can have different composition even though be forming at similar PT conditions. According to Yoder and Tilley (1962), even small differences in SiO2 content lead to different ways in evolution of magmas due to critical plane of silica undersaturation. As a result, one magmas will develop to Ne enrichment (alkali basalts) and another - to silica direction (tholeiite basalts.

  18. Linking mantle plumes, large igneous provinces and environmental catastrophes.

    PubMed

    Sobolev, Stephan V; Sobolev, Alexander V; Kuzmin, Dmitry V; Krivolutskaya, Nadezhda A; Petrunin, Alexey G; Arndt, Nicholas T; Radko, Viktor A; Vasiliev, Yuri R

    2011-09-15

    Large igneous provinces (LIPs) are known for their rapid production of enormous volumes of magma (up to several million cubic kilometres in less than a million years), for marked thinning of the lithosphere, often ending with a continental break-up, and for their links to global environmental catastrophes. Despite the importance of LIPs, controversy surrounds even the basic idea that they form through melting in the heads of thermal mantle plumes. The Permo-Triassic Siberian Traps--the type example and the largest continental LIP--is located on thick cratonic lithosphere and was synchronous with the largest known mass-extinction event. However, there is no evidence of pre-magmatic uplift or of a large lithospheric stretching, as predicted above a plume head. Moreover, estimates of magmatic CO(2) degassing from the Siberian Traps are considered insufficient to trigger climatic crises, leading to the hypothesis that the release of thermogenic gases from the sediment pile caused the mass extinction. Here we present petrological evidence for a large amount (15 wt%) of dense recycled oceanic crust in the head of the plume and develop a thermomechanical model that predicts no pre-magmatic uplift and requires no lithospheric extension. The model implies extensive plume melting and heterogeneous erosion of the thick cratonic lithosphere over the course of a few hundred thousand years. The model suggests that massive degassing of CO(2) and HCl, mostly from the recycled crust in the plume head, could alone trigger a mass extinction and predicts it happening before the main volcanic phase, in agreement with stratigraphic and geochronological data for the Siberian Traps and other LIPs. PMID:21921914

  19. Variations in the Pb isotope composition in polyformational magmatic rocks of the Ketkap-Yuna igneous province of the Aldan Shield: Evidence for mantle-crust interaction

    NASA Astrophysics Data System (ADS)

    Polin, V. F.; Dril, S. I.; Khanchuk, A. I.; Velivetskaya, T. A.; Vladimirova, T. A.; Il'ina, N. N.

    2016-06-01

    The Pb isotope composition of polyformational Mesozoic igneous rocks of the Ketkap-Yuna igneous province (KYIP) and lower crustal metamorphic rocks of the Batomga granite-greenstone area (the complex of the KYIP basement) of the Aldan Shield was studied for the first time. Based on the data obtained, several types of material sources participating in petrogenetic processes were distinguished. The mantle source identified as PREMA is registered in most of the igneous formations and predominates in mafic alkaline rocks. According to the isotope characteristics, the upper crustal source corresponds to a source of the "Orogen" type by the model of "plumbotectonics" or to the average composition of the continental crust by the Stacey-Kramers model. The lower crust is the third material source; however, the type of lower crustal protolith involved in the igneous process is still not defined, which makes difficult to estimate its role in the petrogenetic processes.

  20. Supercontinents, Plate Tectonics, Large Igneous Provinces and Deep Mantle Heterogeneities

    NASA Astrophysics Data System (ADS)

    Torsvik, T. H.; Steinberger, B.; Burke, K.; Smethurst, M. A.

    2008-12-01

    The formation and break-up of supercontinents is a spectacular demonstration of the Earth's dynamic nature. Pangea, the best-documented supercontinent, formed at the end of the Palaeozoic era (320 Ma) and its dispersal, starting in the Early Jurassic (190 Ma), was preceded by and associated with widespread volcanic activity, much of which produced Large Igneous Provinces (LIPs), but whether any of the heat or material involved in the generation of LIP rocks comes from greater depths has remained controversial. Two antipodal Large Low Shear wave Velocity Provinces with centre of mass somewhat south of the equator (African and Pacific LLSVPs), isolated within the faster parts of the deep mantle dominate all global shear- wave tomography models. We have tested eight global models and two D" models: They all show that deep- plume sourced hotspots and most reconstructed LIPs for the last 300 million years project radially downwards to the core-mantle-boundary near the edges of the LLSVPs showing that the plumes that made those hotspots and LIPS came only from those plume generation zones. This is a robust result because it is observed in multiple reference frames, i.e. fixed/moving hotspot and palaeomagnetic frames, and in the latter case whether the effect of True Polar Wander (TPW) is considered or not. Our observations show that the LLSVPs must have remained essentially stable in their present position for the last 300 million years. LIPs have erupted since the Archean and may all have been derived from the margins of LLSVPs but whether the African and Pacific LLSVPs have remained the same throughout Earth's history is less certain although analogous structures on Mars do indicate long-term stability on that planet. Deep mantle heterogeneities and the geoid have remained very stable for the last 300 million years, and the possibility is therefore open for speculating on links to Pangea assembly. In a numerical model, Zhong et al. (2007, EPSL) argued that Pangea

  1. Mantle Redox Conditions in the North Atlantic Igneous Province

    NASA Astrophysics Data System (ADS)

    Heister, L. E.; Gras, M. A.; Lesher, C. E.

    2004-12-01

    The North Atlantic igneous province (NAIP) has long been viewed as a region of anomalous mantle upwelling related to plume activity, continental rifting, and a heterogeneous mantle source. Prior to continental rifting in the Tertiary, the northern portion of the region was the site of closure of the Iapetus ocean basin. This tectonic event may have contributed to heterogeneities within the upper mantle and altered its oxidation state relative to the ambient mantle. Vanadium has been shown to be a useful indicator of redox conditions due to its multiple valence states (e.g. [1-2]). In mantle minerals, vanadium becomes increasingly incompatible under more oxidizing conditions [3]. Because both scandium and vanadium are moderately incompatible during melting, the Sc/V ratio of primitive basalts can be used to investigate the oxidation state of the mantle [1-3]. We have examined the Sc/V ratios of primitive lavas from the mid-Atlantic ridge (MAR), Iceland, and the East Greenland margin to determine if there are spatial or temporal variations in the oxidation state of the NAIP mantle. The Sc/V ratios for MAR basalts are 0.13-0.20 (GEOROC chemical database); while Icelandic basalts range from 0.10-0.25 with an average of 0.16 (1 σ =0.05). The entire range of Sc/V ratios of the Paleogene East Greenland basalts is 0.07-0.17 with an average of 0.10 (1 σ = 0.05). The Sc/V ratios of Icelandic basalts are similar to MAR basalts, but the East Greenland lavas are distinctly lower than both the MAR and Iceland. The Sc/V ratio also can vary as a function of mean pressure of melting (i.e. spinel versus garnet lherzolite). To test the relative importance of melting systematics, source composition, and oxygen fugacity on the Sc/V systematics for NAIP basalts, we incorporated the oxygen-fugacity-dependent V mineral-melt partitioning data of [3] into the polybaric decompression melting model REEBOX [4]. The best-fit model parameters for the majority of the Iceland and MAR basalts

  2. Voluminous silicic eruptions during late Permian Emeishan igneous province and link to climate cooling

    NASA Astrophysics Data System (ADS)

    Yang, Jianghai; Cawood, Peter A.; Du, Yuansheng

    2015-12-01

    Silicic eruptive units can constitute a substantive component in flood-basalts-dominated large igneous provinces, but usually constitute only a small proportion of the preserved volume due to poor preservation. Thus, their environmental impact can be underestimated or ignored. Establishing the original volume and potential climate-sensitive gas emissions of silicic eruptions is generally lacking for most large igneous provinces. We present a case study for the ˜260 Ma Emeishan province, where silicic volcanic rocks are a very minor component of the preserved rock archive due to extensive erosion during the Late Permian. Modal and geochemical data from Late Permian sandstones derived from the province suggest that silicic volcanic rocks constituted some ˜30% by volume of the total eroded Emeishan volcanic source rocks. This volume corresponds to > 3 ×104 km3 on the basis of two independent estimate methods. Detrital zircon trace element and Hf isotopic data require the silicic source rocks to be formed mainly by fractional crystallization from associated basaltic magmas. Based on experimental and theoretical calculations, these basalt-derived ˜104 km3 silicic eruptions released ˜1017 g sulfur gases into the higher atmosphere and contribute to the contemporaneous climate cooling at the Capitanian-Wuchiapingian transition (˜260 Ma). This study highlights the potentially important impact on climate of silicic eruptions associated with large igneous province volcanism.

  3. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: Age and geological constraints from North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Tappe, S.; Heaman, L.; Knudsen, M. F.

    2013-12-01

    Age, compositional and geological data show the High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan orogeny. New 40Ar-39Ar and U-Pb dating provides emplacement ages of 71-68 Ma for most of the Kap Washington alkaline volcanics of North Greenland, but with activity continuing down to 61 Ma. A thermal resetting age of 49-47 Ma is also identified in 40Ar-39Ar whole-rock data for trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting, interpreted as a result of Eurekan compressional tectonism. The formation of the tholeiitic suite (130-80 Ma) appears to be associated with the opening of the Canada Basin and may have involved mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay. The alkaline and tholeiitic suites of the High Arctic may therefore be unrelated. It is striking that High Arctic volcanism terminates at about the same time (c. 60 Ma) as magmatism in the North Atlantic Large Igneous Province begins. We suggest this is a corollary of a change from extensional to compressional tectonism in the High Arctic. In the period when Greenland moved together with Eurasia (>60 Ma), the separation from North America resulted in rift-related alkaline magmatism in the High Arctic. When Greenland subsequently moved as a separate plate (60-35 Ma), overlapping spreading on both sides pushed it northwards and volcanism in the High Arctic stopped due to compression. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  4. Mid-Paleoproterozoic (Jatulian) large igneous province of the Phanerozoic type, eastern Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Bogina, M. M.; Sharkov, E. V.; Zlobin, V. L.; Chistyakov, A. V.

    2013-12-01

    The Mid-Paleoprotrozoic Jatulian large igneous province (LIP) are located at the eastern Fennoscandian Shield. It is formed by lava plateaus in riftogenic structures, dyke swarms and different intrusions, and developed in range 2.35-2.06 Ga. All volcanics were undergone by greenschist alterations with practically complete replacement of original minerals by albite, actinolite, epidote, and chlorite, however, their primary structures and textures are often survived. Pillow-lavas are rare, which evidence about predominance of subaerial eruptions and it is in agreement with continental conditions of their formation. Jatulian complexes has studied about a hundred years, however, their geochemistry is known poor. So, we present here the new data for the better understanding this province. Jatulian rocks in Karelia are represented by basalts and andesibasalts of normal alkalinity with subordinate alkali basalts. The rocks are characterized by narrow variations of SiO2 (usually up to 53 wt.%); TiO2 content is vary from 0.72 to 3.06 wt.%, and mg# from 30 to 65. Spectrums REE of the basalts are characterized by low to moderate fractionation: (La/YbN= 1.28-5.27) under low fractionation of LREE (La/SmN=0.9-2.15) and HREE (Gd/YbN=1.19-2.55) and slight Eu-anomaly right up to it absence. At that group of high-Ti rocks is characterized by higher REE content. On multicomponet diagrams Jatulian rocks have moderate negative Nb-anomaly, which decreases up to section and sometimes becomes positive under weakly positive or absent Ti-anomaly. Jatulian volcanics on Kola Craton are located in Pechenga structure (Kuetsjarvi and Kolosiok Formation) and in Imandra-Varzuga structure (Umba Fm). Rocks of Kuetsjarvi Fm are characterized by very wide diversity, vary on SiO2 content from alkali basalts via trachyandesites, trachydacites to rhyolites. Such series of rocks very rare in the early Precambrian, which sharply distinguish them from the most Precambrian volcanics on the shield. Majority

  5. Mantle origin of the Emeishan large igneous province from an analysis of residual gravity anomalies

    NASA Astrophysics Data System (ADS)

    Deng, Y.; Zhang, Z.; Mooney, W. D.; Fan, W.; Zhong, Q.; Badal, J.

    2013-12-01

    The Emeishan large igneous province (ELIP) is the only verified large igneous province in China. It covers an area of 250,000 km2 from the eastern margin of the Tibetan Plateau to the western margin of the Yangtze block. Most studies on ELIP are from geochemistry and tectonics, but the deep origin of the ELIP is still unclear. In this study, we investigate the residual gravity anomaly in South China and its relationship to the Emeishan large igneous province with constrains of lithospheric structure from deep seismic sounding profiles, deep seismic reflection surveys, and a variety of broadband seismic observations acquired in South China in the last several decades. Our working scheme consists of removing the respective gravitational effects due to: (1) the sediments, and undulations of the (2) crystalline basement, (3) upper crust; (4) Moho and (5) lithospheric thickness. We have thus obtained the residual gravity anomaly of the ELIP and surrounding region, striking positive residual anomaly with maximum value of 140 mGal is observed at the ELIP region. We use the conjugate gradient method to locate the deep origins of the residual gravity data. As a result, our preferred model consists of a positive cylindrical density anomaly that provides a fit to the residual gravity anomaly observed in ELIP. As the distance increases from the inner zone of the ELIP to the outer zone, the positive residual gravity decreases. Hence, in our model, the density anomaly decreases from about 0.06 g/cm3 beneath the inner zone to about 0.03 g/cm3 beneath the outer zone. The residual gravity and our preferred density anomaly provide new evidence, along with the seismic data and geochemical data, to confirm the domal structure of the Permian mantle plume that gave rise to the Emenshan Large Igneous Province.

  6. Lithospheric mantle evolution monitored by overlapping large igneous provinces: Case study in southern Africa

    NASA Astrophysics Data System (ADS)

    Jourdan, F.; Bertrand, H.; Féraud, G.; Le Gall, B.; Watkeys, M. K.

    2009-02-01

    Most of the studies on the large igneous provinces (LIPs) focus on Phanerozoic times, and in particular, those related to the disruption of Pangea (e.g. CAMP, Karoo, Parana-Etendeka) while Precambrian LIPs (e.g. Ventersdorpf, Fortescue) remain less studied. Although the investigation of Precambrian LIPs is difficult because they are relatively poorly preserved, assessment of their geochemical characteristics in parallel with younger overlapping LIP is fundamental for monitoring the evolution of the mantle composition through time. Recent 40Ar/ 39Ar dating of the Okavango giant dyke swarm (and related sills) in southern Africa showed that ~ 90% of the dykes were emplaced at 179 ± 1 Ma and belong to the Karoo large igneous province whereas ~ 10% of dykes yielded Proterozoic ages (~ 1-1.1 Ga). Here, we provide new major, trace and rare earth elements analyses of the low-Ti Proterozoic Okavango dyke swarm (PODS) that suggest, combined with age data, a cognate origin with the 1.1 Ga Umkondo large igneous province (UIP), southern Africa. The geochemical characteristics of the PODS and UIP basalts are comparable to those of overlapping low-Ti Karoo basalts, and suggest that both LIPs were derived from similar enriched mantle sources. A mantle plume origin for these LIPs is not easily reconciled with the geochemical dataset and the coincidence of two compositionally similar mantle plumes acting 900 Myr apart is unlikely. Instead, we propose that the Umkondo and Karoo large igneous provinces monitored the slight evolution of a shallow enriched lithospheric mantle from Proterozoic to Jurassic.

  7. Correlation of palaeomagnetic directions constrains eruption rate of large igneous provinces

    NASA Astrophysics Data System (ADS)

    Suttie, Neil; Biggin, Andrew J.; Holme, Richard

    2014-02-01

    The rate of eruption of lava flows in large igneous provinces is a highly controversial topic with implications for the processes by which mass extinctions of life occurred throughout the Phanerozoic. It is also an extremely difficult parameter to measure, but may be accessed through the correlation of palaeomagnetic directions recorded in neighbouring lava flows. The next-neighbour correlation can be described by a single additional parameter which can be evaluated by constructing a suitable covariance matrix. It is found to be a useful proxy for the rate of eruption of Cenozoic lavas from the North Atlantic igneous province and has the potential to help constrain the eruptive histories of other large igneous provinces. Significant next-neighbour correlation is revealed even in the absence of grouping of directions, giving a method of detecting changing eruption rates when there are no magnetostratigraphic markers. Significant correlation is found over timescales of tens of thousands of years in volcanic datasets making it doubtful that records of recent secular variation over shorter timescales can be used as a model for palaeosecular variation. By eliminating next-neighbour correlation, it is demonstrated how estimates of palaeosecular variation may be derived, with formal confidence limits, allowing robust comparisons to be made between sites. Using this method we show that the angular dispersion of the field dropped significantly during the 2.5 million year long polarity chron C24r.

  8. Testing Models for the Origin of the Paraná-Etendeka Igneous Province

    NASA Astrophysics Data System (ADS)

    Foulger, G. R.

    2015-12-01

    The Paraná-Etendeka igneous province and associated magmatism, including the Walvis Ridge, the Tristan da Cunha archipelago, and the Rio Grande Rise, has been variously attributed to passive response to intraplate extension or to a deep-mantle plume postulated to currently underlie the island of Tristan da Cunha. The volcanic region is one of only three in the world where a Large Igneous Province is associated with subsequent time-progressive volcanism. Multi-disciplinary methods have been applied to test the various hypotheses for its genesis. These include study of the vertical crustal motions precursory to flood volcanism, the spatial distribution and time-history of volcanism, the synchronous deformation and volcanism in the adjacent African and South American plates, the fabric of the sea floor, the seismic structure of the mantle, and the geochemical composition of the lavas. Models inspired by the huge array of observational data available have been further explored using numerical modeling of mantle convection. In this paper I shall review data and models that bear on the formation of the Paraná-Etendeka igneous province, and discuss ways to interpret and test them.

  9. Magmatic origin of alkaline meta-igneous rocks from Chamberlindalen, SW Svalbard

    NASA Astrophysics Data System (ADS)

    Goluchowska, Karolina; Barker, Abigail; Manecki, Maciej; Czerny, Jerzy; Majka, Jaroslaw

    2014-05-01

    This study focuses on the late Neoproterozoic meta-igneous rocks of SW Svalbard to determine their magmatic evolution, conditions of magma storage and origin. The samples from the Chamberlindalen area form an alkaline igneous suite, from which thin dikes and intrusive bodies have been collected. The rocks in question intrude Late Neoproterozoic metasediments and are surrounded by occurrences of Neoproterozoic metabasalts in contrast to highly alkaline the Chamberlindalen intrusions. The rocks from Chamberlindalen are divided into two groups based on their geochemistry, mineralogy and field relationships. The dikes, classify as minettes, belonging to the lamprophyre group and contain mainly euhedral, elongated phlogopite and additionally clinopyroxene and feldspar. The rest of the samples are highly magnesian and are classified as alkali gabbro. The alkali gabbros contain primary magmatic minerals such as clinopyroxene, calcic amphibole and mica in different proportions. The alkali gabbros are enriched in LREE and HFSE and depleted in P, K and HREE. The minette dikes are always more enriched in HFSE and REE in comparison to the alkali gabbros. The mineral chemistry of the alkali gabbros reveals that pyroxenes are represented by diopside with Wo46-51 En35-46 Fs6-14, and calcic amphibole by kaersutite. The Mg# number for diopside is from 72 - 88, whereas for kaersutite Mg# number is 51 - 74. Thermobarometry calculations for diopside and kaersutite have been performed. In the alkali gabbros from Chamberlindalen, diopside crystallized between 0.7 - 8 kbar and 1152 - 1233°C. Results for kaersutite reveal that they crystallized between 5 - 17 kbar and 1043 - 1215°C. For diopside the main crystallization was between 10 and 38 km, whereas for kaersutite, the main crystallization was between 30 and 50 km. Clinopyroxene and minor kaersutite also show a zone of crystallization at 2 to 10 km. This reflects a main crystallization zone at 10 - 50 km throughout the continental

  10. A reflection seismic study of the Alnö alkaline and carbonatite igneous complex

    NASA Astrophysics Data System (ADS)

    Andersson, M.; Malehmir, A.; Dehghannejad, M.; Troll, V. R.; Ask, M.

    2012-04-01

    The Alnö igneous complex in central Sweden is one of the largest (about 5 km by 5 km) of the few well-known alkaline and carbonatite intrusions in the world. It contains a wide variety of lithologies, including alkaline silicate igneous rocks (Ijolite, Nephelinesyenite, and Pyroxenite) and a range of carbonatite dykes with a variable composition (Kresten, 1990). Alnö island is the type locality for Alnöite, a melilite-bearing basic rock that occurs as dykes and contains a complex mineral assemblage with phenocrysts from the deep crust and the upper mantle. Geochronological measurements suggest an age of 553-590 Ma for the main intrusion. The depth extent, dip and dip direction of the carbonatite rocks have been inferred from surface geological mapping, but lack depth-constraints. Our research aims to improve understanding of the intrusion mechanism(s) and the geometry of the Alnö intrusion and through that of alkaline and carbonatite intrusions in general. We have acquired three high-resolution reflection seismic profiles over the main intrusion during winter 2011. Densely sampled surface gravity and magnetic data were also collected along the seismic profiles and on the sea-ice with gravity measurements indicating a strong positive Bouguer anomaly of about 20 mGal over the main intrusion. Petrophysical measurements including compressional- and shear-wave velocities, anisotropy of magnetic susceptibility (AMS), and density data were gathered from oriented samples of representative lithologies. For the seismic data, nearly 400 active channels were employed with a geophone spacing of 10 meters. A mechanical hammer was used for generating the seismic waves and was activated at most geophone positions. Since the acquisition took part in winter, we also extended the profiles out on the sea-ice close to the shore. The geophones were planted in the frozen ground/ice and covered by snow resulting in improved signal-to-noise ratios. The main profile is about 10 km long

  11. Fixed Hot-spots Gone With Wind? Clues From Paleomagnetic Investigations of Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Zhao, X.; Ernesto, M.

    2013-05-01

    Paleomagnetic studies of Ocean Drilling Program (ODP) 197 on samples from the Emperor-Hawaiian seamount chain suggested that these rocks formed much farther north than the hotspot currently beneath Hawaii. These findings indicate that the hotspot, once thought to be fixed beneath the Earth's crust, actually jumped southward rapidly. Here we report paleomagnetic evidence that is consistence with these findings and suggests that rapid hotspots motion (also southward jumps) occurred while the massive Ontong Java (OJP), Kerguelen Plateau (KP), and Parana Magmatic Province (PMP) large igneous provinces formed. The paleomagnetic paleolatitude for the OJP is ~20 farther north than those predicted by the Louisville hotspot model. The difference between the paleomagnetic and hotspot calculated paleolatitudes cannot be explained by true polar wander estimates derived from other lithospheric plates. Our results are therefore consistent with and extend the Emperor-Hawaiian hotspot features in the northern Pacific Ocean that suggest Late Cretaceous to Eocene motion of Pacific hotspots. Compared to the latitude of the Kerguelen hotspot, the paleolatitudes of the central and northern Kerguelen Plateau obtained by ODP Leg 183 are further north. This difference also indicates a southward movement of the Kerguelen hotspot since the Cretaceous relative to the spin axis of the Earth. Numerical modeling of plume conduit motion in a large-scale mantle flow also predicts southward motion of the Kerguelen hotspot, which is consistent with paleomagnetic results. Likewise, paleomagnetic results from PMP reveal significant southward movement of the Tristan da Cunha hotspot in the Cretaceous. Elucidating how large igneous province formation and mantle dynamics are related and whether hotspots moved at comparable rates during other times are challenges for future research.

  12. Alkaline igneous rocks of Magnet Cove, Arkansas: Mineralogy and geochemistry of syenites

    USGS Publications Warehouse

    Flohr, M.J.K.; Ross, M.

    1990-01-01

    Syenites from the Magnet Cove alkaline igneous complex form a diverse mineralogical and geochemical suite. Compositional zoning in primary and late-stage minerals indicates complex, multi-stage crystallization and replacement histories. Residual magmatic fluids, rich in F, Cl, CO2 and H2O, reacted with primary minerals to form complex intergrowths of minerals such as rinkite, fluorite, V-bearing magnetite, F-bearing garnet and aegirine. Abundant sodalite and natrolite formed in pegmatitic segregations within nepheline syenite where Cl- and Na-rich fluids were trapped. During autometasomatism compatible elements such as Mn, Ti, V and Zr were redistributed on a local scale and concentrated in late-stage minerals. Early crystallization of apatite and perovskite controlled the compatible behavior of P and Ti, respectively. The formation of melanite garnet also affected the behaviour of Ti, as well as Zr, Hf and the heavy rare-earth elements. Pseudoleucite syenite and garnet-nepheline syenite differentiated along separate trends, but the two groups are related to the same parental magma by early fractionation of leucite, the presumed precursor of intergrowths of K-feldspar and nepheline. The Diamond Jo nepheline syenite group defines a different differentiation trend. Sphene-nepheline syenite, alkali syenite and several miscellaneous nepheline syenites do not consistently plot with the other syenite groups or each other on element and oxide variation diagrams, indicating that they were derived from still other parental syenite magmas. Mineral assemblages indicate that relatively high f{hook};O2, at or above the fayalite-magnetite-quartz buffer, prevailed throughout the crystallization history of the syenites. ?? 1990.

  13. Potential temperature, upwelling rate and eclogite in the formation of the North Atlantic large igneous province

    NASA Astrophysics Data System (ADS)

    Brown, E. L.; Lesher, C. E.

    2010-12-01

    The volumes and compositions of basalts generated by adiabatic decompression melting of the Earth’s mantle depend on mantle potential temperature (T_P), upwelling rate and the fertility of the mantle source. The relative importance of these factors in generating the high productivity magmatism of the Paleogene - Recent North Atlantic large igneous province (NAIP) remains controversial. Each has been proposed as a primary factor in the region. To assess the significance of these mechanisms in NAIP magmatism, we apply our forward melting model, REEBOX PRO, which simulates the melting of a heterogeneous source comprised of peridotite and eclogite lithologies. The model accounts for the thermodynamics of adiabatic decompression melting of a heterogeneous source using constraints from laboratory melting experiments. Input values of T_P and eclogite abundance are used to calculate the buoyancy of the mantle source and maximum upwelling rates. Source buoyancy constrains the maximum amount of eclogite in the mantle source that can ascend beneath the rift axis. All melts generated within the melting regime are pooled to form magmatic crust according to the residual column method. Using the model, variations in magmatic crustal thickness (from geophysics) as a function of eclogite content (from geochemistry) can be related to T_P and upwelling rate. Models with no thermal anomaly, that call on either enhanced upwelling rates due to plate separation (edge - driven convection) or the melting of abundant (> 30%) eclogite at “ambient” T_P (1325 °C), cannot generate the observed igneous crustal thicknesses around the province. Rather, elevated mantle T_P (minimum thermal anomaly ~ 85 - 195 °C) and associated buoyancy - driven upwelling are needed to explain the volume of igneous crust in the province. Involvement of eclogite, while necessary to explain the compositions of many NAIP lavas, does not significantly enhance melt production. These factors, coupled with the long

  14. Paleozoic large igneous provinces of Northern Eurasia: Correlation with mass extinction events

    NASA Astrophysics Data System (ADS)

    Kravchinsky, Vadim A.

    2012-04-01

    This paper assesses data from recently described major Paleozoic large igneous provinces (LIPs), mostly in Northern Eurasia. The 10 LIPs reviewed form a unimodal distribution in terms of volume. Eight LIPs have an initial modal volume greater than 0.1 × 106 km3. The rift associated basalts of 2 LIPs from the end of the Late Cambrian Period and the end of the Late Ordovician Period do not occupy a large volume. Some of the provinces were discovered or rediscovered relatively recently and dating is still approximate, but most provinces fit a simple model in which volcanism persisted on the order of 10-20 Myr, often resulting in continental break-up. Correlation between LIP ages and the ages of geological events in the Paleozoic Era that reflect mass extinctions and oceanic anoxia agrees with correlations suggested by Courtillot (1994) and Courtillot and Renne (2003) for the Cenozoic and Mesozoic eras, considering that the absolute dating of some Paleozoic LIPs needs to be strengthened in the future.

  15. Paleogene time scale miscalibration: Evidence from the dating of the North Atlantic igneous province

    NASA Astrophysics Data System (ADS)

    Jolley, David W.; Clarke, Benjamin; Kelley, Simon

    2002-01-01

    Igneous activity in the North Atlantic igneous province began with the arrival of the proto-Iceland plume beneath the lithosphere in early Cenozoic time. Sediments between and equivalent to the oldest lavas contain an influx of a diagnostic pollen flora, an influx of the dinocyst Apectodinium, a benthic foraminiferal extinction, nannofossil zone NP9, and a carbon isotope excursion associated with the late Paleocene thermal maximum (LPTM). Lavas immediately overlying the LPTM strata (54.98 Ma on the current time scale), yield U-Pb and Ar-Ar isotopic dates between 57.5 and 60.54 Ma, highlighting a dating discrepancy of up to 5 m.y. Recognition of this disparity, as well as our biostratigraphical correlation, places the LPTM within the early phase of widespread northeast Atlantic margin basaltic volcanism. A later volcanic phase, equivalent to the seaward-dipping reflector series, terminates at 54 Ma. The onset of 60 Ma basaltic volcanism can be linked to ocean water mass perturbations, and the release of ocean-floor methane hydrates thought responsible for the LPTM.

  16. Reassembling the Ontong Java-Manihiki-Hikurangi large igneous province: Insights and challenges

    NASA Astrophysics Data System (ADS)

    Chandler, M. T.; Wessel, P.; Taylor, B.; Sager, W. W.

    2012-12-01

    The tectonic history of ~30% of the Pacific plate south of Equator which formed during the Cretaceous Normal Supercron is difficult to establish due to its lack of a lineated magnetic anomaly pattern. This region, including the Ontong Java, Manihiki, and Hikurangi large igneous provinces, as well as the interlying Ellice Basin and Osbourn Trough, lacks active seafloor spreading centers and has thus been largely neglected by seagoing research scientists. Nonetheless, the CNS South Pacific may prove to be important for understanding Pacific history. Ontong Java's mean basement paleolatitude measurement differs from absolute plate model (APM) reconstructions for the plateau by ~8--19 degrees (Chandler et al. (2012)), indicating that either current APM models are erroneous, substantial plume drift or true polar wander occurred, or that Ontong Java experienced unrecognized motion early in its history. In support of the latter are recent findings that little to no Louisville plume drift occurred after ~70 Ma (Gee et al. (2011)), that true polar wander estimates for the ~125 Ma Ontong Java vicinity are negligible (Steinberger and Torsvik (2008)), and our recent observation of a 2:1 bias between Ontong Java's paleolatitude and latitude differences (Chandler and Wessel (2011), Chandler et al. (In prep)). These differences, computed among ODP Sites 807 and 1183 - 1187, suggest significant clockwise rotation of ~40 degrees since Ontong Java's formation at ~125 Ma. Although this rotation does not resolve the paleolatitude discrepancy it does suggest that Ontong Java's paleolatitudes may not be suitable for constraining Pacific APM. Seafloor formed at the Osbourn Trough and in the Ellice Basin make up much of the CNS South Pacific. These regions exhibit fossil spreading centers believed responsible for the breakup of Earth's largest known igneous province, the Ontong Java-Manihiki-Hikurangi super-plateau (e.g., Taylor (2006), Chandler et al. (2012)). Understanding this little

  17. Principal oil and gas plays in the Appalachian Basin (Province 131) (Chapter I). Middle eocene intrusive igneous rocks of the central Appalachian Valley and Ridge Province: Setting, chemistry, and implications for crustal structure (Chapter J). Bulletin

    SciTech Connect

    de Witt, W.; Southworth, C.S.; Gray, K.J.; Sutter, J.F.

    1993-12-31

    ;Contents: Principal Oil and Gas Plays in the Appalachian Basin (Province 131); and Middle Eocene Intrusive Igneous Rocks of the Central Appalachian Valley and Ridge Province - Setting, Chemistry, and Implications for Crustal Structure.

  18. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle

    NASA Astrophysics Data System (ADS)

    Torsvik, Trond H.; Smethurst, Mark A.; Burke, Kevin; Steinberger, Bernhard

    2006-12-01

    There is a clear correlation between downward projected large igneous province (LIP) eruption sites of the past 200 Myr and the margins of the large low-velocity provinces (LLVPs) at the base of the mantle. We established this correlation by using palaeomagnetic as well as fixed and moving hotspot reference frames. Our finding indicates that the majority of the LIPs have been generated by plumes that rose from the D'' zone at the edges of the LLVPs. Most LIP eruption sites project radially downwards to the core-mantle boundary (CMB) within +/-10° of the 1 per cent slow shear wave velocity contour in the SMEAN tomographic model. Steep shear wave velocity gradients have been mapped near the CMB along much of the lengths of the LLVP margins close to that contour which marks a faster/slower boundary (FSB) within the D'' zone. The observation that eruption sites of LIPs as old as 200 Myr can be linked to this prominent present day seismic structure shows that the FSBs of the two LLVPs have occupied their current positions for at least as long and that the process that leads to the generation of deep-seated plumes has been localized on the FSBs at the margins of the African and Pacific LLVPs for the same interval. The persistence of the LLVPs over 200 Myr is consistent with independent evidence that they are compositionally distinct and are not just simply hotter than the material making up the rest of the D'' zone.

  19. The Chon Aike province of Patagonia and related rocks in West Antarctica: A silicic large igneous province

    NASA Astrophysics Data System (ADS)

    Pankhurst, R. J.; Leat, P. T.; Sruoga, P.; Rapela, C. W.; Márquez, M.; Storey, B. C.; Riley, T. R.

    1998-04-01

    The field occurrence, age, classification and geochemistry of the Mesozoic volcanic rocks of Patagonia and West Antarctica are reviewed, using published and new information. Dominated by rhyolitic ignimbrites, which form a bimodal association with minor mafic and intermediate lavas, these constitute one of the largest silicic igneous provinces known, equivalent in size to many mafic LIPs. Diachronism is recognized between the Early-Middle Jurassic volcanism of eastern Patagonia (Marifil and Chon Aike formations) and the Middle Jurassic-earliest Cretaceous volcanism of the Andean Cordillera (El Quemado, Ibañez and Tobı´fera formations). This is accompanied by a change in geochemical characteristics, from relatively high-Zr and -Nb types in the east to subalkaline arc-related rocks in the west, although the predominance of rhyolites remains a constant factor. All of the associated mafic rocks are well fractionated compared to direct mantle derivatives. Petrogenetic models favour partial melting of immature lower crust as a result of the intrusion of basaltic magmas, possibly with some hybridisation of the liquids and subsequent fractionation by crystal settling or solidification and remelting. The formation of large amounts of intracrustal silicic melt acted as a density barrier against the further rise of mafic magmas, which are thus rare in the province.

  20. Correlating Large Igneous Provinces with Lower Mantle Seismic Structure - Where Is the Plume Generation Zone?

    NASA Astrophysics Data System (ADS)

    Austermann, J.; Kaye, B. T.; Mitrovica, J. X.; Huybers, P. J.

    2014-12-01

    Deep mantle seismic structure is dominated by two large, low shear wave velocity provinces (LLSVPs) below Africa and the Pacific. While different tomography models have come to a consensus over the general geometry of these provinces, the degree of thermal versus chemical heterogeneity that defines them is contentious. The location of plumes that rise from these large structures may provide insight into this question. Large Igneous Provinces (LIPs) are thought to be the surface expression of plumes that formed in the deep mantle and subsequently rose through the mantle and erupted at the surface. When restored to their original location of eruption, these LIPs appear to lie approximately above the margins of LLSVPs. This spatial correlation has been used to argue that plumes are preferentially generated at margins of LLSVPs, a notion that would tend to favor a significant chemical gradient at this margin. We assessed the robustness of this correlation by performing a series of Monte Carlo-based statistical tests (Austermann et al., Geophys. J. Int., 2014). These tests confirm that the reconstructed locations of LIPs are spatially correlated with margins of LLSVPs, but they also show that LIPs are correlated with the full areal extent of LLSVPs (parameterized as regions of slower-than-average shear wave velocity). These two correlations cannot be statistically distinguished, which means the areal extent of LLSVPs is an equally likely zone for plume generation. Therefore, based on current tomography models and reconstructed locations of LIPs, we cannot distinguish whether LIPs originated preferentially at the margins of LLSVPs or whether this correlation is merely an outcome of their origin across the full areal extent of these large scale, deep mantle structures. We will discuss the implications of our findings on the growing debate over the relative contributions of thermal and chemical effects on the net buoyancy of the LLSVPs, a factor that ultimately controls

  1. Application of spatially weighted Technology for mapping intermediate and felsic igneous rocks in Fujian Province, China

    NASA Astrophysics Data System (ADS)

    Zhang, Daojun

    2016-04-01

    Magmatic activity is of great significance to mineralization not only for heat and fluid it provides, but also for parts of material source it brings. Due to the cover of soil and vegetation and its spatial nonuniformity detected singals from the ground's surface may be weak and of spatial variability, and this brings serious challenges to mineral exploration in these areas. Two models based on spatially weighted technology, i.e., local singularity analysis (LSA) and spatially weighted logistic regression (SWLR) are applied in this study to deal with this challenge. Coverage cannot block the migration of geochemical elements, it is possible that the geochemical features of soil above concealed rocks can be different from surrounding environment, although this kind of differences are weak; coverage may also weaken the surface expression of geophysical fields. LSA is sensitive to weak changes in density or energy, which makes it effective to map the distribution of concealed igneous rock based on geochemical and geophysical properties. Data integration can produce better classification results than any single data analysis, but spatial variability of spatial variables caused by non-stationary coverage can greatly affect the results since sometimes it is hard to establish a global model. In this paper, SWLR is used to integrate all spatial layers extracted from both geochemical and geophysical data, and the iron polymetallic metallogenic belt in sours-west of Fujian Province is used as s study case. It is found that LSA technique effectively extracts different sources of geologic anomalies; and the spatial distribution of intermediate and felsic igneous rocks delineated by SWLR shows higher accuracy compared with the result obtained via global model.

  2. Evidence of prolonged felsic magmatism within the Karoo large igneous province

    NASA Astrophysics Data System (ADS)

    Kurhila, Matti; Romu, Ilona; Mänttäri, Irmeli; Andersen, Tom; Luttinen, Arto

    2015-04-01

    The Karoo large igneous province (LIP) extends from southern Africa to East Antarctica, and marks the onset of rifting of these two continents. The main stage of volcanic activity occurred ~182180 Ma ago, and was mostly mafic in composition. We report new thermal ionization (TIMS) and secondary ion (SIMS) mass spectrometric U-Pb ages on zircon from felsic lavas in Lebombo monocline, southern Mozambique and from granitoid intrusions in Vestfjella, Dronning Maud Land, Antarctica. Utpostane granite in southern Vestfjella yields a TIMS age of 180.7±1.5 Ma, complying with the main stage of magmatism in the Karoo LIP. Three rhyolitic beds intercalating mafic volcanic layers of the Lebombo monocline give SIMS ages of 182±3 Ma, 178±3 Ma, and 172±2 Ma, respectively. The zircon in the oldest of these can be divided in two groups: (a) internally homogeneous, low U and Pb zircon and (b) oscillatorily zoned, relatively high U and Pb zircon. The ages of these groups are ~179 Ma and ~184 Ma, respectively, but they overlap within error limits, and thus a combined age for this sample is preferred. Finally, an alkali feldspar granite xenolith from a lamproite dike in Vestfjella has a SIMS age of 165±1 Ma. Lu-Hf isotopes were analyzed from zircons in the 172 Ma rhyolite sample. They show fairly homogeneous Hf isotope composition, with initial ɛHf values between +4 and +10. The corresponding crustal residence ages for the zircons vary between ~300 and ~500 Ma, implying source recycling. In light of the new data it is thus evident that, while most of the Karoo LIP may have emplaced within a short time frame, igneous activity continued for at least ~15 Ma.

  3. Evidence for alkaline igneous activity and associated metasomatism in the Reelfoot rift, south-central Midcontinent, U. S. A

    SciTech Connect

    Goldhaber, M.B.; Diehl, S.F.; Sutley, S.J. ); Flohr, M.J.K. )

    1993-03-01

    Alkaline igneous magmatism is commonly associated with intracontinental rifts such as the Reelfoot rift (RR). Direct evidence for alkaline magmatism in the area of the RR occurs as lamprophyre and syenite encountered in deep wells. The authors' new studies of lamprophyres and sedimentary rocks from wells in the region provide additional examples of alkaline magmatism and emphasize the effects of related metasomatism. Sedimentary rocks in the Dow Chemical No. 1 Garrigan well, which is not known to contain lamprophyre dikes, probably also were metasomatically altered, as they contain authigenic fluorapatite, Ce-phosphates, and other REE-rich minerals. Enrichments of incompatible and large ion lithophile elements commonly associated with alkaline magmatism occur in the New Madrid test well, near the crest of the Pascola Arch. The carbonate-free fraction of Paleozoic rocks in this well is highly enriched in Nb (500 ppm), Ba (> 5,000 ppm), La (500 ppm), Th (1,000 ppm), and F (2,400 ppm). Abundant inclusion-rich potassium-feldspar cement in a nearby well may also be the result of alkaline metasomatism. Fluorite and elevated F concentrations are found in several wells in the RR, and contrast with stratigraphically correlative platform carbonates of the Ozark uplift, which lack F enrichment. Well and spring water samples above the RR are enriched in fluorine (as much as 5,000 ppb) compared to samples away from the rift which typically have concentrations two orders of magnitude smaller. The data and observations are consistent with relatively widespread alkaline metasomatism, which was associated with the intrusion of alkaline magmas in the RR.

  4. Record of the Pacific Large Low Shear Velocity Province Upwellings Preserved in the Cretaceous Large Igneous Provinces

    NASA Astrophysics Data System (ADS)

    Madrigal, P.; Gazel, E.; Flores, K. E.; Bizimis, M.; Jicha, B. R.

    2015-12-01

    As the surface expression of deep mantle dynamics, Large Igneous Provinces (LIPs) are associated with the edges of large low shear velocity provinces (LLSVP) rooted at the core-mantle boundary. Instabilities in the LLSVP can cause periodic upwellings of material in the form of mantle plumes, which impact the lithosphere forming LIPs. However, the time frames of these massive lava outpourings are still uncertain. While continental LIPs are more readily accessible, oceanic LIPs have only been studied through drilling and sampling of fragments accreted to continental margins or island arcs, hence, they are relatively less understood. The impact of oceanic LIPs on oceanic biota is conspicuously recorded in global occurrences of black shale deposits that evidence episodes of anoxia and mass extinctions shortly after the formation of LIPs that ultimately can affect life on the entire planet. Our new geochemical and geochronological data of accreted Pacific LIPs found in the coasts of Nicoya Peninsula in Costa Rica record three LIP pulses possibly reflecting upwelling periods of the LLSVP at 140, 120 and 90 Ma. In order to test different models of origin of these LIPS, we created a complete reconstruction of the Pacific Plate configuration from the Mid-Jurassic to Upper-Cretaceous to show the existing correlation between upwelling pulses at edges of the Pacific LLSVP, oceanic anoxic events and the age from Pacific LIPs. We propose that since the formation of the Pacific plate at circa 175-180 Ma, a series of upwellings that interacted with mid-ocean ridge systems separated by 10-20 Ma have affected the planet periodically forming oceanic LIPs that still can be found today on the Pacific seafloor and accreted along the plate margins.

  5. The High Arctic Large Igneous Province Mantle Plume caused uplift of Arctic Canada

    NASA Astrophysics Data System (ADS)

    Galloway, Jennifer; Ernst, Richard; Hadlari, Thomas

    2016-04-01

    The Sverdrup Basin is an east-west-trending extensional sedimentary basin underlying the northern Canadian Arctic Archipelago. The tectonic history of the basin began with Carboniferous-Early Permian rifting followed by thermal subsidence with minor tectonism. Tectonic activity rejuvenated in the Hauterivian-Aptian by renewed rifting and extension. Strata were deformed by diapiric structures that developed during episodic flow of Carboniferous evaporites during the Mesozoic and the basin contains igneous components associated with the High Arctic Large Igneous Province (HALIP). HALIP was a widespread event emplaced in multiple pulses spanning ca. 180 to 80 Ma, with igneous rocks on Svalbard, Franz Josef Island, New Siberian Islands, and also in the Sverdrup Basin on Ellef Ringnes, Axel Heiberg, and Ellesmere islands. Broadly contemporaneous igneous activity across this broad Arctic region along with a reconstructed giant radiating dyke swarm suggests that HALIP is a manifestation of large mantle plume activity probably centred near the Alpha Ridge. Significant surface uplift associated with the rise of a mantle plume is predicted to start ~10-20 my prior to the generation of flood basalt magmatism and to vary in shape and size subsequently throughout the LIP event (1,2,3) Initial uplift is due to dynamical support associated with the top of the ascending plume reaching a depth of about 1000 km, and with continued ascent the uplift topography broadens. Additional effects (erosion of the ductile lithosphere and thermal expansion caused by longer-term heating of the mechanical lithosphere) also affect the shape of the uplift. Topographic uplift can be between 1 to 4 km depending on various factors and may be followed by subsidence as the plume head decays or become permanent due to magmatic underplating. In the High Arctic, field and geochronological data from HALIP relevant to the timing of uplift, deformation, and volcanism are few. Here we present new evidence

  6. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, M. A.; Ridley, V. A.

    2010-12-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as “underplating,” are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  7. Deep Crustal Structure beneath Large Igneous Provinces and the Petrologic Evolution of Flood Basalts

    NASA Astrophysics Data System (ADS)

    Richards, Mark; Ridley, Victoria

    2010-05-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ~6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ~5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp~7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hotspots such as Hawaii, the Marqueses, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ~6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ~15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby better

  8. Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts

    NASA Astrophysics Data System (ADS)

    Ridley, Victoria A.; Richards, Mark A.

    2010-09-01

    We present a review of seismological constraints on deep crustal structures underlying large igneous provinces (LIPs), largely from wide-angle seismic refraction surveys. The main purpose of this review is to ascertain whether this seismic evidence is consistent with, or contrary to, petrological models for the genesis of flood basalt lavas. Where high-quality data are available beneath continental flood basalt (CFB) provinces (Emeishan, Columbia River, Deccan, Siberia), high-velocity structures (Vp ˜ 6.9-7.5 km/sec) are typically found immediately overlying the Moho in layers of order ˜5-15 km thick. Oceanic plateau (OP) LIPs exhibit similar layers, with a conspicuous layer of very high crustal velocity (Vp ˜ 7.7 km/sec) beneath the enormous Ontong-Java plateau. These structures are similar to inferred ultramafic underplating structures seen beneath active hot spots such as Hawaii, the Marquesas, and La Reunion. Petrogenetic models for flood basalt volcanism based on hot plume melting beneath mature lithosphere suggest that these deep seismic structures may consist in large part of cumulate bodies of olivine and clinopyroxene which result from ponding and deep-crustal fractionation of ultramafic primary melts. Such fractionation is necessary to produce basalts with typical MgO contents of ˜6-8%, as observed for the vast bulk of observed flood basalts, from primary melts with MgO contents of order ˜15-18% (or greater) such as result from hot, deep melting beneath the lithosphere. The volumes of cumulate bodies and ultramafic intrusions in the lowermost crust, often described in the literature as "underplating," are comparable to those of the overlying basaltic formations, also consistent with petrological models. Further definition of the deep seismic structure beneath such prominent LIPs as the Ontong-Java Plateau could place better constraints on flood basalt petrogenesis by determining the relative volumes of ultramafic bodies and basaltic lavas, thereby

  9. Carbonatite diversity in the Central Andes: the Ayopaya alkaline province, Bolivia

    NASA Astrophysics Data System (ADS)

    Schultz, Frank; Lehmann, Bernd; Tawackoli, Sohrab; Rössling, Reinhard; Belyatsky, Boris; Dulski, Peter

    2004-12-01

    The Ayopaya province in the eastern Andes of Bolivia, 100 km NW of Cochabamba, hosts a Cretaceous alkaline rock series within a Palaeozoic sedimentary sequence. The alkaline rock association comprises nepheline-syenitic/foyaitic to ijolitic intrusions, carbonatite, kimberlite, melilititic, nephelinitic to basanitic dykes and diatremes, and a variety of alkaline dykes. The carbonatites display a wide petrographic and geochemical spectrum. The Cerro Sapo area hosts a small calciocarbonatite intrusion and a multitude of ferrocarbonatitic dykes and lenses in association with a nepheline-syenitic stock. The stock is crosscut by a spectacular REE-Sr-Th-rich sodalite-ankerite-baryte dyke system. The nearby Chiaracke complex represents a magnesiocarbonatite intrusion with no evidence for a relationship to igneous silicate rocks. The magnesiocarbonatite (Σ REE up to 1.3 wt%) shows strong HREE depletion, i.e. unusually high La/Yb ratios (520 1,500). Calciocarbonatites (Σ REE up to 0.5 wt%) have a flatter REE distribution pattern (La/Yb 95 160) and higher Nb and Zr contents. The sodalite-ankerite-baryte dyke system shows geochemical enrichment features, particularly in Na, Ba, Cl, Sr, REE, which are similar to the unusual natrocarbonatitic lavas of the recent volcano of Oldoinyo Lengai, Tanzania. The Cerro Sapo complex may be regarded as an intrusive equivalent of natrocarbonatitic volcanism, and provides an example for carbonatite genesis by late-stage crystal fractionation and liquid immiscibility. The magnesiocarbonatite intrusion of Chiaracke, on the other hand, appears to result from a primary carbonatitic mantle melt. Deep seated mantle magmatism/metasomatism is also expressed by the occurrence of a kimberlite dyke. Neodymium and strontium isotope data (ɛNd 1.4 5.4, 87Sr/86 Sralkaline magmatism. The magmatism of the Ayopaya region is attributed to failed rifting of western South America during the Mesozoic and

  10. The Mozambique Ridge - A Large Igneous Province with a Complicated Emplacement History

    NASA Astrophysics Data System (ADS)

    Fischer, M. D.; Uenzelmann-Neben, G.

    2015-12-01

    The Mozambique Ridge (MozR), a supposed part of the South African Large Igneous Province (LIP) in the southwestern Indian Ocean, consists of four major geomorphological units associated with multiple phases of volcanic activity between 140 Ma and 120 Ma. High-resolution seismic reflection data collected in 2014 reveals various magmatic centres within each of the geomorphological units. Intra-basement reflections can be identified up to several hundred ms TWT below top of basement. These are interpreted to represent massive lava flow units, which are characteristic of oceanic plateau eruptions. Additionally to primary volcanic features associated with the initial formation of the different segments of the MozR we identify secondary volcanic features indicating magmatic reactivation after its initial build-up. The internal reflections generally dip away from their magmatic centres and individual reflectors are typically traced for 5-15 km. Several faults cutting through basement and older sedimentary units are interpreted as extensional tectonic features.Our observations hence provide further arguments for a LIP origin of the MozR. Still, this LIP obviously was subject to multiple magmatic and tectonic phases during its development, which we may relate with the opening of the South African gateway associated with Gondwana break-up and the separation of MozR from the conjugate parts of the proposed South African LIP. Further investigations will show whether more recent deformation can be traced back to further propagation of the East African Rift system.

  11. Shallow drilling investigation of contact relationships in the Wichita Mountains igneous province

    SciTech Connect

    Gilbert, M.C.; Hogan, J.P. . School of Geology and Geophysics); Luza, K. )

    1993-02-01

    Within the Wichita Mountains Igneous Province, a variety of mineralogically, texturally and compositionally diverse hybrid rock types (i.e. gabbro-diorites, monzonites and granodiorites) crop out at gabbro-grants contacts. Possible coeval sedimentary rocks associated with crustal rifting are restricted to a few scattered, isolated exposures of a mineralogically variable group of meta-quartzites (Meers Quartzite). Typically these outcrops of meta-quartzite are of limited areal extent and are surrounded by either gabbro, granite, rhyolite or a combination of these rock types. However, the origin of both the hybrid rock types and the Meers Quartzite remains enigmatic because outcrops containing complete and clear contact relationships are extremely rare. At present, direct testing of models is difficult as complete exposure of contacts between these units is extremely rare due to deposition of younger sedimentary units and severe degradation by weathering. Poor condition of existing samples has hampered geochemical and other petrologic methods in evaluating models. Four potential drilling sites have been selected where critical contacts between major geologic units are interpreted to be present in the shallow subsurface (<300 ft.). Objectives of drilling are (1) direct observation of contacts between rock units by retrieval of a complete core sample from the drill hole, (2) retrieval of freshest possible rock material for petrographic and geochemical analysis and (3) retrieval of a complete transect beginning in Mount Scott Granite or Meers Quartzite across the hybrid rock zone and into the substrate gabbro to document variations associated with the transition.

  12. Ages and petrogenetic significance of igneous mangerite-charnockite suites associated with massif anorthosites, Grenville Province

    SciTech Connect

    Emslie, R.F.; Hunt, P.A. )

    1990-03-01

    U-Pb ages of zircon fractions of major anorthosite-mangerite-charnockite-granite (AMCG) igneous suites imply that this magmatism inaugurated what is widely regarded as the Grenvillian event between about 1.16 and 1.12 Ga ago over about two-thirds of the Grenville Province east, northeast, and southeast of the Central Metasedimentary Belt. Pre-Grenvillian AMCG suites about 1.36 and 1.64 Ga old have much more restricted distribution. An apparent time lag of about 0.05 to 0.10 Ga is indicated between culmination of AMCG magmatism and the widely recognized Grenvillian metamorphic peak (about 1.10 to 1.03 Ga), perhaps the most distinctive hallmark of the Grenville event. The time lag is consistent with conductive heating of thick subcontinental lithosphere that began with initiation of AMCG magmatism and continued until geotherms rose sufficiently to produce granulites in much of the lower to middle crust. Tectonic crustal thickening did not likely occur until later in the sequence of events, perhaps after some cooling from the metamorphic peak. Compressive forces were externally applied, possibly at a distant plate margin, while the continental lithosphere was still thermally weakened from preceding magmatic-metamorphic culminations.

  13. The Kalkarindji Large Igneous Province and the Early-Middle Cambrian Extinction.

    NASA Astrophysics Data System (ADS)

    Jourdan, Fred; Evins, Lena

    2010-05-01

    Despite being one of the largest large igneous provinces (LIP) on Earth, the recently discovered Kalkarindji LIP, Australia, has received only very little attention (e.g., Glass & Philips, 2005; Evins et al., 2009). This province is located across the Northern Territories and Western Australia and covers a currently known area of ≥ 2.1x106 km² (Evins et al., 2009) with hints that it stretches as far as the southernmost part of South Australia (equivalent to a total area of ≥ 3x106 km²). The province includes flows, intrusions and volcanic tuffs. The age of the province is currently based only on three robust 40Ar/39Ar apparent ages ranging from 504.6 ± 2.5 to 507.5 ± 1.6 Ma (Glass & Philips, 2005; Evins et al., 2009). This province is of particular interest as it seems to coincide with a global anoxic event (Hough et al., 2006) and more importantly, the Early-Middle Cambrian (EMC) extinction where 50% of the genera (e.g. Archeocyaths, Trilobites) went extinct. The age of the EMC extinction has been estimated at ~510 Ma according to the revised timescale of 2009 but so far, attempts to date the extinction level have not yielded any precise date. Considering the now well-established 40K decay constant bias (Min et al., 2000), the 40Ar/39Ar ages obtained so far suggest an emplacement age of the Kalkarindji province between ~509 and ~512 Ma, thus apparently synchronous with the EMC extinction. However, due to the paucity of available ages, it is still not clear if the Kalkarindji LIP was emplaced during only few hundred ka, or rather was more sluggish over few Ma. The Kalkarindji basalts are overlapping thick sulfate-rich evaporite layers and carbonate rocks of the Precambrian central Australia basins. Evaporite and carbonate metamorphism might have been responsible for a significant source of CO2, SO2 and halocarbons as demonstrated for the Siberian traps (Svensen et al., 2009). In addition, the occurrence of pyroclastics eruptions as indicated by the presence

  14. Origin of the early Permian Wajilitag igneous complex and associated Fe-Ti oxide mineralization in the Tarim large igneous province, NW China

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Wang, Christina Yan; Xing, Chang-Ming; Xu, Yi-Gang

    2014-04-01

    The Wajilitag igneous complex is part of the early Permian Tarim large igneous province in NW China, and is composed of a layered mafic-ultramafic intrusion and associated syenitic plutons. In order to better constrain its origin, and the conditions of associated Fe-Ti oxide mineralization, we carried out an integrated study of mineralogical, geochemical and Sr-Nd-Hf isotopic analyses on selected samples. The Wajilitag igneous rocks have an OIB-like compositional affinity, similar to the coeval mafic dykes in the Bachu region. The layered intrusion consists of olivine clinopyroxenite, coarse-grained clinopyroxenite, fine-grained clinopyroxenite and gabbro from the base upwards. Fe-Ti oxide ores are mainly hosted in fine-grained clinopyroxenite. Forsterite contents in olivines from the olivine clinopyroxenite range from 71 to 76 mol%, indicating crystallization from an evolved magma. Reconstructed composition of the parental magma of the layered intrusion is Fe-Ti-rich, similar to that of the Bachu mafic dykes. Syenite and quartz syenite plutons have ɛNd(t) values ranging from +1.4 to +2.9, identical to that for the layered intrusion. They may have formed by differentiation of underplated magmas at depth and subsequent fractional crystallization. Magnetites enclosed in olivines and clinopyroxenes have Cr2O3 contents higher than those interstitial to silicates in the layered intrusion. This suggests that the Cr-rich magnetite is an early crystallized phase, whereas interstitial magnetite may have accumulated from evolved Fe-Ti-rich melts that percolated through a crystal mush. Low V content in Cr-poor magnetite (<6600 ppm) is consistent with an estimate of oxygen fugacity of FMQ + 1.1 to FMQ + 3.5. We propose that accumulation of Fe-Ti oxides during the late stage of magmatic differentiation may have followed crystallization of Fe-Ti-melt under high fO2 and a volatile-rich condition.

  15. Magmatism and Eurekan deformation in the High Arctic Large Igneous Province: 40Ar- 39Ar age of Kap Washington Group volcanics, North Greenland

    NASA Astrophysics Data System (ADS)

    Tegner, C.; Storey, M.; Holm, P. M.; Thorarinsson, S. B.; Zhao, X.; Lo, C.-H.; Knudsen, M. F.

    2011-03-01

    The High Arctic Large Igneous Province is unusual on two counts: first, magmatism was prolonged and has been suggested to include an initial tholeiitic phase (130-80 Ma) and a second alkaline phase (85-60 Ma); second, it was subsequently deformed during the Eurekan Orogeny. New 40Ar-39Ar dating of alkaline volcanics from Kap Kane, part of the Kap Washington Group volcanics at the northern tip of Greenland, provides an emplacement age of 71.2 ± 0.5 Ma obtained from amphibole in lapilli tuffs, and a thermal resetting age of 49-47 Ma obtained in feldspar and whole-rocks from trachyte flows. Patch perthite feldspars and coeval resetting of Rb-Sr isotopes by hydrothermal fluids provide further support for thermal overprinting. This thermal event is interpreted as a result of compressional tectonism of the Kap Cannon Thrust Zone in which older Palaeozoic metasediments were thrusted northwards over the Kap Washington Group volcanics. The formation of the tholeiitic suite (130-80 Ma) is linked to the opening of the Canada Basin and may involve mantle plume action. Formation of the alkaline suite (85-60 Ma) is attributed to continental rifting in the Lincoln Sea area linked to seafloor spreading in the Labrador Sea and the Baffin Bay, and to eastwards displacement of Greenland relative to North America. The alkaline suite, therefore, may be unrelated to the main tholeiitic phase of the High Arctic Large Igneous Province. The subsequent initiation of continental rifting and ensuing seafloor spreading in the Northeast Atlantic resulted in spreading and volcanism (61-25 Ma) on both sides of Greenland, pushing Greenland northwards relative to North America. The tectonic setting in the High Arctic thus changed from extensional to compressional and volcanic activity was terminated. Evaluation of plate kinematic models shows that the relative northwards movement of Greenland culminated in the Eocene, coinciding with thermal resetting. We conclude that compression in North

  16. The pre-Caledonian Large Igneous Province and the North Atlantic Wilson Cycle

    NASA Astrophysics Data System (ADS)

    Tegner, Christian; Andersen, Torgeir B.; Corfu, Fernando; Planke, Sverre; Jørgen Kjøll, Hans; Torsvik, Trond H.

    2016-04-01

    Magmatism of the first known rifting phase of the North Atlantic Wilson Cycle is surprisingly well preserved in the Caledonian nappes of central Scandinavia. The Särv and Seve Nappes are characterised by spectacular dyke complexes originally emplaced into continental sediments along the rifted margin of Iapetus. The intensity and structure of the pre-Caledonian Dyke Complex is comparable to that of the present passive margins of the North Atlantic large igneous province (NALIP) and U-Pb ages of 610-590 Ma suggest magmatism was short-lived. It can be described as a pre-Caledonian large igneous province (CLIP). To constrain the origin of CLIP magmatism we: (1) re-visited the dyke complexes of the Sarek, Kebnekaise and Tornetrask mountains of North Sweden; (2) compiled new and published geochemical data for the more than 950 km long, magma-rich segment of the Scandinavian Caledonides; and (3) extended reconstructions of the paleo-position of Baltica back to 600 Ma. Although the appearance of the dykes ranges from garnet amphibolite gneiss to pristine magmatic intrusions, all bulk rock compositions largely reflect the original magmatic rock. The compiled dataset includes 584 analyses that essentially forms a coherent suite of tholeiitic ferrobasalt (2-12 wt% MgO, 45-54 wt% SiO2; 6-16 wt% FeOtot; 0.7-4.0 wt% TiO2) akin to LIP basalts such as those of NALIP (61-54 Ma). A few samples (<20) are significantly contaminated with crust, but most are largely uncontaminated. The delta Nb value is a proxy for geochemical enrichment based on Nb-Zr-Y systematics and was defined for the present-day North Atlantic system to distinguish enriched Iceland basalts (positive delta Nb) from normal MORB basalts (negative delta Nb). The CLIP dykes are dominantly enriched with positive delta Nb (-0.07 to +0.9) in the central and southern portion, but stretching to more negative values (-0.6 to +0.5) in the northern portion (Sarek, Kebnekaise, Tornetrask). The few available rare earth element

  17. The Karoo igneous province — A problem area for inferring tectonic setting from basalt geochemistry

    NASA Astrophysics Data System (ADS)

    Duncan, Andrew R.

    1987-06-01

    Tholeiitic basalts and associated intrusives are the major component of the Karoo igneous province. They are of Mesozoic age and constitute one of the world's classic continental flood basalt (CFB) provinces. It has been argued that most Karoo basalts have not undergone significant contamination with continental crust and that their lithospheric mantle source areas were enriched in incompatible minor and trace elements during the Proterozoic. The only exceptions to this are late-stage MORB-like dolerites near the present-day continental margins which are considered to be of asthenospheric origin. When data for the "southern" Karoo basalts are plotted on many of the geochemical discriminant diagrams which have been used to infer tectonic setting, essentially all of them would be classified as calc-alkali basalts (CAB's) or low-K tholeiites. Virtually none of them plot in the compositional fields designated as characteristic of "within-plate" basalts. There is little likelihood that the compositions of the Karoo basalts can be controlled by active subduction at the time of their eruption and no convincing evidence that a "subduction component" has been added to the subcontinental lithospheric mantle under the entire area in which the basalts crop out. It must be concluded that the mantle source areas for CAB's and the southern Karoo basalts have marked similarities. In contrast, the data for "northern" Karoo basalts largely plot in the "within-plate" field on geochemical discriminant diagrams. Available data suggest that the source composition and/or the restite mineralogy and degree of partial melting are different for southern and northern Karoo basalts. There is no evidence for any difference in tectonic setting between the southern and northern Karoo basalts at the time they were erupted. This appears to be clear evidence that specific mantle source characteristics and/or magmatic processes can vary within a single CFB province to an extent that renders at least

  18. Ferropicrite from the Lalibela area in the Ethiopian large igneous province

    NASA Astrophysics Data System (ADS)

    Desta, M. T.; Ishiwatari, A.; Arai, S.; Akihiro, T.; Ayalew, D.

    2013-12-01

    Ferropicrite and picritic ferrobasalt lava flows near Lalibela in the Oligocene (~ 30 Ma) Ethiopian large igneous provence (LIP) are associated with ultratitaniferous transitional basalt and picrites of the second high-Ti (HT2) series. The dominant phenocryst in the studied samples is Mg-rich olivine (up to Mg# 88.4) with high CaO contents (to 0.42 wt. %) and kink band structure is absent, indicating that olivines are crystalized from a melt. Spinel inclusions and microphenocrysts are characterized by extremely high Cr# (79-84), moderate Mg# (18-51), moderate Fe3+# (11-26) and contains 3.6-14.8 wt. % TiO2. The clinopyroxene phenocrysts are Mg#=73-88, TiO2=0.84-2.9 wt. %, and Al2O3= 1.2-4.1 wt. % in the cores. The REE contents of clinopyroxenes display enrichment in LREE (LaN/YbN=1.2-1.9) and MREE (EuN/YbN=3.3-4.3) relative to HREE. Relative depletion of HFSE (e.g. Nb and Zr) is also observed. In general, these trace element characteristics of clinopyroxene are similar with those of high-Ti 2 basalts. The estimated MgO content of liquid is about 23.5 wt. % and mantle potential temperature may have been as high as ~ 1638 OC. This temperature (Tp) is higher (by some 100 OC) than those estimated for the African-Arabian traps (~ 1520 OC). The studied samples exhibit very low Al2O3/TiO2 (1.8-2.2) and high Zr/Y (8.2-10.2) ratios. These may indicate the important role for garnet during melting and that the lavas were formed by small degree of partial melting which apparently contradicts to the high Cr# of spinel. In view of low Cr/Al ratio of the bulk rock, the high Cr# of spinel suggests very high temperature of the magma (and the plume). The origin of these ferropicrite and picritic ferrobasalt rocks could be attributed to high pressure partial melting of pyroxenite that possibly incorporate recycled oceanic crust components. Keywords: Ferropicrite, large igneous province, Oligocene, pyroxinite, Lalibela

  19. Structure of different within-plate magmatic system of large igneous provinces

    NASA Astrophysics Data System (ADS)

    Sharkov, E.

    2009-04-01

    It is generally accepted that formation of continental large igneous provinces (LIPs) is linked with ascending of mantle superplumes. However, it is not clear yet why and how magmatic systems appeared and functionated. It is known that LIPs are formed by numerous magmatic centers, which imply existence of individual magmatic systems beneath them. Such a situation can be explained by presence of protuberances (local plumes) on the surface of extended superplume heads, where processes of adiabatic melting occurred give rise to formation of magmatic systems. Newly-formed melts on their way to the surface pass through complicate system of conduits and transitional magma chambers, where they were undergone by different processes of crystallizing differentiation, mixing, assimilation of wall-rocks, etc. According to data available, three major levels of transitional magmatic chambers, linked by systems of feeder conduits (dikes), occurred within the crust. Each of them is responsible for transformation of a primary melt in different extent: The lowest level with the largest chambers, located along boundary between upper margin of the plume head and incumbent rigid lithosphere; they are responsible for the underplating phenomenon. Processes of contamination mantle-derived magmas by crustal material can play essential role here, especially in the late Archean and early Paleoproterozoic when they led to appearance of specific mantle-crustal magmas of siliceous high-Mg series (SHMS), which formed large igneous provinces with numerous mafic-iltramafic layered intrusions (Sharkov, Bogina, 2006). It suggests that formation of this series was linked with "floating up" of chambers (batches) of high-temperature ultramafic magmas through the upper part of lithospheric mantle and mafic lower crust by zone refinement mechanism, i.e. by melting material of the chamber's roof and crystallization at their bottoms. As a result, the primary melt gradually enriched in crustal material

  20. Emplacement and Eruption Style in the Franklin Large Igneous Province, Victoria Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Bedard, J. H.; Williamson, N.; Dell'Oro, T. A.; Hayes, B.; Hryciuk, M.; Winpenny, A.; Scoates, J. S.; Weis, D. A.; Nabelek, P. I.; Naslund, H. R.; MacDonald, W. D.

    2011-12-01

    The Neoproterozoic Franklin large igneous province preserves up to 1.1 km thickness of basaltic volcanics (Natkusiak Fm.). The Natkusiak volcanics include basal agglutinate and local hyaloclastite breccias and pillows, lensoid or sheet flows, some picritic, and lahar deposits that seem to infill paleo-valleys. The overlying main series lavas are mostly subareal sheet flows and exhibit cycles of upwardly decreasing MgO. Localized vent facies include unconsolidated scoria and bombs, spatter, and fumarolic malachite/zeolite around native Cu veins. Lateral trace element chemical heterogeneity implies eruption through multiple vents with distinct plumbing systems. The underlying exposed 3-4 km of the Shaler Supergroup are dolostones, sandstones, gypsum evaporites and shales, which are riddled with sills (most 20-50m, up to 100m). Sills constitute 50-75% of the section in most places, and belong to two distinct geochemical subtypes. A heterogeneous LREE-enriched facies includes sills with olivine-rich bases. A more homogeneous diabasic subtype has flatter REE patterns and occurs higher in the section. The oft-reported saucer-shaped sill morphology does not occur in the Franklin sills, which tend to be concordant over 10s of km distance. In many places, up-section transgressions appear to be structurally controlled by pre-existing faults that guided magma ascent and may have modulated reactivation and injection of olivine-rich slurries into pre-existing sills. The roof-zones of upward transgressions are injected with arcuate dikes on various scales (1m to 1 km), and are often associated with cataclasites, oxide-sulfide skarns and calc-silicates. These reflect the complexity of melt-driven fracture propagation, varying host ductility, fluctuation of magma pressure, and expulsion of melt and fluids from cooling sills. Some of these intrusions are enriched in sulphide minerals, possibly the result of assimilation of S-rich host rocks.

  1. Playing jigsaw with large igneous provinces - a plate-tectonic reconstruction of Ontong Java Nui

    NASA Astrophysics Data System (ADS)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele; Werner, Reinhard

    2015-04-01

    Ontong Java Nui is a Cretaceous large igneous province (LIP), which was rifted apart into various smaller plateaus shortly after its emplacement around 125 Ma in the central Pacific. It incorporated the Ontong Java Plateau, the Hikurangi Plateau and the Manihiki Plateau as well as multiple smaller fragments, which have been subducted. Its size has been estimated to be approximately 0.8% of the Earth's surface. A volcanic edifice of this size has potentially had a great impact on the environment such as its CO2 release. The break-up of the "Super"-LIP is poorly constrained, because the break-up and subsequent seafloor spreading occurred within the Cretaceous Quiet Period. The Manihiki Plateau is presumably the centerpiece of this "Super"-LIP and shows by its margins and internal fragmentation that its tectonic and volcanic activity is related to the break-up of Ontong Java Nui. By incorporating two new seismic refraction/wide-angle reflection lines across two of the main sub-plateaus of the Manihiki Plateau, we can classify the break-up modes of the individual margins of the Manihiki Plateau. The Western Plateaus experienced crustal stretching due to the westward motion of the Ontong Java Plateau. The High Plateau shows sharp strike-slip movements at its eastern boundary towards an earlier part of Ontong Java Nui, which is has been subducted, and a rifted margin with a strong volcanic overprint at its southern edges towards the Hikurangi Plateau. These observations allow us a re-examination of the conjugate margins of the Hikurangi Plateau and the Ontong Java Plateau. The repositioning of the different plateaus leads to the conclusion that Ontong Java Nui was larger (~1.2% of the Earth's surface at emplacement) than previously anticipated. We use these finding to improve the plate tectonic reconstruction of the Cretaceous Pacific and to illuminate the role of the LIPs within the plate tectonic circuit in the western and central Pacific.

  2. Land Bridges and Oceanic Gateways: the Importance of Large Igneous Provinces in Reconstructing Paleobathymetry

    NASA Astrophysics Data System (ADS)

    Whittaker, J. M.; Seton, M.; Cooper, A.

    2015-12-01

    Accurate reconstructions of global and regional paleobathymetry are important for understanding changing patterns of paleo-ocean circulation and climate over geological timescales. Large Igneous Provinces (LIPs) have erupted throughout the world's oceans, creating important bathymetric expressions on the seafloor and temporally exposed land. Global plate tectonic reconstructions of mid-ocean ridges, LIPs, and plumes have demonstrated that the formation of LIPs repeatedly occur at specific ridge-plume interaction locations over periods of tens of millions of years. Due to the shallow depth of mid-ocean ridges relative to the abyssal plains, the formation of LIPs at these locations increases the likelihood of the creation of sub-aerial regions that exist for millions of years before subsiding. Here, we assess the time-varying size, shape, location and depth of LIPs globally and incorporate them into maps of predicted paleo-bathymetry. We focus on accurate estimation of the paleo-bathymetry of oceanic LIPs by taking into account the temporal plume swell that affects the wider region around each LIP, with a likely significant affect on the surface height of both onshore and offshore regions. We ground truth our estimations using a variety of marine data, particularly results from ocean drilling. Of particular interest is the present-day southern Indian Ocean (offshore eastern Antarctica) where the Bouvet, Marion and Kerguelen plumes interact with the Southwest Indian mid-ocean ridge. As West Gondwana broke apart, continental Antarctica slowly moved away from this stationary line of ridge-plume interactions, with the newly formed oceanic crust of the southern Indian and Atlantic Oceans overlying these locations instead. Thus, since the Jurassic parts of East Antarctica and the adjacent Atlantic and Indian oceans have been repeatedly affected by the formation of LIPs at ridge-plume interactions, and our results suggest the potential for landbridges or significant islands

  3. Simulating the climate impact of Large Igneous Provinces: A mid-Miocene case-study

    NASA Astrophysics Data System (ADS)

    Armstrong McKay, David I.; Tyrrell, Toby; Wilson, Paul A.; Foster, Gavin L.; Müller, Simon A.

    2013-04-01

    Large Igneous Provinces (LIPs) can result in significant degassing of mantle-derived CO2 into the ocean-atmosphere system, but only the largest LIPs are considered to have had a significant impact on global climate. However, some smaller LIPs also coincide with times of global warmth and carbon cycle perturbations. Here we use biogeochemical box models to investigate the possibility of one such minor LIP, the Columbia River Basalts (CRB), warming climate during the mid-Miocene. An advantage of studying this fairly recent event is the more rigorous model-data comparison made possible by the relative wealth of palaeorecords. Comparing our model results to reconstructions of mid-Miocene carbonate compensation depth, benthic foraminifera δ13C and pCO2 suggests an emissions scenario of 2000-4000 Pg C between ~16.2 and 15.8 Ma fits the palaeorecords best, though additional mechanisms are required to match the CCD reconstruction after this. This emission range is nearly an order of magnitude greater than estimates for extrusive basalt degassing alone, but is within the estimated range when including degassing from intrusive and underplated material or the potential incorporation of pyroxenite-rich oceanic crust into the CRB's magma supply. When including these extra CO2 sources we conclude that the CRB could have played a significant role in the mid-Miocene Climatic Optimum if the additional emissions actually occurred. This can be extrapolated to other LIPs and we consider whether they could have also had a greater impact than currently accepted.

  4. Reassembling the Paleogene Eocene North Atlantic igneous province: New paleomagnetic constraints from the Isle of Mull, Scotland

    NASA Astrophysics Data System (ADS)

    Ganerød, Morgan; Smethurst, Mark A.; Rousse, Sonia; Torsvik, Trond H.; Prestvik, Tore

    2008-07-01

    The paleomagnetic data sets from the British Tertiary Igneous Province (BTIP) have recently been criticized as being unreliable and discordant with data from elsewhere in the North Atlantic Igneous Province (NAIP) [Riisager et al. Earth Planet. Sci. Lett. 201 (2002) 261-276; Riisager et al. Earth Planet. Sci. Lett. 214 (2003) 409-425]. We offer new paleomagnetic data for the extensive lava flow sequence on the Isle of Mull, Scotland, and can confirm the paleomagnetic pole positions emanating from important earlier studies. Our new north paleomagnetic pole position for Eurasia at 59 ± 0.2 Ma has latitude 73.3°N, longitude 166.2°E (dp/dm = 5.2/7.0). A re-evaluation and an inter-comparison of the paleomagnetic database emanating from the NAIP were carried out to test for sub-province consistency. We find a general agreement between the Eurasian part of NAIP (BTIP and Faeroes) and East Greenland data. However a compilation of West Greenland data displays a large and unexplained dispersion. We speculate on if this is related to different sense of block rotation of the Tertiary West Greenland constituents. Combining all data from the NAIP constituents, give a pole position at 75.0°N, 169.9°E ( N = 25, K = 84.3, A95 = 3.2) in Eurasian reference frame.

  5. Partial melt and seismic properties: A case study from the Seiland Igneous Province

    NASA Astrophysics Data System (ADS)

    Lee, Amicia; Walker, Andrew; Lloyd, Geoff; Torvela, Taija

    2016-04-01

    The geological evolution of orogenies is partly controlled by partial melting in the middle and/or lower crust. However, seismic methods cannot reliably quantify the amount of melting at depth in tectonically active mountain belts. We have developed a numerical modelling method to assess the impact of melt on seismic properties and applied this to samples from a transect across a migmatitic shear zone in the Seiland Igneous Province, Northern Norway. These rocks represent an analogue to lower crustal shear zones undergoing orogenic collapse. Compressional and shear waves reduce when melt is introduced but the effect on seismic anisotropy is unclear and recent evidence suggests the melt-seismic property relationship is not simple. We have measured crystallographic preferred orientations in sheared migmatites using EBSD and use this data as input for multiple numerical models designed to quantify the variation of seismic properties with melt volume. Three 'end member' models have been developed: a reference 'isotropic model' consisting of a rock matrix comprising randomly oriented grains with distributed spherical melt pockets, the 'shape fabric model' an isotropic matrix with ellipsoidal melt inclusions, and the 'CPO model' consisting of a textured mineralogical matrix with randomly distributed spherical melt pockets. The isotropic and matrix dominated models give end member seismic properties for the isotropic and anisotropic dominated regimes. Importantly, these models do not consider the shape of the melt fractions, and instead the melt is averaged over the whole rock. The shape fabric model calculates the seismic properties of an isotropic inclusion within an isotropic matrix. The results of this modelling show that an oblate ellipsoid has the greatest effect on seismic properties. It is also the most likely shape for melt pockets as it is an analogue shape for extensional melting during orogenic collapse; a large oblate ellipsoid produces a high S

  6. Constraining the History of the North Atlantic Igneous Province: a Palaeomagnetic and Geochronologic Ballad in the British Tertiary Volcanics.

    NASA Astrophysics Data System (ADS)

    Ganerød, M.; Rousse, S.; Smethurst, M.; Prestvik, T.

    2006-12-01

    Large Igneous Provinces (LIP), overwhelmingly of basaltic affinity constitute the surface expressions of catastrophically rapid dissipation of large quantities of internal heat. Subsequent to their extrusion, most LIPs have changed position in the Earth's surface due to plate motions. With an estimated volume of ca 107 km3 the North Atlantic Igneous Province (NAIP) represents the third largest magmatic event on Earth during the last 150 Myr. The NAIP formed during two major magmatic phases: a pre- break-up phase (62-58 Ma) and a syn- break-up phase (56-54 Ma) contemporaneous with the onset of North Atlantic sea-floor spreading. The formation of the NAIP has been linked to the proto-Icelandic plume through paleogeographic reconstructions and geochemical observations. Since the late 1980's much of the research focus on the NAIP has been guided by the understanding of the genetic relationship between North Atlantic magmatism that began in the earliest Palaeocene, the genesis/position of the Iceland Hotspots and/or related mantle plume(s) through the Cenozoic, and the change at c. 54 Ma from a long period of continental rifting and thinning of sea- floor spreading. However, despite the number of data available, the temporal and physio-chemical ties between NAIP rocks, hotspot motion and continental break-up have not been demonstrated to fit a single regionally applicable and consistent geodynamic model. For example, discrepancies between recent palaeomagnetic poles from western Greenland and the Faeroe Islands (Riisager et al. 2002a,b) and older data from the British Tertiary Igneous Province (BTIP) have questioned the reliability of the latest. Therefore, to ultimately understand the Tertiary evolution of the North Atlantic, extensive palaeomagnetic and 40Ar/39Ar sampling on the lava fields of the British Igneous Provinces (Isle of Skye, Isle of Mull, Antrim Plateau) has been initiated. Our findings are in agreement with older published poles from the BTIP and support

  7. 3D seismic interpretation of subsurface eruptive centers in a Permian large igneous province, Tazhong Uplift, central Tarim Basin, NW China

    NASA Astrophysics Data System (ADS)

    Yang, Jiangfeng; Zhu, Wenbin; Guan, Da; Zhu, Beibei; Yuan, Liansheng; Xiang, Xuemei; Su, Jinbao; He, Jingwen; Wu, Xinhui

    2015-12-01

    A 1445-km2 high-resolution 3D seismic reflection dataset is used to analyze the Permian large igneous province in the subsurface of the Tazhong area in the central Tarim Basin in northwestern China. Constrained by the synthetic seismograms of four wells, the top and base of the igneous rocks were identified in the seismic data. Seven large volcanic craters, each >10 km2 in area, have been discovered via the application of coherency and amplitude attributes. The thickness and volume of the igneous rocks were obtained by time-depth transformation. In the study area, all of the igneous rocks, with thicknesses from 120 to 1133 m, were formed by eruptions in the Early Permian. These events produced huge erupted volumes (178 km3) and multiple closely spaced volcanic edifices (<13 km). These features suggest that the study area may be the part of the eruptive center of the Permian igneous rocks in the Tarim Basin.

  8. The Nature and Origin of the ~1.88 Ga Circum-Superior Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Minifie, M.; Kerr, A. C.; Ernst, R. E.

    2009-12-01

    The Circum-Superior Large Igneous Province (LIP) is composed of a discontinuous belt of magmatic rocks, predominantly mafic-ultramafic in composition, circumscribing the cratonic margins of the Superior Province in the Canadian Shield for >3000 km. In addition to the cratonic margin magmatism, magmatic rocks of the same age are found in the interior of the craton in the form of mafic-ultramafic dykes and also carbonatite complexes along the Kapuskasing Structural Zone. Recent U-Pb geochronological studies have shown a tight age grouping for these magmatic rocks between 1885 and 1864 Ma. Previous studies have treated the various segments of the Circum-Superior LIP individually and models on the origin of the magmatism include seafloor spreading, back-arc basin rifting, foredeep basin flexure, volcanic arc activity, transtension in pull-apart basins, and mantle plume activity. This study is the first to create a cohesive geochemical and Sr-Nd-Pb-Hf-Os isotopic database for the whole of the Circum-Superior LIP and to assess its petrogenesis as a single entity. The geochemical and isotopic evidence strongly favour a mantle plume origin for the Circum-Superior LIP magmatism. A common trace element signature, very much like that of the Ontong Java oceanic plateau, is persistent throughout most of this LIP. Most samples possess Zr/Y and Nb/Y ratios almost identical to Ontong Java and other oceanic plateau lavas. Utilisation of the PRIMELT2 software of Herzberg & Asimow (2008) shows that the parental magmas of the Circum-Superior LIP were derived from ~30-35% pooled fractional melting of a source composition similar to that of primitive mantle with 1% continental crust extracted from it at mantle potential temperatures ranging from 1515 to 1610° C. Basalts from islands in Hudson Bay possess slightly enriched trace element profiles with small positive Nb anomalies and highlight a degree of heterogeneity within the plume source. The Circum-Superior LIP magmatic rocks

  9. Origin of the Mackenzie large igneous province and sourcing of flood basalts from layered intrusions

    NASA Astrophysics Data System (ADS)

    Day, J. M.; Pearson, D.

    2013-12-01

    The 1.27 Ga Coppermine continental flood basalt (CFB) in northern Canada represents the extrusive manifestation of the Mackenzie large igneous province (LIP) that includes the Mackenzie dyke swarm and the Muskox layered intrusion. New Re-Os isotope and highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data are reported together with whole-rock major- and trace-element abundances and Nd isotopes to examine the behaviour of the HSE during magmatic differentiation and to place constraints on the extent of crustal interaction with mantle-derived melts. Mineral-chemical data are also reported for an unusual andesite glass flow (4.9 wt.% MgO) found in proximity to newly recognised picrites (>20 wt.% MgO) in the lowermost stratigraphy of the Coppermine CFB. Compositions of mineral phases in the andesite are similar to equivalent phases found in Muskox Intrusion chromitites and the melt composition is identical to Muskox chromite melt inclusions. Elevated HSE contents (e.g., 3.8 ppb Os) and the mantle-like initial Os isotope composition of this andesitic glass contrast strongly with oxygen isotope and lithophile element evidence for extensive crustal contamination. These signatures implicate an origin for the glass as a magma mingling product formed within the Muskox Intrusion during chromitite genesis. The combination of crust and mantle signatures define roles for both these reservoirs in chromitite genesis, but the HSE appear to be dominantly mantle-sourced. Combined with Nd isotope data that places the feeder for lower Coppermine CFB picrites and basalts within the Muskox Intrusion, this provides the strongest evidence yet for direct processing of some CFB within upper-crustal magma chambers. Modeling of absolute and relative HSE abundances in CFB reveal that HSE concentrations decrease with increasing fractionation for melts with <8×1 wt.% MgO in the Coppermine CFB, with picrites (>13.5wt.% MgO) from CFB having higher Os abundances than ocean island

  10. The rare-metal ore potential of the Proterozoic alkaline ultramafic massifs from eastern part of the Baltic Shield in the Kola alkaline province.

    NASA Astrophysics Data System (ADS)

    Sorokhtina, Natalia; Kogarko, Lia

    2014-05-01

    The Kola Alkaline Province consists of intrusions of two main stages of the intraplate alkaline magmatism. The early stage of igneous activity occurred in Proterozoic 1.9 billion years ago, the next in Paleozoic at 380 million years. The Proterozoic alkaline magmatism produced Gremyakha-Vyrmes and Elet'ozero large alkaline-ultrabasic massifs, Tiksheozero carbonatite massif and numerous small syenite complexes. Paleozoic magmatism on Baltic Shield exhibited more widely, than Proterozoic. The world largest Khibiny and Lovozero alkaline intrusions, numerous alkaline-ultrabasic massifs with carbonanites, alkaline dike swarms and diatremes were formed. It is well known that carbonatites of Paleozoic alkaline-ultrabasic massifs contain large-scale deposits of rare-metal ores (Afanasiev et al., 1998). The metasomatic rocks on foidolites and carbonatites of Gremyakha-Vyrmes are final products of differentiation of Proterozoic alkaline-ultrabasic magma enriched in incompatible elements, including Nb and Zr similar to Paleozoic carbonatites. The massif Gremyakha-Vyrmes is one of the largest titanomagnetite-ilmenite deposits in Russia associated with ultrabasites. Our investigation showed that albite-microcline and aegirine-albite metasomatites formed rich rare-metal ores consisting of 3.2 wt. % Nb2O5 and 0.7 ZrO2. Zircon and pyrochlore-group minerals represent the main minerals of rare-metal ores. The following evolutionary sequences of pyrochlore group minerals has been observed: betafite or U pyrochlore - Na-Ca pyrochlore - Ba-Sr pyrochlore - "silicified" pyrochlore - Fe-Nb, Al-Nb silicates. Such evolution from primary Nb oxides to secondary silicates under low temperature hydrothermal conditions is similar to the evolution of rare metal phases in Paleozoic alkaline massifs analogous to Lovozero syenites and in carbonatites. The rare metal minerals of Gremyakha-Vyrmes crystallized in high alkaline hydrothermal environment at increased activity of Nb, Ta, Zr, U, Th and at

  11. Magmatic underplating beneath the Emeishan large igneous province (South China) revealed by the COMGRA-ELIP experiment

    NASA Astrophysics Data System (ADS)

    Deng, Yangfan; Chen, Yun; Wang, Peng; Essa, Khalid S.; Xu, Tao; Liang, Xiaofeng; Badal, José

    2016-03-01

    Because of the abundant geological, geochemical and geophysical studies conducted on the Emeishan large igneous province (ELIP) in South China, the Permian mantle plume model associated with this region is widely accepted. Furthermore, the dome-shaped structure related with this plume has been determined with success by sedimentological data and gravity stripping. Although the sediment thickness, upper crust, Moho depth and the lithosphere-asthenosphere boundary (LAB) are well constrained by active- and passive-source seismological results, the density anomaly in ELIP is still a poorly constrained issue that needs further attention. With the aim especially to understand the impact on surface of the magmatic processes that originated in the deep mantle, we performed the COMGRA-ELIP gravity experiment across this region. Using a stripping method, we determined the residual gravity in ELIP and surrounding areas. The residual gravity reaches a maximum value of + 150 mGal in the inner zone of ELIP and its strength decreases gradually when measuring from the inner zone to the middle and outer zones. Combining active and passive seismic results and the least-squares variance analysis method, we propose a strong density contrast of 0.2 g/cm3 (density of 3.14 g/cm3) for the 15- to 20-km-thick igneous layer accreted at the base of the crust, as evidence of crustal underplating in ELIP, to explain the present-day residual gravity anomaly.

  12. Petrology and mineralogy of the La Peña igneous complex, Mendoza, Argentina: An alkaline occurrence in the Miocene magmatism of the Southern Central Andes

    NASA Astrophysics Data System (ADS)

    Pagano, Diego Sebastián; Galliski, Miguel Ángel; Márquez-Zavalía, María Florencia; Colombo, Fernando

    2016-04-01

    The La Peña alkaline igneous complex (LPC) is located in the Precordillera (32°41‧34″ S - 68°59‧48″ W) of Mendoza province, Argentina, above the southern boundary of the present-day flat-slab segment. It is a 19 km2 and 5 km diameter subcircular massif emplaced during the Miocene (19 Ma) in the Silurian-Devonian Villavicencio Fm. The LPC is composed of several plutonic and subvolcanic intrusions represented by: a cumulate of clinopyroxenite intruded by mafic dikes and pegmatitic gabbroic dikes, isolated bodies of malignite, a central intrusive syenite that develops a wide magmatic breccia in the contact with clinopyroxenite, syenitic and trachytic porphyries, a system of radial and ring dikes of different compositions (trachyte, syenite, phonolite, alkaline lamprophyre, tephrite), and late mafic breccias. The main minerals that form the LPC, ordered according to their abundance, are: pyroxene (diopside, hedenbergite), calcium amphibole (pargasite, ferro-pargasite, potassic-ferro-pargasite, potassic-hastingsite, magnesio-hastingsite, hastingsite, potassic-ferro-ferri-sadanagaite), trioctahedral micas (annite-phlogopite series), plagioclase (bytownite to oligoclase), K-feldspar (sanidine and orthoclase), nepheline, sodalite, apatite group minerals (fluorapatite, hydroxylapatite), andradite, titanite, magnetite, spinel, ilmenite, and several Cu-Fe sulfides. Late hydrothermal minerals are represented by zeolites (scolecite, thomsonite-Ca), epidote, calcite and chlorite. The trace element patterns, coupled with published data on Sr-Nd-Pb isotopes, suggest that the primary magma of the LPC was generated in an initially depleted but later enriched lithospheric mantle formed mainly by a metasomatized spinel lherzolite, and that this magmatism has a subduction-related signature. The trace elements pattern of these alkaline rocks is similar to other Miocene calc-alkaline occurrences from the magmatic arc of the Southern Central Andes. Mineral and whole

  13. Magmatic underplating and crustal growth in the Emeishan Large Igneous Province, SW China, revealed by a passive seismic experiment

    NASA Astrophysics Data System (ADS)

    Chen, Yun; Xu, Yigang; Xu, Tao; Si, Shaokun; Liang, Xiaofeng; Tian, Xiaobo; Deng, Yangfan; Chen, Lin; Wang, Peng; Xu, Yihe; Lan, Haiqiang; Xiao, Fuhui; Li, Wei; Zhang, Xi; Yuan, Xiaohui; Badal, José; Teng, Jiwen

    2015-12-01

    In an attempt to characterize the subsurface structure that is related to fossil mantle plume activity, a comprehensive geophysical investigation was conducted in the Emeishan Large Igneous Province (ELIP). The nature and geometry of the crust were examined within the scheme of the domal structure of ELIP, which comprises the Inner, Intermediate and Outer zones, which are defined on the basis of the biostratigraphy of pre-volcanic sediments. The bulk crustal properties within the Inner Zone are characterized by high density, high P-wave velocity, high Vp/Vs ratios and large crustal thickness. A visible continuous seismic converter is present in the upper part of the crust in the whole Intermediate Zone and the eastern part of the Inner Zone, but it is absent in the Inner Zone, where another seismic converter is observed in the lower part of the crust. The geometric configuration of these converters is attributable to the addition of mantle-derived melts to the pre-existing crust and subsequent interaction between them. The crustal geometry, which is delineated by the migrated image of receiver functions from the passive seismic experiment, and the crustal properties collectively suggest that a mafic layer of 15-20 km thickness and 150-180 km width exists at the base of the crust in the Inner Zone. Such a mafic layer reflects a vertical crustal growth through magmatic underplating at the base of the crust and intraplating within the upper crust. The salient spatial correlation between the deep crustal structure and the dome strongly supports a genetic link between crustal thickening and plume activity, if the pre-volcanic domal uplift is generated by the Permian Emeishan mantle plume. This arrangement is further supported by the consistency of the extent of crustal uplift estimated by isostatic equilibrium modeling and sedimentary data. This study therefore characterizes and provides evidence for a plume-modified crust in a large igneous province.

  14. Geochemistry and petrogenesis of mafic sills in the 1.1 Ga Umkondo large igneous province, southern Africa

    NASA Astrophysics Data System (ADS)

    Bullen, D. S.; Hall, R. P.; Hanson, R. E.

    2012-06-01

    The detailed petrogenesis of mafic sills occurring throughout southern Africa provides strong support for the development of an Umkondo large igneous province on the eastern margin of the Kalahari craton at 1.1 Ga. The sills are most extensively developed in the Waterberg and Middelburg basins in northern South Africa and south-eastern Botswana. They are typical fractionated continental tholeiites with subophitic to ophitic dolerites, gabbros and gabbro-norites, and largely basaltic andesite in composition. The vast majority of the sample set defines one major geochemical subgroup, here referred to as the Mesoproterozoic Post-Waterberg sills A (MPWA sills), which is characteristically LREE enriched with relatively unfractionated HREEs, and with normalised incompatible element profiles similar to modern island arc andesites. A small number from the sample set define a minor subgroup (MPWB sills), which has so far only been recognised in the Middelburg basin, South Africa and which is characterized by fractionated HREEs. Both the major and trace element geochemical signatures of the MPWA sills are indistinguishable from the type Umkondo sills and less common lavas documented from Eastern Zimbabwe and mafic sills on the Grunehogna craton in present day Eastern Antarctica. This provides strong supporting evidence for an Umkondo large igneous province developed on the Kalahari craton at 1.1 Ga. Despite crustal-type Sr-Nd isotopic signatures in the MPWA sills, bulk contamination by the continental crust is ruled out in favour of derivation from a primitive mantle-like asthenospheric source with a contribution from the subcontinental lithospheric mantle modified by a previous subduction event. The smaller MPWB magma type could represent a smaller degree melt at greater depth from a modified MORB-like source, although the relationship between the two subgroups remains unclear.

  15. The Age of the Antrim Lava Group, Northern Ireland, and its correlation to the North Atlantic Igneous Province

    NASA Astrophysics Data System (ADS)

    Ganerød, M.; McKenna, C.; Smethurst, M.; Prestvik, T.; Rousse, S.; Torsvik, T.; Hendriks, B.

    2008-12-01

    Modern radiometric dating techniques enable reliable dating of flood basalt provinces and in doing so, lead to a deeper understanding of eruption dynamics. Reliable ages have been published for much of the pre-drift lava succession of the North Atlantic Igneous Province. However, chronology of emplacement of the extensive Antrim Lava Group (ALG) in Northern Ireland was until now, poorly constrained. The ALG consists in stratigraphic order of the lower basalt Fm (LBF), interbasaltic Fm (IB) with the Tardree rhyolite, and upper basalt Formation (UBF). A study by Thompson (1985), using the 40Ar/39Ar method, left the age of the LBF inconclusive, but a reliable date of 61 ± 0.6 Ma was obtained for the Tardree rhyolite (IB), and 58.3 +/- 1.1 Ma for the UBF. The date of 61 +/- 0.6 Ma for the Tardree rhyolite corresponds well with a recent U-Pb date of 60.9 +/- 0.5 Ma (Gould, 2004) of detrital zircons from a laterite layer underlying the Causeway Tholeiites (IB) in the north, zircons that may have Tardree as a source. However, Gamble et al. (1999) reported a younger date of 58.4 +/- 0.7 Ma using the U-Pb SHRIMP method for the Tardree rhyolite, so a discrepancy exists between different investigations to obtain the age of emplacement of these rhyolites. The magnetic polarity of the ALG has been reinvestigated by us and shown to be of reverse polarity. Based on the reverse magnetic polarity and the close spatial relationship with other trap sub-provinces in the British Tertiary Igneous Province, the literature has placed ALG to C26r on the geomagnetic polarity timescale. We have dated the principal lava formation in the ALG using the 40Ar/39Ar method. We obtained a weighted mean age (3 samples) of 61.4 +/- 0.5 for the LBF and 60.5 +/- 0.5 (1s, including the error on J) for the Tardree rhyolite (IB). These dates overlap at the 95% confidence level using a conservative 1% error on the J-value, but are separate using a less conservative approach. We obtained a date of 57

  16. Syn- and post-orogenic alkaline magmatism in a continental arc: Along-strike variations in the composition, source, and timing of igneous activity in the Ross Orogen, Antarctica

    NASA Astrophysics Data System (ADS)

    Hagen-Peter, G.; Cottle, J. M.

    2013-12-01

    Neoproterozoic-Paleozoic convergence and subduction along the margin of East Gondwana (Australia, New Zealand, Antarctica) resulted in a belt of deformed and metamorphosed sedimentary rocks and batholith-scale igneous intrusions comparable in size to the present day Andes. Mid-crustal levels of this belt, known as the Ross Orogen in Antarctica, are exposed in the basement of the Cenozoic Transantarctic Mountains, providing snapshots of the intrusive magma system of a major continental arc. Whole rock major- and trace-element geochemistry, Hf isotopes in zircon, and U-Pb geochronology have identified along-strike variations in the composition, source, and timing of magmatism along ~200 km of the southern Victoria Land segment of the orogen. There is an apparent younging of the igneous activity from south to north. New U-Pb ages for intrusive rocks from the Koettlitz Glacier Alkaline Province (KGAP) reveal that igneous activity spanned ca. 565-500 Ma (~30 m.y. longer than previously recognized), while immediately to the north in the Dry Valleys area most igneous activity was confined to a relatively short period (ca. 515-495 Ma). Alkaline and subalkaline igneous rocks occur in both the Dry Valleys area and the KGAP, but alkaline rocks in the Dry Valleys are restricted to the latest phase of magmatism. Na-alkaline rocks in the KGAP, including nepheline syenites, carbonatites, and A-type granites, range in age from ca. 545-500 Ma and overlap in age with more typical subduction/collision-related I- and S-type granites elsewhere in southern Victoria Land. Strong enrichments in the LILE and LREE and high LILE/HFSE and LREE/HREE of samples from the KGAP reveal a source enriched in aqueous-mobile elements, potentially a strongly metasomatized mantle wedge beneath the arc. In the Dry Valleys area, rocks with alkali-calcic composition constitute only the youngest intrusions (505-495 Ma), apparently reflecting a shift to post-orogenic magmatism. Zircons from Dry Valleys

  17. Breakup magmatism style on the North Atlantic Igneous Province: insight from Mid-Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Mansour Abdelmalak, Mohamed; Faleide, Jan Inge; Planke, Sverre; Theissen-Krah, Sonja; Zastrozhnov, Dmitrii; Breivik, Asbjørn Johan; Gernigon, Laurent; Myklebust, Reidun

    2014-05-01

    The distribution of breakup-related igneous rocks on rifted margins provide important constraints on the magmatic processes during continental extension and lithosphere separation which lead to a better understanding of the melt supply from the upper mantle and the relationship between tectonic setting and volcanism. The results can lead to a better understanding of the processes forming volcanic margins and thermal evolution of associated prospective basins. We present a revised mapping of the breakup-related igneous rocks in the NE Atlantic area, which are mainly based on the Mid-Norwegian (case example) margin. We divided the breakup related igneous rocks into (1) extrusive complexes, (2) shallow intrusive complexes (sills/dykes) and (3) deep intrusive complexes (Lower Crustal Body: LCB). The extrusive complex has been mapped using the seismic volcanostratigraphic method. Several distinct volcanic seismic facies units have been identified. The top basalt reflection is easily identified because of the high impedance contrast between the sedimentary and volcanic rocks resulting in a major reflector. The basal sequence boundary is frequently difficult to identify but it lies usually over the intruded sedimentary basin. Then the base is usually picked above the shallow sill intrusions identified on seismic profile. The mapping of the top and the base of the basaltic sequences allows us to determine the basalt thickness and estimate the volume of the magma production on the Mid- Norwegian margin. The thicker part of the basalt corresponds to the seaward dipping reflector (SDR). The magma feeder system, mainly formed by dyke and sill intrusions, represents the shallow intrusive complex. Deeper interconnected high-velocity sills are also mappable in the margin. Interconnected sill complexes can define continuous magma network >10 km in vertical ascent. The large-scale sill complexes, in addition to dyke swarm intrusions, represent a mode of vertical long-range magma

  18. A failure to reject: Testing the correlation between large igneous provinces and deep mantle structures with EDF statistics

    NASA Astrophysics Data System (ADS)

    Doubrovine, Pavel V.; Steinberger, Bernhard; Torsvik, Trond H.

    2016-03-01

    Absolute reconstructions of large igneous provinces (LIPs) for the past 300 Ma reveal a remarkable spatial pattern suggesting that almost all LIPs have erupted over the margins of the two large-scale structures in the Earth's lower mantle commonly referred to as the Large Low Shear-wave Velocity Provinces (LLSVPs). This correlation suggests that mantle plumes that have triggered LIP eruptions rose from the margins of LLSVPs, implying long-term stability of these structures and suggesting that they may be chemically distinct from the bulk of the mantle. Yet, some researchers consider the LLSVPs to be purely thermal upwellings, arguing that the observed distribution of LIPs can be explained by plumes randomly forming over the entire areas of LLSVPs. Here we examine the correlation between the LIPs and LLSVPs using nonparametric statistical tests, updated plate reconstructions, and a large number of alternative definitions of LLSVPs based on seismic tomography. We show that probability models assuming plume sources originating at the margins of LLSVPs adequately explain the observed distribution of reconstructed LIPs. In contrast, we find strong evidence against the models seeking to link LIPs with plumes randomly forming over the entire LLSVP areas. However, the hypothesis proposing that the correlation can be explained by plumes randomly forming over a larger area of slower-than-average shear wave velocities in the lowermost mantle cannot be ruled out formally. Our analysis suggests that there is no statistically sound reason for questioning the hypothesis that the LIPs correlate with the margins of LLSVP globally.

  19. Prolonged plume volcanism in the Caribbean Large Igneous Province: New insights from Curaçao and Haiti

    NASA Astrophysics Data System (ADS)

    Loewen, Matthew W.; Duncan, Robert A.; Kent, Adam J. R.; Krawl, Kyle

    2013-10-01

    We present 36 new 40Ar-39Ar incremental heating age determinations from the Caribbean Large Igneous Province (CLIP) providing evidence for extended periods of volcanic activity and suggest a new tectonomagmatic model for the province's timing and construction. These new 40Ar-39Ar ages for the Curaçao Lava Formation (CLF) and Haiti's Dumisseau Formation show evidence for active CLIP volcanism from 94 to 63 Ma. No clear changes in geochemical character are evident over this period. The CLF has trace element signatures (e.g., Zr/Nb = 10-20) and flat rare earth element (REE) trends consistent with plume volcanism. The Dumisseau Formation also has plume-like geochemistry and steeper REE trends similar to ocean island basalts. Volcanism in the Dumisseau Formation appears to have largely ceased by 83 Ma while at Curaçao it continued until 63 Ma. A rapidly surfacing and melting plume head alone does not fit this age distribution. Instead, we propose that the residual Galapagos plume head, following initial ocean plateau construction, was advected eastward by asthenospheric flow induced by subducting oceanic lithosphere. Slab rollback at the Lesser Antilles and Central America subduction zones created an extensional regime within the Caribbean plate. Mixing of plume with upwelling asthenospheric mantle provided a source for intermittent melting and eruption through the original plateau over a ˜30 Ma period.

  20. High-precision geochronology links the Ferrar large igneous province with early-Jurassic ocean anoxia and biotic crisis

    NASA Astrophysics Data System (ADS)

    Burgess, S. D.; Bowring, S. A.; Fleming, T. H.; Elliot, D. H.

    2015-04-01

    Apparent synchrony between eruption/emplacement of large igneous province (LIP) magmas and mass extinction has led to the implication of magmatism as a primary trigger of global scale environmental change. Evaluating the efficacy of magmatism as a driver of global change depends on the relative timing of magmatism and environmental change, and the magma effusion/intrusion rate, both of which can be constrained by high-precision geochronology. Early Jurassic (Pliensbachian-Toarcian) global ocean anoxia and acidification, carbon isotope perturbations, and biotic crisis have been linked to "synchronous" eruption and emplacement of the Karoo and Ferrar LIPs. To better constrain the timing and duration of Ferrar magmatism, we apply the single crystal, chemical abrasion U-Pb ID-TIMS method to zircon crystals isolated from twenty Ferrar LIP sills and lavas, and the Dufek intrusion. Dates suggest that both intrusive and extrusive Ferrar magmatism occurred over an interval of 349 ± 49 kyr, beginning with intrusive magmatism as early as 182.779 ± 0.033 Ma. Lava eruption was synchronous with, and in some cases postdates intrusion. When coupled with existing geochronology on the Karoo province, our dates confirm broad synchrony between Karoo and Ferrar magmatism, though Karoo magmatism began demonstrably prior to Ferrar magmatism, starting as early as 183.246 ± 0.045 Ma. The short-lived magmatic history of the Ferrar LIP makes it a plausible trigger for early-Jurassic environmental change.

  1. Modulation of Cenozoic climate by weathering of large igneous provinces on continents drifting through equatorial humid belt

    NASA Astrophysics Data System (ADS)

    Muttoni, G.; Kent, D. V.

    2011-12-01

    total emission of CO2 from modern volcanoes (Gerlach, 2011 Eos). In contrast, large igneous provinces like that 250 Ma Siberian Traps that remained in higher (cooler) latitudes or the 130 Ma Parana located in the tropical arid belt are not major sponges of CO2. And on the supply side, there is presently little subduction of equatorial bulge sediments save for Central America. We conclude that consumption of CO2 by igneous provinces with highly weatherable mafic rocks that drift into the equatorial humid belt is an important and quite possibly the determinant process for modulating levels of pCO2.

  2. Geological evolution of the Coombs Allan Hills area, Ferrar large igneous province, Antarctica: Debris avalanches, mafic pyroclastic density currents, phreatocauldrons

    NASA Astrophysics Data System (ADS)

    Ross, Pierre-Simon; White, James D. L.; McClintock, Murray

    2008-05-01

    The Jurassic Ferrar large igneous province of Antarctica comprises igneous intrusions, flood lavas, and mafic volcaniclastic deposits (now lithified). The latter rocks are particularly diverse and well-exposed in the Coombs-Allan Hills area of South Victoria Land, where they are assigned to the Mawson Formation. In this paper we use these rocks in conjunction with the pre-Ferrar sedimentary rocks (Beacon Supergroup) and the lavas themselves (Kirkpatrick Basalt) to reconstruct the geomorphological and geological evolution of the landscape. In the Early Jurassic, the surface of the region was an alluvial plain, with perhaps 1 km of mostly continental siliciclastic sediments underlying it. After the fall of silicic ash from an unknown but probably distal source, mafic magmatism of the Ferrar province began. The oldest record of this event at Allan Hills is a ≤ 180 m-thick debris-avalanche deposit (member m1 of the Mawson Formation) which contains globular domains of mafic igneous rock. These domains are inferred to represent dismembered Ferrar intrusions emplaced in the source area of the debris avalanche; shallow emplacement of Ferrar magmas caused a slope failure that mobilized the uppermost Beacon Supergroup, and the silicic ash deposits, into a pre-existing valley or basin. The period which followed ('Mawson time') was the main stage for explosive eruptions in the Ferrar province, and several cubic kilometres of both new magma and sedimentary rock were fragmented over many years. Phreatomagmatic explosions were the dominant fragmentation mechanism, with magma-water interaction taking place in both sedimentary aquifers and existing vents filled by volcaniclastic debris. At Coombs Hills, a vent complex or 'phreatocauldron' was formed by coalescence of diatreme-like structures; at Allan Hills, member m2 of the Mawson Formation consists mostly of thick, coarse-grained, poorly sorted layers inferred to represent the lithified deposits of pyroclastic density currents

  3. Origin and evolution of a submarine large igneous province: the Kerguelen Plateau and Broken Ridge, southern Indian Ocean

    NASA Astrophysics Data System (ADS)

    Frey, F. A.; Coffin, M. F.; Wallace, P. J.; Weis, D.; Zhao, X.; Wise, S. W.; Wähnert, V.; Teagle, D. A. H.; Saccocia, P. J.; Reusch, D. N.; Pringle, M. S.; Nicolaysen, K. E.; Neal, C. R.; Müller, R. D.; Moore, C. L.; Mahoney, J. J.; Keszthelyi, L.; Inokuchi, H.; Duncan, R. A.; Delius, H.; Damuth, J. E.; Damasceno, D.; Coxall, H. K.; Borre, M. K.; Boehm, F.; Barling, J.; Arndt, N. T.; Antretter, M.

    2000-02-01

    Oceanic plateaus form by mantle processes distinct from those forming oceanic crust at divergent plate boundaries. Eleven drillsites into igneous basement of Kerguelen Plateau and Broken Ridge, including seven from the recent Ocean Drilling Program Leg 183 (1998-99) and four from Legs 119 and 120 (1987-88), show that the dominant rocks are basalts with geochemical characteristics distinct from those of mid-ocean ridge basalts. Moreover, the physical characteristics of the lava flows and the presence of wood fragments, charcoal, pollen, spores and seeds in the shallow water sediments overlying the igneous basement show that the growth rate of the plateau was sufficient to form subaerial landmasses. Most of the southern Kerguelen Plateau formed at ˜110 Ma, but the uppermost submarine lavas in the northern Kerguelen Plateau erupted during Cenozoic time. These results are consistent with derivation of the plateau by partial melting of the Kerguelen plume. Leg 183 provided two new major observations about the final growth stages of the Kerguelen Plateau. 1: At several locations, volcanism ended with explosive eruptions of volatile-rich, felsic magmas; although the total volume of felsic volcanic rocks is poorly constrained, the explosive nature of the eruptions may have resulted in globally significant effects on climate and atmospheric chemistry during the late-stage, subaerial growth of the Kerguelen Plateau. 2: At one drillsite, clasts of garnet-biotite gneiss, a continental rock, occur in a fluvial conglomerate intercalated within basaltic flows. Previously, geochemical and geophysical evidence has been used to infer continental lithospheric components within this large igneous province. A continental geochemical signature in an oceanic setting may represent deeply recycled crust incorporated into the Kerguelen plume or continental fragments dispersed during initial formation of the Indian Ocean during breakup of Gondwana. The clasts of garnet-biotite gneiss are

  4. Early-Middle Paleozoic subduction-collision history of the south-eastern Central Asian Orogenic Belt: Evidence from igneous and metasedimentary rocks of central Jilin Province, NE China

    NASA Astrophysics Data System (ADS)

    Pei, Fu-Ping; Zhang, Ying; Wang, Zhi-Wei; Cao, Hua-Hua; Xu, Wen-Liang; Wang, Zi-Jin; Wang, Feng; Yang, Chuan

    2016-09-01

    To constrain the Early-Middle Paleozoic tectonic evolution of the south-eastern segment of the Central Asian Orogenic Belt (CAOB), we undertook zircon U-Pb dating and analyzed major and trace elements and zircon Hf isotope compositions of Late Cambrian to Middle Devonian igneous and metasedimentary rocks in central Jilin Province, NE China. LA-ICP-MS zircon U-Pb dating indicates that the Early-Middle Paleozoic magmatism in central Jilin Province can be divided into four episodes: Late Cambrian (ca. 493 Ma), Middle Ordovician (ca. 467 Ma), Late Ordovician-Early Silurian (ca. 443 Ma), and Late Silurian-Middle Devonian (425-396 Ma). The progression from subduction initiation to maturity is recorded by Late Cambrian low-K tholeiitic meta-diabase, Middle Ordovician medium-K calc-alkaline pyroxene andesite, and Late Ordovician to Early Silurian low-K tonalite, which all have subduction-related characteristics and formed in an evolving supra-subduction zone setting. Late Silurian to Middle Devonian calc-alkaline igneous rocks, with the lithological association of granodiorite, monzogranite, rhyolite, dacite, and trachydacite, show progressively increasing K2O contents from medium K to shoshonite series. Furthermore, the Early-Middle Devonian monzogranites are characterized by high K2O, Sr/Y, and [La/Yb]N values, indicating they were generated by the melting of thickened lower crust. These results suggest a transition from subduction to post-orogenic setting during the Late Silurian-Middle Devonian. Our interpretation is supported by the maximum age of molasse deposition in the Zhangjiatun member of the Xibiehe Formation. Overall, we suggest that Late Cambrian tholeiitic meta-diabase, Middle Ordovician pyroxene andesite, and Late Ordovician-Early Silurian tonalite formed above the northward-subducting and simultaneously seaward-retreating of Paleo-Asian Ocean plate. Subsequently, the northern arc collided with the North China Craton and post-orogenic extension occurred

  5. The North Atlantic Igneous Province reconstructed and its relation to the Plume Generation Zone: the Antrim Lava Group revisited

    NASA Astrophysics Data System (ADS)

    Ganerød, M.; Smethurst, M. A.; Torsvik, T. H.; Prestvik, T.; Rousse, S.; McKenna, C.; van Hinsbergen, D. J. J.; Hendriks, B. W. H.

    2010-07-01

    Large igneous provinces (LIPs) have recently been suggested to originate at the edges of low-velocity zones on the core mantle boundary (Plume Generation Zones). If true, LIPs can potentially be used to constrain paleolongitude in plate tectonic reconstructions. To validate the hypothesis, it is essential to study LIPs of which the paleolongitude can be constrained by other methods, such as hotspot reference frames. An ideal candidate to this end is the early Cenozoic North Atlantic Igneous Province (NAIP). Despite being the largest volcanic unit of the British Tertiary Igneous Province (BTIP, part of the NAIP), the age and paleoposition of the Antrim Lava Group (ALG) in Northern Ireland, which is key to the NAIP as a whole, was hitherto poorly constrained. In this paper, we therefore present an integrated high-resolution paleomagnetic and geochronological study. The ALG is divided into three formations: the Lower Basalt Formation (LBF), Interbasaltic Formation (IBF) and the Upper Basalt Formation (UBF). The IBF is mostly lateritic and encloses the Tardree rhyolite. We offer new age constraints from all three formations using the 40Ar/39Ar method and propose that 62.6 +/- 0.3, 61.3 +/- 0.3 and 59.6 +/- 0.3 Ma (1σ, internal uncertainties) are sound estimates of the age of emplacement of the LBF, Tardree rhyolite (IBF) and UBF, respectively. This constrains the nominal duration of emplacement of the ALG to 3 +/- 0.6 Ma (1σ). This reevaluation of the magnetic signature in the ALG revealed reverse polarity remanence in all three formations and an overall paleomagnetic north pole at latitude 78.9°N, longitude 167°E (A95 = 6.3; age ~61 Ma) in the European reference system. This appears consistent with paleomagnetic poles from the rest of the NAIP; both in Europe and Greenland, as well as predictions from modern apparent polar wander paths. The new radiometric ages span magnetochron C26r, C27n and C27r. The normal polarity chron C27n most probably occurred during the

  6. Assessing the volcanic styles of the North Atlantic Igneous Province and their potential implications for the PETM

    NASA Astrophysics Data System (ADS)

    Jerram, Dougal; Reynolds, Peter; Jones, Morgan; Svensen, Henrik; Planke, Sverre; Millett, John; Galland, Olivier; Angkasa, Syahreza; Schofield, Nick; Howell, John

    2016-04-01

    In order to understand the role that large igneous provinces play in changing climatic conditions, it is important to constrain the different styles of volcanism and their volumes, both temporally and spatially. Regional variations in palaeo-environment as well as different volcanic materials (basic-acidic) can all have effects on the eruption styles, and determine whether eruptions effectively release gases into the atmosphere and hydrosphere. The North Atlantic Igneous Province (NAIP) covers a vast area as well as a significant time span, having formed at 60-55 Ma. Importantly, its' formation is implicated in the climatic perturbations at the Palaeocene-Eocene Thermal Maximum (PETM). The products of volcanism in the NAIP range from lava flows and hyaloclastites to more explosive tephra forming eruptions from both basaltic and more evolved eruptions. The explosive end member styles of both mafic and felsic volcanism also produce ash beds in the rock record at key times. Hydrothermal vent structures which are predominantly related with the emplacement of large (>1000 km3) intrusions into the subvolcanic basins in the NAIP are another style of eruption, where climate-forcing gases can be transferred into the atmosphere and hydrosphere. In this case, the types and volumes of gas produced by intrusions is heavily dependent on the host-rock sediment properties that they intrude through. The distribution of vent structures can be shown to be widespread on both the Norwegian and the Greenland margins of the NAIP. In this overview we assess the main eruption styles, deposits and their distribution within the NAIP using mapped examples from offshore seismic data as well as outcrop analogues, highlighting the variability of these structures and their deposits. As the availability of 3D data from offshore and onshore increases, the full nature of the volcanic stratigraphy from the subvolcanic intrusive complexes, through the main eruption cycles into the piercing vent

  7. Unravelling internal structures of an alkaline and carbonatite igneous complex by 3D modelling of gravity and magnetic data

    NASA Astrophysics Data System (ADS)

    Andersson, Magnus; Malehmir, Alireza

    2015-04-01

    Alnö igneous complex in central Sweden is among the few rare and largest alkaline and carbonatite ring-shaped intrusions in the world. Recent high-resolution reflection seismic profiles (Andersson et al., 2013) suggest a saucer-shaped magma chamber at about 3 km depth. Study of anisotropy of magnetic susceptibility (AMS) from a number of carbonatite dykes in the complex suggests a combination of laminar magma flow and sheet closure in the waning stage of magma transport for their emplacement (Andersson et al., 2015). Since 2010 and in conjunction with the above-mentioned studies, more than 400 gravity data points have been measured on land and partly on sea-ice. In addition, the Geological Survey of Sweden (SGU) provided about 100 data points. Petrophysical measurements including density and bulk magnetic susceptibility were carried out for more than 250 rock samples; magnetic remanence was measured on 39 of those samples. The measurements for example indicate that induced magnetisation is dominant in the complex and only a few rock samples show high remanent magnetisation (Q ≥ 1). SGU also provided airborne magnetic data (60 m flight altitude and 200 m flight line spacing) covering the complex on land and areas around it in the sea. These data show the complex as (i) a strong positive Bouguer anomaly, around 20 mGal, one of the strongest gravity gradients observed in Sweden, and (ii) a strong positive magnetic anomaly, around 2400 nT, additionally showing clear magnetic structures within the complex and adjacent to it in the sea. 3D inversion of the gravity and magnetic data was then performed using 100 m by 100 m meshes in the lateral direction and vertically varying meshes starting from 10 m at surface and increasing to 100 m in the depth interval 4250 - 8250 m. The inversion models cover an area of 17 km by 18 km. Regional fields were removed using a first-order polynomial surface for the gravity data and a constant (IGRF) for the magnetic data. Background

  8. Anatomy of a deep crustal volcanic conduit system; The Reinfjord Ultramafic Complex, Seiland Igneous Province, Northern Norway

    NASA Astrophysics Data System (ADS)

    Grant, Thomas B.; Larsen, Rune B.; Anker-Rasch, Lars; Grannes, Kim Rune; Iljina, Markku; McEnroe, Suzanne; Nikolaisen, Even; Schanche, Mona; Øen, Endre

    2016-05-01

    The Reinfjord Ultramafic Complex, Seiland Igneous Province represents a lower crustal magma chamber (25-30 km depth) that likely records a deep conduit system for mantle derived melts ascending through the continental crust. It consists of cumulates of dunite, wehrlite, olivine clinopyroxene as well as subordinate lherzolite and websterites, intruded into gabbro-norite and metasediment gneisses. Field, petrographic and geochemical data show that the intrusion developed through fractional crystallization and interactions between new batches of magma and partially solidified cumulates. This resulted in a 'reverse fractionation sequence' whereby cumulates became progressively more MgO and olivine rich with time. Contamination by partial melting of the gabbro-norite is evident in the marginal zones, but is limited in the central parts of the intrusion. Interrupted crystallization sequences of olivine → olivine + clinopyroxene and the absence of significant amounts of more evolved melts, suggests that large volumes of melt passed through the system to shallower levels in the crust leaving behind the cumulate sequences observed at Reinfjord. Therefore, the Reinfjord Ultramafic Complex represents a deep crustal conduit system, through which mantle derived melts passed. The parent melts are likely to have formed from partial melting of mantle with residual garnet and clinopyroxene.

  9. Deep electrical structure over the igneous arc of the Indo Burman Orogen in Sagaing province, Myanmar from magnetotelluric studies

    NASA Astrophysics Data System (ADS)

    Rao, C. K.; Selvaraj, C.; Gokarn, S. G.

    2014-11-01

    Magnetotelluric studies over the igneous arc of the Indo Burman range in the Sagaing province of Myanmar have delineated the high resistivity Indian plate subducting westwards beneath the Burmese block to depths of 30 km and beyond. The thick moderately resistive (20-100 Ω m) layer overlying the subducting Indian plate may be due to the low resistivity sediments. The entire region is covered with prominent sedimentary layer with a conductance varying between 20 and 3000 S showing a general increase from the east to west, suggesting that their thickness increases toward the west. The large unsystematic variations in the conductance are indicative of the widely varying depositional environments and also possible vertical block movements during the course of their deposition. A west dipping low resistivity zone to the east of Burmese block seems to demarcate its eastern limit, suggesting the possibility of a hitherto unknown deep seated fault, which is also supported by the several earthquake foci located over this zone. The nature of the crustal movements over this fault is not immediately apparent. Possibility exists that the Sagaing fault is an en echelon fault and the present feature observed here is a part of this en echelon fault. The possibility of channel flows of the weakened rocks in the deep crust observed in the vicinity of the eastern Himalayan syntaxis may also cause such low resistivity zones.

  10. Evolution of Early Cretaceous paleotemperatures: A balance between global carbon burial rates and large igneous provinces activity

    NASA Astrophysics Data System (ADS)

    Bodin, Stephane; Meissner, Philipp; Janssen, Nico; Steuber, Thomas; Mutterlose, Jörg

    2015-04-01

    The lack of a high-resolution, long-term Early Cretaceous paleotemperature record hampers a full-scale comprehension, as well as a more holistic approach, to Early Cretaceous climate changes. Here we present an extended compilation of belemnite-based oxygen, carbon and strontium isotope records covering the late Berriasian - middle Albian from the Vocontian Basin (SE France). Integrated with paleontological and sedimentological evidences, this dataset clearly demonstrates that three intervals of cold climatic conditions have taken place during the Early Cretaceous greenhouse world. More specifically, these have taken place during (1) the late Valanginian-earliest Hauterivian, (2) the late early Aptian and (3) the latest Aptian - earliest Albian. Each of these intervals is associated with high amplitude sea-level fluctuations, pointing at transient installations of polar ice caps. As evidenced by carbon isotope positive excursions, each cold episode is associated with enhanced burial of organic matter on a global scale. Moreover, there is a very good match between the timing and size of large igneous provinces eruptions and the amplitude of Early Cretaceous warming episodes. Altogether, these observations confirm the instrumental role of atmospheric CO2 variations in the making of Mesozoic climate change. On a long-term perspective, during the Early Cretaceous, the coupling of global paleotemperature and seawater strontium isotopic ratio is best explained by temperature-controlled changes of continental crust weathering rates.

  11. Nonexplosive and explosive magma/wet-sediment interaction during emplacement of Eocene intrusions into Cretaceous to Eocene strata, Trans-Pecos igneous province, West Texas

    USGS Publications Warehouse

    Befus, K.S.; Hanson, R.E.; Miggins, D.P.; Breyer, J.A.; Busbey, A.B.

    2009-01-01

    Eocene intrusion of alkaline basaltic to trachyandesitic magmas into unlithified, Upper Cretaceous (Maastrichtian) to Eocene fluvial strata in part of the Trans-Pecos igneous province in West Texas produced an array of features recording both nonexplosive and explosive magma/wet-sediment interaction. Intrusive complexes with 40Ar/39Ar dates of ~ 47-46??Ma consist of coherent basalt, peperite, and disrupted sediment. Two of the complexes cutting Cretaceous strata contain masses of conglomerate derived from Eocene fluvial deposits that, at the onset of intrusive activity, would have been > 400-500??m above the present level of exposure. These intrusive complexes are inferred to be remnants of diatremes that fed maar volcanoes during an early stage of magmatism in this part of the Trans-Pecos province. Disrupted Cretaceous strata along diatreme margins record collapse of conduit walls during and after subsurface phreatomagmatic explosions. Eocene conglomerate slumped downward from higher levels during vent excavation. Coherent to pillowed basaltic intrusions emplaced at the close of explosive activity formed peperite within the conglomerate, within disrupted Cretaceous strata in the conduit walls, and within inferred remnants of the phreatomagmatic slurry that filled the vents during explosive volcanism. A younger series of intrusions with 40Ar/39Ar dates of ~ 42??Ma underwent nonexplosive interaction with Upper Cretaceous to Paleocene mud and sand. Dikes and sills show fluidal, billowed, quenched margins against the host strata, recording development of surface instabilities between magma and groundwater-rich sediment. Accentuation of billowed margins resulted in propagation of intrusive pillows into the adjacent sediment. More intense disruption and mingling of quenched magma with sediment locally produced fluidal and blocky peperite, but sufficient volumes of pore fluid were not heated rapidly enough to generate phreatomagmatic explosions. This work suggests that

  12. Origin of the Early Permian zircons in Keping basalts and magma evolution of the Tarim Large Igneous Province (northwestern China)

    NASA Astrophysics Data System (ADS)

    Li, Yin-Qi; Li, Zi-Long; Yu, Xing; Langmuir, Charles H.; Santosh, M.; Yang, Shu-Feng; Chen, Han-Lin; Tang, Zhong-Li; Song, Biao; Zou, Si-Yuan

    2014-09-01

    The Tarim continental flood basalts (CFBs) provide important clues about the genesis and magmatic evolution of the Early Permian Tarim Large Igneous Province (Tarim LIP) in northwestern China. Here we present results of LA-MC-ICPMS Lu-Hf isotope analysis on Early Permian (ca. 290 Ma) zircons extracted from the Tarim CFBs in the Keping area, northwest of the Tarim Basin. Zircons from two sub-groups of Keping basalts (Groups 1a and 1b) have similar Lu-Hf isotopic compositions and exhibit a relatively large range of 176Hf/177Hf ratios between 0.282422 and 0.282568. Their negative εHf(t) values (- 6.8-- 1.4) are generally lower than the whole-rock εHf(t) values of their host basalts (- 2.8-2.1), and are distinct from other known intrusive rocks (- 0.3-7.1) in the Tarim LIP and their hosted zircons (4.9-8.8). Systematic studies of Hf isotopic data from Tarim and its adjacent regions reveal that these zircons are probably xenocrysts, sourced from coeval igneous rocks in the South Tianshan Orogen (e.g., the Lower Permian Xiaotikanlike Formation volcanic and pyroclastic rock suite). This, together with the presence of Precambrian zircons in Keping basalts, clearly indicates crustal contamination during their eruptions and provides hints about the potential contaminant sources. Geochemical modeling further suggests that the earlier erupted Group 1b basalts experienced more contamination, predominantly by some high Th-U-Pb rock components, most likely from the South Tianshan Orogen. The later erupted Group 1a basalts in the Keping area have been less contaminated with mainly the Tarim Precambrian rocks. Another group of the Tarim CFBs in the Northern Tarim Uplift (Group 2) appears to have undergone negligible crustal contamination but possesses evidence for variable source compositions. The modeling also indicates that the uncontaminated parental magmas of various Tarim LIP rocks (from the picrites and basalts to ultramafic-mafic and syenitic intrusive rocks) exhibit a

  13. Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Hauff, F.; Hoernle, K.; Tilton, G.; Graham, D. W.; Kerr, A. C.

    2000-01-01

    Oceanic flood basalts are poorly understood, short-term expressions of highly increased heat flux and mass flow within the convecting mantle. The uniqueness of the Caribbean Large Igneous Province (CLIP, 92-74 Ma) with respect to other Cretaceous oceanic plateaus is its extensive sub-aerial exposures, providing an excellent basis to investigate the temporal and compositional relationships within a starting plume head. We present major element, trace element and initial Sr-Nd-Pb isotope composition of 40 extrusive rocks from the Caribbean Plateau, including onland sections in Costa Rica, Colombia and Curaçao as well as DSDP Sites in the Central Caribbean. Even though the lavas were erupted over an area of ˜3×10 6 km 2, the majority have strikingly uniform incompatible element patterns (La/Yb=0.96±0.16, n=64 out of 79 samples, 2σ) and initial Nd-Pb isotopic compositions (e.g. 143Nd/ 144Nd in=0.51291±3, ɛNdi=7.3±0.6, 206Pb/ 204Pb in=18.86±0.12, n=54 out of 66, 2σ). Lavas with endmember compositions have only been sampled at the DSDP Sites, Gorgona Island (Colombia) and the 65-60 Ma accreted Quepos and Osa igneous complexes (Costa Rica) of the subsequent hotspot track. Despite the relatively uniform composition of most lavas, linear correlations exist between isotope ratios and between isotope and highly incompatible trace element ratios. The Sr-Nd-Pb isotope and trace element signatures of the chemically enriched lavas are compatible with derivation from recycled oceanic crust, while the depleted lavas are derived from a highly residual source. This source could represent either oceanic lithospheric mantle left after ocean crust formation or gabbros with interlayered ultramafic cumulates of the lower oceanic crust. High 3He/ 4He in olivines of enriched picrites at Quepos are ˜12 times higher than the atmospheric ratio suggesting that the enriched component may have once resided in the lower mantle. Evaluation of the Sm-Nd and U-Pb isotope systematics on

  14. Geochemical Uniformity over 30 Million Years of Volcanic Activity in the Caribbean Large Igneous Province: Evidence from Curacao and Haiti

    NASA Astrophysics Data System (ADS)

    Loewen, M. W.; Kent, A. J.; Duncan, R. A.; Krawl, K.; Michael, P. J.; Graham, D. W.

    2012-12-01

    New 40Ar/39Ar age determinations from Caribbean Large Igneous Province (CLIP) lavas, dikes, and sills from Curacao and Haiti record almost 30 million years of volcanism, beginning at ~93 Ma and continuing until ~63 Ma, with peak activity at 93-90, 86-85, 80-76 and 66-63 Ma. A variety of rock types are apparent. Despite the significant age range evident in our sample set, which includes picritic to tholeitic pillow lavas, thick hyaloclastite sequences, and poikolitic sills, compositions show only subtle compositional differences between groups of different age. Most whole rock samples appear to derive from a similar mantle source peridotite and to have undergone a common set differentiation processes (primarily partial melting followed by fractionation of olivine, clinopyroxene, and plagioclase). The recognition of this range of ages and compositional similarities poses important questions for the extent and cause of CLIP magmatism. We present new 40Ar-39Ar ages and major and trace elements for whole rock, minerals and glass samples from throughout the exposed volcanic sections at the two locations. Hyaloclastite glasses have also been analyzed by FTIR for volatile abundances. Unlike major element compositions of whole rock samples, major element and volatile analyses of hyaloclastite glasses reveal the presence of at least three distinct magma series. In addition, variations in Cl and Cl/K suggest that differences exist in the degree to which magmatic systems interact with seawater-derived components. One He-isotopic analysis from a Haiti picrite (3He/4He = 12.3 Ra) is consistent with other isotopic evidence for a significant mantle plume contribution to CLIP construction. Future work will focus on trace element modeling to further constrain magma sources and extents of melting, and on expanding the number of samples for which we have age control.

  15. Estimating the impact of the cryptic degassing of Large Igneous Provinces: A mid-Miocene case-study

    NASA Astrophysics Data System (ADS)

    Armstrong McKay, David I.; Tyrrell, Toby; Wilson, Paul A.; Foster, Gavin L.

    2014-10-01

    Large Igneous Provinces (LIPs) have been emplaced throughout Earth's history, erupting great quantities (>104 km) of lava in long-lived (>105 y) events that have been linked to major environmental disruptions. The largest LIP eruptions (e.g. Siberian Traps) are widely considered to have had an impact on global climate through basalt CO2 degassing but the impact of the more numerous smaller LIPs is debated. Here we test the hypothesis that LIPs had a greater impact on Earth's climate history than previously estimated because of the ‘cryptic degassing’ of intruded and crust-contaminated magma, injecting extra CO2 over and above that coming from sub-aerial basalts. We use biogeochemical box models to investigate the potential impact of the Columbia River Basalts (CRB) during the mid-Miocene where multiple palaeorecords for this geologically relatively recent event enable more rigorous data-model comparison. We find that the effect on the long-term carbon cycle of basalt degassing from the CRB alone is negligible, but that a total CRB emission of 4090-5670 Pg of carbon with 3000-4000 Pg of this carbon emitted during the Grande Ronde Basalt eruptions, a flux within the acceptable estimated range when cryptic degassing is included, does well in reproducing the record of benthic δ13C and atmospheric CO2 change during the core of the Miocene Climatic Optimum. Nevertheless, mechanisms other than degassing are required to drive observed warmth before 16.3 Ma and to match observed calcite compensation depth behaviour after ˜15.4 Ma. Hence, our findings rule out the possibility that CRB emplacement alone can fully explain the mid-Miocene record but they demonstrate the enhanced climate impact that occurs when substantial cryptic degassing accompanies LIP emplacement.

  16. Garnet granulite xenoliths from the Northern Baltic shield- The underplated lower crust of a palaeoproterozoic large igneous province

    USGS Publications Warehouse

    Kempton, P.D.; Downes, H.; Neymark, L.A.; Wartho, J.A.; Zartman, R.E.; Sharkov, E.V.

    2001-01-01

    Garnet granulite facies xenoliths hosted in Devonian lamprophyres from the Kola Peninsula are interpreted to represent the high-grade metamorphic equivalents of continental flood tholeiites, emplaced into the Baltic Shield Archaean lower crust in early Proterozoic time. Geochronological data and similarities in major and trace element geochemistry suggest that the xenoliths formed during the same plume-related magmatic event that created a widespread Palaeoproterozoic large igneous province (LIP) at 2.4-2.5 Ga. They are, thus, the first samples of the lower crust of a Palaeo-proterozoic LIP to be studied in petrological detail. The suite includes mafic granulites (gar + cpx + rutile ?? plag ?? opx ?? phlog ?? amph), felsic granulites (plag + gar + cpx + rutile ?? qtz ?? Kspar ?? phlog ?? amph) and pyroxenites (?? phlog ?? amph), but mafic garnet granulites predominate. Although some samples are restites, there is no evidence for a predominance of magmatic cumulates, as is common for Phanerozoic lower-crustal xenolith suites. Metasediments are also absent. Phlogopite and/or amphibole occur in xenoliths of all types and are interpreted to be metasomatic in origin. The K-rich metasomatic event occurred at ?????0 Ga, and led to substantial enrichment in Rb, K, LREE/HREE, Th/U, Th/Pb and, to a lesser extent, Nb and Ti. The fluids responsible for this metasomatism were probably derived from a second plume that arrived beneath the region at this time. Evidence for partial melting of mafic crust exists in the presence of migmatitic granulites. The timing of migmatization overlaps that of metasomatism, and it is suggested that migmatization was facilitated by the metasomatism. The metamorphism, metasomatism and migmatization recorded in the Kola granulite xenoliths may be representative of the processes responsible for converting Archaean LIP-generated proto-continents into continental crust.

  17. Advancing Late Mesoproterozoic Paleogeography With New Constraints From The Keweenawan Rift And The Umkondo Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Swanson-Hysell, N.; Kilian, T. M.; Bowring, S. A.; Hanson, R. E.; Burgess, S. D.; Ramezani, J.

    2014-12-01

    Laurentia and Kalahari are currently interpreted as independently moving continents ca. 1110 million years ago that subsequently became conjoined in the supercontinent Rodinia. Their relative positions and orientations are dependent both on the directional comparison of paleomagnetic poles and geomagnetic polarity choices for those poles. In this contribution, we use newly developed and existing paleomagnetic and geochronological data from both the ca. 1110-1085 Ma Midcontinent Rift of Laurentia and the ca. 1109 Ma Umkondo Large Igneous Province (LIP) of Kalahari to present improved constraints on relations between the two continents. Previous mean poles for the Umkondo LIP have been either calculated by taking the mean of regional submeans or at the site level which is problematic given the preponderance of multiple sites from single individual cooling units. We report a new Umkondo grand mean pole that is the mean of the virtual geomagnetic poles (VGPs) of individual cooling units and is reinforced with new data from ~20 previously unstudied Umkondo sills from Botswana. This approach yields a pole whose position and uncertainty are the most robust calculated to date. The portion of Laurentia's Mesoproterozoic apparent polar wander path (APWP) known as the Logan Loop and Keweenawan Track partially overlaps in age with the Umkondo pole and is of central importance in efforts to reconstruct late Mesoproterozoic paleogeography. Ongoing debates as to the geometry and timing of Rodinia assembly critically hinge on the comparison of paleomagnetic poles from other continents to the Keweenawan record. We present an updated compilation for the Keweenawan Track APWP using an improved chronostratigraphic context enabled by new geochronological and paleomagnetic data. Ongoing improvements and time-calibration of this record further constrains the rate of Laurentia's motion and provides opportunities for increased rigor in the determination of relative paleogeographic

  18. The emergence of primary hotspots as large igneous provinces at earth surface in the last 300 Ma

    NASA Astrophysics Data System (ADS)

    Courtillot, V.; Besse, J.; Renne, P.

    2003-04-01

    Based on a set of geophysical, geochemical and geological criteria, we (1) have recently proposed that 7 hotspots, 3 in the Pacific hemisphere, 4 in the Indo-Atlantic, which we have called 'primary' may have a very deep origin. Hotspots in each hemisphere move at less than 5mm/a, whereas there has been significant (up to 50mm/a) episodic motion between the two hemispheres. These episodes coincide with discrete episodes in true polar wander (TPW) and primary hotspots are thought to passively trace the motions of quadrupolar lower mantle convection. One of the key features, possibly the most significant, of these primary hotspot is that they all emerged at the Earth's surface in the last 150 Ma or so as flood basalts or oceanic plateaus, i.e. large igneous provinces (LIPs). We have reviewed some characteristics of these LIPs, mostly related to the volumes of extruded material and the timing (age and duration) of this volcanism (2). The volumes of LIPs are remarkably unimodal (originally between say 2 and 8 million cubic kilometers), in contrast with many other geophysical phenomena. This is likely due to the fact that these huge instabilities in the mantle cannot pierce the lithosphere unless they have a minimum size, and that there is a maximum size of the plumes which the mantle can generate. The plume birth is correlated most of the time with major episodes of continental breakup (lithosphere) and mass extinction (biosphere). Major ocean basins that have not been subsequently affected by subduction or collision are simply the memory of the location of a primary plume impact: the clearest case is the Atlantic with its three major basins from South to North being linked to emergence of the Parana-Etendeka (135 Ma), Central Atlantic Magmatic Province (200 Ma) and Greenland traps (60 Ma). All primary hotspots connected to a trap less than 100 Ma in age are currently active. All traps older than 150 Ma are not connected to an active hotspot. Those with intermediate

  19. LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, SW China

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Wang, Xinsong; Xu, Yue

    2015-04-01

    The Jinshajiang-Red River alkaline igneous belt in the eastern Indian-Asian collision zone, of southwestern China, hosts abundant, economically important Cu-Mo-Au mineralization of Cenozoic age. Major- and trace-element compositions of titanites from representative Cu-mineralized intrusions determined by LA-ICP-MS show higher values for Fe2O3/Al2O3, ΣREE + Y, LREE/HREE, Ce/Ce*, (Ce/Ce*)/(Eu/Eu*), U, Th, Ta, Nb and Ga, and lower values for Al2O3, CaO, Eu/Eu*, Zr/Hf, Nb/Ta and Sr than those for titanites from barren intrusions. Different ΣREE + Y, LREE/HREE, U, Th, Ta and Nb values of titanites between Cu-mineralized and barren intrusions were controlled mainly by the coexisting melt compositions. However, different Sr concentrations and negative Eu anomalies of titanites between Cu-mineralized and barren intrusions were most probably caused by different degrees of crystallization of feldspar from melts. In addition, different Ga concentrations and positive Ce anomalies of titanites between Cu-mineralized and barren intrusions were most likely caused by different magmatic fO2 conditions. Pronounced compositional differences of titanites between Cu-mineralized and barren intrusions can provide a useful tool to help discriminate between ore-bearing and barren intrusions at an early stage of exploration, and, thus, have a potential application in exploration for porphyry Cu deposits in the Jinshajiang - Red River alkaline igneous belt, and to other areas.

  20. Low-3He/4He sublithospheric mantle source for the most magnesian magmas of the Karoo large igneous province

    NASA Astrophysics Data System (ADS)

    Heinonen, Jussi S.; Kurz, Mark D.

    2015-09-01

    The massive outpourings of Karoo and Ferrar continental flood basalts (CFBs) ∼180 Ma ago mark the initial Jurassic rifting stages of the Gondwana supercontinent. The origin and sources of these eruptions have been debated for decades, largely due to difficulties in defining their parental melt and mantle source characteristics. Recent findings of Fe- and Mg-rich dikes (depleted ferropicrite suite) from Vestfjella, western Dronning Maud Land, Antarctica, have shed light on the composition of the deep sub-Gondwanan mantle: these magmas have been connected to upper mantle sources presently sampled by the Southwest Indian Ocean mid-ocean ridge basalts (SWIR MORBs) or to high 3He/4He plume-entrained non-chondritic primitive mantle sources formed early in Earth's history. In an attempt to determine their He isotopic composition and relative contributions from magmatic, cosmogenic, and radiogenic He sources, we performed in-vacuo stepwise crushing and melting analyses of olivine mineral separates, some of which were abraded to remove the outer layer of the grains. The best estimate for the mantle isotopic composition is given by a sample with the highest amount of He released (>50%) during the first crushing step of an abraded coarse fraction. It has a 3He/4He of 7.03 ± 0.23 (2σ) times the atmospheric ratio (Ra), which is indistinguishable from those measured from SWIR MORBs (6.3-7.3 Ra; source 3He/4He ∼6.4-7.6 Ra at 180 Ma) and notably lower than in the most primitive lavas from the North Atlantic Igneous Province (up to 50 Ra), considered to represent the epitome magmas from non-chondritic primitive mantle sources. Previously published trace element and isotopic (Sr, Nd, and Pb) compositions do not suggest a direct genetic link to any modern hotspot of Indian or southern Atlantic Oceans. Although influence of a mantle plume cannot be ruled out, the high magma temperatures and SWIR MORB-like geochemistry of the suite are best explained by supercontinent insulation

  1. Origin of Siletzia, a Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.

    2015-12-01

    Siletzia is a Paleogene large igneous province (LIP) forming the oceanic basement of coastal OR, WA and S. BC that was accreted to North America (NAM) in the early Eocene. Crustal thickness from seismic refraction ranges from 10 to 32 km, with 16 km of pillow and subaerial basalt exposed on the Olympic Peninsula. At 1.7-2.4 x 106 km3, Siletzia is at least 10 times the volume of the Columbia River flood basalts. U-Pb and 40Ar/39Ar ages, global coccolith (CP) zones, and magnetostratigraphy allow correlation of Siletzia with the 2012 geomagnetic polarity time scale. Siletzia was erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Siletzia's composition, great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms accompanied the voluminous tholeiitic to highly alkalic Tillamook magmatic episode in the forearc (41.6 Ma; CP14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in GPlates. In most reference frames, the YHS is ~ 500km offshore S. OR, near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS could have provided the 56-49 Ma source on the Farallon plate for Siletzia, which in the model accretes to NAM by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, may have formed on the adjacent Kula (or Resurrection) plate and accreted to British Columbia at about the same time. Following accretion, the leading edge of NAM overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous 42-34 Ma Tillamook episode and forearc extension. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the likely hotspot track on NAM.

  2. Hf Isotopic Variations in Volcanic Rocks From the Caribbean Large Igneous Province and Cocos Ridge (Central East Pacific)

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Hanan, B. B.; Blichert-Toft, J.; Hoernle, K. A.; Hauff, F.; Werner, R.; Kerr, A.

    2001-12-01

    The Caribbean Large Igneous Province (CLIP) consists of the Caribbean oceanic plateau and associated magmatic terranes along the Pacific coast of central America and western Colombia and is interpreted to mark the initiation of the Galapagos hotspot 75-95 Ma ago. New 176Hf/177Hf data show: 1) a depleted end-member (176Hf/177Hfin= 0.28324) represented by lavas from DSDP site 152 ( ~75 Ma) in the central Caribbean, lavas from the young Osa Peninsula ( ~62 Ma) and basalts from the Cocos and Carnegie Ridges portions of the Miocene Galapagos hotspot track, and 2) an enriched end-member (176Hf/177Hfin = 0.28298) represented by lavas from DSDP site 151 and by the younger Quepos terrane of Costa Rica ( ~59 Ma). Our results support previous interpretations, based on trace elements and Sr, Nd and Pb isotopic ratios (Hauff et al., 2000) that infer mixing between the regular depleted MORB mantle source, or alternatively a depleted plume component derived from recycled oceanic crust, and an enriched Galapagos plume source. Lavas from the Caribbean Island of Curacao and western Colombia have elevated epsilon Hf for a given epsilon Nd relative to the Nd-Hf mantle array, suggesting influence of a pelagic sediment component. Similar Nd-Hf isotope compositions are observed in lavas from the southern Galapagos island of Floreana (Blichert-Toft and White, 2001). High epsilon Hf relative to the mantle array is also observed in a lava from the Malpelo Ridge, part of the Galapagos hotspot track, ~200 km off the coast of Panama. In addition to the regular depleted MORB and enriched plume source, a crustal source component is required to account for the spatial and temporal isotopic variations in the magmatic products of the Galapagos plume. F. Hauff, K. Hoernle, G. Tilton, D.W. Graham and A.C. Kerr (2000) EPSL 174, p.247-263 J. Blichert-Toft and W.M. White (2001) G-cubed, in press

  3. The Hlagothi Complex: The identification of fragments from a Mesoarchaean large igneous province on the Kaapvaal Craton

    NASA Astrophysics Data System (ADS)

    Gumsley, A. P.; de Kock, M. O.; Rajesh, H. M.; Knoper, M. W.; Söderlund, U.; Ernst, R. E.

    2013-08-01

    In this paper, we present geochronological, geochemical and palaeomagnetic results from the Hlagothi Complex and a NW-trending dolerite dyke swarm on the southeastern region of the Kaapvaal Craton in northern KwaZulu-Natal, South Africa. The Hlagothi Complex consists of layered sills of meta-peridotite, pyroxenite and gabbro intruding into the Pongola Supergroup. U-Pb baddeleyite ages on the Hlagothi Complex and a NW-trending dyke of 2866 ± 2 Ma and 2874 ± 2 Ma, respectively, reveal a ca. 2.87 Ga magmatic event on the southeastern Kaapvaal Craton. The geochemical signature of the Hlagothi Complex recognises two discrete groupings, with a magmatic source that is chemically distinct from those of the older rift-related Nsuze and Dominion groups. Additional units on the Kaapvaal Craton can be linked with this new ‘Hlagothi' event based on spatial and temporal association, and geochemistry: 1) the Thole Complex, 2) parts of the Usushwana Complex, and 3) flood basalts within the Mozaan Group and Central Rand Group. The association between all these units suggests a previously unrecognised large igneous province in the southeastern Kaapvaal Craton. Our palaeomagnetic data identifies a possible primary magnetisation within the least-altered lithologies of the Hlagothi Complex (with a virtual geographic pole at 23.4°N, 53.4°E, dp = 8.2° and dm = 11.8°). The bulk of samples however, displayed two episodes of remagnetisation. These are likely to be associated with 2.85 to 2.75 Ga aged granitoids across the southeastern Kaapvaal Craton, and tectonic activity in the nearby Meso- to Neoproterozoic Namaqua-Natal mobile belt. A short-lived (≤ 8 Ma) mantle plume is proposed to have caused the ca. 2.87 Ga magmatism, and also may well have controlled sedimentation within the Pongola-Witwatersrand basin. Volcanism during uplift would have been fed through a series of feeder dykes and sills, of which the Hlagothi Complex and NW-trending dykes are part of.

  4. Origin of Siletzia, an Accreted Large Igneous Province in the Cascadia Forearc, and the Early History of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Wells, R. E.; Bukry, D.; Friedman, R. M.; Pyle, D. G.; Duncan, R. A.; Haeussler, P. J.; Wooden, J.

    2014-12-01

    Siletzia as named by Irving (1979) is a Paleogene large igneous province forming the oceanic basalt basement of coastal OR, WA and S. BC that was accreted to North America in the early Eocene. U-Pb (magmatic, detrital zircon) and 40Ar/39Ar ages constrained by mapping, global coccolith (CP) zones, and magnetic polarities permit correlation of basalts with the geomagnetic polarity time scale of Gradstein et al. (2012). Siletzia was rapidly erupted 56-49 Ma (Chron 25-22), and accretion was completed between 51 and 49 Ma in Oregon. Magmatism continued until ca. 46 Ma with emplacement of a basalt sill complex during or shortly after accretion. Siletzia's great crustal thickness, rapid eruption, and timing of accretion are consistent with formation as an oceanic plateau. Eight m.y. after accretion, margin-parallel extension and regional dike swarms mark the Tillamook magmatic episode in the forearc (41.6 Ma; CP zone 14a; Chron 19r). We examined the origin of Siletzia and the possible role of a long-lived Yellowstone hotspot (YHS) in an open source plate modeling program. In most reference frames, the YHS is on or near an inferred northeast-striking Kula- Farallon and/or Resurrection-Farallon ridge 60 to 50 Ma. The YHS thus could have provided a 56-49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time. Following accretion of Siletzia, the leading edge of North America overrode the YHS ca. 42 Ma. The encounter with an active YHS may explain the voluminous high-Ti tholeiitic to alkalic magmatism of the 42-34 Ma Tillamook episode and extension in the forearc. Clockwise rotation of western Oregon about a pole in the backarc has since moved the Tillamook center and underlying Siletzia northward ~250 km from the probable hotspot track on North

  5. Distinct brief major events in the Karoo large igneous province clarified by new 40Ar/ 39Ar ages on the Lesotho basalts

    NASA Astrophysics Data System (ADS)

    Jourdan, F.; Féraud, G.; Bertrand, H.; Watkeys, M. K.; Renne, P. R.

    2007-10-01

    Recent mineral separate ages obtained on the Karoo large igneous province (southern Africa) suggest that the province was built by several distinct magmatic pulses over a rather long period on the order of 5-6 Ma concerning the main erupted volume [Jourdan, F., Féraud, G., Bertrand, H., Kampunzu, A.B., Tshoso, G., Watkeys, M.K., Le Gall., B., 2005. The Karoo large igneous province: Brevity, origin, and relation with mass extinction questioned by new 40Ar/ 39Ar age data, Geology 33, 745-748]. Although this apparently atypical province is dated in more detail compared to many other large igneous provinces, volumetrically important areas still lack sufficient high-quality data. The timing of the Karoo province is crucial as this event is correlated with the breakup activity of the Gondwana supercontinent. The Lesotho basalts represent a major lava sequence of the province, but have not yet been precisely dated by systematic analysis of mineral separates. We analyzed plagioclase separates from five lava flows encompassing the complete 1.4-km-thick Lesotho sequence from top to bottom using the 40Ar/ 39Ar method. We obtained five plateau and mini-plateau ages statistically indistinguishable and ranging from 182.3 ± 1.6 to 181.0 ± 2.0 Ma (2 σ). We derived an apparent maximum duration for this event of ˜ 0.8 Ma by neglecting correlated errors embedded in the age uncertainties. A critical review of previous ages obtained on the Lesotho sequence [Duncan R.A., Hooper, P.R., Rehacek, J., Marsh, J.S., Duncan, A.R., 1997. The timing and duration of the Karoo igneous event, southern Gondwana. Journal of Geophysical Research 102, 18127-18138] shows that groundmass analyses are unreliable for high-resolution geochronology, due to alteration and 39Ar recoil effects. Discrepancy between our ages and a previous plagioclase age at ˜ 184 Ma obtained by the later workers is tentatively attributed to the heterogeneity of the monitor used and/or cryptic excess 40Ar *. The current age

  6. Mantle-derived sources of syenites from the A-type igneous suites - New approach to the provenance of alkaline silicic magmas

    NASA Astrophysics Data System (ADS)

    Litvinovsky, B. A.; Jahn, B. M.; Eyal, M.

    2015-09-01

    Granite is generally dominant in A-type igneous suites but these frequently include also alkali feldspar- and peralkaline- syenite and quartz syenite. Such syenites can provide essential information about magma sources and mode of generation of A-type silicic magma. This paper addresses the petrogenesis of syenites based on comparisons between the Mongolian-Transbaikalian Belt, Russia (MTB), and the northern Arabian-Nubian Shield (ANS) as exposed in the Sinai Peninsula, Egypt and adjacent areas of southern Israel. The syenitic rocks from MTB and ANS are characterized by high alkali content (Na2O + K2O = 10.5 to 12.5 wt.%) and are assigned to alkaline metaluminous and peralkaline granitoids. Peralkaline syenites are generally richer in Na and contain slightly less K and Ba than are metaluminous granitoids. REE abundances are similar in all types of syenites. The Eu/Eu* ratios range commonly from 0.35 to 0.65, although higher values, up to 1.15, attributed to presence of accumulated Afs and minor Pl, also occur in some plutons. The geochemical and Sr-Nd isotope characteristics of associated syenite, granite and monzogabbro from five igneous suites (~ 80 samples) suggest that the main rock types, silicic and mafic, are cogenetic in each suite. Syenite magmas were produced from mantle-derived source with little, if any silicic crustal component. The generation of abundant A-type granite and syenite magmas in the young juvenile crust (ANS) argues that old continental crust is not required for generation of highly alkaline silicic magmas, as commonly advocated. The most probable source of both syenite and granite was mantle-derived K-rich shoshonitic monzogabbro. The bimodal character of the A-type suites suggests that partial melting of monzogabbro, rather than fractional crystallization of basic magma, accompanied with enrichment of a cumulate phase in the mafic units, was the dominant mode of granitoid magma formation. Granite magmas were produced in the lower crust

  7. Co-location of eruption sites of the Siberian Traps and North Atlantic Igneous Province: Implications for the nature of hotspots and mantle plumes

    NASA Astrophysics Data System (ADS)

    Smirnov, Aleksey V.; Tarduno, John A.

    2010-09-01

    One of the striking exceptions to the mantle plume head-tail hypothesis that seeks to explain magmatism of large igneous provinces (LIPs) and hotspot tracks is the ~250 million-year-old Siberian Traps. The lack of a clear hotspot track linked to this LIP has been one motivation to explore non-plume alternative mechanisms. Here, we use a paleomagnetic Euler pole analysis to constrain the location of the Siberian Traps at the time of their eruption. The reconstructed position coincides with the mantle region that also saw eruption of the ~ 61-58 million year-old North Atlantic Igneous Province (NAIP). Together with LIP volume estimates, this reconstruction poses a dilemma for some non-plume models: the partial-melts needed to account for the Siberian Traps should have depleted the enriched upper mantle source that is in turn crucial for the later formation of the NAIP. The observations instead suggest the existence of a long-lived (>250 million-year-long) lower mantle chemical and/or thermal anomaly, and significant temporal changes in mantle plume flux.

  8. Distribution of chemical elements in calc-alkaline igneous rocks, soils, sediments and tailings deposits in northern central Chile

    NASA Astrophysics Data System (ADS)

    Oyarzún, Jorge; Oyarzun, Roberto; Lillo, Javier; Higueras, Pablo; Maturana, Hugo; Oyarzún, Ricardo

    2016-08-01

    This study follows the paths of 32 chemical elements in the arid to semi-arid realm of the western Andes, between 27° and 33° S, a region hosting important ore deposits and mining operations. The study encompasses igneous rocks, soils, river and stream sediments, and tailings deposits. The chemical elements have been grouped according to the Goldschmidt classification, and their concentrations in each compartment are confronted with their expected contents for different rock types based on geochemical affinities and the geologic and metallogenic setting. Also, the element behavior during rock weathering and fluvial transport is here interpreted in terms of the ionic potentials and solubility products. The results highlight the similarity between the chemical composition of the andesites and that of the average Continental Crust, except for the higher V and Mn contents of the former, and their depletion in Mg, Ni, and Cr. The geochemical behavior of the elements in the different compartments (rocks, soils, sediments and tailings) is highly consistent with the mobility expected from their ionic potentials, their sulfates and carbonates solubility products, and their affinities for Fe and Mn hydroxides. From an environmental perspective, the low solubility of Cu, Zn, and Pb due to climatic, chemical, and mineralogical factors reduces the pollution risks related to their high to extremely high contents in source materials (e.g., rocks, altered zones, tailings). Besides, the complex oxyanions of arsenic get bound by colloidal particles of Fe-hydroxides and oxyhydroxides (e.g., goethite), thus becoming incorporated to the fine sediment fraction in the stream sediments.

  9. Mineral reactions and strain localization in a sheared mafic granulite infiltrated by melt (Seiland Igneous Province, Norway)

    NASA Astrophysics Data System (ADS)

    degli Alessandrini, Giulia; Menegon, Luca; Malaspina, Nadia; Dijkstra, Arjan; Anderson, Mark

    2016-04-01

    This study investigates the deformation mechanisms of a metagabbroic dyke experiencing syn-kinematic melt-rock interaction in a continental lower-crustal shear zone in the Seiland Igneous Province (northern Norway). Solid state shearing occurred at T ≈750-820 °C, P ≈0.75-0.95 GPa and was coeval with melt infiltration from dehydration melting of adjacent metasediments, as evident from thin leucosome veinlets within the dykes. The mylonite consists of cpx [Ca0.47,Mg0.35,Fe0.18]SiO3 + opx [Ca0.1,Mg0.5,Fe0.4]SiO3 + pl (An77Ab22Or1) porphyroclasts with localized grt and ilm coronas, embedded in a fine grained matrix of cpx + opx + pl + qtz + ilm ± kfs. Porphyroclasts range in size (diameter) between 25 to 650 μm, whereas the fine grain matrix is consistently below 10 μm (average 4-7 μm). Porphyroclasts show varying degrees of elongation, with the opx reaching aspect ratios of 1:16 and the cpx reaching rare maxima of 1:7. Cpx and pl porphyroclasts are micro-fractured and micro-boudinaged with fine-grained material infill. Texturally, opx porphyroclasts display a marked crystallographic preferred orientation (CPO) and activity of the {100}<001> and minor {100}<010> slip systems, whereas cpx and pl porphyroclasts are randomly oriented. All porphyroclasts have strong internal misorientations (undulatory and sweeping extinction) and lack recovery features (subgrains). The fine-grained polyphase matrix wrapping the porphyroclasts displays weak to absent CPO, with the exception of opx that shows a {100} poles-to-planes maxima perpendicular to the foliation. Based on the microstructure, we argue that a large part of the matrix is the product of metamorphic reactions in the presence of melt. To test this hypothesis, the interaction between the studied mafic dyke and an adjacent felsic leucosome was modelled using PerpleX for P-T conditions ranging between 7-9 kbar and 700-1000°C. Results show that the syn-kinematic mineral assemblage (opx + cpx + pl + qtz + ilm ± kfs

  10. Platinum-group element signatures in the North Atlantic Igneous Province: Implications for mantle controls on metal budgets during continental breakup

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Kerr, Andrew C.

    2015-09-01

    The North Atlantic Igneous Province (NAIP) is a large igneous province (LIP) that includes a series of lava suites erupted from the earliest manifestations of the (proto)-Icelandic plume, through continental rifting and ultimate ocean opening. The lavas of one of these sub-provinces, the British Palaeogene Igneous Province (BPIP), were some of the first lavas to be erupted in the NAIP and overlie a thick crustal basement and sedimentary succession with abundant S-rich mudrocks. We present the first platinum-group element (PGE) and Au analyses of BPIP flood basalts from the main lava fields of the Isle of Mull and Morvern and the Isle of Skye, in addition to a suite of shallow crustal dolerite volcanic plugs on Mull, and other minor lavas suites. BPIP lavas display both S-saturated and S-undersaturated trends which, coupled with elevated PGE abundances (> MORB), suggest that the BPIP is one of the most prospective areas of the NAIP to host Ni-Cu-PGE-(Au) mineralisation in conduit systems. Platinum-group element, Au and chalcophile element abundances in lavas from West and East Greenland, and Iceland, are directly comparable to BPIP lavas, but the relative abundances of Pt and Pd vary systematically between lavas suites of different ages. The oldest lavas (BPIP and West Greenland) have a broadly chondritic Pt/Pd ratio (~ 1.9). Lavas from East Greenland have a lower Pt/Pd ratio (~ 0.8) and the youngest lavas from Iceland have the lowest Pt/Pd ratio of the NAIP (~ 0.4). Hence, Pt/Pd ratio of otherwise equivalent flood basalt lavas varies temporally across the NAIP and appears to be coincident with the changing geodynamic environment of the (proto)-Icelandic plume through time. We assess the possible causes for such systematic Pt/Pd variation in light of mantle plume and lithospheric controls, and suggest that this reflects a change in the availability of lithospheric mantle Pt-rich sulphides for entrainment in ascending plume magmas. Hence the precious metal

  11. Geochemical studies and petrogenesis of ~2.21-2.22 Ga Kunigal mafic dyke swarm (trending N-S to NNW-SSE) from eastern Dharwar craton, India: implications for Paleoproterozoic large igneous provinces and supercraton superia

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh K.; Jayananda, M.; Gautam, Gulab C.; Samal, Amiya K.

    2014-10-01

    The Archean eastern Dharwar craton is transacted by at least four major Proterozoic mafic dyke swarms. We present geochemical data for the ~2.21-2.22 Ga N-S to NNW-SSE trending Kunigal mafic dyke swarm of the eastern Dharwar craton to address its petrogenesis and formation of large igneous province as well as spatial link to supercontinent history. It has a strike span of about 200 km; one dyke of this swarm runs ~300 km along the western margin of the Closepet granite. Texture and mineral compositions classify them as dolerite and olivine dolerite. They show compositions of high-iron tholeiites, high-magnesian tholeiites or picrites. Geochemical characteristics of the sampled dykes suggest their co-genetic nature and show variation from primitive (Mg#; as high as ~76) to evolved (differentiated) nature. Although geochemical characteristics indicate possibility of minor crustal contamination, they show their derivation from an uncontaminated mantle melt. These mafic dykes are probably evolved from a sub-alkaline basaltic magma generated by ~20 % batch melting of a depleted lherzolite mantle source and about 15-30 % olivine fractionation. Paleoproterozoic (~2.21-2.22 Ga) mafic magmatism is recognized globally as dyke swarms or gabbroic sill complexes in the Superior, Slave, North Atlantic, Fennoscandian and Pilbara cratons. Possible Paleoproterozoic Dharwar-Superior-North-Atlantic-Slave correlations are constrained with implications for the configuration of supercraton Superia.

  12. Spirit Discovers New Class of Igneous Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During the past two-and-a-half years of traversing the central part of Gusev Crater, NASA's Mars Exploration Rover Spirit has analyzed the brushed and ground-into surfaces of multiple rocks using the alpha particle X-ray spectrometer, which measures the abundance of major chemical elements. In the process, Spirit has documented the first example of a particular kind of volcanic region on Mars known as an alkaline igneous province. The word alkaline refers to the abundance of sodium and potassium, two major rock-forming elements from the alkali metals on the left-hand side of the periodic table.

    All of the relatively unaltered rocks -- those least changed by wind, water, freezing, or other weathering agents -- examined by Spirit have been igneous, meaning that they crystallized from molten magmas. One way geologists classify igneous rocks is by looking at the amount of potassium and sodium relative to the amount of silica, the most abundant rock-forming mineral on Earth. In the case of volcanic rocks, the amount of silica present gives scientists clues to the kind of volcanism that occurred, while the amounts of potassium and sodium provide clues about the history of the rock. Rocks with more silica tend to erupt explosively. Higher contents of potassium and sodium, as seen in alkaline rocks like those at Gusev, may indicate partial melting of magma at higher pressure, that is, deeper in the Martian mantle. The abundance of potassium and sodium determines the kinds of minerals that make up igneous rocks. If igneous rocks have enough silica, potassium and sodium always bond with the silica to form certain minerals.

    The Gusev rocks define a new chemical category not previously seen on Mars, as shown in this diagram plotting alkalis versus silica, compiled by University of Tennessee geologist Harry McSween. The abbreviations 'Na2O' and 'K2O' refer to oxides of sodium and potassium. The abbreviation 'SiO2' refers to silica. The abbreviation 'wt

  13. The Southern Urals Large Igneous Province with an age of approximately 1380 Ma: Precision U-Pb ID-TIMS constraints

    NASA Astrophysics Data System (ADS)

    Ronkin, Yu. L.; Tichomirowa, M.; Maslov, A. V.

    2016-06-01

    The formation of the Large Igneous Province (LIP) approximately 1380 Ma old in the South Urals was related to the Mashak riftogenic event in the Bashkir meganticlinorium, which was synchronous with the emplacement of different magmatic bodies (the Berdyaush pluton of rapakivi granites and associated rocks, the Main dike of the Bakal ore field, and the Medvedev, Guben, and Kusa massifs, among others) localized among sedimentary deposits of the Burzyan and Yurmatin Groups representing Lower and Middle Riphean type units of northern Eurasia. The U-Pb ID-TIMS age of 1379.6 Ma (MSWD = 1.3) obtained with an accuracy of ±2.9 Ma (confidence interval 95%) combined with the available published U-Pb ID-TIMS data constrain the age and duration of the Early-Middle Riphean pulse in the LIP formation in the Southern Urals.

  14. Influence of Large Igneous Provinces on Svalbard tectonics and sedimentation from the Late Mesozoic through Cenozoic: Insight from (U-Th)/He zircon and apatite thermochronology

    NASA Astrophysics Data System (ADS)

    Barnes, Christopher; Schneider, David; Majka, Jaroslaw

    2016-04-01

    Svalbard, the northwestern sub-aerial exposure of the Barents Shelf, offers significant insight into the geodynamics of the High Arctic. The tectonics and sedimentation on Svalbard from the Late Mesozoic through Cenozoic can be attributed to two Large Igneous Provinces: the High Arctic Large Igneous Province (HALIP; 130-90 Ma) and the North Atlantic Large Igneous Province (NAIP; 62-55 Ma). The relationship between the HALIP and the tectonics of the High Arctic remains somewhat unclear, whereas the NAIP is directly linked to opening of the North Atlantic Ocean. This study attempts to establish links between the HALIP and geodynamics of the High Arctic, and reveals the far-field tectonic consequences of the NAIP on Svalbard and the High Arctic. We focus on the Southwestern Caledonian Basement Terrane of Svalbard, characterized by the West Spitsbergen Fold and Thrust Belt, formed during the Eurekan Orogeny (c. 55-33 Ma). Crystalline basement was sampled from four regions (Prins Karls Forland, Oscar II Land, Wedel Jarlsberg Land, and Sørkapp Land) for the purpose of zircon and apatite (U-Th)/He thermochronometry which allows for resolution of thermal events below 200°C. We forward model our datasets using HeFTy software to produce temperature-time histories for each of these regions, and compare these thermal models with Svalbard stratigraphy to resolve the geodynamics of Svalbard from the Late Mesozoic through Cenozoic. The Cretaceous stratigraphy of Svalbard is characterized by a short-lived Mid-Cretaceous sub-aerial unconformity (c. 129 Ma) and a significant Late Cretaceous unconformity (c. 105-65 Ma). Our thermal models reveal a Mid-Cretaceous heating event, suggesting an increasing geothermal gradient coeval with development of the first unconformity. This may indicate that short-lived domal-uplift, related to the arrival of the HALIP plume, was a primary control on Svalbard tectonics and sedimentary deposition throughout the Mid-Cretaceous. Late Cretaceous

  15. A new grand mean palaeomagnetic pole for the 1.11 Ga Umkondo large igneous province with implications for palaeogeography and the geomagnetic field

    NASA Astrophysics Data System (ADS)

    Swanson-Hysell, N. L.; Kilian, T. M.; Hanson, R. E.

    2015-12-01

    We present a new grand mean palaeomagnetic pole (Plong: 222.1°, Plat: -64.0°, A95: 2.6°, N = 49) for the ca. 1110 Ma Umkondo large igneous province (LIP) of the Kalahari Craton. New palaeomagnetic data from 24 sills in Botswana and compiled reprocessed existing data are used to develop a palaeomagnetic pole as the Fisher mean of cooling unit virtual geomagnetic poles (VGPs). The mean and its associated uncertainty provide the best-constrained pole yet developed for the province. Comparing data from individual cooling units allows for evaluation of palaeosecular variation at this time in the Mesoproterozoic. The elongation of the population of VGPs is consistent with that predicted by the TK03.GAD model lending support to the dipolar nature of the field in the late Mesoproterozoic. In our new compilation, 4 of 59 (˜7 per cent) of the igneous units have northerly declinations while the rest are south-directed indicating that a geomagnetic reversal occurred during magmatic activity. Interpreting which of these polarities corresponds with a normal or reversed geomagnetic field relative to other continents can constrain the relative orientations between cratons with time-equivalent data. This interpretation is particularly important in comparison to Laurentia as it bears on Kalahari's involvement and position in the supercontinent Rodinia. The dominance of south-directed declinations within the Umkondo Province was previously used to suggest that these directions are the same polarity as reversed directions from the early magmatic stage of the Keweenawan Midcontinent Rift of Laurentia. Two Umkondo sills with northerly declinations have U-Pb baddeleyite ages of ca. 1109 Ma that are temporally close to dated Midcontinent Rift units having reversed directions. Based on this comparison, and palaeomagnetic data from younger units in the Kalahari Craton, we favour the option in which the sites with northerly declinations from the Umkondo Province correspond to the

  16. Long duration (>4 Ma) and steady-state volcanic activity in the early Cretaceous Paraná-Etendeka Large Igneous Province: New palaeomagnetic data from Namibia

    NASA Astrophysics Data System (ADS)

    Dodd, Sarah C.; Mac Niocaill, Conall; Muxworthy, Adrian R.

    2015-03-01

    There is long-standing correlation between Large Igneous Provinces (LIPs) and major mass extinction events in the Geological Record, postulated to be due to the emission of large quantities of volcanic gases over a geologically short period of time causing major climatic perturbations within the Earth system. The ∼135 Ma Paraná-Etendeka volcanic province of Brazil and Namibia represents something of an enigma amongst LIPs. Despite an erupted volume (>1 Mkm3) comparable to other LIPs associated with mass extinctions, such as the Siberian or Deccan traps, it is not linked to a known mass extinction event. This suggests that the Paraná-Etendeka volcanic province was emplaced over longer timescales than other LIPs, and/or emitted a lower concentration of volatiles, directly or indirectly during its emplacement. We present a new, detailed magnetostratigraphy for the Etendeka portion of the province that suggests emplacement took place over longer timescales (>4 Ma) than those associated with other LIPs. Palaeomagnetic analysis of 893 specimens from 99 sites, in sections that encompass nearly the complete Etendeka stratigraphy, yielded high-quality data from 70 sites (612 specimens). These record 16 individual polarity intervals, which can be correlated with Chrons 15 to 11 of the geomagnetic polarity time scale (GPTS) while also providing two new, high quality palaeopoles for South Africa at 130-135 Ma. Our magnetostratigraphy reveals a minimum period of volcanic activity in excess of 4 Myrs and, importantly, we find no evidence for major changes in the rates of volcanic activity through that time period, in contrast to other LIPs where volcanism seems to be concentrated in major pulses. This suggests that the anomalously feeble environmental impact of Paraná-Etendeka volcanism may be due to lower effusion rates reducing the atmospheric loading due to volcanogenic volatiles.

  17. Flow dynamics in mid-Jurassic dikes and sills of the Ferrar large igneous province and implications for long-distance magma transport

    NASA Astrophysics Data System (ADS)

    Airoldi, Giulia M.; Muirhead, James D.; Long, Sylvan M.; Zanella, Elena; White, James D. L.

    2016-06-01

    Magma flow paths in sill-fed dikes of the Ferrar large igneous province (LIP), contrast with those predicted by classic models of dike transport in LIPs and magmatic rift settings. We examine anisotropy of magnetic susceptibility (AMS) flow paths in dike networks at Terra Cotta Mountain and Mt. Gran, which intruded at paleodepths of ~ 2.5 and ~ 1.5 km. These intrusions (up to 30 m thick) exhibit irregular, interconnected dike-sill geometries and adjoin larger sills (~ 200-300 m thick) at different stratigraphic levels. Both shallowly dipping and sub-vertical magma flow components are interpreted from AMS measurements across individual intrusions, and often match macroscopic flow indicators and variations in dike attitudes. Flow paths suggest that intrusive patterns and magma flow directions depended on varying stress concentrations and rotations during dike and sill propagation, whereas a regional extensional tectonic control was negligible or absent. Unlike giant dike swarms in LIPs elsewhere (e.g., 1270 Ma MacKenzie LIP), dikes of the Ferrar LIP show no regionally consistent vertical or lateral flow patterns, suggesting these intrusion were not responsible for long-distance transport in the province. In the absence of regionally significant, colinear dike swarms, or observed intrusions at crustal depths ≥ 4 km, we suggest that long distance magma transport occurred in sills within Beacon Supergroup sedimentary rocks. This interpretation is consistent with existing geochemical data and thermal constraints, which support lateral magma flow for ~ 3,500 km across the Gondwana supercontinent before freezing.

  18. Immiscible Fe- and Si-rich silicate melts in plagioclase from the Baima mafic intrusion (SW China): Implications for the origin of bi-modal igneous suites in large igneous provinces

    NASA Astrophysics Data System (ADS)

    Liu, Ping-Ping; Zhou, Mei-Fu; Ren, Zhongyuan; Wang, Christina Yan; Wang, Kun

    2016-09-01

    The Emeishan large igneous province (ELIP) in SW China is characterized by voluminous high-Ti and low-Ti basalts and spatially associated Fe-Ti oxide-bearing mafic-ultramafic and syenitic/granitic intrusions. The Baima layered mafic intrusion in the central part of the ELIP is surrounded by syenitic and granitic rocks and contains a Lower Zone of interlayered Fe-Ti oxide ores, troctolites and clinopyroxenites and an Upper Zone of isotropic olivine gabbros and gabbros (UZa) and apatite gabbros and Fe-Ti-P oxide ores (UZb). Polycrystalline mineral inclusions, for the first time, were observed in primocryst plagioclase from the basal part of the UZa through to the top of the UZb and consist mostly of clinopyroxene, plagioclase, magnetite, ilmenite and apatite with minor orthopyroxene, sulfide and hornblende. These minerals are commonly anhedral and form irregular shapes. Daughter plagioclase usually crystallizes on the walls of host primocryst plagioclase and has An contents typically 3-6 An% lower than the host plagioclase. Daughter clinopyroxene has similar Mg# but lower TiO2 and Al2O3 contents than primocryst clinopyroxene. These polycrystalline mineral inclusions are considered to crystallize from melts contemporaneous with host plagioclase. The compositional differences between daughter and primocryst minerals can be attributed to equilibrium crystallization in a closed system of the trapped melt inclusions in contrast to fractional crystallization and possible magma replenishment in an open system typical for primo-cumulates of large layered intrusions. Heated and homogenized melt inclusions have variable SiO2 (33-52 wt%), CaO (7-20 wt%), TiO2 (0.1-12 wt%), FeOt (5-20 wt%), P2O5 (0.2-10 wt%) and K2O (0-2.2 wt%). The large ranges of melt compositions are interpreted to result from heterogeneous trapping of different proportions of immiscible Si-rich and Fe-Ti-rich silicate liquids, together with entrapment of various microphenocrysts. The separation of micrometer

  19. Globally enhanced mercury deposition during the end-Pliensbachian extinction and Toarcian OAE: A link to the Karoo-Ferrar Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Percival, L. M. E.; Witt, M. L. I.; Mather, T. A.; Hermoso, M.; Jenkyns, H. C.; Hesselbo, S. P.; Al-Suwaidi, A. H.; Storm, M. S.; Xu, W.; Ruhl, M.

    2015-10-01

    The Mesozoic Era featured emplacement of a number of Large Igneous Provinces (LIPs), formed by the outpouring of millions of cubic kilometres of basaltic magma. The radiometric ages of several Mesozoic LIPs coincide with the dates of Oceanic Anoxic Events (OAEs). As a result of these coincidences, a causal link has been suggested, but never conclusively proven. This study explores the use of mercury as a possible direct link between the Karoo-Ferrar LIP and the coeval Toarcian OAE (T-OAE). Mercury is emitted to the atmosphere as a trace constituent of volcanic gas, and may be distributed globally before being deposited in sediments. Modern marine deposits show a strong linear correlation between mercury and organic-matter content. Results presented here indicate departures from such a simple linear relationship in sediments deposited during the T-OAE, and also during the Pliensbachian-Toarcian transition (an event that saw elevated benthic extinctions and carbon-cycle perturbations prior to the T-OAE). A number of depositional settings illustrate an increased mercury concentration in sediments that record one or both events, suggesting a rise in the depositional flux of this element. Complications to this relationship may arise from very organic-rich sediments potentially overprinting any Hg/TOC signal, whereas environments preserving negligible organic matter may leave no record of mercury deposition. However, the global distribution of coevally elevated Hg-rich levels suggests enhanced atmospheric mercury availability during the Early Toarcian, potentially aided by the apparent affinity of Hg for terrestrial organic matter, although the relative importance of aquatic vs terrestrial fixation of Hg in governing these enrichments remains uncertain. A perturbation in atmospheric Hg is most easily explained by enhanced volcanic output. It is suggested that extrusive igneous activity caused increased mercury flux to the Early Toarcian sedimentary realm, supporting the

  20. The basaltic volcanism of the Dumisseau Formation in the Sierra de Bahoruco, SW Dominican Republic: A record of the mantle plume-related magmatism of the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Escuder-Viruete, Javier; Joubert, Marc; Abad, Manuel; Pérez-Valera, Fernando; Gabites, Janet

    2016-06-01

    The basaltic volcanism of the Dumisseau Fm in the Sierra de Bahoruco, SW Dominican Republic, offers the opportunity to study, on land, the volcanism of the Caribbean Large Igneous Province (CLIP). It consists of an at least 1.5 km-thick sequence of submarine basaltic flows and pyroclastic deposits, intruded by doleritic dykes and sills. Three geochemical groups have been identified: low-Ti tholeiites (group I); high-Ti transitional basalts (group II); and high-Ti and LREE-enriched alkaline basalts (group III). These geochemical signatures indicate a plume source for all groups of basalts, which are compositionally similar to the volcanic rocks that make up various CLIP fragments in the northern region of the Caribbean Plate. Trace element modelling indicates that group I magmas are products of 8-20% melting of spinel lherzolite, group II magmas result 4-10% melting of a mixture of spinel and garnet lherzolite, and group III basalts are derived by low degrees (0.05-4%) of melting of garnet lherzolite. Dynamic melting models suggest that basalts represent aggregate melts produced by progressive decompression melting in a mantle plume. There is no compositional evidence for the involvement of a Caribbean supra-subduction zone mantle or crust in the generation of the basalts. Two 40Ar/39Ar whole-rock ages reflect the crystallisation of group II magmas at least in the late Campanian (~ 74 Ma) and the lower Eocene (~ 53 Ma). All data suggest that the Dumisseau Fm is an emerged fragment of the CLIP, which continues southward through the Beata Ridge

  1. The geochemical effects of olivine slurry replenishment and dolostone assimilation in the plumbing system of the Franklin Large Igneous Province, Victoria Island, Arctic Canada

    NASA Astrophysics Data System (ADS)

    Hayes, Ben; Lissenberg, C. Johan; Bédard, Jean H.; Beard, Charlie

    2015-02-01

    The Neoproterozoic (~723-716 Ma) Franklin Large Igneous Province exposed on Victoria Island in the Canadian Arctic is comprised of a sill-dominated magma plumbing system overlain by the coeval Natkusiak flood basalts. We have investigated three sections, separated by a total of >50 km of distance, of a sill (the Fort Collinson Sill Complex) emplaced just above a prominent sedimentary marker unit. The sill is characterized by a basal olivine-enriched layer (OZ: up to 55 % olivine) and an upper gabbroic unit. The observed diversity of olivine compositions in the OZ implies that bulk-rock MgO versus FeO arrays reflect accumulation of a heterogeneous olivine crystal cargo. We suggest that the OZ was formed as a late olivine slurry replenishment in a partially crystallized gabbroic sill, propagating for over 50 km along strike. This interpretation is consistent with Pb-isotope data, which show that at least three geochemically distinct magmas were emplaced into the Fort Collinson Sill Complex. The OZs exhibit a gradual westward evolution toward more Fe-rich bulk compositions. This is best explained by progressive mixing of the replenishing olivine slurry with a resident gabbroic mush during westward flow. Pb-isotopic signatures suggest that magmas near the inferred conduit feeder assimilated small amounts (<10 %) of dolostone country rock, which may have locally buffered olivine compositions to high-Fo contents.

  2. A New Sample Transect through the Sierra Madre Occidental Silicic Large Igneous Province in Southern Chihuahua State, Mexico: First Stratigraphic, Petrologic, and Geochemical Results

    NASA Astrophysics Data System (ADS)

    Andrews, G. D.; Davila Harris, P.; Brown, S. R.; Anderson, L.; Moreno, N.

    2014-12-01

    We completed a field sampling transect across the northern Sierra Madre Occidental silicic large igneous province (SMO) in December 2013. Here we present the first stratigraphic, petrological, and geochemical data from the transect between Hidalgo del Parral and Guadalupe y Calvo, Chihuahua, Mexico. This is the first new transect across the SMO in 25 years and the only one between existing NE - SW transects at Chihuahua - Hermosillo and Durango - Mazatlan. The 245 km-long transect along Mexican Highway 24 crosses the boundary between the extended (Basin and Range) and non-extended (Sierra Madre Occidental plateau) parts of the SMO, and allows sampling of previously undescribed Oligocene (?) - early Miocene (?) rhyolitic ignimbrites and lavas, and occasional post-rhyolite, Miocene (?) SCORBA basaltic andesite lavas. 54 samples of rhyolitic ignimbrites (40) and lavas (7), and basaltic andesite lavas (7) were sampled along the transect, including 8 canyon sections with more than one unit. The ignimbrites are overwhelming rhyodacitic (plagioclase and hornblende or biotite phyric) or rhyolitic (quartz (+/- sanidine) in additon to plagioclase and hornblende or biotite phyric) and sparsely to highly phyric. Preliminary petrographic (phenocryst abundances) and geochemical (major and trace element) will be presented and compared to existing data from elsewhere in the SMO. Future work will include U-Pb zircon dating and whole rock and in-zircon radiogenic isotopes analyses.

  3. Petrography and Geochemistry (Trace, Ree and Pge) of Pedda Cherlo Palle Gabbro-Diorite Pluton, Prakasam Igneous Province, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Subramanyam, K. S. V.; Reddy, U. V. B.; Balaram, V.; Roy, Parijat

    2015-09-01

    Prakasam Igneous Province (PIP) is an important geological domain in the Eastern Dharwar Craton (EDC), found in the junction zone between the EDC and Eastern Ghat Mobile Belt (EGMB). The Pedda Cherlo Palle (PCP) gabbros are massive, leucocratic-mesocractic, and show cumulus textures with minerals plagioclase, cpx, and amphiboles. Compositionally, plagioclase is a labradorite-bytownite, cpx is diopside to augite, olivines are hyalosiderites and amphiboles are magnesiohornblendes. PCP gabbros have normal SiO2, high Al2O3, moderate to high TiO2, Na2O and medium Fe2O3, so, classified as subalkaline tholeiitic gabbros. Fractionated rare earth element (REE) patterns, high abundance of large ion lithofile elements (LILE) and transitional metals coupled with light REE (LREE) relative enrichment over heavy REE (HREE) and Nb are characteristics of partial melting of depleted mantle and melts that have undergone fractional crystalisation. These partial melts are enriched in LREE and LILE, due to the addition of slab derived sediment and fluids. PCP gabbros contain low abundance (5.1 to 24.6 ng/g) of platinum group elements (PGE), and show an increase in the order Ir>Os>Pt>Ru»Pd>Rh. We propose that the subduction related intraoceanic island arc might have accreted to the southeastern margin of India to the east of Cuddapah basin in a collisional regime that took place during Ur to Rodinia amalgamations.

  4. Magnetic subdomains of the High Arctic Magnetic High - Speculations and implications for understanding of the High Arctic Large Igneous Province and related tectonics.

    NASA Astrophysics Data System (ADS)

    Saltus, R. W.; Oakey, G. N.

    2015-12-01

    The crustal magnetic anomaly pattern for the high Arctic is dominated by a 1.3 x 106 km2 roughly oval domain of magnetic high, the High Arctic Magnetic High (HAMH) that includes numerous linear and curvi-linear shorter wavelength magnetic highs and lows with no single overall trend. Previous workers (including us) have associated this magnetic domain with the intrusive and extrusive mafic rocks of the High Arctic Large Igneous Province (HALIP). The HAMH shows the HALIP to be roughly the same size as other more well-known LIPs such as the Deccan Traps. The broad crustal magnetic character of LIPs is similar (and distinctive from non-LIP regions) worldwide. We identify 5 general subdomains and further distinguish 2 or 3 sections within each subdomain. We examine matched filter magnetic anomaly depth slices and the bathymetric and gravimetric expression of each sub-domain. Subdomains I and II associated respectively with the Mendeleev and Alpha Ridges have the deepest crustal roots. Subdomain III spans most of the central HAMH between I and II and has a distinctly less magnetic core. Subdomain IV on the Canadian margin side appears transitional to the relatively non-magnetic deep Canada Basin. Subdomain V is a zone of parallel magnetic highs at 90 degrees to the trend of the adjacent Lomonosov Ridge. Subdomains I and II may represent the deep cores of two smaller mantle plume heads that contributed to the overall HALIP. The presence of two plumes might serve to explain the two separate clusters of age dates (80 - 90 Ma and 120 - 130 Ma) found on igneous rocks surrounding and dredged from the HALIP region, and two stratigraphic sequence boundaries and extinction events associated with those time ranges. The boundaries between the magnetic subdomains might coincide with tectonic zones related to the post-LIP complex tectonic history of the Amerasian basin. A linear, through-going boundary that bisects the HAMH and runs perpendicular to the trend of the Lomonosov ridge

  5. An integrative geologic, geochronologic and geochemical study of Gorgona Island, Colombia: Implications for the formation of the Caribbean Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Serrano, Lina; Ferrari, Luca; Martínez, Margarita López; Petrone, Chiara Maria; Jaramillo, Carlos

    2011-09-01

    The genesis of the Caribbean Large Igneous Province (CLIP) has been associated to the melting of the Galapagos plume head at ~ 90 Ma or to the interaction between the plume and the Caribbean slab window. Gorgona Island, offshore western Colombia, is an accreted fragment of the CLIP and its highly heterogeneous igneous suite, ranging from enriched basalts to depleted komatiites and picrites, was assumed to have formed at ~ 89 Ma from different part of the plume. Here we present new geologic, geochronologic and geochemical data of Gorgona with significant implications for the formation of the CLIP. A new set of 40Ar- 39Ar ages documents a magmatic activity spanning the whole Late Cretaceous (98.7 ± 7.7 to 64.4 ± 5 Ma) followed by a shallower, picritic pyroclastic eruption in the Paleocene. Trace element and isotope geochemistry confirm the existence of an enriched (EDMM: La/Sm N ≥ 1 and ɛNd i of 5.7 to 7.8) and a depleted (DMM: La/Sm N < 1 and ɛNd i of 9.5 to 11.3) mantle sources. A progressive increase in the degree of melting and melt extraction with time occurred in both groups. Petrologic modeling indicates that low but variable degrees of wet melting (< 5%) of an EDMM can produce the LREE-enriched rocks. Higher degree of melting (> 10%) of a mixed DMM + EDMM (40 to 60%) may reproduce the more depleted rocks with temperatures in the range of ambient mantle in absence of plumes. Our results contradict the notion that the CLIP formed by melting of a plume head at ~ 90 Ma. Multiple magmatic pulses over several tens of Ma in small areas like Gorgona, also recognized in other CLIP areas, suggest a long period of diffuse magmatism without a clear pattern of migration. The age span of this magmatism is broadly concurrent with the Caribbean slab window. During this time span the Farallon oceanic lithosphere (later becoming the Caribbean plate) advanced eastward ~ 1500 km, overriding the astenosphere feeding the proto-Caribbean spreading ridge. This hotter mantle

  6. Tectonic setting of basic igneous and metaigneous rocks of Borborema Province, Brazil using multi-dimensional geochemical discrimination diagrams

    NASA Astrophysics Data System (ADS)

    Verma, Sanjeet K.; Oliveira, Elson P.

    2015-03-01

    Fifteen multi-dimensional diagrams for basic and ultrabasic rocks, based on log-ratio transformations, were used to infer tectonic setting for eight case studies of Borborema Province, NE Brazil. The applications of these diagrams indicated the following results: (1) a mid-ocean ridge setting for Forquilha eclogites (Central Ceará domain) during the Mesoproterozoic; (2) an oceanic plateau setting for Algodões amphibolites (Central Ceará domain) during the Paleoproterozoic; (3) an island arc setting for Brejo Seco amphibolites (Riacho do Pontal belt) during the Proterozoic; (4) an island arc to mid-ocean ridge setting for greenschists of the Monte Orebe Complex (Riacho do Pontal belt) during the Neoproterozoic; (5) within-plate (continental) setting for Vaza Barris domain mafic rocks (Sergipano belt) during the Neoproterozoic; (6) a less precise arc to continental rift for the Gentileza unit metadiorite/gabbro (Sergipano belt) during the Neoproterozoic; (7) an island arc setting for the Novo Gosto unit metabasalts (Sergipano belt) during Neoproterozoic; (8) continental rift setting for Rio Grande do Norte basic rocks during Miocene.

  7. Zeolite parageneses in the North Atlantic igneous province: Implications for geotectonics and groundwater quality of basaltic crust

    SciTech Connect

    Neuhoff, P.S.; Fridriksson, T.; Bird, D.K.

    2000-01-01

    Zeolites are among the most common products of chemical interaction between groundwaters and the Earth's crust during diagenesis and low-grade metamorphism. The unique crystal structures of zeolites result in large molar volumes, high cation-exchange capacities, and reversible dehydration. These properties influence both the stability and chemistry of zeolites in geologic systems, leading to complex parageneses and compositional relationships that provide sensitive indicators of physicochemical conditions in the crust. Observations of zeolite occurrence in Tertiary basaltic lavas in the North Atlantic region indicate that individual zeolite minerals are distributed in distinct, depth-controlled zones that parallel the paleosurface of the plateau basalts and transgress the lava stratigraphy. The zeolite zones are interpreted to have formed at the end of burial metamorphism of the lavas. Relative timing relations between various mineral parageneses and crustal-scale deformal features indicate that the minerals indicative of the zeolite zones formed within 1 million years after cessation of volcanism. Empirical correlation between the depth distribution of zeolite zones and the temperatures of formation of zeolites in geothermal systems provides estimates of regional thermal gradients and heat flow in flood-basalt provinces. Similarly, the orientations of zeolite zones can be used to distinguish synvolcanic and post-volcanic crustal deformation. Because zeolites that characterize the individual zones display different ion-exchange selectivities for various cations, reactions between groundwaters and zeolites in basaltic aquifers can result in depth-controlled zones where individual elements are concentrated in the crust. This is established for Sr, which is concentrated by at least an order of magnitude in heulandite, resulting in an overall SR enrichment of lavas in the heulandite-stilbite zeolite zone.

  8. The Fragmented Manihiki Plateau - Key Region for Understanding the Break-up of the "Super" Large Igneous Province Ontong Java Nui

    NASA Astrophysics Data System (ADS)

    Hochmuth, K.; Gohl, K.; Uenzelmann-Neben, G.; Werner, R.

    2014-12-01

    The Manihiki Plateau of the western Pacific is one of the world - wide greatest Large Igneous Province (LIP) on oceanic crust. It is assumed that the Manihiki Plateau was emplaced as the centerpiece of the "Super-LIP" Ontong Java Nui by multiple volcanic phases during the Cretaceous Magnetic Quiet Period. The subsequent break-up of Ontong Java Nui led to fragmentation of the Manihiki Plateau into three sub-plateaus, which all exhibit individual relicts of the "Super-LIP" break-up. We examine two deep crustal seismic refraction/wide-angle reflection profiles crossing the two largest sub-plateaus of the Manihiki Plateau, the Western Plateaus and the High Plateau. Modeling of P- and S-wave velocities reveals surprising differences in the crustal structure between the two sub-plateaus. Whereas the High Plateau shows a constant crustal thickness of 20 km, relicts of multiple volcanic phases and break-up features at its margins, the model of the Western Plateaus reveals a crustal thickness decreasing from 17 km to only 9 km. There is only little evidence of secondary phases of volcanic activity. The main upper crustal structure on the Western Plateaus consists of fault systems and sedimentary basins. We infer that the High Plateau experienced phases of strong secondary volcanism, and that tectonic deformation was limited to its edges. The Western Plateaus, on the contrary, were deformed by crustal stretching and underwent only little to no secondary volcanism. This indicates that the two main sub-plateaus of the Manihiki Plateau experienced a different geological history and have played their individual parts in the break-up history of Ontong Java Nui.

  9. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: Implications for mantle source characteristics and plume-lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Zhang, Dongyang; Ke, Shan

    2015-04-01

    The nephelinite exposed in the Wajilitage area in the northwestern margin of the Tarim large igneous province (TLIP), Xinjiang, NW China display porphyritic textures with clinopyroxene, nepheline and olivine as the major phenocryst phases, together with minor apatite, sodalite and alkali feldspar. The groundmass typically has cryptocrystalline texture and is composed of crystallites of clinopyroxene, nepheline, Fe-Ti oxides, sodalite, apatite, rutile, biotite, amphibole and alkali feldspar. We report rutile SIMS U-Pb age of 268 ± 30 Ma suggesting that the nephelinite may represent the last phase of the TLIP magmatism, which is also confirmed by the field relation. The nephelinite shows depleted Sr-Nd isotopic compositions with age-corrected 87Sr/86Sr and εNd(t) values of 0.70348-0.70371 and + 3.28 to + 3.88 respectively indicating asthenospheric mantle source. Based on the reconstructed primary melt composition, the depth of magma generation is estimated as 115-140 km and the temperatures of mantle melting as 1540-1575 °C. The hotter than normal asthenospheric mantle temperature suggests the involvement of mantle thermal plume. The Mg isotope values display a limited range of δ26Mg from - 0.35 to - 0.55‰, which are lower than the mantle values (- 0.25‰). The Mg isotopic compositions, combined with the Sr-Nd isotopes and major and trace element data suggest that the Wajilitage nephelinite was most likely generated by low-degree partial melting of the hybridized carbonated peridotite/eclogite source, which we correlate with metasomatism by subducted carbonates within the early-middle Paleozoic convergent regime. A plume-lithosphere model is proposed with slight thinning of the lithosphere and variable depth and degree of melting of the carbonated mantle during the plume-lithosphere interaction. This model also accounts for the variation in lithology of the TLIP.

  10. Long-term cycles in Large Igneous Province (LIP) eruptions and fossil diversity may be related to periodic mantle plume activity

    NASA Astrophysics Data System (ADS)

    Rampino, M. R.; Prokoph, A.

    2013-12-01

    Wavelet analysis shows evidence for an approximately 62 Myr cycle in the eruptions of Large Igneous Provinces (LIPs) over the last 540 Myr. This agrees with a cycle of 62×3 Myr seen in fossil biodiversity over the same interval. A similar cycle (about 56-62 Myr) has been reported in data related to continental-scale fluctuations of sedimentation, most likely resulting from changes in climate, sea level and tectonics. A longer about 140 Myr cycle is also detected in the LIP eruption data, matching a similar cycle seen in fossil diversity and in global climate. Both the LIP and fossil diversity data sets show a shorter approximately 28-35 Myr period, especially during the last 135 Myr. Cross-spectral wavelet analysis of the LIP occurrences against the marine diversity record shows that almost all cross-variability in the two data sets is concentrated in the 28 to 35 Myr, 62 to 65 Myr and around 140 Myr wavelength bands, showing a sharp change from dominant 62 Myr to 32 Myr cyclicity since the Early Cretaceous. The phase differences for the cycles indicate an inverse LIP-diversity relationship at these wavebands. The LIP eruptions commonly mark the initiation of hotspots, presumably created by upwelling mantle plumes. The agreement among these periodicities suggests that long-term global cycles of biodiversity, sea level, climate and sedimentation are partly driven by periodic or quasi-periodic fluctuations in mantle plume activity. This conclusion is bolstered by the close temporal correlation of several LIPs with times of mass extinction and climatic crises indicated by ocean anoxic events.

  11. Linking the geological record for large igneous provinces and hotspots with tomography-based numerical models of thermal convection in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Glisovic, P.; Forte, A. M.; Rowley, D. B.; Simmons, N. A.; Grand, S. P.

    2013-12-01

    Current tomographic imaging of the 3-D structure in Earth's interior reveals several large-scale anomalies of strongly reduced seismic velocity in the deep lower mantle, in particular beneath the Perm region in Western Siberia, the East Pacific Rise, the West Pacific (Caroline Islands), the Southwest Indian Ocean, as well as under Western and Southern Africa. We have carried out mantle dynamic simulations (Glisovic et al., GJI 2012) of the evolution of these large-scale structures that directly incorporate robust constraints provided by joint seismic-geodynamic inversions of mantle density structure with further constraints provided by mineral physics data (Simmons et al., GJI 2009, JGR 2010). These tomography-based convection simulations also incorporate constraints on mantle viscosity inferred by inversion of a suite of convection-related and glacial isostatic adjustment data sets (Mitrovica & Forte, EPSL 2004) and are characterized by Earth-like Rayleigh numbers. The convection simulations provide a detailed insight into the very-long-time evolution of the buoyancy of these lower-mantle anomalies. We find, in particular, that the buoyancy associated with the 'Perm Anomaly' generates a very long-lived hot upwelling or 'superplume' that is connected to the paleomagnetic location of the Siberian Traps (Smirnov & Tarduno, EPSL 2010) and also to location of North Atlantic Igneous Provinces (i.e., the opening of North Atlantic Ocean). These convection simulations (both backwards and forwards in time) also reveal stable and long-lived plume-like upwellings under the East Pacific Rise, as previously identified by Rowley et al. (AGU 2011, Nature - in review), in particular beneath the Easter & Pitcairn hotspots. Finally we also provide detailed reconstructions of the 65 Myr evolution of the 'Reunion plume' that gave rise to the Deccan Traps.

  12. No pre-eruptive uplift in the Emeishan large igneous province: New evidences from its 'inner zone', Dali area, Southwest China

    NASA Astrophysics Data System (ADS)

    Zhu, Bei; Guo, Zhaojie; Liu, Runchao; Liu, Dongdong; Du, Wei

    2014-01-01

    The Permian Emeishan large igneous province (ELIP) in Southwest China has been considered a typical example of crustal domal uplift caused by mantle plume upwelling prior to the onset of volcanism. However, this model has been questioned by the discovery of hydromagmatic volcaniclastic deposits formed in a marine environment, located near the central ELIP area (the 'inner zone') which is inferred to be the zone of maximum uplift. The volcanology of the inner zone has thus far been poorly documented, fueling the debate about whether or not pre-eruptive uplift occurred prior to plume upwelling. Understanding the volcanology of this inner zone is therefore critical in constraining the eruption environment of the central ELIP. Our work has revealed new volcanological observations in the inner zone (Dali area), which can systematically constrain volcanism and paleoenvironment. The Basal Succession of the sequence is a thick pillow lavas pile with hyaloclastites, implying an initial deeper submarine stage of eruptions. Limestones and submarine fallout tuffs are interbedded with these pillow lavas. Above that, abundant mafic volcaniclastic products developed, which contain palagonite-rimmed lapilli-tuffs, base surge deposits and peperites, suggesting hydroclastic volcanism in a shallower submarine environment. The Upper Succession of the sequence preserves columnar-jointed lava flows and subaerial fallout tuffs, reflecting subaerial volcanism after the volcanic center emerged above the sea level. These abundant and systematic natures of this evidence suggest that the initial volcanism of the central ELIP occurred in a deep submarine environment. The submarine-to-subaerial transition is caused by progressive emplacement of voluminous magmatic products infilling the inner zone during the continuous emplacement of ELIP, rather than by crustal doming prior to the onset of volcanisms.

  13. Major compositional provinces on Mars: a record of igneous processes and H2O-rock interactions

    NASA Astrophysics Data System (ADS)

    Rogers, D.; Hamilton, V. E.

    2011-12-01

    The spatial distribution of surface compositions provides critical information needed to understand the formation of Martian crustal materials as well as the interactions between the surface, atmosphere, and hydrosphere. To this end, we present a new global map of major compositional provinces on Mars. The map was derived by applying statistical methods to new mineral distributions derived from Mars Global Surveyor Thermal Emission Spectrometer (TES) data. The new mineral distributions [1] were calculated using a larger set of olivine and pyroxene compositions, and at a higher spatial resolution (8 pixels per degree), relative to previous global studies [e.g, 2]. Consistent with previous results [2], we find that: A) Syrtis Major and circum-Tharsis volcanic plains are compositionally distinct from other, older highland surfaces, B) lowland materials exhibit elevated abundance of "high-silica" phases (amorphous silica and/or poorly crystalline silicates), and C) northern Acidalia surfaces are compositionally distinct from those in southern Acidalia. New findings include the following: D) northwestern Syrtis Major shield materials are enriched in feldspar relative to southern Syrtis Major, E) within Thaumasia and Aonium Plana (Hesperian aged plains), there are possibly 3 different classes of mineral assemblage, and F) heavily cratered Noachian terrains including Terra Meridiani, Tyrrhena Terra, and Cimmeria Terra can be divided into at least two classes based on relative abundance of plagioclase and low-Ca pyroxene. These new reported classes exhibit spatial coherency over a scale of at least tens of km; select areas were verified using spectral ratios from individual TES orbits that cross compositional class boundaries. These spatial trends in mineral assemblage may partially reflect global variations in melt generation and magmatic processes, and may also partially reflect spatial variation in precipitation, erosion, and/or ice-related alteration. For example, the

  14. Mantle heterogeneity during the formation of the North Atlantic Igneous Province: Constraints from trace element and Sr-Nd-Os-O isotope systematics of Baffin Island picrites

    NASA Astrophysics Data System (ADS)

    Kent, A. J. R.; Stolper, E. M.; Francis, D.; Woodhead, J.; Frei, R.; Eiler, J.

    2004-11-01

    Sr-Nd-Os-O isotope and major and trace element data from ˜62 Ma picrites from Baffin Island constrain the composition of mantle sources sampled at the inception of North Atlantic Igneous Province (NAIP) magmatism. We recognize two compositional types. Depleted (N-type) lavas have low 87Sr/86Sri (0.702990-0.703060) and 187Os/188Osi (0.1220-0.1247) and high 143Nd/144Ndi (0.512989-0.512999) and are depleted in incompatible elements relative to primitive mantle. Enriched (E-type) lavas have higher 87Sr/86Sri (0.703306-0.703851) and 187Os/188Osi (0.1261-0.1303), lower 143Nd/144Ndi (0.512825-0.512906), and incompatible element concentrations similar to, or more enriched than, primitive mantle. There is also a subtle difference in oxygen isotope composition; E-type lavas are marginally lower in δ18Oolivine value (5.16-4.84‰) than N-type lavas (5.15-5.22‰). Chemical and isotopic variations between E- and N-type lavas are inconsistent with assimilation of crust and/or subcontinental lithospheric mantle and appear to instead reflect mixing between melts derived from two distinct mantle sources. Strontium-Nd-O isotope compositions and incompatible trace element abundances of N-type lavas suggest these are largely derived from the depleted upper mantle. The 187Os/188Osi ratios of N-type lavas can also be explained by such a model but require that the depleted upper mantle had γOs of approximately -5 to -7 at 62 Ma. This range overlaps the lowest γOs values measured in abyssal peridotites. Baffin Island lava compositions are also permissive of a model involving recharging of depleted upper mantle with 3He-rich material from the lower mantle (Stuart et al., Nature, 424, 57-59, 2003), with the proviso that recharge had no recognizable effect on the lithophile trace element and Sr-Nd-Os-O isotope composition. The origin of the enriched mantle component sampled by Baffin Island lavas is less clear but may be metasomatized and high-temperature-altered recycled oceanic

  15. Joint pre-stack depth migration and travel-time tomography applied to a deep seismic profile across the northern Barents Sea igneous province

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Faleide, Jan Inge; Sakulina, Tamara; Krupnova, Natalia; Dergunov, Nikolai

    2015-04-01

    The mainly Permo-Triassic North Barents Sea Basin is considered as a superdeep intracratonic basin containing over 20 km of sedimentary material. This basin was strongly affected by magmatism attributed to the formation of the Early Cretaceous High Arctic Large Igneous Province. Dolerite dikes, sills, and lava flows are observed in the northern Barents Sea and on the islands of Svalbard and Franz Josef Land. Some dike swarms can be traced over hundreds of kilometers using high-resolution airborne magnetic data. In the North Barents Sea Basin, the dikes fed giant sill complex emplaced into organic-rich Triassic siliciclastic rocks. The sill complex creates a major challenge for seismic imaging masking the underlying strata. In this contribution, we first perform refraction and reflection travel-time tomography using wide-angle ocean-bottom seismometer data (with receivers deployed every 10 km) along the 4-AR profile (Sakulina et al. 2007, Ivanova et al. 2011). The resulting tomographic model is then used to construct a background velocity model for the pre-stack depth migration. We show that the use of a combined velocity model for the time and depth imaging based on travel-time tomography and RMS velocities constitutes a substantial improvement with respect to a standard processing workflow providing a more coherent seismic structure of this volcanic province. The interpretation of multichannel seismic and high-resolution magnetic data together with P-wave velocity and density anomalies allow to create a model for the system of magmatic feeders in the crystalline basement of the northern Barents Sea region. Sakulina, T.S., Verba, M.L., Ivanova, N.M., Krupnova, N.A., Belyaev I.V., 2007. Deep structure of the north Barents-Kara Region along 4AR transect (Taimyr Peninsula - Franz Joseph Land). In: Models of the Earth's crust and upper mantle after deep seismic profiling. Proceedings of the international scientific-practical seminar. Rosnedra, VSEGEI. St

  16. Origin of the ore-forming fluids of the Tongchang porphyry Cu-Mo deposit in the Jinshajiang-Red River alkaline igneous belt, SW China: Constraints from He, Ar and S isotopes

    NASA Astrophysics Data System (ADS)

    Xu, Leiluo; Bi, Xianwu; Hu, Ruizhong; Tang, Yongyong; Jiang, Guohao; Qi, Youqiang

    2014-01-01

    The Jinshajiang-Red River alkaline igneous belt with abundant Cu-Mo-Au mineralization, in the eastern Indian-Asian collision zone, is an important Cenozoic magmatic belt formed under an intra-continental strike-slip system in southwestern (SW) China. The Tongchang deposit is a representative porphyry Cu-Mo deposit in southern segment of the Jinshajiang-Red River alkaline igneous belt, with 8621 t Cu @ 1.24 wt.% and 17,060 t Mo @ 0.218 wt.%. In this study, He, Ar and S isotopic compositions of the Tongchang deposit were determined. He and Ar isotopic compositions suggest that the ore-forming fluids, with 3He/4He ratios varying from 0.17 to 1.50 Ra and 40Ar/36Ar ratios from 299.1 to 347.3 for the deposit, are a mixture between a crust-derived fluid (MASW) with near atmospheric Ar and crustal He, and a mantle-derived fluid. However, the δ34S values of the hydrothermal pyrite samples ranging from 1.0‰ to 1.5‰ with an average of 1.2‰, indicate that the sulfur in the ore-forming fluids of the Tongchang deposit was primarily derived from the magma or indirectly mantle-derived without assimilation of crustal sulfur. In combination with previously published He and Ar isotopic data of the Yulong and Machangqing deposits in northern and central segments of the Jinshajiang-Red River alkaline igneous belt, respectively, the ore-forming fluids of the Yulong and Machangqing deposits are obviously richer in 3He and 40Ar, and poorer in 36Ar in comparison with the Tongchang deposit, implying that more mantle-derived fluids were involved in the ore-forming fluids of the Yulong and Machangqing deposits than those for the Tongchang deposit. This might be one of the most important factors producing larger scales of mineralization in the Yulong and Machangqing deposits than the Tongchang deposit.

  17. Hf isotope compositions and chronology of magmatic zircons from Tarim continental flood basalts: implications for magmatic evolution of the Early Permian Tarim Large Igneous Province in NW China

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, Z.; Yu, X.; Langmuir, C. H.; Yang, S.; Chen, H.

    2013-12-01

    The Early Permian Tarim Large Igneous Province (TLIP) in the Tarim cratonic block of northwestern China has been largely regarded to be genetically linked with a mantle plume. Recently, some euhedral zircon crystals with magmatic growth zoning have been obtained from the Tarim continental flood basalts (TCFB) for detailed U-Pb chronological and genetic study. The zircons have the concordant 206Pb/238U ages of 297~283 Ma, coinciding with the previously reported whole-rock 40K/39Ar and 40Ar/39Ar ages (292~283 Ma) of their host basalts. In-situ LA-MC-ICPMS Lu-Hf isotopic analyses of Early Permian zircons from the Keping area of the TCFB reveal that the zircons from two basalt sub-groups (Groups 1a, 1b) have a narrow range of 176Hf/177Hf ratios between 0.282422 and 0.282568. Their corresponding ɛHf(t) (t = 290 Ma) values (-6.8~-1.4) are generally lower than their host basalts (-2.3~2.1), and distinctively different from the intrusive rocks (3.0~7.1) and their zircons (4.9~8.8) from the TLIP and the Precambrian crustal rocks (<-18) in the Tarim block. Combined with their embayed margins produced by magmatic corrosion, these zircons may have crystallized in a concealed pluton shortly prior to the extrusion of basalts and been captured as xenocrysts by the rapidly erupted basaltic lavas. Almost the same ɛHf(t) values between the corroded and uncorroded zircons suggest that the zircons have preserved the initial Hf isotopic compositions from their original source region. Moreover, the very close but relatively higher ɛHf(t) values from the zircons than the inferred sub-continental lithospheric mantle (SCLM) beneath Tarim in the Early Permian [ɛHf(t) = -8.7~-5.2; t = 290 Ma] indicate that the zircons were probably originated from the SCLM with minor addition of depleted mantle magmas during the mantle source partial melting. Both the zircons and their host basalts have almost the same formation ages (~290 Ma) and Hf TDM model ages (ca. 1300~1000 Ma), suggesting that

  18. Insights into the metasomatic history of Kaapvaal SCLM from a Hf isotope study of the ~2.06 Ga Bushveld Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Zirakparvar, N. A.; Mathez, E. A.; Choe, S.

    2015-12-01

    The Bushveld Large Igneous Province (B-LIP) comprises a diverse array of >30 magma bodies that intruded the Kaapvaal Craton (KC) at ~2.06 Ga. To determine whether the B-LIP formed in response to the arrival of a plume(s) from the deep mantle or from melting of the depleted upper mantle during foundering of an eclogitized residue at the base of the lithosphere, we have measured zircon Hf isotope compositions for many of the bodies in the B-LIP. Most of the intrusions have relatively unradiogenic and internally homogeneous ɛHf (2.06 Ga) values (intrusion-specific average ɛHf (2.06 Ga) range from -21.2 ± 5.2 to -2.7 ± 2.8), consistent with published values for the Bushveld and Phalaborwa complexes (two prominent intrusions in the B-LIP with ɛHf (2.06 Ga) = -8.6 ± 2.6 and -7.5 ± 2.4, respectively). Because the most radiogenic Hf isotope compositions in the B-LIP are within error of ɛHf (2.06 Ga) = 0, it is likely that the heat source was a plume(s) from the deep mantle, as opposed to delamination-driven decompression melting of the depleted upper mantle. Many of the more unradiogenic values in the B-LIP can be reconciled with melt generation in subduction modified and metasomatically refertilized subcontinental lithospheric mantle (SCLM). Support for this model comes from B-LIP aged zircons in a metasomatically altered xenolithic fragment of the SCLM associated with a basement inlier near the geographic center of the B-LIP. Some domains in these zircons grew in the presence of a medium with a highly unradiogenic Hf isotope signature. This signature suggests that ancient (>3.8 Ga) crustal material residing in the KC-SCLM at the time of B-LIP magmatism became mobilized during arrival of the plume at ~2.06 Ga. Pervasive metasomatic alteration leading to weakening of the SCLM beneath parts of the KC is known to have occurred in the Mesozoic, but these results suggest that the KC has also withstood plume related metasomatic weakening during the Paleoproterozoic.

  19. Geochemical and Isotopic Variations of Three Basalt Groups in the Early Permian Tarim Large Igneous Province (NW China): Implications for Plume-Lithosphere Interaction

    NASA Astrophysics Data System (ADS)

    Li, Y.; Li, Z.; Langmuir, C. H.; Yang, S.; Chen, H.; Yu, X.; Zou, S.

    2014-12-01

    Several lines of geological, petrological and geochemical evidence have supported that the Early Permian Tarim Large Igneous Province (LIP) in the Tarim cratonic block of northwestern China were generated by a mantle plume. However, the over 200,000 km2 Tarim continental flood basalts, as the dominant part of the Tarim LIP, show little geochemical and isotopic features similar to those plume-derived intrusive rocks in this region. This is mainly because that their parental magmas were more or less contaminated by the thick crust during ascending. Modeling by trace element and Nd isotopic compositions further suggest that the three basalt groups (Groups 1a, 1b and 2) in the Tarim LIP have experienced variable degree of crustal contamination (i.e., Group 1b > Group 1a > Group 2). After eliminating the effect of crustal contamination, the widespread Group 1 basalts (including both Groups 1a and 1b) would have relatively uniform ɛNd(t) values of ca. -1.7. This indicates that they were more likely to be produced by partial melting of some enriched mantle components in the sub-continental lithospheric mantle (SCLM) beneath the Tarim block, probably due to conductive heating that resulted from an incubating mantle plume. The Group 2 basalts, on the other hand, were only found in a small region but display a relatively higher and wider range of ɛNd(t) values roughly between -1.7 and 0.8 (if without crustal contamination). This may suggest that during the generation of Group 2 basalts, the upwelling mantle plume not only provided an enormous amount of heat, but also continuously injected isotopically depleted plume components into the isotopically enriched magma source region in the SCLM. The source isotopic heterogeneity of three basalt groups and other various Tarim LIP rocks (e.g., picrites, ultramafic-mafic intrusive rocks and syenitic rocks), with their ɛNd(t) values varying between ca. -5 and 5, may correlate with the plume-lithosphere interaction during the

  20. Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria Dyke Swarm on the margin of a large igneous province in eastern Africa

    NASA Astrophysics Data System (ADS)

    Mäkitie, Hannu; Data, Gabriel; Isabirye, Edward; Mänttäri, Irmeli; Huhma, Hannu; Klausen, Martin B.; Pakkanen, Lassi; Virransalo, Petri

    2014-09-01

    A comprehensive description of the petrography, geochemical composition, Sm-Nd data and intrinsic field relationships of a giant arcuate Mesoproterozoic mafic dyke swarm in SW Uganda is presented for the first time. The swarm is ∼100 km wide and mainly hosted in the Palaeoproterozoic Rwenzori Belt between the Mesoproterozoic Karagwe-Ankole Belt and the Archaean Uganda Block. The dykes trend NW-SE across Uganda, but can be correlated across Lake Victoria to another set of arcuate aeromagnetic anomalies that continue southwards into Tanzania, resulting in a remarkably large semi-circular swarm with an outer diameter of ∼500 km. We propose that this unique giant dyke structure be named the Lake Victoria Dyke Swarm (LVDS). The dykes are tholeiites with Mg numbers between 0.69 and 0.44, and with inherited marked negative Nb and P anomalies in spider diagrams. Two dykes provide Sm-Nd mineral ages of 1368 ± 41 Ma and 1374 ± 42 Ma, with initial εNd values of -2.3 and -3.2, and 87Sr/86Sr ratios of ∼0.706-0.709. Geotectonic discrimination diagrams for the swarm exhibit more arc type than within-plate tectonic signatures, but this is in accordance with systematic enrichments in LREE, U and Th in the dolerites, more likely due to the involvement of the continental lithosphere during their petrogenesis. The LVDS is coeval with a regional ∼1375 Ma bimodal magmatic event across nearby Burundi, Rwanda and NW Tanzania, which can collectively be viewed as a large igneous province (LIP). It also indicates that the nearby Karagwe-Ankole Belt sequences - bracketed between 1.78 and 1.37 Ga and assumed by some to have been deposited within intracratonic basins - were capped by flood basalts that have subsequently been removed by erosion. Different geochemical signatures (e.g. LaN/SmN) suggest that most of the arcuate swarm was derived from an enriched SCLM, whereas related intrusions in the centre of this semi-circular segment have more or less enriched asthenospheric mantle

  1. The Large Igneous Province (LIP) Record during the Archean-Proterozoic Transition Between 2.5 Ga and 2.0 Ga

    NASA Astrophysics Data System (ADS)

    Ernst, R. E.; Bleeker, W.

    2010-12-01

    A review of the large igneous province (LIP) record reveals numerous events between 2500 and 2000 Ma with a potential gap between 2370 Ma and 2230 Ma. The distribution is uneven with some blocks, such as Superior and Karelia, being well populated, while others, such as Kaapvaal, Amazonia and Yilgarn, having few well-dated LIP events in this time interval; however, the relative paucity of dated events on some blocks may at present simply reflect severe undersampling. LIP events in the 2.5-2.0 Ga interval are thought to be linked to progressive rifting and breakup of late Archean supercratons (e.g., Bleeker 2003, Lithos), or possibly a large supercontinent. Some of these LIPs may also be linked to major environmental changes including iron formation deposition (e.g., Bekker et al. 2010, Econ. Geol.). In terms of understanding the changing geodynamic setting in the 2.5-2.0 Ga interval it is critical to discriminate between LIPs that perhaps were global in extent and those that were more regional in scale but have been widely scattered through subsequent supercontinent fragmentation. Thus, determining the paleogeography of latest Archean supercratons is key. This can be achieved most efficiently by completing the LIP records (magmatic “barcodes”) for all major crustal blocks. Craton-scale blocks that were nearest neighbours in a preexisting landmass will share essential elements of their barcodes, and geometrical information inherent in giant dyke swarms, the plumbing systems of LIPs, can constrain likely configurations. Comparison of paleomagnetic poles and matching of geochemical fingerprints from coeval LIPs on different crustal blocks will provide additional constraints. Using the 2.5-2.0 Ga LIP record, it has been determined that the Superior craton was bordered on its southern-southeastern margin, from west to east, by the Wyoming, Hearne, Karelian, and Kola cratons (Bleeker and Ernst 2006 in Hanski et al. (eds.) Dyke swarms — time markers of crustal

  2. Highly siderophile element behaviour during flood basalt genesis and evidence for melts from intrusive chromitite formation in the Mackenzie large igneous province

    NASA Astrophysics Data System (ADS)

    Day, James M. D.; Pearson, D. Graham; Hulbert, Larry J.

    2013-12-01

    The 1.27 Ga Coppermine continental flood basalt (CFB) province in northern Canada represents the extrusive manifestation of the 2.7 Mkm2 Mackenzie large igneous province (LIP) that includes the Mackenzie dyke swarm and the Muskox layered intrusion. New Re-Os isotope and highly siderophile element (HSE: Re, Pd, Pt, Ru, Ir, Os) abundance data are reported together with whole-rock major- and trace-element abundances and Nd isotopes to examine the behaviour of the HSE during magmatic differentiation and to place constraints on the extent of crustal interaction with mantle-derived melts. Mineral chemistry and petrography are also reported for an unusual andesite glass flow (CM19; 4.9 wt.% MgO) found in close proximity to newly recognised picrites (> 20 wt.% MgO) in the lowermost stratigraphy of the Coppermine CFB. Compositions of mineral phases in CM19 are similar to the same phases found in Muskox Intrusion chromitites and the melt composition is equivalent to inclusions trapped within Muskox chromites. The apparently conflicting elevated HSE contents (e.g., 3.8 ppb Os) and mantle-like initial 187Os/188Os (γOs = + 2.2), versus stable isotope (δ18O = + 12‰) and lithophile element evidence (εNdi = - 12.8) for extensive crustal contamination, implicate an origin for CM19 as a magma mingling product formed within the Muskox Intrusion during chromitite genesis. Combined with Nd isotope data that places the feeder for lower Coppermine CFB picrites and basalts within the Muskox Intrusion, this result provides compelling evidence for direct processing of some CFB within upper-crustal magma chambers. The Coppermine CFB defines a 187Re-187Os isochron with an age of 1263 + 16/- 20 Ma and initial γOs = + 2.2 ± 0.8. The initial Os isotope composition for the Coppermine CFB is slightly higher than the near-primitive-mantle initial 187Os/188Os for the Muskox Intrusion (γOs = + 1.2 ± 0.3). This result is interpreted to reflect greater crustal contamination in extrusive CFB

  3. Late Permian basalts in the northwestern margin of the Emeishan Large Igneous Province: Implications for the origin of the Songpan-Ganzi terrane

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Zhang, Zhaochong; Santosh, M.; LÜ, Linsu; Han, Liu; Liu, Wei; Cheng, Zhiguo

    2016-07-01

    SHRIMP zircon U-Pb ages, geochemical and Sr-Nd isotopic data are reported for two types of basalts (Type I and Type II) from a Permian volcanic-pyroclastic succession in the Tubagou section, Baoxing area along the southeastern margin of the Songpan-Ganzi terrane (SGT) in the Sichuan province of SW China. Zircons from the uppermost basaltic flows yield crystallization age of 257.3 ± 2.0 Ma, which may represent the time of culmination the basaltic eruption. Type I shows alkaline affinity with εNd(t) values of + 2.4 to + 2.9, and is characterized by oceanic island basalt (OIB)-type light rare earth element (LREE) and trace-element patterns. In contrast, Type II rocks are tholeiitic, and close to initial rift tholeiite (IRT)-like REE and trace element patterns, and are relatively depleted in highly incompatible elements with slightly negative Nb-Ta anomaly. The εNd(t) values of Type II are between + 1.8 to + 2.2. The geochemical characteristics suggest the Type I has not been significantly crustally contaminated, whereas Type II maybe have experienced minor crustal contamination. Clinopyroxene crystallization temperature is ~ 80-120°C higher than that of the normal asthenospheric mantle, implying anomalous thermal input from mantle source and a possible plume-head origin for the Tubagou lava. The geochemical and isotopic fes, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruptions, reflecting progressive lithosphere thinning probably through plume-lithosphere interaction. The spatial and temporal coincidence between the Dashibao basalt eruption and continental rifting suggest that continental break-up and the opening of an extensional basin was probably related to the Late Permian Emeishan plume, which triggered the breakup between the SGT and the Yangtze craton.

  4. Geology, geochronology and tectonic setting of late Cenozoic volcanism along the southwestern Gulf of Mexico: The Eastern Alkaline Province revisited

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Tagami, Takahiro; Eguchi, Mugihiko; Orozco-Esquivel, Ma. Teresa; Petrone, Chiara M.; Jacobo-Albarrán, Jorge; López-Martínez, Margarita

    2005-09-01

    A NNW-trending belt of alkaline mafic volcanic fields parallels the Gulf of Mexico from the U.S. border southward to Veracruz state, in eastern Mexico. Previous studies grouped this volcanism into the so-called "Eastern Alkaline Province" (EAP) and suggested that it resulted from Gulf-parallel extensional faulting migrating from north to south from Oligocene to Present. On the basis of new geologic studies, forty-nine unspiked K-Ar and two 40Ar- 39Ar ages, we propose a new geodynamic model for the volcanism along the southwestern Gulf of Mexico. We studied in detail four of the six recognized fields of mafic alkaline volcanism in Veracruz state: 1) The lavas flows of Tlanchinol area (7.3-5.7 Ma), 2) the Alamo monogenetic field and Sierra de Tantima (7.6-6.6 Ma), 3) the Poza Rica and Metlatoyuca lava flows (1.6-1.3 Ma) and 4) the Chiconquiaco-Palma Sola area (6.9-3.2 Ma). Other two mafic volcanic fields may represent the continuation of alkaline volcanism to the southeast: the Middle Miocene lavas at Anegada High, offshore port of Veracruz, and the Middle to Late Miocene volcanism at the Los Tuxtlas. The existence of major Neogene extensional faults parallel to the Gulf of Mexico (i.e., ˜N-S to NNW-SSE) proposed in previous works was not confirmed by our geological studies. Elongation of volcanic necks, vent alignment, and faults mapped by subsurface data trend dominantly NE to ENE and NW to NNW. These directions are parallel to transform and normal faults that formed during the Late Jurassic opening of the Gulf of Mexico. Ascent of mafic magmas was likely facilitated and controlled by the existence of these pre-existing basement structures. Coupled with previous studies, our data demonstrate the occurrence of three magmatic episodes in Veracruz: 1) A Middle Miocene (˜15-11 Ma) episode in southern Veracruz (Palma Sola, Anegada, and Los Tuxtlas); 2) A Late Miocene to Early Pliocene (˜7.5-3 Ma) pulse of mafic alkaline volcanism throughout the study region; and 3) A

  5. New Geochemical and Isotopic Evidence for Igneous Activity at the Triassic-Jurassic Boundary: the Effects of Volcanism in the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Cohen, A. S.; Coe, A. L.

    2001-12-01

    Although the Triassic-Jurassic (T-J) boundary marks one of the `big five' extinction events of the Phanerozoic, the processes driving global change at that time remain obscure. The main contenders include substantial volcanic activity, large meteorite impacts, and major tectonic realignment. Recent results from high-precision Ar-Ar and U-Pb dating suggest that a major phase of volcanic activity, associated with the breakup of Pangea, started ~200 Ma ago in the so-called Central Atlantic magmatic province (Marzoli et al., Science 284, p. 616, 1999). However, it is often hard to accurately assess the global impact of this volcanic activity because of the difficulties in correlating igneous ages with the changes in the sedimentary successions which in practice define the position of the T-J boundary, and because of the difficulties in estimating the volume and extent of volcanic activity. In this study, we have adopted a new approach by determining the Mo, Re and platinum group element (PGE) abundances, and Os isotope compositions, of a suite of fully marine organic-rich mudrocks from three T-J boundary sections in the U.K. One of these sections (St. Audrie's Bay, Somerset) has been proposed as a candidate GSSP for the T-J boundary. The underlying rationale is that organic-rich mudrocks concentrate these elements from seawater, and reflect the particular geochemical and isotopic characteristics of seawater on a global scale at the time of mudrock deposition. Because the Re and PGE signatures of chondritic meteorites and terrestrial volcanism are distinctive, as are the signatures they impart to seawater, the patterns of these elements in well-preserved mudrock samples should help to define both the timing and nature of environmental change at the T-J boundary. Our new results show that Os abundances in marine mudrocks increased more than five-fold in the latest Triassic; Re abundances started to rise at the same time and had increased by up to 2 orders of magnitude in

  6. Epithermal mineralization controlled by synextensional magmatism in the Guazapares Mining District of the Sierra Madre Occidental silicic large igneous province, Mexico

    NASA Astrophysics Data System (ADS)

    Murray, Bryan P.; Busby, Cathy J.

    2015-03-01

    We show here that epithermal mineralization in the Guazapares Mining District is closely related to extensional deformation and magmatism during the mid-Cenozoic ignimbrite flare-up of the Sierra Madre Occidental silicic large igneous province, Mexico. Three Late Oligocene-Early Miocene synextensional formations are identified by detailed volcanic lithofacies mapping in the study area: (1) ca. 27.5 Ma Parajes formation, composed of silicic outflow ignimbrite sheets; (2) ca. 27-24.5 Ma Témoris formation, consisting primarily of locally erupted mafic-intermediate composition lavas and interbedded fluvial and debris flow deposits; (3) ca. 24.5-23 Ma Sierra Guazapares formation, composed of silicic vent to proximal ignimbrites, lavas, subvolcanic intrusions, and volcaniclastic deposits. Epithermal low-to intermediate-sulfidation, gold-silver-lead-zinc vein and breccia mineralization appears to be associated with emplacement of Sierra Guazapares formation rhyolite plugs and is favored where pre-to-synvolcanic extensional structures are in close association with these hypabyssal intrusions. Several resource areas in the Guazapares Mining District are located along the easternmost strands of the Guazapares Fault Zone, a NNW-trending normal fault system that hosts most of the epithermal mineralization in the mining district. This study describes the geology that underlies three of these areas, which are, from north to south: (1) The Monte Cristo resource area, which is underlain primarily by Sierra Guazapares formation rhyolite dome collapse breccia, lapilli-tuffs, and fluvially reworked tuffs that interfinger with lacustrine sedimentary rocks in a synvolcanic half-graben bounded by the Sangre de Cristo Fault. Deposition in the hanging wall of this half-graben was concurrent with the development of a rhyolite lava dome-hypabyssal intrusion complex in the footwall; mineralization is concentrated in the high-silica rhyolite intrusions in the footwall and along the

  7. Wilson-cycle "kick-off": Constraining the influence of a Large Igneous Province during the Neoproterozoic evolution of the pre-Caledonian margin of Baltica

    NASA Astrophysics Data System (ADS)

    Jørgen Kjøll, Hans; Andersen, Torgeir B.; Tegner, Christian; Corfu, Fernando; Planke, Sverre

    2016-04-01

    The supercontinent Rodinia broke up in the late Neoproterozoic to form the oceans and margins separating paleocontinents such as Baltica, Avalonia and Laurentia, which in turn later collided to form the Caledonian - Appalachian mountain belts. Some of the geological products of the complex evolution from passive-margin- to break-up are presently found in nappe complexes within the Scandinavian Caledonides. As described by P-G. Andreasson and co-workers in several papers from the 1990's, the break-up was associated with emplacement of major dolerite dike-complexes of Ediacaran age (c. 600 Ma), probably constituting a pre-Caledonian Large Igneous Province (pCLIP). The dominantly dolerite-dike swarms intruded a thinned continental crust comprising both crystalline basement and marine sediments deposited in pre- to early syn-rift basins. During peak rifting a sheeted dike complex defining the ocean-continent transition (OCT) evolved. More than 100 Myr later, during early stages of plate convergence, distal parts of the margin and the OCT experienced high to ultra-high pressure metamorphism, before the remnants of the dike swarms and the OCT were finally thrusted onto Baltica as the Seve and Särv Nappe Complexes. This occurred during the Scandian phase of the Caledonian orogeny at c. 425 Ma. Parts of the ancient magma-rich rifted margin are now exposed in the Scandinavian Caledonides. The best-preserved parts provide a remarkable analogue to present day OCTs and adjacent areas that generally only is observable in seismic sections. In order to understand the dynamics of the continental break-up, we will investigate the exposed areas to better constrain the active mechanisms that eventually produced oceanic crust. Also, with an improved understanding of magma-rich segments, a better comprehension may be achieved for magma-poor segments, which in the present study area occur both to the south and north of the pCLIP-segment in central Scandinavia. This presentation reports

  8. Middle Miocene nepheline-bearing mafic and evolved alkaline igneous rocks at House Mountain, Arizona Transition Zone, north-central Arizona

    SciTech Connect

    Wittke, J.; Holm, R.F.; Ranney, W.D.R. . Dept. of Geology)

    1993-04-01

    The Middle Miocene House Mountain shield volcano is located on the northern margin of the Arizona Transition Zone, about 7 km SW of Sedona, AZ. Deep erosion has exposed internal structural and stratigraphic relationships of the volcano. Mapping documents two igneous suites: (1) alkali basalt to trachyte and alkali-feldspar syenite, and (2) olivine melanephelinite, nepheline monzodiorite, nepheline monzosyenite and nepheline syenite. The rocks of the first suite occur as dikes and flows, which, with a thick pyroclastic section, are the principal units of the volcano. The melanephelinite is nonvesicular and intruded as a large irregular dike and several smaller dikes. The nepheline-bearing syenitic rocks, which are phaneritic with nepheline and clinopyroxene crystals up to 1 cm in diameter, occur as pods and sheets within the melanephelinite. Also within the melanephelinite are wispy leucocratic segregations, syenitic fracture-fillings, and ocelli. The largest phaneritic sheet is [approx]18 m thick; it displays crude subhorizontal compositional banding and vuggy surfaces. The latter indicate that the magmas were fluid-rich. Compositions intermediate between the melanephelinite and syenitic rocks have not been found. Although the syenitic rocks are coarse-grained, mapping indicates the they are near the summit of the volcano and were probably emplaced at a depth of less than 1 km, possibly of only a few hundred meters. The field relationships of the phaneritic rocks can be explained by ascent and coalescence of immiscible syenitic liquids within the melanephelinite dike. Calculated density contrasts between melanephelinite and syenitic liquids exceed 0.2 g/cm[sup 3].

  9. Two mantle sources, two plumbing systems: Tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province

    USGS Publications Warehouse

    Arndt, N.; Chauvel, C.; Czamanske, G.; Fedorenko, V.

    1998-01-01

    Rocks of two distinctly different magma series are found in a ???4000-m-thick sequence of lavas and tuffs in the Maymecha River basin which is part of the Siberian flood-volcanic province. The tholeiites are typical low-Ti continental flood basalts with remarkably restricted, petrologically evolved compositions. They have basaltic MgO contents, moderate concentrations of incompatible trace elements, moderate fractionation of incompatible from compatible elements, distinct negative Ta(Nb) anomalies, and ??Nd values of 0 to + 2. The primary magmas were derived from a relatively shallow mantle source, and evolved in large crustal magma chambers where they acquired their relatively uniform compositions and became contaminated with continental crust. An alkaline series, in contrast, contains a wide range of rock types, from meymechite and picrite to trachytes, with a wide range of compositions (MgO from 0.7 to 38 wt%, SiO2 from 40 to 69 wt%, Ce from 14 to 320 ppm), high concentrations of incompatible elements and extreme fractionation of incompatible from compatible elements (Al2O3/TiO2 ??? 1; Sm/Yb up to 11). These rocks lack Ta(Nb) anomalies and have a broad range of ??Nd values, from -2 to +5. The parental magmas are believed to have formed by low-degree melting at extreme mantle depths (>200 km). They bypassed the large crustal magma chambers and ascended rapidly to the surface, a consequence, perhaps, of high volatile contents in the primary magmas. The tholeiitic series dominates the lower part of the sequence and the alkaline series the upper part; at the interface, the two types are interlayered. The succession thus provides evidence of a radical change in the site of mantle melting, and the simultaneous operation of two very different crustal plumbing systems, during the evolution of this flood-volcanic province. ?? Springer-Verlag 1998.

  10. Petrogenesis of coexisting SiO 2-undersaturated to SiO 2-oversaturated felsic igneous rocks: The alkaline complex of Itatiaia, southeastern Brazil

    NASA Astrophysics Data System (ADS)

    Brotzu, P.; Gomes, C. B.; Melluso, L.; Morbidelli, L.; Morra, V.; Ruberti, E.

    1997-07-01

    The Itatiaia alkaline complex is a Late Cretaceous intrusion (72 Myr) made up of felsic differentiates, with syenitic rocks dominant throughout and with presence of both nepheline- and quartz-rich varieties. Dykes with phonolitic or trachytic composition cross-cut the coarse-grained facies. The rocks are arranged concentrically, with the core of the complex being formed by SiO 2-oversaturated syenites (with a small outcrop of granites), and are radially displaced by faults related to regional tectonic lineaments. The minerals show gradual but significant changes in composition (salitic and augitic to aegirine-rich pyroxenes, hastingsite and actinolite to richterite and arfvedsonite amphiboles, sodic plagioclase to orthoclase feldspars and so on) and the whole-rock trends are broadly consistent with fractional crystallization processes dominated by alkali feldspar removal. Sr-isotopic data indicate more radiogenic ratios for the SiO 2-oversaturated rocks (0.7062-0.7067 against 0.7048-0.7054 for the SiO 2-undersaturated syenites), consistent with small amounts of crustal input. The favored hypothesis for the petrogenesis of the different syenitic groups is the prolonged differentiation starting from differently SiO 2-undersaturated mafic parental magmas (potassic alkali basalts to ankaratrites, present in the Late Cretaceous dyke swarms of the area), accompanied by variable crustal contamination prior to the final emplacement. The lack of carbonatite as a significant lithotype, the potassic affinity of the Itatiaia complex, and the relatively high Sr-isotopic ratios match the characteristics of the other complexes of the Rio de Janeiro-Sa˜o Paulo states coastline and confirm the ultimate derivation of these differentiated rocks from an enriched lithospheric mantle source.

  11. Magmas and magmatic rocks: An introduction to igneous petrology

    SciTech Connect

    Middlemost, E.A.K.

    1986-01-01

    This book melds traditional igneous petrology with the emerging science of planetary petrology to provide an account of current ideas on active magmatic and volcanic processes, drawing examples from all igneous provinces of the world as well as from the moon and planets. It reviews the history and development of concepts fundamental to modern igneous petrology and includes indepth sections on magmas, magnetic differentiation and volcanology.

  12. Central Appalachian Valley and Ridge Province Cenozoic igneous activity and its relation in space and time with the Late Jurassic rift-to-drift-related alkalic dikes

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Schultz, L.; Hendriks, B. W.; Harbor, D. J.; Connors, C. D.

    2011-12-01

    A Swarm of Late Jurassic alkalic intrusions, geographically limited mainly to the Augusta County in western Virginia has been studied geochemically. These dykes were emplaced along a northwest-southeast cross-strike basement fracture zone during Mesozoic extension. However, not all igneous rocks in Virginia are Jurassic; published K-Ar ages already suggested an Eocene age activity around Monterey, VA. We systematically sampled and studied these rocks geochemically and used the Ar-Ar dating technique to define a more precise age for this youngest volcanic activity East of the Mississippi. The younger igneous bodies have traditionally been interpreted as intrusive bodies representing old plumbing systems of eroded volcanic centers. This hypothesis is based on studies of aphanitic to porphyritic and occasionally vesicular hard rocks from quarries and road cuts. Pyroclastic deposits have mainly been neglected during theses earlier studies. However additional petrographic studies of volcanic sediments are able to shed light not only on the volcanic nature of these pyroclastic rocks but also on eruption mechanisms and magma crust interactions. Our petrographic studies indicate that these volcanic sediments contain different clasts of igneous and sedimentary country rocks (sandstones and limestones of different formations), fresh glass shards and crystals of predominantly pyroxene, hornblende and micas. A previously unmapped, massive, m-thick andesitic pyroclastic deposit has been studied in detail to shed light on the formation of theses volcanic sediments. Field relations and observations (e.g. denser rock fragments are enriched in the lower part of the sequence and bedding is largely parallel to the present topography) are consistent with a massive welded ignimbrite. As a result, surface erosion after the eruption must be less significant than previously believed and some rocks are clearly volcanic in nature. Petrogenetically the Jurassic magmas are much more alkalic

  13. Central Appalachian Valley and Ridge Province Cenozoic igneous activity and their relation in space and time with the Late Jurassic rift to drift related alkalic dikes.

    NASA Astrophysics Data System (ADS)

    Meyer, R.; Schultz, L.; Hendriks, B. W. H.; Harbor, D.; van Wijk, J.; Connors, C.

    2012-04-01

    A Swarm of Late Jurassic alkalic intrusions and geographically limited mainly to the Augusta County in western Virginia has been studied geochemically. These dykes were emplaced along a northwest-southeast cross-strike basement fracture zone during Mesozoic extension. However, not all igneous rocks in Virginia are Jurassic; published K-Ar ages already suggested an Eocene age activity around Monterey, VA (e.g. Fullagar & Bottino 1969). We first systematically sampled and studied these rocks geochemically and used the Ar-Ar dating technique to define a more precise age (around 48Ma) for this youngest volcanic activity East of the Mississippi. The younger igneous bodies have traditionally been interpreted as intrusive bodies representing old plumbing systems of eroded volcanic centers. This hypothesis is based on studies of aphanitic to porphyritic and occasionally vesicular hard rocks from quarries and road cuts. Pyroclastic deposits have mainly been neglected during theses earlier studies. However additional petrographic studies of volcanic sediments are able to shed light not only on the volcanic nature of these pyroclastic rocks but also on eruption mechanisms and magma crust interactions. Our petrographic studies defined that these volcanic sediments contain different clasts of igneous and sedimentary country rocks (sandstones and limestones of different formations), fresh glass shards and crystals of predominantly pyroxene, hornblende and micas. A previously unmapped, massive, m-thick andesitic pyroclastic deposit has been studied in detail to shed light on the formation of theses volcanic sediments. Field relations and observations (e.g.denser rock fragments are enriched in the lower part of the sequence and bedding is largely parallel to the present topography) are consistent with a massive welded ignimbrite. As a result, surface erosion after the eruption must be less significant than previously believed and some rocks are clearly volcanic in nature

  14. Multiple shallow level sill intrusions coupled with hydromagmatic explosive eruptions marked the initial phase of Ferrar large igneous province magmatism in northern Victoria Land, Antarctica

    USGS Publications Warehouse

    Viereck-Goette, L.; Schöner, R.; Bomfleur, B.; Schneider, J.

    2007-01-01

    Field data gathered during GANOVEX IX (2005/2006) in Northern Victoria Land, Antarctica, indicate that volcaniclastic deposits of phreatomagmatic eruptions (so-called Exposure Hill Type events) are intercalated with fluvial deposits of Triassic-Jurassic age at two stratigraphic levels. Abundant scoriaceous spatter (locally welded) indicates a hawaiian/strombolian component. Breccia-filled diatremes, from which volcaniclastic deposits were sourced, are rooted in sills which intruded wet sediments. The deposits are thus subaerial expressions of initial Ferrar magmatism involving intrusion of multiple shallow-level sills. Due to magma-sediment interaction abundant clastic dikes are developed that intrude the sediments and sills. All igneous components in the volcaniclastic deposits are andesitic in composition, as are the chilled margins of the sills. They are more differentiated than the basaltic andesites of the younger effusive section of Kirkpatrick plateau lavas which in northern Victoria Land start with pillow lavas and small volume lava flows from volcanic necks.

  15. An ultramafic primary magma for a low Si, high Ti-Fe gabbro in the Panxi region of the Emeishan large igneous province, SW China

    NASA Astrophysics Data System (ADS)

    Gregory Shellnutt, J.; Wang, Kuo-Lung

    2014-01-01

    The Kelang gabbro (256 ± 3 Ma) is in contact with the peralkaline syenite of the Late Permian (˜260 Ma) Fe-Ti oxide-bearing Baima igneous complex and contains high contents of TiO2 (˜4.0 wt.%) and Fe2O3t (˜20 wt.%) and low SiO2 (˜42 wt.%) and Al2O3 (˜11 wt.%) content. The gabbros are primarily composed of plagioclase, clinopyroxene, olivine (Mg# ˜50), ilmenite, magnetite, orthopyroxene (Mg# ˜60), biotite and apatite. The Sr-Nd whole rock isotope data (ISr = 0.7046, ɛNd(T) = +2.5) and positive primitive mantle normalized anomalies of Ba, Sr and Ti and high Eu/Eu* (˜1.1) of the Kelang gabbro suggest a possible connection to the Baima cumulate gabbro (ISr = 0.7047-0.7052, ɛNd(T) = +1.6 to +4.2, Eu/Eu* = 1.5-3.6) but the bulk Cr content (˜4 ppm) and mineralogy are very different. Mass-balance, least-squares modeling suggests that the low Cr content of the Kelang gabbro is likely a result of fractionation of Cr-spinel from a picritic primary magma. After early fractionation of Mg-rich mafic silicates and Cr-spinel, the residual liquid will be enriched in Ti and Fe, depleted in Cr, have low Si and Al and resemble the bulk composition of the Kelang gabbro. Consequently, the Kelang gabbro may be the uppermost portion of a large mafic-ultramafic intrusion unrelated to the Baima igneous complex.

  16. Os isotopes in hornblende-bearing intra-plate alkaline lavas (Central European Volcanic Province; CEVP)

    NASA Astrophysics Data System (ADS)

    Mayer, B.; Jung, S.; Brauns, M.; Pfänder, J.

    2013-12-01

    Previous Os isotope studies on CEVP lavas have shown that samples with the lowest Os isotopic composition (init. 187Os/188Os: 0.132-0.135) have the highest Os concentrations (70-93 ppt). These isotope ratios are higher than those usually proposed for the lithospheric upper mantle with inferred subchondritic 187Os/188Os ratios but are similar to 187Os/188Os ratios found in lithospheric peridotite xenoliths from the CEVP. Lower Os concentrations of other lavas from the CEVP (6-43 ppt) are correlated with radiogenic init. 187Os/188Os ratios up to 0.469 and are best explained by AFC processes involving lower crustal rocks. Fairly primitive samples of high-TiO2 alkaline hornblende-bearing lavas from the Rhön area (CEVP) with MgO up to 10.4 wt% have a large range in their Os isotopic composition (init. 187Os/188Os: 0.268-0.552; 15-30 ppt Os) exceeding the range observed in other intraplate basalts including OIB. Fractionated samples have distinctly more radiogenic Os (init. 187Os/188Os: up to 0.890; 3-10 ppt Os) isotopic compositions. For most samples, uniform Nd, Sr, and Pb isotope data are not consistent with AFC processes, hence, the radiogenic Os isotopic composition is also unlikely to result from assimilation processes alone. Some samples with radiogenic Os isotopic compositions and low Os concentrations have radiogenic 87Sr/86Sr, unradiogenic 143Nd/144Nd, and unradiogenic Pb isotope ratios suggesting contamination with crustal material in this case. Energy-constrained AFC calculations involving previously used hypothetical crustal endmembers show that for the majority of the hornblende-bearing lavas crustal contamination is unlikely. An alternative view would be that the mantle source of the hornblende-bearing lavas contains significant portions of non-peridoditic (i.e. pyroxenitic) material. Pyroxenites can have elevated Re/Os ratios and may evolve towards radiogenic Os isotopic compositions over time. New high-precision 40Ar-39Ar ages on hornblende from these

  17. Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico

    USGS Publications Warehouse

    Amato, J.M.; Boullion, A.O.; Serna, A.M.; Sanders, A.E.; Farmer, G.L.; Gehrels, G.E.; Wooden, J.L.

    2008-01-01

    New U-Pb zircon ages, geochemistry, and Nd isotopic data are presented from three localities in the Paleoproterozoic Mazatzal province of southern New Mexico, United States. These data help in understanding the source regions and tectonic setting of magmatism from 1680 to 1620 Ma, the timing of the Mazatzal orogeny, the nature of postorogenic maginatism, Proterozoic plate tectonics, and provide a link between Mazatzal subblocks in Arizona and northern New Mexico. The data indicate a period from 1680 to 1650 Ma in which juvenile felsic granitoids were formed, and a later event between 1646 and 1633 Ma, when these rocks were deformed together with sedimentary rocks. No evidence of pre-1680 Ma rocks or inherited zircons was observed. The igneous rocks have ENd(t) from -1.2 to +4.3 with most between +2 and +4, suggesting a mantle source or derivation from similar-aged crust. Nd isotope and trace element concentrations are consistent with models for typical are magmatism. Detrital zircon ages from metasedimentary rocks indicate that sedimentation occurred until at least 1646 Ma. Both local and Yavapai province sources contributed to the detritus. All of the samples older than ca. 1650 Ma are deformed, whereas undeformed porphyroblasts were found in the contact aureole of a previously dated 1633 Ma gabbro. Regionally, the Mlazatzal orogeny occurred mainly between 1654 and 1643 Ma, during final accretion of a series of island arcs and intervening basins that may have amalgamated offshore. Rhyolite magmatism in the southern Mazatzal province was coeval with gabbro intrusions at 1633 Ma and this bimodal magmatism may have been related to extensional processes following arc accretion. ?? 2007 Geological Society of America.

  18. A Strongly Calc-alkaline Suite in the Midst of the Tholeiitic Columbia River Basalt Province: Implications for Generating the Calc-alkaline Trend Without Subduction Processes

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2012-12-01

    The mid-Miocene lavas of the Strawberry Volcanics (SV), distributed over 3,400 km2 in NE Oregon, comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The volcanic suite is mainly composed of calc-alkaline (CA) basaltic andesite and andesite, yet tholeiitic (TH) lavas of basalt to andesite occur as well. The SV lies in the heart of nearly coeval flood basalts of the Columbia River province of the Pacific Northwest. The unique combination of strongly CA rocks of the SV in a non-subduction setting provide an excellent opportunity to study controls on inducing CA evolution in the midst of a TH province and independent of processes taking places at an active subduction zone. New 40Ar/39Ar ages indicate CA basaltic andesites to andesites of the SV erupted at least from 14.78±0.13 Ma to 12.44±0.12 Ma demonstrating that CA magmatism of the SV was ongoing during the eruptions of the tholeiitic Wanapum Basalt member of the Columbia River Basalt Group (CRBG). This range will likely be extended to even older ages in the future because existent age dates did not include samples from near the base of the SV. Thickness of intermediate lavas flows of the SV range from 15 m to as thin as 2 m and lavas are characterized by mostly phenocryst poor lithologies. When phenocrysts are abundant they are very small suggesting growth late during eruption. Single lava flow sections can include on the order of 30 conformable flows, testifying to a vigorous eruption history. The thickest andesitic sections are located in the glacially carved mountains of the Strawberry Mountain Wilderness (i.e. Strawberry Mountain, High Lake, and Slide Lake) where several vent complexes are exposed, which are delineated by dikes and plugs with finely interlocking plutonic textures, cross-cutting SV lava flows. Dikes generally strike NW-SE. Subtle variations in major and trace element compositions exist between TH and CA lavas of the SV. The CA lavas of the SV are

  19. Petrology and U-PB geochronology of the Robertson River Igneous Suite, Blue Ridge province, Virginia - Evidence for multistage magmatism associated witn an early episode of Laurentian rifting

    USGS Publications Warehouse

    Tollo, R.P.; Aleinikoff, J.N.

    1996-01-01

    The Late Neoproterozoic (735-702 Ma) Robertson River Igneous Suite includes at least eight plutons ranging in composition from syenogranite to alkali feldspar granite to alkali feldspar syenite. These plutons intruded Mesoproterozoic (1.2-1.0 Ga) gneissic basement of the Blue Ridge anticlinorium in northern and central Virginia during an early episode of Laurentian rifting. Robertson River plutons range in composition from metaluminous to peralkaline and, relative to other granite types, exhibit compositional characteristics of A-type granitoids including (1) marked enrichment in Nb, Zr, Y, REE (except Eu), and Ga, (2) high Ga/Al and FeO(total)/MgO, and (3) depletion of Ba and Sr. High Ga/Al ratios are particularly diagnostic of the suite and serve as an effective discriminant between originally metaluminous and peralkaline bulk compositions, providing a useful proxy for widely used indicators based on major elements that are prone to remobilization. U-Pb isotopic analyses of zircons indicate that the suite was emplaced in two pulses, occurring at 735 to 722 and 706 to 702 Ma. Metaluminous magmas were emplaced during both pulses, formed most of the main batholith, and fractionated as independent, time-correlative groups. Peralkaline magmas were emplaced only during the final pulse, formed a volcanic center that erupted unknown quantities of rhyolite, and experienced a style of fractionation similar to the metaluminous types. Differences in Ce/Nb, Y/Nb, and Yb/Ta ratios suggest that the metaluminous and peralkaline magmas were derived from different sources. The Robertson River Igneous Suite is part of a regional group of Late Neoproterozoic (760-700 Ma) plutons including at least 20 other A-type granitoid bodies exposed throughout the Laurentian terrane of Virginia and northwestern North Carolina. Like the Robertson River, most of the other granitoids are metaluminous in composition, typically form multi-intrusive, elongate plutons, and are not geographically

  20. F, Cl, and S concentrations in olivine-hosted melt inclusions from mafic dikes in NW Namibia and implications for the environmental impact of the Paraná-Etendeka Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Marks, Linda; Keiding, Jakob; Wenzel, Thomas; Trumbull, Robert B.; Veksler, Ilya; Wiedenbeck, Michael; Markl, Gregor

    2014-04-01

    Large Igneous Provinces (LIPs) have been proposed to trigger mass-extinction events by the release of large quantities of volcanic gases which results in major climatic perturbations causing worldwide ecological stress and collapse. A prerequisite for understanding the proposed link between LIP volcanism and biological crisis is reliable information about the total gas emissions during these events. In this paper we present the first estimations of total F, Cl and S emissions from the Paraná-Etendeka LIP in the South Atlantic. Data from this province are of special interest because it is among the world's largest LIPs but is not associated with a mass extinction event. We have determined pre-eruption concentrations of F, Cl and S by in situ analysis of melt inclusions preserved in olivine phenocrysts from basaltic dikes in the Etendeka province of NW Namibia. The melt inclusions have Mg-rich basaltic bulk compositions with about 8 to 18 wt.% MgO, overlapping the compositional range of the host rocks. A major feature of the melt inclusions is their wide variation in major and minor element concentrations, including F, Cl and S. This is attributed to trapping of variably-mixed melt fractions during crystallization of olivine in the roots of the dike system. Fluorine concentrations vary from about 190 to 450 μg/g, Cl from <10 to 125 μg/g and S from <30 to 1100 μg/g. All inclusions were re-homogenized in heating experiments and the lowest concentrations may be due to partial leakage of S and halogens. Therefore, the maximum values are considered best estimates of the true melt concentrations. These melt inclusion data are combined with the volume of extruded magma in the province (2.2 to 2.35×106 km) and with published degassing efficiencies to calculate total emissions from the Paraná-Etendeka LIP of 600-1200 Gt fluorine, 70-470 Gt chlorine and 3100-5400 Gt sulfur. The estimated sulfur emissions are similar to those from the similar-sized Deccan and Siberian

  1. Astrochronology of the Valanginian-Hauterivian stages (Early Cretaceous): Chronological relationships between the Paraná-Etendeka large igneous province and the Weissert and the Faraoni events

    NASA Astrophysics Data System (ADS)

    Martinez, Mathieu; Deconinck, Jean-François; Pellenard, Pierre; Riquier, Laurent; Company, Miguel; Reboulet, Stéphane; Moiroud, Mathieu

    2015-08-01

    The Geological Time Scale shows large uncertainties on durations and ages of Berriasian to Albian stages (Early Cretaceous), which impact climate and paleoceanographic reconstructions. Here, we provide a new astrochronology of the Hauterivian Stage anchored on (1) recent biostratigraphically well-constrained published radio-isotopic dates, and (2) a previously published astrochronology of the Valanginian Stage. A new duration of the Hauterivian Stage is assessed here at 5.93 ± 0.41 myr. The retained age model, anchored on a latest CA-ID-TIMS U-Pb age from a tuff level in the Hauterivian of the Neuquén Basin (Argentina), dates the base of the Valanginian Stage at - 137.05 ± 1.0 Ma, the base of the Hauterivian Stage at - 131.96 ± 1.0 Ma, and the top of the Hauterivian Stage at - 126.02 ± 1.0 Ma. In addition, the onset of the mid-Valanginian Weissert Event is dated at - 135.22 ± 1.0 Ma and the onset of the Faraoni Event at - 126.73 ± 1.0 Ma. The duration of the mid-Valanginian carbon-isotope excursion, associated to the Weissert Event, is assessed at 5.85 myr, with a rapid phase of increasing δ13C values (0.60 myr), a phase of stable δ13C values (1.48 myr), and smooth decrease in δ13C values (3.77 myr). The calibration provided here highlights that the onset of the activity of the Paraná-Etendeka province and the start of the Weissert Event coincided, suggesting that the Paraná-Etendeka province may have played a major role on the climatic and oceanographic changes during the mid-Valanginian.

  2. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  3. A comparative petrological study of the Siberian and Ethiopian Large Igneous Provinces (LIPs) and a case study on Triassic mafic rocks in Chukotka, NE Russia

    NASA Astrophysics Data System (ADS)

    Desta, M. T.; Ishiwatari, A.; Machi, S.; Ledneva, G. V.; Sokolov, S. D.; Artem, M. V.; Bazylev, B. A.

    2012-12-01

    This study is mainly targeted to find the possible eastern marginal extension of Siberian LIP and to compare them with the central Siberian LIP and is also aimed to compare and contrast the geochemical and petrological characteristics of Siberian LIP (~ 250 Ma) with the Ethiopian LIP (~ 30 Ma) to consider the mantle and crustal processes in view of magmatic diversity among those LIPs. A review of previous geochemical data from the Siberian and Ethiopian LIP confirms notable differences in their major and trace element compositions. Siberian LIP comprises a variety of rocks (such as basalts, basaltic andesites, picrites and meimechites) with a wide range of SiO2 (40-62 wt. %). In contrast, Ethiopian LIP is characterized by bimodal volcanism with the absence of intermediate rock. The Ethiopian high-Ti basalts and picrites have higher TiO2 (3-6 wt. %), lower CaO/Al2O3 (0.5-1.5) and MgO (5-26 wt. %) than the Siberian high-Ti picrites and meimechites (2-4, 1.8-2.3 and 13-36 wt. % respectively). Siberian LIP shows more significant depletion in HFSE (mainly Nb) and higher La/Sm ratios than Ethiopian LIP. This may suggest contamination of Siberian LIP magma by crustal component. Triassic volcanic and intrusive rock samples are collected in 2009 from the Chukotka province (Northeast Russia), where geographically far to the east from the central Siberian flood basalt province. The petrography of the studied samples includes basaltic rocks (i.e. hornblende basalt, lamprophyre, pyroxene basalt, and ankaramite) and gabbroic rocks (i.e. amphibole-bearing type-I and amphibole free type-II). Clinopyroxenes (diopside to augite) both from basalts and gabbros show only low-Ti (<1 wt. %) characteristics. Amphiboles are pargasite in lamprophyres and type-I gabbros, tschermakite in hornblende-basalt, edenite in ankaramite and edenite-hornblende in type-II gabbros. Plagioclase ranges from An100 to An45.6 in type-I gabbros, An54.5 to An0.9 in type-II gabbros and An73.4 to An1.3 in

  4. Isotopically-diverse rhyolites coeval with the Columbia River Basalts Large Igneous Province: evidence for widespread mantle-plume driven hydrothermal alteration and remelting of the crust

    NASA Astrophysics Data System (ADS)

    Colon, D.; Bindeman, I. N.; Stern, R. A.; Fisher, C. M.

    2014-12-01

    The formation of the most recent flood basalt province on Earth, the Columbia River Flood Basalts (CRBs) of the northwestern USA, was accompanied by eruptions of several thousand km3 of rhyolite in a short time window from 16.7 to 15 Ma. These rhyolites span from low (+1‰) to high (+11‰) in δ18O values as recorded by major phenocrysts, and alteration-resistant zircons within each rhyolite commonly display diversity of up to 6‰ δ18O, indicative of batch assembly prior to eruption. Significant variation in ɛHf also exists in zircons, ranging from -39 to 0 in rhyolites erupted through the North American cratonic crust, and from -1 to +9 in rhyolites erupted through accreted oceanic terranes to the east of the Sr87/86Sr = 0.706 line. This isotopic diversity cannot be accounted for by fractionation of a CRB-like parent magma, demonstrating that the syn-CRB rhyolites must have been derived from melting of the crust. Abundant low-δ18Omelt values among syn-CRB rhyolites further constrains this crustal melting to shallow depths of 5-10 km, due to the shallow depths of the necessary hydrothermal alteration of the protolith. By contrast, high-δ18O rhyolites must have been formed by remelting of sedimentary or metasedimentary rocks. Low-δ18O rhyolites are also most common in the vicinity of the crustal suture between the thick lithosphere of the Archean craton and the thin lithosphere of the accreted terranes. Thermomechanical modeling suggests that this contrast concentrates crustal heating and deformation, creating pathways for meteoric water to penetrate the crust and cause extensive hydrothermal alteration less than 1 Ma before those same rocks remelt to form low-δ18O rhyolites. Finally, we suggest that this extensive crustal hydrothermal alteration and melting may be typical of continental flood basalt provinces world wide, and particularly when there is syn-volcanic extension.

  5. Tracing the sublithospheric sources of continental flood basalts: multi-elemental isotopic studies on the recently found ferropicrites and meimechites from the Karoo large igneous province

    NASA Astrophysics Data System (ADS)

    Heinonen, J. S.; Carlson, R. W.; Luttinen, A. V.

    2011-12-01

    There is a substantial debate on the mantle sources and ultimate origins of continental flood basalts (CFBs), e.g., whether they are related to deep-seated thermal upwellings (i.e. mantle plumes) or not. The Karoo CFB province that was emplaced on the juxtaposed land masses of Africa and Antarctica during the early stages of the breakup of the Gondwana supercontinent ~180 Ma ago has played a central role in this debate. Although most of the structural analyses, geochemical affinities, and temporal relationships of Karoo-related rocks point to a strong control of lithosphere on the magmatism, paleostress estimates for some of the Karoo dikes and high mantle potential temperatures estimated for the sources of recently found highly magnesian rocks from Antarctica are compatible with the plume theory. Volcanic rocks that do not show evidence of lithospheric influence in their geochemistry are extremely rare in the African part of the Karoo province. Here we present high-precision isotopic (Sr, Nd, Pb, and Os) whole-rock data on some primitive dike rocks (ferropicrites and meimechites) associated with its Antarctic extension. The isotopic data together with trace element data show that the parental melts of the studied rocks sampled two distinctive geochemical reservoirs in the deep sub-Gondwanan mantle. The isotopic signatures of the relatively depleted types show evidence of extensive melt extraction in the past and are indistinguishable from those of mid-ocean ridge basalts (MORBs) of the SW Indian Ridge, the modern successor of the Jurassic Africa-Antarctica rift. On the other hand, the relatively enriched type isotopically resembles modern oceanic island basalts (OIBs) and may sample pyroxenitic sources either formed by melt infiltration in the upper mantle or by reaction of peridotite with recycled oceanic crustal components. Recent Ar-Ar datings of the depleted types indicate that they are related to the main phase of Karoo magmatism ~180 Ma ago. Moreover

  6. Igneous Structures, Magma Transport, and Crystallization in Simple and Complex Plumbing Systems of the Central Atlantic Magmatic Province, Pennsylvania and New Jersey, USA

    NASA Astrophysics Data System (ADS)

    Srogi, L.; Martinson, P.; Willis, K. V.; Kulp, R.; Pollock, M.; Lutz, T. M.

    2014-12-01

    Recent studies showing the importance of sills and sheets in crustal magmatic plumbing at rifted continental margins prompt re-examination of the Mesozoic Central Atlantic Magmatic Province, eastern North America. The Newark-Gettysburg Basins in New Jersey, Pennsylvania, Maryland, contain Jurassic diabase (dolerite) intrusions and lava flows. Most intrusions are considered a single sheet or saucer sill. However, at the W end of the Newark Basin the Jacksonwald Syncline (JS) includes small plutons, sills, dikes, and a lava flow; and the Morgantown Pluton (MP) is a connected network of sills and inclined sheets with the 250-m-wide Birdsboro Dike forming the E side. After crystallization most intrusions were tilted or folded and dip/plunge toward the NW border faults. In the SE part of the MP, small magmatic pipes (originally vertical) and modal layering were tilted 20 degrees NNW, similar to plunge of the JS. If tilting was due to movement along the border faults then the basins expose cross-sections of a few kms from shallower (N/NW) to deeper (S/SE) crustal levels. There is a difference of 3.5-6 km in paleo-depth between basal S/SE units and upper N/NW units within JS, MP, and York Haven Sheet, consistent with estimated thicknesses of Triassic sedimentary rocks. Basal cumulus and upper Fe-rich and granophyric zones occur in most Newark-Gettysburg Basin intrusions implying similar magma transport and crystallization processes regardless of plumbing geometry. MELTS modeling of early orthopyroxene crystallization at high P suggests that opx-rich diabase marks magma feeder locations; at least 2 feeders at different emplacement levels occur in the MP. Modally-layered opx cumulus in the MP basal sill accumulated from dozens of m-scale magma pulses with lateral migration of most liquid. Distributions of distinctive phenocrysts provide insights into magma transport and crystal sorting. MP and JS chilled margins and lava flows have almost identical REE and other

  7. An olivine-free mantle lithology as a source for mantle-derived magmas: the role of metasomes in the Ethiopian-Arabian large igneous province.

    NASA Astrophysics Data System (ADS)

    Rooney, T. O.; Nelson, W. R.; Ayalew, D.; Yirgu, G.; Herzberg, C. T.; Hanan, B. B.

    2014-12-01

    Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with olivine-dominated source. There is mounting evidence, however, for the role of pyroxenite in magma generation within upwelling mantle plumes; a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Melts derived from metasomes may exhibit extreme enrichment or depletion in major and trace elements. We hypothesize that phenocrysts such as olivine, which are commonly used to probe basalt source lithology, will reflect these unusual geochemical signals. Here we present preliminary major and trace element analyses of 60 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt. % TiO2; 4.0-13.6 wt. % MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical unit identified in the later cinder cones and associated lava flows. (B) a clinopyroxene-phyric high Ti group (1-6.7 wt. % TiO2; 1.0-9.5 wt. % MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. When combined with a diagnostic negative K anomaly in primitive-mantle normalized diagrams and Na2O>K2O, the geochemical data point towards a source which is rich in amphibole, devoid of olivine, and perhaps containing some carbonate. Our preliminary results have identified

  8. Cosmic markers, 40Ar/ 39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province

    NASA Astrophysics Data System (ADS)

    Courtillot, V.; Gallet, Y.; Rocchia, R.; Féraud, G.; Robin, E.; Hofmann, C.; Bhandari, N.; Ghevariya, Z. G.

    2000-10-01

    Bhandari et al. [Bhandari et al., Geophys. Res. Lett. 22 (1995) 433-436; Bhandari et al., Geol. Soc. Am. Spec. Paper 307 (1996) 417-424] reported the discovery of iridium-bearing sediments sandwiched between basalt flows in the Anjar area (Kutch province, India). They concluded that the signature of the K/T impact had been recorded and that onset of volcanism in the Deccan traps preceded the K/T boundary, excluding the possibility of a causal connection. This paper reports complementary analyses of Anjar outcrops by a joint Indo-French team, where we focused on cosmic markers (iridium and spinels) in the intertrappean sediments and 40Ar/ 39Ar dating and paleomagnetism of the lava flows. Anomalous Ir concentrations (up to 0.4 ng/g) are confirmed, with up to three thin and patchy enriched layers which cannot be traced throughout the exposed sections. Despite careful search, no Ni-rich spinels were found. Eight basalt samples provided 40Ar/ 39Ar results, four on plagioclase bulk samples, four on whole rocks. Spectra for whole rocks all indicate some amount of disturbance, and ages based on plagioclase bulk samples seem to be consistently more reliable [Hofmann et al., Earth Planet. Sci. Lett. 180 (2000) 13-28]. The three flows underlying the Ir-bearing sediments are dated at ˜66.5 Ma, and two overlying flows at ˜65 Ma. Magnetic analyses (both thermal and by alternating fields) uncovered clear reversed primary components in the upper flows, and more disturbed normal components in the lower flows, with evidence for an additional reversed component. There are reports [Bajpai, Geol. Soc. India Mem. 37 (1996) 313-319; Bajpai, J. Geol. Soc. London 157 (2000) 257-260] that the intertrappean sediments contain uppermost Maastrichtian dinosaur and ostracod remains above the uppermost Ir-bearing level, and may not be mechanically disturbed. We propose the following scenario to interpret these multiple field and analytical observations. Deccan trap volcanism started within

  9. 40Ar/ 39Ar ages of mafic dykes from the Mesoproterozoic Chhattisgarh basin, Bastar craton, Central India: Implication for the origin and spatial extent of the Deccan Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Rao, N. V. Chalapathi; Burgess, R.; Lehmann, B.; Mainkar, D.; Pande, S. K.; Hari, K. R.; Bodhankar, N.

    2011-08-01

    We present 40Ar/ 39Ar whole-rock ages of 63.7 ± 2.7 Ma (2σ, 92% Ar release) and 66.6 ± 2.2 Ma (2σ, 96% Ar release) for two samples of sub-surface mafic dykes intrusive into the sedimentary rocks of the Mesoproterozoic Chhattisgarh basin, Bastar craton, Central India. The obtained ages are synchronous with those of the Deccan Traps whose nearest exposures are at a distance of ~ 200 km to the west, and the recently dated diamondiferous orangeites (Group-II kimberlites) of the Mainpur area (located ~ 100 km SE within the Bastar craton). The chemical composition of the Chhattisgarh mafic dykes is indistinguishable from the chemostratigraphic horizons of the upper Deccan lavas of the Wai Subgroup (Ambenali and Poladpur Formations) and confirms them to be a part of the Deccan Large Igneous Province (LIP). The geological setting of the Deccan-age mafic dykes in the Chhattisgarh basin is analogous to that observed in other LIPs of the world such as (i) Pasco Basin of NW U.S.A, (ii) Ellisras sub-basin of southern Africa, (iii) Rift basins of New England in the NE U.S.A and (iv) the West Siberian Basin of Russia where LIP-related basalts and sills have been emplaced in distant domains from the main province. The Deccan-age of the Chhattisgarh dykes and the Mainpur orangeites permits a substantial increase of at least 8.5 × 10 4 km 2 in the spatial extent of the Deccan LIP. The temporal link at ~ 65 Ma between the Deccan Traps and (i) sub-surface mafic dykes within the Chhattisgarh basin and orangeites in the Bastar craton, (ii) Ambadongar carbonatite in western India, (iii) Salma mafic dyke in the Eastern Indian craton, (iv) Rajahmundry Traps off the eastern coast of southern India and (v) tholeiitic dykes and basalts from the Seychelles, suggests a common tectonomagmatic control, via a vast mantle plume-head of the order of 2000-2500 km. Our study has relevance to the (i) origin (plume vs non-plume) of the Deccan LIP, (ii) plumbing system for Deccan dykes and lavas in

  10. Zircon U-Pb age, geochemical, and Sr-Nd-Pb isotopic constraints on the origin of alkaline intrusions in eastern Shandong Province, China

    NASA Astrophysics Data System (ADS)

    Liu, Shen; Feng, Caixia; Hu, Ruizhong; Gao, Shan; Wang, Tao; Feng, Guangying; Qi, Youqiang; Coulson, Ian M.; Lai, Shaocong

    2013-08-01

    Alkaline intrusions in the eastern Shandong Province consist of quartz monzonite and granite. U-Pb zircon ages, geochemical data, and Sr-Nd-Pb isotopic data for these rocks are reported in the present paper. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb zircon analyses yielded consistent ages ranging from 114.3 ± 0.3 to 122.3 ± 0.4 Ma for six samples of the felsic rocks. The felsic rocks are characterised by a wide range of chemical compositions (SiO2 = 55.14-77.63 wt. %, MgO = 0.09-4.64 wt. %, Fe2O3 = 0.56-7.6 wt. %, CaO = 0.40-5.2 wt. %), light rare earth elements (LREEs) and large ion lithophile elements (LILEs) (i.e., Rb, Pb, U) enrichment, as well as significant rare earth elements (HREEs) and heavy field strength (HFSEs) (Nb, Ta, P and Ti) depletion, various and high (87Sr/86Sr) i ranging from 0.7066 to 0.7087, low ɛ Nd (t) values from -14.1 to -17.1, high neodymium model ages (TDM1 = 1.56-2.38Ga, TDM2 = 2.02-2.25Ga), 206Pb/204Pb = 17.12-17.16, 207Pb/204Pb = 15.44-15.51, and 208Pb/204Pb = 37.55-37.72. The results suggested that these rocks were derived from an enriched crustal source. In addition, the alkaline rocks also evolved as the result of the fractionation of potassium feldspar, plagioclase, +/- ilmenite or rutile and apatite. However, the alkaline rocks were not affected by crustal contamination. Moreover, the generation of the alkaline rocks can be attributed to the structural collapse of the Sulu organic belt due to various processes.

  11. Zircon U-Pb dating, geochemistry and Sr-Nd-Pb-Hf isotopes of the Wajilitag alkali mafic dikes, and associated diorite and syenitic rocks: Implications for magmatic evolution of the Tarim large igneous province

    NASA Astrophysics Data System (ADS)

    Zou, Si-Yuan; Li, Zi-Long; Song, Biao; Ernst, Richard E.; Li, Yin-Qi; Ren, Zhong-Yuan; Yang, Shu-Feng; Chen, Han-Lin; Xu, Yi-Gang; Song, Xie-Yan

    2015-01-01

    The Early Permian Tarim large igneous province (Tarim LIP) consists mainly of basaltic lavas, mafic-ultramafic intrusions including dikes and, syenite bodies in the Tarim Basin, NW China. A major unit of the Tarim LIP, the Wajilitag intrusive complex, consists of olivine pyroxenite, clinopyroxenite and gabbro units (from bottom to top), diorite and syenite rocks occurred in the upper part of the complex and alkali mafic dikes intrude the clinopyroxenite phase. Here we report the zircon U-Pb age and Hf isotopes, geochemical characteristics and Sr-Nd-Pb isotopic data of the alkali mafic dikes, and diorite, aegirine-nepheline syenite and syenite porphyry units in the Wajilitag intrusive complex. Zircons from the diorite and alkali mafic rocks yield concordant crystallization ages of 275.2 ± 1.2 Ma and 281.4 ± 1.7 Ma, respectively. The diorite and syenitic rocks in Wajilitag area have a narrow range of SiO2 contents (51.9-57.3 wt.%), and are enriched in total alkalis (Na2O + K2O = 8.3-14.3 wt.%), among which the aegirine-nepheline syenite and syenite porphyry have the geochemical affinity of A-type granites. The alkali mafic rocks and syenitic rocks have high Al2O3 (19.4-21.1 wt.%), Zr, Hf, Ba contents, total rare earth element abundances and LREE/HREE ratios and low Mg# value, K, P and Ti contents. Diorites have lower Al2O3 contents, total REE abundances and LREE/HREE ratios and higher Mg# values than the alkali mafic rocks and syenitic rocks. The diorites and syenitic rocks have low initial 87Sr/86Sr ratios (0.7034-0.7046), and high εNd(t) values (0.1-4.1) and zircon εHf(t) values (- 0.9-4.4). All the diorites and syenitic rocks show the 206Pb/204Pb ratios ranging of 18.0-19.5, 207Pb/204Pb of 15.4-15.6 and 208Pb/204Pb of 38.0-39.9. Sr-Nd isotopic ratios indicate a FOZO-like mantle source for the diorite and syenitic rocks, similar to that of the mafic-ultramafic rocks in the Wajilitag complex. In contrast, zircon Hf isotopes of basalt and syenite elsewhere in the

  12. Overlapping Sr-Nd-Hf-O isotopic compositions in Permian mafic enclaves and host granitoids in Alxa Block, NW China: Evidence for crust-mantle interaction and implications for the generation of silicic igneous provinces

    NASA Astrophysics Data System (ADS)

    Dan, Wei; Wang, Qiang; Wang, Xuan-Ce; Liu, Yu; Wyman, Derek A.; Liu, Yong-Sheng

    2015-08-01

    In general, the mantle provides heat and/or material for the generation of the silicic igneous provinces (SIPs). The rarity of mafic microgranular enclaves (MMEs), however, hampers understanding of the mantle's role in generating SIPs and the process of crust-mantle interaction. The widespread distributed MMEs in the newly reported Alxa SIP provide an opportunity to study these processes. This study integrates in situ zircon U-Pb age and Hf-O isotope analyses, whole-rock geochemistry and Sr-Nd isotope results for the MMEs and host granitoids in the Alxa Block. SIMS zircon U-Pb dating reveals that there are two generations of MMEs and host granitoids. The MMEs in the Bayannuoergong batholith were formed at ca. 278 Ma, similar to the age (280 Ma) of host granitoids, and the MMEs and host granitoids in the Yamaitu pluton were formed at ca. 272-270 Ma. All MMEs have relatively low SiO2 (50.7-61.4 wt.%) and Th (0.8-2.8 ppm), but relatively high MgO (2.6-4.9 wt.%), Cr (23-146 ppm) and Ni (6-38 ppm) contents compared to the host granitoids, with SiO2 (63.6-77.5 wt.%), Th (5.2-41 ppm), MgO (0.23-2.1 wt.%), Cr (10-38 ppm) and Ni (5-14 ppm). All MMEs have whole rock Sr-Nd and zircon Hf-O isotope compositions similar to their corresponding host granitoids. The 280 Ma MMEs have lower whole rock εNd(t) (- 13.5) and higher initial 87Sr/86Sr values (0.7095) and zircon δ18O values (6.3‰) compared to the εNd(t) (- 11.5), initial 87Sr/86Sr values (0.7070) and zircon δ18O values (5.6‰) of the 270 Ma MMEs. The occurrences of quartz xenocrysts, K-feldspar megacrysts, corroded feldspars and acicular apatites indicate that the MMEs are the products of the mixing between mantle- and crust-derived magmas. The striking similarities in the zircon Hf-O isotopic compositions in both MME-host granitoid pairs indicate that the granitoids and MMEs have similar sources. The granitoids are proposed to be mainly sourced from magmas generated by remelting of newly formed mafic rocks, which

  13. Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot

    USGS Publications Warehouse

    Wells, Ray; Bukry, David; Friedman, Richard; Pyle, Douglas; Duncan, Robert; Haeussler, Peter; Wooden, Joe

    2014-01-01

    Siletzia is a basaltic Paleocene and Eocene large igneous province in coastal Oregon, Washington, and southern Vancouver Island that was accreted to North America in the early Eocene. New U-Pb magmatic, detrital zircon, and 40Ar/39Ar ages constrained by detailed field mapping, global nannoplankton zones, and magnetic polarities allow correlation of the volcanics with the 2012 geologic time scale. The data show that Siletzia was rapidly erupted 56–49 Ma, during the Chron 25–22 plate reorganization in the northeast Pacific basin. Accretion was completed between 51 and 49 Ma in Oregon, based on CP11 (CP—Coccolith Paleogene zone) coccoliths in strata overlying onlapping continental sediments. Magmatism continued in the northern Oregon Coast Range until ca. 46 Ma with the emplacement of a regional sill complex during or shortly after accretion. Isotopic signatures similar to early Columbia River basalts, the great crustal thickness of Siletzia in Oregon, rapid eruption, and timing of accretion are consistent with offshore formation as an oceanic plateau. Approximately 8 m.y. after accretion, margin parallel extension of the forearc, emplacement of regional dike swarms, and renewed magmatism of the Tillamook episode peaked at 41.6 Ma (CP zone 14a; Chron 19r). We examine the origin of Siletzia and consider the possible role of a long-lived Yellowstone hotspot using the reconstruction in GPlates, an open source plate model. In most hotspot reference frames, the Yellowstone hotspot (YHS) is on or near an inferred northeast-striking Kula-Farallon and/or Resurrection-Farallon ridge between 60 and 50 Ma. In this configuration, the YHS could have provided a 56–49 Ma source on the Farallon plate for Siletzia, which accreted to North America by 50 Ma. A sister plateau, the Eocene basalt basement of the Yakutat terrane, now in Alaska, formed contemporaneously on the adjacent Kula (or Resurrection) plate and accreted to coastal British Columbia at about the same time

  14. Volcanic rocks of the Mendeleev Ridge (Arctic Ocean) - evidences for existence of the large igneous provinces within Arctic region: on the data of the High Arctic Russian Expedition "Arctic-2012"

    NASA Astrophysics Data System (ADS)

    Sergeev, Sergey; Petrov, Oleg; Morozov, Andrey; Kremenetsky, Alexander; Gusev, Evgeny; Shevchenko, Sergey; Krymsky, Robert; Belyatsky, Boris; Antonov, Anton; Rodionov, Nikolay

    2013-04-01

    During the complex geological-geophysical survey within August-October 2012 cruise of the Russian Expedition "Arctica-2012" on 9 sampling station (dredge, box-corer, drill-core) spaced on 450 km from the south to north alongside the Mendeleev Ridge were recovered more than 100 kg submarine volcanic rocks (which is represented about 10-15% of the total recovered bottom material), from calc-alkaline basalts, normal and subalkaline tholeites till andesite-dacites, typical lavas with glassy matrix and volcanic breccias, tuff-breccias and subvolcanic dolerites. We have studied 4 volcanic samples which are drill-cored (30-60 cm) of basement rocks at the depths of 2000-2500 m (79° and 83°N) or consolidate fragments of 30 kg weight collected at the steep escarpments with >45° slopes, three of them are tholeitic basalts (SiO2: 45.4-50.7, Al2O3: 13.7-21.7, MgO: 3.4-4.8, TiO2: 2.5-2.8, CaO: 4.7-11.4, Fe2O3: 5.9-14.4, Na2O: 2.9-3.8, K2O: 0.5-2.1 %), but the other one - is tuffobreccia with angular fragments of crystallized basalts and dolerites, and hydrated carbonatized (LOI up to 20%, ??2 - 35%) matrix. Isotopic and geochemical characteristics of the sample studied (low degree of REE fractionation: Cen/Ybn 1.6-2.2, moderate enrichment of HREE - 10-15×?1, low ratios of highly incompatible trace elements: Th/Ce = 0.03-0.04, Th/Nb = 0.14-0.16, Ce/Nb = 1.0-4.1) are very similar to those of high-Ti alkaline basalts of continental traps (CFB) connected with large mantle plume activities [Arndt et al., 1998; Hofmann, 1988] and close to the earlier discovered basalts from Chukcha borderland [Mukasa et al., 2009, 2012]. Measured Sr, Nd ? Pb isotope compositions of basalts vary from moderately enriched to moderately depleted compositions (143Nd/144Nd= 0.512706 - 0.512887, 87Sr/86Sr=0.704127-0.708580, 206Pb/204Pb=18.66-19.07, 207Pb/204Pb= 15.51-15.65, 208Pb/204Pb=38.42-39.20), reflecting different stages of secondary alterations, melt contamination by sedimentary material of host

  15. Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust-mantle interaction and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong

    2014-10-01

    In situ zircon U-Pb ages and Hf isotopic data, major and trace elements, and Sr-Nd-Pb isotopic compositions are reported for Nanshanping alkaline rocks from the Zijingshan district in southwestern Fujian Province (the Interior or Western Cathaysia Block) of South China. The Nanshanping alkaline rocks, which consist of porphyritic quartz monzonite, porphyritic syenite, and syenite, revealed a Late Cretaceous age of 100-93 Ma. All of the rocks show high SiO2, K2O + Na2O, and LREE but low CaO, Fe2O3T, MgO, and HFSE (Nb, Ta, P, and Ti) concentrations. These rocks also exhibit uniform initial 87Sr/86Sr ratios of 0.7078 to 0.7087 and εNd(t) values of -4.1 to -7.2, thus falling within the compositional field of Cretaceous basalts and mafic dikes occurring in the Cathaysia Block. Additionally, these rocks display initial Pb isotopic compositions with a 206Pb/204Pbi ratio of 18.25 to 18.45, a 207Pb/204Pbi ratio of 15.63 to 15.67, and a 208Pb/204Pbi ratio of 38.45 to 38.88. Combined with the zircon Hf isotopic compositions (εHf(t) = -11.7 to -3.2), which are different from those of the basement rocks, we suggest that Nanshanping alkaline rocks were primarily derived from a subduction-related enriched mantle source. High Rb/Sr (0.29-0.65) and Zr/Hf (37.5-49.2) but relatively low Ba/Rb (4.4-8.1) ratios suggest that the parental magmas of these rocks were most likely formed via partial melting of a phlogopite-bearing mantle source with carbonate metasomatism. The relatively high SiO2 (62.35-70.79 wt.%) and low Nb/Ta (10.0-15.3) ratios, positive correlation between SiO2 and (87Sr/86Sr)I, and negative correlation between SiO2 and εNd(t) of these rocks suggest that the crustal materials were also involved in formation of the Nanshanping alkaline rocks. Combined with geochemical and isotopic features, we infer magmatic processes similar to AFC (assimilation and fractional crystallization) involving early fractionation of clinopyroxene and olivine and subsequent fractionation of

  16. Curie surface of the alkaline provinces of Goiás (GAP) and Alto Paranaíba (APAP), central Brazil

    NASA Astrophysics Data System (ADS)

    Moraes Rocha, Loiane Gomes de; Pires, Augusto César Bittencourt; Carmelo, Adriana Chatack; Oksum, Erdinc

    2015-05-01

    The study area includes the most important carbonatite and kimberlite complexes in Brazil, located in the Brazilian states of Goiás and Minas Gerais. The central portion of this area involves the Azimuth 125° lineament (Az 125°) that consists of an extensive set of faults (oriented in the NW-SE direction) that served as a conduit for magma ascent. This lineament is the main structural feature associated with these complexes. The Goiás (GAP) and Alto Paranaíba (APAP) Alkaline Provinces occur along the Az 125° and include highly economically valuable mineralizations. In this study, we aim to map the depth to the curie isotherm (or Curie Point Depths: CPD) of the study area (mainly the Gap and APAP regions) based on spectral analysis of aeromagnetic data. The CPD estimations were achieved from a spectral approach known as the centroid method, providing the relationship between the spectra of magnetic anomalies and the depths of the magnetic source of a 2-D magnetic data. The CPD estimates from approximately 500 overlapping blocks vary from 7 km to 40 km deep. The shallower depths are related to the GAP and APAP regions, and the deeper ones are related to the São Franciscana Plate. The Curie depths related to the Az 125° are between 30 km and 15.7 km deep. According to the results, the GAP and APAP intrusive bodies have shallower roots the major faults of the Az 125°.

  17. Emplacement of the La Peña alkaline igneous complex, Mendoza, Argentina (33° S): Implications for the early Miocene tectonic regime in the retroarc of the Andes

    NASA Astrophysics Data System (ADS)

    Pagano, D. S.; Galliski, M. A.; Márquez-Zavalía, M. F.

    2014-03-01

    The La Peña alkaline complex (LPC) of Miocene age (18-19 Ma) lies on the eastern front of the Precordillera (32°41ʹ34ʺS, 68°59ʹ48″W, 1400-2900 m a.s.l.), 30 km northwest of Mendoza city, Argentina. It is a subcircular massif of 19 km2 and 5 km in diameter, intruded in the metasedimentary sequence of the Villavicencio Formation of Silurian-Devonian age. It is the result of integration of multiple pulses derived from one or more deep magma chambers, which form a suite of silicate rocks grouped into: a clinopyroxenite body, a central syenite facies with a large breccia zone at the contact with the clinopyroxenite, bodies of malignite, trachyte and syenite porphyry necks, and a system of radial and annular dikes of different compositions. Its subcircular geometry and dike system distribution are frequent features of intraplate plutons or plutons emplaced in post-orogenic settings. These morphostructural features characterize numerous alkaline complexes worldwide and denote the importance of magmatic pressures that cause doming with radial and annular fracturing, in a brittle country rock. However, in the LPC, the attitude of the internal fabric of plutonic and subvolcanic units and the preferential layout of dikes match the NW-SE extensional fractures widely distributed in the host rock. This feature indicates a strong tectonic control linked to the structure that facilitate space for emplacement, corresponding to the brittle shear zone parallel to the N-S stratigraphy of the country rock. Shearing produced a system of discontinuities, with a K fractal fracture pattern, given by the combination of Riedel (R), anti-Riedel (R‧), (P) and extensional (T) fracture systems, responsible for the control of melt migration by the opening of various fracture branches, but particularly through the NW-SE (T) fractures. Five different pulses would have ascent, (1) an initial one from which cumulate clinopyroxenite was formed, (2) a phase of mafic composition represented by

  18. Ages of igneous and hydrothermal events in the Round Mountain and Manhattan gold districts, Nye County, Nevada.

    USGS Publications Warehouse

    Shawe, D.R.; Marvin, R.F.; Andriessen, P.A.M.; Mehnert, H.H.; Merritt, V.M.

    1986-01-01

    Isotopic age determinations of rocks and minerals separated from them are applied to refining and correlating the geological history of igneous and mineralizing events in a part of the Basin and Range province. -G.J.N.

  19. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos

    2016-10-01

    An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 < ΔFQM < +2.0). On the other hand, the RPSD plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.

  20. Shoshonite and sub-alkaline magmas from an ultrapotassic volcano: Sr-Nd-Pb isotope data on the Roccamonfina volcanic rocks, Roman Magmatic Province, Southern Italy

    NASA Astrophysics Data System (ADS)

    Conticelli, Sandro; Marchionni, Sara; Rosa, Davide; Giordano, Guido; Boari, Elena; Avanzinelli, Riccardo

    2009-01-01

    The Roccamonfina volcano is characterised by two stages of volcanic activity that are separated by volcano-tectonic caldera collapses. Ultrapotassic leucite-bearing rocks are confined to the pre-caldera stage and display geochemical characteristics similar to those of other volcanoes in the Roman Province. After the major sector collapse of the volcano, occurred at ca. 400 ka, shoshonitic rocks erupted from cinder cones and domes both within the caldera and on the external flanks of the pre-caldera Roccamonfina volcano. On the basis of new trace element and Sr-Nd-Pb isotope data, we show that the Roccamonfina shoshonitic rocks are distinct from shoshonites of the Northern Roman Province, but are very similar to those of the Neapolitan volcanoes. The last phases of volcanic activity erupted sub-alkaline magmas as enclaves in trachytic domes, and as lavas within the Monte Santa Croce dome. Ultrapotassic rocks of the pre-caldera composite volcano are plagioclase-bearing leucitites characterised by high levels of incompatible trace elements with an orogenic signature having troughs at Ba, Ta, Nb, and Ti, and peaks at Cs, K, Th, U, and Pb. Initial values of 87Sr/86Sr range from 0.70926 to 0.70999, 143Nd/144Nd ranges from 0.51213 to 0.51217, while the lead isotope rations vary between 18.788-18.851 for 206Pb/204Pb, 15.685-15.701 for 207Pb/204Pb, and 39.048-39.076 for 208Pb/204Pb. Shoshonites show a similar pattern of trace element depletions and enrichments to the earlier ultrapotassic leucite-bearing rocks but have a larger degree of differentiation and lower concentrations of incompatible trace elements. On the other hand, shoshonitic rocks have Sr, Nd, and Pb isotopes consistently different than pre-caldera ultrapotassic leucite-bearing rocks. 87Sr/86Sr ranges from 0.70665 to 0.70745, 143Nd/144Nd ranges from 0.51234 to 0.51238, 206Pb/204Pb ranges from 18.924 to 19.153, 207Pb/204Pb ranges from 15.661 to 15.694, and 208Pb/204Pb ranges from 39.084 to 39.212. High-K calc-alkaline

  1. New Insights to the Mid Miocene Calc-alkaline Lavas of the Strawberry Volcanics, NE Oregon Surrounded by the Coeval Tholeiitic Columbia River Basalt Province

    NASA Astrophysics Data System (ADS)

    Steiner, A. R.; Streck, M. J.

    2013-12-01

    The Strawberry Volcanics (SV) of NE Oregon were distributed over 3,400 km2 during the mid-Miocene and comprise a diverse volcanic suite, which span the range of compositions from basalt to rhyolite. The predominant composition of this volcanic suite is calc-alkaline (CA) basaltic andesite and andesite, although tholeiitic (TH) lavas of basalt to andesite occur as well. The coeval flood basalts of the Columbia River province surround the SV. Here we will discuss new ages and geochemical data, and present a new geologic map and stratigraphy of the SV. The SV are emplaced on top of pre-Tertiary accreted terranes of the Blue Mountain Province, Mesozoic plutonic rocks, and older Tertiary volcanic rocks thought to be mostly Oligocene of age. Massive rhyolites (~300 m thick) are exposed mainly along the western flank and underlie the intermediate composition lavas. In the southern portion of this study area, alkali basaltic lavas, thought to be late Miocene to early Pliocene in age, erupted and overlie the SV. In addition, several regional ignimbrites reach into the area. The 9.7 Ma Devine Canyon Tuff and the 7.1 Ma Rattlesnake Tuff also overlie the SV. The 15.9-15.4 Ma Dinner Creek Tuff is mid-Miocene, and clear stratigraphic relationships are found in areas where the tuff is intercalated between thick SV lava flows. All of the basalts of the SV are TH and are dominated by phenocryst-poor (≤2%) lithologies. These basalts have an ophitic texture dominated by plagioclase, clinopyroxene and olivine (often weathered to iddingsite). Basalts and basaltic andesites have olivine Fo #'s ranging from 44 at the rims (where weathered to iddingsite) and as high as 88 at cores. Pyroxene Mg #'s range from 65 to 85. Andesites of the SV are sub-alkaline, and like the basalts, are exceedingly phenocryst-poor (≤3%) with microphenocrysts of plagioclase and lesser pyroxene and olivine, which occasionally occur as crystal clots of ~1-3 mm instead of single crystals. In addition, minimal

  2. Origins of Igneous Layering

    NASA Astrophysics Data System (ADS)

    Marsh, Bruce

    Anyone who has ever seen a photo of a layered intrusion, let alone visited one first hand, or even seen a thin section from one, cannot help but be impressed by the stunning record of crystal growth and deposition. Such bodies stand as majestic monuments of undeniable evidence that intricate magmatic processes exist, processes that couple crystallization, convection, and crystal sorting to form rocks so highly ordered and beautiful that they are a wonder to behold. These are the altars to which petrologists must carry their conceived petrologic processes for approval.Although significant in number, the best layered intrusions seem to be found almost always in remote places. Their names, Bushveld, Muskox, Kiglapait, Stillwater, Duke Island, Skaergaard, Rhum, ring through igneous petrology almost as historic military battles (Saratoga, Antietam, Bull Run, Manassas, Gettysburg) do through American history. People who have worked on such bodies are almost folk heros: Wager, Deer, Brown, Jackson, Hess, Irvine, McBirney, Morse; these names are petrologic household words. Yet with all this fanfare and reverence, layered instrusions are nearly thought of as period pieces, extreme examples of what can happen, but not generally what does. This is now all changing with the increasing realization that these bodies are perhaps highly representative of all magmatic bodies. They are simply more dynamically complete, containing more of the full range of interactions, and of course, exposing a more complete record. They are one end of a spectrum containing lava flows, lava lakes, large sills, plutons, and layered intrusions. This book uniquely covers this range with an abundance of first-hand field observations and a good dose of process conceptualization, magma physics, and crystal growth kinetics.

  3. Petrology of the igneous rocks

    NASA Technical Reports Server (NTRS)

    Mccallum, I. S.

    1987-01-01

    Papers published during the 1983-1986 period on the petrology and geochemistry of igneous rocks are discussed, with emphasis on tectonic environment. Consideration is given to oceanic rocks, subdivided into divergent margin suites (mid-ocean ridge basalts, ridge-related seamounts, and back-arc basin basalts) and intraplate suites (oceanic island basalts and nonridge seamounts), and to igneous rocks formed at convergent margins (island arc and continental arc suites), subdivided into volcanic associations and plutonic associations. Other rock groups discussed include continental flood basalts, layered mafic intrusions, continental alkalic associations, komatiites, ophiolites, ash-flow tuffs, anorthosites, and mantle xenoliths.

  4. Paleomagnetism of the Eastern Alkaline Province (Mexico): contribution to the time-averaged field global database and geomagnetic instability time scale

    NASA Astrophysics Data System (ADS)

    Goguitchaichvili, Avto; Petronille, Marie; Henry, Bernard; Valdivia, Luis Alva; Morales, Juan; Urrutia-Fucugauchi, Jaime

    2007-07-01

    We report a detailed paleomagnetic and rock-magnetic study of 19 independent lava flows belonging to the Eastern Alkaline Province (EAP) in Mexico. In total, 162 oriented samples were collected in four areas (Sierra de Tantima-Alamo, Tlanchinol, Chiconquiaco-Palma Sola and Poza Rica). All sites analyzed in this study were previously dated by means of the unspiked K-Ar geochronological method (Ferrari et al., J. Volcanol. Geotherm. Res., 146, 284-306, 2005) and span from 14.6 to 1.5 Ma. Rock-magnetic experiments point to simple magnetic mineralogy. In most cases, the remanence is carried by Ti-poor titanomagnetite of pseudosingle-domain grain size. In a few cases, Ti-rich titanomagnetites are responsible for the magnetization. The characteristic paleodirections are successfully isolated for all of the studied units. The mean paleodirection, discarding two intermediate polarity sites, is D=359.5°, I=32.9°, n=17, k=30, α95=6.7°. This direction is practically undistinguishable from the expected Mio-Pliocene paleodirections, as derived from reference poles for the North American polar wander curve, and is in agreement with the previously reported directions from the western Trans-Mexican Volcanic Belt. This suggests that no major tectonic rotation occurred in studied area since the middle Miocene to Present. The paleosecular variation is estimated through the study of the scatter of virtual geomagnetic poles, giving S F=12.7 with S U=16.5 and S L=10.3 (upper and lower limits, respectively). These values are consistent with those predicted by the latitude-dependent variation model of McFadden et al. ( Geophys. Res., 93, 11583-11588, 1991) for the last 5 Myr. Eleven sites yielded reverse magnetic polarity, six are normally magnetized and two lava flows provided apparently intermediate paleodirections. An interesting feature of the paleomagnetic record obtained from EAP volcanics is that two independent lava flows, dated as 2.04±0.04 and 1.97±0.04 Ma, respectively

  5. Multiple origins for the Middle Jurassic to Early Cretaceous high-K calc-alkaline I-type granites in northwestern Fujian province, SE China and tectonic implications

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Chang; Jiang, Yao-Hui; Liu, Zheng; Ni, Chun-Yu; Qing, Long; Zhang, Qiao; Zhu, Shu-Qi

    2016-03-01

    A comprehensive study of zircon U-Pb dating and in situ Hf isotopes, whole-rock major and trace element geochemistry and Sr-Nd isotopes was carried out for three late Mesozoic granitic plutons (Waitun, Shipi and Taiyuan) in northwestern Fujian province, SE China. We assess the origin of the granites and their relationship to the evolution of the late Mesozoic volcanic-intrusive complex belt in SE China. LA-ICP-MS zircon U-Pb dating shows that three plutons were emplaced in the Middle Jurassic to Early Cretaceous (168-109 Ma), in which the Waitun and Shipi plutons are intrusive complexes. All the plutons are composed of high-K calc-alkaline I-type granites with a great diversity in elemental and isotopic compositions. The granites have SiO2 contents of 68.3-78.5 wt.%, showing a gradual decrease in initial 87Sr/86Sr (0.7181 to 0.7091) and increase in εNd (T) (- 16.7 to - 8.1) and εHf (T) (in-situ zircon) (- 20.6 to - 6.9) with decreasing emplacement ages. Geochemical data suggest that the Middle Jurassic (~ 168 Ma) Waitun granites are of purely crustal origin, derived by partial melting of a mixed source of Paleoproterozoic metaigneous (~ 78%) and metasedimentary (~ 22%) rocks at a depth of 30-40 km triggered by underplating of basaltic magma. Mixing of such crustal melts with about 10% basaltic magma could account for the origin of the Late Jurassic (~ 161 Ma) Waitun granites. The Late Jurassic (~ 156 Ma) Shipi and Early Cretaceous (~ 134 Ma) Taiyuan granites were produced by extensive fractional crystallization of primary crustal melts, the source of which show relatively high proportion (~ 82%) of metaigneous rocks. The Early Cretaceous (~ 109 Ma) Shipi granites were generated by partial melting of a mixed source of Paleoproterozoic metaigneous (~ 92%) and metasedimentary (~ 8%) rocks at a depth of ~ 30 km plus additional (~ 15%) input from coeval basaltic magma. The granites were formed in a continental arc setting induced by northwestward subduction of the

  6. Self-glazing ceramic tiles based on acidic igneous glasses

    SciTech Connect

    Merkin, A.P.; Nanazashvili, V.I.

    1988-07-01

    A technology was derived to produce self-glazing ceramic tiles based on single-component systems of acidic igneous (volcanic) glasses. A weakly alkaline solution of NaOH or KOH was used as the sealing water to activate the sintering process. Tests conducted on the self-glazing ceramic tiles showed that their water absorption amounts to 2.5-8%, linear shrinkage is 3.2-7%, and frost resistance amounts to 35-70 cycles. The application of acidic igneous glasses as the main raw material for the production of ceramic facing tiles made it possible to widen the raw material base and simplify the technology for fabricating ceramic facing tiles at lower cost. The use of waste products when processing perlite-bearing rocks, when carrying out mining and cutting of tuffs, slags, and tuff breccia for recovering cut materials was recommended.

  7. Occurrences of igneous rocks in the Adriatic Sea: a possible indicator of the Paleozoic supercontinent disintegration

    NASA Astrophysics Data System (ADS)

    Kudrna Prašek, Marko; Petrinec, Zorica; Balen, Dražen

    2014-05-01

    Islands of the Adriatic Sea are part of the Mesozoic Adriatic Dinaridic Carbonate Platform (ADCP) and so are mostly comprised of limestones. Occurrences of igneous rocks inside ADCP are in general extremely rare, with the exception of two small islands, Jabuka and Brusnik, which are completely igneous in origin. Small outcrops of igneous rocks can also be found on the island of Vis. Samples used in this research where gathered on a diving expedition of the islands Jabuka and Brusnik and a previously unknown and unexplored underwater (14-25 m b.s.l.) locality - Brusnik Shoal. Samples are mostly hypidiomorphic holocrystalline medium-grained rocks with a massive, locally ophitic texture. Mineral composition is dominated by clinopyroxene and weakly zoned polysynthetic twins of plagioclase. Subordinate are secondary aggregates of amphibole (uralite), chlorite, sericite, biotite, apatite and fine-grained opâque minerals while microfissures are filled with non-oriented needles of prehnite and calcite. Petrographically, all samples are determined as gabbro to gabbro-diorite. Major and trace element signature, characterized by low content of MgO (2.43-5.01 wt. %), low magnesium number (34-53), low content of Ni and Cr (6-12 and 6-61 ppm, respectively) is typical for calc-alkaline to tholeiitic gabbros and shows that the parental magma was not primitive by nature. Trace element patterns, high LILE/HSFE and chondrite-normalized LREE/HREE ratios (LaN/YbN: 3.27 - 5.26), Eu anomaly (Eu/Eu*: 0.75 - 0.93), low Nb (2.2 - 3.8 ppm) and high Pb (2 - 18 ppm), together with elevated P, Zr, Ti, U, Th, K concentrations studied in this research point to an active marginal setting with significant contribution from the recycled continental crust. Observed geochemical characteristics point to a single igneous event that led to the formation of all studied samples. At the same time, different degrees of crustal contamination, fractionation of pyroxene and plagioclase and/or development of

  8. Igneous Graphite in Enstatite Chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1997-01-01

    Igneous graphite. a rare constituent in terrestrial mafic and ultramafic rocks. occurs in three EH and one EL enstatite chondrite impact-melt breccias as 2-150 Ilm long euhedrallaths. some with pyramidal terminations. In contrast. graphite in most enstatite chondrites exsolved from metallic Fe-Ni as polygonal. rounded or irregular aggregates. Literature data for five EH chondrites on C combusting at high temperatures show that Abee contains the most homogeneous C isotopes (i.e. delta(sup 13)C = -8.1+/-2.1%); in addition. Abee's mean delta(sup l3)C value is the same as the average high-temperature C value for the set of five EH chondrites. This suggests that Abee scavenged C from a plurality of sources on its parent body and homogenized the C during a large-scale melting event. Whereas igneous graphite in terrestrial rocks typically forms at relatively high pressure and only moderately low oxygen fugacity (e.g., approx. 5 kbar. logfO2, approx. -10 at 1200 C ). igneous graphite in asteroidal meteorites formed at much lower pressures and oxygen fugacities.

  9. Magma storage of an alkali ultramafic igneous suite from Chamberlindalen, SW Svalbard

    NASA Astrophysics Data System (ADS)

    Gołuchowska, Karolina; Barker, Abigail K.; Czerny, Jerzy; Majka, Jarosław; Manecki, Maciej; Farajewicz, Milena; Dwornik, Maciej

    2016-02-01

    An alkali mafic-ultramafic igneous suite of composite intrusions, lenses and associated greenstones are hosted by Neoproterozoic metasedimentary sequences in Chamberlindalen, Southwest Svalbard. This study focuses on the alkali igneous suite of Chamberlindalen with a view to determining the conditions of magma storage. The rocks from Chamberlindalen display cumulate textures, are highly magnesian and are classified as alkaline by the occurrence of kaersutite. They have textures that indicate cocrystallization of primary magmatic minerals such as diopside, kaersutite-ferrokaersutite and biotite-phlogopite in different proportions. The historic magma plumbing system for the alkaline cumulates has been reconstructed by thermobarometry. Diopside and kaersutite crystallization in the alkaline cumulates show a dominant level of magma storage between 30 and 50 km in the subcontinental lithospheric mantle.

  10. Microscopic tubes in igneous rocks

    NASA Technical Reports Server (NTRS)

    Richter, D.; Simmons, G.

    1977-01-01

    Microscopic tubes have been observed in several igneous rocks and may be quite common. They occur in single crystals and have either elliptical or circular cross-sections 1 to 5 microns in diameter and are ten to hundreds of microns long. Microtubes may be hollow or partially or completely filled with another phase, but are distinct from acicular crystals of accessory minerals such as rutile. Microtubes can form by at least three processes: (1) the partial annealing of microcracks, (2) the natural etching of dislocations, or (3) the primary inclusion of fluid material during crystal growth.

  11. Geophysical evidence of a Large Igneous Province (LIP) in the West Antarctic Rift System (WARS), and its potential influence on the stability of the West Antarctic Ice Sheet (WAIS)

    NASA Astrophysics Data System (ADS)

    Behrendt, J. C.

    2010-12-01

    The WAIS flows through the volcanically active WARS. The inland rift shoulder ranges from 4-5 km elevation, (5-7 km relief, the greatest in the world); it is coincident with the Transantarctic Mountains from northern Victoria land bordering the Ross Sea, south along the west and south side of the Ross Ice Shelf to the Horlick Mountains. It forms the boundary between East and West Antarctica in this area, but diverges to the Ellsworth Mountains and forms the inland boundary of the WAIS and WARS there. Throughout the WARS shoulder to the Horlick Mountains, exposures of mostly late Cenozoic alkaline volcanic rocks are reported, as is the case in the coastal Marie Byrd Land area on the Southern Ocean aide of the WARS. The Transantarctic Mountains, continue at a much lower elevation (2000-750 m) to form the boundary between East and West Antarctica in the Filchner Ice Shelf area. Aeromagnetic and radar ice-sounding surveys over the WAIS indicated numerous high-amplitude (100->1000 nT),5-50-km width, shallow-source, magnetic anomalies over a very extensive area (>500,000 km2 ) that has been interpreted as evidence of mostly subglacial volcanic eruptions (“volcanic centers”). Behrendt et al, (2005, 2008) interpreted these anomalies as >1000 "volcanic centers" requiring high remanent normal (and at least 10% reversed) magnetizations in the present field direction. These data were interpreted to show that >80% of the anomaly sources at the bed of the WAIS, were modified by the moving ice, requiring a younger age than the WAIS (~25 Ma). Several active volcanoes have shown evidence of eruption through the WAIS and several other active volcanoes are present beneath the WAIS. Although exposed volcanoes surrounding the WAIS extend in age to ~34 Ma., Mt Erebus (<1 Ma), Mt. Melbourne (<0.26 Ma), and Mt. Takahe (<0.1 Ma) are examples of active volcanoes in the WAIS area. However, most "volcanic centers" are buried beneath the WAIS. If only a very small percentage of these >1000

  12. Les granitoïdes hercyniens post-collisionnels du Maroc oriental : une province magmatique calco-alcaline à shoshonitiqueThe post-collisional Hercynian granitoids from eastern Morocco: a calc-alkaline to shoshonitic magmatic province

    NASA Astrophysics Data System (ADS)

    El Hadi, Hassan; Tahiri, Abdelfatah; Reddad, Aicha

    2003-11-01

    The post-collisional Hercynian granitoids crop out in the easternmost part of the Moroccan Hercynian belt. Petrographical and geochemical studies show a composition similarity in the various granitoids. The granitoids belong to per-aluminous and metaluminous magmatic associations. They have evolved according to a scheme similar to high-K calc-alkaline to shoshonitic associations. To cite this article: H. El Hadi et al., C. R. Geoscience 335 (2003).

  13. Kinetics of crystallization of igneous rocks

    SciTech Connect

    Kirkpatrick, R.J.

    1981-01-01

    The geochemistry of igneous rocks is discussed, with the primary objectives of bringing together the theories underlying the kinetics of crystallization of igneous rocks and illustrating the use of these theories in understanding experimental and observational data. The primary purpose of the chapter is to introduce current thinking about the kinetics of igneous rocks and to provide a basis for understanding other work. A basic assumption made in the discussion is that the rate of any chemical reaction, including the crystallization of igneous rocks, is zero at equilibrium and proceeds at a finite rate only at a finite deviation from equilibrium. As such, an understanding of the processes operating in igneous rocks requires an understanding of how deviation from equilibrium affects the rates and mechanisms of the processes occurring during crystallization. These processes are detailed, with special emphasis given to nucleation and crystal growth. (JMT)

  14. Ureilites are not igneous differentiates

    NASA Technical Reports Server (NTRS)

    Clayton, Robert N.; Mayeda, Toshiko K.

    1988-01-01

    Although most all meteorites are as old as the solar system (4.5 billion years), they can be subdivided into primitive and evolved groups, depending on the extent of their chemical and physical processing. Primitive meteorites, most of which are chondrites, are assemblages of dust and millimeter-sized pellets from the presolar nebula, which were not extensively heated and processed since their assembly. Thus they provide information about the conditions in the nebular cloud. Many of the evolved meteorites are achondrites, which are igneous rocks produced by melting on or within an asteroidal object known as the parent body. A major unsolved problem in solar system studies is identification of the source of heat which led to melting of the achondrites. The role of oxygen isotopes in establishing genetic relationships among meteorites is examined.

  15. On the Basic Principles of Igneous Petrology

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2014-12-01

    How and why Differentiation occurs has dominated Igneous Petrology since its beginning (~1880) even though many of the problems associated with it have been thoroughly solved. Rediscovery of the proverbial wheel with new techniques impedes progress. As soon as thin section petrography was combined with rock and mineral chemistry, rock diversity, compositional suites, and petrographic provinces all became obvious. The masterful 1902 CIPW norm in a real sense solved the chemical mystery of differentiation: rocks are related by the addition and subtraction of minerals in the anciently appreciated process of fractional crystallization. Yet few believed this, even after phase equilibria arrived. Assimilation, gas transfer, magma mixing, Soret diffusion, immiscibility, and other processes had strong adherents, even though by 1897 Becker conclusively showed the ineffectiveness of molecular diffusion in large-scale processes. The enormity of heat to molecular diffusion (today's Lewis no.) should have been convincing; but few paid attention. Bowen did, and he refined and restated the result; few still paid attention. And in spite of his truly masterful command of experiment and field relations in promoting fractional crystallization, Fenner and others fought him with odd arguments. The beauty of phase equilibria eventually dominated at the expense of knowing the physical side of differentiation. Bowen himself saw and struggled with the connection between physical and chemical processes. Progress has come from new concepts in heat transfer, kinetics, and slurry dynamics. The key approach is understanding the dynamic competition between spatial rates of solidification and all other processes. The lesson is clear: Scholarship and combined field, laboratory and technical expertise are critical to understanding magmatic processes. Magma is a limitlessly enchanting and challenging material wherein physical processes buttressed by chemistry govern.

  16. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  17. Geochemical and modal data for igneous rocks associated with epithermal mineral deposits

    USGS Publications Warehouse

    du Bray, Edward A.

    2014-01-01

    The purposes of this report are to (1) present available geochemical and modal data for igneous rocks associated with epithermal mineral deposits and (2) to make those data widely and readily available for subsequent, more in-depth consideration and interpretation. Epithermal precious and base-metal deposits are commonly associated with subduction-related calc-alkaline to alkaline arc magmatism as well as back-arc continental rift magmatism. These deposits form in association with compositionally diverse extrusive and intrusive igneous rocks. Temperature and depth regimes prevailing during deposit formation are highly variable. The deposits form from hydrothermal fluids that range from acidic to near-neutral pH, and they occur in a variety of structural settings. The disparate temperature, pressure, fluid chemistry, and structural controls have resulted in deposits with wide ranging characteristics. Economic geologists have employed these characteristics to develop classification schemes for epithermal deposits and to constrain the important genetic processes responsible for their formation.

  18. Magnetic fabric constraints of the emplacement of igneous intrusions

    NASA Astrophysics Data System (ADS)

    Maes, Stephanie M.

    Fabric analysis is critical to evaluating the history, kinematics, and dynamics of geological deformation. This is particularly true of igneous intrusions, where the development of fabric is used to constrain magmatic flow and emplacement mechanisms. Fabric analysis was applied to three mafic intrusions, with different tectonic and petrogenetic histories, to study emplacement and magma flow: the Insizwa sill (Mesozoic Karoo Large Igneous Province, South Africa), Sonju Lake intrusion (Proterozoic Midcontinent Rift, Minnesota, USA), and Palisades sill (Mesozoic rift basin, New Jersey, USA). Multiple fabric analysis techniques were used to define the fabric in each intrusive body. Using digital image analysis techniques on multiple thin sections, the three-dimensional shape-preferred orientation (SPO) of populations of mineral phases were calculated. Low-field anisotropy of magnetic susceptibility (AMS) measurements were used as a proxy for the mineral fabric of the ferromagnetic phases (e.g., magnetite). In addition, a new technique---high-field AMS---was used to isolate the paramagnetic component of the fabric (e.g., silicate fabric). Each fabric analysis technique was then compared to observable field fabrics as a framework for interpretation. In the Insizwa sill, magnetic properties were used to corroborate vertical petrologic zonation and distinguish sub-units within lithologically defined units. Abrupt variation in magnetic properties provides evidence supporting the formation of the Insizwa sill by separate magma intrusions. Low-field AMS fabrics in the Sonju Lake intrusion exhibit consistent SW-plunging lineations and SW-dipping foliations. These fabric orientations provide evidence that the cumulate layers in the intrusion were deposited in a dynamic environment, and indicate magma flowed from southwest to northeast, parallel to the pre-existing rift structures. In the Palisades sill, the magnetite SPO and low-field AMS lineation have developed orthogonal to

  19. Geochemistry of Sarvabad basic igneous rocks from northern Sanandaj - Sirjan Magmatic Arc, Iran

    NASA Astrophysics Data System (ADS)

    Mahmoudi, H.; Ghorbani, M.; Azizi, H.

    2009-12-01

    Sanandaj - Sirjan Magmatic Arc (SSMA) as a segment of Alpine -Himalayan magmatic belt embrace a wide spectrum of igneous rocks, both volcanic and plutonic, from basic to felsic compositions. The igneous rocks which are mainly calc-alkaline are attributed to the subduction of Neotethyan oceanic slab beneath central Iranian plate in Mesozoic time (Berberian and Berberian, 1981; Omrani et al., 2008). In the present study the focus is made on the geochemistry and petrography of igneous rocks from northwestern end of the SSMA, in Sarvabad area, in order to elucidate their geodynamic setting. A set of 30 rock samples were analyzed for major and selected trace elements. Mafic igneous bodies from northern SSMA are regarded as post - collisional plutonic bodies of Eocene - Oligocene age (Ghasemi and Talbot, 2006). Azizi and Moinevaziri (2009) considered the igneous rocks from the northern SSMA, at Sonqor - Baneh area, as the products of subduction that continued to the Paleogene time. Investigations carried out in the course of present study demonstrate that the Sarvabad basic igneous rocks, shown on the magmatic map of Iran (Emami et al., 1993) as gabbroic plutons, are composed of volcanic, subvolcanic and plutonic rocks of basic composition. The silica and Mg number of the rocks vary in the ranges 49-52 wt. % and 54-68, respectively. The volcanic rocks are vitrophyric to porphyritic with some plagioclase, olivine and clinopyroxene microphenocrysts. In the subvolcanic and plutonic bodies, plagioclase, clinopyroxene and some amphibole and Fe-Ti oxides are the major constituents. These igneous rocks indicate tholeitic affinity and cover the typical mantle array on a Zr/Nb vs. Y/Nb plot. Occurrences of a few ultramafic bodies found as metric - size isolated lenses in the basic igneous rocks highlight the spatial characteristic of these rocks; the existence of an ophiolitic rock assemblage nearby. Located toward the southwest of Sarvabad basic igneous rocks, is a Cretaceous

  20. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    USGS Publications Warehouse

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  1. Theoretical petrology. [of igneous and metamorphic rocks

    NASA Technical Reports Server (NTRS)

    Stolper, E.

    1979-01-01

    In the present paper, some areas of growing interest in the American efforts in petrology during the 1975-1978 quadrennium are reviewed. In igneous petrology, studies of structures and thermodynamic properties of silicate melts and of kinetics of igneous processes are in a period of rapid growth. Plate tectonic concepts have had (and will no doubt continue to have) an important influence by focusing interest on specific problems and by providing a framework for the understanding of petrogenesis. An understanding of mantle processes and evolution through the integration of petrological, geophysical, and geochemical constraints has been developed over the past 20 years, and will undoubtedly provide direction for future petrological studies.

  2. Sudbury Igneous Complex: Impact melt or igneous rock? Implications for lunar magmatism

    NASA Technical Reports Server (NTRS)

    Norman, Marc D.

    1992-01-01

    The recent suggestion that the Sudbury Igneous Complex (SIC) is a fractionated impact melt may have profound implications for understanding the lunar crust and the magmatic history of the Moon. A cornerstone of much current thought on the Moon is that the development of the lunar crust can be traced through the lineage of 'pristine' igneous rocks. However, if rocks closely resembling those from layered igneous intrusions can be produced by differentiation of a large impact melt sheet, then much of what is thought to be known about the Moon may be called into question. This paper presents a brief evaluation of the SIC as a differentiated impact melt vs. endogenous igneous magma and possible implications for the magmatic history of the lunar crust.

  3. Late Proterozoic and Silurian alkaline plutons within the southeastern New England Avalon zone

    SciTech Connect

    Hermes, O.D. ); Zartman, R.E. )

    1992-07-01

    Distinct pulses of quartz-bearing, alkaline plutonism and volcanism are known to have occurred in the Avalon zone of southeastern New England during the Late Ordovician, Early Silurian, Devonian, and Carboniferous. Zircon separates from the Franklin and Dartmouth plutons demonstrate that two additional, previously unrecognized periods of alkaline magmatism occurred. The Franklin pluton yields an age of 417 {plus minus} 6 Ma (Late Silurian), whereas the Dartmouth pluton is Late Proterozoic (595 {plus minus} 5 Ma) and markedly older than the other plutons of alkaline affinity. The new ages further emphasize the episodic nature and long-term duration of such alkaline igneous events within the southeastern New England Avalon zone. The Dartmouth pluton may represent a post-collisional alkaline granite emplaced in the Late Proterozoic, almost immediately after a major period of calcalkaline igneous activity that accompanied plate convergence and continental accretion. The abrupt change from orogenic calcalkaline igneous activity to post-collisional alkaline granite, followed by younger episodes of anorogenic emplacement, is remarkably similar to igneous events reported from pan-African mobile belts widespread throughout Africa. In addition, parts of the Dartmouth pluton exhibit features indicative of mixing and commingling of felsic and mafic melts that are associated with coevally formed mylonitic fabrics. Because these fabrics are conformable to those in adjacent gneisses, but discordant with Alleghanian fabrics in the nearby Carboniferous Narragansett basin, they represent some of the best candidates for pre-Alleghanian structures thus far identified in the southeastern New England Avalon zone.

  4. Is phosphorus predictably incompatible in igneous processes?

    NASA Technical Reports Server (NTRS)

    Goodrich, C. A.; Barnes, S.

    1984-01-01

    Siderophile element abundances are central to recent models for core formation in the Earth and Moon and the origin of the Moon. It is important to identify siderophile elements whose behavior in igneous processes is predictable, so that primary mantle abundances can be deduced by subtracting out the effects of igneous processes. Newsom's model for core formation in the Moon requires subchondritic P, and suggests that P was depleted due to volatility. Experiments were conducted to determine P olivine/liquid distribution coefficients. Preliminary results indicate that P can be compatible with olivine during rapid cooling, but is not during isothermal crystallization with long growth times, and tends to be expelled during annealing. It is therefore not likely that P is compatible under any widespread igneous conditions, and the incompatible behavior of P in lunar crustal rocks can be safety assumed. In addition, low fO2 is insufficient to cause P compatibility, so it is unlikely that P-rich silicates formed during the early evolution of the Earth or Moon. These results indicate that P is depleted in the Moon.

  5. The Central-Western Mediterranean: Anomalous igneous activity in an anomalous collisional tectonic setting

    NASA Astrophysics Data System (ADS)

    Lustrino, Michele; Duggen, Svend; Rosenberg, Claudio L.

    2011-01-01

    The central-western Mediterranean area is a key region for understanding the complex interaction between igneous activity and tectonics. In this review, the specific geochemical character of several 'subduction-related' Cenozoic igneous provinces are described with a view to identifying the processes responsible for the modifications of their sources. Different petrogenetic models are reviewed in the light of competing geological and geodynamic scenarios proposed in the literature. Plutonic rocks occur almost exclusively in the Eocene-Oligocene Periadriatic Province of the Alps while relatively minor plutonic bodies (mostly Miocene in age) crop out in N Morocco, S Spain and N Algeria. Igneous activity is otherwise confined to lava flows and dykes accompanied by relatively greater volumes of pyroclastic (often ignimbritic) products. Overall, the igneous activity spanned a wide temporal range, from middle Eocene (such as the Periadriatic Province) to the present (as in the Neapolitan of southern Italy). The magmatic products are mostly SiO 2-oversaturated, showing calcalkaline to high-K calcalcaline affinity, except in some areas (as in peninsular Italy) where potassic to ultrapotassic compositions prevail. The ultrapotassic magmas (which include leucitites to leucite-phonolites) are dominantly SiO 2-undersaturated, although rare, SiO 2-saturated (i.e., leucite-free lamproites) appear over much of this region, examples being in the Betics (southeast Spain), the northwest Alps, northeast Corsica (France), Tuscany (northwest Italy), southeast Tyrrhenian Sea (Cornacya Seamount) and possibly in the Tell region (northeast Algeria). Excepted for the Alpine case, subduction-related igneous activity is strictly linked to the formation of the Mediterranean Sea. This Sea, at least in its central and western sectors, is made up of several young (< 30 Ma) V-shaped back-arc basins plus several dispersed continental fragments, originally in crustal continuity with the European

  6. Igneous processes and dike swarms: Magnetic signatures in the Solar System

    NASA Astrophysics Data System (ADS)

    Purucker, M. E.

    2015-12-01

    Large igneous provinces (LIP) are common in planetary environments: at Mars, Venus, Mercury, Io, and of course the Earth and its Moon. Dike swarms are often associated with LIPs, and are one of the only remaining signatures of a LIP in old, eroded settings. On Earth, dike swarms are often recognized by their magnetic signatures. The World Digital Magnetic Anomaly Map (version 2, 2015) is now based on a higher resolution 5 km grid, so many more dike swarms are apparent. We review this latest compilation. Several new high resolution planetary magnetic data sets have also recently become available, and we review evidence for igneous processes, and dikes, in these new data sets. We also review the prospect for new planetary magnetic data sets that might further elucidate igneous processes. At Mars, for example, we have photogeologic evidence for a host of dike swarms, but because of the high altitude of the magnetic data sets, no magnetic evidence exists. A new technique based on remotely sensing the magnetic field of the atomic Na in micro-meteorite ablation layers offers the promise of improving the spatial resolution by a factor of 2-4 at Mars.

  7. Geology is the Key to Explain Igneous Activity in the Mediterranean Area

    NASA Astrophysics Data System (ADS)

    Lustrino, M.

    2014-12-01

    Igneous activity in tectonically complex areas can be interpreted in many different ways, producing completely different petrogenetic models. Processes such as oceanic and continental subduction, lithospheric delamination, changes in subduction polarity, slab break-off and mantle plumes have all been advocated as causes for changes in plate boundaries and magma production, including rate and temporal distribution, in the circum-Mediterranean area. This region thus provides a natural laboratory to investigate a range of geodynamic and magmatic processes. Although many petrologic and tectonic models have been proposed, a number of highly controversial questions still remain. No consensus has yet been reached about the capacity of plate-tectonic processes to explain the origin and style of the magmatism. Similarly, there is still not consensus on the ability of geochemical and petrological arguments to reveal the geodynamic evolution of the area. The wide range of chemical and mineralogical magma compositions produced within and around the Mediterranean, from carbonatites to strongly silica-undersaturated silico-carbonatites and melilitites to strongly silica-oversaturated rhyolites, complicate models and usually require a large number of unconstrained assumptions. Can the calcalkaline-sodic alkaline transition be related to any common petrogenetic point? Is igneous activity plate-tectonic- (top-down) or deep-mantle-controlled (bottom-up)? Do the rare carbonatites and carbonate-rich igneous rocks derive from the deep mantle or a normal, CO2-bearing upper mantle? Do ultrapotassic compositions require continental subduction? Understanding chemically complex magmas emplaced in tectonically complex areas require open minds, and avoiding dogma and assumptions. Studying the geology and shallow dynamics, not speculating about the deep lower mantle, is the key to understanding the igneous activity.

  8. Uranium in NIMROC standard igneous rock samples

    NASA Technical Reports Server (NTRS)

    Rowe, M. W.; Herndon, J. M.

    1976-01-01

    Results are reported for analysis of the uranium in multiple samples of each of six igneous-rock standards (dunite, granite, lujavrite, norite, pyroxenite, and syenite) prepared as geochemical reference standards for elemental and isotopic compositions. Powdered rock samples were examined by measuring delayed neutron emission after irradiation with a flux of the order of 10 to the 13th power neutrons/sq cm per sec in a nuclear reactor. The measurements are shown to compare quite favorably with previous uranium determinations for other standard rock samples.

  9. The geochemistry and mineralization of alkaline ring complexes in Africa (a review)

    NASA Astrophysics Data System (ADS)

    Bowden, P.

    Carbonatites are defined as igneous rocks containing more than 50% carbonate minerals. They are divided into four classes: (1) calcic, (2) dolomitic, (3) ferrocarbonatite, and (4) natrocarbonatite. Carbonatites are characteristically associated with ijolites, but not all carbonatites are entirely magmatic. Many centres show metasomatic replacement features, referred to as fenitization. Most subvolcanic and volcanic carbonatite centres are calcic, but trapped fluids as inclusions in apatite crystals indicate that the bulk composition was alkalic and chemically comparable to natrocarbonatite. Experimental evidence suggests that parental carbonatite magma is the product of immiscibility from an alkali silicate liquid of phonolitic or nephelinitic composition. Alkali loss from the bulk carbonatite magma caused fenitization represented by zones of sodic and potassic metasomatism. Sodic metasomatism is more frequently located at deeper eroded centres and is characterized by the occurrence of albitite. Potassic metasomatism is more common in many carbonatite centres and is represented mineralogically by alkali feldspar and phlogopite. Many fenites carry an alkaline ferromagnesian assemblage consisting principally of alkali amphibole (eckermannite-magnesioarfvedsonite) and/or aegirine. Carbonatites have igneous isotopic ratios and distinctive contents of incompatible trace elements. Associated fenites have elevated Sr isotopic ratios and selected TE enrichment pertinent to the dominant metasomatism. Carbonatites exhibit REE, Nb, U, Th mineralization and, more rarely, sphalerite, galena, and chalcopyrite mineralization. Both disseminated and vein-controlled mineralization are found in many carbonatite centres. The most important economic products of carbonatites include pyrochore, columbite, monozite, apatite and zirconium minerals. The alkaline syenites and alkaline granites as ring complexes have textural, petrological and chemical characteristics which are distinctly

  10. The role of igneous and metamorphic processes in triggering mass extinctions and Earth crises

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Planke, Sverre; Polozov, Alexander G.; Jerram, Dougal; Jones, Morgan T.

    2016-04-01

    Mass extinctions and transient climate events commonly coincide in time with the formation of Large igneous provinces (LIPs). The end-Permian event coincides with the Siberian Traps, the end-Triassic with the Central Atlantic Magmatic Event (CAMP), the Toarcian with the Karoo LIP, and the Paleocene-Eocene Thermal Maximum (PETM) with the North Atlantic Igneous Province. Although the temporal relationship between volcanism and the environmental crises has been known for decades, the geological processes linking LIPs to these environmental events are strongly debated: Explosive LIP volcanism should lead to short term cooling (not long term warming), mantle CO2 is too 13C-enriched to explain negative 13C carbon isotope excursions from sedimentary sequences, the LIP volcanism is poorly dated and apparently lasts much longer that the associated environmental events, large portions of the LIPs remain poorly explored, especially the sub-volcanic parts where sills and dikes are emplaced in sedimentary host rocks, and thus gas flux estimates from contact aureoles around sill intrusions are often poorly constrained. In this presentation, we discuss the status of LIP research with an emphasis on the sub volcanic processes. We show that potential for degassing of greenhouse gases, aerosols, and ozone destructive gases is substantial and can likely explain the triggering of both climatic events and mass extinctions.

  11. Introduction to the Apollo collections. Part 1: Lunar igneous rocks

    NASA Technical Reports Server (NTRS)

    Mcgee, P. E.; Warner, J. L.; Simonds, C. H.

    1977-01-01

    The basic petrographic, chemical, and age data is presented for a representative suite of igneous rocks gathered during the six Apollo missions. Tables are given for 69 samples: 32 igneous rocks and 37 impactites (breccias). A description is given of 26 basalts, four plutonic rocks, and two pyroclastic samples. The textural-mineralogic name assigned each sample is included.

  12. Igneous rocks from Apollo 16 rake samples

    NASA Technical Reports Server (NTRS)

    Dowty, E.; Keil, K.; Prinz, M.

    1974-01-01

    Results are reported for a study of seven holocrystalline feldspathic rocks (including a spinel troctolite and six melt rocks) and one mare basalt clast from the Apollo-16 rake samples. The composition and grain structure of each rock is described in detail. Only the spinel troctolite is considered a good candidate for a primary igneous cumulate formed during the original differentiation of the lunar crust. It is shown that the melt rocks probably resulted from shock melting followed by rapid crystallization of heterogeneous highland material and that compositional variations are probably due to mixing of various amounts of heterogeneous cumulates and KREEP components. It is suggested that the mare basalt clast may have been derived from Mare Fecunditatis, although the nearest mare to the Apollo-16 site is Nectaris.

  13. Number of Waste Package Hit by Igneous Intrusion

    SciTech Connect

    M. Wallace

    2004-10-13

    The purpose of this scientific analysis report is to document calculations of the number of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application (TSPA-LA) for the Yucca Mountain Project (YMP). Igneous activity is a disruptive event that is included in the TSPA-LA analyses. Two igneous activity scenarios are considered: (1) The igneous intrusion groundwater release scenario (also called the igneous intrusion scenario) considers the in situ damage to waste packages or failure of waste packages that occurs if they are engulfed or otherwise affected by magma as a result of an igneous intrusion. (2) The volcanic eruption scenario depicts the direct release of radioactive waste due to an intrusion that intersects the repository followed by a volcanic eruption at the surface. An igneous intrusion is defined as the ascent of a basaltic dike or dike system (i.e., a set or swarm of multiple dikes comprising a single intrusive event) to repository level, where it intersects drifts. Magma that does reach the surface from igneous activity is an eruption (or extrusive activity) (Jackson 1997 [DIRS 109119], pp. 224, 333). The objective of this analysis is to develop a probabilistic measure of the number of waste packages that could be affected by each of the two scenarios.

  14. Evolution and timing of tectonic events in the Arabia-Eurasia convergence zone as inferred from igneous geochemistry from the EarthChem database

    NASA Astrophysics Data System (ADS)

    Lieu, W. K.; Stern, R. J.

    2011-12-01

    The timing of tectonic events in the Anatolia-Iranian region can be inferred from analysis of igneous rocks. Magmatic activities in the region are generally associated with the convergence of the African-Arabian and Eurasian plates and the subduction of the Neotethys Ocean. Ancillary processes such as subduction of continental crust, delamination of upper plate lithosphere or lower crust, or asthenospheric decompression accompanying post-collisional relaxation also contribute to the composition of igneous rocks. Here we use geochemical data gathered from the EarthChem database to assess broad chemical implications of Cenozoic tectonic activities of the convergence region. We search for geochemical signal of the timing of first contact of the subducting Arabian and overriding Eurasian continental crust. Of particular interest is how igneous rock compositions vary during the transition from pre- to post-contact of the continental crusts. Also, is there a geographic variation along the convergence zone during this tectonic transition? We generate maps and geochemical plots for four different epochs and two different regions since Cenozoic time: Iran and Anatolia in the Eocene, Oligocene, Miocene and Plio-Quaternary. This board, region-scaled analysis of major and trace element patterns suggests the following tectonic events: Subduction-related medium K calc-alkaline igneous rocks reflect Eocene subduction of the Neo-Tethys oceanic lithosphere. Oligocene igneous rocks are characterized by K2O-SiO2 trends scattering to higher silica and alkaline content, which may reflect subduction of stretched continental margin lithosphere and sediments. A bimodal pattern of potash-silica trends during Miocene time may mark the transition from subduction-related to intra-plate magmatism, perhaps signaling contact between the continental crust of Arabia-Africa with Eurasia. Pliocene and younger igneous rocks show an intra-plate and ocean island basalt trend, as the region's activities

  15. Aluminum in hornblende: an empirical igneous geobarometer.

    USGS Publications Warehouse

    Hammarstrom, J.M.; Zen, E.

    1986-01-01

    Electron-microprobe analyses of hornblendes from five calc-alkaline plutonic complexes representing low- and high-pressure regimes define a tightly clustered linear trend in terms of total Al (AlT) and tetrahedral Al (Aliv) contents. Data collated from the literature on calcic amphiboles from other plutonic complexes and from phase equilibrium experiments using natural rocks or synthetic analogue compositions show a similar AlT-Aliv trend and systematic pressure effects.-J.A.Z.

  16. Igneous rock from Severnyi Kolchim (H3) chondrite: Nebular origin

    NASA Technical Reports Server (NTRS)

    Nazarov, M. A.; Brandstaetter, F.; Kurat, G.

    1993-01-01

    The discovery of lithic fragments with compositions and textures similar to igneous differentiates in unequilibrated ordinary chondrites (UOC's) and carbonaceous chondrites (CC's) has been interpreted as to suggest that planetary bodies existed before chondrites were formed. As a consequence, chondrites (except, perhaps CI chondrites) cannot be considered primitive assemblages of unprocessed nebular matter. We report about our study of an igneous clast from the Severnyi Kolchim (H3) chondrite. The results of the study are incompatible with an igneous origin of the clast but are in favor of a nebular origin similar to that of chondrules.

  17. Effect of igneous intrusive bodies on sedimentary thermal maturity

    SciTech Connect

    Wang, X.; Lerche, I.; Walter, C. )

    1989-09-01

    The high temperatures of igneous intrusives cause localized thermal maturity of sediments far in excess of the regional variation. Previous studies have shown that igneous bodies cool in less than about 1 million years for all but the most exceptional geological conditions. Three case studies are provided which show how the increase in thermal maturity around an igneous body can be used to assess the temperature of the intrusive at emplacement and also the time of intrusion. Corollative implications for localized hydrocarbon generation, migration, and accumulation are also discussed briefly.

  18. Automated igneous rock identifiers for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Gulick, V. C.; Morris, R. L.; Gazis, P.; Bishop, J. L.; Alena, R.; Hart, S. D.; Horton, A.

    2003-04-01

    A key task for human or robotic explorers on the surface of Mars is choosing which particular rock or mineral samples should be selected for more intensive study. The usual challenges of such a task are compounded by the lack of sensory input available to a suited astronaut or the limited downlink bandwidth available to a rover. Additional challenges facing a human mission include limited surface time and the similarities in appearance of important minerals (e.g. carbonates, silicates, salts). Yet the choice of which sample to collect is critical. To address this challenge we are developing science analysis algorithms to interface with a Geologist's Field Assistant (GFA) device that will allow robotic or human remote explorers to better sense and explore their surroundings during limited surface excursions [1]. We aim for our algorithms to interpret spectral and imaging data obtained by various sensors. Our algorithms, for example, will identify key minerals, rocks, and sediments from mid-IR, Raman, and visible/near-IR spectra as well as from high-resolution and microscopic images to help interpret data and to provide high-level advice to the remote explorer. A top-level system will consider multiple inputs from raw sensor data output by imagers and spectrometers (visible/near-IR, mid-IR, and Raman) as well as human opinion to identify rock and mineral samples. Our prototype image analysis system identifies some igneous rocks from texture and color information. Spectral analysis algorithms have also been developed that successfully identify quartz, silica polymorphs, calcite, pyroxene, and jarosite from both visible/near-IR and mid-IR spectra. We have also developed spectral recognizers that identify high-iron pyroxenes and iron-bearing minerals using visible/near-IR spectra only. We are building a combined image and spectral database of rocks and minerals with which to continue development of our algorithms. Future plans include developing algorithms to identify

  19. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  20. On the weathering of Martian igneous rocks

    NASA Technical Reports Server (NTRS)

    Dreibus, G.; Waenke, H.

    1992-01-01

    Besides the young crystallization age, one of the first arguments for the martian origin of shergottite, nakhlite, and chassignite (SNC) meteorites came from the chemical similarity of the meteorite Shergotty and the martian soil as measured by Viking XRF analyses. In the meantime, the discovery of trapped rare gas and nitrogen components with element and isotope ratios closely matching the highly characteristic ratios of the Mars atmosphere in the shock glasses of shergottite EETA79001 was further striking evidence that the SNC's are martian surface rocks. The martian soil composition as derived from the Viking mission, with its extremely high S and Cl concentrations, was interpreted as weathering products of mafic igneous rocks. The low SiO2 content and the low abundance of K and other trace elements in the martian soils point to a mafic crust with a considerably smaller degree of fractionation compared to the terrestrial crust. However, the chemical evolution of the martian regolith and soil in respect to surface reaction with the planetary atmosphere or hydrosphere is poorly understood. A critical point in this respect is that the geochemical evidence as derived from the SNC meteorites suggests that Mars is a very dry planet that should have lost almost all its initially large water inventory during its accretion.

  1. Igneous intrusions in coal-bearing sequences

    SciTech Connect

    Gurevich, A.B.; Shishlov, S.B.

    1987-08-01

    Intrusions of various compositions, sizes, and shapes have been observed in 115 out of 620 coal basins or deposits on all the continents. They are mainly subvolcanic and hypabyssal, with depths of emplacement estimated as ranging from a few hundred meters to 6 km, but usually 3-4 km. Compositionally, 42% are basic, 31% intermediate, 23% acid, and 4% ultrabasic. Mafic (and related) rock types include dolerites, trachydolerites, gabbro-dolerites, gabbro-monzonites, monzonites, diabases, gabbrodiabases, and less often gabbros and basalts (subvolcanic bodies). These mafic intrusions occur in coal formations of various ages from Carboniferous through Neogene, but predominate in Paleozoic (47%) and Cenozoic beds (45%). They also occur in coal formations of all genetic types, apart from those on ancient stable platforms, where there are no signs of intrusive activity. The mafic intrusions are almost everywhere associated with comagmatic lavas and tuffs (mainly in the younger strata), and the coal beds themselves are to some extent enriched in pyroclastic material, particularly in the upper horizons. This paper gives a worldwide review of igneous intrusions in coal beds. 24 references.

  2. Age and composition of igneous rocks, Edna Mountain quadrangle, Humboldt County, Nevada

    USGS Publications Warehouse

    Erickson, Ralph L.; Silberman, Miles L.; Marsh, S.P.

    1978-01-01

    Six pulses of igneous activity ranging in age from Jurassic to Pliocene have been identified in the Edna Mountain quadrangle, Humboldt County, Nev. Porphyritic syenite am! quartz monzonite of Jurassic age (146-164 million years) at Buffalo Mountain are highly potassic through a wide range in SiO2 content from olivine-bearing syenite to quartz-rich monzonite, and their composition contrasts sharply with plutons elsewhere in north-central Nevada. Granodiorite and quartz monzonite plutons of Cretaceous age (88- 106 m.y.) are chemically and mineralogically similar to other calc-alkaline plutons in north-central Nevada. Four episodes of Tertiary volcanism include rhyolite ashflow tuffs and slightly younger andesitic basalt flows and tuffs of Oligocene age, rhyolite vitrophyre of late Miocene age, and olivine basalt flows of Pliocene age. Their age and mineralogical and chemical compositions are similar to other Tertiary volcanic rocks in north-central Nevada.

  3. Igneous rocks of Arctic Ocean deep sea ridges: new data on petrology, geochemistry and geochronology

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Morozov, Andrey; Shokalsky, Sergey; Sobolev, Nikolay; Kashubin, Sergey; Shevchenko, Sergey; Sergeev, Sergey; Belyatsky, Boris; Shatov, Vitaly; Petrov, Eugeny

    2015-04-01

    The aggregate results of studies of igneous rocks, collected from the central part of the Arctic Ocean during scientific marine expeditions «Arctic-2000, 2005, 2007 and 2012» are presented and discussed in the frame of modern understanding of High Polar Arctic tectonic constraint. Petrological, geochemical and isotope-geochronological studies of more than 500 samples have shown that the sedimentary rocks are of dominated population among the rock fragments dredged from deep-sea bottom, and represented by metamorphosed dolomite and quartz sandstone, limestone, sometimes with the Devonian - Permian fauna. Igneous rocks are 10-15% only (Archean and Paleoproterozoic gneissouse granites and gabbro, Neoproterozoic dolerite) and metamorphic rocks (green shales, metabasites, gneisses). Apparently, these rocks are part of the acoustic basement underlying the Late Mesozoic - Cenozoic layered loose sediments. In addition to the dredged fragments of the ancient mafic rocks, some samples were taken as a core during deep-water drilling in the northern and southern slopes of the Mendeleev Ridge and represented by trachybasalts, marking the border of Late-Cenozoic deposit cover and acoustic basement and quite similar in composition to those of Early-Late Cretaceous basalts form northward of the Chukchi Plateau seamounts, Alpha Ridge, Franz Josef Land, De Long islands and other parts of the large igneous province of the High Arctic (HALIP). Video-filming of Mendeleev Ridge escarps proofs the existing of rock outcrops and supports local origin of most of the rock fragments found in the sampling areas. Thus the continental type of the earth's crust of the Central Arctic Ridges basement is based on all obtained results of our study of sea-bottom excavated rock material.

  4. Insights into Igneous Geochemistry from Trace Element Partitioning

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Hanson, B. Z.

    2001-01-01

    Partitioning of trivalent elements into olivine are used to explore basic issues relevant to igneous geochemistry, such as Henry's law. Additional information is contained in the original extended abstract.

  5. Compositions of magmas and carbonate silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy

    NASA Astrophysics Data System (ADS)

    Solovova, I. P.; Girnis, A. V.; Kogarko, L. N.; Kononkova, N. N.; Stoppa, F.; Rosatelli, G.

    2005-11-01

    This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate-carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate-silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.

  6. Drilling through the largest magma chamber on Earth: Bushveld Igneous Complex Drilling Project (BICDP)

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Ashwal, L. D.; Webb, S. J.; Veksler, I. V.

    2015-05-01

    A scientific drilling project in the Bushveld Igneous Complex in South Africa has been proposed to contribute to the following scientific topics of the International Continental Drilling Program (ICDP): large igneous provinces and mantle plumes, natural resources, volcanic systems and thermal regimes, and deep life. An interdisciplinary team of researchers from eight countries met in Johannesburg to exchange ideas about the scientific objectives and a drilling strategy to achieve them. The workshop identified drilling targets in each of the three main lobes of the Bushveld Complex, which will integrate existing drill cores with new boreholes to establish permanently curated and accessible reference profiles of the Bushveld Complex. Coordinated studies of this material will address fundamental questions related to the origin and evolution of parental Bushveld magma(s), the magma chamber processes that caused layering and ore formation, and the role of crust vs. mantle in the genesis of Bushveld granites and felsic volcanic units. Other objectives are to study geophysical and geodynamic aspects of the Bushveld intrusion, including crustal stresses and thermal gradient, and to determine the nature of deep groundwater systems and the biology of subsurface microbial communities.

  7. Petrology of the Betulia Igneous Complex, Cauca, Colombia

    NASA Astrophysics Data System (ADS)

    Gil-Rodriguez, Javier

    2014-12-01

    The Betulia Igneous Complex (BIC) is a group of Late-Miocene (11.8 ± 0.2 Ma) hypabyssal intrusions of intermediate to felsic composition located in the SW of the Colombian Andes. These bodies have a calc-alkaline tendency and are related to the subduction of the Nazca plate under the South American plate. Diorites, quartz diorites and tonalities have porphyritic and phaneritic textures and are composed of plagioclase, amphibole, quartz, biotite, and orthoclase. Plagioclase is mainly of andesine-type and the amphiboles were classified mainly as magnesiohornblendes, actinolites, and tschermakites. BIC rocks have a narrow range of SiO2 content (59-67wt%) and exhibit an enrichment of LILE and LREE relative to HFSE and HREE, respectively. These features are attributed to enrichment of LILE from the source and retention of HFSE (mainly Nb, Ta, and Ti) by refractory phases within the same source. The depletion of HREE is explained by fractionation of mineral phases that have a high partition coefficients for these elements, especially amphiboles, the major mafic phase in the rocks. Nevertheless, the fractionation of garnet in early stages of crystallization is not unlikely. Probably all BIC units were generated by the same magma chamber or at least by the same petrologic mechanism as shown by the similar patterns in spider and REE diagrams; fractional crystallization and differentiation processes controlled the final composition of the rocks, and crystallization stages determined the texture. Isotopic compositions of BIC rocks (87Sr/86Sr: 0.70435-0.70511; 143Nd/144Nd: 0.51258-0.51280; 206Pb/204Pb: 19.13-19.31; 207Pb/204Pb: 15.67-15.76; 208Pb/204Pb: 38.93-39.20) indicate a source derived from the mantle with crustal contamination. The model proposed for the BIC consists of fluids from the dehydration of the subducted slab (Nazca plate) and subducted sediments that generated partial melting of the mantle wedge. These basaltic melts ascended to the mantle-crust boundary

  8. Charge Generation and Propagation in Igneous Rocks

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann

    2000-01-01

    Resistivity changes, ground potentials, electromagnetic (EM) and luminous signals prior to or during earthquakes have been reported, in addition to ground uplift and tilt, and to changes in the seismic wave propagation parameters. However, no physical model exists that ties these diverse phenomena together. Through time-resolved impacts experiments it has been observed that, when igneous rocks (gabbro, diorite, granite) are impacted at low velocities (approx. 100 m/sec), highly mobile electronic charge carriers are generated, spreading from a small volume near the impact point, causing electric potentials, EM and light emission. The rock becomes momentarily conductive. When impacted at higher velocities (approx. 1.5 km/sec), the propagation of the P and S waves is registered through the transient piezoelectric response of quartz. At the same time, the rock volume is filled with mobile charge carriers, and a positive surface potential is registered. During the next 1-2 msec the surface potential oscillates, due to electron injection from ground. These observations are consistent with positive holes, e.g. defect electrons in the O(2-) sublattice, that can travel via the O 2p-dominated valence band of the silicate minerals at the speed of a phonon-mediated charge transfer. Before activation, the positive hole charge carriers lay dormant in form of positive hole pairs, PHP, electrically inactive, chemically equivalent to peroxy links in the structures of constituent minerals. PHPs are introduced by way of hydroxyl (O3Si-OH) incorporated into nominally anhydrous minerals when they crystallize in water-laden environments. Given that sound waves of even relatively low intensity appear to cause PHPs dissociation, thus generating mobile positive holes, it is proposed that microfracturing during rock deformation cause PHP dissociation. Depending on where and how much the rock volume is stressed, the positive holes are expected to form fluctuating charge clouds in the

  9. Organic Protomolecule Assembly in Igneous Minerals

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Staple, Aaron; Scoville, John

    2001-01-01

    C-H stretching bands in the infrared spectrum of single crystals of nominally high purity, laboratory-grown MgO and of natural upper mantle olivine provide an "organic" signature that closely resembles the symmetrical and asymmetrical C-H stretching modes of aliphatic -CH2- units. The C-H stretching bands indicate that H20 and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C-H entities, probably through segregation into defects such as dislocations. Heating causes the C-H bonds to pyrolyze and the C-H stretching bands to disappear, but annealing at 70 C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x less than or equal to 4, with the terminal C atoms anchored to the MgO matrix by bonding to two U. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx-Hy-Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and of the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of Life.

  10. Organic protomolecule assembly in igneous minerals

    PubMed Central

    Freund, Friedemann; Staple, Aaron; Scoville, John

    2001-01-01

    C—H stretching bands, νCH, in the infrared spectrum of single crystals of nominally high purity, of laboratory-grown MgO, and of natural upper mantle olivine, provide an “organic” signature that closely resembles the symmetrical and asymmetrical C—H stretching modes of aliphatic —CH2 units. The νCH bands indicate that H2O and CO2, dissolved in the matrix of these minerals, converted to form H2 and chemically reduced C, which in turn formed C—H entities, probably through segregation into defects such as dislocations. Heating causes the C—H bonds to pyrolyze and the νCH bands to disappear, but annealing at 70°C causes them to reappear within a few days or weeks. Modeling dislocations in MgO suggests that the segregation of C can lead to Cx chains, x = 4, with the terminal C atoms anchored to the MgO matrix by bonding to two O−. Allowing H2 to react with such Cx chains leads to [O2C(CH2)2CO2] or similar precipitates. It is suggested that such Cx—Hy—Oz entities represent protomolecules from which derive the short-chain carboxylic and dicarboxylic and the medium-chain fatty acids that have been solvent-extracted from crushed MgO and olivine single crystals, respectively. Thus, it appears that the hard, dense matrix of igneous minerals represents a medium in which protomolecular units can be assembled. During weathering of rocks, the protomolecular units turn into complex organic molecules. These processes may have provided stereochemically constrained organics to the early Earth that were crucial to the emergence of life. PMID:11226206

  11. 40Ar/39Ar dates from alkaline intrusions of the northern Crazy Mountains, south-central Montana

    NASA Astrophysics Data System (ADS)

    Harlan, S. S.

    2005-05-01

    interval of time at about 50.1 Ma. The dates from the alkaline rocks are somewhat older than dates from the subalkaline Big Timber stock in the southern Crazy Mountains, which gave biotite 40Ar/39Ar dates of about 49.3 Ma (du Bray and Harlan, 1996). However, because these dates represent cooling through closure temperatures of about 350° C, they are minimum estimates for the age of the stock. The limited span of 40Ar/39Ar dates between the alkaline and subalkaline rocks of the Crazy Mountains intrusions (i.e., 50.6 to 49.2 Ma) indicates that the magmas represented by these different geochemical groups were closely associated in both time and space, with emplacement occurring in as little as 1.5 Ma. On a regional scale, the 49-51 Ma age is similar to that of most of the igneous centers of the Central Montana alkalic province and is coeval with the peak of widespread volcanism in the Absaroka-Gallatin volcanic field immediately to the south of the Crazy Mountains Basin.

  12. Petrological, geochemical, and stable isotope constraints on the genesis of the Miocene igneous rocks of Chetaibi and Cap de Fer (NE Algeria)

    NASA Astrophysics Data System (ADS)

    Laouar, R.; Boyce, A. J.; Arafa, M.; Ouabadi, A.; Fallick, A. E.

    2005-06-01

    Miocene igneous rocks (diorites, andesites, dacites, rhyolites and microgranites) of Chetaibi and Cap de Fer massif, NE Algeria, are high-K calc-alkaline to shoshonitic rocks. Fresh diorites have δ 34S and δ 18O values ranging between -2.5‰ and +5.9‰, +6.5‰ and +6.7‰ respectively, indicating a mantle origin. The relatively low δ 34S values (-5.4‰ to -12.2‰) and high δ 18O (+8.3‰ to +9.0‰) of altered diorites indicate the input of a crustal component to the initial magma. The microgranites' I-type signature is indicated by the geochemical data and the δ 34S and δ 18O values of -1.2‰ and -3.6‰, and +7.8‰ to +10.4‰ respectively. The andesites show a large variation of δ 34S, between -33.2‰ and +25.7‰. Massive andesites with δ 34S between +6.8‰ and +7.6‰ preserve a 34S-enriched mantle signature. The δ 34S of the lava flows between +25.7‰ and +25.8‰ are attributed to open system magma degassing, whereas the low δ 34S of two andesitic dyke samples (-13.7‰ and -33.2‰) strongly suggest a crustal sulphur input. High δ 18O (+9.2‰ to +15.7‰) of andesites indicate post-magmatic alteration (mainly silicification); the flyschs with δ 18O between of +13.3‰ and +21.7‰ are most likely the contaminant. Quartz veins within the andesites gave a δ 18O value of +23.0‰ while silica-filling vesicles yielded a value of +13.8‰. Initial Sr-isotope data are rather high for all the rocks (diorites: 0.707-0.708, andesites: 0.707-0.710, and microgranites and rhyolites: 0.717-0.719), and because geochemical and stable isotope data do not indicate a substantial amount of crustal assimilation, an extensive enrichment of the mantle source by subducted sediments is called for. A metasomatized-mantle source, characterized by high radiogenic Sr and relatively high δ 18O, has also been indicated for the genesis of similar Tertiary igneous rocks in the Western Mediterranean basin, e.g. the Volcanic Province of southeasten Spain [Benito, R

  13. On some fundamentals of igneous petrology

    NASA Astrophysics Data System (ADS)

    Marsh, Bruce D.

    2013-09-01

    The age-old process of crystal fractionation leading to the diversity of the igneous rocks and Earth itself is an exceedingly well-understood chemical process in magmatism and physical chemistry. But the broader physical aspects of this and related processes have proven elusive on many fronts, especially in its relation to the spatial variations in rock composition, texture, and macroscopic features like layering. Magmatic systems, be they volcanic, dikes, sills, or plutons, are generally analyzed with a problem at hand and an end result in mind. The processes invoked to solve these problems, which are most often purely chemical, are often unique to each problem with few if any general principles emerging that are central to understanding the wider perspective of magmatic processes and problems. An attempt is made at the outset to provide a list of inviolate Magmatic First Principles that are relevant to analyzing most magmatic problems. These involve: initial conditions; critical crystallinity; solidification fronts; transport and emplacement fluxes; phenocrysts, xenocrysts, primocrysts; crystal size; layering and crystal sorting; thermal convection; magmatic processes are physical. Along with these principles, two reference magmatic systems are suggested where the initial conditions and outcome are unequivocal: the Sudbury impact melt sheet and the Hawaiian lava lakes. Sudbury formed in ~5 min by superheated magma crystallized to a near uniform sequence, while the tiny lava lakes, formed of crystal-laden slurries, form a highly differentiated layered sequence. The major difference is in the initial conditions of formation, especially the nature of the input materials. The challenge is to construct and analyze magmatic systems (i.e., magma chambers, sills, dikes, and lavas) using these reference end members and the suggested principles. The Hawaiian 500,000 year volcanic record exhibits what can be expected as input materials, namely a highly varied output of

  14. Strain fabric evolution within and near deformed igneous sheets: The Sudbury Igneous Complex, Canada

    NASA Astrophysics Data System (ADS)

    Lenauer, Iris; Riller, Ulrich

    2012-08-01

    Deformation structures differing in style and orientation within a given terrane are often attributed to distinct tectono-metamorphic events. However, mechanical heterogeneities may locally cause strain perturbations that can have a profound effect on the geometry of such structures. Here we document highly variable orientations of planar structures, metre- to kilometre-scale folds and shortening directions inferred from brittle fault analysis within the synclinal and layered Sudbury Igneous Complex (SIC) and its Huronian host rocks. NW-SE shortening during Palaeoproterozoic deformation led to the formation of planar structures in the host rocks that are parallel to the NE-SW striking contact of the southern SIC. During deformation, local contact-parallel shortening became more important than regional NW-SE shortening and generated contact-orthogonal planar mineral fabrics and folds. Local contact-parallel shortening is attributed to the shape change of the southern SIC from a convex outward to a concave inward curvi-planar geometry. Contact-parallel shortening accounts for the formation of a previously unidentified kilometre-scale buckle fold in the SIC and respective axial-planar mineral fabrics in Huronian host rocks. This buckle fold shares similar structural characteristics with known higher-order buckle folds of the eastern SIC. We suggest that non-cylindrical buckling and associated mineral fabric development accommodated the shape change of the SIC. This resulted in mutually perpendicular fabric orientations, which are compatible with overall NW-SE shortening. The original shape of the SIC seems to have had a profound influence particularly on the geometry of metamorphic foliations. Our structural analysis supports earlier structural studies advocating that highly discordant planar strain fabrics can be generated by local strain perturbations near igneous sheets under uniform regional shortening.

  15. Multiple explosive rhyolite/trachyte eruptions of alkaline-peralkaline Nemrut and dacite/rhyolite eruptions of neighboring subduction zone-related Süphan volcano over 600 000 years: the East Anatolian tephra province

    NASA Astrophysics Data System (ADS)

    Schmincke, H.-U.; Sumita, M.; Paleovan scientific Team

    2012-04-01

    The active Nemrut stratovolcano (2918 m asl) (Eastern Anatolia) is topped by a spectacular caldera and dominates the area west of huge Lake Van that covers its lower flanks. The stratovolcano has been active explosively for at least ca. 600 ka based on drilling evidence (ICDP Paleovan project). We have identified, correlated and compositionally characterized some 40 fallout sheets on land - none previously known - the largest ones probably with magma volumes exceeding 30 km3(DRE). The alkaline to peralkaline tephras are dominated by anorthoclase, Fe-rich clinopyroxene and fayalite with quartz and aenigmatite in some. Large-volume comenditic to pantelleritic rhyolite eruptions occurred in intervals of 20 000 - 40 000 years with smaller volume trachytic tephra deposits in between reflecting overall fairly constant magma transfer rates periodically fractionating to highly evolved rhyolite in larger magma reservoirs. Many of the ca. 10 widespread ignimbrite sheets, nearly all newly recognized, commonly followed on the heels of rhyolitic fallout sheets. They are more mafic than the underlying fallout deposits, magma mixing being common. Widespread spectacular agglutinates represent a late phase of the youngest large-volume fallout/ignimbrite eruption at ca. 30 ka. Active Süphan stratovolcano (4158 m asl), some 50 km NE of Nemrut and bordering Lake Van to the north, is dominated in contrast by subduction-related chemistry and mineralogy, smaller-volume eruptions and more advanced crystallization of magmas prior to eruption. Chief phenocrysts comprise complex disequilibrium assemblages of clinopyroxene, hypersthene, olivine, strongly zoned plagioclase, biotite and/or amphibole and common clots of fractionating phases. Many of the highly viscous and crystal-laden Süphan magmas were emplaced as domes and debris avalanches next to fallout sheets and ignimbrites. The dominant NE direction of fan axes of partial isopach maps of ca. 15 major fallout deposits reflecting

  16. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  17. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  18. Uranium and other element analyses of igneous rocks of Arkansas

    SciTech Connect

    Steele, K.F.

    1982-05-01

    Seventy-six samples of igneous rocks representing a variety of rock types and locations in Arkansas were analyzed by neutron activation analysis for the elements U, Th, Na, Al, Sc, Ti, V, Mn, Fe, La, Ce, Sm, Eu, Dy, Yb, Lu, and Hf. Samples were collected from the major igneous intrusions at Granite Mountain, Bauxite, Magnet Cove, Potash Sulfur Springs, and Murfreesboro, representing various syenites, lamprophyres, carbonatite, kimberlite, and periodotite. To make the data available for public use without further delay, this report is being issued without the normal technical and copy editing.

  19. Magmagenesis at the Eocene Electric Peak Sepulcher Mountain complex, Absaroka Volcanic Province, USA

    NASA Astrophysics Data System (ADS)

    Lindsay, C. R.; Feeley, T. C.

    2003-03-01

    Igneous rocks exposed on Electric Peak and Sepulcher Mountain represent the preserved intrusive and extrusive components of an early Eocene, calc-alkaline eruptive center in the Absaroka Volcanic Province (AVP) of Montana and Wyoming, USA. The Electric Peak stock has an outcrop area of ˜1 km 2 and consists of six discrete phases ranging in composition from quartz diorite to granite, representing multiple small intrusions of compositionally distinct magmas. Lava flows and dikes on Sepulcher Mountain are basaltic-andesitic to dacitic in composition with silicic rocks generally peripheral to mafic rocks. Important geochemical characteristics of the rocks from both localities include high Ni and Cr concentrations in andesitic and dacitic rocks, lower rare earth element (REE) concentrations in evolved rocks relative to more mafic rocks, and variable Sr and Nd isotopic ratios. Although petrographic evidence permissive of magma mixing is limited, compositional data suggest that andesitic rocks are hybrids formed by mixing variably fractionated and contaminated mantle-derived mafic magmas with diverse composition silicic crustal melts derived from partial melting of amphibolitic lower- to mid-crustal rocks. Isotopic and trace element systematics of mafic rocks, such as high ratios of large ion lithophile to high field strength elements, also suggest that parental magmas were derived from melting of subduction-modified lithospheric mantle. The significance of these results is that the calc-alkaline nature of the center was inherited from crustal processes, whereas the arc-like trace element signature reflects generation of the magmas in a tectonic environment related to geometrically complex subduction of the Farallon plate under the North American continent.

  20. Disruptive event analysis: volcanism and igneous intrusion

    SciTech Connect

    Crowe, B.M.

    1980-08-01

    An evaluation is made of the disruptive effects of volcanic activity with respect to long term isolation of radioactive waste through deep geologic storage. Three major questions are considered. First, what is the range of disruption effects of a radioactive waste repository by volcanic activity. Second, is it possible, by selective siting of a repository, to reduce the risk of disruption by future volcanic activity. And third, can the probability of repository disruption by volcanic activity be quantified. The main variables involved in the evaluation of the consequences of repository disruption by volcanic activity are the geometry of the magma-repository intersection (partly controlled by depth of burial) and the nature of volcanism. Potential radionuclide dispersal by volcanic transport within the biosphere ranges in distance from several kilometers to global. Risk from the most catastrophic types of eruptions can be reduced by careful site selection to maximize lag time prior to the onset of activity. Certain areas or volcanic provinces within the western United States have been sites of significant volcanism and should be avoided as potential sites for a radioactive waste repository. Examples of projection of future sites of active volcanism are discussed for three areas of the western United States. Probability calculations require two types of data: a numerical rate or frequency of volcanic activity and a numerical evaluation of the areal extent of volcanic disruption for a designated region. The former is clearly beyond the current state of art in volcanology. The latter can be approximated with a reasonable degree of satisfaction. In this report, simplified probability calculations are attempted for areas of past volcanic activity.

  1. Relationships between gas geochemistry and release rates and the geomechanical state of igneous rock massifs

    NASA Astrophysics Data System (ADS)

    Nivin, Valentin A.; Belov, Nikolai I.; Treloar, Peter J.; Timofeyev, Vladimir V.

    2001-07-01

    In contrast to sedimentary sequences, the relationships between the stressed state of igneous rocks and the chemistry and physical properties of gases contained within them are not well known. Here, we attempt to fill this gap by using, as an example, the apatite-nepheline and rare-metal ore deposits hosted within the Khibiny and Lovozero alkaline nepheline-syenite complexes of the Kola Peninsula, NW Russia. These massifs are characterized by unusually high, for igneous rocks, contents of multi-component, essentially hydrogen-hydrocarbon, gases and also by high hardness, elasticity and unevenly distributed, subhorizontal tectonic stresses. Relationships between the chemical and dynamic characteristics of the gases and the geomechanical properties of the host rocks have been examined using field observations and laboratory experiments. Patterns of gas release variations in time and space, gas emissions from rock pillars during artificial loading, variations of gas pressure in sealed shot-holes and changes in liberation rates of gaseous components during experimental rock loading are suggested to result from changes in rock stress and deformation state. Gas compositions in sealed shot-holes in stressed rocks change with time. Partly, this is due to belated release of gases held in fluid inclusions and isolated voids and their subsequent mixing with gases held in interconnected fracture systems as the included gases are preferentially released as fluid inclusion arrays are opened during later stages of stress build-up. Partly, it may also be because released gases may react with new fracture surfaces to generate enhanced levels of reduced H 2 gases.

  2. Large Silica-Rich Igneous-Textured Inclusions in the Buzzard Coulee (H4) Chondrite

    NASA Astrophysics Data System (ADS)

    Ruzicka, A.; Hutson, M.; Floss, C.; Hildebrand, A.

    2012-03-01

    Buzzard Coulee (H4) contains two types of large, igneous inclusions that are best explained by igneous differentiation, but which also show evidence for cooling and vapor phase phenomena consistent with transit through a space environment.

  3. Igneous fractionation and subsolidus equilibration of diogenite meteorites

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W.

    1993-01-01

    Diogenites are coarse-grained orthopyroxenite breccias of remarkably uniform major element composition. Most diogenites contain homogeneous pyroxene fragments up to 5 cm across of Wo2En74Fs24 composition. Common minor constituents are chromite, olivine, trolite and metal, while silica, plagioclase, merrillite and diopside are trace phases. Diogenites are generally believed to be cumulates from the eucrite parent body, although their relationship with eucrites remains obscure. It has been suggested that some diogenites are residues after partial melting. I have performed EMPA and INAA for major, minor and trace elements on most diogenites, concentrating on coarse-grained mineral and lithic clasts in order to elucidate their igneous formation and subsequent metamorphic history. Major element compositions of diogenites are decoupled from minor and trace element compositions; the latter record an igneous fractionation sequence that is not preserved in the former. Low equilibration temperatures indicate that major element diffusion continued long after crystallization. Diffusion coefficients for trivalent and tetravalent elements in pyroxene are lower than those of divalent elements. Therefore, major element compositions of diogenites may represent means of unknown portions of a cumulate homogenized by diffusion, while minor and trace elements still yield information on their igneous history. The scale of major element equilibration is unknown, but is likely to be on the order of a few cm. Therefore, the diogenite precursors may have consisted largely of cm-sized, igneously zoned orthopyroxene grains, which were subsequently annealed during slow cooling, obliterating major element zoning but preserving minor and trace incompatible element zoning.

  4. Winter Ice and Snow as Models of Igneous Rock Formation.

    ERIC Educational Resources Information Center

    Romey, William D.

    1983-01-01

    Examines some features of ice and snow that offer teachers and researchers help in understanding many aspects of igneous processes and configurations. Careful observation of such processes as melting, decay, evolution, and snow accumulation provide important clues to understanding processes by which many kinds of rocks form. (Author/JN)

  5. The Formation of Igneous CAIs and Chondrules by Impacts?

    NASA Technical Reports Server (NTRS)

    Connolly, Harold C., Jr.; Love, Stanley G.

    2001-01-01

    Numerous challenges exist with forming the igneous spheres found within chondrites via collision events in the early solar nebula. We explore these challenges and discuss potential methods to overcome them. Collision models should be received cautiously. Additional information is contained in the original extended abstract.

  6. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  7. Igneous Activity at Yucca Mountain: Technical Basis for Decision Making

    NASA Astrophysics Data System (ADS)

    Hinze, W.; Marsh, B.; Weiner, R.; Coleman, N.

    2007-12-01

    Eighty thousand years ago a small-volume basaltic volcano erupted 20 km south of the Department of Energy's (DOE) proposed high-level radioactive waste repository at Yucca Mountain, Nevada. Lathrop Wells is one of the infrequent basaltic volcanoes that have occurred near Yucca Mountain during the past 10 million years. The Advisory Committee on Nuclear Waste and Materials (ACNW&M) has prepared a summary and analysis of the technical views on the nature, likelihood and potential consequences of future igneous activity at the proposed repository. The technical views have been abstracted from public literature and agency reports. Alternate views reflect uncertainties of the igneous processes that have occurred in the region and those that are likely to occur, as well as the interaction of these processes with the proposed repository. There is general agreement that either extrusive or intrusive igneous activity may occur. The extrusive scenario is likely to cause a larger risk and the effect is greatest within the first thousand years. The nature of igneous activity that could occur will probably be similar in composition, structure, and style to the Lathrop Wells volcano. Certain styles of volcanism, like explosive phreatic eruptions (maar volcanism) are not expected because conditions necessary for these do not exist at Yucca Mountain. The volcanic record, particularly during the past 5 million years, suggests a variety of models for evaluating the probability of future igneous activity. The anticipated range of probability of an igneous event intersecting the proposed repository is low, between 1E-9 and 1E-7/yr. An ongoing DOE expert elicitation incorporating the latest geophysical and drilling data will provide an up-to-date, credible estimate of the probability of volcanic intersection. An understanding of the processes involved in interaction between magma and drifts, waste packages, and waste is evolving and providing new insights. As a result, there is limited

  8. Magnetic fabric of saucer-shaped sills in the Karoo Large Igneous Province

    NASA Astrophysics Data System (ADS)

    Polteau, S.; Ferre, E. C.; Planke, S.; Neumann, E.; Chevallier, L.

    2007-12-01

    Magmatic sill intrusions commonly exhibit a saucer geometry in undeformed sedimentary basins and volcanic rifted margins. Current emplacement models are based on the analysis of the intrusion geometry and their spatial relationships with potential feeders, not on the knowledge of the magma flow geometry. The Karoo Basin of South Africa hosts hundreds of saucer-shaped sills. Amongst these, the Golden Valley Sill is well-exposed and displays the connections with adjacent and nested saucers. A combination of detailed fieldwork observations and the anisotropy of magnetic susceptibility measurements were used to identify strain markers that can be interpreted in terms of magma flow directions. A total of 113 localities (6 specimens/site), mostly including opposite sill margins, have been sampled for anisotropy of magnetic susceptibility (AMS) analyses. The magnetic properties were defined by measuring hysteresis cycles and K-T curves on 34 and 19 specimens, respectively. The majority of the localities display well-defined magnetic foliations that consistently dip outward from the centre of the Golden Valley Sill. This orientation of the magnetic foliation most likely represents inflation/deflation cycles of the intruding sill that interacts with non-static enclosing walls. In addition, four magma channels were identified and display an imbrication of the magnetic foliation that indicates an outward magma flow direction. In conclusion, the observed magma flow geometries derived from macroscopic flow indicators and the AMS data correlate well and are used to constrain an emplacement model for the Golden Valley Sill Complex. Finally, the emplacement model of sill complexes repeats the cycle -injection of magma - formation of a saucer-shaped sill - pressure build up - fracturation and pressure drop - channeling of magma - injection of (new batch of) magma - formation of a new saucer-shaped sill- until the magma supply stops.

  9. Butalón igneous rocks, Neuquén, Argentina: Age, stratigraphic relationships and geochemical features

    NASA Astrophysics Data System (ADS)

    Casé, A. M.; López-Escobar, L.; Danieli, J. C.; Schalamuk, A.

    2008-09-01

    Three main groups of igneous rocks of different age are recognized in the Butalón area, including volcanic rocks of the Choiyoi Group (Permian-Triassic), stocks and dikes of the Granodiorita Varvarcó (Upper Cretaceous-Paleocene) and stocks and dikes of the Tonalita Butalón (Paleocene-Eocene?). The Choiyoi Group consists of ignimbrites, breccias, tuffs and silicic lavas. Most are subalkaline and four groups can be distinguished on the basis of their trace element patterns. Most samples are enriched in Ba, but depleted in Nb, Sr, P, Ti and Eu. The subvolcanic rocks of the Granodiorita Varvarcó and Tonalita Butalón are mainly calc-alkaline, metaluminous to peraluminous, with low to medium potassium contents. They have similar subparallel REE and multielement patterns with low La/Yb and Eu/Eu ∗ ratios. These patterns mimic those observed in Pleistocene-Holocene volcanic rocks, of similar SiO 2 content, from the CSVZ of the Andes. They are depleted in Nb and Ti, have normal to low P, and are enriched in Sr and Zr. Hornfels-skarn type hydrothermal alteration is produced by Tonalita Butalón in the adjacent igneous rocks. Magmatic-hydrothermal breccias are developed on top of some of the stocks. While some of the breccias exhibit Mo anomalies, Au and Ag anomalies are present in the Choiyoi Group.

  10. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1977-01-01

    Lunar igneous rocks, properly interpreted, can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Though intensely brecciated, terra rocks reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 Gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 Gy. Melting of ilmenite-free olivine pyroxenites (also cumulates?) at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 Gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  11. Igneous Consequence Modeling for the TSPA-SR

    SciTech Connect

    John McCord

    2001-10-29

    The purpose of this technical report is to develop credible, defendable, substantiated models for the consequences of igneous activity for the TSPA-SR Model. The effort will build on the TSPA-VA and improve the quality of scenarios and depth of the technical basis underlying disruptive events modeling. Computational models for both volcanic eruptive releases (this is an event that results in ash containing waste being ejected from Yucca Mountain) and igneous intrusion groundwater releases (this is an event that reaches the repository level, impacts the waste packages, and produces releases from waste packages damaged by igneous activity) will be included directly in the TSPA calculations as part of the TSPA-SR Model. This Analysis Model Report (AMR) is limited to development of the conceptual models for these two scenarios. The mathematical implementation of these conceptual models will be done within the TSPA-SR Model. Thus, this AMR will not include any model results or sensitivity analyses. Calculation of any doses resulting from igneous releases will also be done within the TSPA-SR model, as will the probabilistic weighting of these doses. Calculation and analysis of the TSPA-SR Model results for igneous disruption are, therefore, outside the scope of this activity. The reason for not running the mathematical models as part of this AMR is that the models are integrated within the TSPA-SR model and, thus, any model simulations and the corresponding results are out of the scope of this AMR. The scope of this work as defined in the development plan (CRWMS M&O 2000j) involves using data that has been extracted from existing sources to design and support the TSPA-SR models for the transport of radionuclides following igneous disruption of the repository. The development plan states ''applications of the code in this analysis will be limited to testing of the code and sensitivity analyses during analysis design.'' In contrast to the development plan, the ASHPLUME

  12. Martian Igneous Geochemistry: The Nature of the Martian Mantle

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, D. W.; Elkins-Tanton, L. T.; Peng, Z. X.; Herrin, J. S.

    2012-01-01

    Mafic igneous rocks probe the interiors of their parent objects, reflecting the compositions and mineralogies of their source regions, and the magmatic processes that engendered them. Incompatible trace element contents of mafic igneous rocks are widely used to constrain the petrologic evolution of planets. We focus on incompatible element ratios of martian meteorites to constrain the petrologic evolution of Mars in the context of magma ocean/cumulate overturn models [1]. Most martian meteorites contain some cumulus grains, but regardless, their incompatible element ratios are close to those of their parent magmas. Martian meteorites form two main petrologic/ age groupings; a 1.3 Ga group composed of clinopyroxenites (nakhlites) and dunites (chassignites), and a <1 Ga group composed of basalts and lherzolites (shergottites).

  13. Lunar igneous rocks and the nature of the lunar interior

    NASA Technical Reports Server (NTRS)

    Hays, J. F.; Walker, D.

    1974-01-01

    Lunar igneous rocks are interpreted, which can give useful information about mineral assemblages and mineral chemistry as a function of depth in the lunar interior. Terra rocks, though intensely brecciated, reveal, in their chemistry, evidence for a magmatic history. Partial melting of feldspathic lunar crustal material occurred in the interval 4.6 to 3.9 gy. Melting of ilmenite-bearing cumulates at depths near 100 km produced parent magmas for Apollo 11 and 17 titaniferous mare basalts in the interval 3.8 to 3.6 gy. Melting of ilmenite-free olivine pyroxenites at depths greater than 200 km produced low-titanium mare basalts in the interval 3.4 to 3.1 gy. No younger igneous rocks have yet been recognized among the lunar samples and present-day melting seems to be limited to depths greater than 1000 km.

  14. Felsic Igneous Rocks at Gale Crater : a Comparison with Lithic Clasts in NWA 7533

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Wiens, R. C.; Toplis, M. J.; Cousin, A.; Forni, O.; Fabre, C.

    2014-12-01

    Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian rocks. In Hummocky plain, more than half of the igneous floats rocks are highly alkaline rocks (Stolper et al. doi: 101126/science.12239463, Schmidt et al. doi: 10.1002/2013JE004481) and feldspar-bearing rocks (Sautter et al. doi: 10.1002/2013JE00447). ChemCam observations at sub-millimeter scale show that these samples contain a significant feldspar component, either associated with LCP in gabbroic texture or with augite in effusive rocks defining an alkaline K-feldspar-bearing suite: basanite, trachy-andesite with porphyritic texture and syenitic rock with apahnitic texture. This series likely resulted from differentiation of liquids produced by low degrees of partial melting of primitive mantle. These rocks are float rocks or occurred as clast in conglomerate suggesting a provenance from Gale crater rim. NWA 7533 is the first Noachian breccia sampling the southern hemisphere Martian regolith. It is a polymict breccia with leucocratic clasts including zircon with 4.4 Ga ages Humayun et al., doi :10.1038/nature). The alkali basaltic evolved clasts contain two feldspars (alkali and plagioclase) and modal recombination gives a basaltic trachy-andesite, gabbroic, trachy-andesite and mugearite clast (Agee et al. doi: 10.1126/science. 1228858). Noritic clasts contain andesine, LCP, and Cr-magnetite. The monzonitic/mugearitic-evolved clasts are composed of alkali feldspar, plagioclase, augite, Ti-Magnetite, Cl-apatite and zircon. These clasts would represent products of Martian crust emplaced at 4.5 Ga and re-melted at 4.4 Ga (Humayun et al., doi :10.1038/nature). The leucocratic clasts of the Noachian SNC breccia will be compared with evolved lithology encountered at Gale crater and products of Noachian magmatism will be discussed.

  15. Log evaluation of oil-bearing igneous rocks

    SciTech Connect

    Khatchikian, A.

    1983-12-01

    The evaluation of porosity, water saturation and clay content of oilbearing igneous rocks with well logs is difficult due to the mineralogical complexity of this type of rocks. The log responses to rhyolite and rhyolite tuff; andesite, dacite and zeolite tuff; diabase and basalt have been studied from examples in western Argentina and compared with values observed in other countries. Several field examples show how these log responses can be used in a complex lithology program to make a complete evaluation.

  16. Synchrony of the Central Atlantic magmatic province and the Triassic-Jurassic boundary climatic and biotic crisis

    NASA Astrophysics Data System (ADS)

    Marzoli, Andrea; Bertrand, Hervé; Knight, Kim B.; Cirilli, Simonetta; Buratti, Nicoletta; Vérati, Chrystèle; Nomade, Sébastien; Renne, Paul R.; Youbi, Nasrrddine; Martini, Rossana; Allenbach, Karin; Neuwerth, Ralph; Rapaille, Cédric; Zaninetti, Louisette; Bellieni, Giuliano

    2004-11-01

    The evolution of life on Earth is marked by catastrophic extinction events, one of which occurred ca. 200 Ma at the transition from the Triassic Period to the Jurassic Period (Tr-J boundary), apparently contemporaneous with the eruption of the world's largest known continental igneous province, the Central Atlantic magmatic province. The temporal relationship of the Tr-J boundary and the province's volcanism is clarified by new multidisciplinary (stratigraphic, palynologic, geochronologic, paleomagnetic, geochemical) data that demonstrate that development of the Central Atlantic magmatic province straddled the Tr-J boundary and thus may have had a causal relationship with the climatic crisis and biotic turnover demarcating the boundary.

  17. Subduction history of the Paleo-Pacific plate beneath the Eurasian continent: Evidence from Mesozoic igneous rocks and accretionary complex in NE Asia

    NASA Astrophysics Data System (ADS)

    Xu, W.

    2015-12-01

    Mesozoic magmatisms in NE China can be subdivided into seven stages, i.e., Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, and Late Cretaceous. Late Triassic magmatisms consist of calc-alkaline igneous rocks in the Erguna Massif, and bimodal igneous rocks in eastern margin of Eurasian continent. The former reveals southward subduction of the Mongol-Okhotsk oceanic plate, the latter reveals an extensional environment (Xu et al., 2013). Early Jurassic magmatisms are composed of calc-alkaline igneous rocks in the eastern margin of the Eurasian continent and the Erguna Massif, revealing westward subduction of the Paleo-pacific plate and southward subduction of the Mongol-Okhotsk oceanic plate (Tang et al., 2015), respectively. Middle Jurassic magmatism only occur in the Great Xing'an Range and the northern margin of the NCC, and consists of adakitic rocks that formed in crustal thickening, reflecting the closure of the Mongol-Okhotsk ocean (Li et al., 2015). Late Jurassic and early Early Cretaceous magmatisms only occur to the west of the Songliao Basin, and consist of trackyandesite and A-type of rhyolites, revealing an extensional environment related to delamination of thickened crust. The late Early Cretaceous magmatisms are widespread in NE China, and consist of calc-alkaline volcanics in eastern margin and bimodal volcanics in intracontinent, revealing westward subduction of the Paleo-pacific plate. Late Cretaceous magmatisms mainly occur to the east of the Songliao Basin, and consist of calc-alkaline volcanics in eastern margin and alkaline basalts in intracontinent (Xu et al., 2013), revealing westward subduction of the Paleo-pacific plate. The Heilongjiang complex with Early Jurassic deformation, together with Jurassic Khabarovsk complex in Russia Far East and Mino-Tamba complex in Japan, reveal Early Jurassic accretionary history. Additionally, the Raohe complex with the age of ca. 169 Ma was

  18. Methane release from igneous intrusion of coal during Late Permian extinction events

    SciTech Connect

    Retallack, G.J.; Jahren, A.H.

    2008-01-15

    Unusually large and locally variable carbon isotope excursions coincident with mass extinctions at the end of the Permian Period (253 Ma) and Guadalupian Epoch (260 Ma) can be attributed to methane outbursts to the atmosphere. Methane has isotopic values {delta}{sup 13}C low enough to reduce to feasible amounts the carbon required for isotopic mass balance. The duration of the carbon isotopic excursions and inferred methane releases are here constrained to < 10,000 yr by counting annual varves in lake deposits and by estimating peat accumulation rates. On paleogeographic maps, the most marked carbon isotope excursions form linear arrays back to plausible methane sources: end-Permian Siberian Traps and Longwood-Bluff intrusions of New Zealand and end-Guadalupian Emeishan Traps of China. Intrusion of coal seams by feeder dikes to flood basalts could create successive thermogenic methane outbursts of the observed timing and magnitude, but these are unreasonably short times for replenishment of marine or permafrost sources of methane. Methane released by fracturing and heating of coal during intrusion of large igneous provinces may have been a planetary hazard comparable with bolide impact.

  19. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  20. Fractional crystallization of high-K arc magmas: biotite- versus amphibole-dominated fractionation series in the Dariv Igneous Complex, Western Mongolia

    NASA Astrophysics Data System (ADS)

    Bucholz, Claire E.; Jagoutz, Oliver; Schmidt, Max W.; Sambuu, Oyungerel

    2014-11-01

    Many studies have documented hydrous fractionation of calc-alkaline basalts producing tonalitic, granodioritic, and granitic melts, but the origin of more alkaline arc sequences dominated by high-K monzonitic suites has not been thoroughly investigated. This study presents results from a combined field, petrologic, and whole-rock geochemical study of a paleo-arc alkaline fractionation sequence from the Dariv Range of the Mongolian Altaids. The Dariv Igneous Complex of Western Mongolia is composed of a complete, moderately hydrous, alkaline fractionation sequence ranging from phlogopite-bearing ultramafic and mafic cumulates to quartz-monzonites to late-stage felsic (63-75 wt% SiO2) dikes. A volumetrically subordinate more hydrous, amphibole-dominated fractionation sequence is also present and comprises amphibole (±phlogopite) clinopyroxenites, gabbros, and diorites. We present 168 whole-rock analyses for the biotite- and amphibole-dominated series. First, we constrain the liquid line of descent (LLD) of a primitive, alkaline arc melt characterized by biotite as the dominant hydrous phase through a fractionation model that incorporates the stepwise subtraction of cumulates of a fixed composition. The modeled LLD reproduces the geochemical trends observed in the "liquid-like" intrusives of the biotite series (quartz-monzonites and felsic dikes) and follows the water-undersaturated albite-orthoclase cotectic (at 0.2-0.5 GPa). Second, as distinct biotite- and amphibole-dominated fractionation series are observed, we investigate the controls on high-temperature biotite versus amphibole crystallization from hydrous arc melts. Analysis of a compilation of hydrous experimental starting materials and high-Mg basalts saturated in biotite and/or amphibole suggests that the degree of K enrichment controls whether biotite will crystallize as an early high-T phase, whereas the degree of water saturation is the dominant control of amphibole crystallization. Therefore, if a melt

  1. Potential Future Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    M. Cline; F. Perry; G. Valentine; E. Smistad

    2005-05-26

    Location, timing, and volumes of post-Miocene volcanic activity, along with expert judgment, provide the basis for assessing the probability of future volcanism intersecting a proposed repository for nuclear waste at Yucca Mountain, Nevada. Analog studies of eruptive centers in the region that may represent the style and extent of possible future igneous activity at Yucca Mountain have aided in defining the consequence scenarios for intrusion into and eruption through a proposed repository. Modeling of magmatic processes related to magma/proposed repository interactions has been used to assess the potential consequences of a future igneous event through a proposed repository at Yucca Mountain. Results of work to date indicate future igneous activity in the Yucca Mountain region has a very low probability of intersecting the proposed repository. Probability of a future event intersecting a proposed repository at Yucca Mountain is approximately 1.7 x 10{sup -8} per year. Since completion of the Probabilistic Volcanic Hazard Assessment (PVHA) in 1996, anomalies representing potential buried volcanic centers have been identified from aeromagnetic surveys. A re-assessment of the hazard is currently underway to evaluate the probability of intersection in light of new information and to estimate the probability of one or more volcanic conduits located in the proposed repository along a dike that intersects the proposed repository. US Nuclear Regulatory Commission regulations for siting and licensing a proposed repository require that the consequences of a disruptive event (igneous event) with annual probability greater than 1 x 10{sup -8} be evaluated. Two consequence scenarios are considered: (1) igneous intrusion-poundwater transport case and (2) volcanic eruptive case. These scenarios equate to a dike or dike swarm intersecting repository drifts containing waste packages, formation of a conduit leading to a volcanic eruption through the repository that carries the

  2. Geochronology, geochemistry, and Sr-Nd-Hf isotopes of the early Paleozoic igneous rocks in the Duobaoshan area, NE China, and their geological significance

    NASA Astrophysics Data System (ADS)

    Wu, Guang; Chen, Yuchuan; Sun, Fengyue; Liu, Jun; Wang, Guorui; Xu, Bei

    2015-01-01

    The Duobaoshan area of northwestern Heilongjiang Province is the most important copper resource concentration region in NE China. To date, the Duobaoshan superlarge Cu-Mo deposit and the Tongshan large Cu-Mo deposit have been discovered in the Duobaoshan area. Both the deposits are hosted by granodiorites and volcanic rocks. Zircon LA-ICP-MS U-Pb dating indicates that these granodiorites emplaced approximately 479 Ma ago and that those volcanic rocks erupted between 447 and 450 Ma. The early Ordovicain granodiorites belong to the high-K to medium-K calc-alkaline series and are characterized by high Al2O3 and Sr contents, low Yb and Y contents, and relatively low Mg# values and Na2O/K2O ratios, with positive Eu or slight negative Eu anomalies (averaging 1.18). All of these geochemical characters are similar to those of the adakites generated by partial melting of a thickened lower crust in the world. Moreover, the granodiorites have low initial 87Sr/86Sr ratios (varying from 0.703474 to 0.704436), very high zircon εHf(t) and whole-rock εNd(t) values (varying from 13.0 to 16.8 and 5.27 to 5.46, respectively), and young zircon Hf and whole-rock Nd single-stage and two-stage model ages. Taking these geochemical characteristics and Sr-Nd-Hf isotope compositions together, we suggest that the early Ordovician granodiorites in the Duobaoshan area occurred in a post-collision environment and were formed by partial melting of a juvenile thickened lower crust dominated by depleted mantle-derived material. These late Ordovician volcanic rocks, which are composed of basalt, basaltic andesite, and andesite, belong to the tholeiitic or calc-alkaline series. They are generally enriched in large ion lithophile elements (LILEs) and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, Zr, Hf, P, and Ti), consistent with the geochemistry of igneous rocks from island arcs or active continental margins. Compared with the early Ordovician granodiorites, these volcanic rocks

  3. Distinct Igneous APXS Rock Compositions on Mars from Pathfinder, MER and MSL

    NASA Technical Reports Server (NTRS)

    Gellert, Ralf; Arvidson, Raymond; Clark, Benton, III; Ming, Douglas W.; Morris, Richard V.; Squyres, Steven W.; Yen, Albert S.

    2015-01-01

    The alpha particle x-ray spectrometer (APXS) on all four Mars Rovers returned geochemical data from about 1000 rocks and soils along the combined traverses of over 50 kilometers. Here we discuss rocks likely of igneous origin, which might represent source materials for the soils and sediments identified along the traverses. Adirondack-type basalts, abundant in the plains of Gusev Crater, are primitive, olivine bearing basalts. They resemble in composition the basaltic soils encountered at all landing sites, except the ubiquitous elevated S, Cl and Zn in soils. They have been postulated to represent closely the average Martian crust composition. The recently identified new Martian meteorite Black Beauty has similar overall geochemical composition, very distinct from the earlier established SNC meteorites. The rim of the Noachian crater Endeavour, predating the sulfate-bearing Burns formation at Meridiani Planum, also resembles closely the composition of Adirondack basalts. At Gale Crater, the MSL Curiosity rover identified a felsic rock type exemplified by the mugearitic float rock JakeM, which is widespread along the traverse at Gale. While a surprise at that time, possibly related more evolved, alkaline rocks had been previously identified on Mars. Spirit encountered the Wishstone rocks in the Columbia Hills with approx. 6% Na2O+K2O, 15 % Al2O3 and low 12% FeO. Pathfinder rocks with elevated K and Na and >50% SiO2 were postulated to be andesitic. Recently Opportunity encountered the rock JeanBaptisteCharbonneau with >15% Al2O3, >50% SiO2 and approx. 10% FeO. A common characteristic all these rocks is the very low abundance of Cr, Ni and Zn, and an Fe/Mn ratio of about 50, indicating an unaltered Fe mineralogy. Beside these likely igneous rock types, which occurred always in several rocks, a few unique rocks were encountered, e.g. Bounce Rock, a pyroxene-bearing ejecta rock fragment resembling the Shergottite EETA 79001B meteorite. The APXS data can be used to

  4. Igneous Intrusion Impacts on Waste Packages and Waste Forms

    SciTech Connect

    P. Bernot

    2004-08-16

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The model is based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. This constitutes the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of SR and LA (BSC 2003a) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2002a). The technical work plan is governed by the procedures of AP-SIII.10Q, Models. Any deviations from the technical work plan are documented in the TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model: (1) Impacts of magma intrusion on the components of engineered barrier system (e.g., drip shields and cladding) of emplacement drifts in Zone 1, and the fate of waste forms. (2) Impacts of conducting magma heat and diffusing magma gases on the drip shields, waste packages, and cladding in the Zone 2 emplacement drifts adjacent to the intruded drifts. (3) Impacts of intrusion on Zone 1 in-drift thermal and geochemical environments, including seepage hydrochemistry. The scope of this model only includes impacts to the components stated above, and does not include impacts to other engineered barrier system (EBS) components such as the invert and

  5. Igneous and tectonic evolution of Venusian and terrestrial coronae

    NASA Technical Reports Server (NTRS)

    Kargel, J. S.; Komatsu, G.

    1992-01-01

    A great variety of tectonic and volcanic features have been documented on Venus. It is widely appreciated that there are close spatial associations among certain types of tectonic structures and some classes of volcanic flows and constructs. Coronae are endowed with a particularly rich variety of volcanism. It is thought that coupled tectonic and volcanic aspects of coronae are cogenetic manifestations of mantle plumes. An outstanding feature of most venusian coronae is their circular or elliptical shape defined by peripheral zones of fracturing and/or folding. Some coronae are composite, consisting of two or more small coronae within a larger enclosing corona, suggesting complex histories of structured diapirism analogous in some ways to salt dome tectonics. Coronae range widely in size, from smaller than 100 km to over 1000 km in diameter. Volcanic features associated with venusian coronae include lunar-like sinuous rilles, thin lava flows, cinder cone-like constructs, shield volcanos, and pancake domes. Several types of volcanic features are often situated within or near a single corona, in many instances including land-forms indicating effusions of both low- and high-viscosity lavas. In some cases stratigraphic evidence brackets emplacement of pancake domes during the period of tectonic development of the corona, thus supporting a close link between the igneous and tectonic histories of coronae. These associations suggest emplacement of huge diapirs and massive magmatic intrusions, thus producing the tectonic deformations defining these structures. Igneous differentiation of the intrusion could yield a range of lava compositions. Head and Wilson suggested a mechanism that would cause development of neutral buoyancy zones in the shallow subsurface of Venus, thereby tending to promote development of massive igneous intrusions.

  6. Teaching Igneous and Metamorphic Petrology Through Guided Inquiry Projects

    NASA Astrophysics Data System (ADS)

    McMillan, N. J.

    2003-12-01

    Undergraduate Petrology at New Mexico State University (GEOL 399) has been taught using three, 5-6 week long projects in place of lectures, lab, and exams for the last six years. Reasons for changing from the traditional format include: 1) to move the focus from identification and memorization to petrologic thinking; 2) the need for undergraduate students to apply basic chemical, structural, and field concepts to igneous and metamorphic rocks; 3) student boredom in the traditional mode by the topic that has captivated my professional life, in spite of my best efforts to offer thrilling lectures, problems, and labs. The course has three guided inquiry projects: volcanic, plutonic, and pelitic dynamothermal. Two of the rock suites are investigated during field trips. Each project provides hand samples and thin sections; the igneous projects also include whole-rock major and trace element data. Students write a scientific paper that classifies and describes the rocks, describes the data (mineralogical and geochemical), and uses data to interpret parameters such as tectonic setting, igneous processes, relationship to phase diagrams, geologic history, metamorphic grade, metamorphic facies, and polymetamorphic history. Students use the text as a major resource for self-learning; mini-lectures on pertinent topics are presented when needed by the majority of students. Project scores include evaluation of small parts of the paper due each Friday and participation in peer review as well as the final report. I have found that petrology is much more fun, although more difficult, to teach using this method. It is challenging to be totally prepared for class because students are working at different speeds on different levels on different aspects of the project. Students enjoy the course, especially the opportunity to engage in scientific investigation and debate. A significant flaw in this course is that students see fewer rocks and have less experience in rock classification

  7. Magnetostriction and palæomagnetism of igneous rocks

    USGS Publications Warehouse

    Graham, John W.; Buddington, A.F.; Balsley, J.R.

    1959-01-01

    IN a recent communication, Stott and Stacey1 report on a “crucial experiment” from which they conclude: “This excellent agreement between the dip and the directions of artificial thermoremanent magnetization of the stressed and unstressed rocks indicates that large systematic errors due to magnetostriction are most improbable in igneous rocks of types normally used for palæomagnetic work”. This experiment was intended to test the proposals2 and measurements3 bearing on the role of magnetostriction in rock magnetism. We present here our reasons for believing that the experiment was not crucial and that the conclusion is not justified.

  8. Lead isotope compositions of Late Cretaceous and early Tertiary igneous rocks and sulfide minerals in Arizona: Implications for the sources of plutons and metals in porphyry copper deposits

    USGS Publications Warehouse

    Bouse, R.M.; Ruiz, J.; Titley, S.R.; Tosdal, R.M.; Wooden, J.L.

    1999-01-01

    Porphyry copper deposits in Arizona are genetically associated with Late Cretaceous and early Tertiary igneous complexes that consist of older intermediate volcanic rocks and younger intermediate to felsic intrusions. The igneous complexes and their associated porphyry copper deposits were emplaced into an Early Proterozoic basement characterized by different rocks, geologic histories, and isotopic compositions. Lead isotope compositions of the Proterozoic basement rocks define, from northwest to southeast, the Mojave, central Arizona, and southeastern Arizona provinces. Porphyry copper deposits are present in each Pb isotope province. Lead isotope compositions of Late Cretaceous and early Tertiary plutons, together with those of sulfide minerals in porphyry copper deposits and of Proterozoic country rocks, place important constraints on genesis of the magmatic suites and the porphyry copper deposits themselves. The range of age-corrected Pb isotope compositions of plutons in 12 Late Cretaceous and early Tertiary igneous complexes is 206Pb/204Pb = 17.34 to 22.66, 207Pb/204Pb = 15.43 to 15.96, and 208Pb/204Pb = 37.19 to 40.33. These Pb isotope compositions and calculated model Th/U are similar to those of the Proterozoic rocks in which the plutons were emplaced, thereby indicating that Pb in the younger rocks and ore deposits was inherited from the basement rocks and their sources. No Pb isotope differences distinguish Late Cretaceous and early Tertiary igneous complexes that contain large economic porphyry copper deposits from less rich or smaller deposits that have not been considered economic for mining. Lead isotope compositions of Late Cretaceous and early Tertiary plutons and sulfide minerals from 30 metallic mineral districts, furthermore, require that the southeastern Arizona Pb province be divided into two subprovinces. The northern subprovince has generally lower 206Pb/204Pb and higher model Th/U, and the southern subprovince has higher 206Pb/204Pb and

  9. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  10. The geochemistry and isotopic composition of the mafic and intermediate igneous components of the Cape Granite Suite, South Africa

    NASA Astrophysics Data System (ADS)

    Jordaan, L. J.; Scheepers, R.; Barton, E. S.

    1995-07-01

    A number of small outcrops of igneous rocks, gabbroic to granodioritic in composition, occur scattered throughout the western Cape in South Africa. These outcrops, which are mostly intrusive into the Malmesbury metasedimentary sequence, define a small number of medium-sized plutons. A characteristic feature of the larger plutons is their composite nature. Each pluton consists of multiple intrusive phases; a few show extensive hydrothermal alteration. Plutons from Yzerfontein and Mud River, which occur in the Tygerberg terrane, are high-K calcalkaline (K-trans-alkaline) while all plutons from Malmesbury, which occurs in the Swartland terrane, are tholeiitic. The high-K suite correspond to other I-type Cape granites, whereas the tholeiitic Malmesbury plutons may be a precursor of A-type Cape granites in both the Tygerberg and Swartland terranes. Monzonite from the Yzerfontein pluton yielded a UPb age of 519±7 Ma on zircon mineral separates. Rb-Sr isotope data did not yield reliable ages, possibly due to alteration, but yielded distinct initial isotope ratios for the high-K calc-alkaline and the tholeiitic plutons. The δ34S isotope ratios of pyrite range from 1 to 2.7% for Yzerfontein and from 3.6 to 4.6% for Mud River, suggesting a magmatic source for the pyrite. PbPb data on whole rock and pyrite samples imply crustal input into all the original magmas.

  11. Subsurface Structure of the Bushveld Igneous Complex, South Africa: An Application of Geophysics

    NASA Astrophysics Data System (ADS)

    Vallejo, G.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Falzone, C.; Guandique, J.; Emry, E.; Webb, S. J.; Nyblade, A.

    2014-12-01

    South Africa is host to the largest single known platinum group metal supply in the world. The Bushveld Igneous Complex, spanning 300x400 kilometers, hosts hundreds of years' worth of platinum, chromite, vanadium, and other ore. Its wealth of these metals is tied directly to the large layered igneous intrusion that formed roughly 2061 million years ago. The extraction of platinum is vital to the industrial world - as these metals are widely used in the automotive industry, dental restorations, computer technology, in addition to many other applications. In collaboration with the Africa Array geophysics field school and the Penn State Summer Research Opportunities Program (SROP), we surveyed the Modikwa mine located along the border of the provinces of Mpumalanga and Limpopo in South Africa. The following techniques were applied to survey the area of interest: seismic refraction and reflection, gravity, magnetics, electrical resistivity, and electromagnetics. The data collected were used to determine the depth to bedrock and to identify potential mining hazards from dykes and faults in the bedrock. Several areas were studied and with the combination of the above-mentioned methods several possible hazards were identified. One broad, major dyke that was located in a prior aeromagnetic survey and several previously undetected, parallel, minor dykes were identified in the region. The overburden thickness was determined to be ̴4-5 meters in some regions, and as thin as several centimeters in others. This section of rock and soil lies above an area where platinum will likely be mined in the future. The removal of overburden can be accomplished by using power shovels or scrapers; while remaining material can be contained with the use of galvanized steel culverts. Additionally, a number of joints were located that may have allowed water to accumulate underground. The models created from the data permit us to estimate which hazards could be present in different parts of the

  12. The role of igneous sills in shaping the Martian uplands

    NASA Technical Reports Server (NTRS)

    Wilhelms, D. E.; Baldwin, R. J.

    1989-01-01

    Relations among geologic units and landforms suggest that igneous sills lie beneath much of the intercrater and intracrater terrain of the Martian uplands. The igneous rocks crop out along the upland-lowland front and in crater floors and other depressions that are low enough to intersect the sill's intrusion horizons. It is suggested that heat from the cooling sills melted some of the ice contained in overlying fragmental deposits, creating valley networks by subsurface flow of the meltwater. Terrains with undulatory, smooth surfaces and softened traces of valleys were created by more direct contact with the sills. Widespread subsidence following emplacement of the sills deformed both them and the nonvolcanic deposits that overlie them, accounting for the many structures that continue from ridged plains into the hilly uplands. Crater counts show that the deposit that became valleyed, softened, and ridged probably began to form (and to acquire interstitial ice) during or shortly after the Middle Noachian Epoch, and continued to form as late as the Early Hesperian Epoch. The upper layers of this deposit, many of the visible valleys, and the ridged plains and postulated sills all have similar Early Hesperian ages. Continued formation of valleys is indicated by their incision of fresh-appearing crater ejecta. The dependence of valley formation on internal processes implies that Mars did not necessarily have a dense early atmosphere or warm climate.

  13. Post-igneous redistribution of components in eucrites

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.; Lindstrom, D. J.; Mittlefehldt, D. W.; Martinez, R. R.

    1993-01-01

    In our analyses, we utilize a microdrilling technique that removes 40 to 100 micron diameter cores from mineral grains in thin sections analyzed by microprobe. The cores are then analyzed by INAA using the technique of Lindstrom. Three eucrites were selected for application of this analytical technique: monomict breccias Pasamonte and Stannern and unbrecciated EET90020. Pasamonte is among the most unequilibrated of the eucrites on the basis of zoning in pyroxenes and is considered to be an igneous rock not significantly affected by metamorphism. Stannern has igneous texture but its pyroxenes indicate some re-equilibration, although little, if any, recrystallization. EET90020 has a granulite texture and has been substantially recrystallized. Our sample of Pasamonte contains several clasts of different grain sizes ranging from glass to fine grained with diabasic texture containing lathy plagioclase, unexsolved pigeonite, and mesostasis. Cores were taken of the glass and from minerals and mesostases in six lithic clasts which normally allowed sampling of more than one phase per clast. Our sample of Stannern is also a breccia but with little difference in grain size between clasts and matrix. The plagioclase and pigeonite are blocky, twinned, and exsolved and coexist with a bit of mesostasis. Cores were taken of plagioclase and pigeonite with no attempt to distinguish separate clasts. EET90020 is a granular mixture of twinned plagioclase and pigeonite having rather uniform size and many triple junctions. Several cores were taken of both phases. Both clear and cloudy grains of plagioclase and pyroxene were sampled in all three eucrites.

  14. Archaean associations of volcanics, granulites and eclogites of the Belomorian province, Fennoscandian Shield and its geodynamic interpretation

    NASA Astrophysics Data System (ADS)

    Slabunov, Alexander

    2013-04-01

    An assembly of igneous (TTG-granitoids and S-type leucogranites and calc-alkaline-, tholeiite-, kometiite-, boninite- and adakite-series metavolcanics) and metamorphic (eclogite-, moderate-pressure (MP) granulite- and MP amphibolite-facies rocks) complexes, strikingly complete for Archaean structures, is preserved in the Belomorian province of the Fennoscandian Shield. At least four Meso-Neoarchaean different-aged (2.88-2.82; 2.81-2.78; ca. 2.75 and 2.735-2.72 Ga) calc-alkaline and adakitic subduction-type volcanics were identified as part of greenstone belts in the Belomorian province (Slabunov, 2008). 2.88-2.82 and ca. 2.78 Ga fore-arc type graywacke units were identified in this province too (Bibikova et al., 2001; Mil'kevich et al., 2007). Ca.2.7 Ga volcanics were generated in extension structures which arose upon the collapse of an orogen. The occurrence of basalt-komatiite complexes, formed in most greenstone belts in oceanic plateau settings under the influence of mantle plumes, shows the abundance of these rocks in subducting oceanic slabs. Multiple (2.82-2.79; 2.78-2.76; 2.73-2.72; 2.69-2.64 Ga) granulite-facies moderate-pressure metamorphic events were identified in the Belomorian province (Volodichev, 1990; Slabunov et al., 2006). The earliest (2.82-2.79 Ga) event is presumably associated with accretionary processes upon the formation of an old continental crust block. Two other events (2.78-2.76; 2.73-2.72 Ga) are understood as metamorphic processes in suprasubduction setting. Late locally active metamorphism is attributed to the emplacement of mafic intrusions upon orogen collapse. Three groups of crustal eclogites with different age were identified in the Belomorian province: Mesoarchaean (2.88-2.86 and 2.82-2.80 Ga) eclogites formed from MORB and oceanic plateau type basalts and oceanic high-Mg rocks (Mints et al., 2011; Shchipansky at al., 2012); Neoarchaean (2.72 Ga) eclogites formed from MORB and oceanic plateau type basalts. The formation of

  15. Petrology of potassic alkaline ultramafic and carbonatitic rocks from Planalto da Serra (Mato Grosso State), Brazil

    NASA Astrophysics Data System (ADS)

    Comin-Chiaramonti, Piero; Gomes, Celso B.; De Min, Angelo; Ruberti, Excelso; Girardi, Vicente A. V.; Slejko, Francesca; Neder, Renato D.; Pinho, Francisco E. C.

    2014-12-01

    The Planalto da Serra igneous rocks form plugs, necks and dykes of carbonate-rich ultramafic lamprophyres (aillikites and glimmerites with kamafugitic affinity) and carbonatites (alvikites and beforsites). Phlogopite and/or tetraphlogopite, diopside and melanitic garnet are restricted to aillikitic rock-types, whereas pyroclore occurs only in carbonatites. Aillikites and carbonatites are altered to hydrotermalites, having chlorite and serpentine as dominant minerals. Planalto da Serra igneous rock association has kamafugitic affinity (i.e. effusive, ultrapotassic. High LREE/HREE fractionation, incompatible elements data and Sr-Nd isotopes, suggest that the K-ultramafic alkaline and carbonatite rocks originated from a variably metasomatized mantle source enriched in radiogenic Sr. Crustal contamination is negligible or absent. Age values of 600 Ma rule out the geochronological relationship between the investigated intrusions and the Mesozoic alkaline bodies from the Azimuth 125° lineament. The TDM model ages allow to conclude that Planalto da Serra magma is derived from the partial melting of a mantle source metasomatised by K-rich carbonatated melt during the Early to Late Neoproterozoic. On the basis of alkaline magmatism repetitions at 600 Ma and 90-80 Ma we question the subsistence of a stationary mantle plume for so long time.

  16. Igneous petrogenesis and tectonic setting of granitic rocks from the eastern Blue Ridge, Alabama Appalachians

    SciTech Connect

    Drummond, M.S. . Geology Dept.); Allison, D.T. . Geology Dept.); Tull, J.F. . Geology Dept.); Bieler, D.B. . Geology Dept.)

    1994-03-01

    A span of 150 my of orogenic activity is recorded within the granitic rocks of the eastern Blue Ridge of Alabama (EBR). Four discrete episodes of plutonism can be differentiated, each event exhibiting distinct field relations and geochemical signatures. (1) Penobscotian stage: this initial stage of plutonic activity is represented by the Elkahatchee Quartz Diorite (EQD), a premetamorphic (495 Ma) batholith and the largest intrusive complex (880 km[sup 2]) exposed in the Blue Ridge. Calc-alkaline I-type tonalite-granodiorite are the principal lithologies, with subordinate cumulate hbl-bt diorite, metadacite, granite and trondhjemite. The parental tonalitic magmas are interpreted to have been derived from a subducted MORB source under eclogite to get amphibolite conditions. (2) Taconic stage: the Kowaliga augen gneiss (KAG) and the Zana granite gneiss (ZG) are 460 Ma granitic bodies that reside in the SE extremity and structurally highest portion of the EBR. Both of these bodies are pre-metamorphic with strongly elongate sill- and pod-like shapes concordant with S[sub 1] foliation. Granite and granodiorite comprise the bulk of the KAG. (3) Acadian stage: Rockford Granite (RG), Bluff springs Granite (BSG, 366 Ma), and Almond Trondhjemite represent a suite of pre- to syn-metamorphic granitic intrusions. (4) late-Acadian stage: The Blakes Ferry pluton (BFP) is a post-kinematic pluton displaying spectacular by schlieren igneous flow structures, but no metamorphic fabric. The pluton's age can be bracketed between a 366 Ma age on the BSG and a 324 Ma K-Ar muscovite age on the BFP. BFP's petrogenesis has involved partial melting a MORB source followed by assimilation of metasedimentary host rock.

  17. Tectonic significance of Neoproterozoic magmatism of Nakora area, Malani igneous suite, Western Rajasthan, India

    NASA Astrophysics Data System (ADS)

    Kumar, Naresh; Vallinayagam, G.

    2014-05-01

    Three magmatic phases are distinguished in the Neoproterozoic Nakora Ring Complex (NRC) of Malani Igneous Suite (MIS), namely (a) Extrusive (b) Intrusive and (c) Dyke phase. Magmatism at NRC initiated with minor amount of (basic) basalt flows and followed by the extensive/voluminous acid (rhyolites-trachytes) flows. The ripple marks are observed at the Dadawari area of NRC in tuffaceous rhyolite flow which suggests the aqueous condition of flows deposition. The emplacement of the magma appears to have been controlled by a well defined NE-SW tectonic lineament and cut by radial pattern of dykes. These NE-SW tectonic lineaments are the linear zones of crustal weakness and high heat flow. The spheroidal and rapakivi structures in the Nakora acid volcanics indicate the relationship between genetic link and magma mixing. Basalt-trachyte-rhyolite association suggests that the large amount of heat is supplied to the crust from the magma chamber before the eruption. The field (elliptical/ring structures), mineralogical and geochemical characteristics of Nakora granites attest an alkaline character in their evolution and consistent with within plate tectonic setting. The emplacement of these granites and associated volcanics is controlled by ring structures, a manifestation of plume activity and cauldron subsidence, an evidence of extensional tectonic environment. NRC granites are the product of partial melting of rocks similar to banded gneiss from Kolar Schist Belt of India. The present investigations suggest that the magmatic suites of NRC rocks are derived from a crustal source and the required heat supplied from a mantle plume.

  18. Mafic and felsic igneous rocks at Gale crater

    NASA Astrophysics Data System (ADS)

    Sautter, Violaine; Cousin, Agnès; Mangold, Nicolas; Toplis, Michael; Fabre, Cécile; Forni, Olivier; Payré, Valérie; Gasnault, Olivier; Ollila, Anne; Rapin, William; Fisk, Martin; Meslin, Pierre-Yves; Wiens, Roger; Maurice, Sylvestre; Lasue, Jérémie; Newsom, Horton; Lanza, Nina

    2015-04-01

    The Curiosity rover landed at Gale, an early Hesperian age crater formed within Noachian terrains on Mars. The rover encountered a great variety of igneous rocks to the west of the Yellow Knife Bay sedimentary unit (from sol 13 to 800) which are float rocks or clasts in conglomerates. Textural and compositional analyses using MastCam and ChemCam Remote micro Imager (RMI) and Laser Induced Breakdown Spectroscopy (LIBS) with a ˜300-500 µm laser spot lead to the recognition of 53 massive (non layered) igneous targets, both intrusive and effusive, ranging from mafic rocks where feldspars form less than 50% of the rock to felsic samples where feldspar is the dominant mineral. From morphology, color, grain size, patina and chemistry, at least 5 different groups of rocks have been identified: (1) a basaltic class with shiny aspect, conchoidal frature, no visible grains (less than 0.2mm) in a dark matrix with a few mm sized light-toned crystals (21 targets) (2) a porphyritic trachyandesite class with light-toned, bladed and polygonal crystals 1-20 mm in length set in a dark gray mesostasis (11 targets); (3) light toned trachytes with no visible grains sometimes vesiculated or forming flat targets (6 targets); (4) microgabbro-norite (grain size < 1mm) and gabbro-norite (grain size >1 mm) showing dark and light toned crystals in similar proportion ( 8 targets); (5) light-toned diorite/granodiorite showing coarse granular (>4 mm) texture either pristine or blocky, strongly weathered rocks (9 rock targets). Overall, these rocks comprise 2 distinct geochemical series: (i) an alkali-suite: basanite, gabbro trachy-andesite and trachyte) including porphyritic and aphyric members; (ii) quartz-normative intrusives close to granodioritic composition. The former looks like felsic clasts recently described in two SNC meteorites (NWA 7034 and 7533), the first Noachian breccia sampling the martian regolith. It is geochemically consistent with differentiation of liquids produced by low

  19. U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: A geodynamic perspective

    NASA Astrophysics Data System (ADS)

    Millonig, Leo J.; Gerdes, Axel; Groat, Lee A.

    2012-11-01

    U-Pb and Th-Pb ages of zircons from seven meta-carbonatite and three meta-alkaline rock samples provide evidence for three distinct episodes of carbonatite and alkaline magmatism in the southern Canadian Cordillera spanning a period of ~ 460 Ma. The earliest, Neoproterozoic event occurred at ~ 800-700 Ma and coincides with the postulated initial break-up of Rodinia. The second, previously undocumented, event of carbonatitic magmatism is constrained to the Late Cambrian at ~ 500 Ma and corresponds to a period of extensional tectonics that affected the western continental margin of North America from the Canadian Cordillera to the southwestern United States. The youngest and most prevalent period of alkaline igneous activity occurred in Late Devonian to Early Carboniferous times at ~ 360-340 Ma and resulted from extensional tectonics, presumably caused by slab rollback. In addition, different episodes of amphibolite-facies metamorphism subsequently affected the igneous rocks between ~ 155 and 50 Ma. This dataset puts new constraints on the timing of carbonatite and alkaline igneous activity and the evolution of (ancestral) North America's western continental margin from Neoproterozoic to Carboniferous times.

  20. Rb-Sr age of lunar igneous rocks 62295 and 14310

    NASA Technical Reports Server (NTRS)

    Mark, R. K.; Lee-Hu, C.-N.; Wetherill, G. W.

    1974-01-01

    Measurements of Rb-Sr ages of crystallization performed on igneous lunar highland rocks 62295 and 14310 are reported. Lunar sample 62295 is a mesostasis-rich spinel-troctolite very-high-alumina basalt exhibiting a variable igneous structure. Sample 14310 is a feldspathic KREEP-rich basalt. The determined ages probably date the cooling of shock melts.

  1. The "Key" Method of Identifying Igneous and Metamorphic Rocks in Introductory Laboratory.

    ERIC Educational Resources Information Center

    Eves, Robert Leo; Davis, Larry Eugene

    1987-01-01

    Proposes that identification keys provide an orderly strategy for the identification of igneous and metamorphic rocks in an introductory geology course. Explains the format employed in the system and includes the actual key guides for both igneous and metamorphic rocks. (ML)

  2. Igneous History of the Andean Cordillera and Patagonian Plateau around Latitude 46 degrees S

    NASA Astrophysics Data System (ADS)

    Baker, P. E.; Rea, W. J.; Skarmeta, J.; Caminos, R.; Rex, D. C.

    1981-11-01

    From the Middle Jurassic onwards persistent igneous activity in the southern Andes around 46 degrees S was controlled by easterly dipping subduction along the Pacific margin. Cogenetic plutonic rocks belonging to the Patagonian batholith, and calc-alkaline volcanics ranging from basaltic andesites to rhyolitic tuffs and ignimbrites are the principal products. Erosion of the primary volcanics has led at various times to the development of thick volcaniclastic sequences, for example in the Cretaceous--Lower Tertiary Divisadero formation. The Coyhaique region marks the northerly extension of a narrow back-arc basin in which the marine Neocomian successions accumulated. Volcaniclastics from the island arc, which presumably lay to the west, are intercalated with the sediments. Although the marine basin was short-lived a mildly extensional back-arc regime may have existed through much of Mesozoic--Recent times. Widespread basalt--rhyolite volcanism on the eastern side of the cordillera seems to have been associated with this tectonic environment. Remnants of the Patagonian basalt plateau at latitude 45-47 degrees S extend from the Argentine--Chile frontier to Lago Colhue Huapi. Four principal age and compositional groups have been distinguished in the lavas. (i) The oldest, which are about 80 Ma, occur in sections at Senguerr and Morro Negro. They are almost exclusively tholeiitic, but show some calc-alkaline affinities and resemble in other respects basalts from marginal basins. (ii) The second group (57-43 Ma) occur in the lower part of the Chile Chico section with a compositional spread from olivine tholeiites through alkali basalts to one occurrence of a basanite. (iii) The upper part of the main plateau sequence, where the flows are in the range 25-9 Ma, are dominantly of alkali basalt composition. (iv) Post-plateau flows from small cinder cones on the surface of the plateau range in age from ca. 4 Ma to 0.2 Ma or less. They are mostly highly undersaturated

  3. Alkaline Phosphatase in Stem Cells

    PubMed Central

    Štefková, Kateřina; Procházková, Jiřina; Pacherník, Jiří

    2015-01-01

    Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells. PMID:25767512

  4. The key role of mica during igneous concentration of tantalum

    NASA Astrophysics Data System (ADS)

    Stepanov, Aleksandr; A. Mavrogenes, John; Meffre, Sebastien; Davidson, Paul

    2014-06-01

    Igneous rocks with high Ta concentrations share a number of similarities such as high Ta/Nb, low Ti, LREE and Zr concentrations and granitic compositions. These features can be traced through fractionated granitic series. Formation of Ta-rich melts begins with anatexis in the presence of residual biotite, followed by magmatic crystallization of biotite and muscovite. Crystallization of biotite and muscovite increases Ta/Nb and reduces the Ti content of the melt. Titanium-bearing oxides such as rutile and titanite are enriched in Ta and have the potential to deplete Ta at early stages of fractionation. However, mica crystallization suppresses their saturation and allows Ta to increase in the melt. Saturation with respect to Ta and Nb minerals occurs at the latest stages of magmatic crystallization, and columbite can originate from recrystallization of mica. We propose a model for prediction of intrusion fertility for Ta.

  5. Major and trace elements in igneous rocks from Apollo 15.

    NASA Technical Reports Server (NTRS)

    Helmke, P. A.; Blanchard, D. P.; Haskin, L. A.; Telander, K.; Weiss, C.; Jacobs, J. W.

    1973-01-01

    The concentrations of major and trace elements have been determined in igneous rocks from Apollo 15. All materials analyzed have typical depletions of Eu except for minerals separated from sample 15085. Four samples have concentrations of trace elements that are similar to those of KREEP. The samples of mare basalt from Apollo 15 have higher concentrations of FeO, MgO, Mn, and Cr and lower concentrations of CaO, Na2O, K2O, and rare-earth elements (REE) as compared to the samples of mare basalt from Apollos 11, 12, and 14. The samples can be divided into two groups on the basis of their normative compositions. One group is quartz normative and has low concentrations of FeO while the other is olivine normative and has high concentrations of FeO. The trace element data indicate that the samples of olivine normative basalt could be from different portions of a single lava flow.

  6. The Search for Igneous Materials at the Viking Landing Sites

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Dale-Bannister, M.; Guinnes, E. A.

    1985-01-01

    The use of Viking Lander 6 channel (0.4 to 1.1 microns) images to identify igneous materials is discussed. Movies of synthetic image cubes demonstrate that there are a number of contrast reversals between soils and certain rocks. Typically, large, angular rocks are brighter than the surrounding soils in the shortest wavelengths, and much darker than the soils at longest wavelengths. These results, which seem difficult to explain solely on the basis of photometric effects related to local lighting and viewing, are consistent with the presence of Fe+2 bearing silicates at the rock surfaces, producing relatively moderate absorptions in the blue and green parts of the spectrum, but more significant absorptions near about 1.0 micrometer (e.g., Fe+2 bearing pyroxenes). The soils, on the other hand, have signatures consistent with strong Fe+3 related absorptions at shorter wavelengths (e.g., Fe+3 bearing oxides or hydroxides).

  7. The nakhlite meteorites: Augite-rich igneous rocks from Mars

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    2005-01-01

    The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg' = 63% and rims that are normally zoned to iron enrichment. The core-rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning - sharp rim zoning goes with the most magnesian cores (Mg' = 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis. Compared to common basalts, they are rich in Ca, strongly depleted in Al, and enriched in magmaphile (incompatible) elements, including the LREE. Nakhlites contain little pre-terrestrial organic matter. Oxygen isotope ratios are not terrestrial, and are different in anhydrous silicates and in iddingsite. The alteration assemblages all have heavy oxygen and heavy carbon, while D/H values are extreme and scattered. Igneous sulfur had a solar-system isotopic ratio, but in most minerals was altered to higher and lower values. High precision

  8. Primary igneous rocks on Mars: Composition and distribution

    NASA Technical Reports Server (NTRS)

    Singer, Robert B.; Mcsween, Harry Y., Jr.

    1991-01-01

    The present knowledge of the crustal composition of Mars is synthesized and implications discussed for in-situ resource utilization. Sources of information include remote sensing observations, Viking XRF chemical measurements, and characteristics of the SNC meteorites (which most researchers now believe originated on Mars). There are a number of lines of evidence that abundant ferrous-iron rich igneous crustal rocks (and derivative soils) are available at or very near the current Martian surface at many locations on the planet. Most of these exposures show spectroscopic evidence for abundant pyroxene, consistent with basaltic compositions. The SNC meteorites, which have basaltic compositions, were also studied extensively. Interpretations of Mars crustal chemistry and mineralogy (petrology) based on these various sources are reviewed, and their consistencies and differences are discussed.

  9. Presentation and interpretation of chemical data for igneous rocks

    USGS Publications Warehouse

    Wright, T.L.

    1974-01-01

    Arguments are made in favor of using variation diagrams to plot analyses of igneous rocks and their derivatives and modeling differentiation processes by least-squares mixing procedures. These methods permit study of magmatic differentiation and related processes in terms of all of the chemical data available. Data are presented as they are reported by the chemist and specific processes may be modeled and either quantitatively described or rejected as inappropriate or too simple. Examples are given of the differing interpretations that can arise when data are plotted on an AEM ternary vs. the same data on a full set of MgO variation diagrams. Mixing procedures are illustrated with reference to basaltic lavas from the Columbia Plateau. ?? 1974 Springer-Verlag.

  10. On the original igneous source of Martian fines

    NASA Technical Reports Server (NTRS)

    Baird, A. K.; Clark, B. C.

    1981-01-01

    The composition of the silicate portion of Martian regolith fines indicates derivation of the fines from mafic to ultramafic rocks, probably rich in pyroxene. Rock types similar in chemical and mineralogical composition include terrestrial Archean basalts and certain achondrite meteorites. If these igneous rocks weathered nearly isochemically, the nontronitic clays proposed earlier as an analog to Martian fines could be formed. Flood basalts of pyroxenitic lavas may be widespread and characteristic of early volcanism on Mars, analogous to maria flood basalts on the moon and early Precambrian basaltic komatiites on earth. Compositional differences between lunar, terrestrial, and Martian flood basalts may be related to differences in planetary sizes and mantle compositions of the respective planetary objects.

  11. Igneous intrusion models for floor fracturing in lunar craters

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1991-01-01

    Lunar floor-fractured craters are primarily located near the maria and frequently contain ponded mare units and dark mantling deposits. Fracturing is confined to the crater interior, often producing a moat-like feature near the floor edge, and crater depth is commonly reduced by uplift of the crater floor. Although viscous relaxation of crater topography can produce such uplift, the close association of modification with surface volcanism supports a model linking floor fracture to crater-centered igneous intrusions. The consequences of two intrusion models for the lunar interior are quantitatively explored. The first model is based on terrestrial laccoliths and describes a shallow intrusion beneath the crater. The second model is based on cone sheet complexes where surface deformation results from a deeper magma chamber. Both models, their fit to observed crater modifications and possible implications for local volcanism are described.

  12. Magnetic anomalies along the contact between sedimentary and igneous rocks:

    NASA Astrophysics Data System (ADS)

    Kletetschka, G.; Speer, A. J.; Wasilewski, P. J.

    2002-05-01

    Intrusion of the Liberty Hill granite (South Carolina) into the surrounding shale causes a distinct aureole along the metamorphic contact. The aureole is divided by five isograds, which are the result of a sequence of continuous reactions. One consequence of the continuous reactions is production of contrasting proportion of magnetite and exsolved titanohematite. The continuous change in the relative amounts of these two minerals, controls the magnetic properties of the hornfelses. This causes magnetic anomaly changes associated with the aureole with inflexions occurring at the isograds. The maximum intensity of the magnetic anomaly coincides with the maximum abundance of titanohematite. The anomaly sharply drops when stable remanence of titanohematite is replaced by unstable remanence of magnetite. Magnetic properties of the aureole, which is the contact between igneous and sedimentary rocks, demonstrate an example of magnetic remanence acquisition in petrological environment that is likely to occur on planet Mars.

  13. Volcanism and igneous processes in small icy satellites

    NASA Technical Reports Server (NTRS)

    Stevenson, D. J.

    1982-01-01

    Evidence for the production of endogenic processes of the small Saturnian satellites by igneous activity of low melting point NH3-H2O magma heated radiogenically is presented. An initial state of the inner satellites is modeled as a homogeneous mixture of particulate silicates and ices. Conductive transport is assumed to have either combined with heat capacity in a mixture of crystalline phases, or to have been reduced by the presence of dust, defects, vitreous or amorphous phases, and clathrates. The extent to which a eutectic melt could form is calculated in terms of the volume percentage of melt, with all heating above 175 K going toward overcoming the latent heat of the eutectic mix. Mimas and Enceladus were treated as free from radiogenic heat sources, which were significant for Tethys, Dione, Rhea, and Iapetus. The migrations of inner materials to form surface structures and seal off the interiors of the moons are described.

  14. Evolution of the martian mantle as recorded by igneous rocks

    NASA Astrophysics Data System (ADS)

    Balta, J. B.; McSween, H. Y.

    2013-12-01

    Martian igneous rocks provide our best window into the current state of the martian mantle and its evolution after accretion and differentiation. Currently, those rocks have been examined in situ by rovers, characterized in general from orbiting spacecraft, and analyzed in terrestrial laboratories when found as meteorites. However, these data have the potential to bias our understanding of martian magmatism, as most of the available meteorites and rover-analyzed rocks come from the Amazonian (<2 Ga) and Hesperian (~3.65 Ga) periods respectively, while igneous rocks from the Noachian (>3.8 Ga) have only been examined by orbiters and as the unique meteorite ALH 84001. After initial differentiation, the main planetary-scale changes in the structure of Mars which impact igneous compositions are cooling of the planet and thickening of the crust with time. As the shergottite meteorites give ages <500 Ma1, they might be expected to represent thick-crust, recent volcanism. Using spacecraft measurements of volcanic compositions and whole rock compositions of meteorites, we demonstrate that the shergottite meteorites do not match the composition of the igneous rocks composing the young volcanoes on Mars, particularly in their silica content, and no crystallization or crustal contamination trend reproduces the volcanoes from a shergottite-like parent magma. However, we show that the shergottite magmas do resemble older martian rocks in composition and mineralogy. The Noachian-aged meteorite ALH 84001 has similar radiogenic-element signatures to the shergottites and may derive from a similar mantle source despite the age difference2. Thus, shergottite-like magmas may represent melting of mantle sources that were much more abundant early in martian history. We propose that the shergottites represent the melting products of an originally-hydrous martian mantle, containing at least several hundred ppm H2O. Dissolved water can increase the silica content of magmas and thus

  15. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  16. River Valley pluton, Ontario - A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    NASA Technical Reports Server (NTRS)

    Ashwal, Lewis D.; Wooden, Joseph L.

    1989-01-01

    This paper presents Nd, Sr, and Pb isotopic data indicating a late-Archean/early-Proterozoic age for the River Valley anorthositic pluton of the southwestern Grenville Province of Sudbury, Ontario. Pb-Pb isotopic data on 10 whole-rock samples ranging in composition from anorthosite to gabbro yield an age of 2560 + or - 155 Ma. The River Valley pluton is thus the oldest anorthositic intrusive yet recognized within the Grenville Province. The Sm-Nd isotopic system records an age of 2377 + or - 68 Ma. High Pb-208/Pb-204 of deformed samples relative to igneous-textured rocks implies Th introduction and/or U loss during metamorphism in the River Valley area. Rb-Sr data from igneous-textured and deformed samples and from mineral separates give an age of 2185 + or - 105 Ma, indicating substantial disturbance of the Rb-Sr isotopic system.

  17. Natural radioactivity and radon exhalation rate in Brazilian igneous rocks.

    PubMed

    Moura, C L; Artur, A C; Bonotto, D M; Guedes, S; Martinelli, C D

    2011-07-01

    This paper reports the natural radioactivity of Brazilian igneous rocks that are used as dimension stones, following the trend of other studies on the evaluation of the risks to the human health caused by the rocks radioactivity as a consequence of their use as cover indoors. Gamma-ray spectrometry has been utilized to determine the (40)K, (226)Ra and (232)Th activity concentrations in 14 rock types collected at different quarries. The following activity concentration range was found: 12.18-251.90 Bq/kg for (226)Ra, 9.55-347.47 Bq/kg for (232)Th and 407.5-1615.0 Bq/kg for (40)K. Such data were used to estimate Ra(eq), H(ex) and I(γ), which were compared with the threshold limit values recommended in literature. They have been exceeded for Ra(eq) and H(ex) in five samples, where the highest indices corresponded to a rock that suffered a process of ductile-brittle deformation that caused it a microbrecciated shape. The exhalation rate of Rn and daughters has also been determined in slabs consisting of rock pieces ~10 cm-long, 5 cm-wide and 3 cm-thick. It ranged from 0.24 to 3.93 Bq/m(2)/h and exhibited significant correlation with eU (=(226)Ra), as expected. The results indicated that most of the studied rocks did not present risk to human health and may be used indoors, even with low ventilation. On the other hand, igneous rocks that yielded indices above the threshold limit values recommended in literature may be used outdoors without any restriction or indoors with ample ventilation. PMID:21459585

  18. Petrology, geochemistry and geochronology of the Chilka Lake igneous complex, Orissa state, India

    NASA Astrophysics Data System (ADS)

    Sarkar, Amitabha; Bhanumathi, L.; Balasubrahmanyan, M. N.

    1981-04-01

    The Chilka Lake igneous complex of Orissa, the largest known anortosite massif of the Indian Shield, occurs in a catazonal environment of high-grade metamorphics of the Eastern Ghats Precambrian Orogenic Province. The syntectonic massif consists of the anorthositic Balugaon dome, leuconoritic Rambha lobe and quartz-mangeritic Kallikota cover. A completely gradational suite comprising anorthosite-leuconorite-norite-minor jotunite (the anorthositic suite) constitutes most of the complex. The subordinate of suite of acid rocks spatially associated with this is of a broad quartz-mangeritic lithology with minor granitic rocks (the acidic suite). Geochemical evolution of the complex in the sequence anorthosite-leuconorite-norite-jotunite-acidic rocks shows moderate iron enrichment in the noritic-jotunitic stage and is marked by an overall decrease in Al 2O 3, CaO, MgO, Ni/Co, Sr/Ba, K/Rb and increase in SiO 2, K 2O, V/Ni, K/Ba and Rb/Sr. Such progressive variation in geochemical parameters appears (i) essentially gradual and frequently overlapping in rock members of the intergradational anorthositic suite and (ii) rather abrupt across transition zones between the anorthositic suite and the acidic suite due to near absence of intervening intermediate lithologies. RbSr whole rock isochron studies indicate that the complex was emplaced ca. 1400 Ma ago. The initial 87Sr/ 68Sr (0.70661) implies limited hybridisation of the parent magma prior to emplacement. A critical appraisal of all the available evidence suggests that (i) the anorthositic suite of rocks form a perfectly consanguinous and comagmatic assemblage and (ii) the spatially associated acidic suite emerged through a convergence of magmatic and metasomatic processes (the latter brought about by contact anatexis of the host rocks). The complex as well as the host metamorphics are intruded by an atectonic suite of noritic dykes emplaced ca 850 Ma ago.

  19. Redox potential of the Khibiny magmatic system and genesis of abiogenic hydrocarbons in alkaline plutons

    NASA Astrophysics Data System (ADS)

    Ryabchikov, I. D.; Kogarko, L. N.

    2009-12-01

    The temperature and redox conditions of the crystallization of rocks from the Khibiny alkaline pluton have been estimated based on an analysis of coexisting magnetite, ilmenite, titanite, and pyroxene. Under redox conditions characteristic of the Khibiny Complex, CO2 is contained in fluid and carbonate anions are contained in melt at high temperature; then graphite is released and an appreciable amount of hydrocarbons appear at a lower temperature as products of reaction of graphite with fluid. Abiogenic hydrocarbons can arise in igneous complexes owing to a processes distinct from Fischer-Tropsch synthesis.

  20. The Cretaceous Messum igneous complex, S.W. Etendeka, Namibia: reinterpretation in terms of a downsag-cauldron subsidence model

    NASA Astrophysics Data System (ADS)

    Ewart, A.; Milner, S. C.; Duncan, A. R.; Bailey, M.

    2002-05-01

    followed by quartz- and ne-syenite intrusions, and finally basanite dykes, emplaced within the MIC core. Accompanying differential uplift of the core. Uplift/resurgence within the MIC has accompanied intrusion of the moat granitoids and mafic cone sheets, thereby juxtaposing volcanic and intrusive sequences. Phases of both subsidence and uplift have characterised the MIC. The NW Scotland Tertiary central igneous complexes and Messum show evidence of a number of parallel developments, but also important differences. The MIC differs markedly from caldera systems within the western USA and circum-Pacific. Messum is therefore suggested to represent a distinct class of intrusive/extrusive central complex, although probably common in large igneous provinces.

  1. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  2. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  3. IGNEOUS INTRUSION IMPACTS ON WASTE PACKAGES AND WASTE FORMS

    SciTech Connect

    P. Bernot

    2004-04-19

    The purpose of this model report is to assess the potential impacts of igneous intrusion on waste packages and waste forms in the emplacement drifts at the Yucca Mountain Repository. The models are based on conceptual models and includes an assessment of deleterious dynamic, thermal, hydrologic, and chemical impacts. The models described in this report constitute the waste package and waste form impacts submodel of the Total System Performance Assessment for the License Application (TSPA-LA) model assessing the impacts of a hypothetical igneous intrusion event on the repository total system performance. This submodel is carried out in accordance with Technical Work Plan for Waste Form Degradation Modeling, Testing, and Analyses in Support of LA (BSC 2004 [DIRS:167796]) and Total System Performance Assessment-License Application Methods and Approaches (BSC 2003 [DIRS: 166296]). The technical work plan was prepared in accordance with AP-2.27Q, Planning for Science Activities. Any deviations from the technical work plan are documented in the following sections as they occur. The TSPA-LA approach to implementing the models for waste package and waste form response during igneous intrusion is based on identification of damage zones. Zone 1 includes all emplacement drifts intruded by the basalt dike, and Zone 2 includes all other emplacement drifts in the repository that are not in Zone 1. This model report will document the following model assessments: (1) Mechanical and thermal impacts of basalt magma intrusion on the invert, waste packages and waste forms of the intersected emplacement drifts of Zone 1. (2) Temperature and pressure trends of basaltic magma intrusion intersecting Zone 1 and their potential effects on waste packages and waste forms in Zone 2 emplacement drifts. (3) Deleterious volatile gases, exsolving from the intruded basalt magma and their potential effects on waste packages of Zone 2 emplacement drifts. (4) Post-intrusive physical

  4. Complete Analytical Data for Samples of Jurassic Igneous Rocks in the Bald Mountain Mining District, Nevada

    USGS Publications Warehouse

    du Bray, Edward A.

    2009-01-01

    This report presents all petrographic, major oxide, and trace element data for a set of 109 samples collected during an investigation of Jurassic igneous rocks in the Bald Mountain mining district, Nevada. Igneous rocks in the district include the Bald Mountain stock, quartz-feldspar porphyry dikes, basaltic andesite dikes, aplite sills, and rare lamprophyre dikes. These rocks, although variably altered near intrusion-related mineral deposits, are fresh in many parts of the district. Igneous rocks in the district are hosted by Paleozoic sedimentary rocks.

  5. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    F. Perry; B. Youngs

    2000-11-06

    The purpose of this Analysis/Model (AMR) report is twofold. (1) The first is to present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the Probabilistic Volcanic Hazard Analysis (PVHA) (CRWMS M&O 1996). Conceptual models presented in the PVHA are summarized and extended in areas in which new information has been presented. Alternative conceptual models are discussed as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) The second purpose of the AMR is to present probability calculations based on PVHA outputs. Probability distributions are presented for the length and orientation of volcanic dikes within the repository footprint and for the number of eruptive centers located within the repository footprint (conditional on the dike intersecting the repository). The probability of intersection of a basaltic dike within the repository footprint was calculated in the AMR ''Characterize Framework for Igneous Activity at Yucca Mountain, Nevada'' (CRWMS M&O 2000g) based on the repository footprint known as the Enhanced Design Alternative [EDA II, Design B (CRWMS M&O 1999a; Wilkins and Heath 1999)]. Then, the ''Site Recommendation Design Baseline'' (CRWMS M&O 2000a) initiated a change in the repository design, which is described in the ''Site Recommendation Subsurface Layout'' (CRWMS M&O 2000b). Consequently, the probability of intersection of a basaltic dike within the repository footprint has also been calculated for the current repository footprint, which is called the 70,000 Metric Tons of Uranium (MTU) No-Backfill Layout (CRWMS M&O 2000b). The calculations for both footprints are presented in this AMR. In addition, the

  6. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    PubMed

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-01

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars. PMID:24091975

  7. Atmospheric PCO₂ perturbations associated with the Central Atlantic Magmatic Province.

    PubMed

    Schaller, Morgan F; Wright, James D; Kent, Dennis V

    2011-03-18

    The effects of a large igneous province on the concentration of atmospheric carbon dioxide (PCO₂) are mostly unknown. In this study, we estimate PCO₂ from stable isotopic values of pedogenic carbonates interbedded with volcanics of the Central Atlantic Magmatic Province (CAMP) in the Newark Basin, eastern North America. We find pre-CAMP PCO₂ values of ~2000 parts per million (ppm), increasing to ~4400 ppm immediately after the first volcanic unit, followed by a steady decrease toward pre-eruptive levels over the subsequent 300 thousand years, a pattern that is repeated after the second and third flow units. We interpret each PCO₂ increase as a direct response to magmatic activity (primary outgassing or contact metamorphism). The systematic decreases in PCO₂ after each magmatic episode probably reflect consumption of atmospheric CO₂ by weathering of silicates, stimulated by fresh CAMP volcanics. PMID:21330490

  8. Supervolcanoes Within an Ancient Volcanic Province in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Michalski, Joseph. R.; Bleacher, Jacob E.

    2014-01-01

    Several irregularly shaped craters located within Arabia Terra, Mars represent a new type of highland volcanic construct and together constitute a previously unrecognized martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae display a range of geomorphic features related to structural collapse, effusive volcanism, and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulfur and erupted fine-grained pyroclastics from these calderas likely fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. Discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  9. Modulators of intestinal alkaline phosphatase.

    PubMed

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  10. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    2005-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. The compositional diversity that we explore is the residue of process diversity, which has strong relevance for comparative planetology. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Our lunar research concentrates on the rare pristine (unmixed) samples that reflect the original genetic diversity of the early crust. Among HED basalts (eucrites and clasts in howardites), we distinguish as pristine the small minority that escaped the pervasive thermal metamorphism of the parent asteroid's crust. We have found a correlation between metamorphically pristine HED basalts and the similarly small minority of compositionally evolved "Stannern trend" samples, which are enriched in incompatible elements and titanium compared to main group eucrites, and yet have relatively high mg ratios. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; siderophile compositions of the lunar and martian mantles; and planetary bulk compositions and origins.

  11. Calcium isotopes in igneous rocks and the origin of granite

    SciTech Connect

    Marshall, B.D.; DePaolo, D.J. )

    1989-04-01

    The K-Ca radioactive parent-daughter system provides a tool for tracing the origins of igneous rocks. It is complementary to other isotopic systems because as stoichiometric constituents of major minerals, the concentrations of K and Ca, and the K/Ca ratio in rocks, are simply related to mineralogy. In this paper the authors report the first high-precision calcium isotopic analyses of continental granitic rocks, island arc rocks, and mid-ocean ridge basalts. These data show that mid-ocean ridge basalts have the low {sup 40}Ca/{sup 42}Ca ratios expected for the Earth's mantle, but that island arc rocks have slightly higher {sup 40}Ca/{sup 42}Co ratios indicative of crustal calcium in their magma sources. Many granitic rocks have high initial {sup 40}Ca/{sup 42}Ca ratios, and in conjunction with independent evidence for the age of the crustal sources, these ratios provide constraints on the K/Ca ratios, and in turn on the silica contents and residual mineralogy, of the deep crustal magma sources.

  12. The Igneous SPICEs Suite: Old Programs with a New Look

    NASA Astrophysics Data System (ADS)

    Davenport, J. D.

    2013-12-01

    Understanding the chemistry of magma is important for understanding how the planets differentiated into crusts, rocky mantles, and metallic cores. Magma formation and crystallization can be modeled using computer programs. A valuable and useful set of programs was developed by John Longhi (Lamont-Doherty Earth Observatory, Palisades, New York). John Longhi generously shared these programs widely with colleagues, but they were written in Fortran by John for his own use, and not as user-friendly research tools. As a major part of my Masters thesis at the University of Notre Dame, I was using the programs to do numerous calculations of the crystallization of the lunar magma ocean, the deep, global magma layer surrounding the Moon when it formed. It occurred to me that it would make my life easier if the programs were more straightforward, so working with others at Notre Dame and elsewhere, including John Longhi, I converted the programs for use with MATLAB, a powerful mathematical program. The revisions (Simulating Planetary Igneous Crystallization Environments, SPICEs) have a simple graphical interface for ease of input and output, yet use the same rigorous calculations in the original Longhi programs. My goal is to make the programs more widely used for research and education.

  13. Thermal diffusivity of igneous rocks at elevated pressure and temperature

    SciTech Connect

    Durham, W.B.; Mirkovich, V.V.; Heard, H.C.

    1987-10-10

    Thermal diffusivity measurements of seven igneous rocks were made to temperatures of 400 /sup 0/C and pressures of 200 MPa. The measuring method was based on the concept of cylindrical symmetry and periodic heat pulses. The seven rocks measured were Westerly (Rhode Island) granite, Climax Stock (Nevada) quartz monzonite, Pomona (Washington) basalt, Atikokan (Ontario, Canada) granite, Creighton (Ontario, Canada) gabbro, East Bull Lake (Ontario, Canada) gabbro, and Stripa (Sweden) granite. The diffusivity of all the rocks showed a positive linear dependence on inverse temperature and, excluding the East Bull Lake gabbro, showed a linear dependence on quartz content. (Quartz content varied from 0 to 31% by volume.) Diffusivity in all cases rose or remained steady with increasing confining pressure. The pressure effect was strongest at lowest pressures and vanished by levels between 10 and 100 MPa, depending on rock type. The pressure effect (measured as a percentage change in diffusivity) is stronger in the four rocks of granite composition than in the three of basaltic composition. Our results agree well with existing thermal diffusivity measurements at atmospheric pressure.

  14. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  15. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  16. Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites. Pt. 1

    NASA Technical Reports Server (NTRS)

    Mittlefehldt, David W. (Editor); Papike, James J. (Editor)

    1996-01-01

    This volume contains abstracts of papers that have been accepted for presentation at the Workshop on Evolution of Igneous Asteroids: Focus on Vesta and the HED Meteorites, October 16-18, 1996, in Houston, Texas.

  17. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  18. Mantle xenocrysts of Chompolo field of the alkaline volcanics, Aldan shield, South Yakutia.

    NASA Astrophysics Data System (ADS)

    Nikolenko, Evgeny; Tychkov, Nikolay; Afanasiev, Valentin

    2015-04-01

    New mineralogical and chemical constraints for 10 dikes, veins (360-800m) and pipes (60-110 m) of Chompolo field discovered in 1957-1958 are discussed. Feld is located within Central Aldan Archean and Paleoproterozoic granulite-orthogneiss superterrane of Aldan-Stanovoy Shield, with peak of metamorphism - 2.1-1.9 Ga (Smelov, Timofeev, 2007). Originally (Shilina and Zeitlin 1959) and later (Kostrovitsky and Garanin 1992, Ashchepkov, Vladykin et al. 2001) these rocks were classified as kimberlites by mineralogy including pyrope, Cr spinel, and Cr diopside. Panina and Vladykin (1994), Davies et al, (2006) identified them as lamprophyres and lamproites. The age of Chompolo rocks is pre-Jurassic (Vladimirov et. al., 1989) dated by 40Ar/39Ar as 164.7±1 Ma (233.7±2.2 next plato)(unpublished Ashchepkov). The Rb-Sr isochron for lamprophyre "intrusions 104" indicate later age of 131±4 Ma (Zaitsev, Smelov, 2010). Magmatic bodies (Aldanskaya, Sputnik, Gornaya, Ogonek, Perevalnaya, Kilier-E) were studied during 2012-2013 fieldworks. Most of igneous rocks occur as inequigranular volcanic breccias with micro- or crypto-crystalline groundmass of K feldspar (up to 16.3 wt.% K2O, up to 3.2 wt.% FeO), chlorite, opaque minerals, melanocratic xenocrysts and phenocrysts (garnet, pyroxene, amphibole, Cr spinel, apatite, zircon, mica), and abundant xenogenic fragments of wallrock and crystalline basement. Garnet chemistry records the presence of mantle and crustal material. Mantle garnets lack the common megacryst, wehrlite, and high-temperature lherzolite varieties. Mantle mineralization prevails in the Aldan dike and the Sputnik, Gornaya, and Ogonek pipes, while crustal and elcogitic material is in the Perevalnaya and Kilier-E pipes. The Cr spinel consists of (in wt%) 3.5 to 50.9 Al2O3, 18.6-63.5 wt% Cr2O3, 6.1 to 19.1 MgO, and 0 to 1.61 TiO2. Al and Cr in spinels are in inverse proportion. The Chompolo alkaline volcanic rocks are most similar to the Central Aldan lamproites in trace

  19. Crystallization trends of precursor pyroxene in ordinary chondrites: Implications for igneous origin of precursor

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Kitamura, M.

    1994-01-01

    Various observations suggest that the precursor of the fine fragments and the relict pyroxene was formed by an igneous process in a grandparent body of the chondrite. Furthermore, the fact that the precursors appear as fragments in the matrix as well as relicts in the chondrule suggests a shock origin for the chondrite by collision of two or more bodies, which had already to some extent undergone igneous differentiation.

  20. Discrimination of alkalinity in granitoid Rocks: A potential TIMS application

    NASA Technical Reports Server (NTRS)

    Ruff, Steven W.

    1995-01-01

    In mineral exploration, the ability to distinguish and map petrochemical variations of magmatic rocks can be a useful reconnaissance tool. Alkalinity is one such petrochemical parameter and is used in the characterization of granitoid rocks. In quartz normative plutonic rocks, alkalinity is related to the composition and abundance of feldspars. Together with quartz abundance, knowledge of feldspar modes allows the classification of these igneous rocks according to the Streckeisen diagram. Alternative classification schemes rely on whole rock geochemistry instead of mineral identifications. The relative ease of obtaining whole rock analyses means that geochemical classifications tend to be favored in exploration geology. But the technique of thermal infrared spectroscopy of rocks yields information on mineralogy and is one that can be applied remotely. The goal of the current work then is to establish whether data from TIMS can be used to distinguish the mineralogical variations that relate to alkalinity. An ideal opportunity to test this thesis arises from the work presented in a paper by Dewitt (1989). This paper contains the results of mapping and analysis of Proterozoic plutonic rocks in north-central Arizona. The map resulting from this work delineates plutons according to alkalinity in an effort to establish a trend or polarity in the regional magmatism. Also contained within this paper are brief descriptions of the mineralogy of half of the region's plutons. This combination of mineralogical and geochemical information was the rationale behind choosing this area as a site for TIMS over flights. A portion of the region centered on the northern Bradshaw Mountains was selected because it contains plutons of all three alkalinity classifications (alkali-calcic, calc-alkalic, and calic) present on DeWitt's map within a relatively small area. The site was flown in August of 1994 and the data received a few days before the writing of this manuscript. Most of this

  1. "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon

    NASA Astrophysics Data System (ADS)

    Grimes, C. B.; Wooden, J. L.; Cheadle, M. J.; John, B. E.

    2015-12-01

    Over 5300 recent SHRIMP-RG analyses of trace elements (TE) in igneous zircon have been compiled and classified based on their original tectono-magmatic setting to empirically evaluate "geochemical fingerprints" unique to those settings. Immobile element geochemical fingerprints used for lavas are applied with the same rational to zircon, including consideration of mineral competition on zircon TE ratios, and new criteria for distinguishing mid-ocean ridge (MOR), magmatic arc, and ocean island (and other plume-influenced) settings are proposed. The elemental ratios in zircon effective for fingerprinting tectono-magmatic provenance are systematically related to lava composition from equivalent settings. Existing discrimination diagrams using zircon U/Yb versus Hf or Y do not distinguish TE-enriched ocean island settings (i.e., Iceland, Hawaii) from magmatic arc settings. However, bivariate diagrams with combined cation ratios involving U-Nb-Sc-Yb-Gd-Ce provide a more complete distinction of zircon from these settings. On diagrams of U/Yb versus Nb/Yb, most MOR, ocean island, and kimberlite zircon define a broad "mantle-zircon array"; arc zircon defines a parallel array offset to higher U/Yb. Distinctly low U/Yb ratios of MOR zircon (typically <0.1) mirror their parental magmas and long-term incompatible element depletion of the MORB mantle. Plume-influenced sources are distinguished from MOR by higher U/Yb, U/Nb, Nb/Yb, and Nb/Sc. For zircon with U/Yb > 0.1, high Sc/Yb separates arc settings from low-Sc/Yb plume-influenced sources. The slope of scandium enrichment trends in zircon differ between MOR and continental arc settings, likely reflecting the involvement of amphibole during melt differentiation. Scandium is thus also critical for discriminating provenance, but its behavior in zircon probably reflects contrasting melt fractionation trends between tholeiitic and calc-alkaline systems more than compositional differences in primitive magmas sourced at each

  2. Igneous and Ore-Forming Processes at the Roots of Giant - Ultra-Mafic Pluming System: the Seiland Igneous Comples, Norway

    NASA Astrophysics Data System (ADS)

    Larsen, R. B.; Iljina, M.; Schanke, M.

    2012-12-01

    SIP covers an area of 5500 km2 in N. Norway. 50 % of the volume comprises mafic layered or homogenous plg+px+Fe-Ti±ol gabbros. 25 % of the area comprises ultramafic intrusions, mostly peridotite and subsidiary pyroxenite and hornblendite. 25 % comprises calc-alkaline and alkaline plutons, respectively. Ultramafic plutons intersect gabbros and calc-alkaline plutons. Recent zircon U/Pb geochronology imply that SIP formed at 560-570 Ma, with mafic- and ultramafic rocks being emplaced in <4 Ma (Roberts et al., Geol. Mag, 2007). Geothermobarometry of contact metamorphic mineral assemblages, implies minimum depth of 20-30 kilometres. Accordingly, the Seiland province arguably provides a unique cross section through the deep-seated parts of a huge magmatic plumbing system. Sulphide Cu-Ni-(PGE) deposits are intimately associated with the ultramafic rock suite. One deposit from Stjernøy comprises sulphide dissiminations at the floor of a peridotitic pluton, another deposit occur at the floor of the Reinfjord ultramafic layered complex in the far West of SIP and the third deposit comprises vertical sulphide dykes in the interior of a hornblendite on the Øksfjord peninsula. Currently, only the Reinfjord deposit is studied in detail. The Reinfjord intrusions is layered and develops from olivine clinopyroxenites in the Lower Zone to wherlite in the Middle Zone to wehrlites and dunite in the Upper Zone. Earlier studies suggest parental melts with pyroxenitic compositions whereas the dunites and wherlites formed by fractional crystallization (Bennet et al., Bull. NGU, 405, 1-41). During our fieldwork we observed spectacular examples of cumulus structures, not previously reported, and including modally layered and modally graded dunite/wherlite, cross-bedding, slumping and mush-diapirs. Finally we saw an example of magma-replenishment where an olivine pyroxenitic magma was emplaced in to and mixed with the contemporary olivine/wherlite mushes!. The country rock gabbros were

  3. Ca Isotopic Ratios in Igneous Rocks: Some Preliminary Results

    NASA Astrophysics Data System (ADS)

    Huang, S.; Farkas, J.; Jacobsen, S. B.

    2009-12-01

    Calcium (Ca) is the 5th most abundant element on the Earth, and it is an important geochemical and cosmochemical tracer. It has six isotopes and only H and He have a larger percentage mass difference (Δm/m) between the heaviest and the lightest isotopes. Systematic Ca isotopic studies have mostly focused on low-temperature geochemical processes, and most Ca isotopic analyses have been applied on modern and ancient marine carbonates and sulphates, documenting large and systematic isotopic variations, which were used to infer the chemical evolution of seawater. Detailed work on igneous rocks is very limited. Here we show two examples of how stable Ca isotopic ratios can be a useful geochemical tool in understanding igneous processes. Ca isotopic fractionation between coexisting clinopyroxene and orthopyroxene from mantle peridotites: We report Ca isotopic ratios on co-existing clino- and ortho-pyroxenes from Kilbourne Hole and San Carlos mantle peridotites. The 44Ca/40Ca in orthopyroxenes is ~0.5 per mil heavier than that in co-existing clinopyroxenes. Combined with published Ca isotopic data on low-temperature Ca-bearing minerals (calcite, aragonite and barite), we show that the fractionation of Ca isotopes between Ca-bearing minerals (at both low-temperature and high-temperature) is primarily controlled by the strength of Ca-O bond in the minerals. The mineral with shorter (i.e., stronger) Ca-O bond yields heavier Ca isotopic ratio. Using our measured 44Ca/40Ca in mantle pyroxenes and the relative proportions of major Ca-bearing minerals in the upper mantle, the estimated 44Ca/40Ca of the upper mantle is 1.1 per mil heavier relative to the NIST 915a, ~0.1 to 0.2 per mil higher than basalts. Ca isotopic variation in Hawaiian shield lavas: Large geochemical and isotopic variations have been observed in lavas forming the large tholeiitic shields of Hawaiian volcanoes, with lavas from the surface of the Koolau volcano (Makapuu-stage) defining one compositional and

  4. Integrating isotopic fingerprinting with petrology: how do igneous rocks evolve?

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2002-12-01

    In the title of his seminal work, N.L. Bowen recognized the fundamental importance of magmatic evolution in producing the spectrum of igneous rocks. Indeed it is difficult to imagine a hot highly reactive fluid passing through c. 100 km of a chemically distinct medium (lithosphere) without evolving through cooling, crystallization and interaction with the wall rocks. The fact that magmas evolve - almost invariably through open system processes - has been largely marginalized in the past 30 years by the desire to use them as probes of mantle source regions. This perspective has been driven principally by advances offered by isotope geochemistry, through which components and sources can be effectively fingerprinted. Two fundamental observations urge caution in ignoring differentiation effects; 1) the scarcity of truly primary magmas according to geochemical criteria (recognized long ago by petrologists), and 2) the common occurrence of petrographic criteria attesting to open system evolution. Recent advances in multicollector mass spectrometry permit integration of the powerful diagnostic tools of isotope geochemistry with petrographic observations through accurate and precise analysis of small samples. Laser ablation and microdrilling enable sampling within and between mineral phases. The results of our microsampling investigations give widespread support for open system evolution of magmas, and provide insights into the mechanisms and timescales over which this occurs. For example; 1) core-rim decreases in 87Sr/86Sr in zoned plagioclase crystals from 1982 lavas of El Chichon volcano, Mexico, argue that the zoning and isotopic changes are in response to magma recharge mixing with an originally contaminated resident magma; 2) Single grain and intra-grain isotopic analyses of mineral phases from Ngauruhoe andesites (New Zealand) are highly variable, arguing that bulk rock data reflect mechanical aggregations of components which have evolved in discrete domains of the

  5. Characterize Framework for Igneous Activity at Yucca Mountain, Nevada

    SciTech Connect

    F. Perry; R. Youngs

    2004-10-14

    The purpose of this scientific analysis report is threefold: (1) Present a conceptual framework of igneous activity in the Yucca Mountain region (YMR) consistent with the volcanic and tectonic history of this region and the assessment of this history by experts who participated in the probabilistic volcanic hazard analysis (PVHA) (CRWMS M&O 1996 [DIRS 100116]). Conceptual models presented in the PVHA are summarized and applied in areas in which new information has been presented. Alternative conceptual models are discussed, as well as their impact on probability models. The relationship between volcanic source zones defined in the PVHA and structural features of the YMR are described based on discussions in the PVHA and studies presented since the PVHA. (2) Present revised probability calculations based on PVHA outputs for a repository footprint proposed in 2003 (BSC 2003 [DIRS 162289]), rather than the footprint used at the time of the PVHA. This analysis report also calculates the probability of an eruptive center(s) forming within the repository footprint using information developed in the PVHA. Probability distributions are presented for the length and orientation of volcanic dikes located within the repository footprint and for the number of eruptive centers (conditional on a dike intersecting the repository) located within the repository footprint. (3) Document sensitivity studies that analyze how the presence of potentially buried basaltic volcanoes may affect the computed frequency of intersection of the repository footprint by a basaltic dike. These sensitivity studies are prompted by aeromagnetic data collected in 1999, indicating the possible presence of previously unrecognized buried volcanoes in the YMR (Blakely et al. 2000 [DIRS 151881]; O'Leary et al. 2002 [DIRS 158468]). The results of the sensitivity studies are for informational purposes only and are not to be used for purposes of assessing repository performance.

  6. Thermal conductivity anisotropy of metasedimentary and igneous rocks

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Chapman, David S.; van Wagoner, Thomas M.; Armstrong, Phillip A.

    2007-05-01

    Thermal conductivity anisotropy was determined for three sets of metasedimentary and igneous rocks from central Utah, USA. Most conductivity measurements were made in transient mode with a half-space, line source instrument oriented in two orthogonal directions on a flat face cut perpendicular to bedding. One orientation of the probe yields thermal conductivity parallel to bedding (kpar) directly, the other orientation of the probe measures a product of conductivities parallel and perpendicular to bedding from which the perpendicular conductivity (kperp) is calculated. Some direct measurements of kpar and kperp were made on oriented cylindrical discs using a conventional divided bar device in steady state mode. Anisotropy is defined as kpar/kperp. Precambrian argillites from Big Cottonwood Canyon have anisotropy values from 0.8 to 2.1 with corresponding conductivity perpendicular to bedding of 2.0 to 6.2 W m-1 K-1. Anisotropy values for Price Canyon sedimentary samples are less than 1.2 with a mean of 1.04 although thermal conductivity perpendicular to bedding for the samples varied from 1.3 to 5.0 W m-1 K-1. The granitic rocks were found to be essentially isotropic with thermal conductivity perpendicular to bedding having a range of 2.2 to 3.2 W m-1 K-1 and a mean of 2.68 W m-1 K-1. The results confirm the observation by Deming [1994] that anisotropy is negligible for rocks having kperp greater than 4.0 W m-1 K-1 and generally increases for low conductivity metamorphic and clay-rich rocks. There is little evidence, however, for his suggestion that thermal conductivity anisotropy of all rocks increases systematically to about 2.5 for low thermal conductivity rocks.

  7. Alkaline Element Fractionations in LL-chondritic Breccias

    NASA Astrophysics Data System (ADS)

    Misawa, K.; Yokoyama, T.; Okano, O.

    2010-12-01

    Introduction: Fractionation of moderately volatile lithophile elements including alkaline elements was an important process in the early solar system. Alkali-rich igneous fragments (K-rich fragments) were found in brecciated LL-chondrites. These fragments in Kraehenberg (LL5), Bhola (LL3-6), and Yamato (Y)-74442 (LL4) show fractionated alkaline element patterns; for example, abundances of alkaline elements in the Kraehenberg fragment are ~0.5 x CI for Na, ~12 x CI for K,~45 x CI for Rb, and ~70 x CI for Cs [1]. In order to understand moderately volatile element fractionations, we have undertaken mineralogical and petrological studies on K-rich fragments in Kraehenberg [1], Bhola [2], and Y-74442 [3, 4]. Results and Discussion: Kraehenberg, Bhola, and Y-74442 consist of mineral fragments, K-rich fragments, impact-melt clasts, chondrules, and matrix. K-rich fragments in these meteorites are composed of 10-100 µm-sized euhedral olivine (~60 vol.%) and groundmass of brown glasses (~40 vol.%, including microcrystalline pyroxene) which are highly enriched in alkaline elements. Dendritic pyroxene and chromite (~1 µm in size) along with troilite (~10 µm in size) are commonly observed in the groundmass. The textures are different from those of impact melt clasts in ordinary chondrites. Chemical compositions of olivine in the K-rich fragments fall within the compositional range of equilibrated LL-chondrites (Fa26-32 [5]). Groundmass glasses in the Kraehenberg, Bhola, and Y-74442 fragments are almost identical in composition when plotted on a Na+K+Al-oxides-Ca+Mg+Fe-oxides-SiO2 ternary diagram [1]. The fractionation trend is also observed in an angular igneous fragment in Siena (LL5) [6]. The lack of K isotopic fractionation effects in the K-rich clast in Kraehenberg [7] implies that the enrichment of (heavier) alkaline elements occurred near-equilibrium conditions. The K-rich fragments in Kraehenberg and Y-74442 could be early solar system materials (~4.56 Ga [8, 9

  8. The igneous charnockite-high-K alkali-calcic I-type granite-incipient charnockite association in Trivandrum Block, southern India

    NASA Astrophysics Data System (ADS)

    Rajesh, H. M.

    The Pan-African (640 Ma) Chengannoor granite intrudes the NW margin of the Neoproterozoic high-grade metamorphic terrain of the Trivandrum Block (TB), southern India, and is spatially associated with the Cardamom hills igneous charnockite massif (CM). Geochemical features characterize the Chengannoor granite as high-K alkali-calcic I-type granite. Within the constraints imposed by the high temperature, anhydrous, K-rich nature of the magmas, comparison with recent experimental studies on various granitoid source compositions, and trace- and rare-earth-element modelling, the distinctive features of the Chengannoor granite reflect a source rock of igneous charnockitic nature. A petrogenetic model is proposed whereby there was a period of basaltic underplating; the partial melting of this basaltic lower crust formed the CM charnockites. The Chengannoor granite was produced by the partial melting of the charnoenderbites from the CM, with subsequent fractionation dominated by feldspars. In a regional context, the Chengannoor I-type granite is considered as a possible heat source for the near-UHT nature of metamorphism in the northern part of the TB. This is different from previous studies, which favoured CM charnockite as the major heat source. The occurrence of incipient charnockites (both large scale as well as small scale) adjacent to the granite as well as pegmatites (which contain CO2, CO2-H2O, F and other volatiles), suggests that the fluids expelled from the alkaline magma upon solidification generated incipient charnockites through fluid-induced lowering of water activity. Thus the granite and associated alkaline pegmatites acted as conduits for the transfer of heat and volatiles in the Achankovil Shear Zone area, causing pervasive as well as patchy charnockite formation. The transport of CO2 by felsic melts through the southern Indian middle crust is suggested to be part of a crustal-scale fluid system that linked mantle heat and CO2 input with upward migration

  9. Early and Late Alkali Igneous Pulses and a High-3He Plume Origin for the Deccan Flood Basalts.

    PubMed

    Basu, A R; Renne, P R; Dasgupta, D K; Teichmann, F; Poreda, R J

    1993-08-13

    Several alkalic igneous complexes of nephelinite-carbonatite affinities occur in extensional zones around a region of high heat flow and positive gravity anomaly within the continental flood basalt (CFB) province of Deccan, India. Biotites from two of the complexes yield (40)Ar/(39)Ar dates of 68.53 +/- 0.16 and 68.57 +/- 0.08 million years. Biotite from a third complex, which intrudes the flood basalts, yields an (40)Ar/(39)Ar date of 64.96 +/- 0.1 1 million years. The complexes thus represent early and late magmatism with respect to the main pulse of CFB volcanism 65 million years ago. Rocks from the older complexes show a (3)He/(4)He ratio of 14.0 times the air ratio, an initial (87)Sr/(86)Sr ratio of 0.70483, and other geochemical characteristics similar to ocean island basalts; the later alkalic pulse shows isotopic evidence of crustal contamination. The data document 3.5 million years of incubation of a primitive, high-(3)He mantle plume before the rapid eruption of the Deccan CFB. PMID:17783739

  10. Geochemistry and petrogenesis of mafic-ultramafic suites of the Irindina Province, Northern Territory, Australia: Implications for the Neoproterozoic to Devonian evolution of central Australia

    NASA Astrophysics Data System (ADS)

    Wallace, Madeline L.; Jowitt, Simon M.; Saleem, Ahmad

    2015-10-01

    Petrological and geochemical data for magmatic mafic-ultramafic suites of the Irindina and Aileron provinces of the Eastern Arunta region, Northern Territory, Australia constrain the petrogenesis and tectonic setting of magmatic events covering ~ 500 million years. Six geochemically distinct magmatic suites, here named A-F, have been identified and provide evidence of the tectonic history of this region and also are linked to two mineralisation-related magmatic events: the Lloyd Gabbro (Ni-Cu-PGE mineralisation) and the Riddoch Amphibolite (Cyprus-style Cu-Co volcanogenic massive sulphide mineralisation). The whole-rock geochemistry of Suites A and F is indicative of melts derived from a range of mantle depths (garnet to spinel lherzolite) and source enrichment. Suite D is likely related to the ~ 1070 Ma Warakurna/Giles event of central Australia, including the Alcurra (Musgrave) and Stuart (Arunta) dyke swarms, and likely formed through either: a) melting of subduction modified, sub-continental lithospheric mantle (SCLM) by an upwelling mantle plume; or b) a combination of intra-plate tectonic processes involving a long-lived thermal anomaly, lithospheric-scale architecture that focussed magmatism, and large-scale tectonism. Suite F represents more alkaline magmas, derived from a deeper source, but most likely formed during the same Warakurna LIP event (possibly contemporaneously) as Suite D. Suite E (the Riddoch Amphibolite) was most likely emplaced in a back-arc basin (BAB) setting at ~ 600 Ma, coincident with Delamerian subduction and BAB formation along the eastern Proterozoic margin of Australia from Queensland to the eastern Arunta and possibly further south. Subsequent destabilisation of the SCLM underneath the North Australian Craton generated the ~ 510 Ma Kalkarindji LIP in the form of Suite B intrusions that assimilated some of the older Suite E (Riddoch) material. This event is locally known as the ~ 506 Ma Stanovos Igneous Suite and represents the most

  11. Preliminary Petrologic Comparison of Rocks from the Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Chau, K. X.; Draper, G.; Sen, G.

    2011-12-01

    The Central Atlantic Magmatic Province (CAMP) was a large igneous province (LIP) emplaced just before the opening of the Atlantic Ocean approximately 200 million years ago. Though a comparatively small amount of material remains today, the locations of the existing outcrops on four continents (North and South America, Africa, and Europe) hint at the extensive reach of igneous activity and indicate that the CAMP could be the largest LIP known. The massive amount of gasses that must be tied to an igneous event of this magnitude has been suggested as one of the causes of the Triassic-Jurassic mass-extinction event. Because of the geologic and global significance of this episode, a knowledge of the conditions that generated and emplaced such a large volume of magma would help better understand mantle and tectonic processes. In this preliminary study, we compare petrographic and major element data from two of the North American outcrops, the Palisades Sill in eastern New Jersey and New York and the Centreville Sheet in northern Virginia. Samples from both localities are characterized as high-Ti, quartz-normative tholeiitic diabases, but melt inclusions found in the Palisades Sill indicate a more primitive, deep mantle source of generation.

  12. Hydrocarbon potential of an alkaline lake basin

    SciTech Connect

    Chen Jian Yu; Wang Gijun ); Ma Wanyi )

    1991-03-01

    The Biyan basin is an oil-rich intermountain basin in the central part of China. It is a half graben with a marginal normal fault in the south and a slope in the north. The thickest Eogene reaches 7 km in the center of the depression. This basin became a typical alkaline lake with specific sedimentary sequences composed of oil shale, trona, dolomite, and dark mudstone during Early Tertiary because of dry climate and peripheral source areas rich in Na-containing minerals. The source rock is characterized by abundant organic matter with a mean TOC of 2.5% and kerogen of good quality with H/C 1.4-1.7, and IH up to 800 mg/g. The study of biomarkers reveals a low Pr/Ph ratio and an abundant gammacerane and {minus}carotane, thus indicating an environment of high salinity and reduction. All geochemical data demonstrate multiple provinces of primary organic matter, of which halophilous prokaryotic organisms are likely contributors. Crude oil in the Biyan oil field contains high wax and low sulfur. The low-mature oil is discovered in dolomite beds. The high hydrocarbon potential of this basin is due to particularly favorable conditions for preservation and transformation of organic matter and high subsidence rates.

  13. The behaviour of copper isotopes during igneous processes

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Moynier, F.; Harvey, J.; Burton, K. W.

    2015-12-01

    Application of Cu isotopes to high temperature systems has recently gained momentum and has the potential for probing sulphide fractionation during planetary differentiation [1]. This requires robust estimates for planetary reservoirs, and a fundamental understanding of how igneous processes affect Cu isotopes; this study aims to tackle the latter. Cogenetic suites affected by both fractionation crystallisation and cumulate formation were analysed to study such effects on Cu isotopes. In S-undersatured systems, Cu behaves incompatibly during melt evolution and the Cu isotope composition of such melt is invariant over the differentiation sequence. In contrast, S-saturated systems show resolvable Cu isotope variations relative to primitive melt. Such variations are minor but imply a slightly heavy Cu isotope composition for continental crust compared to BSE, consistent with granite data [2]. Although olivine accumulation does not affect Cu isotopes, spinel-hosted Cu is isotopically light relative to the bulk. Analysis of variably melt-depleted cratonic peridotites shows that partial melting can affect Cu isotope composition in restite, with the depleted samples isotopically light compared to BSE. This could be due to residual spinel and/or incongruent melting of sulphides - individual sulphides picked from a single xenolith reveal a range of Cu isotope compositions, dependent on composition. Although partial melting may fractionate Cu isotopes, models suggest most mantle-derived melt will have δ65Cu ≈ BSE, as most source Cu will be transferred to the melt. Small degree melts such as ocean island basalts are predicted to be isotopically heavier than MORB, if derived from a primitive mantle source. OIBs have a range of Cu isotope compositions: some are heavier than MORB as predicted; however, some have much lighter compositions. Since Cu isotopes can be significantly fractionated in the surface environment [e.g. 3] OIB Cu isotopic variations may be linked to

  14. Pristine Igneous Rocks and the Early Differentiation of Planetary Materials

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.

    1998-01-01

    Our studies are highly interdisciplinary, but are focused on the processes and products of early planetary and asteroidal differentiation, especially the genesis of the ancient lunar crust. Most of the accessible lunar crust consists of materials hybridized by impact-mixing. Rare pristine (unmixed) samples reflect the original genetic diversity of the early crust. We studied the relative importance of internally generated melt (including the putative magma ocean) versus large impact melts in early lunar magmatism, through both sample analysis and physical modeling. Other topics under investigation included: lunar and SNC (martian?) meteorites; igneous meteorites in general; impact breccias, especially metal-rich Apollo samples and polymict eucrites; effects of regolith/megaregolith insulation on thermal evolution and geochronology; and planetary bulk compositions and origins. We investigated the theoretical petrology of impact melts, especially those formed in large masses, such as the unejected parts of the melts of the largest lunar and terrestrial impact basins. We developed constraints on several key effects that variations in melting/displacement ratio (a strong function of both crater size and planetary g) have on impact melt petrology. Modeling results indicate that the impact melt-derived rock in the sampled, megaregolith part of the Moon is probably material that was ejected from deeper average levels than the non-impact-melted material (fragmental breccias and unbrecciated pristine rocks). In the largest lunar impacts, most of the impact melt is of mantle origin and avoids ejection from the crater, while most of the crust, and virtually all of the impact-melted crust, in the area of the crater is ejected. We investigated numerous extraordinary meteorites and Apollo rocks, emphasizing pristine rocks, siderophile and volatile trace elements, and the identification of primary partial melts, as opposed to partial cumulates. Apollo 15 sample 15434,28 is an

  15. Patterns and origin of igneous activity around the Tanzanian craton

    NASA Astrophysics Data System (ADS)

    Foley, S. F.; Link, K.; Tiberindwa, J. V.; Barifaijo, E.

    2012-01-01

    Tertiary and later igneous activity is common on and around the Tanzanian craton, with primitive magma compositions ranging from kimberlites and varieties of picrites through nephelinites, basanites and alkali basalts. This review focuses on elucidating the conditions of origin of the melts, addressing the question of the state and involvement of the Tanzanian cratonic lithosphere in magma genesis. The Tanzanian craton is anomalous with a surface elevation of >1100 m reflecting buoyancy supported by a subcratonic plume whose effects are seen in the volcanics of both western and eastern rift branches. Magmatism on the craton and at its edge has high K/Na and primitive melts show fractionation dominated by olivine. Slightly further from the craton pyroxene fractionation dominates and K/Na ratios in the magmas are lower. Off-craton melts are nephelinites, basanites and alkali basalts with low K/Na. Potassium enrichment in the melts correlates with the occurrence of phlogopite in mantle-derived xenoliths, and also with carbonate in the magmas. This is attributed to melting at >140 km depths of mixed source regions containing phlogopite pyroxenite and peridotite, whereby the carbonate is derived from oxidation of diamonds concentrated near the base of the cratonic lithosphere. Mixed source regions are required by arrays of radiogenic isotopes such as Os and Sr in the volcanic rocks. The temporal progression of lamproites to phlogopite + carbonate-rich rocks to melilitites, nephelinites and alkali basalts seen during the erosion of the North Atlantic craton are seen around the Tanzanian craton as the coeval occurrence kimberlites, kamafugites and related rocks, nephelinites and alkali basalts showing spatial instead of temporal variation. This is due to the different stages of development of rifting around the craton: in northwestern Uganda and northern Tanzania, K-rich volcanism occurs at the craton edge, whereas nephelinites, basanites and alkali basalts occur where

  16. Importance of LA-ICP-MS Zircon Geochronology and Geochemistry in Determining the History of Magmatic Systems: Insights from the Graciosa A-type Province, Southern Brazil

    NASA Astrophysics Data System (ADS)

    Braun, S.; Gualda, G. A.; Bream, B. R.; Vlach, S. R.

    2010-12-01

    The Graciosa Province comprises more than 20 A-type granitic and syenitic plutons in southern Brazil. This province was emplaced during a period of tectonic change, with A-type magmatism post-dating syntectonic I- and S-type magmatism to the east. Dating the age of magmatism has proven challenging, with current published results showing a wide range of ages (550-590 Ma), most of which with low analytical resolution (2σ errors >15 Ma). We use Laser Ablation ICP-MS to determine U-Pb ages and trace element compositions of zircon crystals in-situ. We analyzed zircon from ten samples representative of the petrographic diversity observed in the 5 plutons located in the Serra da Graciosa region1, which include monzodiorites, granites, and alkali-feldspar granites and syenites. The graintoids include rocks with aluminous affinity (biotite-bearing), and others with alkaline affinity (sodic amphibole-bearing). Our results show three age populations with concordant ages at ~633±6, 581±3, and 539±4 Ma (all errors 2σ): - The oldest zircon ages come from analyses of zircon cores that display overgrowth and resorption textures. - The majority of zircon grains analyzed yield ages ~581 Ma. Zircons of this age can be found in all but two samples analyzed. Spots yielding these ages come from rim regions free of fractures or inclusions. REE patterns show enrichment in HREE, and pronounced positive Ce anomaly, as typically seen in magmatic zircons. - Strongly altered grains from alkali-feldspar granites with biotite dominate the youngest zircon population. These grains have myriad inclusions of thorite, REE fluorides (fluocerite, CeF3 - confirmed by EBSD), and REE phosphates. A few analyses in other rocks yield similar ages. REE patterns are much less steep for these zircons, and Ce anomalies are much more subdued, as characteristic of hydrothermal zircons. Further, these zircons are enriched in high field-strength elements such as Nb and Hf, as well as in Th and U. Based on

  17. Constructing the volcanic architecture of Kalkarindji, an ancient flood basalt province, using a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Marshall, P.; Widdowson, M.; Kelley, S. P.; Mac Niocaill, C.; Murphy, D. T.

    2014-12-01

    The Kalkarindji Continental Flood Basalt Province (CFBP) is the oldest igneous province in the Phanerozoic. Erupted in the mid-Cambrian (505-510 Ma) [1], it is estimated volumes of lava up to 1.5 x 105 km3could have been erupted, making this similar in size to the better known Columbia River Basalts, USA. Relatively little is known about the province, due in part to its remote location, though large swathes remain well preserved (c. 50,000 km2). This study, based on rigorous field investigations, utilises 4 different analytical techniques to construct a volcanic architecture for the Kalkarindji basalts, drawing together these complimentary datasets to generate a series of detailed stratigraphies from around the province. Mineralogy and petrography form the basis while geochemical data aides in defining lava flow stratigraphies and distinguishing individual flow packages in disparate locations around the province. 40Ar/39Ar dating of key stratigraphic marker horizons support stratigraphical correlation across the province whilst the use of palaeomagnetism and magnetostratigraphy has allowed for correlation on a broader scale. Indications from this study point towards an unusual eruption among CFBPs in the Phanerozoic; a lack of tumescence, immediate subsidence of the lava pile following cessation of eruption; and, in the main sub-province, we map a simple volcanic structure thinning to the east from a single source. 1. L. M. Glass, D. Phillips, (2006). Geology. 34, 461-464.

  18. Anorthosites and alkaline rocks from the deep crust of peninsular India

    NASA Technical Reports Server (NTRS)

    Leelanandam, C.; Ratnakar, J.; Reddy, M. Narsimha

    1988-01-01

    The anorthosite and alkaline rock localities in the Precambrian Shield of Peninsular India were reviewed. There are approximately 50 localities of such rocks, generally restricted to the Eastern Ghats mobile belt. The alkaline plutons are typically confined to the margin of the Eastern Ghats. The anorthosites are all greater than 500 sq km, but many exhibit similarities to one another. It was suggested that the anorthosites are associated with cryptic sutures, and are thought to have originated as a result of ponding of basaltic magmas. An analogy was drawn between the Eastern Ghats belt and the Grenville Province of the Canadian Shield.

  19. Hydrocarbon occurrences in igneous and metamorphic rocks: Plays of the 1990s

    SciTech Connect

    Harrelson, D.W.

    1989-09-01

    A review of available geologic literature has indicated numerous references detailing the occurrences of hydrocarbon in igneous and metamorphic rocks. Notable among these references is a paper by Chung-Hsiang P'an and a group of papers edited by Sidney Powers. Collectively, these papers conclude a biogenic source for hydrocarbons, most of which occur in (1) weathered igneous and metamorphic reservoir rocks that are higher than the source rocks (e.g., Amarillo field) or (2) igneous and metamorphic rocks that exert structural or stratigraphic control on the reservoir or source rocks (e.g., Jackson dome and the Wiggins anticline-Hancock ridge). It should be noted that a new twist on the abiogenic origin of some inert hydrocarbon gases (i.e., helium and nitrogen) proposes a degassing of igneous and metamorphic rocks from sources in the underlying mantle. Recent european super-deep tests (e.g., the Siljan Ring and the Kola SG-3 testholes) have attempted, with mixed results, to verify this theory. Drilling for these deep igneous and metamorphic prospects today is considered at or below economic basement or worse - a rank wildcat. However, these plays should become increasingly commercial in the 1990s as deeper drilling technology progresses, the current oil glut is eliminated, and more exotic deep gas prospects become accepted.

  20. Middle Jurassic to early Cretaceous igneous rocks along eastern North American continental margin

    SciTech Connect

    Jansa, L.F.; Pe-Piper, G.

    1988-03-01

    Late Middle Jurassic and Early Cretaceous mafic dikes, sills, flows, and local volcaniclastic sediments are intercalated within continental shelf sediments from the Baltimore Canyon Trough northward to the Grand Banks of Newfoundland. The igneous rocks on the eastern North American margin are mainly alkali basalts of intraplate affinity. The late Middle Jurassic igneous activity was of short duration, at about 140 Ma, and was restricted to Georges Bank where it led to construction of several volcanic cones. The main period of igneous activity was concentrated at about 120 Ma in the Aptian/Berremian. The activity consists of dike swarms in Baltimore Canyon, occasional dikes on the Scotian Shelf, and the growth of stratovolcanoes on the Scotian Shelf and Grand Banks. Younger dikes (approx. 95 Ma) also are present on the Grand Banks. With regard to oil exploration on the continental margin, care must be taken to properly identify igneous and volcaniclastic rocks on mechanical logs, drill cuttings, and cores. Reflection seismic profiles can be used to map the areal extent of sills, flows, and low-angle dikes, which commonly show distinctive seismic responses. However, steeply dipping dikes generally produce little, if any, seismic response. Isotopic-age determinations of igneous rocks, combined with biostratigraphic-age determinations of adjacent strata, are invaluable for stratigraphic correlation, establishing chronology of seismic sequences, and analysis of basin sedimentation and tectonic history. 9 figures, 2 tables.

  1. The ammonium content in the Malayer igneous and metamorphic rocks (Sanandaj-Sirjan Zone, Western Iran)

    NASA Astrophysics Data System (ADS)

    Ahadnejad, Vahid; Hirt, Ann Marie; Valizadeh, Mohammad-Vali; Bokani, Saeed Jabbari

    2011-04-01

    The ammonium (NH4+) contents of the Malayer area (Western Iran) have been determined by using the colorimetric method on 26 samples from igneous and metamorphic rocks. This is the first analysis of the ammonium contents of Iranian metamorphic and igneous rocks. The average ammonium content of metamorphic rocks decreases from low-grade to high-grade metamorphic rocks (in ppm): slate 580, phyllite 515, andalusite schist 242. In the case of igneous rocks, it decreases from felsic to mafic igneous types (in ppm): granites 39, monzonite 20, diorite 17, gabbro 10. Altered granitic rocks show enrichment in NH4+ (mean 61 ppm). The high concentration of ammonium in Malayer granites may indicate metasedimentary rocks as protoliths rather than meta-igneous rocks. These granitic rocks (S-types) have high K-bearing rock-forming minerals such as biotite, muscovite and K-feldspar which their potassium could substitute with ammonium. In addition, the high ammonium content of metasediments is probably due to inheritance of nitrogen from organic matter in the original sediments. The hydrothermally altered samples of granitic rocks show highly enrichment of ammonium suggesting external sources which intruded additional content by either interaction with metasedimentary country rocks or meteoritic solutions.

  2. Composition and timing of carbonate vein precipitation within the igneous basement of the Early Cretaceous Shatsky Rise, NW Pacific

    NASA Astrophysics Data System (ADS)

    Geldmacher, J.; Li, S.; Hauff, F. F.; Garbe-Schoenberg, C.; Yu, S.; Zhao, S.; Rausch, S.

    2013-12-01

    Shatsky Rise is an Early Cretaceous large igneous province located in the NW Pacific ca. 1500 km east of Japan and is the third-largest oceanic plateau on Earth (after Ontong Java and Kerguelen). Numerous calcium carbonate veins were recovered from the igneous basement of Shatsky Rise during Integrated Ocean Drilling Program Expedition 324 (Sager et al., 2010). The chemical (Sr/Ca, Mg/Ca) and isotopic (87Sr/86Sr, 143Nd/144Nd, δ18O, δ13C) compositions of these veins were determined to constrain the timing of vein formation and to provide valuable data for the reconstruction of past seawater composition. A dominant control of seawater chemistry on calcite composition is evident for most investigated vein samples with varying compositional contribution from the basaltic basement. The Sr/Ca ratio of the vein calcite is positively correlated with Mg/Ca and with δ18O, indicating warmer/colder precipitation temperatures with decreasing/increasing Sr/Ca (and Mg/Ca) ratios, respectively. Distinctly higher formation temperatures (as inferred from oxygen isotope ratios) indicative of hydrothermal vein formation are only observed at one site (Site U1350, drilled into the central part of Shatsky Rise). The highest 87Sr/86Sr ratios (least basement influence) of vein samples at each drill site range form 0.707264 to 0.707550 and are believed to best reflect contemporaneous Early Cretaceous seawater composition. In principle, age information can be deduced by correlating these ratios with the global seawater Sr isotope evolution. Since the Sr isotopic composition of seawater has fluctuated three times between the early and mid Cretaceous (McArthur et al., 2001) no unambiguous precipitation ages can be constrained by this method and vein precipitation could have occurred at any time between ˜80 and 140 Ma. However, based on combined chemical and isotopic data and correlations of vein composition with formation depth and inferred temperature, we argue for a rather early

  3. Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt.

    PubMed

    Abbady, Adel G E; El-Arabi, A M; Abbady, A

    2006-01-01

    Radioactive heat-production data of Igneous and Metamorphic outcrops in the Eastern Desert are presented. Samples were analysed using a low level gamma-ray spectrometer (HPGe) in the laboratory. A total of 205 rock samples were investigated, covering all major rock types of the area. The heat-production rate of igneous rocks ranges from 0.11 (basalt) to 9.53 microWm(-3) (granite). In metamorphic rocks it varies from 0.28 (serpentinite ) to 0.91 microWm(-3) (metagabbro). The contribution due to U is about 51%, as that from Th is 31% and 18% from K. The corresponding values in igneous rocks are 76%, 19% and 5%, respectively. The calculated values showed good agreement with global values except in some areas containing granites. PMID:16120480

  4. Igneous history of the aubrite parent asteroid - Evidence from the Norton County enstatite achondrite

    NASA Technical Reports Server (NTRS)

    Okada, Akihiko; Keil, Klaus; Taylor, G. Jeffrey; Newsom, Horton

    1988-01-01

    Numerous specimens of the Norton County enstatite achondrite (aubrite) were studied by optical microscopy, electron microprobe, and neutron-activation analysis. Norton County is found to be a fragmental impact breccia, consisting of a clastic matrix made mostly of crushed enstatite, into which are embedded a variety of mineral and lithic clasts of both igneous and impact melt origin. The Norton County precursor materials were igneous rocks, mostly plutonic orthopyroxenites, not grains formed by condensation from the solar nebula. The Mg-silicate-rich aubrite parent body experienced extensive melting and igneous differentiation, causing formation of diverse lithologies including dunites, plutonic orthopyroxenites, plutonic pyroxenites, and plagioclase-silica rocks. The presence of impact melt breccias (the microporphyritic clasts and the diopside-plagioclase-silica clast) of still different compositions further attests to the lithologic diversity of the aubrite parent body.

  5. Timing and chemistry of igneous events associated with the Southern Oklahoma Aulacogen

    NASA Astrophysics Data System (ADS)

    Charles Gilbert, M.

    1983-05-01

    Igneous activity in the Southern Oklahoma Aulacogen of North America was concentrated in the early rifting stages of aulacogen development. The time span over which liquids rose may not have exceeded 50 m.y. and certainly terminated before the Upper Cambrian. Igneous activity began with three basaltic liquids, stratigraphically identifiable but perhaps not all distinct genetically. This was followed by one large rhyolitic-granitic episode of A-type character. One final basaltic event ended the activity. All the basaltic types seem to be tholeiitic showing more kinship with either the older, Proterozoic North American Midcontinental Rift or the northern part of the Cenozoic Rio Grande Rift, than the Cenozoic East African Rift. Two major uplifts occurred: one between the earlier basalts and the rhyolite, and one much later, after all igneous activity was over, in the Pennsylvanian.

  6. Modeling differentiation of Karaj Dam basement igneous rocks (northern Iran)

    NASA Astrophysics Data System (ADS)

    Esmaeily, D.; M-Mashhour, R.

    2009-04-01

    The Karaj Dam basement igneous body (KDB) is located in the north of city of Karaj, 30 km from city of Tehran, which lies between 35° 50' N to 36° 05' N and between 50° 50' E to 51° 15' E. It is one of the several plutonic bodies within the E-W trending Alborz zone in northern Iran. Following the late Cretaceous orogenic movements, vast volumes of dacite, andesites and basaltic lavas with tuffaceous and other clastic sediments were deposited during Eocene time, forming Karaj Formation in central Iran and Albourz. The KDB is penetrated thorough middle and upper tuff units from Karaj Formation which is underlain by late Jurassic depositions (Shemshak Formation) and overlain by the Neogene red Conglomerates in regard to stratographic consideration. It is mainly composed of a layered series dominated by gabbro, diorite and monzonite, which is a rock sequence formed upward from the lower to upper chilled margins, respectively. The chilled margins, which have gabbroic in composition, show porphyritic texture with euhedral to subhedral plagioclase (andesine & labradorite) and pyroxene (augite) megacrysts up to 5 mm long. These rocks become coarse-grained inward and transform to equigranular texture gradually.In addition, a small fine-grained doleritic stock as well as some doleritic dykes is intrusive into the pyroclastic volcanic rocks of Karaj Formation. It is possible to observe doleritic enclaves included in the KDB, indicating that the KDB are slightly younger than the dolerites. Whole rock geochemistry and mineral chemistry of the plagioclase and pyroxene in various rock samples, suggest differentiation processes. The Mg# of the pyroxene and An% of plagioclase of the contact chilled samples can be used as an indication of the original magma and plotted between the gabbro and monzonitic samples. In addition, increasing of the Mg# within the whole rock samples from the upper of contact chilled, in comparison to the lower one, demonstrates elemental differentiation

  7. Assessing SPO techniques to constrain magma flow: Examples from sills of the Karoo Igneous Province, South Africa

    NASA Astrophysics Data System (ADS)

    Hoyer, Lauren; Watkeys, Michael K.

    2015-08-01

    Shape ellipsoids that define the petrofabrics of plagioclase in Jurassic Karoo dolerite sills in KwaZulu-Natal, South Africa are rigorously constrained using the long axis lengths of plagioclase crystals and ellipse incompatibility. This has been undertaken in order to determine the most effective technique to determine petrofabrics when using the SPO-2003 programme (Launeau and Robin, 2005). The technique of segmenting an image for analysis is scrutinised and as a process is found redundant. A grain size threshold is defined to assist with the varying grain sizes observed within and between sills. Where grains exceed the 0.2 mm size threshold, images should be acquired at a high magnification (i.e., 10 × magnification). Petrofabrics are determined using the foliation and the lineation of the ellipsoid as defined by the maximum and minimum principal axes (respectively) of the resultant ellipsoid. Samples with strongly prolate fabrics are isolated allowing further constraint on the petrofabric to be made. Once the efficacy of the petrofabric determination process has been determined, the resultant foliations (and lineations) then elucidate the most accurate petrofabric attainable. The most accurate petrofabrics will be determined by using the correct magnification when the images are obtained and to run the analyses without segmenting the image. The fabrics of the upper and lower contacts of the Karoo dolerite sills are analysed in detail using these techniques and the fabrics are used as a proxy for magma flow.

  8. Aeromagnetic mapping and reconnaissance geochemistry of the Early Cretaceous Henties Bay-Outjo dike swarm, Etendeka Igneous Province, Namibia

    NASA Astrophysics Data System (ADS)

    Trumbull, R. B.; Vietor, T.; Hahne, K.; Wackerle, R.; Ledru, P.

    2004-09-01

    An interpretation of high-resolution aeromagnetic data, backed up by Landsat ETM+ images and field observations, reveals a major NE-trending regional dike swarm in west-central Namibia which we name the Henties Bay-Outjo dike swarm (HOD). The HOD is some 100 km wide and extends at least 500 km from the continental margin, thus ranking among the regionally important dike swarms on the South Atlantic margins. Field relations and radiometric dates indicate Early Cretaceous emplacement ages for the dikes, contemporary with Etendeka Group flood basalts and with the Damaraland intrusive complexes that occur in the same area. The orientation and distribution of dikes within the HOD suggest a strong influence by Damara Belt structures within the first 100 km from the coast. Farther inland, the dikes are more discordant to the Damara Belt and finally the swarm leaves the Damara Belt entirely and crosses into the Angola craton, where dikes fan out to the north and extend for at least another 200 km. Geochemical analysis of about 100 dikes distributed throughout the HOD reveals a compositional spectrum ranging from basalt to rhyolite, with the dominant composition being tholeiitic, low-Ti basalt. The basaltic dikes show some compositional diversity, but most can be assigned to known compositional subtypes of the Etendeka Group and are thus likely to represent feeder dikes to now-eroded lava fields. The silicic dikes have compositional variations (metaluminous to peraluminous, 64-76 wt% SiO 2) matching the range found in the Early Cretaceous Damaraland intrusive complexes, and they only marginally overlap with felsic volcanic units of the Etendeka. These dikes are probably related to the silicic magma systems of the Damaraland complexes. We interpret the HOD as the failed arm of a triple junction centered at the shelf edge off Walvis Bay. Late Cretaceous magmatism in Namibia is plume-related, but we believe the triple junction did not result from domal uplift above a plume. The triple junction coincides with the intersection of three Pan-African orogenic belts: the inland Damara Belt and the coast-parallel Gariep/Dom Feliciano Belt and Kaoko/Ribeira Belt. Mesozoic opening of the South Atlantic propagated northward from the Cape, and when rifting reached the inherited Proterozoic triple junction, extension and magmatism affected all three belts initially but the Damara Belt became inactive shortly thereafter and continental separation followed the coast-parallel belts.

  9. Three-dimensional model of an ultramafic feeder system to the Nikolai Greenstone mafic large igneous province, central Alaska Range

    USGS Publications Warehouse

    Glen, J.M.G.; Schmidt, J.M.; Connard, G.G.

    2011-01-01

    The Amphitheater Mountains and southern central Alaska Range expose a thick sequence of Triassic Nikolai basalts that is underlain by several mafic-ultramafic complexes, the largest and best exposed being the Fish Lake and Tangle (FL-T) mafic-ultramafic sills that flank the Amphitheater Mountains synform. Three-dimensional (3-D) modeling of gravity and magnetic data reveals details of the structure of the Amphitheater Mountains, such as the orientation and thickness of Nikolai basalts, and the geometry of the FL-T intrusions. The 3-D model (50 ?? 70 km) includes the full geographic extent of the FL-T complexes and consists of 11 layers. Layer surfaces and properties (density and magnetic susceptibility) were modified by forward and inverse methods to reduce differences between the observed and calculated gravity and magnetic grids. The model suggests that the outcropping FL-T sills are apparently connected and traceable at depth and reveals variations in thickness, shape, and orientation of the ultramafic bodies that may identify paths of magma flow. The model shows that a significant volume (2000 km3) of ultramafic material occurs in the subsurface, gradually thickening and plunging westward to depths exceeding 4 km. This deep ultramafic material is interpreted as the top of a keel or root system that supplied magma to the Nikolai lavas and controlled emplacement of related magmatic intrusions. The presence of this deep, keel-like structure, and asymmetry of the synform, supports a sag basin model for development of the Amphitheater Mountains structure and reveals that the feeders to the Nikolai are much more extensive than previously known. Copyright 2011 by the American Geophysical Union.

  10. 40K- 40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration

    NASA Astrophysics Data System (ADS)

    Chenet, Anne-Lise; Quidelleur, Xavier; Fluteau, Frédéric; Courtillot, Vincent; Bajpai, Sunil

    2007-11-01

    Most mass extinctions coincide in time with outpourings of continental flood basalts (CFB). Some 20 years ago, it was shown [Courtillot, V., Besse, J., Vandamme, D., Montigny, R., Jaeger, J.-J., Cappetta, H., 1986. Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett. 80, 361-374; Courtillot, V., Feraud, G., Maluski, H., Vandamme, D., Moreau, M.G., Besse, J., 1988. Deccan flood basalts and the Cretaceous/Tertiary boundary. Nature 333, 843-846; Duncan, R.A., Pyle, D.G., 1988. Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. Nature 333 841-843] that the age of the Deccan traps was close to the Cretaceous-Tertiary (KT) boundary and its duration under 1 Myr. We have undertaken a new geochronological study, using the (unconventional) 40K- 40Ar Cassignol-Gillot technique which is particularly well suited to the potassium-poor Deccan lavas. The mean of 4 determinations from the topmost (Ambenali and Mahabaleshwar) Formations is 64.5 ± 0.6 Ma. They straddle the C29r/C29n reversal boundary for which they provide a new constraint. The mean age of 3 determinations from the oldest (Jawhar) Formation is 64.8 ± 0.6 Ma. The difference in age between top and bottom of a 3500 m composite section, probably comprising 80% of the total Deccan volume, is statistically insignificant, with the overall mean age being 64.7 ± 0.6 Ma ( N = 7). Our results are consistent with the most recent 40Ar/ 39Ar determinations [Knight, K.B., Renne, P.R., Halkett, A., White, N., 2003. 40Ar/ 39Ar dating of the Rajahmundry Traps, eastern India and their relationship to the Deccan traps. Earth Planet. Sci. Lett. 208, 85-99; Knight, K.B., Renne, P.R., Baker, J., Waight, T., White, N., 2005. Reply to '40Ar/39Ar dating of the Rajahmundry Traps, Eastern India and their relationship to the Deccan Traps: Discussion' by A.K. Baksi. Earth Planet. Sci. Lett. 239, 374-382], confirming that there should be no systematic difference between the two methods when they are used in an optimal way. An earlier, smaller but significant, pulse of volcanism between 68 and 67 Ma, extending over at least 500 km in latitude in the northern part of the Deccan CFB has also been identified. After 2 to 3 Ma of quiescence, the second, major phase of volcanism occurred near 65 Ma, expanding over most of the area covered by the first pulse and another 500 km to the South, consistent with drift of India by 300 to 450 km at ˜ 150 mm/yr during the quiescence period. New paleontological data from the remote Rajahmundry section [Keller, G., Adatte, T., Gardin, S., Bartolini, A., Bajpai, S., Humler, E., in prep. The Cretaceous-Tertiary boundary in Deccan Traps of the Krishna-Godavari Basin of southeastern India. EPSL to be submitted] suggest that this second pulse can itself be divided into two major pulses, one starting in C29r and ending at the KT boundary, the second starting in the upper part of C29r and ending within C29n.

  11. Petrogenesis of Igneous-Textured Clasts in Martian Meteorite Northwest Africa 7034

    NASA Technical Reports Server (NTRS)

    Santos, A. R.; Agee, C. B.; Humayun, M.; McCubbin, F. M.; Shearer, C. K.

    2016-01-01

    The martian meteorite Northwest Africa 7034 (and pairings) is a breccia that samples a variety of materials from the martian crust. Several previous studies have identified multiple types of igneous-textured clasts within the breccia [1-3], and these clasts have the potential to provide insight into the igneous evolution of Mars. One challenge presented by studying these small rock fragments is the lack of field context for this breccia (i.e., where on Mars it formed), so we do not know how many sources these small rock fragments are derived from or the exact formation his-tory of these sources (i.e., are the sources mantle de-rived melt or melts contaminated by a meteorite impactor on Mars). Our goal in this study is to examine specific igneous-textured clast groups to determine if they are petrogenetically related (i.e., from the same igneous source) and determine more information about their formation history, then use them to derive new insights about the igneous history of Mars. We will focus on the basalt clasts, FTP clasts (named due to their high concentration of iron, titanium, and phosphorous), and mineral fragments described by [1] (Fig. 1). We will examine these materials for evidence of impactor contamination (as proposed for some materials by [2]) or mantle melt derivation. We will also test the petrogenetic models proposed in [1], which are igneous processes that could have occurred regardless of where the melt parental to the clasts was formed. These models include 1) derivation of the FTP clasts from a basalt clast melt through silicate liquid immiscibility (SLI), 2) derivation of the FTP clasts from a basalt clast melt through fractional crystallization, and 3) a lack of petrogenetic relationship between these clast groups. The relationship between the clast groups and the mineral fragments will also be explored.

  12. RECLAMATION OF ALKALINE ASH PILES

    EPA Science Inventory

    The objective of the study was to develop methods for reclaiming ash disposal piles for the ultimate use as agricultural or forest lands. The ashes studied were strongly alkaline and contained considerable amounts of salts and toxic boron. The ashes were produced from burning bit...

  13. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    SciTech Connect

    Ashwal, L.D. ); Wooden, J.L. )

    1989-03-01

    The River Valley pluton is a ca. 100 km{sup 2} body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An{sub 60-70}) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo{sub 70-80}. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2,377 {plus minus} 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2,185 {plus minus} 105 Ma, which is similar to internal Pb-Pb isochron ages of 2,165 {plus minus} 130 Ma and 2,100 {plus minus} 35 Ma for two igneous-textured rocks. Initial isotopic ratios for the River Valley pluton correspond to single-stage model parameters of {mu} = 8.06, {epsilon}{sub Nd} = O to {minus}3, and I{sub Sr} = 0.7015 to 0.7021. Collectively, these suggest either an enriched mantle source or crustal contamination of a mantle-derived magma. The crustal component involved must have been older and more radiogenic than the majority of rocks exposed at the surface in the nearby Superior Province.

  14. Elevation and igneous crater modification on Venus: Implications for magmatic volatile content

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.

    1993-01-01

    Although most impact craters on Venus preserve nearly pristine crater rim and ejecta features, a small number of craters have been identified showing clear evidence of either igneous intrusion emplacement (floor-fracturing) beneath the crater floor or of volcanically embayed exterior ejecta deposits. Since the volcanically embayed craters consistently occur at higher elevations than the identified floor-fractured craters, this report proposes that igneous crater modification on Venus is elevation dependent. This report describes how regional variations in magmatic neutral buoyancy could produce such elevation dependent crater modification and considers the implications for typical magmatic volatile contents on Venus.

  15. Distribution of Igneous Rocks in Medina and Uvalde Counties, Texas, as Inferred from Aeromagnetic Data

    USGS Publications Warehouse

    Smith, David V.; McDougal, Robert R.; Smith, Bruce D.; Blome, Charles D.

    2008-01-01

    A high-resolution aeromagnetic survey was flown in 2001 over Medina and Uvalde Counties, Texas, as part of a multi-disciplinary investigation of the geohydrologic framework of the Edwards aquifer in south-central Texas. The objective of the survey was to assist in mapping structural features that influence aquifer recharge and ground-water flow. The survey revealed hundreds of magnetic anomalies associated with igneous rocks that had previously been unmapped. This report presents an interpretation of the outcrops and subcrops of igneous rocks, based upon procedures of matched-filtering and potential field modeling.

  16. Modeling the evolution of Sm and Eu abundances during lunar igneous differentiation

    NASA Technical Reports Server (NTRS)

    Weill, D. F.; Mckay, G. A.; Kridelbaugh, S. J.; Grutzeck, M.

    1974-01-01

    The current work presents models for the evolution of europium and samarium abundances during lunar igneous processes. The effect of probable variations in lunar temperature and oxygen fugacity, mineral-liquid distribution coefficients, and the crystallization or melting progression are considered in the model calculations. Changes in the proportions of crystallizing phases strongly influence the evolution of trace element abundances during fractional crystallization, and models must include realistic estimates of the major phase equilibria during crystallization. The results are applied to evaluating the possibility of generating KREEP-rich materials by lunar igneous processes.

  17. Isolation of alkaline mutagens from complex mixtures

    SciTech Connect

    Ho, C.H.; Guerin, M.R.; Clark, B.R.; Rao, T.K.; Epler, J.L.

    1981-05-01

    A method for the preparative-scale enrichment of alkaline mutagens from complex natural and anthropogenic mixtures is described. Mutagenic alkaline fractions were isolated from cigarette smoke, crude petroleum, and petroleum substitutes derived from coal and shale.

  18. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  19. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  20. The Central Atlantic Magmatic Province: Insights From Fragments of Pangea

    NASA Astrophysics Data System (ADS)

    Hames, W.; McHone, J. G.; Renne, P.; Ruppel, C.

    A singular event in Earth's history occurred roughly 200 million years ago, as rifting of the largest and most recent supercontinent was joined by basaltic volcanism that formed the most extensive large igneous province (LIP) known. A profound and widespread mass extinction of terrestrial and marine genera occurred at about the same time, suggesting a causal link between the biological transitions of the Triassic-Jurassic boundary and massive volcanism. A series of stratigraphic, geochronologic, petrologic, tectonic, and geophysical studies have led to the identification of the dispersed remnants of this Central Atlantic Magmatic Province (CAMP) on the rifted margins of four continents. Current discoveries are generally interpreted to indicate that CAMP magmatism occurred in a relative and absolute interval of geologic time that was brief, and point to mechanisms of origin and global environmental effects. Because many of these discoveries have occurred within the past several years, in this monograph we summarize new observations and provide an up-to-date review of the province

  1. Effect of bulk chemistry in the spectral variability of igneous rocks in VIS-NIR region: Implications to remote compositional mapping

    NASA Astrophysics Data System (ADS)

    Nair, Archana M.; Mathew, George

    2014-08-01

    In the present study, a range of igneous rocks with weight percentage of silica ranging from 45% to 70% were used to generate reflectance spectra in the VIS-NIR region. The laboratory generated reflectance spectra of these rocks were used to study the effect of chemical composition and mineralogy on the spectral properties. The characteristic spectral features were evaluated based on the mineralogical and chemical characteristics of the rocks. The main spectral features in the VIS-NIR region are the 0.7 μm absorption band due to the inter valance charge transfer between Fe2+ and Fe3+ termed as Band F, the 1 μm broad absorption band from Fe2+ at the octahedral sites in pyroxene termed as Band I, the 1.9 μm and 2.3 μm narrow absorption bands due to H2O or OH functional group in hydrated minerals. The 2 μm absorption feature (Band II; Cloutis and Gaffey, 1991) is observed as a weak feature in all the mafic rocks. The analysis of Band I with the bulk chemistry and mineralogy, we observed a positive correlation to the bulk Ca abundance. Rocks with high bulk calcic content exemplify Band I as a prominent spectral feature towards longer wavelength. Consequently, basalt, gabbro and anorthositic rocks show Band I as a strong feature. However, rocks with low bulk Calcic content show Band I as weak absorption feature observed towards shorter wavelength. Thus, igneous rocks of alkaline affinity have subdued Band I feature that appears towards shorter wavelength. The analysis of Band F with the bulk chemistry and mineralogy showed a positive correlation to the bulk Fe abundance. The results of the present study have implications towards remote compositional mapping and lithological discrimination for Planetary Studies.

  2. High precision U-PB geochronology and implications for the tectonic evolution of the Superior Province

    NASA Technical Reports Server (NTRS)

    Davis, D. W.; Corfu, F.; Krogh, T. E.

    1986-01-01

    The underlying mechanisms of Archean tectonics and the degree to which modern plate tectonic models are applicable early in Earth's history continue to be a subject of considerable debate. A precise knowledge of the timing of geological events is of the utmost importance in studying this problem. The high precision U-Pb method has been applied in recent years to rock units in many areas of the Superior Province. Most of these data have precisions of about + or - 2-3 Ma. The resulting detailed chronologies of local igneous development and the regional age relationships furnish tight constraints on any Archean tectonic model. Superior province terrains can be classified into 3 types: (1) low grade areas dominated by meta-volcanic rocks (greenstone belts); (2) high grade, largely metaplutonic areas with abundant orthogneiss and foliated to massive I-type granitoid bodies; and (3) high grade areas with abundant metasediments, paragneiss and S-type plutons. Most of the U-Pb age determinations have been done on type 1 terrains with very few having been done in type 3 terrains. A compilation of over 120 ages indicates that the major part of igneous activity took place in the period 2760-2670 Ma, known as the Kenoran event. This event was ubiquitous throughout the Superior Province.

  3. Whole Rock and Mineral Chemistry from Rocks of the Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Chau, K. X.; Draper, G.; Sen, G.

    2013-12-01

    The Central Atlantic Magmatic Province (CAMP) was a large igneous province (LIP) emplaced during the rifting of Pangaea, just before the opening of the Atlantic Ocean approximately 200 million years ago. Though a comparatively small amount of the original province remains today, the locations of the existing outcrops on four continents (North America, South America, Africa, and Europe) hint at the extensive reach of igneous activity and indicate that the CAMP was likely one of the biggest LIPs known. Because of the geologic and global significance of this episode, a knowledge of the conditions that generated and emplaced such a large volume of magma would help better understand mantle and tectonic processes. In this study, we compare whole rock and mineral chemistry data from three of the North American outcrops: the Palisades Sill of the Newark Basin in eastern New York and New Jersey, the Centreville Sheet of the Culpeper Basin in northern Virginia, and the York Haven pluton of the Gettysburg Basin in southeastern Pennsylvania. The diabases are characterized as quartz-normative theoleiites; their chemistries are indicative of high degrees of internal differentiation and thermal disequilbirum, consistent with magma bodies cooling rapidly in a closed or near-closed system.

  4. Whole Rock and Mineral Chemistry from the Central Atlantic Magmatic Province (CAMP)

    NASA Astrophysics Data System (ADS)

    Chau, K. X.; Draper, G.; Sen, G.

    2014-12-01

    The Central Atlantic Magmatic Province (CAMP) was a large igneous province (LIP) emplaced approximately 200 million years ago during the rifting of Pangaea, shortly before the opening of the Atlantic Ocean. Although a comparatively small amount of the original province remains today, the locations of the existing outcrops on four continents (North America, South America, Africa, and Europe) show the extensive reach of igneous activity and indicate that the CAMP was likely one of the biggest LIPs known. Because of the geologic and global significance of this episode, a knowledge of the conditions that generated and emplaced such a large volume of magma would help better understand mantle and tectonic processes. In this study, we compare whole rock and mineral chemistry data from three of the North American outcrops: the Palisades Sill of the Newark Basin in eastern New York and New Jersey, the Centreville Sheet of the Culpeper Basin in northern Virginia, and the York Haven pluton of the Gettysburg Basin in southeastern Pennsylvania. The diabases are quartz-normative theoleiites; their chemistries are indicate high degrees of internal differentiation and thermal disequilbirum, consistent with magma bodies cooling as a closed or near-closed system. The trace element data shows that, although there is evidence to support a deep mantle source for CAMP melts, there is also a shallower component influencing the chemistries of the samples. We interpret this as the signal of an ancient subducted slab through which CAMP melts passed.

  5. The Kanin-Timan-Pechora province of Late Devonian intraplate magmatism (position and size)

    NASA Astrophysics Data System (ADS)

    Stepanenko, V. I.

    2016-04-01

    Investigation of the distribution of basalts, dolerites, and tuffs in the Kanin-Timan-Pechora large igneous province was completed by generalization of data of geological surveys and analysis of the data of deep drilling. The province appears like a nonisometric ellipse and extends northwestward for a distance of nearly 850 km at the width of 250-500 km. Its area is nearly 285 000 km2. The area of the volcanic rocks is about 85 500 km2. The volume of eruptive material alone could be equal to 1000-1200 km3. The age of formation of the traps corresponds to the late period of activity of the process and was less than 7 mln. y. The formation of the province was result of the action of short-lived and low intensity plumes. But it was one of the episodes of the Late Devonian superplume event in the East European platform. The province is separated by an amagmatic area from neighboring magmatic provinces of the same age. The distance between borders of the provinces is 200-400 km.

  6. Siderophile and volatile trace elements in 72255 and 72275. [meteoritic and igneous composition of lunar rocks

    NASA Technical Reports Server (NTRS)

    Morgan, J. W.; Ganapathy, R.; Higuchi, H.; Anders, E.

    1974-01-01

    Of six samples from boulder 1 at Station 2, four contain a unique meteoritic component, which is attributed to the Crisium projectile. The other two samples are meteorite free, igneous rocks: an unusual, alkali- and Ge-rich pigeonitic basalt, and an alkali-poor norite of unexceptional trace element chemistry.

  7. FeO and MgO in plagioclase of lunar anorthosites: Igneous or metamorphic?

    NASA Technical Reports Server (NTRS)

    Phinney, W. C.

    1994-01-01

    The combined evidence from terrestrial anorthosites and experimental laboratory studies strongly implies that lunar anorthosites have been subjected to high-grade metamorphic events that have erased the igneous signatures of FeO and MgO in their plagioclases. Arguments to the contrary have, to this point, been more hopeful than rigorous.

  8. Biological energy from the igneous rock enhances cell growth and enzyme activity.

    PubMed

    Lin, Y; Kuo, H; Chen, C; Kuo, S

    2000-08-01

    Some effects from natural resources might be ignored and unused by humans. Environmental hormesis could be a phenomena necessary to bio-organism existence on earth. Since 1919, radiation and some heavy metal hormesis from the environment were proved in various reports. In this study, igneous rock with very low radioactivity and high ferrous activity was measured by multichannel analyzer and inductively coupled plasma analyzer. The water treated by igneous rock, both directly soaked or indirectly in contact, induced increased activities of glucose oxidase, catalase, peroxidase, and superoxide dismutase. It also increased cell growth of SC-M1, HCT-15, Raji, and fibroblast cell lines. The water after treatment of igneous rock had no change in pH values, but displayed decreased conductivity values. We assume that the igneous rock could transfer energy to water to change the molecular structure or conformation of water cluster, or by radiation hormesis effect could then induce increased enzyme activity and cell growth. It is also possible that the energy from rock may combine radiation hormesis with other transferable biological energy forms to change water cluster conformation. PMID:11056378

  9. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassov's research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herring's group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  10. Zircon U-Pb age of the Pescadero felsite: A late Cretaceous igneous event in the forearc, west-central California Coast Ranges

    USGS Publications Warehouse

    Ernst, W.G.; Martens, U.C.; McLaughlin, R.J.; Clark, J.C.; Moore, Diane E.

    2011-01-01

    Weathered felsite is associated with the late Campanian-Maastrichtian Pigeon Point Formation near Pescadero, California. Poorly exposed, its age and correlation are uncertain. Is it part of the Pigeon Point section west of the San Gregorio-Hosgri fault? Does it rest on Nacimiento block basement? Is it dextrally offset from the Oligocene Cambria Felsite, ~185 km to the southeast? Why is a calc-alkaline hypabyssal igneous rock intrusive into the outboard accretionary prism? To address these questions, we analyzed 43 oscillatory-zoned zircon crystals from three incipiently recrystallized pumpellyite ?? prehnite ?? laumontite-bearing Pescadero felsite samples by sensitive high-resolution ion microprobe-reverse geometry (SHRIMPRG) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) techniques. Thirty-three zircons gave late Mesozoic U-Pb ages, with single-grain values ranging from 81 to 167 Ma; ten have pre-Mesozoic, chiefl y Proterozoic ages. A group of the four youngest Pescadero zircons yielded an apparent maximum igneous age of ca. 86-90 Ma. Refl ecting broad age scatter and presence of partly digested sandstone inclusions, we interpret the rest of the zircons (perhaps all) as xenocrysts. Twenty-three zircons were separated and analyzed from two samples of the similar Cambria Felsite, yielding a unimodal 27 Ma U-Pb age. Clearly, the origin of the Upper Oligocene Cambria Felsite is different from that of the Upper Cretaceous Pescadero felsite; these rocks are not correlated, and do not constrain displacement along the San Gregorio-Hosgri fault. Peak ages differ slightly, but relative probability curves for Mesozoic and pre-Mesozoic Pescadero zircons compare well, for example, with abundant U-Pb age data for detrital zircons from Franciscan metaclastic strata ~100 km to the east in the Diablo Range- San Francisco Bay area, San Joaquin Great Valley Group turbidites, Upper Cretaceous Nacimiento block Franciscan strata, and Upper Cretaceous

  11. Silicon isotopes in granulite xenoliths: Insights into isotopic fractionation during igneous processes and the composition of the deep continental crust

    NASA Astrophysics Data System (ADS)

    Savage, Paul S.; Georg, R. Bastian; Williams, Helen M.; Halliday, Alex N.

    2013-03-01

    The silicon (Si) cycle is of great current interest but the isotopic composition of the continental crust has not been determined. Magmatic differentiation generates liquids with heavier Si and the lower crust, thought to be dominated by cumulates and restites, is predicted to have a light isotopic composition. This is borne out by the composition of many types of granite, which appear to have relative light Si for their silica content. Here we report the Si isotopic compositions of two granulite facies xenolith suites, from the Chudleigh and McBride volcanic provinces, Australia, providing new constraints on deep crustal processes and the average composition of the deep continental crust. The xenoliths display a range of isotopic compositions (δ30Si=-0.43‰ to -0.15‰) comparable to that measured previously for igneous rocks. The isotopic compositions of the McBride xenoliths reflect assimilation and fractional crystallisation (AFC) and/or partial melting processes. Silicon and O isotopes are correlated in the McBride suite and can be explained by AFC of various evolved parent melts. In contrast, the Chudleigh xenoliths have Si isotope compositions predominantly controlled by the specific mineralogy of individual cumulates. Using the xenolith data and a number of weighting methods, the Si isotope compositions of the lower and middle crust are calculated to be δ30Si=-0.29±0.04‰ (95% s.e.) and -0.23±0.04‰ (95% s.e.) respectively. These values are almost identical to the composition of the Bulk Silicate Earth, implying minimal isotope fractionation associated with continent formation and no light lower crustal reservoir.

  12. Playing jigsaw with Large Igneous Provinces—A plate tectonic reconstruction of Ontong Java Nui, West Pacific

    NASA Astrophysics Data System (ADS)

    Hochmuth, Katharina; Gohl, Karsten; Uenzelmann-Neben, Gabriele

    2015-11-01

    The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong similarities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed "Super"-LIP, a detailed scenario for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interaction of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The breakup of the LIP shows a complicated interplay between multiple microplates and tectonic forces such as rifting, shearing, and rotation. Our plate kinematic model of the western Pacific incorporates new evidence from the breakup margins of the LIPs, the tectonic fabric of the seafloor, as well as previously published tectonic concepts such as the rotation of the LIPs. The updated rotation poles of the western Pacific allow a detailed plate tectonic reconstruction of the region during the Cretaceous Normal Superchron and highlight the important role of LIPs in the plate tectonic framework.

  13. PROBABILISTIC ANALYSES OF WASTE PACKAGE QUANTITIES IMPACTED BY POTENTIAL IGNEOUS DISRUPTION AT YUCCA MOUNTAIN

    SciTech Connect

    M.G. Wallace

    2005-08-26

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analyses include disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift were intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km{sup 2} , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed

  14. Probablistic Analyses of Waste Package Quantities Impacted by Potential Igneous Disruption at Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Wallace, M. G.; Iuzzolina, H.

    2005-12-01

    A probabilistic analysis was conducted to estimate ranges for the numbers of waste packages that could be damaged in a potential future igneous event through a repository at Yucca Mountain. The analysis includes disruption from an intrusive igneous event and from an extrusive volcanic event. This analysis supports the evaluation of the potential consequences of future igneous activity as part of the total system performance assessment for the license application for the Yucca Mountain Project (YMP). The first scenario, igneous intrusion, investigated the case where one or more igneous dikes intersect the repository. A swarm of dikes was characterized by distributions of length, width, azimuth, and number of dikes and the spacings between them. Through the use in part of a latin hypercube simulator and a modified video game engine, mathematical relationships were built between those parameters and the number of waste packages hit. Corresponding cumulative distribution function curves (CDFs) for the number of waste packages hit under several different scenarios were calculated. Variations in dike thickness ranges, as well as in repository magma bulkhead positions were examined through sensitivity studies. It was assumed that all waste packages in an emplacement drift would be impacted if that drift was intersected by a dike. Over 10,000 individual simulations were performed. Based on these calculations, out of a total of over 11,000 planned waste packages distributed over an area of approximately 5.5 km2 , the median number of waste packages impacted was roughly 1/10 of the total. Individual cases ranged from 0 waste packages to the entire inventory being impacted. The igneous intrusion analysis involved an explicit characterization of dike-drift intersections, built upon various distributions that reflect the uncertainties associated with the inputs. The second igneous scenario, volcanic eruption (eruptive conduits), considered the effects of conduits formed in

  15. From birth to death of arc magmatism: The igneous evolution of Komandorsky Islands recorded tectonic changes during 50 Ma of westernmost Aleutian history

    NASA Astrophysics Data System (ADS)

    Höfig, T. W.; Portnyagin, M.; Hoernle, K.; Hauff, F. F.; van den Bogaard, P.; Garbe-Schoenberg, C.

    2013-12-01

    The Komandorsky Islands form the westernmost end of the Aleutian Island Arc. Four igneous complexes, spanning almost 50 Ma of magmatism, have previously been identified (Ivaschenko et al., 1984: Far East Scientific Centre, Vladivostok, 192 pp.). The petrogenesis of this protracted magmatic record and accurate absolute ages of events, however, remain poorly constrained. Our study investigates the relationship between magma composition and tectonic setting. The Komandorsky igneous basement formed in subduction zone setting. It hosts some of the oldest igneous rocks of the entire Aleutian Arc with the onset of magmatism occurring at 47 Ma. This early stage was characterized by classic fluid-dominated arc volcanism, which produced two coeval but likely genetically unrelated magmatic series of tholeiitic mafic and tholeiitic to calc-alkaline felsic rocks. To date, no boninites have been found and therefore arc initiation is different at the Aleutians than at Izu-Bonin-Marianas or the oldest rocks in the Aleutians have yet to be discovered. The prolonged production of the contrasting basalt-rhyolite association on Komandorsky Islands had lasted ~25 Ma and ceased around the Oligocene-Miocene boundary. Concurrently to this long-lasting activity, a gradual transition to a different mode of arc magmatism took place reflected by newly discovered Sr-enriched, HREE-depleted calc-alkaline basaltic andesitic lavas of mid-upper Eocene age spanning a time of at least ~7 Ma. This so-called Transition Series displays a moderate garnet signature marking the increased contribution of a slab-melt component to the magma sources of the Komandorsky Islands. Slab-melt contribution increased with decreasing age leading to strongly adakitic magmatism as early as ~33 Ma (Lower Oligocene), reflected by eruption of high-Sr (up to 2,500 ppm), highly HREE-depleted Adak-type magnesian basaltic andesites and andesites. These remarkable magmas became predominant during the Lower Miocene. They were

  16. Possible Biosphere-Lithosphere Interactions Preserved in Igneous Zircon and Implications for Hadean Earth.

    PubMed

    Trail, Dustin; Tailby, Nicholas D; Sochko, Maggie; Ackerson, Michael R

    2015-07-01

    Granitoids are silicic rocks that make up the majority of the continental crust, but different models arise for the origins of these rocks. One classification scheme defines different granitoid types on the basis of materials involved in the melting/crystallization process. In this end-member case, granitoids may be derived from melting of a preexisting igneous rock, while other granitoids, by contrast, are formed or influenced by melting of buried sedimentary material. In the latter case, assimilated sedimentary material altered by chemical processes occurring at the near surface of Earth-including biological activity-could influence magma chemical properties. Here, we apply a redox-sensitive calibration based on the incorporation of Ce into zircon crystals found in these two rock types, termed sedimentary-type (S-type) and igneous-type (I-type) granitoids. The ∼400 Ma Lachlan Fold Belt rocks of southeastern Australia were chosen for investigation here; these rocks have been a key target used to describe and explore granitoid genesis for close to 50 years. We observe that zircons found in S-type granitoids formed under more reducing conditions than those formed from I-type granitoids from the same terrain. This observation, while reflecting 9 granitoids and 289 analyses of zircons from a region where over 400 different plutons have been identified, is consistent with the incorporation of (reduced) organic matter in the former and highlights one possible manner in which life may modify the composition of igneous minerals. The chemical properties of rocks or igneous minerals may extend the search for ancient biological activity to the earliest period of known igneous activity, which dates back to ∼4.4 billion years ago. If organic matter was incorporated into Hadean sediments that were buried and melted, then these biological remnants could imprint a chemical signature within the subsequent melt and the resulting crystal assemblage, including zircon. PMID

  17. Distinguishing peperite from other sediment-matrix igneous breccias: Lessons from the Iberian Pyrite Belt

    NASA Astrophysics Data System (ADS)

    Rosa, Carlos J. P.; McPhie, Jocelyn; Relvas, Jorge M. R. S.

    2016-04-01

    Breccias composed of coarse monomictic porphyritic igneous clasts and fine-grained matrix are common in subaqueous volcanic successions. We use the descriptive name "sediment-matrix igneous breccia" for this facies and have recognized at least five different origins among examples in the Iberian Pyrite Belt: (1) peperite; (2) sediment-infill volcanic breccia; (3) mud-matrix resedimented hyaloclastite; (4) mud-rich water-settled fiamme breccia; and (5) apparent sediment-matrix igneous breccia. Because the components and textures are similar, discriminating among the different origins can be very difficult. Both peperite and sediment-infill volcanic breccia can occur along top contacts of thick intervals of felsic coherent and monomictic breccia facies. The presence of peperite indicates that the contact is intrusive, whereas the presence of sediment-infill volcanic breccia indicates that the contact is depositional. Hence, correct distinction between peperite and sediment-infill volcanic breccia is an important means of discriminating felsic intrusions from felsic lavas and domes. The distinction underpins the reconstruction of volcanic centers and facies architecture, and the ordering of volcanic, intrusive, sedimentary and mineralizing events in ancient submarine volcanic successions. In addition, in volcanic-hosted massive sulfide districts such as the Iberian Pyrite Belt, paleoseafloor positions are considered highly prospective for massive sulfide ore bodies. Correct interpretation of sediment-matrix igneous breccias is also important in this context, because sediment-infill volcanic breccia, mud-matrix resedimented hyaloclastite and mud-rich water-settled fiamme breccia all form or are deposited at the seafloor, and hence delineate paleoseafloor positions. In contrast, peperite and apparent sediment-matrix igneous breccias form subsurface and do not delineate paleoseafloor positions.

  18. Phanerozoic within-plate magmatism of North Asia: Absolute paleogeographic reconstructions of the African large low-shear-velocity province

    NASA Astrophysics Data System (ADS)

    Kuz'min, M. I.; Yarmolyuk, V. V.; Kravchinsky, V. A.

    2011-11-01

    The phanerozoic within-plate magmatism of Siberia is reviewed. The large igneous provinces (LIPs) consecutively arising in the Siberian Craton are outlined: the Altai-Sayan LIP, which operated most actively 400-375 Ma ago, the Vilyui LIP, which was formed from the Middle Devonian to the Early Carboniferous, included; the Barguzin-Vitim LIP (305-275 Ma); the Late Paleozoic Rift System of Central Asia (318-250 Ma); the Siberian flood basalt (trap) province and the West Siberian rift system (250-247 Ma); and the East Mongolian-West Transbaikal LIP (230-195 Ma), as well as a number of Late-Mesozoic and Cenozoic rift zones and autonomous volcanic fields formed over the last 160 Ma. The trace-element and isotopic characteristics of the igneous rocks of the above provinces are reviewed; their mantle origin is substantiated and the prevalence of PREMA, EM2, and EM1 mantle magma sources are shown. The paleogeographic reconstructions based on paleomagnetic data assume that the Iceland hot spot was situated beneath the Siberian flood basalts 250 Ma ago and that the mantle plumes retained a relatively stable position irrespective of the movements of the lithospheric plates. At present, the Iceland hot spot occurs near the northern boundary of the African large low shear velocity province (LLSVP). It is suggested that the within-plate Phanerozoic magmatism of Siberia was related to the drift of the continent above the hot spots of the African LLSVP.

  19. Paleozoic and Paleoproterozoic Zircon in Igneous Xenoliths Assimilated at Redoubt Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Bacon, C. R.; Vazquez, J. A.; Wooden, J. L.

    2010-12-01

    Historically active Redoubt Volcano is a basalt-to-dacite cone constructed upon the Jurassic-early Tertiary Alaska-Aleutian Range batholith. New SHRIMP-RG U-Pb age and trace-element concentration results for zircons from gabbroic xenoliths and crystal-rich andesitic mush from a late Pleistocene pyroclastic deposit indicate that ~310 Ma and ~1865 Ma igneous rocks underlie Redoubt at depth. Two gabbros have sharply terminated prismatic zircons that yield ages of ~310 Ma. Zircons from a crystal mush sample are overwhelmingly ~1865 Ma and appear rounded due to incomplete dissolution. Binary plots of element concentrations or ratios show clustering of data for ~310-Ma grains and markedly coherent trends for ~1865-Ma grains; e.g., ~310-Ma grains have higher Eu/Eu* than most of the ~1865-Ma grains, the majority of which form a narrow band of decreasing Eu/Eu* with increasing Hf content which suggests that ~1865-Ma zircons come from igneous source rocks. It is very unlikely that detrital zircons from a metasedimentary rock would have this level of homogeneity in age and composition. One gabbro contains abundant ~1865 Ma igneous zircons, ~300-310 Ma fluid-precipitated zircons characterized by very low U and Th concentrations and Th/U ratios, and uncommon ~100 Ma zircons. We propose that (1) ~310 Ma gabbro xenoliths from Redoubt Volcano belong to the same family of plutons dated by Aleinikoff et al. (USGS Circular 1016, 1988) and Gardner et al. (Geology, 1988) located ≥500 km to the northeast in basement rocks of the Wrangellia and Alexander terranes and (2) ~1865 Ma zircons are inherited from igneous rock, potentially from a continental fragment that possibly correlates with the Fort Simpson terrane or Great Bear magmatic zone of the Wopmay Orogen of northwestern Laurentia. Possibly, elements of these Paleoproterozoic terranes intersected the Paleozoic North American continental margin where they may have formed a component of the basement to the Wrangellia

  20. Anode conductor for alkaline cells

    SciTech Connect

    Schrenk, D.J.; Murphy, P.E.

    1988-12-13

    This patent describes an electrochemical cell comprised of an anode comprised of zinc; a cathode; and alkaline electrolyte; and a current collector comprised of a silicon bronze alloy that is comprised of 85-98% by weight copper and 1-5% by weight silicon with the remainder being comprised of at least one of manganese, iron, zinc, aluminum, tin, lead, or mixtures thereof; and a strip of metal tab stock welded to the current collector, the tab stock being a metal other than silicon bronze alloy.

  1. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more than two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  2. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  3. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars

    USGS Publications Warehouse

    McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F., III; Herkenhoff, K.; Gellert, Ralf; Stockstill, K.R.; Tornabene, L.L.; Squyres, S. W.; Crisp, J.A.; Christensen, P.R.; McCoy, T.J.; Mittlefehldt, D. W.; Schmidt, M.

    2006-01-01

    Irvine, Backstay, and Wishstone are the type specimens for three classes of fine-grained or fragmental, relatively unaltered rocks with distinctive thermal emission spectra, found as float on the flanks of the Columbia Hills. Chemical analyses indicate that these rocks are mildly alkaline basalt, trachybasalt, and tephrite, respectively. Their mineralogy consists of Na- and K-rich feldspar(s), low- and high-Ca pyroxenes, ferroan olivine, Fe-Ti (and possibly Cr) oxides, phosphate, and possibly glass. The texture of Wishstone is consistent with a pyroclastic origin, whereas Irvine and Backstay are lavas or possibly dike rocks. Chemical compositions of these rocks plot on or near liquid lines of descent for most elements calculated for Adirondack class rocks (olivine-rich basalts from the Gusev plains) at various pressures from 0.1 to 1.0 GPa. We infer that Wishstone-, Backstay-, and Irvine-class magmas may have formed by fractionation of primitive, oxidized basaltic magma similar to Adirondack-class rocks. The compositions of all these rocks reveal that the Gusev magmatic province is alkaline, distinct from the subalkaline volcanic rocks thought to dominate most of the planet's surface. The fact that differentiated volcanic rocks were not encountered on the plains prior to ascending Husband Hill may suggest a local magma source for volcanism beneath Gusev crater. Copyright 2006 by the American Geophysical Union.

  4. Investigation of Vegetation Species in Desert Areas of Fars Province

    NASA Astrophysics Data System (ADS)

    Fozoni, L.; Fakhireh, A.

    2009-04-01

    The Fars province is located in the south of IRAN, with area of 122830Km2. This areas involved saline and alkaline soils. The aim of this research is investigation of salty lands and vegetation degradation for offering of sociable species for any area. Recognition studying of desert area in Fars province was identified using all available data and using GIS and RS technologies. In this study, main indicators have been appointed using Floristical-Fizionomicaly method. Vegetation per cent, growth form, density and altitude were considered as main indicators. More than 50 species of halophytes were collected and 25 plant types were identified in 17 zones of studied area. The main plant types were as follows: Hammada, Halocnemum-Aeluropus and Halocnemum-limonium. Ultimately, halophytes cover map was prepared. In the end of growth season, 50 soil samples from halophyte types in two horizons 0-30cm and 30-100cm were taken and tested. The result showed, the studied area, has saline lands surface and high salinity land with cover of 9000Km2. Keyword: Saline Soil, Alkaline Soil, Halophytes, Fars Province

  5. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  6. Grace DAKASEP alkaline battery separator

    NASA Technical Reports Server (NTRS)

    Giovannoni, R. T.; Lundquist, J. T.; Choi, W. M.

    1987-01-01

    The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved.

  7. Crystal mat-formation as an igneous layering-forming process: Textural and geochemical evidence from the 'lower layered' nepheline syenite sequence of the Ilímaussaq complex, South Greenland

    NASA Astrophysics Data System (ADS)

    Lindhuber, Matthias J.; Marks, Michael A. W.; Bons, Paul D.; Wenzel, Thomas; Markl, Gregor

    2015-05-01

    The lower layered nepheline syenite sequence (kakortokites) of the Mesoproterozoic alkaline to peralkaline Ilímaussaq complex, South Greenland shows spectacular rhythmic meter-scale igneous layering. The 29 exposed units have sharp contacts against each other and each of these units consists of three modally graded layers dominated by arfvedsonitic amphibole, eudialyte-group minerals, and alkali feldspar, respectively. This study uses field observations on changes in mineral orientation, recurrent mineral textures, compositional data from eudialyte-group minerals and amphibole, and settling rate calculations based on a modified Stokes' equation to explain the igneous layering of the kakortokites. We propose that the three major cumulus minerals (amphibole, eudialyte s.l., and alkali feldspar) were separated from each other by density contrasts, resulting in modally graded layers within each unit. The densest of these three minerals (amphibole) formed crystal mats within the cooling magma body. These crystal mats acted as barriers that inhibited large-scale vertical migration of melts and crystals with increasing effectiveness over time. The sub-volumes of magma captured in between the crystal mats evolved largely as geochemically independent sub-systems, as indicated by the observed trends in mineral composition.

  8. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: insight from basement igneous rocks of the Erlian Basin

    NASA Astrophysics Data System (ADS)

    Bonnetti, Christophe; Cuney, Michel; Bourlange, Sylvain; Deloule, Etienne; Poujol, Marc; Liu, Xiaodong; Peng, Yunbiao; Yang, Jianxing

    2016-05-01

    Carboniferous-Permian, Triassic and Jurassic igneous basement rocks around the Erlian Basin in northeast China have been investigated through detailed mineralogical, whole-rock geochemistry, geochronological data and Sm-Nd isotope studies. Carboniferous-Permian biotite granites and volcanic rocks belong to a calc-alkaline association and were emplaced during the Late Carboniferous-Early Permian (313 ± 1-286 ± 2 Ma). These rocks are characterised by positive ɛNd(t) (3.3-5.3) and fairly young T DM model ages (485-726 Ma), suggesting a dominant derivation from partial melting of earlier emplaced juvenile source rocks. Triassic biotite granites belong to a high-K calc-alkaline association and were emplaced during the Middle Triassic (243 ± 3-233 ± 2 Ma). Their negative ɛNd(t) (-2 to -0.1) and higher T DM model ages (703-893 Ma) suggest a contribution from Precambrian crust during the magma generation processes, leading to a strong enrichment in K and incompatible elements such as Th and U. Highly fractionated magmas crystallised in U-rich biotite (up to 21 ppm U) and two-mica granites. In biotite granite, the major U-bearing minerals are uranothorite and allanite. They are strongly metamict and the major part of their uranium (90 %) has been released from the mineral structure and was available for leaching. Mass balance calculations show that the Triassic biotite granites may have, at least, liberated ˜14,000 t U/km3 and thus correspond to a major primary uranium source for the U deposits hosted in the Erlian Basin.

  9. Floor-fractured crater models for igneous crater modification on Venus

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1992-01-01

    Although crater modification on the Earth, Moon, and Mars results from surface erosion and crater infilling, a significant number of craters on the Moon also exhibit distinctive patterns of crater-centered fracturing and volcanism that can be modeled as the result of igneous crater modification. Here, we consider the possible effects of Venus surface conditions on this model, describe two examples of such crater modification, and then briefly discuss the constraints these craters place on conditions at depth.

  10. Termination time of peak decratonization in North China: Geochemical evidence from mafic igneous rocks

    NASA Astrophysics Data System (ADS)

    Dai, Li-Qun; Zheng, Yong-Fei; Zhao, Zi-Fu

    2016-01-01

    Geophysical and petrological data indicate destruction of the cratonic lithosphere in North China in the Mesozoic, resulting in replacement of the ancient subcontinental lithospheric mantle (SCLM) by the juvenile SCLM. However, it remains to be answered when the craton destruction would have been terminated in the Mesozoic. This question is resolved by studying the two types of mafic igneous rocks with contrasting geochemical compositions from North China. The first type of mafic igneous rock shows arc-like trace element distribution patterns and enriched radiogenic Sr-Nd isotope compositions, with emplacement ages spanning from the Triassic to Early Cretaceous. The mafic magmatism is absent in a period from ~ 200 Ma to ~ 135 Ma, recording the thinning of cratonic lithosphere due to the westward flat subduction of the Paleo-Pacific slab beneath the North China Craton. In contrast, the second type of mafic igneous rocks exhibits oceanic island basalts (OIB)-like trace element distribution patterns and relatively depleted radiogenic Sr-Nd isotope compositions, with emplacement ages spanning from the Early Cretaceous to Cenozoic. Zircon U-Pb dating yields an age of ~ 121 Ma for the geochemical transformation between the two types of mafic igneous rocks. This age marks a dramatic demarcation in the composition of their mantle sources. As such, the nature of mantle lithosphere in North China was changed from the ancient SCLM to the juvenile SCLM at ~ 121 Ma. Thus, this age not only signifies the tectonic transition from the enriched mantle to the depleted mantle in the Early Cretaceous, but also dates the termination of peak decratonization in North China. Therefore, the craton destruction in the Early Cretaceous is temporally and spatially associated with the dramatic changes in the geochemical composition of mantle lithosphere.

  11. Alkaline and alkaline earth metal phosphate halides and phosphors

    SciTech Connect

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  12. Petrogenesis of the Late Cretaceous Demirköy Igneous Complex in the NW Turkey: Implications for magma genesis in the Strandja Zone

    NASA Astrophysics Data System (ADS)

    Karacık, Zekiye; Tüysüz, Okan

    2010-02-01

    The Srednogorie Zone in Bulgaria and its eastern continuation in NW Turkey, the Strandja Zone, consist of a Late Cretaceous magmatic belt comprised of plutonic, volcanic and associated volcano-sedimentary rocks. The Demirköy Igneous Complex is the biggest Cretaceous pluton within the Strandja Zone, and its age is between 71 and 84 Ma. The Demirköy pluton and additional smaller plutons are intruded into Triassic and older metamorphic basement rocks. A contact metamorphic aureole with hornblende-hornfels facies conditions was developed around the Demirköy pluton. The WNW-trending Demirköy pluton has an elliptical shape and a concentrically zoned internal structure. In this structure, gabbro/diorites and quartz diorites are only seen in the SW corner of the pluton, while granodiorites form the main body of the pluton surrounded by a zone of granite. The granodiorites contain dioritic mafic microgranular enclaves. Small quartz monzonite lenses and/or bodies and mafic dykes are also observed in the Demirköy Igneous Complex. Geochemically, the Demirköy Igneous Complex has calc-alkaline, metaluminous and medium-K characteristics. There is a significant correlation between the LREE/HREE ratios and SiO 2 values. Chondrite-normalized REE patterns are relatively flat (La N/Lu N = 2) in gabbros. This ratio ranges from 3 to 11 for the diorite/granodiorites, and from 14 to 35 for the granites. Dioritic enclaves have REE patterns similar to those of the main body and have La N/Lu N values between 3 and 6. Relatively enriched LILE (Sr, K, Rb, Ba and Th) and relatively depleted HFSE (Ta, Nb and Ti) values indicate the classic subduction-related origin of the complex. The initial isotopic signatures range from ɛNd( i) = - 0.45 to - 2.57 and 87Sr/ 86Sr( i) = 0.7042-0.7064 for gabbros and ɛNd( i) = - 0.43 to - 2.67 and 87Sr/ 86Sr( i) = 0.7048-0.7059 for granodiorites and granites. δ18O values range from + 6.18 to + 7.80‰ (VSMOW) for gabbros and from + 6.86 to + 8.89

  13. The role of carbon from recycled sediments in the origin of ultrapotassic igneous rocks in the Central Mediterranean

    NASA Astrophysics Data System (ADS)

    Conticelli, Sandro; Avanzinelli, Riccardo; Ammannati, Edoardo; Casalini, Martina

    2015-09-01

    The Central Mediterranean region is one of the most important areas on Earth for studying subduction-related potassic and ultrapotassic magmatism, derived from partial melting of the metasomatised lithospheric mantle wedge. In this region, leucite-free (i.e., lamproite) and leucite-bearing (i.e., kamafugite, leucitite, and plagioleucitite) ultrapotassic rocks closely occur, in a time-related progression, linked to the evolution of both the mantle source and the regional tectonic regime. Time- and space-related magmatism migration followed the roll-back of the subducting slab and the anticlockwise drift of the Italian Peninsula. Leucite-free silica-rich lamproites are restricted to the early stage of magmatism and are associated with ultrapotassic shoshonites and high-K calc-alkaline volcanic rocks. Leucite-bearing (i.e., Roman Province) rocks are erupted consistently later than lamproite-like and associated shoshonitic rocks, with post-leucititic volcanism occurring in the late stage of volcanic activity with eruption of alkali-basaltic to latitic and trachytic rocks, often after major caldera-forming events. Present-day ultrapotassic volcanism is restricted to the Neapolitan area. Central Mediterranean potassic and ultrapotassic rocks are extremely enriched in incompatible trace elements with variable fractionation of Ta, Nb, and Ti in comparison to Th and large ion lithophile elements (LILE). They are also variably enriched in radiogenic Sr and Pb and unradiogenic Nd. The main geochemical and isotopic signatures are consistent with sediment recycling within the mantle wedge via subduction. A twofold metasomatism, induced by the recycle of pelitic sediments and dehydration of lawsonite-bearing schists generates the early metasomatic events that enriched the mantle wedge from which leucite-free ultrapotassic rocks (i.e., lamproite) were generated. Recycling of carbonate-rich pelites played an important role in the shift to silica-undersaturated ultrapotassic rocks

  14. Atmospheric PCO2 Perturbations Associated with the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Schaller, Morgan F.; Wright, James D.; Kent, Dennis V.

    2011-03-01

    The effects of a large igneous province on the concentration of atmospheric carbon dioxide (PCO2) are mostly unknown. In this study, we estimate PCO2 from stable isotopic values of pedogenic carbonates interbedded with volcanics of the Central Atlantic Magmatic Province (CAMP) in the Newark Basin, eastern North America. We find pre-CAMP PCO2 values of ~2000 parts per million (ppm), increasing to ~4400 ppm immediately after the first volcanic unit, followed by a steady decrease toward pre-eruptive levels over the subsequent 300 thousand years, a pattern that is repeated after the second and third flow units. We interpret each PCO2 increase as a direct response to magmatic activity (primary outgassing or contact metamorphism). The systematic decreases in PCO2 after each magmatic episode probably reflect consumption of atmospheric CO2 by weathering of silicates, stimulated by fresh CAMP volcanics.

  15. The Anisotropy of Magnetic Susceptibility of Igneous Rocks: Lessons From Obsidians and Pyroclastic Deposits

    NASA Astrophysics Data System (ADS)

    Canon-Tapia, E.

    2013-05-01

    The anisotropy of magnetic susceptibility (AMS) of igneous rocks differs from that of other lithologies in several aspects that are related to their characteristics of emplacement history. Nevertheless, within the group of igneous rocks there are also differences on emplacement mechanisms that can lead to specific and distinctive AMS signatures. In this work, a review of the most important emplacement regimes is made, paying special attention to the extreme conditions represented by obsidians and pyroclastic deposits. These two extreme emplacement regimes are controlled mainly by the viscosity of the fluid phase, but the differences in AMS signatures also includes other differences in the nature of the ferromagnetic grains that are present in the rocks during emplacement. For example, the results of this work indicate that the AMS can be associated to a population of ferromagnetic minerals of a submicroscopic size, despite of which it can be very well defined and yield large degrees of anisotropy. It is suggested that the AMS associated to such population of small grains might indeed be the origin of the AMS of other igneous rocks that have an optically observable fraction of mineral grains, although until present it had been overlooked in most instances. As it had been suggested before, use of tests designed to identify the contribution of a superparamagnetic fraction (SP) in the magnetic properties of a rock can help us to identify the presence of such a SP-related AMS in other cases.

  16. Classification Scheme for Diverse Sedimentary and Igneous Rocks Encountered by MSL in Gale Crater

    NASA Technical Reports Server (NTRS)

    Schmidt, M. E.; Mangold, N.; Fisk, M.; Forni, O.; McLennan, S.; Ming, D. W.; Sumner, D.; Sautter, V.; Williams, A. J.; Gellert, R.

    2015-01-01

    The Curiosity Rover landed in a lithologically and geochemically diverse region of Mars. We present a recommended rock classification framework based on terrestrial schemes, and adapted for the imaging and analytical capabilities of MSL as well as for rock types distinctive to Mars (e.g., high Fe sediments). After interpreting rock origin from textures, i.e., sedimentary (clastic, bedded), igneous (porphyritic, glassy), or unknown, the overall classification procedure (Fig 1) involves: (1) the characterization of rock type according to grain size and texture; (2) the assignment of geochemical modifiers according to Figs 3 and 4; and if applicable, in depth study of (3) mineralogy and (4) geologic/stratigraphic context. Sedimentary rock types are assigned by measuring grains in the best available resolution image (Table 1) and classifying according to the coarsest resolvable grains as conglomerate/breccia, (coarse, medium, or fine) sandstone, silt-stone, or mudstone. If grains are not resolvable in MAHLI images, grains in the rock are assumed to be silt sized or smaller than surface dust particles. Rocks with low color contrast contrast between grains (e.g., Dismal Lakes, sol 304) are classified according to minimum size of apparent grains from surface roughness or shadows outlining apparent grains. Igneous rocks are described as intrusive or extrusive depending on crystal size and fabric. Igneous textures may be described as granular, porphyritic, phaneritic, aphyric, or glassy depending on crystal size. Further descriptors may include terms such as vesicular or cumulate textures.

  17. Criticality Potential of Waste Packages Containing DOE SNF Affected by Igneous Intrusion

    SciTech Connect

    D.S. Kimball; C.E. Sanders

    2006-02-07

    The Department of Energy (DOE) is currently preparing an application to submit to the U.S. Nuclear Regulatory Commission for a construction authorization for a monitored geologic repository. The repository will contain spent nuclear fuel (SNF) and defense high-level waste (DHLW) in waste packages placed in underground tunnels, or drifts. The primary objective of this paper is to perform a criticality analysis for waste packages containing DOE SNF affected by a disruptive igneous intrusion event in the emplacement drifts. The waste packages feature one DOE SNF canister placed in the center and surrounded by five High-Level Waste (HLW) glass canisters. The effective neutron multiplication factor (k{sub eff}) is determined for potential configurations of the waste package during and after an intrusive igneous event. Due to the complexity of the potential scenarios following an igneous intrusion, finding conservative and bounding configurations with respect to criticality requires some additional considerations. In particular, the geometry of a slumped and damaged waste package must be examined, drift conditions must be modeled over a range of parameters, and the chemical degradation of DOE SNF and waste package materials must be considered for the expected high temperatures. The secondary intent of this calculation is to present a method for selecting conservative and bounding configurations for a wide range of end conditions.

  18. The last stages of the Avalonian-Cadomian arc in NW Iberian Massif: isotopic and igneous record for a long-lived peri-Gondwanan magmatic arc

    NASA Astrophysics Data System (ADS)

    Andonaegui, Pilar; Arenas, Ricardo; Albert, Richard; Sánchez Martínez, Sonia; Díez Fernández, Rubén; Gerdes, Axel

    2016-06-01

    The upper allochthonous units of NW Iberian Massif contain an extensive Cambrian magmatism (c. 500 Ma), covering felsic to mafic compositions. The magmatic activity generated large massifs of granitoids and gabbros, with calc-alkaline and tholeiitic compositions respectively. Petrological and geochemical features of these massifs are characteristic of volcanic arc. The plutons intruded siliciclastic sedimentary series deposited in the periphery of the West Africa Craton. U-Pb/Hf isotopic compositions of detrital zircon in the siliciclastic host series, indicate continental arc activity between c. 750 Ma and c. 500 Ma. It was characterized by a large variety of isotopic sources, including from very old continental input, even Archean, to the addition of a significant amount of juvenile mafic material. These isotopic sources experienced an extensive mixing that explains the composition and isotopic features (εHft from - 50 until + 15) of the represented Cambrian plutons. The Cambrian igneous rocks of the upper units of NW Iberia are related to the latest activity of the Avalonian-Cadomian arc. From the Middle Cambrian arc activity in the periphery of Gondwana was replaced by pronounced extension associated with the development of continental rifting, which finally led to separation of the microcontinent Avalonia. Subsequent drifting of Avalonia to the North caused progressive opening one of the main Paleozoic ocean, the Rheic Ocean.

  19. A review of scientific literature examining the mining history, geology, mineralogy, and amphibole asbestos health effects of the Rainy Creek igneous complex, Libby, Montana, USA.

    PubMed

    Bandli, Bryan R; Gunter, Mickey E

    2006-11-01

    This article reviews the past 90 yr of scientific research directed on multiple aspects of the unique geology and environmental health issues surrounding the vermiculite deposit found at Libby, MT. Hydrothermal alteration and extensive weathering of the ultramafic units resulted in the formation of a rich deposit of vermiculite that was mined for 67 yr and used in numerous consumer products in its expanded form. Later intrusions of alkaline units caused hydrothermal alteration of the pyroxenes, resulting in formation of amphiboles. Some of these amphiboles occur in the asbestiform habit and have been associated with pulmonary disease in former miners and mill workers. Identification of these amphibole asbestos minerals has received little attention in the past, but recent work shows that the majority of the amphibole mineral species present may not be any of the amphibole species currently regulated by government agencies. Epidemiological studies on former miners have, nevertheless, shown that the amphibole asbestos from the Rainy Creek igneous complex is harmful; also, a recent study by the Agency for Toxic Substances and Disease Registry shows that residents of Libby who had not been employed in the vermiculite mining or milling operations also appear to have developed asbestos-related pulmonary diseases at a higher rate than the general public elsewhere. Since November 1999, the U.S. Environmental Protection Agency has been involved in the cleanup of asbestos-contaminated sites in and around Libby associated with the mining and processing of vermiculite. PMID:16920668

  20. Source of Mesozoic intermediate-felsic igneous rocks in the North China craton: Granulite xenolith evidence

    NASA Astrophysics Data System (ADS)

    Jiang, Neng; Carlson, Richard W.; Guo, Jinhui

    2011-07-01

    Four intermediate to felsic igneous rocks from the Zhangjiakou region, along the northern margin of the North China craton, have magmatic zircon U-Pb ages from 122 to 144 Ma. Two of these samples have inherited zircon U-Pb ages of ~ 2.5 Ga, similar to the zircon ages of rocks from the surrounding granulite terrain. Zircons from two intermediate composition granulite xenoliths (JN0811 and JN0919) in the nearby Cenozoic Hannuoba basalts yield two groups of ages. The rims have concordant Mesozoic ages mostly between 120 and 145 Ma, coeval with the Mesozoic intermediate-felsic magmatism in the region, while the cores have discordant U-Pb ages with upper-intercepts of ~ 2.5 Ga, overlapping the zircon ages of granulite terrain rocks, and lower-intercept ages of ~ 130 Ma, approximating the ages of the Mesozoic intermediate-felsic magmatism. The Sr-Nd isotopic compositions of the Mesozoic intermediate-felsic igneous rocks are completely different from those expected for basaltic melts from either the lithospheric mantle or the asthenospheric mantle, precluding a derivation by extensive fractional crystallization of mantle-derived magmas. The lack of correlation between (86Sr/87Sr)i, εNd(t) and SiO2 for the Mesozoic igneous rocks, the very narrow range of zircon εHf(t) for individual intermediate-felsic igneous rocks, and simple binary mixing calculations argue against them being formed by mixing between mantle-derived magma and preexisting crust that has extremely evolved Sr-Nd isotopic compositions like granulite xenoliths JN0811 and JN0919. Hf isotopic compositions of the Mesozoic zircons and whole-rock geochemistry show that the granulite xenoliths with extremely evolved Sr-Nd isotopic compositions have not undergone partial melting during the Mesozoic and thus do not contribute to the Mesozoic intermediate-felsic magmas. Further comparisons show that the source rocks for the Mesozoic intermediate-felsic magmas likely were late Archean lower crustal rocks similar in

  1. Mafic volcaniclastic deposits in flood basalt provinces: A review

    NASA Astrophysics Data System (ADS)

    Ross, P.-S.; Ukstins Peate, I.; McClintock, M. K.; Xu, Y. G.; Skilling, I. P.; White, J. D. L.; Houghton, B. F.

    2005-07-01

    Flood volcanic provinces are assumed generally to consist exclusively of thick lavas and shallow intrusive rocks (mostly sills), with any pyroclastic rocks limited to silicic compositions. However, mafic volcaniclastic deposits (MVDs) exist in many provinces, and the eruptions that formed such deposits are potentially meaningful in terms of potential atmospheric impacts and links with mass extinctions. The province where MVDs are the most voluminous—the Siberian Traps—is also the one temporally associated with the greatest Phanerozoic mass extinction. A lot remains to be learned about these deposits and eruptions before a convincing genetic link can be established, but as a first step, this contribution reviews in some detail the current knowledge on MVDs for the provinces in which they are better known, i.e. the North Atlantic Igneous Province (including Greenland, the Faeroe Islands, the British Isles, and tephra layers in the North Sea basin and vicinity), the Ontong Java plateau, the Ferrar, and the Karoo. We also provide a brief overview of what is known about MVDs in other provinces such as the Columbia River Basalts, the Afro-Arabian province, the Deccan Traps, the Siberian Traps, the Emeishan, and an Archean example from Australia. The thickest accumulations of MVDs occur in flood basalt provinces where they underlie the lava pile (Faeroes: > 1 km, Ferrar province: ≥ 400 m, Siberian Traps: 700 m). In the Faeroes case, the great thickness of MVDs can be attributed to accumulation in a local sedimentary basin, but in the Ferrar and Siberian provinces the deposits are widespread (> 3 × 10 5 km 2 for the latter). On the Ontong Java plateau over 300 m of MVDs occur in one drill hole without any overlying lavas. Where the volcaniclastic deposits are sandwiched between lavas, their thickness is much less. In most of the cases reviewed, primary MVDs are predominantly of phreatomagmatic origin, as indicated by the clast assemblage generally consisting of

  2. Geologic Mapping in Nogal Peak Quadrangle: Geochemistry, Intrusive Relations and Mineralization in the Sierra Blanca Igneous Complex, New Mexico

    NASA Astrophysics Data System (ADS)

    Goff, F.; Kelley, S. A.; Lawrence, J. R.; Cikowski, C. T.; Krier, D. J.; Goff, C. J.; McLemore, V. T.

    2011-12-01

    Nogal Peak quadrangle is located in the northern Sierra Blanca Igneous Complex (SBIC) and contains most of the White Mountain Wilderness (geologic map is available at http://geoinfo.nmt.edu/publications/maps/geologic/ofgm/details.cfml?Volume=134). The geology of the quad consists of a late Eocene to Oligocene volcanic pile (Sierra Blanca Volcanics, mostly alkali basalt to trachyte) intruded by a multitude of dikes, plugs and three stocks: Rialto, 31.4 Ma (mostly syenite), Three Rivers, ca. 29 to 27 Ma (quartz syenite intruded by subordinate alkali granite), and Bonito Lake, 26.6 Ma (mostly monzonite). Three Rivers stock is partially surrounded by alkali rhyolites that geochemically resemble the alkali granites. The circular shape of the stock and surrounding rhyolites suggests they form the root of a probable caldera. SBIC rocks have compositions typical of those found within the Rocky Mountain alkaline belt and those associated with continental rift zone magmatism. Because the volcanic host rocks are deeply eroded, intrusive relations with the stocks are well exposed. Most contacts at stock margins are near vertical. Roof pendants are common near some contacts and stoped blocks up to 700 m long are found within the Three Rivers stock. Contacts, pendants and stoped blocks generally display some combination of hornfelsing, brecciation, fracturing, faulting and mineralization. Sierra Blanca Volcanics display hydrothermal alteration increasing from argillic in the NW sector of the quad to high-temperature porpylitic near stock margins. Retrograde phyllic alteration occurs within breccia pipes and portions of the stocks. Mineral deposits consist of four types: Placer Au, fissure veins (mostly Ag-Pb-Zn±Au), breccia pipes (Au-Mo-Cu), and porphyry Mo-Cu. A singular pipe on the SW margin of Bonito Lake stock contains sapphire-lazulite-alunite. Although Au has been intermittently mined in the quad since 1865, best production of Au originated around the turn of the last

  3. Tectonic evolution and crustal nature of the eastern Central Asian Orogenic Belt: Evidence from geochronology and geochemistry of early Paleozoic igneous rocks of the Lesser Xing'an Range, NE China

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Xu, W.; Pei, F.; Wang, F.; Guo, P.

    2015-12-01

    The Central Asian Orogenic Belt (CAOB) has become a hotspot of geological research, and was thought to record the most widespread event of Phanerozoic juvenile crust formation. NE China is located within the eastern CAOB, and is characterized by the Paleozoic amalgamation of micro-continental massifs, such as the Songnen-Zhangguangcai Range Massif (SZM) and Jiamusi Massif (JM). This paper presents new zircon U-Pb, Hf isotope, and whole-rock major and trace element data for early Paleozoic igneous rocks of the northern SZM, in order to constrain the early Paleozoic tectonic evolution and crustal nature of the eastern CAOB. Zircon U-Pb dating indicates that early Paleozoic magmatic events within the northern SZM can be subdivided into four stages: Middle Cambrian (~505 Ma), Late Cambrian (~490 Ma), Early-Middle Ordovician (~470 Ma), and Late Ordovician (460-450 Ma). Middle Cambrian monzogranites recorded the latest stage of continent (SZM)-continent (JM) collision, whereas Late Cambrian A-type granitoids suggest a post-collisional extension. Ordovician calc-alkaline igneous rocks recorded an active continental margin setting. Additionally, the large variations of zircon ɛHf(t) values for early Paleozoic igneous rocks from the northern SZM indicate heterogeneity of the deep crust beneath the study area. Furthermore, zircon Hf two-stage model ages for early Paleozoic igneous rocks from the northern SZM (prominent peaks around 1.9-1.8 and 1.5-1.4 Ga and secondary peaks between 1.3-1.2 Ga) and the JM (1.7-1.2 Ga), suggest significant reworking of the ancient crust rather than extensive juvenile crust formation during early Paleozoic and imply that these two massifs have similar histories of Mesoproterozoic and early Paleozoic crustal accretion and reworking, although the northern SZM contains much older crustal material than the JM. This work was supported by the National Basic Research Program of China (grant: 2013CB429802) and National Natural Science Foundation of

  4. Process for extracting technetium from alkaline solutions

    SciTech Connect

    Moyer, B.A.; Sachleben, R.A.; Bonnesen, P.V.

    1994-12-31

    This invention relates generally to a process for extracting technetium from nuclear wastes and more particularly to a process for extracting technetium from alkaline waste solutions containing technetium and high concentrations of alkali metal nitrates. A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate comprises the steps of: contacting the aqueous alkaline solution with a solvent consisting of a crown ether in a diluent, the diluent being a water-immiscible organic liquid in which the crown ether is soluble, for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution into the solvent; separating the solvent containing the technetium values from the aqueous alkaline solution; and stripping the technetium values from the solvent by contacting the solvent with water.

  5. Cenozoic intra-plate magmatism in the Darfur volcanic province: mantle source, phonolite-trachyte genesis and relation to other volcanic provinces in NE Africa

    NASA Astrophysics Data System (ADS)

    Lucassen, Friedrich; Pudlo, Dieter; Franz, Gerhard; Romer, Rolf L.; Dulski, Peter

    2013-01-01

    Chemical and Sr, Nd and Pb isotopic compositions of Late Cenozoic to Quaternary small-volume phonolite, trachyte and related mafic rocks from the Darfur volcanic province/NW-Sudan have been investigated. Isotope signatures indicate variable but minor crustal contributions. Some phonolitic and trachytic rocks show the same isotopic composition as their primitive mantle-derived parents, and no crustal contributions are visible in the trace element patterns of these samples. The magmatic evolution of the evolved rocks is dominated by crystal fractionation. The Si-undersaturated strongly alkaline phonolite and the Si-saturated mildly alkaline trachyte can be modelled by fractionation of basanite and basalt, respectively. The suite of basanite-basalt-phonolite-trachyte with characteristic isotope signatures from the Darfur volcanic province fits the compositional features of other Cenozoic intra-plate magmatism scattered in North and Central Africa (e.g., Tibesti, Maghreb, Cameroon line), which evolved on a lithosphere that was reworked or formed during the Neoproterozoic.

  6. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule. PMID:11328588

  7. River Valley pluton, Ontario: A late-Archean/early-Proterozoic anorthositic intrusion in the Grenville Province

    USGS Publications Warehouse

    Ashwal, L.D.; Wooden, J.L.

    1989-01-01

    The River Valley pluton is a ca. 100 km2 body of anorthositic and gabbroic rocks located about 50 km northeast of Sudbury, Ontario. The pluton is situated entirely within the Grenville Province, but its western margin is a series of imbricate thrust faults associated with the Grenville Front Tectonic Zone. It is dominated by coarse leuconorite and leucogabbro, with lesser anorthosite, gabbro, and rare ultramafics. Igneous textured rocks are abundant and consist of plagioclase (An60-70) charged with Fe-Ti oxide inclusions, low Ca pyroxene (orthopyroxene and/or inverted pigeonite) and augite. The most unfractionated rocks are minor olivine gabbros with Fo70-80. A variety of deformed and recrystallized equivalents of the igneous-textured rocks is also present, and these are composed largely of calcic plagioclase and hornblende. Ten samples, including both igneous and deformed lithologies give a Pb-Pb whole-rock isochron of 2560??155Ma, which is our best estimate of the time of primary crystallization. The River Valley pluton is thus the oldest anorthositic intrusive yet reported from the Grenville Province, but is more calcic and augitic than typical massifs, and lacks their characteristic Fe-Ti oxide ore deposits. The River Valley body may be more akin to similar gabbro-anorthosite bodies situated at the boundary between the Archean Superior Province and Huronian supracrustal belt of the Southern Province west of the Grenville Front. An Sm-Nd isochron from 3 igneous-textured leucogabbros and an augite mineral separate gives 2377 ?? 68 Ma, implying slight disturbance of the Sm-Nd whole-rock-mineral system during later metamorphism. The Rb-Sr system has been substantially disturbed, giving an age of 2185 ?? 105 Ma, which is similar to internal Pb-Pb isochron ages of 2165 ?? 130 Ma and 2100 ?? 35 Ma for two igneous-textured rocks. It is uncertain whether these ages correspond to a discrete event at this time or represent a partial resetting of the Rb-Sr and Pb

  8. Sensitivity of high-elevation streams in the Southern Blue Ridge Province to acidic deposition

    USGS Publications Warehouse

    Winger, P.V.; Lasier, P.J.; Hudy, M.; Fowler, D.; Van Den Avyle, M.J.

    1987-01-01

    The Southern Blue Ridge Province, which encompasses parts of northern Georgia, eastern Tennessee, and western North Carolina, has been predicted to be sensitive to impacts from acidic deposition, owing to the chemical composition of the bedrock geology and soils. This study confirms the predicted potential sensitivity, quantifies the level of total alkalinity and describes the chemical characteristics of 30 headwater streams of this area. Water chemistry was measured five times between April 1983 and June 1984 at first and third order reaches of each stream during baseflow conditions. Sensitivity based on total alkalinity and the Calcite Saturation Index indicates that the headwater streams of the Province are vulnerable to acidification. Total alkalinity and p11 were generally higher in third order reaches (mean, 72 ?eq/? and 6.7) than in first order reaches (64 ?eq/? and 6.4). Ionic concentrations were low, averaging 310 and 340 ?eq/? in first and third order reaches, respectively. A single sampling appears adequate for evaluating sensitivity based on total alkalinity, but large temporal variability requires multiple sampling for the detection of changes in pH and alkalinity over time. Monitoring of stream water should continue in order to detect any subtle effects of acidic deposition on these unique resource systems.

  9. On the origin of the Amerasia Basin and the High Arctic Large Igneous Province—Results of new aeromagnetic data

    NASA Astrophysics Data System (ADS)

    Døssing, A.; Jackson, H. R.; Matzka, J.; Einarsson, I.; Rasmussen, T. M.; Olesen, A. V.; Brozena, J. M.

    2013-02-01

    The history of the 2.5 million km2 Amerasia Basin (sensu lato) is in many ways the least known in the global tectonic system. Radically different hypotheses proposed to explain its origin are supported only by inconclusive and/or indirect observations and several outstanding issues on the origin of the Basin remain unaddressed. The difficulty lies in the geodynamic evolution and signature of the Basin being overprinted by excess volcanism of the Alpha-Mendeleev Ridge complex, part of the High Arctic Large Igneous Province (HALIP) and one of the largest (>1 million km2) and most intense magmatic and magnetic complexes on Earth. Here, we present the results of a 550,000 km2 aerogeophysical survey over the poorly explored Lomonosov Ridge (near Greenland) and adjoining Amerasia and Eurasia Basins that provides the first direct evidence for consistent linear magnetic features between the Alpha and Lomonosov Ridges, enabling the tectonic origin of both the Amerasia Basin and the HALIP to be constrained. A landward Lower Cretaceous (∼138-125(120) Ma) giant dyke swarm (minimum 350×800 km2) and tentative oceanward Barremian (or alternatively lower Valanginian-Barremian) seafloor spreading anomalies are revealed. Prior to Cenozoic opening of the Eurasia Basin the giant dyke swarm stretched from Franz Josef Land to the southern Alpha Ridge and possibly further to Queen Elisabeth Islands, Canada. The swarm points towards a 250-km-wide donut-shaped anomaly on the southern Alpha Ridge, which we propose was the centre of the HALIP mantle plume, suggesting that pronounced intrusive activity, associated with an Alpha Ridge mantle plume, took place well before the Late Cretaceous Superchron and caused continental breakup in the northern Amerasia Basin. Our results imply that at least the southern Alpha Ridge as well as large parts of the area between the Lomonosov and southern Alpha Ridges are highly attenuated continental crust formed by poly-phase breakup with LIP volcanic

  10. Geological setting, emplacement mechanism and igneous evolution of the Atchiza mafic-ultramafic layered suite in north-west Mozambique

    NASA Astrophysics Data System (ADS)

    Ibraimo, Daniel Luis; Larsen, Rune B.

    2015-11-01

    The Atchiza mafic and ultramafic-layered suite (hereafter, "Atchiza Suite) crops out in an area 330 km2 west of the Mozambican Tete province. In an early account of the geology of this intrusion, it was considered the continuation of the Great Dyke of Zimbabwe, an idea that was aborted after detailed studies. Nevertheless, the Ni concentrations in the Atchiza outcrop rocks are considerable. Our investigation used field evidence, hand specimens and petrography descriptions, mineral chemistry studies using electron microprobe analysis and tectonic analysis to arrive at a plausible mineralogical composition and understanding of the tectonic setting for the igneous evolution. The mineral composition from the Atchiza Suite indicates that these are cumulates. The magmatic segregation from the petrographic and mineral composition reasoning indicates that dunite-lherzolitic peridotite-olivine gabbro-gabbronorite-gabbro-pegmatitic gabbro is the rock formation sequence. Olivine and chromite were the first phases formed, followed by pyroxene and plagioclase. In addition, it is shown that these minerals are near-liquidus crystallization products of basaltic magma with olivine Fo: 87.06 in dunite, mean values of clinopyroxene are (Wo: 36.4, En: 48.0, Fs: 15.2), orthopyroxene (Wo: 2.95, En: 73.0, Fs: 24.2) and plagioclase An: 71.3, respectively. Opaque minerals comprise Fe-Ti oxides and (Fe, Cr) spinel up to 4.8 vol.%, but chromitite layers are not present. Most of the opaque minerals are interstitial to pyroxene. Sulphides are common in gabbros, with pyrrhotite, pentlandite, chalcopyrite, pyrite and covellite together comprising 0.4-2.0 vol.%. The whole rock Rare Earth Element (REE) concentrations are mainly a result of differentiation, but slight crustal contamination/assimilation contributed to the REE contents. In addition, they also show Eu enrichment, suggesting that plagioclase fractionation was important in the rock. The Atchiza Suite preserves a deep-seated plumbing

  11. Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2014-07-01

    The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10-4%U and 916 × 10-4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.

  12. Feldspar-Bearing Igneous Rocks at Gale: A ChemCam Campaign

    NASA Astrophysics Data System (ADS)

    Sautter, V.; Fabre, C.; Toplis, M.; Wiens, R. C.; Gasnault, O.; Forni, O.; Mangold, N.

    2014-09-01

    We present the first in situ evidences of feldspar-rich rocks ranging from granodioritic and alkalin effusive rocks (trachy basalts and syenitic liquids). Implication for primitive noachain crust will be discussed.

  13. Petrochemistry and hydrothermal alteration within the Tyrone Igneous Complex, Northern Ireland: implications for VMS mineralization in the British and Irish Caledonides

    NASA Astrophysics Data System (ADS)

    Hollis, Steven P.; Roberts, Stephen; Earls, Garth; Herrington, Richard; Cooper, Mark R.; Piercey, Stephen J.; Archibald, Sandy M.; Moloney, Martin

    2014-06-01

    Although volcanogenic massive sulfide (VMS) deposits can form within a wide variety of rift-related tectonic environments, most are preserved within suprasubduction affinity crust related to ocean closure. In stark contrast to the VMS-rich Appalachian sector of the Grampian-Taconic orogeny, VMS mineralization is rare in the peri-Laurentian British and Irish Caledonides. Economic peri-Gondwanan affinity deposits are limited to Avoca and Parys Mountain. The Tyrone Igneous Complex of Northern Ireland represents a ca. 484-464 Ma peri-Laurentian affinity arc-ophiolite complex and a possible broad correlative of the Buchans-Robert's Arm belt of Newfoundland, host to some of the most metal-rich VMS deposits globally. Stratigraphic horizons prospective for VMS mineralization in the Tyrone Igneous Complex are associated with rift-related magmatism, hydrothermal alteration, synvolcanic faults, and high-level subvolcanic intrusions (gabbro, diorite, and/or tonalite). Locally intense hydrothermal alteration is characterized by Na-depletion, elevated SiO2, MgO, Ba/Sr, Bi, Sb, chlorite-carbonate-pyrite alteration index (CCPI) and Hashimoto alteration index (AI) values. Rift-related mafic lavas typically occur in the hanging wall sequences to base and precious metal mineralization, closely associated with ironstones and/or argillaceous sedimentary rocks representing low temperature hydrothermal venting and volcanic quiescence. In the ca. 475 Ma pre-collisional, calc-alkaline lower Tyrone Volcanic Group rift-related magmatism is characterized by abundant non-arc type Fe-Ti-rich eMORB, island-arc tholeiite, and low-Zr tholeiitic rhyolite breccias. These petrochemical characteristics are typical of units associated with VMS mineralization in bimodal mafic, primitive post-Archean arc terranes. Following arc-accretion at ca. 470 Ma, late rifting in the ensialic upper Tyrone Volcanic Group is dominated by OIB-like, subalkaline to alkali basalt and A-type, high-Zr rhyolites. These units

  14. Carbonatite and alkaline intrusion-related rare earth element deposits–A deposit model

    USGS Publications Warehouse

    Verplanck, Philip L.; Van Gosen, Bradley S.

    2011-01-01

    The rare earth elements are not as rare in nature as their name implies, but economic deposits with these elements are not common and few deposits have been large producers. In the past 25 years, demand for rare earth elements has increased dramatically because of their wide and diverse use in high-technology applications. Yet, presently the global production and supply of rare earth elements come from only a few sources. China produces more than 95 percent of the world's supply of rare earth elements. Because of China's decision to restrict exports of these elements, the price of rare earth elements has increased and industrial countries are concerned about supply shortages. As a result, understanding the distribution and origin of rare earth elements deposits, and identifying and quantifying our nation's rare earth elements resources have become priorities. Carbonatite and alkaline intrusive complexes, as well as their weathering products, are the primary sources of rare earth elements. The general mineral deposit model summarized here is part of an effort by the U.S. Geological Survey's Mineral Resources Program to update existing models and develop new descriptive mineral deposit models to supplement previously published models for use in mineral-resource and mineral-environmental assessments. Carbonatite and alkaline intrusion-related REE deposits are discussed together because of their spatial association, common enrichment in incompatible elements, and similarities in genesis. A wide variety of commodities have been exploited from carbonatites and alkaline igneous rocks, such as rare earth elements, niobium, phosphate, titanium, vermiculite, barite, fluorite, copper, calcite, and zirconium. Other enrichments include manganese, strontium, tantalum, thorium, vanadium, and uranium.

  15. Classification of mafic clasts from mesosiderites: Implications for endogenous igneous processes

    SciTech Connect

    Rubin, A.E. ); Mittlefehldt, D.W. )

    1992-02-01

    The authors have analyzed thirteen igneous pebbles from the Vaca Muerta, EET87500, and Bondoc mesosiderites by electron microprobe and instrumental neutron activation and combined these data with literature data for forty-three analyzed mesosiderite clasts. They classify these well-characterized clasts into the following five principal groups: (1) Polygenic and monogenic cumulates (39%) are coarse-grained gabbros that are highly depleted in incompatible elements (relative to H chondrites); they formed at moderate depth either as residues of low-degree partial melting of pre-existing cumulate eucrites or as cumulates from parent melts similar to cumulate eucrites. (2) Polygenic basalts (30%) are finer-grained rocks with positive europium anomalies, La/Lu ratios < 1, and lower rare earth element abundances than basaltic eucrites. It seems likely that these rocks were formed near their parent body surface by remelting mixtures of major amounts of basaltic eucrites and lesser amounts of cumulate eucrites. (3) Quench-textured rocks comprise two compositional groups, (a) those which resemble basaltic eucrites (5%), and (b) those which resemble cumulate eucrites (2%). The quench-textured rocks are probably monogenic; they formed most likely when small-scale impacts at their parent body surface totally melted small amounts of basaltic or cumulate eucrite material. (4) Monogenic basalts (11%) resemble basaltic eucrites and formed by endogenous igneous processes on the mesosiderite parent body (MPB). (5) Ultramafic rocks are cumulates consisting mainly of large crystals of orthopyroxene (9%) or olivine (4%). Orthopyroxenite clasts closely resemble diogenites and were formed most likely by endogenous igneous processes.

  16. Diverse sources for igneous blocks in Franciscan melanges, California Coast Ranges

    SciTech Connect

    MacPherson, G.J. ); Phipps, S.P. ); Grossman, J.N. )

    1990-11-01

    Igneous blocks in Franciscan melanges are of three chemical-petrologic types: (1) tholeiitic basalts of both arc and spreading center origin, with depletions in light relative to heavy rare-earth elements, 3% > TiO{sub 2} > 1%, high Y/Zr and Y/Ti ratios, and relict augites that generally have low Al and Ti and well-defined iron-enrichment trends; (2) basalts of probable seamount origin with marked enrichments in light relative to heavy rare-earth elements, 5% > TiO{sub 2} > 1%, lower Y/Zr and Y/Ti than (1), and Ti-Al-rich augites showing little if any iron-enrichment trends; and (3) hypabyssal intrusives having SiO{sub 2} > 52%, TiO{sub 2} < 1%, flat or only slightly fractionated rare-earth-abundance patterns, and diopsidic augites that are very low in Ti and Al and show no iron-enrichment trends. All of the blocks are metamorphosed; most are undeformed pumpellyite-bearing greenstones, and a few contain sodic amphibole {plus minus} lawsonite {plus minus} sodic pyroxene. The melanges are probably olistostromal in origin, deriving their igneous block detritus both from the downgoing Pacific plate (ocean floor basalts and seamounts) and from the hanging wall of the Franciscan trench (basalts and arc-related silic intrusive rocks). The silicic intrusive rocks and some of the basalts are eroded fragments of the fore-arc crust that ultimately become the Coast Range Ophiolite. These fragments were incorporated into the Franciscan trench fill and subducted. Results suggest that the igneous blocks in ophiolitic melanges provide important information about melange formation and about the tectonics and paleogeography of the regions in which the melanges are found.

  17. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  18. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  19. Inorganic-organic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1978-01-01

    A flexible separator is reported for use between the electrodes of Ni-Cd and Ni-Zn batteries using alkaline electrolytes. The separator was made by coating a porous substrate with a battery separator composition. The coating material included a rubber-based resin copolymer, a plasticizer and inorganic and organic fillers which comprised 55% by volume or less of the coating as finally dried. One or more of the filler materials, whether organic or inorganic, is preferably active with the alkaline electrolyte to produce pores in the separator coating. The plasticizer was an organic material which is hydrolyzed by the alkaline electrolyte to improve conductivity of the separator coating.

  20. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  1. Igneous origin of K-feldspar Megacrysts in Granitic Rocks of the Sierra Nevada Batholith

    NASA Astrophysics Data System (ADS)

    Moore, J. G.; Sisson, T. W.

    2007-12-01

    Study of the four principal K-feldspar megacrystic granitic plutons and related porphyrys in the Sierra Nevada composite batholith indicates that the included megacrysts are phenocrysts that grew in contact with granitic melt in long-lasting magma chambers. These 89-83 Ma plutons or intrusions are the youngest in the range, and represent the culminating magmatic phase of the batholith. They are the: Granodiorite of Topaz Lake; Cathedral Peak Granodiorite, Mono Creek Granite, Whitney Granodiorite, Johnson Granite Porphyry, and Golden Bear Dike. The zoned megacrysts in each of these igneous bodies attain 4-10 cm in length and all display oscillatory zoning with each zone beginning with a sharp increase followed by a gradual decrease in the concentration of BaO - commonly from 3 to 1 weight percent. Some of the more pronounced zones overlie resorption and channeling features on the underlying zone. Trains of small mineral inclusions (plagioclase, biotite, hornblende, quartz, sphene, and accessory minerals) are parallel to the BaO-delineated zones. The long axes of the inclusions are preferentially aligned parallel to the zone boundaries and inclusions are sorted by size from zone to zone. The growth temperature of sphene included in K-feldspar megacrysts is estimated by use of a Zr-in-sphene geothermometer. The sphene grains all yield igneous temperatures, mainly 735 - 760 °C. Sphene grains in the granodiorite host marginal to the megacrysts range to lower growth temperatures, in some instances into the subsolidus range. The zoning of the megacrysts, their presence in quenched porphry dikes, and the limited range and igneous values of growth temperatures of sphene inclusions within them, support the interpretation that the megacrysts formed as igneous sanidine phenocrysts, and that intrusion temperatures varied by only small amounts while the megacrysts grew. Each Ba- enriched zone was apparently formed by a repeated surge of new, hot melt injected into the large

  2. Lead isotope systematics of some igneous rocks from the Egyptian Shield

    NASA Technical Reports Server (NTRS)

    Gillespie, J. G.; Dixon, T. H.

    1983-01-01

    Lead isotope data on whole-rock samples and two feldspar separates for a variety of Pan-African (late Precambrian) igneous rocks for the Egyptian Shield are presented. It is pointed out that the eastern desert of Egypt is a Late Precambrian shield characterized by the widespread occurrence of granitic plutons. The lead isotope ratios may be used to delineate boundaries between Late Precambrian oceanic and continental environments in northeastern Africa. The samples belong to three groups. These groups are related to a younger plutonic sequence of granites and adamellites, a plutonic group consisting of older tonalites to granodiorites, and the Dokhan volcanic suite.

  3. The Kenna ureilite - An ultramafic rock with evidence for igneous, metamorphic, and shock origin

    NASA Technical Reports Server (NTRS)

    Berkley, J. L.; Brown, H. G.; Keil, K.; Carter, N. L.; Mercier, J.-C. C.; Huss, G.

    1976-01-01

    Ureilites are a rare group of achondrites. They are composed mainly of olivine and pigeonite in a matrix of carbonaceous material, including graphite, lonsdaleite, diamond, and metal. In most respects Kenna is a typical ureilite with the requisite mineralogical and chemical properties of the group. Differences of the Kenna ureilite from previously studied ureilites are related to a greater density, the occurrence of exceedingly minute quantities of feldspar, and a very strong elongation lineation of the silicate minerals. A description is presented of a study which indicates a complex history for Kenna, including igneous, mild metamorphic, and shock processes.

  4. Pre-Elsonian mafic magmatism in the Nain Igneous Complex, Labrador: the bridges layered intrusion

    USGS Publications Warehouse

    Ashwal, L.D.; Wiebe, R.A.; Wooden, J.L.; Whitehouse, M.J.; Snyder, Diane

    1992-01-01

    Decades of work on the pristine, unmetamorphosed, and well exposed anorthositic, mafic and granitic rocks of the Nain igneous complex, Labrador, have led to the conclusion that all plutonic rocks in that area were emplaced in a short time intercal at about 1300 ?? 10 Ma). We report here new isotopic data for mafic intrusive rocks that appear to have crystallized several hundred Ma earlier than the bulk of the plutonic activity in the Nain complex. The Bridges layered intrusion (BLI) is a small (15-20 km2) lens of layered mafic rocks about 1.5 km thick, surrounded and intruded by anorthositic, leuconoritic and leucotroctolitic plutons in the middle of the coastal section of the Nain igneous complex. BLI shows very well developed magmatic structures, including channel scours, slump structures, and ubiquitous modally graded layering. Most rocks, however, show granular textures indicative of recrystallization, presumably caused by emplacement of younger anorthositic rocks. BLI contains cumulate rocks with slightly more primitive mineral compositions (An60-83, Fo66-71) than those of other mafic intrusions in the Nain igneous complex, including Kiglapait. SmNd isotopic data for 7 BLI whole-rocks ranging in composition between olivine melagabbro and olivine leucogabbro yield an age of 1667 ?? 75 Ma, which we interpret as the time of primary crystallization. The internal isotopic systematics of the BLI have been reset, probably by intrusion of adjacent anorthositic plutons. A SmNd mineral isochron (plag, whole-rock, mafics) for a BLI olivine melagabbro gives an age of 1283 ?? 22 Ma, equivalent within error of a mineral array (plag, whole-rock, opx, cpx) for an adjacent, igneous-textured, leuconorite vein (1266 ?? 152 Ma). The initial Nd ratio for BLI corresponds to ??{lunate}Nd = -3.18 ?? 0.44. Other whole-rock samples, however, some with vein-like alteration (Chlorite, serpentine, amphiboles), show ??{lunate}Nd values as low as -9.1, suggesting variable contamination by

  5. Regional investigations of tectonic and igneous geology, Iran, Pakistan, and Turkey

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The author has identified the following significant results. An extension of the trace of the Chaman-Nushki fault was detected and delineated for 42 km, as was the Ornach-Nal fault for 170 km. Two structural intersections responsible for restricted movements in particular segments of the Chaman-Nushki fault were detected and interpreted. The newest and youngest fault named the Quetta-Mustung-Surab system was delineated for 580 km. The igneous complex of the Lasbela area was interpreted and differentiation was made between ultramafic complex, mafic complex, and basaltic lava flows. One oblong feature was also found which was interpreted as a porphyritic basalt plug.

  6. Intrusive origin of the Sudbury Igneous Complex: Structural and sedimentological evidence

    NASA Technical Reports Server (NTRS)

    Cowan, E. J.; Schwerdtner, W. M.

    1992-01-01

    In recent years, many geoscientists have come to believe that the Sudbury event was exogenic rather than endogenic. Critical to a recent exogenic hypothesis is the impact melt origin of the Sudbury Igneous Complex (SIC). Such origin implies that the SIC was emplaced before deposition of the Whitewater Group, in contrast to origins in which the SIC postdates the lithification of the Onaping Formation. Structural and sedimentological evidence is summarized herein that supports an intrusion of the SIC after lithification of all Whitewater Group strata, and conflicts with the hypothesis advanced by other researchers.

  7. Diverse, Alkali-Rich Igneous and Volcaniclastic Rocks Reflect a Metasomatised Mantle Beneath Gale Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, M. E.; Baker, M. B.; Berger, J. A.; Fisk, M. R.; Gellert, R.; McLennan, S. M.; Newcombe, M. E.; Stolper, E. M.; Thompson, L. M.

    2014-12-01

    Although Curiosity landed in a sedimentary setting, geochemical compositions determined by Alpha Particle X-ray Spectrometer (APXS) and ChemCam suggest that major element concentrations of some rocks were little modified by chemical weathering, and in these cases, the bulk (>70%) of the crystalline components determined by ChemMin are igneous. Gale rocks can therefore largely preserve the composition of their igneous protoliths and provide insight into the crystalline basement exposed in the north crater rim. Four end-member compositions are recognized on the basis of APXS analyses. (1) The diverse, evolved Jake M class (n=12) of inferred igneous origin includes float blocks and cobbles. Jake M rocks are phonotephritic/mugearitic to trachyandesitic and characterized by low MgO contents (3.0-5.7 wt%) and high Al and alkalis, particularly Na2O (up to 7.35 wt%). (2) The Bathurst class of siltstones to coarse sandstones (n=13) occurs as dark-toned float and bedded outcrop and is basaltic to trachybasaltic, ranging to high K2O (up to 3.8 wt%). Alteration of the protolith(s) or during diagenesis may have affected this class. (3) The Darwin class of conglomerates to coarse sandstones (n=10) has high Na and Al, likely reflecting a sodic plagioclase-rich mineralogy, but with higher Fe than Jake M class (13.0-17.1 vs. 6.0-12.5 wt%). (4) The low alkali "normal" Mars basaltic composition is typified by the Portage soils (n=6) and the John Klein class (n=13; includes the Sheepbed mudstone). Some degree of mixing and/or contamination with this low alkali basaltic compositon has affected all APXS analyses. Overall, Gale rocks are strongly enriched in total alkalis (at the same MgO) relative to basaltic shergottites and many have higher K2O than igneous rocks analyzed by Spirit and Opportunity, suggesting that the mantle beneath Gale is alkali-rich (likely as a result of a metasomatic event) and that alkalis are heterogeneously distributed in the planet's interior.

  8. A review of the occurrence, form and origin of C-bearing species in the Khibiny Alkaline Igneous Complex, Kola Peninsula, NW Russia

    NASA Astrophysics Data System (ADS)

    Nivin, V. A.; Treloar, P. J.; Konopleva, N. G.; Ikorsky, S. V.

    2005-11-01

    The Khibiny Complex hosts a wide variety of carbon-bearing species that include both oxidized and reduced varieties. Oxidised varieties include carbonate minerals, especially in the carbonatite complex at the eastern end of the pluton, and Na-carbonate phases. Reduced varieties include abiogenic hydrocarbon gases, particularly methane and ethane, dispersed bitumens, solid organic substances and graphite. The majority of the carbon in the Khibiny Complex is hosted in either the carbonatite complex or within the so-called "Central Arch". The Central Arch is a ring-shaped structure which separates khibinites (coarse-grained eudialite-bearing nepheline-syenites) in the outer part of the complex from lyavochorrites (medium-grained nepheline-syenites) and foyaites in the inner part. The Central Arch is petrologically diverse and hosts the major REE-enriched apatite-nepheline deposits for which the complex is best known. It also hosts zones with elevated hydrocarbon (dominantly methane) gas content and zones of hydrothermally deposited Na-carbonate mineralisation. The hydrocarbon gases are most likely the product of a series of post-magmatic abiogenic reactions. It is likely that the concentration of apatite-nepheline deposits, hydrocarbon gases and Na-carbonate mineralisation, is a function of long lived fluid percolation through the Central Arch. Fluid migration was facilitated by stress release during cooling and uplift of the Khibiny Complex. As a result, carbon with a mantle signature was concentrated into a narrow ring-shaped zone.

  9. Possible petrogenetic associations among igneous components in North Massif soils: Evidence in 2-4 mm soil particles from 76503

    NASA Technical Reports Server (NTRS)

    Jolliff, Bradley L.; Bishop, Kaylynn M.; Haskin, Larry A.

    1992-01-01

    Studies of Apollo 17 highland igneous rocks and clasts in breccias from the North and South Massifs have described magnesian troctolite, norite, anorthositic gabbro, dunite, spinel cataclasites, and granulitic lithologies that may have noritic anothosite or anorthositic norite/gabbro as igneous precursors, and have speculated on possible petrogenetic relationships among these rock types. Mineral compositions and relative proportions of plagioclase and plagioclase-olivine particles in samples 76503 indicate that the precursor lithology of those particles were troctolitic anorthosite, not troctolite. Mineral and chemical compositions of more pyroxene-rich, magnesian breccias and granulites in 76503 indicate that their precursor lithology was anorthositic norite/gabbro. The combination of mineral compositions and whole-rock trace-element compositional trends supports a genetic relationship among these two groups as would result from differentiation of a single pluton. Although highland igneous lithologies in Apollo 17 materials have been described previously, the proportions of different igneous lithologies present in the massifs, their frequency of association, and how they are related are not well known. We consider the proportions of, and associations among, the igneous lithologies found in a North Massif soil, which may represent those of the North Massif or a major part of it.

  10. Composite seal reduces alkaline battery leakage

    NASA Technical Reports Server (NTRS)

    Clatterbuck, C. H.; Plitt, K. F.

    1965-01-01

    Composite seal consisting of rubber or plastic washers and a metal washer reduces alkaline battery leakage. Adhesive is applied to each washer interface, and the washers are held together mechanically.

  11. Tectonic implications of Paleozoic and Mesozoic igneous rocks in subsurface of peninsular Florida

    SciTech Connect

    Mueller, P.A.; Porch, J.W.

    1983-09-01

    The extensive Mesozoic and Cenozoic sedimentary sequences of peninsular Florida rest unconformably upon a basement of dominantly volcanic rocks. Major and trace element analyses of samples from six deep oil test wells in north-central and south-central pensinsular Florida suggest the existence of two distinct volcanic provinces. The northern province contains calc-alkalic andesitic to rhyolitic rocks similar to those found along modern convergent (ocean-continent) plate boundaries. The southern province is apparently a bimodal suite of basaltic and rhyolitic rocks. These rocks exhibit certain geochemical features which suggest they were generated in a continental rifting environment associated with a mantle plume. Available age data indicate the northern volcanic province is at least early Paleozoic in age, whereas the volcanism in the south occurred during early Mesozoic.

  12. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  13. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  14. Evaluation of the alkaline electrolysis of zinc

    SciTech Connect

    Meisenhelder, J.H.; Brown, A.P.; Loutfy, R.O.; Yao, N.P.

    1981-05-01

    The alkaline leach and electrolysis process for zinc production is compared to the conventional acid-sulfate process in terms of both energy saving and technical merit. In addition, the potential for industrial application of the alkaline process is discussed on the basis of present market conditions, possible future zinc market scenarios, and the probability of increased secondary zinc recovery. In primary zinc production, the energy-saving potential for the alkaline process was estimated to be greater than 10%, even when significantly larger electrolysis current densities than those required for the sulfate process are used. The principal technical advantages of the alkaline process are that it can handle low-grade, high-iron-content or oxidized ores (like most of those found in the US) in a more cost- and energy-efficient manner than can the sulfate process. Additionally, in the electrowinning operation, the alkaline process should be technically superior because a dendritic or sponge deposit is formed that is amenable to automated collection without interruption of the electrolysis. Also, use of the higher current densities would result in significant capital cost reductions. Alkaline-based electrolytic recovery processes were considered for the recycling of zinc from smelter baghouse dusts and from the potential source of nickel/zinc electric-vehicle batteries. In all comparisons, an alkaline process was shown to be technically superior and, particularly for the baghouse dusts, energetically and economically superior to alternatively proposed recovery methods based on sulfate electrolysis. It is concluded that the alkaline zinc method is an important alternative technology to the conventional acid zinc process. (WHK)

  15. Temporal chemical variations within lowermost jurassic tholeiitic magmas of the Central Atlantic Magmatic Province

    NASA Astrophysics Data System (ADS)

    Salters, Vincent J. M.; Ragland, P. C.; Hames, W. E.; Milla, K.; Ruppel, C.

    The Central Atlantic Magmatic Province (CAMP), of greater extent than any other large igneous province (LIP) yet identified surrounds the Central Atlantic in eastern North America, northeastern South America, western Africa, and southwestern Europe. It covers over 7×109 km2 and was active for no more than 4 Ma. Virtually all CAMP rocks are mafic tholeiites, and include both intrusives and extrusives. The most extensive intrusives, diabase (dolerite) dikes, occur in three main swarms on Pangaea: NW-, NE-, and NS trending. These mafic tholeiites can be classified based on their Ti contents into low-Ti (LTi), intermediate-Ti (ITi), and high-Ti (HTi). The NE swarm contains primarily the ITi magma type, whereas the NW swarm is heterogeneous and contains all three types. The N-S swarm contains highly evolved (high-Fe) quartz tholeiites in North America and ITi rocks in South America. These dike swarms can be correlated across the Atlantic basin on the basis of composition and attitude. The two principal magma types within the CAMP, LTi and ITi, were derived from mantle sources that were compositionally similar and contained both continental lithospheric and asthenospheric components. Compared with other large igneous provinces the CAMP basalts show depleted geochemical characteristics. Compositional differences between them are primarily due to differences in depth and degree of melting; LTi represents the deepest and greatest degrees of melting. The temporal progression of the chemical characteristics indicate deeper melting with time, which is consistent with a shallow (such as crustal thinning) and passive origin for the break-up of the Pangaean continent.

  16. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  17. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  18. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction

    PubMed Central

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-01-01

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins. PMID:24301173

  19. Late Triassic, arc-related, potassic igneous rocks in the North American Cordillera

    NASA Astrophysics Data System (ADS)

    Mortimer, N.

    1986-12-01

    Igneous rocks of Late Triassic age are widespread in the Cordillera of western North America and, except in Wrangellia, consist of subduction-related plutonic and volcanic suites. Many of these, including those in the Stikinia, Quesnellia, Rattlesnake Creek, and Jackson terrenes and in southern California, are clinopyroxene rich and belong to high-potassium and shoshonitic rock series, features that are generally absent from older and younger igneous rocks in the same terranes. The Late Triassic subduction-related rocks are exposed in two discontinuous belts that lie east and west of the Cache Creek terrane in Canada and correlative melange terranes farther south. Stratigraphic and structural data suggest that these belts were spatially separate magmatic arcs in Late Triassic time. Tectonic implications of this analysis include an explanation of Middle Jurassic Cordilleran deformation as the result of collision of the western with the eastern belt, absence of Late Triassic links between Stikinia and Quesnellia, disassociation of Stikinia with terranes in northwestern Nevada, and tentative correlation of the Wallowa (Seven Devils) terrane with Stikinia rather than Wrangellia. *Present address: New Zealand Geological Survey, Department of Scientific and Industrial Research, Private Bag, Dunedin, New Zealand

  20. Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction.

    PubMed

    Zhao, Zi-Fu; Dai, Li-Qun; Zheng, Yong-Fei

    2013-01-01

    Findings of coesite and microdiamond in metamorphic rocks of supracrustal protolith led to the recognition of continental subduction to mantle depths. The crust-mantle interaction is expected to take place during subduction of the continental crust beneath the subcontinental lithospheric mantle wedge. This is recorded by postcollisional mafic igneous rocks in the Dabie-Sulu orogenic belt and its adjacent continental margin in the North China Block. These rocks exhibit the geochemical inheritance of whole-rock trace elements and Sr-Nd-Pb isotopes as well as zircon U-Pb ages and Hf-O isotopes from felsic melts derived from the subducted continental crust. Reaction of such melts with the overlying wedge peridotite would transfer the crustal signatures to the mantle sources for postcollisional mafic magmatism. Therefore, postcollisonal mafic igneous rocks above continental subduction zones are an analog to arc volcanics above oceanic subduction zones, providing an additional laboratory for the study of crust-mantle interaction at convergent plate margins. PMID:24301173

  1. Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians

    NASA Astrophysics Data System (ADS)

    Cañón-Tapia, E.; Mendoza-Borunda, R.

    2014-12-01

    Measurement of the anisotropy of magnetic susceptibility (AMS) of igneous rocks can provide clues concerning their mechanism of formation and in particular are very helpful as flow direction indicators. Unlike other igneous rocks, however, pyroclastic density current deposits (PDCDs) present a challenge in the interpretation of AMS measurements due to the complexity of their mechanism of emplacement. In this paper we review the most common assumptions made in the interpretation of the AMS of PDCD, taking advantage of key lessons obtained from obsidians. Despite the complexities on the mechanism of formation of PDCDs, it is shown that a key element for the fruitful interpretation of AMS is to give proper attention to the various components likely to be involved in controlling their general petrofabric. The anisotropies of ferromagnetic crystals (whether as free phases or embedded within clasts or shards), and those of paramagnetic minerals (mainly ferrosilicates) need to be taken into consideration when interpreting the AMS measurements of PDCDs. Variations of the deposition regime both as a function of position and of time also need to be considered on the interpretations. Nevertheless, if a suitable sampling strategy is adopted, the potential of the AMS method as a petrofabric indicator is maximized.

  2. Raman spectroscopic characterization of a highly weathered basalt: Igneous mineralogy, alteration products, and a microorganism

    NASA Astrophysics Data System (ADS)

    Wang, Alian; Jolliff, Bradley L.; Haskin, Larry A.

    On-surface identification of minerals on Mars is likely to depend mainly on observations of rocks and soils as found, without access to fresh surfaces or other sample preparation. Both the original mineralogy of rocks and their alteration mineralogy will be important. To determine the capability of Raman spectroscopy to provide good mineralogical characterization of an altered igneous rock such as might be encountered on Mars, we have analyzed the heavily weathered, exterior surface of a cobble of Keweenawan basalt and compared the results with those from a roughly cut, unpolished interior surface, using a Raman point-counting method. Despite ubiquitous hematite, a strong Raman scatterer, and despite considerable alteration, original igneous plagioclase and pyroxene were identified and their approximate proportions determined from point-counting traverses on the original surface of the rock. Saponite, an alteration product, was easily identified on the freshly cut surface but could only occasionally be identified on the weathered surface, where saponite-rich areas were highly photoluminescent. Amygdular fill gave strong spectra of calcite and thomsonite (a zeolite). Tiny, sparse crustose lichen gave clear spectra of their waxy organic coating. On the basis of the surface Raman spectra alone, the rock could be identified as a mafic rock, probably basaltic, that was hydrothermally altered in an oxidizing environment at a temperature between ~250 and ~350°C.

  3. Intraterrestrial life in igneous ocean crust: advances, technologies, and the future (Invited)

    NASA Astrophysics Data System (ADS)

    Edwards, K. J.; Wheat, C. G.

    2010-12-01

    The “next frontier” of scientific investigation in the deep sub-seafloor microbial biosphere lies in a realm that has been a completely unexplored until just the past decade: the igneous oceanic crust. Problems that have hampered exploration of the “hard rock” marine deep biosphere have revolved around sample access (hard rock drilling is technologically complex), contamination (a major hurdle), momentum (why take on this challenge when the relatively “easier” marine muds also have been a frontier) and suspicion that microbes in more readily accessed using (simpler) non-drilling technologies - like vents - are truly are endemic of subsurface clades/activities. Since the late 1990’s, however, technologies and resultant studies on microbes in the igneous ocean crust deep biosphere have risen sharply, and offer a new and distinct view on this biome. Moreover, microbiologists are now taking leading roles in technological developments that are critically required to address this biosphere - interfacing and collaborating closely with engineers, genomic biologists, geologists, seismologists, and geochemists to accomplish logistically complex and long-term studies that bring observatory research to this deep realm. The future of this field for the least decade is rich - opportunities abound for microbiologists to play new roles in how we study microbiology in the deep subsurface in an oceanographic and Earth system science perspective.

  4. Geochemical Database for Igneous Rocks of the Ancestral Cascades Arc - Southern Segment, California and Nevada

    USGS Publications Warehouse

    du Bray, Edward A.; John, David A.; Putirka, Keith; Cousens, Brian L.

    2009-01-01

    Volcanic rocks that form the southern segment of the Cascades magmatic arc are an important manifestation of Cenozoic subduction and associated magmatism in western North America. Until recently, these rocks had been little studied and no systematic compilation of existing composition data had been assembled. This report is a compilation of all available chemical data for igneous rocks that constitute the southern segment of the ancestral Cascades magmatic arc and complement a previously completed companion compilation that pertains to rocks that constitute the northern segment of the arc. Data for more than 2,000 samples from a diversity of sources were identified and incorporated in the database. The association between these igneous rocks and spatially and temporally associated mineral deposits is well established and suggests a probable genetic relationship. The ultimate goal of the related research is an evaluation of the time-space-compositional evolution of magmatism associated with the southern Cascades arc segment and identification of genetic associations between magmatism and mineral deposits in this region.

  5. K/Na ratio of Cenozoic igneous rocks of the western United States

    USGS Publications Warehouse