Science.gov

Sample records for alkaline iron selenides

  1. Orbital-selective pairing: a τ3 B1g pairing candidate state for the alkaline iron selenides

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Nica, Emilian M.; Si, Qimiao

    The iron-based unconventional superconductors are inherently multi-orbital systems and show remarkable variation in the Fermi-surfaces and pairing symmetries. In the alkaline iron selenides cases, ARPES experiments indicate fully gapped superconducting states, which suggests s-wave pairing, while neutron-scattering studies show resonances in the spin-spectrum with wave vectors across the electron Fermi pockets, suggesting d-wave pairing. We propose a novel superconducting state composed of a direct product of an s-wave form factor and a rotational symmetry-breaking orbital matrix in the dxz / yz sectors. It belongs to the B1 g representation of the D4h point group, allowing for the overall change in sign between the pairing field at the electron pockets close to the 1-Fe BZ edge. While it supports a spin resonance, it also produces a fully gapped quasiparticle spectrum, making it a candidate pairing state for the alkaline iron selenide compounds. Our results also show how such a state can become energetically competitive in the regime of quasi-degeneracy between the s and d-wave pairing states. In a broader context, this pairing provides an alternative to the s + idto reconstruct the degenerate pairing states, while preserving the time-reversal symmetry. We discuss possible analogs in other multi-band strong-coupling superconductors such as the heavy fermions. ''Emergent superconducting state from quasi-degenerate s - and d -wave pairing channels in iron-based superconductors,''.

  2. Superconductivity in alkali metal intercalated iron selenides

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, A.; Svitlyk, V.; Pomjakushina, E.; Puzniak, R.; Conder, K.

    2016-07-01

    Alkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A  =  K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature. At even lower temperatures a phase separation is observed. While one of these phases stays magnetic down to the lowest temperatures the second is becoming superconducting below ~30 K. All these effects give rise to complex relationships between the structure, magnetism and superconductivity. In particular the iron vacancy ordering, linked with a long-range magnetic order and a mesoscopic phase separation, is assumed to be an intrinsic property of the system. Since the discovery of superconductivity in those compounds in 2010 they were investigated very extensively. Results of the studies conducted using a variety of experimental techniques and performed during the last five years were published in hundreds of reports. The present paper reviews scientific work concerning methods of synthesis and crystal growth, structural and superconducting properties as well as pressure investigations.

  3. The unexpected properties of alkali metal iron selenide superconductors

    SciTech Connect

    Dagotto, Elbio R

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  4. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    NASA Astrophysics Data System (ADS)

    Shen, Shi-Jie; Ying, Tian-Ping; Wang, Gang; Jin, Shi-Feng; Zhang, Han; Lin, Zhi-Ping; Chen, Xiao-Long

    2015-11-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322211and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100), Beijing Nova Program of China (Grant No. 2011096), and K. C. Wong Education Foundation, Hong Kong, China.

  5. Porous Nickel-Iron Selenide Nanosheets as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction.

    PubMed

    Wang, Zhaoyang; Li, Jiantao; Tian, Xiaocong; Wang, Xuanpeng; Yu, Yang; Owusu, Kwadwo Asare; He, Liang; Mai, Liqiang

    2016-08-03

    Exploring non-noble and high-efficiency electrocatalysts is critical to large-scale industrial applications of electrochemical water splitting. Currently, nickel-based selenide materials are promising candidates for oxygen evolution reaction due to their low cost and excellent performance. In this work, we report the porous nickel-iron bimetallic selenide nanosheets ((Ni0.75Fe0.25)Se2) on carbon fiber cloth (CFC) by selenization of the ultrathin NiFe-based nanosheet precursor. The as-prepared three-dimensional oxygen evolution electrode exhibits a small overpotential of 255 mV at 35 mA cm(-2) and a low Tafel slope of 47.2 mV dec(-1) and keeps high stability during a 28 h measurement in alkaline solution. The outstanding catalytic performance and strong durability, in comparison to the advanced non-noble metal catalysts, are derived from the porous nanostructure fabrication, Fe incorporation, and selenization, which result in fast charge transportation and large electrochemically active surface area and enhance the release of oxygen bubbles from the electrode surface.

  6. Electronic and magnetic properties of orthorhombic iron selenide

    NASA Astrophysics Data System (ADS)

    Lovesey, S. W.

    2016-02-01

    Iron orbitals in orthorhombic iron selenide (FeSe) can produce chargelike multipoles that are polar (parity-odd). Orbitals in question include Fe (3 d ), Fe (4 p ), and p -type ligands that participate in transport properties and bonding. The polar multipoles may contribute weak, space-group forbidden Bragg spots to diffraction patterns collected with x rays tuned in energy to a Fe atomic resonance (Templeton & Templeton scattering). Ordering of conventional, axial magnetic dipoles does not accompany the tetragonal-orthorhombic structural phase transition in FeSe, unlike other known iron-based superconductors. We initiate a new line of inquiry for this puzzling property of orthorhombic FeSe, using a hidden magnetic order that belongs to the m'm'm' magnetic crystal class. It is epitomized by the absence of ferromagnetism and axial magnetic dipoles and the appearance of magnetic monopoles and magnetoelectric quadrupoles. A similar magnetic order occurs in cuprate superconductors, yttrium barium copper oxide and Hg1201, where it was unveiled with the Kerr effect and in Bragg diffraction patterns revealed by polarized neutrons.

  7. The Parent Li(OH)FeSe Phase of Lithium Iron Hydroxide Selenide Superconductors.

    PubMed

    Woodruff, Daniel N; Schild, Francesca; Topping, Craig V; Cassidy, Simon J; Blandy, Jack N; Blundell, Stephen J; Thompson, Amber L; Clarke, Simon J

    2016-10-03

    Lithiation of hydrothermally synthesized Li1-xFex(OH)Fe1-ySe turns on high-temperature superconductivity when iron ions are displaced from the hydroxide layers by reductive lithiation to fill the vacancies in the iron selenide layers. Further lithiation results in reductive iron extrusion from the hydroxide layers, which turns off superconductivity again as the stoichiometric composition Li(OH)FeSe is approached. The results demonstrate the twin requirements of stoichiometric FeSe layers and reduction of Fe below the +2 oxidation state as found in several iron selenide superconductors.

  8. Power scaling of ultrafast laser inscribed waveguide lasers in chromium and iron doped zinc selenide.

    PubMed

    McDaniel, Sean A; Lancaster, Adam; Evans, Jonathan W; Kar, Ajoy K; Cook, Gary

    2016-02-22

    We report demonstration of Watt level waveguide lasers fabricated using Ultrafast Laser Inscription (ULI). The waveguides were fabricated in bulk chromium and iron doped zinc selenide crystals with a chirped pulse Yb fiber laser. The depressed cladding structure in Fe:ZnSe produced output powers of 1 W with a threshold of 50 mW and a slope efficiency of 58%, while a similar structure produced 5.1 W of output in Cr:ZnSe with a laser threshold of 350 mW and a slope efficiency of 41%. These results represent the current state-of-the-art for ULI waveguides in zinc based chalcogenides.

  9. Characterization of nanostructured iron selenide thin films grown by chemical route at room temperature

    SciTech Connect

    Ubale, A.U.; Sakhare, Y.S.; Belkedkar, M.R.; Singh, Arvind

    2013-02-15

    Highlights: ► Nanostructured FeSe thin films were successfully synthesized at room temperature by CBD method. ► The XRD and EDAX characterization confirms nanocrystalline nature of FeSe. ► The SEM and AFM show microporous morphology with nanorods and nanoplates of FeSe. -- Abstract: Iron selenide thin films have been deposited onto glass substrates by using chemical bath deposition technique. Structural characterization of iron selenide thin films was carried out by means of X-ray diffraction and Fourier transforms infrared spectrum. The morphological characterization of FeSe thin film was carried out using scanning electron microscopy and atomic force microscopy, which revealed porous grain morphology of FeSe with some nano rectangular rods and plates grown on it. The as-deposited thin films exhibited optical band gap energy 2.60 eV. The as deposited FeSe thin films are semiconducting in nature with p-type electrical conductivity. The room temperature electrical resistivity is of the order of 1.1 × 10{sup 5} Ω-cm with activation energy 0.26 and 0.95 eV, respectively, in low and high temperature region.

  10. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  11. Soft chemical control of superconductivity in lithium iron selenide hydroxides Li(1-x)Fe(x)(OH)Fe(1-y)Se.

    PubMed

    Sun, Hualei; Woodruff, Daniel N; Cassidy, Simon J; Allcroft, Genevieve M; Sedlmaier, Stefan J; Thompson, Amber L; Bingham, Paul A; Forder, Susan D; Cartenet, Simon; Mary, Nicolas; Ramos, Silvia; Foronda, Francesca R; Williams, Benjamin H; Li, Xiaodong; Blundell, Stephen J; Clarke, Simon J

    2015-02-16

    Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li(1-x)Fe(x)(OH)Fe(1-y)Se (x ∼ 0.2; 0.02 < y < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (y < 0.05) and when the iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li(1-x)Fe(x)(OH) reservoir layer to fill vacancies in the selenide layer.

  12. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    PubMed

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  13. DFT studies on structural properties and electron density topologies of the iron selenides Fe m Se n (1 ≤ m, n ≤ 4)

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Liu, Jianhong

    2016-12-01

    We report the structural properties and electron density topologies of the iron selenides Fe m Se n (1 ≤ m, n ≤ 4) using DFT method. Structural studies reveal the Se atom leads to significant change in the geometries of the iron selenides. We confirm that the bond length between Fe atoms increase owing to the sequential addition of Se atom. Comparable stabilities were investigated based on the variation of averaged binding energies and selenium doping energy. The covalent property of the Fe-Se bond is increased as the coincident bond critical points (BCPs) showed smaller positive nabla _{{ρ _{BCP}}}^2 values than those of original FeSe molecule. Our results demonstrate that the ρFe-Fe values keep in the order of 0.048-0.220 a.u. Almost all of the nabla _{{ρ _{BCP}}}^2 values are positive and consequently mean the closed-shell interactions are conserved in the iron selenides.

  14. Electric double-layer transistor using layered iron selenide Mott insulator TlFe1.6Se2

    PubMed Central

    Katase, Takayoshi; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2014-01-01

    A1–xFe2–ySe2 (A = K, Cs, Rb, Tl) are recently discovered iron-based superconductors with critical temperatures (Tc) ranging up to 32 K. Their parent phases have unique properties compared with other iron-based superconductors; e.g., their crystal structures include ordered Fe vacancies, their normal states are antiferromagnetic (AFM) insulating phases, and they have extremely high Néel transition temperatures. However, control of carrier doping into the parent AFM insulators has been difficult due to their intrinsic phase separation. Here, we fabricated an Fe-vacancy-ordered TlFe1.6Se2 insulating epitaxial film with an atomically flat surface and examined its electrostatic carrier doping using an electric double-layer transistor (EDLT) structure with an ionic liquid gate. The positive gate voltage gave a conductance modulation of three orders of magnitude at 25 K, and further induced and manipulated a phase transition; i.e., delocalized carrier generation by electrostatic doping is the origin of the phase transition. This is the first demonstration, to the authors' knowledge, of an EDLT using a Mott insulator iron selenide channel and opens a way to explore high Tc superconductivity in iron-based layered materials, where carrier doping by conventional chemical means is difficult. PMID:24591598

  15. Transgenic petunia with the iron(III)-phytosiderophore transporter gene acquires tolerance to iron deficiency in alkaline environments.

    PubMed

    Murata, Yoshiko; Itoh, Yoshiyuki; Iwashita, Takashi; Namba, Kosuke

    2015-01-01

    Iron is an essential nutrient for all plants. However, terrestrial plants often suffer from iron deficiency in alkaline soil due to its extremely low solubility. Alkaline soil accounts for about 30% of all cultivated ground in the world. Plants have evolved two distinct strategies, I and II, for iron uptake from the soil. Dicots and non-graminaceous monocots use Strategy I, which is primarily based on the reduction of iron(III) to iron(II) and the uptake of iron(II) by the iron-regulated transporter, IRT1. In contrast, graminaceous plants use Strategy II to efficiently acquire insoluble iron(III). Strategy II comprises the synthesis and secretion of iron-chelating phytosiderophores, such as mugineic acids and the Yellow Stripe 1 transporter proteins of the iron(III)-phytosiderophore complex. Barley, which exhibits the highest tolerance to iron deficiency in alkaline soil among graminaceous plants, utilizes mugineic acids and the specific iron(III)-mugineic acids transporter, HvYS1. In this study, we established the transgenic plant Petunia hybrida, which originally had only Strategy I, by introducing the HvYS1 transporter gene derived from barley. When the transgenic plants were grown hydroponically in media containing the iron(III)-2'-deoxymugineic acid complex, free 2'-deoxymugineic acid and its iron(III) complex were detected in the root extract of the transgenic plant by electrospray ionization-Fourier transform-ion cyclotron resonance mass spectrometry. The growth of the transgenic petunia was significantly better than that of the control host in alkaline conditions. Consequently, the transgenic plant acquired a significantly enhanced tolerance to alkaline hydroponic media in the presence of the iron(III)-2'-deoxymugineic acid complex. Furthermore, the flower color of the transgenic plant deepened. The results showed that iron-phytosiderophore complexes and their transporters can potentially be utilized to overcome the worldwide iron uptake problems to diverse

  16. An in vitro assessment of the interaction of cadmium selenide quantum dots with DNA, iron, and blood platelets.

    PubMed

    Dunpall, Rekha; Nejo, Adeola Ayodeji; Pullabhotla, Viswanadha Srirama Rajasekhar; Opoku, Andy R; Revaprasadu, Neerish; Shonhai, Addmore

    2012-12-01

    Cadmium selenide (CdSe) quantum dots have gained increased attention for their potential use in biomedical applications. This has raised interest in assessing their toxicity. In this study, water-soluble, cysteine-capped CdSe nanocrystals with an average size of 15 nm were prepared through a one-pot solution-based method. The CdSe nanoparticles were synthesized in batches in which the concentration of the capping agent was varied with the aim of stabilizing the quantum dot core. The effects of the CdSe quantum dots on DNA stability, aggregation of blood platelets, and reducing activity of iron were evaluated in vitro . DNA damage was observed at a concentration of 200 μg/mL of CdSe quantum dots. Furthermore, the CdSe nanocrystals exhibited high reducing power and chelating activity, suggesting that they may impair the function of haemoglobin by interacting with iron. In addition, the CdSe quantum dots promoted aggregation of blood platelets in a dose dependent manner.

  17. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    PubMed

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  18. Probing the heme iron coordination structure of alkaline chloroperoxidase.

    PubMed

    Blanke, S R; Martinis, S A; Sligar, S G; Hager, L P; Rux, J J; Dawson, J H

    1996-11-19

    The mechanism by which the heme-containing peroxidase, chloroperoxidase, is able to chlorinate substrates is poorly understood. One approach to advance our understanding of the mechanism of the enzyme is to determine those factors which contribute to its stability. In particular, under alkaline conditions, chloroperoxidase undergoes a transition to a new, spectrally distinct form, with accompanying loss of enzymatic activity. In the present investigation, ferric and ferrous alkaline chloroperoxidase (C420) have been characterized by electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopy. The heme iron oxidation state influences the transition to C420; the pKa for the alkaline transition is 7.5 for the ferric protein and 9.5 for the ferrous protein. The five-coordinate, high-spin ferric native protein converts to a six-coordinate low-spin species (C420) as the pH is raised above 7.5. The inability of ferric C420 to bind exogenous ligands, as well as the dramatically increased reactivity of the proximal Cys29 heme ligand toward modification by the sulfhydryl reagent p-mercuribenzoate, suggests that a conformational change has occurred during conversion to C420 that restricts access to the peroxide binding site while increasing the accessibility of Cys29. However, it does appear that Cys29-derived ligation is at least partially retained by ferric C420, potentially in a thiolate/imidazole coordination sphere. Ferrous C420, on the other hand, appears not to possess a thiolate ligand but instead likely has a bis-imidazole (histidine) coordination structure. The axial ligand trans to carbon monoxide in ferrous-CO C420 may be a histidine imidazole. Since chloroperoxidase functions normally through the ferric and higher oxidation states, the fact that the proximal thiolate ligand is largely retained in ferric C420 clearly indicates that additional factors such as the absence of a vacant sixth coordination site sufficiently

  19. Enhancing the Performance of the Rechargeable Iron Electrode in Alkaline Batteries with Bismuth Oxide and Iron Sulfide Additives

    SciTech Connect

    Manohar, AK; Yang, CG; Malkhandi, S; Prakash, GKS; Narayanan, SR

    2013-09-07

    Iron-based alkaline rechargeable batteries have the potential of meeting the needs of large-scale electrical energy storage because of their low-cost, robustness and eco-friendliness. However, the widespread commercial deployment of iron-based batteries has been limited by the low charging efficiency and the poor discharge rate capability of the iron electrode. In this study, we have demonstrated iron electrodes containing bismuth oxide and iron sulfide with a charging efficiency of 92% and capable of being discharged at the 3C rate. Such a high value of charging efficiency combined with the ability to discharge at high rates is being reported for the first time. The bismuth oxide additive led to the in situ formation of elemental bismuth and a consequent increase in the overpotential for the hydrogen evolution reaction leading to an increase in the charging efficiency. We observed that the sulfide ions added to the electrolyte and iron sulfide added to the electrode mitigated-electrode passivation and allowed for continuous discharge at high rates. At the 3C discharge rate, a utilization of 0.2 Ah/g was achieved. The performance level of the rechargeable iron electrode demonstrated here is attractive for designing economically-viable large-scale energy storage systems based on alkaline nickel-iron and iron-air batteries. (C) 2013 The Electrochemical Society. All rights reserved.

  20. Coexistence of localized and itinerant magnetism in intercalated iron-selenide (Li,Fe)OHFeSe

    NASA Astrophysics Data System (ADS)

    Liu, Da-Yong; Sun, Zhe; Zou, Liang-Jian

    2017-02-01

    The electronic structure and magnetism of a new magnetic intercalation compound (Li0.8Fe0.2)OHFeSe are investigated theoretically. The electronic structure calculations predict that the Fe in the (Li,Fe)OH intercalated layer is in a +2 valence state, i.e. there is electron doping to the FeSe layer, resulting in the shrinking of the Fermi surface (FS) pocket around Γ and a strong suppression of dynamical spin susceptibility at M in comparison with the bulk FeSe compound. The ground state of the FeSe layer is a striped antiferromagnetic (SAFM) metal, while the (Li,Fe)OH layer displays a very weak localized magnetism, with an interlayer ferromagnetic (FM) coupling between the FeSe and intercalated (Li,Fe)OH layers. Moreover, the (Li,Fe)OH is more than a block layer; it is responsible for enhancing the antiferromagnetic (AFM) correlation in the FeSe layer through interlayer magnetic coupling. We propose that the magnetic spacer layer introduces a tuning mechanism for spin fluctuations associated with superconductivity in iron-based superconductors.

  1. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.

    PubMed

    Hsieh, En-Jung; Waters, Brian M

    2016-10-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots.

  2. Selenide retention by mackinawite.

    PubMed

    Finck, N; Dardenne, K; Bosbach, D; Geckeis, H

    2012-09-18

    The isotope (79)Se may be of great concern with regard to the safe disposal of nuclear wastes in deep geological repositories due to its long half-life and potential mobility in the geosphere. The Se mobility is controlled by the oxidation state: the oxidized species (Se(IV)) and (Se(VI)) are highly mobile, whereas the reduced species (Se(0) and Se(-II)) form low soluble solids. The mobility of this trace pollutant can be greatly reduced by interacting with the various barriers of the repository. Numerous studies report on the oxidized species retention by mineral phases, but only very scarce studies report on the selenide (Se(-II)) retention. In the present study, the selenide retention by coprecipitation with and by adsorption on mackinawite (FeS) was investigated. XRD and SEM analyses of the samples reveal no significant influence of Se on the mackinawite precipitate morphology and structure. Samples from coprecipitation and from adsorption are characterized at the molecular scale by a multi-edge X-ray absorption spectroscopy (XAS) investigation. In the coprecipitation experiment, all elements (S, Fe, and Se) are in a low ionic oxidation state and the EXAFS data strongly point to selenium located in a mackinawite-like sulfide environment. By contacting selenide ions with FeS in suspension, part of Se is located in an environment similar to that found in the coprecipitation experiment. The explanation is a dynamical dissolution-recrystallization mechanism of the highly reactive mackinawite. This is the first experimental study to report on selenide incorporation in iron monosulfide by a multi-edge XAS approach.

  3. Synthesis and structure of an "iron-doped" copper selenide cluster molecule: [Cu30Fe2Se6(SePh)24(dppm)4].

    PubMed

    Eichhöfer, Andreas; Olkowska-Oetzel, Jolanta; Fenske, Dieter; Fink, Karin; Mereacre, Valeriu; Powell, Annie K; Buth, Gernot

    2009-09-21

    CuCl and bis(diphenylphosphanyl)methane (dppm) react in the presence of small amounts of FeCl(3) with PhSeSiMe(3) and Se(SiMe(3))(2) to yield [Cu(30)Fe(2)Se(6)(SePh)(24)(dppm)(4)]. The crystal structure of the compound was determined by single-crystal X-ray analysis to give a mixed copper selenide/selenolate cluster molecule of a new structural type incorporating two central iron atoms. The formal oxidation state of the iron atoms was determined by Mössbauer spectroscopy to be +3, in agreement with quantum chemical calculations and modeling of the magnetic data. In addition, Mössbauer studies show no magnetic hyperfine structure in zero field, and the magnetically perturbed spectrum displays a pattern typical for a diamagnetic species in a transverse field, suggesting a singlet ground state. However, the inclusion of the iron atoms has a distinct influence on the optical properties of the compound compared to similar clusters containing only copper and selenium atoms.

  4. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis

    PubMed Central

    Hsieh, En-Jung; Waters, Brian M.

    2016-01-01

    Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots. PMID:27605716

  5. Synthesis, crystal structure, and magnetic properties of quaternary iron selenides: Ba2FePnSe5 (Pn=Sb, Bi)

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill

    2016-10-01

    Two new barium iron pnictide-selenides, Ba2FeSbSe5 and Ba2FeBiSe5, were synthesized by a high-temperature solid-state route and their crystal structures were determined using single crystal X-ray diffraction. Both compounds are isomorphic to the high pressure phase Ba3FeS5 and crystallize in the orthorhombic space group Pnma (No. 62) with cell parameters of a=12.603(2)/12.619(2) Å, b=9.106(1)/9.183(1) Å, c=9.145(1)/9.123(1) Å and Z=4 for Ba2FeSbSe5 and Ba2FeBiSe5, respectively. According to differential scanning calorimetry, Ba2FePnSe5 compounds exhibit high thermal stability and melt congruently at 1055(5) K (Pn=Sb) and 1105(5) K (Pn=Bi). Magnetic characterizations reveal strong antiferromagnetic nearest-neighbor interactions in both compounds resulting in an antiferromagnetic ordering at 58(1) K for Ba2FeSbSe5 and 79(2) K for Ba2FeBiSe5. The magnetic interactions between Fe3+ centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions.

  6. Occurrence and activity of iron- and sulfur-oxidizing microorganisms in alkaline coal strip mine spoils.

    PubMed

    Olson, G J; McFeters, G A; Temple, K L

    1981-03-01

    Spoils samples collected from a coal strip mine in southeastern Montana were examined for populations and activities of iron- and sulfur-oxidizing bacteria. Spoils examined were of three types: (a) acidic pyrite-rich waste coal, (b) oxidation halo material, and (c) alkaline material, which was the most widespread type. Bacterial numbers, sulfur oxidation, and(14)CO2 uptake activity declined to low levels in the summer when spoils were dry. Even in wetter spring months pyritic spoils contained relatively low numbers of acidophilic iron- and sulfur-oxidizing bacteria, probably indicative of water stress since the same spoils incubated with excess water or dilute mineral salts showed considerably greater bacterial numbers and activity. Certain wells in coal and spoils aquifers contained substantial populations of iron-oxidizing acidophilic bacteria. However, these wells were always of alkaline or neutral pH, indicating that bacterial pyrite oxidation occurred where groundwaters contacted either replaced spoils or coal that contained pyrite or other metal sulfides. Bacterial activity may contribute to trace metal and sulfate leaching in the area.

  7. Synthesis, crystal structure and electronic properties of the new iron selenide Ba{sub 9}Fe{sub 4}Se{sub 16}

    SciTech Connect

    Berthebaud, David Preethi Meher, K.R.S.; Pelloquin, Denis; Maignan, Antoine

    2014-03-15

    The new ternary selenide Ba{sub 9}Fe{sub 4}Se{sub 16} has been synthesized from the reaction of appropriate amounts of elements at high temperature in a silica sealed tube. The compound crystallizes in the tetragonal space group I4{sub 1}/a with a=10.0068(3) Å and c=35.6415(9) Å, Z=4. It is an isostructural compound to the sulfide α-Ba{sub 9}Fe{sub 4}S{sub 15}, which is a high temperature polymorph of β-Ba{sub 9}Fe{sub 4}Se{sub 15} that belongs to the indefinitely adaptive phases series Ba{sub 3}Fe{sub 1+x}S{sub 5}, 0≤x≤1. X-ray powder diffraction and TEM analyses of the synthesized compound were used to determine the phase composition and the structure. The crystal structure can be viewed as overlapping sections along the c axis. Those sections are formed by the coordination polyhedra around barium atoms which can be described as trigonal prisms and bidisphenoids. Within the sections formed by barium polyhedra, isolated pairs of edge sharing FeSe{sub 4} tetrahedra are found. Magnetic measurements performed on Ba{sub 9}Fe{sub 4}Se{sub 16} indicate an antiferromagnetic behavior with Néel temperature of ∼13 K. Possible influence of air exposure on the magnetic properties is also discussed here. The electric measurements show an insulating behavior below 160 K and the dielectric permittivity and loss tangent at the lowest frequency measured reveal a change of slope very close to T{sub N}. However no magneto dielectric effect was evidenced for magnetic fields of up to 3 T. Activation energy, E{sub A}=0.18 eV, was extracted from the AC conductivity plot in the temperature range of 160–300 K. -- Graphical abstract: Experimental electron diffraction (ED) patterns of Ba{sub 9}Fe{sub 4}Se{sub 16} recorded along a-[010]. Highlights: • A new iron selenide material. • A structure resolution by combination of XRD and TEM. • Magnetic properties of the new compound Ba{sub 9}Fe{sub 4}Se{sub 16} are discussed.

  8. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    DOEpatents

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  9. Constitutive expression of a barley Fe phytosiderophore transporter increases alkaline soil tolerance and results in iron partitioning between vegetative and storage tissues under stress.

    PubMed

    Gómez-Galera, Sonia; Sudhakar, Duraialagaraja; Pelacho, Ana M; Capell, Teresa; Christou, Paul

    2012-04-01

    Cereals have evolved chelation systems to mobilize insoluble iron in the soil, but in rice this process is rather inefficient, making the crop highly susceptible to alkaline soils. We therefore engineered rice to express the barley iron-phytosiderophore transporter (HvYS1), which enables barley plants to take up iron from alkaline soils. A representative transgenic rice line was grown in standard (pH 5.5) or alkaline soil (pH 8.5) to evaluate alkaline tolerance and iron mobilization. Transgenic plants developed secondary tillers and set seeds when grown in standard soil although iron concentration remained similar in leaves and seeds compared to wild type. However, when grown in alkaline soil transgenic plants exhibited enhanced growth, yield and iron concentration in leaves compared to the wild type plants which were severely stunted. Transgenic plants took up iron more efficiently from alkaline soil compared to wild type, indicating an enhanced capacity to increase iron mobility ex situ. Interestingly, all the additional iron accumulated in vegetative tissues, i.e. there was no difference in iron concentration in the seeds of wild type and transgenic plants. Our data suggest that iron uptake from the rhizosphere can be enhanced through expression of HvYS1 and confirm the operation of a partitioning mechanism that diverts iron to leaves rather than seeds, under stress.

  10. Crystal and electronic structures of two new iron selenides: Ba{sub 4}Fe{sub 3}Se{sub 10} and BaFe{sub 2}Se{sub 4}

    SciTech Connect

    Berthebaud, David; Perez, Olivier; Tobola, Janusz; Pelloquin, Denis; Maignan, Antoine

    2015-10-15

    The new ternary selenides, Ba{sub 4}Fe{sub 3}Se{sub 10} and BaFe{sub 2}Se{sub 4,} were synthesized from a reaction of appropriate amounts of elements at high temperature in a silica sealed tube, and their structures were resolved using X-ray single crystal diffraction. BaFe{sub 2}Se{sub 4} crystallizes in the tetragonal space group I4/m with a=8.008(9) Å and c=5.483(3) Å as cell parameters. It is a new compound with a structure isotypical to the sulfide BaFe{sub 2}S{sub 4} which belongs to the infinitely adaptive structures series Ba{sub 1+x}Fe{sub 2}S{sub 4}. The second compound, Ba{sub 4}Fe{sub 3}Se{sub 10}, crystallizes in the monoclinic space group P2{sub 1}/n with a=8.8593(1) Å, b=8.8073(1) Å, c=12.2724(1) Å and β=109.037(6)° as cell parameters. It exhibits an original structure with a new type of iron selenide polyhedra. These data were consistent with the powder X-ray diffraction and TEM analyses. Their electronic structures point towards metallicity and electronic correlations for both selenides. - Graphical abstract: Experimental [010] oriented ED pattern and corresponding HREM image of Ba{sub 4}Fe{sub 3}Se{sub 10}. Image calculated with a focus and thickness to 15nm and 8 nm respectively is inserted. Bright contrasts are correlated to Se rows belonging to FeSe{sub 3}(Se{sub 2}){sup 2−}–FeSe{sub 6}–FeSe{sub 3}(Se{sub 2}){sup 2−} trimers. The corresponding structure projection is also shown. - Highlights: • Two new barium iron selenide compounds. • An original structure type Ba4Fe3Se10. • Electronic structure calculations.

  11. Reactivity of Tannic Acid with Common Corrosion Products and Its Influence on the Hydrolysis of Iron in Alkaline Solutions

    NASA Astrophysics Data System (ADS)

    Jaén, J. A.; Araúz, E. Y.; Iglesias, J.; Delgado, Y.

    2003-06-01

    To ascertain the role of tannic acid in the anticorrosive protection of steels, the reaction between 5% tannic acid aqueous solutions with lepidocrocite, goethite, superparamagnetic goethite, akaganeite, poorly crystalline maghemite, magnetite and hematite was studied using color changes, infrared and Mössbauer spectroscopy. After three months of interaction with lepidocrocite, the formation of an iron tannate complex was detected by its dark blue color and confirmed by infrared and Mössbauer analysis. Evidence for the chemical transformation was obtained for goethite in nanoparticles and poorly crystalline maghemite after reaction for six months. The other iron compounds do not transform to another oxide or phase upon treatment with the tannic acid solution. These results showed that lepidocrocite is the most reactive phase and that the size and degree of crystallinity have strong influence on the formation of the tannate complexes. The precipitation of iron phases from alkaline solutions of iron (II) sulfate heptahydrate containing different amount of tannic acid and potassium nitrate as oxidative agent was also studied. Mössbauer and infrared results show that in the absence of tannic acid some common rust components are obtained (viz. goethite, superparamagnetic goethite, maghemite and non-stoichiometric magnetite). The presence of 0.1% tannic acid in a low alkalinity solution results in the precipitation of iron oxyhydroxides and some iron tannates. Concentrations of 1% tannic acid are required for the formation of the tannates complexes as main reaction product.

  12. Magnetometer uses bismuth-selenide

    NASA Technical Reports Server (NTRS)

    Woollman, J. A.; Spain, I. L.; Beale, H.

    1972-01-01

    Characteristics of bismuth-selenide magnetometer are described. Advantages of bismuth-selenide magnetometer over standard magnetometers are stressed. Thermal stability of bismuth-selenide magnetometer is analyzed. Linearity of output versus magnetic field over wide range of temperatures is reported.

  13. Dephosphorylation of sodium caseinate, enzymatically hydrolyzed casein and casein phosphopeptides by intestinal alkaline phosphatase: implications for iron availability.

    PubMed

    Yeung, A C.; Glahn, R P.; Miller, D D.

    2001-05-01

    Clusters of phosphoserine residues in casein bind iron with high affinity. Casein inhibits iron absorption in humans but partial hydrolysis of casein prior to ingestion diminishes this inhibition. The objective of this study was to test two hypotheses: 1. Partial hydrolysis of the peptide bonds in casein exposes phosphoserine residues to attack by intestinal alkaline phosphatase (IAP). 2. Hydrolysis of the phospho-ester linkage in phosphoserine residues in casein by IAP releases bound iron or inhibits iron chelation, thereby allowing its absorption. Test of hypothesis 1: Suspensions of sodium caseinate (SC), enzymatically hydrolyzed casein (EHC), and casein phosphopeptides (CPP) were subjected to an in vitro pepsin/pancreatin digestion and subsequently incubated in the presence of calf IAP. The rate of release of inorganic phosphate was measured with the following results (expressed as &mgr;mol phosphate released/unit of IAP/min): 0.081, 0.104, 0.139 for SC, EHC, and CPP, respectively. These results are consistent with hypothesis 1. Test of hypothesis 2: (59)Fe-citrate or (59)Fe-citrate + CPP in minimum essential media were spiked with a Na(2)WO(4) solution or water (Na(2)WO(4) is a known inhibitor of IAP) and placed on Caco-2 cell monolayers. Uptake of (59)Fe by the cells was used as an index of iron bioavailability. Na(2)WO(4) did not affect (59)Fe uptake from samples containing only iron but did slightly inhibit (by 10%) uptake from samples containing iron + CPP. These results are consistent with hypothesis 2 and provide a possible explanation for the observation that partial hydrolysis of casein improves iron bioavailability.

  14. Determination of micro amounts of iron, aluminum, and alkaline earth metals in silicon carbide

    NASA Technical Reports Server (NTRS)

    Hirata, H.; Arai, M.

    1978-01-01

    A colorimetric method for analysis of micro components in silicon carbide used as the raw material for varistors is described. The microcomponents analyzed included iron soluble in hydrochloric acid, iron, aluminum, calcium and magnesium. Samples were analyzed by the method, and the results for iron and aluminum agreed well with the N.B.S. standard values and the values obtained by the other company. The method can therefore be applied to the analysis of actual samples.

  15. Optimized electrospinning synthesis of iron-nitrogen-carbon nanofibers for high electrocatalysis of oxygen reduction in alkaline medium

    NASA Astrophysics Data System (ADS)

    Yan, Xingxu; Liu, Kexi; Wang, Xiangqing; Wang, Tuo; Luo, Jun; Zhu, Jing

    2015-04-01

    To achieve iron-nitrogen-carbon (Fe-N-C) nanofibers with excellent electrocatalysis for replacing high-cost Pt-based catalysts in the cathodes of fuel cells and metal-air batteries, we have investigated and evaluated the effects of polyacrylonitrile (PAN) concentration and the proportion of iron to PAN, along with voltage and flow rate during the electrospinning process, and thus proposed three criteria to optimize these parameters for ideal nanofiber catalysts. The best half-wave potential of an optimized catalysts is 0.82 V versus reversible hydrogen electrode in an alkaline medium, which reaches the best range of the non-precious-metal catalysts reported and is very close to that of commercial Pt/C catalysts. Furthermore, the electron-transfer number of our catalysts is superior to that of the Pt/C, indicating the catalysts undergo a four-electron process. The durability of the optimized Fe-N-C nanofibers is also better than that of the Pt/C, which is attributed to the homogeneous distribution of the active sites in our catalysts.

  16. Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA

    USGS Publications Warehouse

    Cravotta, C.A.

    2007-01-01

    This report evaluates the results of a continuous 4.5-day laboratory aeration experiment and the first year of passive, aerobic treatment of abandoned mine drainage (AMD) from a typical flooded underground anthracite mine in eastern Pennsylvania, USA. During 1991-2006, the AMD source, locally known as the Otto Discharge, had flows from 20 to 270 L/s (median 92 L/s) and water quality that was consistently suboxic (median 0.9 mg/L O2) and circumneutral (pH ??? 6.0; net alkalinity >10) with moderate concentrations of dissolved iron and manganese and low concentrations of dissolved aluminum (medians of 11, 2.2, and <0.2 mg/L, respectively). In 2001, the laboratory aeration experiment demonstrated rapid oxidation of ferrous iron (Fe 2+) without supplemental alkalinity; the initial Fe2+ concentration of 16.4 mg/L decreased to less than 0.5 mg/L within 24 h; pH values increased rapidly from 5.8 to 7.2, ultimately attaining a steady-state value of 7.5. The increased pH coincided with a rapid decrease in the partial pressure of carbon dioxide (PCO2) from an initial value of 10 -1.1atm to a steady-state value of 10-3.1atm. From these results, a staged aerobic treatment system was conceptualized consisting of a 2 m deep pond with innovative aeration and recirculation to promote rapid oxidation of Fe2+, two 0.3 m deep wetlands to facilitate iron solids removal, and a supplemental oxic limestone drain for dissolved manganese and trace-metal removal. The system was constructed, but without the aeration mechanism, and began operation in June 2005. During the first 12 months of operation, estimated detention times in the treatment system ranged from 9 to 38 h. However, in contrast with 80-100% removal of Fe2+ over similar elapsed times during the laboratory aeration experiment, the treatment system typically removed less than 35% of the influent Fe2+. Although concentrations of dissolved CO2 decreased progressively within the treatment system, the PCO2 values for treated effluent

  17. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    DOEpatents

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  18. Crystal structure of modular sodium-rich and low-iron eudialyte from Lovozero alkaline massif

    NASA Astrophysics Data System (ADS)

    Rozenberg, K. A.; Rastsvetaeva, R. K.; Aksenov, S. M.

    2016-09-01

    The structure of the sodium-rich representative of the eudialyte group found by A.P. Khomyakov at the Lovozero massif (Kola Peninsula) is studied by X-ray diffraction. The trigonal cell parameters are: a = 14.2032(1) and c = 60.612(1) Å, V = 10589.13 Å3, space group R3m. The structure is refined to the final R = 5.0% in the anisotropic approximation of atomic displacement parameters using 3742|F| > 3σ( F). The idealized formula ( Z = 3) is Na37Ca10Mn2FeZr6Si50(Ti, Nb)2O144(OH)5Cl3 · H2O. Like other 24-layer minerals of the eudialyte group, this mineral has a modular structure. Its structure contains two modules, namely, "alluaivite" (with an admixture of "eudialyte") and "kentbrooksite," called according to the main structural fragments of alluaivite, eudialyte, and kentbrooksite. The mineral found at the Lovozero alkaline massif shows some chemical and symmetry-structural distinctions from the close-in-composition labyrinthite modular mineral from the Khibiny massif. The difference between the minerals stems from different geochemical conditions of mineral formation in the two regions.

  19. Structural, magnetic, and electronic properties of iron selenide Fe{sub 6-7}Se{sub 8} nanoparticles obtained by thermal decomposition in high-temperature organic solvents

    SciTech Connect

    Lyubutin, I. S. E-mail: crlin@mail.npue.edu.tw; Funtov, K. O.; Dmitrieva, T. V.; Starchikov, S. S.; Lin, Chun-Rong E-mail: crlin@mail.npue.edu.tw; Siao, Yu-Jhan; Chen, Mei-Li

    2014-07-28

    Iron selenide nanoparticles with the NiAs-like crystal structure were synthesized by thermal decomposition of iron chloride and selenium powder in a high-temperature organic solvent. Depending on the time of the compound processing at 340 °C, the nanocrystals with monoclinic (M)-Fe{sub 3}Se{sub 4} or hexagonal (H)-Fe{sub 7}Se{sub 8} structures as well as a mixture of these two phases can be obtained. The magnetic behavior of the monoclinic and hexagonal phases is very different. The applied-field and temperature dependences of magnetization reveal a complicated transformation between ferrimagnetic (FRM) and antiferromagnetic (AFM) structures, which can be related to the spin rotation process connected with the redistribution of cation vacancies. From XRD and Mössbauer data, the 3c type superstructure of vacancy ordering was found in the hexagonal Fe{sub 7}Se{sub 8}. Redistribution of vacancies in Fe{sub 7}Se{sub 8} from random to ordered leads to the transformation of the magnetic structure from FRM to AFM. The Mössbauer data indicate that vacancies in the monoclinic Fe{sub 3}Se{sub 4} prefer to appear near the Fe{sup 3+} ions and stimulate the magnetic transition with the rotation of the Fe{sup 3+} magnetic moments. Unusually high coercive force H{sub c} was found in both (H) and (M) nanocrystals with the highest (“giant”) value of about 25 kOe in monoclinic Fe{sub 3}Se{sub 4}. This is explained by the strong surface magnetic anisotropy which is essentially larger than the core anisotropy. Such a large coercivity is rare for materials without rare earth or noble metal elements, and the Fe{sub 3}Se{sub 4}-based compounds can be the low-cost, nontoxic alternative materials for advanced magnets. In addition, an unusual effect of “switching” of magnetization in a field of 10 kOe was found in the Fe{sub 3}Se{sub 4} nanoparticles below 280 K, which can be important for applications.

  20. Nonstoichiometry of crystalline cadmium selenide

    SciTech Connect

    Kharif, Ya.L.; Brezhnev, V.Yu.; Kovtunenko, P.V.

    1987-08-01

    A highly sensitive physicochemical method is developed for determining the cadmium concentration (10/sup -5/ at. % for a 10 g sample weight), dissolved in cadmium selenide. The nonstoichiometry of cadmium selenide crystals is studied after high-temperature annealing at 870-1370/sup 0/K in cadmium vapor. For the first time, it is discovered that in the investigated crystals the dissolved cadmium exists primarily in the form of electrically neutral defects, which are presumably clusters of selenium vacancies with low mobility.

  1. Synergetic effect of alkaline earth metal oxides and iron oxides on the degradation of hexachlorobenzene and its degradation pathway.

    PubMed

    Su, Guijin; Liu, Yexuan; Huang, Linyan; Shi, Yali; Zhang, Aiqian; Zhang, Lixia; Liu, Wenbin; Gao, Lirong; Zheng, Minghui

    2013-01-01

    The degradation of hexachlorobenzene (HCB) was carried out over physical mixtures of a series of alkaline earth metal oxides (MO: M=Mg, Ca, Sr, Ba) and iron oxides with different crystal types (Fe(x)O(y):Fe(2)O(3) or Fe(3)O(4)) at 300°C. These physical mixtures all showed a synergetic effect toward the degradation of HCB. A range of degradation products were identified by various methods, including tri- to penta-chlorobenzenes by gas chromatography/mass spectrometry (GC-MS), tri- to penta-chlorophenols, tetrachlorocatechol (TCC) and tetrachlorohydroquinone (TCHQ) by GC-MS after derivatization, and formic and acetic acids by ion chromatography. Two degradation pathways, hydrodechlorination and oxidative degradation, appear to occur competitively. However, more sequential chlorinated benzene and phenol congeners were formed over mixed MO/Fe(3)O(4) than over mixed MO/Fe(2)O(3) under the same conditions. The oxidative reaction dominated over mixed MO/Fe(2)O(3) and was promoted as the major reaction by the synergetic effect, while both the oxidative and hydrodechlorination reactions were important over mixed MO/Fe(3)O(4), and both pathways are remarkably promoted by the synergetic effect. The enhanced hydrodechlorination may be attributed to free electrons generated by the transformation of Fe(3)O(4) into Fe(2)O(3), and hydrogen provided by water adsorbed on the MO.

  2. Free energy distribution and hydrothermal mineral precipitation in Hadean submarine alkaline vent systems: Importance of iron redox reactions under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Shibuya, Takazo; Russell, Michael J.; Takai, Ken

    2016-02-01

    Thermodynamic calculations of mixing between hypothetical seawater and hydrothermal fluid in the Hadean deep ocean were carried out to predict saturation states of mineral precipitates and redox reactions that could occur in Hadean submarine alkaline hydrothermal systems associated with the serpentinization of ultramafic rocks. In the calculations, the seawater was assumed to be weakly acidic (pH = 5.5) and to include carbon dioxide, ferrous iron and silica, with or without nitrate, while the Hadean hydrothermal fluid was assumed to be highly alkaline (pH = 11) and to contain abundant molecular hydrogen, methane and bisulfide, based on the Archean geologic record, the modern low-temperature alkaline hydrothermal vent fluid (Lost City field), and experimental and theoretical considerations. The modeling indicates that potential mineral precipitates in the mixing zone (hydrothermal chimney structures) could consist mainly of iron sulfides but also of ferrous serpentine and brucite, siderite, and ferric iron-bearing minerals such as goethite, hematite and/or magnetite as minor phases. The precipitation of ferric iron-bearing minerals suggests that chemical iron oxidation would be made possible by pH shift even under anoxic condition. In the mixing zone, comprising an inorganic barrier precipitated at the interface of the two contrasting solutions, various redox reactions release free energy with the potential to drive endergonic reactions, assuming the involvement of coupling inorganic protoenzymes. Hydrogenotrophic methanogenesis and acetogenesis - long considered the most ancient forms of biological energy metabolisms - are able to achieve higher maximum energy yield (>0.5 kJ/kg hydrothermal fluid) than those in the modern serpentinization-associated seafloor hydrothermal systems (e.g., Kairei field). Furthermore, the recently proposed methanotrophic acetogenesis pathway was also thermodynamically investigated. It is known that methanotrophic acetogenesis would

  3. Diagenetic Iron Cycling in Ancient Alkaline Saline Lacustrine Sedimentary Rocks: A Case Study on the Jurassic Brushy Basin Member of the Morrison Formation, Colorado Plateau, USA

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J. O. L.

    2014-12-01

    The upper part of the Brushy Basin Member in the Four Corners region of the U.S. was deposited in an ephemeral alkaline saline lake system with copious input of volcanic ash. The variegated shale formation provides a setting for the study of early diagenetic iron cycling that records the action of alkaline saline fluid chemistries reacting with volcaniclastic sediments in the presence of microbes. A bull's-eye pattern of authigenic minerals with increasing alteration towards the basinal center similar to modern alkaline saline lakes provides evidence for an extreme paleoenvironmental interpretation. The purpose of this research is to document specific factors, such as reactive sediments, microbial influences, and grain size that affect concretion formation and iron cycling in an ancient extreme environment. Three broad diagenetic facies are interpreted by color and associated bioturbation features: red, green and intermediate. Diagenetic facies reflect meter-scale paleotopography: red facies represent shallow water to subaerial, oxidizing conditions; green facies reflect saturated conditions and reducing pore water chemistry shortly after deposition, and intermediate facies represent a combination of the previous two conditions. Evidence of biotic influence is abundant and trace fossils exhibit patterns associated with the diagenetic facies. Red diagenetic facies typically contain burrows and root traces and green diagenetic facies exhibit restricted biotic diversity typically limited to algal molds (vugs). Microbial fossils are well-preserved and are in close proximity to specific iron mineral textures suggesting biotic influence on the crystal morphology. Three categories of concretions are characterized based on mineralogy: carbonate, iron (oxyhydr)oxide and phosphate concretions. Concretion mineralogy and size vary within an outcrop and even within a stratigraphic horizon such that more than one main category is typically present in an outcrop. Variation in

  4. Enhanced oxygen reduction reaction activity of iron-containing nitrogen-doped carbon nanotubes for alkaline direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    Ratso, Sander; Kruusenberg, Ivar; Sarapuu, Ave; Rauwel, Protima; Saar, Rando; Joost, Urmas; Aruväli, Jaan; Kanninen, Petri; Kallio, Tanja; Tammeveski, Kaido

    2016-11-01

    Non-precious metal catalysts for electrochemical oxygen reduction reaction are synthesised by pyrolysis of multi-walled carbon nanotubes in the presence of nitrogen and iron precursors. For the physico-chemical characterisation of the catalysts transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy and X-ray diffraction are used. The electrocatalytic activity of the catalysts for oxygen reduction is studied in 0.1 M KOH solution using the rotating disk electrode method. The Fe-containing nitrogen-doped carbon nanotubes exhibit an enhanced electrocatalytic performance as compared to metal-free counterparts and their electrocatalytic activity is comparable to that of commercial Pt/C catalyst. Alkaline direct methanol fuel cell tests also show performance close to Pt/C. Thus, these materials can be considered as promising cathode catalysts for application in alkaline fuel cells.

  5. Fabrication, characterization and applications of iron selenide

    NASA Astrophysics Data System (ADS)

    Hussain, Raja Azadar; Badshah, Amin; Lal, Bhajan

    2016-11-01

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed.

  6. Low-Resistivity Zinc Selenide for Heterojunctions

    NASA Technical Reports Server (NTRS)

    Stirn, R. J.

    1986-01-01

    Magnetron reactive sputtering enables doping of this semiconductor. Proposed method of reactive sputtering combined with doping shows potential for yielding low-resistivity zinc selenide films. Zinc selenide attractive material for forming heterojunctions with other semiconductor compounds as zinc phosphide, cadmium telluride, and gallium arsenide. Semiconductor junctions promising for future optoelectronic devices, including solar cells and electroluminescent displays. Resistivities of zinc selenide layers deposited by evaporation or chemical vapor deposition too high to form practical heterojunctions.

  7. Dislocation Etching Solutions for Mercury Cadmium Selenide

    DTIC Science & Technology

    2014-09-01

    Dislocation Etching Solutions for Mercury Cadmium Selenide by Kevin Doyle and Sudhir Trivedi ARL-CR-0744 September 2014...Etching Solutions for Mercury Cadmium Selenide Kevin Doyle and Sudhir Trivedi Sensors and Electron Devices Directorate, ARL prepared by...Solutions for Mercury Cadmium Selenide 5a. CONTRACT NUMBER W811NF-12-2-0019 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kevin Doyle and

  8. Mercury Cadmium Selenide for Infrared Detection

    DTIC Science & Technology

    2013-06-01

    REPORT Mercury cadmium selenide for infrared detection 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: Samples of HgCdSe alloys were grown via molecular...NUMBER John Dinan 512-245-6711 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Mercury cadmium selenide for...PAGE (SF298) (Continuation Sheet) Continuation for Block 13 ARO Report Number Mercury cadmium selenide for infrared detection Block 13

  9. Biological Chemistry of Hydrogen Selenide.

    PubMed

    Cupp-Sutton, Kellye A; Ashby, Michael T

    2016-11-22

    There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be "Reactive Selenium Compounds" relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe(-) at physiologic pH), is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry.

  10. Biological Chemistry of Hydrogen Selenide

    PubMed Central

    Cupp-Sutton, Kellye A.; Ashby, Michael T.

    2016-01-01

    There are no two main-group elements that exhibit more similar physical and chemical properties than sulfur and selenium. Nonetheless, Nature has deemed both essential for life and has found a way to exploit the subtle unique properties of selenium to include it in biochemistry despite its congener sulfur being 10,000 times more abundant. Selenium is more easily oxidized and it is kinetically more labile, so all selenium compounds could be considered to be “Reactive Selenium Compounds” relative to their sulfur analogues. What is furthermore remarkable is that one of the most reactive forms of selenium, hydrogen selenide (HSe− at physiologic pH), is proposed to be the starting point for the biosynthesis of selenium-containing molecules. This review contrasts the chemical properties of sulfur and selenium and critically assesses the role of hydrogen selenide in biological chemistry. PMID:27879667

  11. Thermoelectric Study of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Yao, Mengliang; Liu, Weishu; Ren, Zhifeng; Opeil, Cyril

    2014-03-01

    Nanostructuring has been shown to be an effective approach in reducing lattice thermal conductivity and improving the figure of merit of thermoelectric materials. Copper selenide is a layered structure material, which has a low thermal conductivity and p-type Seebeck coefficient at low temperatures. We have evaluated several hot-pressed, nanostructured copper selenide samples with different dopants for their thermoelectric properties. The phenomenon of the charge-density wave observed in the nanocomposite, resistivity, Seebeck, thermal conductivity and carrier mobility will be discussed. Funding for this research was provided by the Solid State Solar - Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center sponsored by the DOE, Office of Basic Energy Science, Award No. DE-SC0001299/ DE-FG02-09ER46577.

  12. Oxidation Mechanism of Copper Selenide

    NASA Astrophysics Data System (ADS)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  13. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.)

    PubMed Central

    Li, Qian; Yang, An; Zhang, Wen-Hao

    2016-01-01

    To elucidate the mechanisms underlying tolerance to saline-alkaline stress in two rice genotypes, Dongdao-4 and Jigeng-88, we exposed them to medium supplemented with 10 mM Na2CO3 and 40 mM NaCl (pH 8.5). Dongdao-4 plants displayed higher biomass, chlorophyll content, and photosynthetic rates, and a larger root system than Jigeng-88 under saline-alkaline conditions. Dongdao-4 had a higher shoot Na+/K+ ratio than Jigeng-88 under both control and saline-alkaline conditions. Dongdao-4 exhibited stronger rhizospheric acidification than Jigeng-88 under saline-alkaline conditions, resulting from greater up-regulation of H+-ATPases at the transcriptional level. Moreover, Fe concentrations in shoots and roots of Dongdao-4 were higher than those in Jigeng-88, and a higher rate of phytosiderophore exudation was detected in Dongdao-4 versus Jigeng-88 under saline-alkaline conditions. The Fe-deficiency-responsive genes OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were more strongly up-regulated in Dongdao-4 than Jigeng-88 plants in saline-alkaline medium, implying greater tolerance of Dongdao-4 plants to Fe deficiency. To test this hypothesis, we compared the effects of Fe deficiency on the two genotypes, and found that Dongdao-4 was more tolerant to Fe deficiency. Exposure to Fe-deficient medium led to greater rhizospheric acidification and phytosiderophore exudation in Dongdao-4 than Jigeng-88 plants. Expression levels of OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were higher in Dongdao-4 than Jigeng-88 plants under Fe-deficient conditions. These results demonstrate that a highly efficient Fe acquisition system together with a large root system may underpin the greater tolerance of Dongdao-4 plants to saline-alkaline stress. PMID:27811002

  14. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice (Oryza sativa L.).

    PubMed

    Li, Qian; Yang, An; Zhang, Wen-Hao

    2016-12-01

    To elucidate the mechanisms underlying tolerance to saline-alkaline stress in two rice genotypes, Dongdao-4 and Jigeng-88, we exposed them to medium supplemented with 10 mM Na2CO3 and 40 mM NaCl (pH 8.5). Dongdao-4 plants displayed higher biomass, chlorophyll content, and photosynthetic rates, and a larger root system than Jigeng-88 under saline-alkaline conditions. Dongdao-4 had a higher shoot Na(+)/K(+) ratio than Jigeng-88 under both control and saline-alkaline conditions. Dongdao-4 exhibited stronger rhizospheric acidification than Jigeng-88 under saline-alkaline conditions, resulting from greater up-regulation of H(+)-ATPases at the transcriptional level. Moreover, Fe concentrations in shoots and roots of Dongdao-4 were higher than those in Jigeng-88, and a higher rate of phytosiderophore exudation was detected in Dongdao-4 versus Jigeng-88 under saline-alkaline conditions. The Fe-deficiency-responsive genes OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were more strongly up-regulated in Dongdao-4 than Jigeng-88 plants in saline-alkaline medium, implying greater tolerance of Dongdao-4 plants to Fe deficiency. To test this hypothesis, we compared the effects of Fe deficiency on the two genotypes, and found that Dongdao-4 was more tolerant to Fe deficiency. Exposure to Fe-deficient medium led to greater rhizospheric acidification and phytosiderophore exudation in Dongdao-4 than Jigeng-88 plants. Expression levels of OsIRO2, OsIRT1, OsNAS1, OsNAS2, OsYSL2, and OsYSL15 were higher in Dongdao-4 than Jigeng-88 plants under Fe-deficient conditions. These results demonstrate that a highly efficient Fe acquisition system together with a large root system may underpin the greater tolerance of Dongdao-4 plants to saline-alkaline stress.

  15. Iron

    MedlinePlus

    Iron is a mineral that our bodies need for many functions. For example, iron is part of hemoglobin, a protein which carries ... It helps our muscles store and use oxygen. Iron is also part of many other proteins and ...

  16. Studies on Dechlorination of DDT with Alkaline 2-propanol and Iron-Nickel (Fe-Ni) Catalyst.

    NASA Astrophysics Data System (ADS)

    Shareef, A.; Zaman, S. U.

    2009-05-01

    The Persistent Organic Pollutants (POPs) pesticides were previously extensively used in the cotton production and other agricultural activities in Pakistan and at least three thousand metric tons of obsolete pesticides have been stored under extreme hazardous conditions in more than thousand sites. Locally banned or severely restricted pesticides are easily available and DDT is continuously illegally imported and use in our country. Elimination of organochlorine pesticides (OCPs) waste has received considerable attention over the past two decades. Existing catalytic hydrodechlorinated techniques for disposing of OCPs are very costly due to the use of noble metals as catalysts. The aim of our study is to develop the cost effective and efficient method for the safe disposal of OCPs. This study is in continuation work on dechlorination of organochlorine pesticides with Fe-Ni catalyst in alkaline 2-propanol media. We turned our attention to the development of DDT disposal method for the third world countries. Herein, we report our first finding that in alkaline 2-propanol with Fe-Ni catalyst is an effective method for dechlorination of DDT. Catalytic dechlorination of DDT was carried out in an alkaline solution of NaOH and 2-propanol in the presence of catalyst at the temperature below 82 oC and end products were analyzed by using Gas Chromatography (GC-ECD) and Ion Chromatography (IC) techniques. Results obtained with initial concentration of DDT ranging between 10-100 μg/ml showed conversion of DDT to chlorine free product within 4 hrs.

  17. Bacterial biodiversity from anthropogenic extreme environments: a hyper-alkaline and hyper-saline industrial residue contaminated by chromium and iron.

    PubMed

    Brito, Elcia M S; Piñón-Castillo, Hilda A; Guyoneaud, Rémy; Caretta, César A; Gutiérrez-Corona, J Félix; Duran, Robert; Reyna-López, Georgina E; Nevárez-Moorillón, G Virginia; Fahy, Anne; Goñi-Urriza, Marisol

    2013-01-01

    Anthropogenic extreme environments are among the most interesting sites for the bioprospection of extremophiles since the selection pressures may favor the presence of microorganisms of great interest for taxonomical and astrobiological research as well as for bioremediation technologies and industrial applications. In this work, T-RFLP and 16S rRNA gene library analyses were carried out to describe the autochthonous bacterial populations from an industrial waste characterized as hyper-alkaline (pH between 9 and 14), hyper-saline (around 100 PSU) and highly contaminated with metals, mainly chromium (from 5 to 18 g kg(-1)) and iron (from 2 to 108 g kg(-1)). Due to matrix interference with DNA extraction, a protocol optimization step was required in order to carry out molecular analyses. The most abundant populations, as evaluated by both T-RFLP and 16S rRNA gene library analyses, were affiliated to Bacillus and Lysobacter genera. Lysobacter related sequences were present in the three samples: solid residue and lixiviate sediments from both dry and wet seasons. Sequences related to Thiobacillus were also found; although strains affiliated to this genus are known to have tolerance to metals, they have not previously been detected in alkaline environments. Together with Bacillus (already described as a metal reducer), such organisms could be of use in bioremediation technologies for reducing chromium, as well as for the prospection of enzymes of biotechnological interest.

  18. Structure of iron phosphate glasses modified by alkali and alkaline earth additions: neutron and x-ray diffraction studies.

    PubMed

    Bingham, P A; Barney, E R

    2012-05-02

    The structure of iron phosphate glasses modified by additions of K(2)O and BaO, with nominal molar compositions [(1 - x)(0.6P(2)O(5)-0.4Fe(2)O(3))]xMe(y)O, where x = 0-0.4 in increments of 0.1; Me=K or Ba; and y = 1 or 2, has been investigated using neutron diffraction and x-ray diffraction techniques. Fitted coordination numbers for P-O and Fe-O showed a notable change in the P-O(NBO) and P-O(BO) contributions at greater than 20 mol% modifier addition, with barium producing a markedly larger increase in P-O(NBO) contribution than potassium. Fitting of T(N)(r) and T(X)(r) provided average n(BaO) = 9 and n(KO) = 6. Iron occurs in a range of coordination sites in these glasses: ([6])Fe(2+), ([4])Fe(3+), ([5])Fe(3+) and ([6])Fe(3+). The partitioning between these sites gives average n(FeO) = 5.2-5.8, with barium-doped glasses exhibiting higher average n(FeO) than potassium-doped glasses. The stronger depolymerizing effect of Ba(2+) than K(+) on the phosphate network, coupled with its greater ionic charge and higher Me-O, Fe-O and O···O coordination numbers, explain previously observed divergences in physical properties between the barium-doped and the potassium-doped glasses.

  19. A nickel iron diselenide-derived efficient oxygen-evolution catalyst

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Song, Fang; Hu, Xile

    2016-08-01

    Efficient oxygen-evolution reaction catalysts are required for the cost-effective generation of solar fuels. Metal selenides have been reported as promising oxygen-evolution catalysts; however, their active forms are yet to be elucidated. Here we show that a representative selenide catalyst, nickel selenide, is entirely converted into nickel hydroxide under oxygen-evolution conditions. This result indicates that metal selenides are unstable during oxygen evolution, and the in situ generated metal oxides are responsible for their activity. This knowledge inspired us to synthesize nanostructured nickel iron diselenide, a hitherto unknown metal selenide, and to use it as a templating precursor to a highly active nickel iron oxide catalyst. This selenide-derived oxide catalyses oxygen evolution with an overpotential of only 195 mV for 10 mA cm-2. Our work underscores the importance of identifying the active species of oxygen-evolution catalysts, and demonstrates how such knowledge can be applied to develop better catalysts.

  20. Crystallographic Description for Nanoparticle Asemblies - Application to Cadmium Selenide Clusters

    DTIC Science & Technology

    2001-01-01

    Application to Cadmium Selenide Clusters DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Proc. Vol. 635 © 2001 Materials Research Society Crystallographic Description for Nanoparticle Asemblies - Application to Cadmium Selenide Clusters. A

  1. Using nitrogen-rich polymeric network and iron(II) acetate as precursors to synthesize highly efficient electrocatalyst for oxygen reduction reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Chen, Hongbiao; Yang, Duanguang; Gao, Yong; Li, Huaming

    2016-03-01

    Carbon-supported transition metal/nitrogen (M-N/C) materials are considered as one of the most promising electrocatalysts for the oxygen reduction reaction (ORR) owing to their high ORR electrocatalytic activity, long-term stability, and excellent methanol tolerance. So far only a few examples of such catalysts are prepared from N-containing polymers. Herein, we report a novel Fe-N/C catalyst using a nitrogen-rich polymeric network and iron(II) acetate as the precursors. The porous polymeric network is fabricated by one-step Friedel-Crafts reaction of a low-cost cross-linker, formaldehyde dimethyl acetal, with 2,4,6-tripyrrol-1,3,5-triazine. Compared to commercial Pt/C catalyst, the as-prepared Fe-N/C electrocatalyst exhibits superior ORR activity in alkaline electrolyte, and comparable ORR activity in acidic medium. The results obtained are significant for the development of new Fe-N/C electrocatalysts for fuel cells.

  2. High-temperature superconductivity: Electron mirages in an iron salt

    NASA Astrophysics Data System (ADS)

    Zaanen, Jan

    2014-11-01

    The detection of unusual 'mirage' energy bands in photoemission spectra of single-atom layers of iron selenide reveals the probable cause of high-temperature superconductivity in these artificial structures. See Letter p.245

  3. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  4. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  5. 40 CFR 721.10391 - Copper gallium indium selenide.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Copper gallium indium selenide. 721... Substances § 721.10391 Copper gallium indium selenide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as copper gallium indium selenide (PMN...

  6. Infrared cadmium selenide photoconductor and process of making same

    SciTech Connect

    Faria, S.

    1987-02-17

    The process is described of making an infrared responsive cadmium selenide photoconductor comprising the steps of preparing a blend of cadmium selenide, copper-containing cadmium selenide mix and cadmium chloride, and firing the blend at a temperature of about 425/sup 0/C.

  7. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    PubMed Central

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A.D.; Thomas, Russell A.P.; Kalin, Robert; Lloyd, Jonathan R.

    2015-01-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  8. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue.

    PubMed

    Watts, Mathew P; Coker, Victoria S; Parry, Stephen A; Pattrick, Richard A D; Thomas, Russell A P; Kalin, Robert; Lloyd, Jonathan R

    2015-03-01

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ∼25% (BnM) and ∼50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ⩾5% w/w BnM or ⩾1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4-7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable capacity

  9. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    DOE PAGES

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; ...

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions.more » In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  10. Biogenic nano-magnetite and nano-zero valent iron treatment of alkaline Cr(VI) leachate and chromite ore processing residue

    SciTech Connect

    Watts, Mathew P.; Coker, Victoria S.; Parry, Stephen A.; Pattrick, Richard A. D.; Thomas, Russell A. P.; Kalin, Robert; Lloyd, Jonathan R.

    2014-12-11

    Highly reactive nano-scale biogenic magnetite (BnM), synthesized by the Fe(III)-reducing bacterium Geobacter sulfurreducens, was tested for the potential to remediate alkaline Cr(VI) contaminated waters associated with chromite ore processing residue (COPR). The performance of this biomaterial, targeting aqueous Cr(VI) removal, was compared to a synthetic alternative, nano-scale zero valent iron (nZVI). Samples of highly contaminated alkaline groundwater and COPR solid waste were obtained from a contaminated site in Glasgow, UK. During batch reactivity tests, Cr(VI) removal from groundwater was inhibited by ~25% (BnM) and ~50% (nZVI) when compared to the treatment of less chemically complex model pH 12 Cr(VI) solutions. In both the model Cr(VI) solutions and contaminated groundwater experiments the surface of the nanoparticles became passivated, preventing complete coupling of their available electrons to Cr(VI) reduction. To investigate this process, the surfaces of the reacted samples were analyzed by TEM-EDX, XAS and XPS, confirming Cr(VI) reduction to the less soluble Cr(III) on the nanoparticle surface. In groundwater reacted samples the presence of Ca, Si and S was also noted on the surface of the nanoparticles, and is likely responsible for earlier onset of passivation. Treatment of the solid COPR material in contact with water, by addition of increasing weight % of the nanoparticles, resulted in a decrease in aqueous Cr(VI) concentrations to below detection limits, via the addition of ≥5% w/w BnM or ≥1% w/w nZVI. XANES analysis of the Cr K edge, showed that the % Cr(VI) in the COPR dropped from 26% to a minimum of 4–7% by the addition of 5% w/w BnM or 2% w/w nZVI, with higher additions unable to reduce the remaining Cr(VI). The treated materials exhibited minimal re-mobilization of soluble Cr(VI) by re-equilibration with atmospheric oxygen, with the bulk of the Cr remaining in the solid fraction. Both nanoparticles exhibited a considerable

  11. Selenide technology evaluation program at JPL

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Garvey, L.

    1978-01-01

    Results are presented for experimental and analytical investigations of the overall performance of a selenide radioisotope thermoelectric generator intended to provide the electrical power for interplanetary spaceprobes such as the Galileo mission to Jupiter. The discussion focuses on technology areas of concern, electrical properties of the selenide thermoelectric materials used, and thermal conductivity of these materials for superior performance. It is shown that the selenide thermoelectric materials offer the advantage of high conversion efficiency. The long-life requirement on the power system for the Galileo mission necessitates proper design, known fabrication techniques, and reproducible assembly techniques in order to ensure stability of the thermoelectric properties. However, the thermophysical properties - sublimation and creep - of the p-material remains an area of considerable concern.

  12. Formation of selenide, sulfide or mixed selenide-sulfide films on metal or metal coated substrates

    DOEpatents

    Eser, Erten; Fields, Shannon

    2012-05-01

    A process and composition for preventing cracking in composite structures comprising a metal coated substrate and a selenide, sulfide or mixed selenide sulfide film. Specifically, cracking is prevented in the coating of molybdenum coated substrates upon which a copper, indium-gallium diselenide (CIGS) film is deposited. Cracking is inhibited by adding a Se passivating amount of oxygen to the Mo and limiting the amount of Se deposited on the Mo coating.

  13. Polarization Effects in the Luminescence of Cadmium Selenide Electrodes.

    DTIC Science & Technology

    1983-09-29

    UWIS/DC/TR-83/3 Polarization Effects in the Luminescence of Cadmium Selenide Electrodes by Holger H. Streckert, Hal Van Ryswyk, Richard N. Biagioni...the Luminescence of Cadmium Selenide Electrodes______________ S. PERFORMING ORG. REPORT NUMBER 7. AUT,4OR(e) S. CONTRACT OR GRANT NUMBER~q) Holger H...Continue an reverse aide if necieemy arid Identify, by block number) Cadmium selenide electrodes, photoluminescence, electroluminescence, polarized

  14. Simple preparation of a cadmium selenide-montmorillonite hybrid.

    PubMed

    Ontam, Areeporn; Khaorapapong, Nithima; Ogawa, Makoto

    2011-05-15

    The immobilization of organically modified cadmium selenide on montmorillonite was investigated by the reaction of modified cadmium selenide nanoparticles with montmorillonite. The intercalation of the nanoparticles was indicated by the expansion of the interlayer space and spectroscopic observations. The diffuse reflectance absorption spectrum of the product showed absorption onset at 567 nm. In comparison to the bulk cadmium selenide, the blue shift of the absorption onset of the hybrid was ascribed to the quantum size effect of the modified cadmium selenide nanoparticles. This study provides a new method for introducing nanoparticles into the interlayer space of layered inorganic materials.

  15. The heat capacity of solid antimony selenide

    NASA Astrophysics Data System (ADS)

    Pashinkin, A. S.; Malkova, A. S.; Mikhailova, M. S.

    2008-06-01

    The literature data on the heat capacity of solid antimony selenide over the temperature range 53 K- T m were analyzed. The heat capacity of Sb2Se3 was measured from 350 to 600 K on a DSM-2M calorimeter. The experimental data were used to calculate the dependence C p = a + bT + cT -2 and the thermodynamic functions of solid Sb2Se3 over the temperature range 298.15 700 K.

  16. Synthesis and characterization of luminescent cadmium selenide/zinc selenide/zinc sulfide cholinomimetic quantum dots.

    PubMed

    Gégout, Claire; McAtee, Maria L; Bennett, Nichole M; Viranga Tillekeratne, L M; Kirchhoff, Jon R

    2012-08-07

    Luminescent quantum dots conjugated with highly selective molecular recognition ligands are widely used for targeting and imaging biological structures. In this paper, water soluble cholinomimetic cadmium selenide (core), zinc selenide/zinc sulfide (shell) quantum dots were synthesized for targeting cholinergic sites. Cholinomimetic specificity was incorporated by conjugation of the quantum dots to an aminated analogue of hemicholinium-15, a well known competitive inhibitor of the high affinity choline uptake transporter. Detailed evaluation of the nanocrystal synthesis and characterization of the final product was conducted by (1)H and (31)P NMR, absorption and emission spectroscopy, as well as transmission electron microscopy.

  17. Electrothermal atomic absorption determination of silver in cadmium selenide

    SciTech Connect

    Khozhainov, Y.M.; Deinikina, N.P.; Tyurin, O.A.

    1985-10-01

    The authors developed an atomic absorption method for determining trace silver in cadmium selenide, restricted to samples of 3 - 10 mg. Used as cp reagents, including those further purified, were distilled nitric acid, isothermally distilled hydrochloric acid, cadmium selenide, and S /SUB r/ grade silver with a purity of 99.999%.

  18. Analytical predictions of selenide RTG power degradation

    NASA Technical Reports Server (NTRS)

    Noon, E. L.; Stapfer, G.; Raag, V.

    1978-01-01

    A mathematical model for the performance and degradation analysis of an RTG using the newly developed selenide thermoelectric materials has been developed at JPL. The computerized model is quite comprehensive and enables the accurate detailing of the electrical and thermal effects that take place within the thermocouple under any desired set of operation conditions, including heat input, ambient temperature and load conditions. The paper discusses the logic flow of the computer model and presents the time and temperature dependent results for various degradation mechanisms and rates as they have been established to date.

  19. Determination of the nonstoichiometry of cadmium selenide

    SciTech Connect

    Brezhnev, V.Yu.; Kharif, Ya.L.; Kovtunenko, P.V.

    1986-11-01

    In the annealing of cadmium selenide crystals, cadmium dissolves in the crystals. As a result, their composition deviates from stoichiometry, which affects their electrical conductivity and photosensitivity. In order to obtain crystals with the required properties, it is necessary to determine the amount of dissolved cadmium, i.e., the nonstoichiometry of the crystals. In this paper, the authors experimented with and report on the two methods of extracting dissolved cadmium: recrystallization of the sample by evaporation and condensation; and by creating the conditions for the occurrence of a diffusion stream of cadmium from the bulk to the surface of the crystals.

  20. Lattice vibrational properties of americium selenide

    NASA Astrophysics Data System (ADS)

    Arya, B. S.; Aynyas, Mahendra; Sanyal, S. P.

    2016-05-01

    Lattice vibrational properties of AmSe have been studied by using breathing shell models (BSM) which includes breathing motion of electrons of the Am atoms due to f-d hybridization. The phonon dispersion curves, specific heat calculated from present model. The calculated phonon dispersion curves of AmSe are presented follow the same trend as observed in uranium selenide. We discuss the significance of this approach in predicting the phonon dispersion curves of these compounds and examine the role of electron-phonon interaction.

  1. Photoluminescence Study of Copper Selenide Thin Films

    NASA Astrophysics Data System (ADS)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.

    2011-10-01

    Thin films of Copper Selenide of composition of composition Cu7Se4 with thickness 350 nm are deposited on glass substrate at a temperature of 498 K±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%) and Selenium (99.99%) as the elemental starting material. The deposited film is characterized structurally using X-ray Diffraction. The structural parameters such as lattice constant, particle size, dislocation density; number of crystallites per unit area and strain in the film are evaluated. Photoluminescence of the film is analyzed at room temperature using Fluoro Max-3 Spectrofluorometer.

  2. Carbon-Coated Co(3+)-Rich Cobalt Selenide Derived from ZIF-67 for Efficient Electrochemical Water Oxidation.

    PubMed

    Li, Siwen; Peng, Sijia; Huang, Linsong; Cui, Xiaoqi; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2016-08-17

    Oxygen evolution reaction (OER) electrocatalysts are confronted with challenges such as sluggish kinetics, low conductivity, and instability, restricting the development of water splitting. In this study, we report an efficient Co(3+)-rich cobalt selenide (Co0.85Se) nanoparticles coated with carbon shell as OER electrocatalyst, which are derived from zeolitic imidazolate framework (ZIF-67) precursor. It is proposed that the organic ligands in the ZIF-67 can effectively enrich and stabilize the Co(3+) ions in the inorganic-organic frameworks and subsequent carbon-coated nanoparticles. In alkaline media, the catalyst exhibits excellent OER performances, which are attributed to its abundant active sites, high conductivity, and superior kinetics.

  3. A binary A(x)B(1-x) ionic alkaline pseudocapacitor system involving manganese, iron, cobalt, and nickel: formation of electroactive colloids via in situ electric field assisted coprecipitation.

    PubMed

    Chen, Kunfeng; Yin, Shu; Xue, Dongfeng

    2015-01-21

    A new "combinatorial transition-metal cation pseudocapacitor" was demonstrated by designing combinatorial transition-metal cation pseudocapacitors with binary AxB1-x salt electrodes involving manganese, iron, cobalt, and nickel cations in an alkaline aqueous electrolyte. Binary multi-valence cations were crystallized in the colloidal state through an in situ coprecipitation under an electric field. These electroactive colloids absorbed by carbon black and the PVDF matrix are highly redox-reactive with high specific capacitance values, where the specific electrode configuration can create short ion diffusion paths to enable fast and reversible Faradaic reactions. This work shows huge promise for developing high-performance electrical energy storage systems via designing the colloidal state of electroactive cations. Multiple redox cations in the colloidal state can show high redox activities, making them more suitable for potential application in pseudocapacitor systems.

  4. Extracellular synthesis of cuprous selenide nanospheres by a biological-chemical coupling reduction process in an anaerobic microbial system.

    PubMed

    Yue, Lei; Wang, Jia; Qi, Shiyue; Xin, Baoping

    2016-09-01

    Biosynthesis of metal nanoparticles represents a clean, eco-friendly and sustainable "green chemistry" engineering. Lately, a number of metal selenides were successfully synthesized by biological methods. Here, cuprous selenide (Cu2 Se) nanospheres were prepared under mild conditions by a novel biological-chemical coupling reduction process. The simple process takes place between EDTA-Cu and Na2 SeO3 in presence of an alkaline solution containing NaBH4 and a selenite-reducing bacteria, Pantoea agglomerans. It is noteworthy that the isolated Pantoea agglomerans and Cu(+) ions, where the latter are obtained from reducing Cu(2+) ions by NaBH4 , play a key role, and Cu(+) ions not only can promote the generation of Se(2-) ions as a catalyst, but also can react with Se(2-) ions to form Cu2 Se. XRD pattern, SEM, and TEM images indicated that Cu2 Se nanoparticles were tetragonal crystal structure and the nanospheres diameter were about 100 nm. EDX, UV-vis, and FTIR spectra show that the biosynthesized Cu2 Se nanospheres are wrapped by protein and have a better stability. This work first proposes a new biosynthesis mechanism, and has important reference value for biological preparation of metal selenide nanomaterials. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1264-1270, 2016.

  5. Neutralization by Metal Ions of the Toxicity of Sodium Selenide

    PubMed Central

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137

  6. [Optical constants determination of zinc selenide by inversing transmittance spectrogram].

    PubMed

    Li, Dong; Ai, Qing; Xia, Xin-Lin

    2013-04-01

    The transmittance models of single slab and two spliced slabs were built, and a new method to determine optical constants of materials was proposed based on inversing the transmittance spectrograms of single slab and two spliced slabs. The measurements of transmittance spectrogram of zinc selenide glass slabs with different thickness in the infrared wavelength range of 1.33-21 microm at normal incidence were investigated by Bruke V70 FTIR spectrometer. The optical constants of zinc selenide were achieved by the inverse methods. The results indicate that the optical constants of zinc selenide determined by the new inverse method are in good agreement with previous data sets.

  7. Handbook of Phase Transition Sulfides, Selenides and Tellurides,

    DTIC Science & Technology

    1984-07-01

    fCAa24 o c()0 an E -b.Sldln () ahdln - 2 M ; do-a.5ie .I OII A-32. CdSe Cadnim Monoselenlde Cadmium selenide is a metal-nonmetal phase transition...RD-R146 658 HANDBOOK OF PHASE TRANSITION SULFIDES SELENIDES AND 1/3 rELLURIDES(U) TACTICAL WEAPONS GUIDANCE AND CONTROL INFORMATION ANALYSIS CE. W J...CIAL- WE:a\\FONf* C7UIDAt-NCE: & =ONrR DL. INP1:XRMATK3N At-LASIS C:EN*T7R HANDBOOK OF PHASE TRANSITION SULFIDES, SELENIDES AND TELLURIDES WALTER J

  8. Infrared birefringence spectra for cadmium sulfide and cadmium selenide.

    PubMed

    Chenault, D B; Chipman, R A

    1993-08-01

    Measurements of the birefringence spectra for cadmium sulfide and cadmium selenide from 2.5 to 16.5µm obtained with a rotating sample spectropolarimeter are presented. Because of the similarity in the birefringence spectra for cadmium sulfide and cadmium selenide, a highly achromatic IR retarder can be constructed from a combination of these materials. The ordinary and extraordinary refractive indices for cadmium sulfide are estimated in the region from 10.6 to 15 µm and for cadmium selenide from 10.6 to 16.5 µm by combining these birefringence data with an extrapolation of previous dispersion relations.

  9. Iron-Doped Zinc Selenide: Spectroscopy and Laser Development

    DTIC Science & Technology

    2014-03-27

    of [34]). They give the nonradiative decay probability as W (p)nr (T ) = W (p) nr (0) (1 + neff ) p , (2.6.6) where T is the temperature in Kelvin and...induced by a change in temperature. Henderson and Imbusch reprint Miyakawa and Dexter’s [49] expression for Wnr at T = 0 K. The rate of nonradiative ...radiative lifetime of the lowest Γ5 states and τ⋆ is the aggregate life- time of the remaining twelve states. Now, we add the effect of nonradiative

  10. Characterization of cadmium selenide electrodeposited from diethylene glycol solution containing tri-n-butylphosphine selenide

    SciTech Connect

    Sanders, B.W.; Cocivera, M.

    1987-05-01

    Thin film cadmium selenide has been prepared by a new electrochemical process in which the film is deposited at the cathode from a nonaqueous solution containing tri-n-butylphosphine selenide as the selenium source. The films are found to be less dense than those prepared using selenosulfite ion. The as-deposited films appear free of cracks and pinholes when deposited on titanium, but cracks develop when the films are annealed. A stoichiometric composition is obtained for the film over a 0.4V potential range. Power conversion efficiencies for films prepared under a variety of conditions range from 1.0 to 4.2% for surface areas ca. 1.0 cm/sup 2/. The presence of large concentrations of chloride ion in the deposition solution seems to have little effect on the composition or photoresponse of the film. Diethylene glycol appears to be a better solvent than propylene carbonate for this deposition process.

  11. Silica encapsulation of thiol-stabilized lead selenide (PbSe) quantum dots in aqueous solution.

    PubMed

    Primera-Pedrozo, Oliva M; Ates, Mehmet; Arslan, Zikri

    2013-07-01

    Silica encapsulation of lead selenide quantum dots (PbSe QDs) in aqueous solution is reported. Thioglycolic acid (TGA) stabilized PbSe QDs were modified with 3-mercaptopropyl trimethoxysilane (MPS) through vigorous stirring in water for 18-24 h in alkaline solution (pH 10.4-10.6). Silica shell was developed by controlled deposition and precipitation of silicates from sodium silicate solution onto MPS modified QDs surfaces. TEM images showed multiple PbSe QDs encapsulated in silica shell. The size of PbSe-SiO2 core-shell nanocrystals was estimated to be 25-30 nm by TEM. Elemental compositions (Pb, Se and Si) were investigated by EDX analysis. The purified colloids of PbSe-SiO2 QDs were stable for months when kept at 4 °C.

  12. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-07-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system.

  13. CO2-Free Power Generation on an Iron Group Nanoalloy Catalyst via Selective Oxidation of Ethylene Glycol to Oxalic Acid in Alkaline Media

    PubMed Central

    Matsumoto, Takeshi; Sadakiyo, Masaaki; Ooi, Mei Lee; Kitano, Sho; Yamamoto, Tomokazu; Matsumura, Syo; Kato, Kenichi; Takeguchi, Tatsuya; Yamauchi, Miho

    2014-01-01

    An Fe group ternary nanoalloy (NA) catalyst enabled selective electrocatalysis towards CO2-free power generation from highly deliverable ethylene glycol (EG). A solid-solution-type FeCoNi NA catalyst supported on carbon was prepared by a two-step reduction method. High-resolution electron microscopy techniques identified atomic-level mixing of constituent elements in the nanoalloy. We examined the distribution of oxidised species, including CO2, produced on the FeCoNi nanoalloy catalyst in the EG electrooxidation under alkaline conditions. The FeCoNi nanoalloy catalyst exhibited the highest selectivities toward the formation of C2 products and to oxalic acid, i.e., 99 and 60%, respectively, at 0.4 V vs. the reversible hydrogen electrode (RHE), without CO2 generation. We successfully generated power by a direct EG alkaline fuel cell employing the FeCoNi nanoalloy catalyst and a solid-oxide electrolyte with oxygen reduction ability, i.e., a completely precious-metal-free system. PMID:25004118

  14. Cuprous selenide and sulfide form improved photovoltaic barriers

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Photovoltaic barriers formed by depositing a layer of polycrystalline cuprous sulfide or cuprous selenide on gallium arsenide are chemically and electrically stable. The stability of these barrier materials is significantly greater than that of cuprous iodide.

  15. Deposition of copper selenide thin films and nanoparticles

    NASA Astrophysics Data System (ADS)

    Hu, Yunxiang; Afzaal, Mohammad; Malik, Mohammad A.; O'Brien, Paul

    2006-12-01

    A new method is reported for the growth of copper selenide thin films and nanoparticles using copper acetylacetonate and trioctylphosphine selenide. Aerosol-assisted chemical vapor deposition experiments lead to successful deposition of tetragonal Cu 2Se films. In contrast, hexadecylamine capped nanoparticles are composed of cubic Cu 2-xSe. The deposited materials are optically and structurally characterized. The results of this comprehensive study are described and discussed.

  16. Advanced selenide thermoelectric development program. Final report

    SciTech Connect

    Seetoo, W.R.

    1981-07-20

    The primary objective of this work was to demonstrate that copper silver selenide and TAGS could be segmented. The hot junction temperature was planned to be 725/sup 0/C with the segmentation temperature at 400/sup 0/C, both temperatures were selected to prevent excessive sublimation from the hot ends of the segments, respectively. The program was planned as a cooperative effort between General Atomic company and Teledyne Energy Systems. Accordingly, General Atomic synthesized the CuAgSe that was used to fabricate the test hardware that was ultimately delivered to General Atomic for testing. Both the CuAgSe and TAGS were hot pressed in an argon atmosphere then the segments were furnace-bonded to each other. A secondary objective was to produce CuAgSe powder by rapid solidification.

  17. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  18. Copper selenide nanocrystals for photothermal therapy.

    PubMed

    Hessel, Colin M; Pattani, Varun P; Rasch, Michael; Panthani, Matthew G; Koo, Bonil; Tunnell, James W; Korgel, Brian A

    2011-06-08

    Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications.

  19. A Molecular Ni-complex Containing Tetrahedral Nickel Selenide Core as Highly Efficient Electrocatalyst for Water Oxidation.

    PubMed

    Masud, Jahangir; Ioannou, Polydoros-Chrysovalantis; Levesanos, Nikolaos; Kyritsis, Panayotis; Nath, Manashi

    2016-11-23

    We report the highly efficient catalytic activity of a transition metal selenide-based coordination complex, [Ni{(SeP(i) Pr2 )2 N}2 ], (1) for oxygen evolution and hydrogen evolution reactions (OER and HER, respectively) in alkaline solution. Very low overpotentials of 200 mV and 310 mV were required to achieve 10 mA cm(-2) for OER and HER, respectively. The overpotential for OER is one of the lowest that has been reported up to now, making this one of the best OER electrocatalysts. In addition, this molecular complex exhibits an exceptionally high mass activity (111.02 A g(-1) ) and a much higher TOF value (0.26 s(-1) ) at a overpotential of 300 mV. This bifunctional electrocatalyst enables water electrolysis in alkaline solutions at a cell voltage of 1.54 V.

  20. Anodic electrosynthesis of cadmium selenide thin films; Characterization and comparison with the passive/transpassive behavior of CdX (X = S,Te) counterpart

    SciTech Connect

    Ham, D.; Mishra, K.K.; Rajeshwar, K. )

    1991-01-01

    This paper reports on cadmium selenide thin films electrosynthesized by an anodic route employing alkaline selenide solutions. The thermodynamic aspects of the electrodeposition chemistry were first explored via Pourbaix diagrams; the kinetic aspects were studied by linear sweep voltammetry on a Cd anode. The photoaction spectra of these anodic thin films revealed an optical gap energy (1.7 eV) in good agreement with the value known for CdSe. Their luminescence response, however, suggested a high density of carrier recombination centers located {approximately}0.2 eV below the conduction band. X-ray photoelectron spectroscopy revealed that the anodic thin films were stoichiometric in composition. In situ examination of the material during thin film growth by cyclic photovoltammetry revealed anodic photoeffects at potentials just past the Cd corrosion wave. The growth kinetics in the passive region adhered to a direct logarithmic rate law, while a diffusion mechanism was seen to prevail in the transpassive regime.

  1. Neutralization by metal ions of the toxicity of sodium selenide.

    PubMed

    Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre

    2013-01-01

    Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺) or weakly interact (Fe²⁺) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  2. Precursor conversion kinetics and the nucleation of cadmium selenide nanocrystals.

    PubMed

    Owen, Jonathan S; Chan, Emory M; Liu, Haitao; Alivisatos, A Paul

    2010-12-29

    The kinetics of cadmium selenide (CdSe) nanocrystal formation was studied using UV-visible absorption spectroscopy integrated with an automated, high-throughput synthesis platform. Reaction of anhydrous cadmium octadecylphosphonate (Cd-ODPA) with alkylphosphine selenides (1, tri-n-octylphosphine selenide; 2, di-n-butylphenylphosphine selenide; 3, n-butyldiphenylphosphine selenide) in recrystallized tri-n-octylphosphine oxide was monitored by following the absorbance of CdSe at λ = 350 nm, where the extinction coefficient is independent of size, and the disappearance of the selenium precursor using {(1)H}(31)P NMR spectroscopy. Our results indicate that precursor conversion limits the rate of nanocrystal nucleation and growth. The initial precursor conversion rate (Q(o)) depends linearly on [1] (Q(o)(1) = 3.0-36 μM/s) and decreases as the number of aryl groups bound to phosphorus increases (1 > 2 > 3). Changes to Q(o) influence the final number of nanocrystals and thus control particle size. Using similar methods, we show that changing [ODPA] has a negligible influence on precursor reactivity while increasing the growth rate of nuclei, thereby decreasing the final number of nanocrystals. These results are interpreted in light of a mechanism where the precursors react in an irreversible step that supplies the reaction medium with a solute form of the semiconductor.

  3. Feruloyl-CoA 6′-Hydroxylase1-Dependent Coumarins Mediate Iron Acquisition from Alkaline Substrates in Arabidopsis1[C][W][OPEN

    PubMed Central

    Schmid, Nicole B.; Giehl, Ricardo F.H.; Döll, Stefanie; Mock, Hans-Peter; Strehmel, Nadine; Scheel, Dierk; Kong, Xiaole; Hider, Robert C.; von Wirén, Nicolaus

    2014-01-01

    Although iron (Fe) is one of the most abundant elements in the earth’s crust, its low solubility in soils restricts Fe uptake by plants. Most plant species acquire Fe by acidifying the rhizosphere and reducing ferric to ferrous Fe prior to membrane transport. However, it is unclear how these plants access Fe in the rhizosphere and cope with high soil pH. In a mutant screening, we identified 2-oxoglutarate-dependent dioxygenase Feruloyl-CoA 6′-Hydroxylase1 (F6′H1) to be essential for tolerance of Arabidopsis (Arabidopsis thaliana) to high pH-induced Fe deficiency. Under Fe deficiency, F6′H1 is required for the biosynthesis of fluorescent coumarins that are released into the rhizosphere, some of which possess Fe(III)-mobilizing capacity and prevent f6′h1 mutant plants from Fe deficiency-induced chlorosis. Scopoletin was the most prominent coumarin found in Fe-deficient root exudates but failed to mobilize Fe(III), while esculetin, i.e. 6,7-dihydroxycoumarin, occurred in lower amounts but was effective in Fe(III) mobilization. Our results indicate that Fe-deficient Arabidopsis plants release Fe(III)-chelating coumarins as part of the strategy I-type Fe acquisition machinery. PMID:24246380

  4. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    SciTech Connect

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  5. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors.

    PubMed

    Fellowes, J W; Pattrick, R A D; Lloyd, J R; Charnock, J M; Coker, V S; Mosselmans, J F W; Weng, T-C; Pearce, C I

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (Se(II-)) as the precursor. Biogenic Se(II-) was produced by the reduction of Se(IV) by Veillonella atypica and compared directly against borohydride-reduced Se(IV) for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se(II-) formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se(II-) included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se(II-) is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  6. Preparation and Characterization of Silver Selenide Thin Film

    NASA Astrophysics Data System (ADS)

    Chandrasekar, L. Bruno; Vijayalakshmi, R.; Rajeswari, B.; Chandramohan, R.; Arivazhagan, G.; Packiaseeli, S. Arulmozhi

    2014-12-01

    Silver selenide, a phase-changing chalcogenide material, is prepared using electro deposition method for various molarities. X-ray diffraction studies show the cubic lattice of the material. The micro-structural properties such as grain size, strain, dislocation density, and texture coefficient are examined. The lattice constant is calculated using Nelson-Relay function. Morphological studies are done and uniform distributions of grains are observed. High purities of thin films are confirmed by energy dispersive X-ray analysis. The band gap is calculated using UV-vis spectroscopy and photoluminescence technique, and hence, the Stokes's effect is observed in silver selenide thin films. It is the first time that the lattice constant and the Urbach energy for various molarities in the case of silver selenide thin films are reported.

  7. Ovonic type switching in tin selenide thin films

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.; Mclennan, W. D.

    1975-01-01

    Amorphous tin selenide thin films which possess Ovonic type switching properties are fabricated using vacuum deposition techniques. The devices are fabricated in a planar configuration and consist of amorphous tin selenide deposited over silver contacts. Results obtained indicate that Ovonic type memory switching does occur in these films with the energy density required for switching from a high impedance to a low impedance state being dependent on the spacing between the electrodes of the device. There is also a strong implication that the switching is a function of the magnitude of the applied voltage pulse.

  8. A nickel iron diselenide-derived efficient oxygen-evolution catalyst

    PubMed Central

    Xu, Xiang; Song, Fang; Hu, Xile

    2016-01-01

    Efficient oxygen-evolution reaction catalysts are required for the cost-effective generation of solar fuels. Metal selenides have been reported as promising oxygen-evolution catalysts; however, their active forms are yet to be elucidated. Here we show that a representative selenide catalyst, nickel selenide, is entirely converted into nickel hydroxide under oxygen-evolution conditions. This result indicates that metal selenides are unstable during oxygen evolution, and the in situ generated metal oxides are responsible for their activity. This knowledge inspired us to synthesize nanostructured nickel iron diselenide, a hitherto unknown metal selenide, and to use it as a templating precursor to a highly active nickel iron oxide catalyst. This selenide-derived oxide catalyses oxygen evolution with an overpotential of only 195 mV for 10 mA cm−2. Our work underscores the importance of identifying the active species of oxygen-evolution catalysts, and demonstrates how such knowledge can be applied to develop better catalysts. PMID:27503136

  9. Electrodeposition of copper selenide films from acidic bath and their properties

    NASA Astrophysics Data System (ADS)

    Mane, Rajaram S.; Shaikh, Arif V.; Joo, Oh-Shim; Han, Sung-Hwan; Pathan, Habib M.

    2012-06-01

    Copper selenide thin films are successfully deposited using electrodeposition method by combining copper sulfate and sodiumseleno sulfate precursors at room temperature in acidic bath. The chemical composition was a key factor in preparing high-quality uniform and smooth thin films of the copper selenide. We present indium-tin-oxide as a substrate for depositing copper selenide films which usually exists as copper (I) selenide or copper (II) selenide. Obtained brownish films of copper selenide are examined for their structural, morphological, compositional and optical properties by means of X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and optical absorption measurement techniques, respectively for the structural, morphological and optical analysis.

  10. SINGLE CRYSTAL CADMIUM SULFIDE AND CADMIUM SELENIDE INSULATED-GATE FIELD-EFFECT TRIODES.

    DTIC Science & Technology

    Insulated-gate field-effect triodes were fabricated on single crystal cadmium sulfide and cadmium selenide . Both bulk crystals and platelets were...used for single crystal samples. Chromium and aluminum were found to make low impedance contacts to cadmium sulfide and cadmium selenide . The...polycrystalline cadmium sulfide and cadmium selenide IGFET’s. The characteristics of the fabricated devices were unstable with respect to time and temperature

  11. Mechanism of copper selenide growth on copper-oxide selenium system

    NASA Astrophysics Data System (ADS)

    Ishikawa, Y.; Kido, O.; Kimura, Y.; Kurumada, M.; Suzuki, H.; Saito, Y.; Kaito, C.

    2004-01-01

    Transmission electron microscopy was used to study spontaneous copper selenide formation on Cu particles covered with an oxide layer. Even if the copper particle surface was covered with a Cu 2O layer, selenides were formed by diffusion through the metal oxide layer. For a particle size less than 50 nm, selenide was formed in Cu particles by the diffusion of Se atoms passing through the Cu 2O layer. For particles larger than 100 nm in size, selenide was formed in Se film. It was also found that the thickness of the Cu 2O layer on the surface of Cu particle accelerated diffusion of Se atoms to the copper particle.

  12. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms.

    PubMed

    Yao, Aijun; Wang, Yani; Ling, Xiaodan; Chen, Zhe; Tang, Yetao; Qiu, Hao; Ying, Rongrong; Qiu, Rongliang

    2017-04-01

    Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM-EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84-94 % and 38-87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169-1412 % and 436-731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM-EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L(-1) AsO4(2-) or Cd(2+), ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd(2+) as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM

  13. Investigation of adatom adsorption on single layer buckled germanium selenide

    NASA Astrophysics Data System (ADS)

    Arkın, H.; Aktürk, E.

    2016-12-01

    A recent study of Hu et al. [1] predicted that 2D single layer of asymmetric washboard germanium selenide is found to be stable and display semiconducting properties. Motivating from this study, we have shown that another phase, which is 2D buckled honeycomb germanium selenide, is also stable. This phase exhibits semiconducting behavior with a band gap of 2.29 eV. Furthermore, on the basis of the first principles, spin-polarized density functional calculations, we investigate the effect of selected adatoms adsorption on the b-GeSe single layer. The adatoms Se, Ge, S, Si, C, Br and P are chemisorbed with significant binding energy where this effects modify the electronic structure of the single layer buckled GeSe locally by tuning the band gap. Net integer magnetic moment can be achieved and b-GeSe attains half metallicity through the adsorption of Si, Ge, P and Br.

  14. Aqueous preparation of surfactant-free copper selenide nanowires.

    PubMed

    Chen, Xinqi; Li, Zhen; Yang, Jianping; Sun, Qiao; Dou, Shixue

    2015-03-15

    Uniform surfactant-free copper selenide (Cu2-xSe) nanowires were prepared via an aqueous route. The effects of reaction parameters such as Cu/Se precursor ratio, Se/NaOH ratio, and reaction time on the formation of nanowires were comprehensively investigated. The results show that Cu2-xSe nanowires were formed through the assembling of CuSe nanoplates, accompanied by their self-redox reactions. The resultant Cu2-xSe nanowires were explored as a potential thermoelectric candidate in comparison with commercial copper selenide powder. Both synthetic and commercial samples have a similar performance and their figures of merit are 0.29 and 0.38 at 750K, respectively.

  15. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications.

    PubMed

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Hedhili, Mohamed N; Alshareef, Husam N

    2016-01-06

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max-imum current density of 97.5 mA cm(-2) at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec(-1) are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  16. Mono and digallium selenide clusters as potential superhalogens.

    PubMed

    Seeburrun, Neelum; Archibong, Edet F; Ramasami, Ponnadurai

    2015-03-01

    We present a systematic theoretical study on mono and digallium selenide clusters, Ga(m)Se(n) (m = 1, 2 and n  =  1-4), along with their negatively and positively charged counterparts. Different theoretical methods, namely density functional theory (DFT), second-order Møller-Plesset perturbation theory (MP2) and coupled cluster singles and doubles, including non-iterative triples [CCSD(T)], were employed in conjunction with the 6-311+G(2df) basis set. The lowest-energy configurations of gallium selenides prefer to be planar, with the exception of cationic GaSe4 and Ga2Se4. The adiabatic electron affinities (AEA) of Ga(m)Se(n) (m = 1, 2 and n  = 1-4) clusters range from 1.07 to 3.78 eV, and their adiabatic ionization potentials (AIP) vary from 7.57 to 8.76 eV using the CCSD(T)//B3LYP level of theory. It was found that the AEAs of gallium selenides do not depend solely on the electrophilicity of the clusters but also on their electronic structures. No significant trend was observed in the AIP values and HOMO-LUMO (H-L) gaps with increase in cluster size of the mono and digallium selenide series. Among the dissociation channels, the decomposition of GaSe4 → GaSe2 + Se2 was found to be thermodynamically most favored. Furthermore, the AEAs of GaSe2, GaSe3, GaSe4 and Ga2Se4 were found to exceed that of the chlorine atom and are therefore termed as 'superhalogens'. Finally, the AEAs of the Ga2X(n) (X = O-Se; n = 2-4) series were found to be almost similar.

  17. Electron beam assisted synthesis of cadmium selenide nanomaterials

    SciTech Connect

    Rath, M. C.; Guleria, A.; Singh, S.; Singh, A. K.; Adhikari, S.; Sarkar, S. K.

    2013-02-05

    Cadmium selenide nanomaterials of various shapes and sizes have been synthesized in different condensed media through electron beam irradiation using a 7 MeV linear accelerator. The microstructures in different media as well as the presence of capping reagents play a crucial role in the formation of nanomaterials of different shapes and sizes. Their optical properties could be efficiently tuned by controlling the synthetic parameters.

  18. Synthesis of cadmium selenide colloidal quantum dots in aquatic medium

    NASA Astrophysics Data System (ADS)

    Mazing, D. S.; Matyushkin, L. B.; Aleksandrova, O. A.; Mikhailov, I. I.; Moshnikov, V. A.; Tarasov, S. A.

    2014-12-01

    Cadmium selenide nanocrystals were prepared in water phase through facile wet chemistry technique with thioglycolic acid (TGA) acting as capping agent. Structures were characterized using X-ray diffraction (XRD), UV-vis absorption and photoluminescence spectroscopies. Depending on synthesis conditions nanoparticles exhibit photoluminescence with maximum in the region of 580 - 680 nm. Influence of technological parameters and component concentrations on nanocrystals average size and properties was studied.

  19. Isomorphism and solid solutions among Ag- and Au-selenides

    NASA Astrophysics Data System (ADS)

    Palyanova, Galina A.; Seryotkin, Yurii V.; Kokh, Konstantin A.; Bakakin, Vladimir V.

    2016-09-01

    Au-Ag selenides were synthesized by heating stoichiometric mixtures of elementary substances of initial compositions Ag2-xAuxSe with a step of x=0.25 (0≤x≤2) to 1050 °C and annealing at 500 °C. Scanning electron microscopy, optical microscopy, electron microprobe analysis and X-ray powder diffraction methods have been applied to study synthesized samples. Results of studies of synthesized products revealed the existence of three solid solutions with limited isomorphism Ag↔Au: naumannite Ag2Se - Ag1.94Au0.06Se, fischesserite Ag3AuSe2 - Ag3.2Au0.8Se2 and gold selenide AuSe - Au0.94Ag0.06Se. Solid solutions and AgAuSe phases were added to the phase diagram of Ag-Au-Se system. Crystal-chemical interpretation of Ag-Au isomorphism in selenides was made on the basis of structural features of fischesserite, naumannite, and AuSe.

  20. Determination of the homogeneity region of cadmium selenide

    SciTech Connect

    Brezhnev, V.Yu.; Kharif, Ya.L.; Kovtunenko, P.V.

    1987-10-01

    The purpose of the authors paper is refinement of the limit of the homogeneity region of cadmium selenide. The method of extraction of cadmium into the vapor phase was used to determine the cadmium content in cadmium selenide. At 870/sup 0/K the equilibrium of the cadmium selenide crystals during saturation by cadmium was monitored according to the reproducibility (in the range of +/-15%) of the results of experiments of different durations (30, 46, 62, and 192 h). Since at 870/sup 0/K the equilibrium was established in 30 h, at higher temperatures the duration of the annealing was assumed to be 30 h. In addition, in experiments at 1270 and 1370 K, crystals with thicknesses from 200 to 1500 ..mu..m were saturated simultaneously. The solubility of cadmium in CdSe was found to be 0.00053-0.00071 at. % at 870/sup 0/K, 0.0073-0.0113 at. % at 1170/sup 0/K, 0.022 at. % at 1270 K, 0.038 at. % at 1320/sup 0/K, and 0.044 at. % at 1370/sup 0/K.itrified

  1. Sodium selenide toxicity is mediated by O2-dependent DNA breaks.

    PubMed

    Peyroche, Gérald; Saveanu, Cosmin; Dauplais, Marc; Lazard, Myriam; Beuneu, François; Decourty, Laurence; Malabat, Christophe; Jacquier, Alain; Blanquet, Sylvain; Plateau, Pierre

    2012-01-01

    Hydrogen selenide is a recurrent metabolite of selenium compounds. However, few experiments studied the direct link between this toxic agent and cell death. To address this question, we first screened a systematic collection of Saccharomyces cerevisiae haploid knockout strains for sensitivity to sodium selenide, a donor for hydrogen selenide (H(2)Se/HSe(-/)Se(2-)). Among the genes whose deletion caused hypersensitivity, homologous recombination and DNA damage checkpoint genes were over-represented, suggesting that DNA double-strand breaks are a dominant cause of hydrogen selenide toxicity. Consistent with this hypothesis, treatment of S. cerevisiae cells with sodium selenide triggered G2/M checkpoint activation and induced in vivo chromosome fragmentation. In vitro, sodium selenide directly induced DNA phosphodiester-bond breaks via an O(2)-dependent reaction. The reaction was inhibited by mannitol, a hydroxyl radical quencher, but not by superoxide dismutase or catalase, strongly suggesting the involvement of hydroxyl radicals and ruling out participations of superoxide anions or hydrogen peroxide. The (•)OH signature could indeed be detected by electron spin resonance upon exposure of a solution of sodium selenide to O(2). Finally we showed that, in vivo, toxicity strictly depended on the presence of O(2). Therefore, by combining genome-wide and biochemical approaches, we demonstrated that, in yeast cells, hydrogen selenide induces toxic DNA breaks through an O(2)-dependent radical-based mechanism.

  2. A one-step synthesis of cadmium selenide quantum dots from a novel single source precursor.

    PubMed

    Crouch, D J; O'Brien, P; Malik, M A; Skabara, P J; Wright, S P

    2003-06-21

    A new approach to the one-step synthesis of cadmium selenide (CdSe) quantum dots is reported using the air stable complex cadmium imino-bis(diisopropylphosphine selenide); the ligand is readily prepared from elemental selenium and the precursor, quantum dots of comparable quality to those prepared by conventional methods are obtained.

  3. Characterization of the Interface Energetics for N-Type Cadmium Selenide/Non-Aqueous Electrolyte Junctions.

    DTIC Science & Technology

    1982-08-27

    nocesOMY and Idnnti by block number) 3 Photoelectrochemistry, interfaces, photoanodes, cadmium selenide , Ii non-aqueous electrolyte junctions 82 09 1 6 00 5...REPORT NO. 35 "CHARACTERIZATION OF THE INTERFACE ENERGETICS FOR N-TYPE CADMIUM SELENIDE /NON-AQUEOUS ELECTROLYTE JUNCTIONS" by A. Aruchamy, James A

  4. Luminescent Photoelectrochemical Cells. 6. Spatial Aspects of the Photoluminescence and Electroluminescence of Cadmium Selenide Electrodes.

    DTIC Science & Technology

    1981-10-06

    NO. 8 Luminescent Photoelectrochemical Cells. 6. Spatial Aspects of the Photoluminescence and Electroluminescence of Cadmium Selenide Electrodes by...Photoelectrochemistry; photoluminescence; electroluminescence; cadmium selenide electrodes 20. ABSTRACT (Continue. on reverse aide flnocosee7 and...REPORT A PERIOD COVERED Luminescent Photoelectrochemical Cells. 6.1 1 Spatial Aspects of the Photoluminescence and Elect roluminescence of Cadmium

  5. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  6. Organoselenium bis selenide attenuates 3-nitropropionic acid-induced neurotoxicity in rats.

    PubMed

    Bortolatto, Cristiani F; Jesse, Cristiano R; Wilhelm, Ethel A; Chagas, Pietro M; Nogueira, Cristina W

    2013-04-01

    This study was designed to evaluate the effects of bis selenide on Huntington disease (HD)-like signs induced by 3-nitropropionic acid (3-NP) in rats. To this aim, rats were treated for 4 days with bis selenide (5 or 20 mg/kg/day, per oral) 30 min before 3-NP (20 mg/kg/day, intraperitoneally). The body weight gain, locomotor activity, motor coordination, and biochemical parameters in striatal preparations were assessed 24 h after the last injection of 3-NP. The highest dose of bis selenide was effective in protecting against body weight loss and motor coordination deficit induced by 3-NP. The impairment of locomotor activity caused by 3-NP was abolished by bis selenide at both doses. Bis selenide (5 and 20 mg/kg) partially restored succinate dehydrogenase activity inhibited after 3-NP exposure. The dose of 20 mg/kg of bis selenide recovered partially δ-aminolevulinic acid dehydratase activity, and totally Na(+), K(+)-ATPase activity, two sulfhydryl enzymes sensitive to oxidizing agents, which had their activities inhibited by 3-NP. Also, 3-NP led to an increase in protein carbonyl levels and glutathione reductase activity and inhibited catalase activity-alterations that were reversed by bis selenide administration at both doses. The highest dose of bis selenide was effective against the increase of RS levels, the depletion of reduced glutathione content, and the inhibition of glutathione peroxidase activity induced by 3-NP. Bis selenide was not effective against inhibition of SOD activity caused by 3-NP. These findings demonstrate that bis selenide elicited protective effects against HD-like signs induced by 3-NP in rats.

  7. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  8. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    DOEpatents

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  9. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  10. Nanoscale Inhomogeneities Mapping in Ga-Modified Arsenic Selenide Glasses.

    PubMed

    Shpotyuk, Ya; Adamiak, S; Dziedzic, A; Szlezak, J; Bochnowski, W; Cebulski, J

    2017-12-01

    Nanoscale inhomogeneities mapping in Ga-modified As2Se3 glass was utilized exploring possibilities of nanoindentation technique using a Berkovitch-type diamond tip. Structural inhomogeneities were detected in Gax(As0.40Se0.60)100-x alloys with more than 3 at.% of Ga. The appeared Ga2Se3 nanocrystallites were visualized in Ga-modified arsenic selenide glasses using scanning and transmission electron microscopy. The Ga additions are shown to increase nanohardness and Young's modulus, this effect attaining an obvious bifurcation trend in crystallization-decomposed Ga5(As0.40Se0.60)95 alloy.

  11. Characterization of Zinc Selenide-Based Ultraviolet Detectors

    DTIC Science & Technology

    2009-12-01

    0.67 Silicon carbide SiC 2.86 Aluminum nitride AlN 6.3 Diamond C 5.5 Gallium(III) arsenide GaAs 1.43 Gallium(III) nitride GaN 3.4 Indium(III...photosensitivity compared to silicon -based detectors due to its larger bandgap. Its capability of turning optical power into valuable electrical signals...such as Zinc Selenide (ZnSe) have become popular for ultraviolet (UV) photodetectors. ZnSe has a higher photosensitivity compared to silicon -based

  12. Luminescence and photoconductivity of high-purity cadmium selenide

    SciTech Connect

    Martynov, V.N.

    1995-10-01

    Slightly off-stoichlometric high-purity cadmium and zinc chalcogenides are used as high-efficiency sensors in various optoelectronic devices. The procedure for preparing high-purity chalcogenides was described elsewhere. Such materials (wurtzite-type structure, sp. gr. C{sup 4}{sub 6v}) exhibit exciton luminescence and the photoconductivity associated with the A-, B-, and C-excitonic series over a wide temperature range. In this work, we studied the luminescence and photoconductivity (PC) of cadmium selenide prepared as described.

  13. Sonochemical synthesis of copper selenides nanocrystals with different phases

    NASA Astrophysics Data System (ADS)

    Xu, Shu; Wang, Hui; Zhu, Jun-Jie; Chen, Hong-Yuan

    2002-01-01

    A series of copper selenides (Cu 2- xSe, Cu 3Se 2 and CuSe) nanocrystals were prepared by a sonochemical method based on the reaction of copper acetate and sodium selenosulfate in an aqueous system. The phases and sizes of the nanocrystals could be controlled by changing the ratio of [Cu 2+]/[SeSO 32-] and complexing agents. X-ray powder diffraction and transmission electron microscopy were used to determine the phase, purity, size and morphology of the products.

  14. Fractal simulation of the resistivity and capacitance of arsenic selenide

    SciTech Connect

    Balkhanov, V. K. Bashkuev, Yu. B.

    2010-03-15

    The temperature dependences of the ac resistivity R and ac capacitance C of arsenic selenide were measured more than four decades ago [V. I. Kruglov and L. P. Strakhov, in Problems of Solid State Electronics, Vol. 2 (Leningrad Univ., Leningrad, 1968)]. According to these measurements, the frequency dependences are R {proportional_to} {omega}{sup -0.80{+-}0.01} and {Delta}C {proportional_to} {omega}{sup -0.120{+-}0.006} ({omega} is the circular frequency and {Delta}C is measured from the temperature-independent value C{sub 0}). According to fractal-geometry methods, R {proportional_to} {omega}{sup 1-3/h} and {Delta}C {proportional_to} {omega}{sup -2+3/h}, where h is the walk dimension of the electric current in arsenic selenide. Comparison of the experimental and theoretical results indicates that the walk dimensions calculated from the frequency dependences of resistivity and capacitance are h{sub R} = 1.67 {+-} 0.02 and h{sub C} = 1.60 {+-} 0.08, which are in agreement with each other within the measurement errors. The fractal dimension of the distribution of conducting sections is D = 1/h = 0.6. Since D < 1, the conducting sections are spatially separated and form a Cantor set.

  15. Development of the data base for a degradation model of a selenide RTG. [Radioisotope Thermoelectric Generator

    NASA Technical Reports Server (NTRS)

    Stapfer, G.; Truscello, V. C.

    1977-01-01

    The paper is concerned with the evaluation of the materials used in a selenide radioisotope thermoelectric generator (RTG). These materials are composed of n-type gadolinium selenide and n-type copper selenide. A three-fold evaluation approach is being used: (1) the study of the rate of change of the thermal conductivity of the material, (2) the investigation of the long-term stability of the material's Seebeck voltage and electrical resistivity under current and temperature gradient conditions, and (3) determination of the physical behavior and compatibility of the material with surrounding insulation at elevated temperatures. Programmatically, the third category of characteristic evaluation is being emphasized.

  16. Enhanced photo catalytic performance of nickel doped bismuth selenide under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-03-01

    We have reported photo catalytic properties of bismuth selenide (Bi2Se3) and nickel doped (5 mol%) bismuth selenide (Bi2Se3) samples on two different dyes, congo red (CR) and rose bengal (RB) under visible-light irradiation without and with hydrogen peroxide. A maximum rate constant of 0.0365 min‑1 for RB dye has been observed for the nickel doped bismuth selenide catalyst in presence of hydrogen peroxide. A possible mechanism for improvement of photo catalytic performance has been explained based on band structure.

  17. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol.

    PubMed

    Perin, Gelson; Barcellos, Angelita M; Luz, Eduardo Q; Borges, Elton L; Jacob, Raquel G; Lenardão, Eder J; Sancineto, Luca; Santi, Claudio

    2017-02-20

    A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ, from the reaction of elemental selenium with NaBH₄, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the (Z,Z)-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl) selenide 3f with (4-methoxyphenyl)magnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  18. The use of 4-substituted pyridines to afford amphiphilic, pegylated cadmium selenide nanoparticles.

    PubMed

    Skaff, Habib; Emrick, Todd

    2003-01-07

    Amphiphilic cadmium selenide (CdSe) nanoparticles were prepared by surface functionalization with novel ligands 1 and 2, composed of pyridine moieties substituted in the 4-position with polyethylene glycol (PEG) chains.

  19. Secondary alkaline batteries

    NASA Astrophysics Data System (ADS)

    McBreen, J.

    1984-03-01

    The overall reactions (charge/discharge characteristics); electrode structures and materials; and cell construction are studied for nickel oxide-cadmium, nickel oxide-iron, nickel oxide-hydrogen, nickel oxide-zinc, silver oxide-zinc, and silver oxide-cadmium, silver oxide-iron, and manganese dioxide-zinc batteries.

  20. Iron Test

    MedlinePlus

    ... detect and help diagnose iron deficiency or iron overload. In people with anemia , these tests can help ... also be ordered when iron deficiency or iron overload is suspected. Early iron deficiency often goes unnoticed. ...

  1. Growth of zinc selenide crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1995-01-01

    The growth of single crystals of zinc selenide was carried out by both closed ampoule physical vapor transport and effusive ampoule physical vapor transport (EAPVT). The latter technique was shown to be a much more efficient method for the seeded growth of zinc selenide, resulting in higher transport rates. Furthermore, EAPVT work on CdTe has shown that growth onto /n11/ seeds is advantageous for obtaining reduced twinning and defect densities in II-VI sphalerite materials.

  2. Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries.

    PubMed

    Ko, You Na; Choi, Seung Ho; Kang, Yun Chan

    2016-03-01

    The electrochemical properties of hollow cobalt oxide and cobalt selenide microspheres are studied for the first time as anode materials for Na-ion batteries. Hollow cobalt oxide microspheres prepared by one-pot spray pyrolysis are transformed into hollow cobalt selenide microspheres by a simple selenization process using hydrogen selenide gas. Ultrafine nanocrystals of Co3O4 microspheres are preserved in the cobalt selenide microspheres selenized at 300 °C. The initial discharge capacities for the Co3O4 and cobalt selenide microspheres selenized at 300 and 400 °C are 727, 595, and 586 mA h g(-1), respectively, at a current density of 500 mA g(-1). The discharge capacities after 40 cycles for the same samples are 348, 467, and 251 mA h g(-1), respectively, and their capacity retentions measured from the second cycle onward are 66, 91, and 50%, respectively. The hollow cobalt selenide microspheres have better rate performances than the hollow cobalt oxide microspheres.

  3. Role of O and Se defects in the thermoelectric properties of bismuth oxide selenide

    NASA Astrophysics Data System (ADS)

    Van Quang, Tran; Kim, Miyoung

    2016-11-01

    Bismuth oxygen selenide, Bi2O2Se, is a promising thermoelectric material because of its reduced thermal conductivity. In this study, we perform the first-principles calculation and utilize the solution of Boltzmann transport equation in a constant relaxation-time approximation to compute the electronic and thermoelectric properties of Bi2O2Se with O and Se defects. Oxygen vacancies trap bands located inside the band gap of Bi2O2Se, and the compound becomes a conductor. These bands lead to drastic reduction in the Seebeck coefficient. When vacancies are filled by selenide atoms (selenide point defect), the materials return to be a semiconductor and the Seebeck coefficient increases. The increase of S is also found in the system with defects formed by the substitution of oxygen atoms into selenide sites (oxygen point defect) in the pristine compound. The power factor significantly increases during p-type doping compared with that during n-type doping for the selenide point defect. However, differences in the two doping cases are less distinguished for the oxygen point defect. Hence, the selenide point defect, Bi2O2-δSe1+δ with p-type doping, is an effective way to increase the power factor and eventually the thermoelectric efficiency of Bi2O2Se.

  4. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    SciTech Connect

    Balitskii, O.A.; Demchenko, P.Yu.; Mijowska, E.; Cendrowski, K.

    2013-02-15

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuning their spectral characteristics to higher energy solar photons.

  5. Facile synthesis of cadmium selenide nanowires and their optical properties

    NASA Astrophysics Data System (ADS)

    Du, Yinxiao; Li, Guang-cheng

    2011-02-01

    Well crystalline cadmium selenide (CdSe) nanowires were fabricated on the composite layer of gold and carbon coated Si substrates by a facile chemical vapor deposition method. These nanowires are of single-crystalline hexagonal structure and the average length is up to tens of micrometers. The growth process follows a typical vapor-liquid-solid (VLS) mechanism, and the carbon layer can distinctly enhance the VLS process of the CdSe nanowires. The cathodoluminescence (CL) spectrum of an individual nanowire reveals a strong near-band-edge (NBE) emission and relative weak infrared emission centered at 710 and 981 nm, respectively. The defects-related infrared emission is ascribed to the deep defect donors-related energy level induced by a large amount of Se vacancies.

  6. In situ transmission electron microscopy of cadmium selenide nanorod sublimation

    SciTech Connect

    Hellebusch, Daniel J.; Manthiram, Karthish; Beberwyck, Brandon J.; Alivisatos, A. Paul

    2015-01-23

    In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod’s long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. Furthermore, we propose a mechanism that accounts for the observed sublimation behavior based on the terrace–ledge–kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.

  7. Manipulation of cadmium selenide nanorods with an atomic force microscope.

    PubMed

    Tranvouez, E; Orieux, A; Boer-Duchemin, E; Devillers, C H; Huc, V; Comtet, G; Dujardin, G

    2009-04-22

    We have used an atomic force microscope (AFM) to manipulate and study ligand-capped cadmium selenide nanorods deposited on highly oriented pyrolitic graphite (HOPG). The AFM tip was used to manipulate (i.e., translate and rotate) the nanorods by applying a force perpendicular to the nanorod axis. The manipulation result was shown to depend on the point of impact of the AFM tip with the nanorod and whether the nanorod had been manipulated previously. Forces applied parallel to the nanorod axis, however, did not give rise to manipulation. These results are interpreted by considering the atomic-scale interactions of the HOPG substrate with the organic ligands surrounding the nanorods. The vertical deflection of the cantilever was recorded during manipulation and was combined with a model in order to estimate the value of the horizontal force between the tip and nanorod during manipulation. This horizontal force is estimated to be on the order of a few tens of nN.

  8. Nanopatterned cadmium selenide Langmuir-Blodgett platform for leukemia detection.

    PubMed

    Sharma, Aditya; Pandey, Chandra M; Matharu, Zimple; Soni, Udit; Sapra, Sameer; Sumana, Gajjala; Pandey, Manoj K; Chatterjee, Tathagat; Malhotra, Bansi D

    2012-04-03

    We present results of the studies relating to preparation of Langmuir-Blodgett (LB) monolayers of tri-n-octylphosphine oxide-capped cadmium selenide quantum dots (QCdSe) onto indium-tin oxide (ITO) coated glass substrate. The monolayer behavior has been studied at the air-water interface under various subphase conditions. This nanopatterned platform has been explored to fabricate an electrochemical DNA biosensor for detection of chronic myelogenous leukemia (CML) by covalently immobilizing the thiol-terminated oligonucleotide probe sequence via a displacement reaction. The results of electrochemical response studies reveal that this biosensor can detect target DNA in the range of 10(-6) to 10(-14) M within 120 s, has a shelf life of 2 months, and can be used about 8 times. Further, this nucleic acid sensor has been found to distinguish the CML-positive and the control negative clinical patient samples.

  9. In Situ Transmission Electron Microscopy of Cadmium Selenide Nanorod Sublimation.

    PubMed

    Hellebusch, Daniel J; Manthiram, Karthish; Beberwyck, Brandon J; Alivisatos, A Paul

    2015-02-19

    In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod's long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. We propose a mechanism that accounts for the observed sublimation behavior based on the terrace-ledge-kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.

  10. Hierarchically structured porous cadmium selenide polycrystals using polystyrene bilayer templates.

    PubMed

    Park, Jin Young; Hendricks, Nicholas R; Carter, Kenneth R

    2012-09-18

    In this study, a novel approach is demonstrated to fabricate hierarchically structured cadmium selenide (CdSe) layers with size-tunable nano/microporous morphologies achieved using polystyrene (PS) bilayered templates (top layer: colloidal template) via potentiostatic electrochemical deposition. The PS bilayer template is made in two steps. First, various PS patterns (stripes, ellipsoids, and circles) are prepared as the bottom layers through imprint lithography. In a second step, a top template is deposited that consists of a self-assembled layer of colloidal 2D packed PS particles. Electrochemical growth of CdSe crystals in the voids and selective removal of the PS bilayered templates give rise to hierarchically patterned 2D hexagonal porous CdSe structures. This simple and facile technique provides various unconventional porous CdSe films, arising from the effect of the PS bottom templates.

  11. In situ transmission electron microscopy of cadmium selenide nanorod sublimation

    DOE PAGES

    Hellebusch, Daniel J.; Manthiram, Karthish; Beberwyck, Brandon J.; ...

    2015-01-23

    In situ electron microscopy is used to observe the morphological evolution of cadmium selenide nanorods as they sublime under vacuum at a series of elevated temperatures. Mass loss occurs anisotropically along the nanorod’s long axis. At temperatures close to the sublimation threshold, the phase change occurs from both tips of the nanorods and proceeds unevenly with periods of rapid mass loss punctuated by periods of relative stability. At higher temperatures, the nanorods sublime at a faster, more uniform rate, but mass loss occurs from only a single end of the rod. Furthermore, we propose a mechanism that accounts for themore » observed sublimation behavior based on the terrace–ledge–kink (TLK) model and how the nanorod surface chemical environment influences the kinetic barrier of sublimation.« less

  12. Formation and Reactivity of Organo-Functionalized Tin Selenide Clusters.

    PubMed

    Rinn, Niklas; Eußner, Jens P; Kaschuba, Willy; Xie, Xiulan; Dehnen, Stefanie

    2016-02-24

    Reactions of R(1) SnCl3 (R(1) =CMe2 CH2 C(O)Me) with (SiMe3 )2 Se yield a series of organo-functionalized tin selenide clusters, [(SnR(1) )2 SeCl4 ] (1), [(SnR(1) )2 Se2 Cl2 ] (2), [(SnR(1) )3 Se4 Cl] (3), and [(SnR(1) )4 Se6 ] (4), depending on the solvent and ratio of the reactants used. NMR experiments clearly suggest a stepwise formation of 1 through 4 by subsequent condensation steps with the concomitant release of Me3 SiCl. Furthermore, addition of hydrazines to the keto-functionalized clusters leads to the formation of hydrazone derivatives, [(Sn2 (μ-R(3) )(μ-Se)Cl4 ] (5, R(3) =[CMe2 CH2 CMe(NH)]2 ), [(SnR(2) )3 Se4 Cl] (6, R(2) =CMe2 CH2 C(NNH2 )Me), [(SnR(4) )3 Se4 ][SnCl3 ] (7, R(4) =CMe2 CH2 C(NNHPh)Me), [(SnR(2) )4 Se6 ] (8), and [(SnR(4) )4 Se6 ] (9). Upon treatment of 4 with [Cu(PPh3 )3 Cl] and excess (SiMe3 )2 Se, the cluster fragments to form [(R(1) Sn)2 Se2 (CuPPh3 )2 Se2 ] (10), the first discrete Sn/Se/Cu cluster compound reported in the literature. The derivatization reactions indicate fundamental differences between organotin sulfide and organotin selenide chemistry.

  13. Copper selenide thin films by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    García, V. M.; Nair, P. K.; Nair, M. T. S.

    1999-05-01

    We report the structural, optical, and electrical properties of thin films (0.05 to 0.25 μm) of copper selenide obtained from chemical baths using sodium selenosulfate or N,N-dimethylselenourea as a source of selenide ions. X-ray diffraction (XRD) studies on the films obtained from baths using sodium selenosulfate suggest a cubic structure as in berzelianite, Cu 2- xSe with x=0.15. Annealing the films at 400°C in nitrogen leads to a partial conversion of the film to Cu 2Se. In the case of films obtained from the baths containing dimethylselenourea, the XRD patterns match that of klockmannite, CuSe. Annealing these films in nitrogen at 400°C results in loss of selenium, and consequently a composition rich in copper, similar to Cu 2- xSe, is reached. Optical absorption in the films result from free carrier absorption in the near infrared region with absorption coefficient of ˜10 5 cm -1. Band-to-band transitions which gives rise to the optical absorption in the visible-ultraviolet region may be interpreted in terms of direct allowed transitions with band gap in the 2.1-2.3 eV range and indirect allowed transitions with band gap 1.2-1.4 eV. All the films, as prepared and annealed, show p-type conductivity, in the range of (1-5)×10 3 Ω -1 cm -1. This results in high near infrared reflectance, of 30-80%.

  14. Iron (Oxyhydr)Oxide Biosignatures in the Brushy Basin Member of the Jurassic Morrison Formation, Colorado Plateau, USA: Analog for Martian Diagenetic Iron

    NASA Astrophysics Data System (ADS)

    Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J.

    2012-03-01

    Iron precipitates in modern microbial mats compared with iron cements in Jurassic alkaline saline lake sediments show that morphological and chemical biosignatures are present and preserved in oxidized, evaporative environments analogous to Mars.

  15. Double-Diffusive Convection During Growth of Halides and Selenides

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching-Hua; Duval, Walter M. B.

    2015-01-01

    Heavy metal halides and selenides have unique properties which make them excellent materials for chemical, biological and radiological sensors. Recently it has been shown that selenohalides are even better materials than halides or selenides for gamma-ray detection. These materials also meet the strong needs of a wide band imaging technology to cover ultra-violet (UV), midwave infrared wavelength (MWIR) to very long wavelength infrared (VLWIR) region for hyperspectral imager components such as etalon filters and acousto-optic tunable filters (AO). In fact AOTF based imagers based on these materials have some superiority than imagers based on liquid crystals, FTIR, Fabry-Perot, grating, etalon, electro-optic modulation, piezoelectric and several other concepts. For example, broadband spectral and imagers have problems of processing large amount of information during real-time observation. Acousto-Optic Tunable Filter (AOTF) imagers are being developed to fill the need of reducing processing time of data, low cost operation and key to achieving the goal of covering long-wave infrared (LWIR). At the present time spectral imaging systems are based on the use of diffraction gratings are typically used in a pushbroom or whiskbroom mode. They are mostly used in systems and acquire large amounts of hyperspectral data that is processed off-line later. In contrast, acousto-optic tunable filter spectral imagers require very little image processing, providing new strategies for object recognition and tracking. They are ideally suited for tactical situations requiring immediate real-time image processing. But the performance of these imagers depends on the quality and homogeneity of acousto-optic materials. In addition for many systems requirements are so demanding that crystals up to sizes of 10 cm length are desired. We have studied several selenides and halide crystals for laser and AO imagers for MWIR and LWIR wavelength regions. We have grown and fabricated crystals of

  16. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  17. How iron controls iron.

    PubMed

    Kühn, Lukas C

    2009-12-01

    Cells regulate iron homeostasis by posttranscriptional regulation of proteins responsible for iron uptake and storage. This requires RNA-binding activity of iron-regulatory proteins, IRP1 and IRP2. Two studies recently published in Science by Vashisht et al. (2009) and Salahudeen et al. (2009) reveal how cells adjust IRP2 activity.

  18. Power Scaling Feasibility or Chromium-Doped II-VI Laser Sources and the Demonstration of a Chromium-Doped Zinc Selenide Face-Cooled Disk Laser

    DTIC Science & Technology

    2002-03-01

    hosts such as zinc selenide [1], cadmium selenide [2], cadmium manganese telluride[3], etc. results in laser materials with high quantum yield and...Zinc Selenide Face-Cooled Disk Laser DISSERTATION Jason B. McKay, Captain, USAF AFIT/DS/ENP/02-5 DEPARTMENT OF THE AIR FORCE AIR...SOURCES AND THE DEMONSTRATION OF A CHROMIUM-DOPED ZINC SELENIDE FACE- COOLED DISK LASER DISSERTATION Presented to the Faculty

  19. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy.

  20. Advanced alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Wakabayashi, N.; Torikai, E.; Kawami, Y.; Takenaka, H.

    Results are presented of experimental studies of possible separators and electrodes for use in advanced, high-temperature, high-pressure alkaline water electrolyzers. Material evaluations in alkaline water electrolyzers at temperatures from 100 to 120 C have shown a new type polytetrafluoroethylene membrane impregnated with potassium titanate to be the most promising when the separator is prepared by the hydrothermal treatment of a porous PFTE membrane impregnated with hydrated titanium oxide. Measurements of cell voltages in 30% KOH at current densities from 5 to 100 A/sq dm at temperatures up to 120 C with nickel electrodes of various structures have shown the foamed nickel electrode, with an average pore size of 1-1.5 mm, to have the best performance. When the foamed nickel is coated by fine powdered nickel, carbonyl nickel or Raney nickel to increase electrode surface areas, even lower cell voltages were found, indicating better performance.

  1. Iron Chelation

    MedlinePlus

    ... iron overload and need treatment. What is iron overload? Iron chelation therapy is used when you have ... may want to perform: How quickly does iron overload happen? This is different for each person. It ...

  2. Enzymatic methylation of sulfide, selenide, and organic thiols by Tetrahymena thermophila

    SciTech Connect

    Drotar, A.; Fall, L.R.; Mishalanie, E.A.; Tavernier, J.E.; Fall, R.

    1987-09-01

    Cell extracts from the ciliate Tetrahymena thermophila catalyzed the S-adenosylmethionine-dependent methylation of sulfide. The product of the reaction, methanethiol, was detected by a radiometric assay and by a gas-chromatographic assay coupled to a sulfur-selective chemiluminescence detector. Extracts also catalyzed the methylation of selenide, and the product was shown by gas chromatography-mass spectrometry to be methaneselenol. The sulfide and selenide methyltransferase activities copurified with the aromatic thiol methyltransferase previously characterized from this organism, but heat inactivation experiments suggested the involvement of distinct sulfide and selenide methyltransferases. Short-term toxicity tests were carried out for sulfide, selenide, and their methylated derivatives; the monomethylated forms were somewhat more toxic than the nonmethylated or dimethylated compounds. Cell suspensions of T. thermophila exposed to sulfide, methanethiol, or their selenium analogs emitted methylated derivatives into the headspace. These results suggest that this freshwater protozoan is capable of the stepwise methylation of sulfide and selenide, leading to the release of volatile methylated sulfur or selenium gases.

  3. Amorphous Indium Selenide Thin Films Prepared by RF Sputtering: Thickness-Induced Characteristics.

    PubMed

    Han, Myoung Yoo; Park, Yong Seob; Kim, Nam-Hoon

    2016-05-01

    The influence of indium composition, controlled by changing the film thickness, on the optical and electrical properties of amorphous indium selenide thin films was studied for the application of these materials as Cd-free buffer layers in CI(G)S solar cells. Indium selenide thin films were prepared using RF magnetron sputtering method. The indium composition of the amorphous indium selenide thin films was varied from 94.56 to 49.72 at% by increasing the film thickness from 30 to 70 nm. With a decrease in film thickness, the optical transmittance increased from 87.63% to 96.03% and Eg decreased from 3.048 to 2.875 eV. Carrier concentration and resistivity showed excellent values of ≥1015 cm(-3) and ≤ 10(4) Ω x cm, respectively. The conductivity type of the amorphous indium selenide thin films could be controlled by changing the film-thickness-induced amount of In. These results indicate the possibility of tuning the properties of amorphous indium selenide thin films by changing their composition for use as an alternate buffer layer material in CI(G)S solar cells.

  4. Using different chemical methods for deposition of copper selenide thin films and comparison of their characterization.

    PubMed

    Güzeldir, Betül; Sağlam, Mustafa

    2015-11-05

    Different chemical methods such as Successive Ionic Layer Adsorption and Reaction (SILAR), spin coating and spray pyrolysis methods were used to deposite of copper selenide thin films on the glass substrates. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-ray analysis (EDX) spectroscopy and UV-vis spectrophotometry. The XRD and SEM studies showed that all the films exhibit polycrystalline nature and crystallinity of copper selenide thin films prepared with spray pyrolysis greater than spin coating and SILAR methods. From SEM and AFM images, it was observed copper selenide films were uniform on the glass substrates without any visible cracks or pores. The EDX spectra showed that the expected elements exist in the thin films. Optical absorption studies showed that the band gaps of copper selenide thin films were in the range 2.84-2.93 eV depending on different chemical methods. The refractive index (n), optical static and high frequency dielectric constants (ε0, ε∞) values were calculated by using the energy bandgap values for each deposition method. The obtained results from different chemical methods revealed that the spray pyrolysis technique is the best chemical deposition method to fabricate copper selenide thin films. This absolute advantage was lead to play key roles on performance and efficiency electrochromic and photovoltaic devices.

  5. Enzymatic methylation of sulfide, selenide, and organic thiols by Tetrahymena thermophila.

    PubMed Central

    Drotar, A; Fall, L R; Mishalanie, E A; Tavernier, J E; Fall, R

    1987-01-01

    Cell extracts from the ciliate Tetrahymena thermophila catalyzed the S-adenosylmethionine-dependent methylation of sulfide. The product of the reaction, methanethiol, was detected by a radiometric assay and by a gas-chromatographic assay coupled to a sulfur-selective chemiluminescence detector. Extracts also catalyzed the methylation of selenide, and the product was shown by gas chromatography-mass spectrometry to be methaneselenol. The sulfide and selenide methyltransferase activities copurified with the aromatic thiol methyltransferase previously characterized from this organism (A.-M. Drotar and R. Fall, Pestic. Biochem. Physiol. 25:396-406, 1986), but heat inactivation experiments suggested the involvement of distinct sulfide and selenide methyltransferases. Short-term toxicity tests were carried out for sulfide, selenide, and their methylated derivatives; the monomethylated forms were somewhat more toxic than the nonmethylated or dimethylated compounds. Cell suspensions of T. thermophila exposed to sulfide, methanethiol, or their selenium analogs emitted methylated derivatives into the headspace. These results suggest that this freshwater protozoan is capable of the stepwise methylation of sulfide and selenide, leading to the release of volatile methylated sulfur or selenium gases. PMID:3674871

  6. Interferences in electrochemical hydride generation of hydrogen selenide

    NASA Astrophysics Data System (ADS)

    Bolea, E.; Laborda, F.; Belarra, M. A.; Castillo, J. R.

    2001-12-01

    Interferences from Cu(II), Zn(II), Pt(IV), As(III) and nitrate on electrochemical hydride generation of hydrogen selenide were studied using a tubular flow-through generator, flow injection sample introduction and quartz tube atomic absorption spectrometry. Comparison with conventional chemical generation using tetrahydroborate was also performed. Lead and reticulated vitreous carbon (RVC), both in particulate form, were used as cathode materials. Signal supressions up to 60-75%, depending on the cathode material, were obtained in the presence of up to 200 mg l-1 of nitrate due to the competitive reduction of the anion. Interference from As(III) was similar in electrochemical and chemical generation, being related to the quartz tube atomization process. Zinc did not interfere up to Se/Zn ratios 1:100, whereas copper and platinum showed suppression levels up to 50% for Se/interferent ratios 1:100. Total signal suppression was observed in presence of Se/Cu ratios 1:100 when RVC cathodes were used. No memory effects were observed in any case. Scanning electron microscopy and squared wave voltametry studies supported the interference mechanism based on the decomposition of the hydride on the dispersed particles of the reduced metal.

  7. Thermoelectric characterization of individual bismuth selenide topological insulator nanoribbons

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Wang, Xiaomeng; Xiong, Yucheng; Zhao, Yang; Zhang, Yin; Zhang, Yan; Yang, Juekuan; Xu, Dongyan

    2015-04-01

    Bismuth selenide (Bi2Se3) nanoribbons have attracted tremendous research interest recently to study the properties of topologically protected surface states that enable new opportunities to enhance the thermoelectric performance. However, the thermoelectric characterization of individual Bi2Se3 nanoribbons is rare due to the technological challenges in the measurements. One challenge is to ensure good contacts between the nanoribbon and electrodes in order to determine the thermal and electrical properties accurately. In this work, we report the thermoelectric characterization of individual Bi2Se3 nanoribbons via a suspended microdevice method. Through careful measurements, we have demonstrated that contact thermal resistance is negligible after the electron-beam-induced deposition (EBID) of platinum/carbon (Pt/C) composites at the contacts between the nanoribbon and electrodes. It is shown that the thermal conductivity of the Bi2Se3 nanoribbons is less than 50% of the bulk value over the whole measurement temperature range, which can be attributed to enhanced phonon boundary scattering. Our results indicate that intrinsic Bi2Se3 nanoribbons prepared in this work are highly doped n-type semiconductors, and therefore the Fermi level should be in the conduction band and no topological transport behavior can be observed in the intrinsic system.

  8. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals

    PubMed Central

    2015-01-01

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn2+ and Cd2+) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu2–xSe) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core–shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu+ ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu2–xSe samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature. PMID:26140622

  9. Cu Vacancies Boost Cation Exchange Reactions in Copper Selenide Nanocrystals.

    PubMed

    Lesnyak, Vladimir; Brescia, Rosaria; Messina, Gabriele C; Manna, Liberato

    2015-07-29

    We have investigated cation exchange reactions in copper selenide nanocrystals using two different divalent ions as guest cations (Zn(2+) and Cd(2+)) and comparing the reactivity of close to stoichiometric (that is, Cu2Se) nanocrystals with that of nonstoichiometric (Cu(2-x)Se) nanocrystals, to gain insights into the mechanism of cation exchange at the nanoscale. We have found that the presence of a large density of copper vacancies significantly accelerated the exchange process at room temperature and corroborated vacancy diffusion as one of the main drivers in these reactions. Partially exchanged samples exhibited Janus-like heterostructures made of immiscible domains sharing epitaxial interfaces. No alloy or core-shell structures were observed. The role of phosphines, like tri-n-octylphosphine, in these reactions, is multifaceted: besides acting as selective solvating ligands for Cu(+) ions exiting the nanoparticles during exchange, they also enable anion diffusion, by extracting an appreciable amount of selenium to the solution phase, which may further promote the exchange process. In reactions run at a higher temperature (150 °C), copper vacancies were quickly eliminated from the nanocrystals and major differences in Cu stoichiometries, as well as in reactivities, between the initial Cu2Se and Cu(2-x)Se samples were rapidly smoothed out. These experiments indicate that cation exchange, under the specific conditions of this work, is more efficient at room temperature than at higher temperature.

  10. High-temperature conductivity in chemical bath deposited copper selenide thin films

    NASA Astrophysics Data System (ADS)

    Dhanam, M.; Manoj, P. K.; Prabhu, Rajeev. R.

    2005-07-01

    This paper reports high-temperature (305-523 K) electrical studies of chemical bath deposited copper (I) selenide (Cu 2-xSe) and copper (II) selenide (Cu 3Se 2) thin films. Cu 2-xSe and Cu 3Se 2 have been prepared on glass substrates from the same chemical bath at room temperature by controlling the pH. From X-ray diffraction (XRD) profiles, it has been found that Cu 2-xSe and Cu 3Se 2 have cubic and tetragonal structures, respectively. The composition of the chemical constituent in the films has been confirmed from XRD data and energy-dispersive X-ray analysis (EDAX). It has been found that both phases of copper selenide thin films have thermally activated conduction in the high-temperature range. In this paper we also report the variation of electrical parameters with film thickness and the applied voltage.

  11. Ambient Facile Synthesis of Gram-Scale Copper Selenide Nanostructures from Commercial Copper and Selenium Powder.

    PubMed

    Chen, Xin Qi; Li, Zhen; Dou, Shi Xue

    2015-06-24

    Grams of copper selenides (Cu(2-x)Se) were prepared from commercial copper and selenium powders in the presence of thiol ligands by a one-pot reaction at room temperature. The resultant copper selenides are a mixture of nanoparticles and their assembled nanosheets, and the thickness of nanosheets assembled is strongly dependent on the ratio of thiol ligand to selenium powder. The resultant Cu(2-x)Se nanostructures were treated with hydrazine solution to remove the surface ligands and then explored as a potential thermoelectric candidate in comparison with commercial copper selenide powders. The research provides a novel ambient approach for preparation of Cu(2-x)Se nanocrystallines on a large scale for various applications.

  12. Characterization of single phase copper selenide nanoparticles and their growth mechanism

    NASA Astrophysics Data System (ADS)

    Patidar, D.; Saxena, N. S.

    2012-03-01

    The high quality Cu3Se2 phase of copper selenide nanoparticles was synthesized through the solution-phase chemical reaction between copper and selenium. In this synthesis process, hydrazine hydrate acts as reducing agent whereas ethylene glycol controls the nucleation and growth of particles. An effort has been made to explain the growth mechanism to form copper selenide nanoparticles through the coordination of selenium to the Cu2+ complexes with OH groups of ethylene glycol. Result indicates the formation of Cu3Se2 single phase nanoparticles. The particles with the average particle size 25 nm are spherical in shape having tetragonal structure. The particles are well crystallized having 94% degree of crystallinity. An effort has also been made to determine the energy band gap of copper selenide nanoparticles through the absorption spectra.

  13. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium.

    PubMed

    Ohta, Yuki; Suzuki, Kazuo T

    2008-01-15

    All nutritional selenium sources are transformed into the assumed common intermediate selenide for the syntheses of selenoproteins for utilization and/or of selenosugar for excretion. Methylselenol [monomethylselenide, MMSe] is the assumed intermediate leading to other methylated metabolites, dimethylselenide (DMSe) and trimethylselenonium (TMSe) for excretion, and also to the intermediate selenide from methylselenocysteine and methylseleninic acid (MSA). Here, related methylation and demethylation reactions were studied in vitro by providing chemically reactive starting substrates (76Se-selenide, 77Se-MMSe and 82Se-DMSe) which were prepared in situ by the reduction of the corresponding labeled proximate precursors (76Se-selenite, 77Se-MSA and 82Se-dimethylselenoxide (DMSeO), respectively) with glutathione, the three substrates being incubated simultaneously in rat organ supernatants and homogenates. The resulting chemically labile reaction products were detected simultaneously by speciation analysis with HPLC-ICP-MS after converting the products and un-reacted substrates to the corresponding oxidized derivatives (selenite, MSA and DMSeO). The time-related changes in selenium isotope profiles showed that demethylation of MMSe to selenide was efficient but that of DMSe to MMSe was negligible, whereas methylation of selenide to MMSe, and MMSe to DMSe were efficient, and that of DMSe to TMSe occurred less efficiently. The present methylation and demethylation reactions on equilibrium between selenide, MMSe and DMSe without producing selenosugar and selenoproteins indicated that DMSe rather than TMSe is produced as the end product, suggesting that DMSe is to be excreted more abundantly than TMSe. Organ-dependent differences in the methylation and demethylation reactions were characterized for the liver, kidney and lung.

  14. Methylation and demethylation of intermediates selenide and methylselenol in the metabolism of selenium

    SciTech Connect

    Ohta, Yuki; Suzuki, Kazuo T.

    2008-01-15

    All nutritional selenium sources are transformed into the assumed common intermediate selenide for the syntheses of selenoproteins for utilization and/or of selenosugar for excretion. Methylselenol [monomethylselenide, MMSe] is the assumed intermediate leading to other methylated metabolites, dimethylselenide (DMSe) and trimethylselenonium (TMSe) for excretion, and also to the intermediate selenide from methylselenocysteine and methylseleninic acid (MSA). Here, related methylation and demethylation reactions were studied in vitro by providing chemically reactive starting substrates ({sup 76}Se-selenide, {sup 77}Se-MMSe and {sup 82}Se-DMSe) which were prepared in situ by the reduction of the corresponding labeled proximate precursors ({sup 76}Se-selenite, {sup 77}Se-MSA and {sup 82}Se-dimethylselenoxide (DMSeO), respectively) with glutathione, the three substrates being incubated simultaneously in rat organ supernatants and homogenates. The resulting chemically labile reaction products were detected simultaneously by speciation analysis with HPLC-ICP-MS after converting the products and un-reacted substrates to the corresponding oxidized derivatives (selenite, MSA and DMSeO). The time-related changes in selenium isotope profiles showed that demethylation of MMSe to selenide was efficient but that of DMSe to MMSe was negligible, whereas methylation of selenide to MMSe, and MMSe to DMSe were efficient, and that of DMSe to TMSe occurred less efficiently. The present methylation and demethylation reactions on equilibrium between selenide, MMSe and DMSe without producing selenosugar and selenoproteins indicated that DMSe rather than TMSe is produced as the end product, suggesting that DMSe is to be excreted more abundantly than TMSe. Organ-dependent differences in the methylation and demethylation reactions were characterized for the liver, kidney and lung.

  15. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors.

    PubMed

    Zhang, Chunli; Yin, Huanhuan; Han, Min; Dai, Zhihui; Pang, Huan; Zheng, Yulin; Lan, Ya-Qian; Bao, Jianchun; Zhu, Jianmin

    2014-04-22

    Due to their unique electronic and optoelectronic properties, tin selenide nanostructures show great promise for applications in energy storage and photovoltaic devices. Despite the great progress that has been achieved, the phase-controlled synthesis of two-dimensional (2D) tin selenide nanostructures remains a challenge, and their use in supercapacitors has not been explored. In this paper, 2D tin selenide nanostructures, including pure SnSe2 nanodisks (NDs), mixed-phase SnSe-SnSe2 NDs, and pure SnSe nanosheets (NSs), have been synthesized by reacting SnCl2 and trioctylphosphine (TOP)-Se with borane-tert-butylamine complex (BTBC) and 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)-pyrimidinone. Utilizing the interplay of TOP and BTBC and changing only the amount of BTBC, the phase-controlled synthesis of 2D tin selenide nanostructures is realized for the first time. Phase-dependent pseudocapacitive behavior is observed for the resulting 2D nanostructures. The specific capacitances of pure SnSe2 NDs (168 F g(-1)) and SnSe NSs (228 F g(-1)) are much higher than those of other reported materials (e.g., graphene-Mn3O4 nanorods and TiN mesoporous spheres); thus, these tin selenide materials were used to fabricate flexible, all-solid-state supercapacitors. Devices fabricated with these two tin selenide materials exhibited high areal capacitances, good cycling stabilities, excellent flexibilities, and desirable mechanical stabilities, which were comparable to or better than those reported recently for other solid-state devices based on graphene and 3D GeSe2 nanostructures. Additionally, the rate capability of the SnSe2 NDs device was much better than that of the SnSe NS device, indicating that SnSe2 NDs are promising active materials for use in high-performance, flexible, all-solid-state supercapacitors.

  16. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    PubMed

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk.

  17. Selenide-Catalyzed Stereoselective Construction of Tetrasubstituted Trifluoromethylthiolated Alkenes with Alkynes.

    PubMed

    Wu, Jin-Ji; Xu, Jia; Zhao, Xiaodan

    2016-10-17

    The efficient regio- and stereoselective construction of tetrasubstituted alkenes is challenging and very important. For this purpose, we have developed an efficient approach to synthesize tetrasubstituted trifluoromethylthiolated alkenes from simple alkynes in excellent regio- and stereoselectivities by selenide-catalyzed multicomponent coupling. Using this method, trifluoromethylthiolated alkenyl triflates and arenes were achieved. In particular, the triflates could be further converted into carbofunctionalized alkenes by palladium-catalyzed cross-coupling reactions. Our method provides a new pathway for the construction of trifluoromethylthiolated tricarboalkenes. This work presents the first example of selenide-catalyzed trifluoromethylthiolation of alkynes and enables the challenging functionalizations of alkynes.

  18. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.

    PubMed

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2017-03-10

    Solar energy is the most abundant renewable energy available to the earth and can meet the energy needs of humankind, but efficient conversion of solar energy to electricity is an urgent issue of scientific research. As the third-generation photovoltaic technology, dye-sensitized solar cells (DSSCs) have gained great attention since the landmark efficiency of ∼7% reported by O'Regan and Grätzel. The most attractive features of DSSCs include low cost, simple manufacturing processes, medium-purity materials, and theoretically high power conversion efficiencies. As one of the key materials in DSSCs, the counter electrode (CE) plays a crucial role in completing the electric circuit by catalyzing the reduction of the oxidized state to the reduced state for a redox couple (e.g., I3(-)/I(-)) in the electrolyte at the CE-electrolyte interface. To lower the cost caused by the typically used Pt CE, which restricts the large-scale application because of its low reserves and high price, great effort has been made to develop new CE materials alternative to Pt. A lot of Pt-free electrocatalysts, such as carbon materials, inorganic compounds, conductive polymers, and their composites with good electrocatalytic activity, have been applied as CEs in DSSCs in the past years. Metal selenides have been widely used as electrocatalysts for the oxygen reduction reaction and light-harvesting materials for solar cells. Our group first expanded their applications to the DSSC field by using in situ-grown Co0.85Se nanosheet and Ni0.85Se nanoparticle films as CEs. This finding has inspired extensive studies on developing new metal selenides in order to seek more efficient CE materials for low-cost DSSCs, and a lot of meaningful results have been achieved in the past years. In this Account, we summarize recent advances in binary and mutinary metal selenides applied as CEs in DSSCs. The synthetic methods for metal selenides with various morphologies and stoichiometric ratios and deposition

  19. Characterization of copper selenide thin films deposited by chemical bath deposition technique

    NASA Astrophysics Data System (ADS)

    Al-Mamun; Islam, A. B. M. O.

    2004-11-01

    A low-cost chemical bath deposition (CBD) technique has been used for the preparation of Cu2-xSe thin films onto glass substrates and deposited films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and UV-vis spectrophotometry. Good quality thin films of smooth surface of copper selenide thin films were deposited using sodium selenosulfate as a source of selenide ions. The structural and optical behaviour of the films are discussed in the light of the observed data.

  20. Solid-gas phase equilibria and thermodynamic properties of cadmium selenide.

    NASA Technical Reports Server (NTRS)

    Sigai, A. G.; Wiedemeier, H.

    1972-01-01

    Accurate vapor pressures are determined through direct weight loss measurements using the Knudsen effusion technique. The experimental data are evaluated by establishing the mode of vaporization and determining the heat capacity of cadmium selenide at elevated temperatures. Additional information is obtained through a second- and third-law evaluation of data, namely, the heat of formation and the absolute entropy of cadmium selenide. A preferential loss of selenium during the initial heating of CdSe is observed, which leads to a deviation in stoichiometry.

  1. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor.

    PubMed

    Paris, E; Simonelli, L; Wakita, T; Marini, C; Lee, J-H; Olszewski, W; Terashima, K; Kakuto, T; Nishimoto, N; Kimura, T; Kudo, K; Kambe, T; Nohara, M; Yokoya, T; Saini, N L

    2016-06-09

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity.

  2. Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides

    DOE PAGES

    Opačić, M.; Lazarević, N.; Šćepanović, M.; ...

    2015-11-16

    Polarized Raman scattering spectra of superconducting KxFe2-ySe2 and nonsuperconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in a temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in frequency range from 150 to 325 cm -1 in both compounds, suggesting that K0.8Fe1.8Co0.2Se2 single crystal also has two-phase nature. Temperature dependence of Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. Temperature dependence of Raman mode linewidth is considered as temperature-induced anharmonic effects. It is shown that change of Raman mode energymore » with temperature is dominantly driven by thermal expansion of the crystal lattice. Abrupt change of the A1g mode energy near TC was observed in KxFe2-ySe2 , whereas it is absent in K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below critical temperature.« less

  3. Evidence of superconductivity-induced phonon spectra renormalization in alkali-doped iron selenides

    SciTech Connect

    Opačić, M.; Lazarević, N.; Šćepanović, M.; Ryu, Hyejin; Lei, Hechang; Petrovic, C.; Popović, Z. V.

    2015-11-16

    Polarized Raman scattering spectra of superconducting KxFe2-ySe2 and nonsuperconducting K0.8Fe1.8Co0.2Se2 single crystals were measured in a temperature range from 10 K up to 300 K. Two Raman active modes from the I4/mmm phase and seven from the I4/m phase are observed in frequency range from 150 to 325 cm -1 in both compounds, suggesting that K0.8Fe1.8Co0.2Se2 single crystal also has two-phase nature. Temperature dependence of Raman mode energy is analyzed in terms of lattice thermal expansion and phonon-phonon interaction. Temperature dependence of Raman mode linewidth is considered as temperature-induced anharmonic effects. It is shown that change of Raman mode energy with temperature is dominantly driven by thermal expansion of the crystal lattice. Abrupt change of the A1g mode energy near TC was observed in KxFe2-ySe2 , whereas it is absent in K0.8Fe1.8Co0.2Se2. Phonon energy hardening at low temperatures in the superconducting sample is a consequence of superconductivity-induced redistribution of the electronic states below critical temperature.

  4. Temperature dependent local atomic displacements in ammonia intercalated iron selenide superconductor

    PubMed Central

    Paris, E.; Simonelli, L.; Wakita, T.; Marini, C.; Lee, J.-H.; Olszewski, W.; Terashima, K.; Kakuto, T.; Nishimoto, N.; Kimura, T.; Kudo, K.; Kambe, T.; Nohara, M.; Yokoya, T.; Saini, N. L.

    2016-01-01

    Recently, ammonia-thermal reaction has been used for molecular intercalation in layered FeSe, resulting a new Lix(NH3)yFe2Se2 superconductor with Tc ~ 45 K. Here, we have used temperature dependent extended x-ray absorption fine structure (EXAFS) to investigate local atomic displacements in single crystals of this new superconductor. Using polarized EXAFS at Fe K-edge we have obtained direct information on the local Fe-Se and Fe-Fe bondlengths and corresponding mean square relative displacements (MSRD). We find that the Se-height in the intercalated system is lower than the one in the binary FeSe, suggesting compressed FeSe4 tetrahedron in the title system. Incidentally, there is hardly any effect of the intercalation on the bondlengths characteristics, revealed by the Einstein temperatures, that are similar to those found in the binary FeSe. Therefore, the molecular intercalation induces an effective compression and decouples the FeSe slabs. Furthermore, the results reveal an anomalous change in the atomic correlations across Tc, appearing as a clear decrease in the MSRD, indicating hardening of the local lattice mode. Similar response of the local lattice has been found in other families of superconductors, e.g., A15-type and cuprates superconductors. This observation suggests that local atomic correlations should have some direct correlation with the superconductivity. PMID:27276997

  5. Photoconductivity in reactively evaporated copper indium selenide thin films

    SciTech Connect

    Urmila, K. S. Asokan, T. Namitha Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-28

    Copper indium selenide thin films of composition CuInSe{sub 2} with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10{sup −5} mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe{sub 2} films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 10{sup 6} cm{sup −1} at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe{sub 2} thin films indicate its suitability in photovoltaic applications.

  6. Living bio-membrane bi-template route for simultaneous synthesis of lead selenide nanorods and nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Li; Wu, Qing-Sheng; Ding, Ya-Ping

    2004-12-01

    In this paper, a novel method is reported by which semiconductor materials are synthesized via controlled organism membranes. Semiconductor lead selenide nanorods and nanotubes have been successfully prepared simultaneously through living bio-membrane bi-templates of the mungbean sprout. The lead selenide nanorods are approximately 45 nm in diameter, and up to 1100 nm in length; all of them are single crystalline in structure. Lead selenide nanotubes are 50 nm in diameter, and up to 2000 nm in length, and are poly-crystalline in structure. The characteristics of the products are illustrated by various means, and their possible formation mechanism is explored.

  7. Benzyltrifluoromethyl (or Fluoroalkyl) Selenide: Reagent for Electrophilic Trifluoromethyl (or Fluoroalkyl) Selenolation.

    PubMed

    Glenadel, Quentin; Ismalaj, Ermal; Billard, Thierry

    2016-09-16

    Trifluoromethylseleno substituent (CF3Se) is an emerging group, but its direct introduction onto organic molecules is still quite limited and mainly restricted to nucleophilic methods. Herein, we describe a new approach to easily and safely perform electrophilic trifluoromethylselenolation starting from a simple and easily accessible reagent, namely, benzyltrifluoromethyl selenide. This strategy can be generalized to various fluoroalkylselanyl groups, even functionalized ones.

  8. The effect of annealing on vacuum-evaporated copper selenide and indium telluride thin films

    SciTech Connect

    Peranantham, P.; Jeyachandran, Y.L.; Viswanathan, C.; Praveena, N.N.; Chitra, P.C.; Mangalaraj, D. . E-mail: dmraj800@yahoo.com; Narayandass, Sa. K.

    2007-08-15

    Copper selenide and indium telluride thin films were prepared by a vacuum evaporation technique. The as-deposited films were annealed in a vacuum at different temperatures and the influence on composition, structure and optical properties of copper selenide and indium telluride films was investigated using energy dispersive X-ray analysis, X-ray diffraction, scanning electron microscopy and optical transmission measurements. From the compositional analysis, the as-deposited copper selenide and indium telluride films which were annealed at 473 and 523 K, respectively, were found to possess the nearly stoichiometric composition of CuSe and InTe phases. However, the films annealed at 673 K showed the composition of Cu{sub 2}Se and In{sub 4}Te{sub 3} phases. The structural parameters such as, particle size and strain were determined using X-ray diffractograms of the films. Optical transmittance measurements indicated the existence of direct and indirect transitions in copper selenide films and an indirect allowed transition in indium telluride films.

  9. Photovoltaic properties of cadmium selenide-titanyl phthalocyanine planar heterojunction devices

    NASA Astrophysics Data System (ADS)

    Szostak, J.; Jarosz, G.; Signerski, R.

    2015-07-01

    Photovoltaic phenomenon taking place in cadmium selenide (CdSe)/titanyl phthalocyanine (TiOPc) planar heterojunction devices is described. Mechanisms of free charge carrier generation and their recombination in the dark and under illumination are analyzed, chosen photovoltaic parameters are presented.

  10. Apoptosis induced by cadmium selenide quantum dots in JB6 cells.

    PubMed

    Kong, Lu; Zhang, Ting; Tang, Meng; Pu, Yuepu

    2012-11-01

    Quantum dots are being widely used in physics and in the biomedical industry in recent years due to their excellent optical characteristics. However, studies have shown that cadmium selenide core-shell quantum dots exhibit cytotoxicity. The present study investigates the induction of apoptosis and the signal pathways involved in this process by cadmium selenide-core quantum dots in JB6 cells. We found that cadmium selenide-core quantum dots exhibited high cytotoxicity and caused apoptosis and necrosis of JB6 cells. Cell cycle detection showed an increase in the percentage of G1 phase cells but a decrease in the percentage of S and G2 phase cells after JB6 cells treated with various concentrations of cadmium selenide core-shell quantum dots for 24 h. At the same time, western-blot analysis showed an activation of pro-apoptotic factors including FAS, BAX and BID. Apoptosis-inducing factor (AIF), full length and cleaved caspase-6 and -8 were up-regulated. The current study provides a guide for the safe use of QDs as a new kind of biological fluorescence material for biological and medical applications.

  11. Preparation of cadmium selenide colloidal quantum dots in non-coordinating solvent octadecene

    NASA Astrophysics Data System (ADS)

    Mazing, D. S.; Brovko, A. M.; Matyushkin, L. B.; Aleksandrova, O. A.; Moshnikov, V. A.

    2015-12-01

    Nearly monodisperse cadmium selenide quantum dots (QDs) were synthesized in non-coordinating solvent octadecene through phosphine-free method using oleic acid as surfactant. Selenium powder suspension in octadecene obtained by ultrasound processing was used as one of precursor solutions. Influence of multiple selenium precursor injections on nanocrystal growth process was investigated. Nanoparticles were characterized by means of absorption and photoluminescence spectroscopies.

  12. Draft Genome Sequence of Pseudomonas aeruginosa Strain RB, a Bacterium Capable of Synthesizing Cadmium Selenide Nanoparticles.

    PubMed

    Ayano, Hiroyuki; Kuroda, Masashi; Soda, Satoshi; Ike, Michihiko

    2014-05-15

    Pseudomonas aeruginosa strain RB is a bacterium capable of synthesizing cadmium selenide (CdSe) nanoparticles and was isolated from a soil sample. Here, we present the draft genome sequence of P. aeruginosa strain RB. To the best of our knowledge, this is the first report of a draft genome of a CdSe-synthesizing bacterium.

  13. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang; Zhou, Liya; Gong, Fuzhong

    2013-03-15

    Highlights: ► Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ► The fabricated white LEDs show good white balance. ► CdSe QDs present well green to yellow band luminescence. ► CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de l’Éclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  14. Surface-initiated atom transfer radical polymerization-induced transformation of selenium nanowires into copper selenide@polystyrene core-shell nanowires.

    PubMed

    Wang, Michael C P; Gates, Byron D

    2013-10-09

    This Article reports the first preparation of cuprous and cupric selenide nanowires coated with a ∼5 nm thick sheath of polystyrene (copper selenide@polystyrene). These hybrid nanostructures are prepared by the transformation of selenium nanowires in a one-pot reaction, which is performed under ambient conditions. The composition, purity, and crystallinity of the copper selenide@polystyrene products were assessed by scanning transmission electron microscopy, electron energy-loss spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy techniques. We determined that the single crystalline selenium nanowires are converted into polycrystalline copper selenide@polystyrene nanowires containing both cuprous selenide and cupric selenide. The product is purified through the selective removal of residual, non-transformed selenium nanowires by performing thermal evaporation below the decomposition temperature of these copper selenides. Powder X-ray diffraction of the purified copper selenide nanowires@polystyrene identified the presence of hexagonal, cubic, and orthorhombic phases of copper selenide. These purified cuprous and cupric selenide@polystyrene nanowires have an indirect bandgap of 1.44 eV, as determined by UV-vis absorption spectroscopy. This new synthesis of polymer-encapsulated nanoscale materials may provide a method for preparing other complex hybrid nanostructures.

  15. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  16. Catalytic Diversity in Alkaline Hydrothermal Vent Systems on Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Cameron, Ryan D.; Barge, Laura; Chin, Keith B.; Doloboff, Ivria J.; Flores, Erika; Hammer, Arden C.; Sobron, Pablo; Russell, Michael J.; Kanik, Isik

    2016-10-01

    Hydrothermal systems formed by serpentinization can create moderate-temperature, alkaline systems and it is possible that this type of vent could exist on icy worlds such as Europa which have water-rock interfaces. It has been proposed that some prebiotic chemistry responsible for the emergence of life on Earth and possibly other wet and icy worlds could occur as a result ofredox potential and pH gradients in submarine alkaline hydrothermal vents (Russell et al., 2014). Hydrothermal chimneys formed in laboratory simulations of alkaline vents under early Earth conditions have precipitate membranes that contain minerals such as iron sulfides, which are hypothesized to catalyze reduction of CO2 (Yamaguchi et al. 2014, Roldan et al. 2014) leading to further organic synthesis. This CO2 reduction process may be affected by other trace components in the chimney, e.g. nickel or organic molecules. We have conducted experiments to investigate catalytic properties of iron and iron-nickel sulfides containing organic dopants in slightly acidic ocean simulants relevant to early Earth or possibly ocean worlds. We find that the electrochemical properties of the chimney as well as the morphology/chemistry of the precipitate are affected by the concentration and type of organics present. These results imply that synthesis of organics in water-rock systems on ocean worlds may lead to hydrothermal precipitates which can incorporate these organic into the mineral matrix and may affect the role of gradients in alkaline vent systems.Therefore, further understanding on the electroactive roles of various organic species within hydrothermal chimneys will have important implications for habitability as well as prebiotic chemistry. This work is funded by NASA Astrobiology Institute JPL Icy Worlds Team and a NAI Director's Discretionary Fund award.Yamaguchi A. et al. (2014) Electrochimica Acta, 141, 311-318.Russell, M. J. et al. (2014), Astrobiology, 14, 308-43.Roldan, A. (2014) Chem. Comm. 51

  17. Photoluminescence Studies of Silver-Exchanged Cadmium Selenide Crystals. Modification of a Chemical Sensor for Aniline Derivatives by Heterojunction Formation

    DTIC Science & Technology

    1991-05-20

    Photoluminescence Studies of Silver-Exchanged Cadmium Selenide Crystals. Modification of a Chemical Sensor for Aniline Derivatives by Heterojunction...I__I 413r005 1 7TT..E (include Security Classification,) Photoluminescence Studies of Silver-Exchanged Cadmium Selenide Crystals. Moifification of a...Physical Chemistry 7 CO)SA7! CODES !8 S8.BECT TERMS Continue on reverse it. necessary and identity oy block nu’noer) Z.ELD CROUP SuB-GROUP cadmium

  18. An amphiphilic selenide catalyst behaves like a hybrid mimic of protein disulfide isomerase and glutathione peroxidase 7.

    PubMed

    Arai, Kenta; Moriai, Kenji; Ogawa, Akinobu; Iwaoka, Michio

    2014-12-01

    Protein disulfide isomerase (PDI) and glutathione peroxidase 7 (GPx7) cooperatively promote the oxidative folding of disulfide (SS)-containing proteins in endoplasmic reticulum by recognizing the nascent proteins to convert them into the native folds by means of SS formation and SS isomerization and by catalyzing reoxidation of reduced PDI with H2O2, respectively. In this study, new amphiphilic selenides with a long-chain alkyl group were designed as hybrid mimics of PDI and GPx7 and were applied to the refolding of reduced hen egg-white lysozyme (HEL-R). Competitive SS formation at pH 4 using HEL-R and glutathione (GSH) in the presence of the selenide catalyst and H2O2 showed that the amphiphilic selenides can preferentially catalyze SS formation of HEL-R, probably on account of hydrophobic interactions between the protein and the catalyst. In contrast, simple water-soluble selenides did not exhibit such behavior. In addition, when the pH of the solution was adjusted to 8.5 after the SS formation, surviving GSH promoted the SS isomerization of misfolded HEL to recover the native SS linkages. Thus, the amphiphilic selenides designed here could mimic the function of the PDI-GPx7 system. The combination of a water-soluble selenide and a long-chain alkyl group would be a useful motif in designing medicines for both protein misfolding diseases and antioxidant therapy.

  19. Spinal mechanisms of antinociceptive effect caused by oral administration of bis-selenide in mice.

    PubMed

    Jesse, Cristiano R; Savegnago, Lucielli; Nogueira, Cristina W

    2008-09-22

    The present study was designed to investigate further the mechanisms involved in the antinociception caused by bis-selenide in behavioral model of pain in mice. Bis-selenide (5-50 mg/kg), given orally, produced significant inhibition of the antinociceptive behavior induced by intrathecal (i.t.) injection of glutamate (175 nmol/site), kainate (110 pmol/site) and (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD; 50 nmol/site) and the maximal inhibitions observed were 57+/-5, 46+/-7 and 73+/-3%, respectively. Bis-selenide failed to affect the nociception induced by alpha-amino-3-hydroxy-5-mehtyl-4-isoxazolepropionic acid (AMPA; 135 pmol/site) and N-methyl-d-aspartate (NMDA; 450 pmol/site). This compound also reduced the nociceptive response induced by tumor necrosis factor-alpha (TNF-alpha; 0.1 pg/site), interleukin-1beta (IL-1beta; 1 pg/site), substance P (SP) (135 ng/site, i.t.) and capsaicin (30 ng/site) and the inhibitions observed were 81+/-3%, 88+/-1%, 77+/-3 and 67+/-3, respectively. The oral administration of bis-selenide (25-50 mg/kg) in mice caused a significant increase in the reaction time to thermal stimuli in the hot plate test and the mean ID(50) value (and the 95% confidence limits) was 20.37 (15.00-25.74) mg/kg. The antinociceptive effect caused by bis-selenide (50 mg/kg, p.o.) on the hot plate test in mice was reversed by intrathecal (i.t.) injection of some K(+) channel blockers such as tetraethylammonium (TEA, non-selective voltage-dependent K(+) channel inhibitor) and glibenclamide (ATP-sensitive K(+) channel inhibitor), but not apamin and charybdotoxin (large- and small-conductance Ca(2+)-activated K(+) channel inhibitors, respectively). Together, these results indicate that bis-selenide produces antinociception at spinal sites through the activation of ATP-sensitive and voltage-gated K(+) channels and interaction with kainate and trans-ACDP receptors as well as vanilloid and neuropeptide receptors and pro-inflammatory cytokines.

  20. Alkalinity production in intertidal sands intensified by lugworm bioirrigation

    PubMed Central

    Rao, Alexandra M.F.; Malkin, Sairah Y.; Montserrat, Francesc; Meysman, Filip J.R.

    2014-01-01

    Porewater profiles and sediment-water fluxes of oxygen, nutrients, pH, calcium, alkalinity, and sulfide were measured in intertidal sandflat sediments from the Oosterschelde mesotidal lagoon (The Netherlands). The influence of bioturbation and bioirrigation by the deep-burrowing polychaete Arenicola marina on the rates and sources of benthic alkalinity generation was examined by comparing measurements in intact and defaunated sediment cores before and after the addition of A. marina in summer and fall 2011. Higher organic matter remineralization rates, shallower O2 penetration, and greater sediment-water solute fluxes were observed in summer, consistent with higher sediment community metabolic rates at a higher temperature. Lugworm activity stimulated porewater exchange (5.1 × in summer, 1.9 × in fall), organic matter remineralization (6.2 × in summer, 1.9 × in fall), aerobic respiration (2.4 × in summer, 2.1 × in fall), alkalinity release (4.7 × in summer, 4.0 × in fall), nutrient regeneration, and iron cycling. The effects of lugworm activity on net sediment-water fluxes were similar but more pronounced in summer than in fall. Alkalinity release in fall was entirely driven by metabolic carbonate dissolution, while this process explained between 22 and 69% of total alkalinity production in summer, indicating the importance of other processes in this season. By enhancing organic matter remineralization and the reoxidation of reduced metabolites by the sediment microbial community, lugworm activity stimulated the production of dissolved inorganic carbon and metabolic acidity, which in turn enhanced metabolic CaCO3 dissolution efficiency. In summer, evidence of microbial long distance electron transport (LDET) was observed in defaunated sediment. Thus, alkalinity production by net carbonate dissolution was likely supplemented by anaerobic respiration and LDET in summer. PMID:25431515

  1. The alkaline and alkaline-carbonatite magmatism from Southern Brazil

    NASA Astrophysics Data System (ADS)

    Ruberti, E.; Gomes, C. D. B.; Comin-Chiaramonti, P.

    2015-12-01

    Early to Late Cretaceous lasting to Paleocene alkaline magmatism from southern Brazil is found associated with major extensional structural features in and around the Paraná Basin and grouped into various provinces on the basis of several data. Magmatism is variable in size, mode of occurrence and composition. The alkaline rocks are dominantly potassic, a few occurrences showing sodic affinity. The more abundant silicate rocks are evolved undersaturated to saturated in silica syenites, displaying large variation in igneous forms. Less evolved types are restricted to subvolcanic environments and outcrops of effusive suites occur rarely. Cumulatic mafic and ultramafic rock types are very common, particularly in the alkali-carbonatitic complexes. Carbonatite bodies are represented by Ca-carbonatites and Mg-carbonatites and more scarcely by Fe-carbonatites. Available radiometric ages for the alkaline rocks fit on three main chronological groups: around 130 Ma, subcoveal with the Early Cretaceous flood tholeiites of the Paraná Basin, 100-110 Ma and 80-90 Ma (Late Cretaceous). The alkaline magmatism also extends into Paleocene times, as indicated by ages from some volcanic lavas. Geochemically, alkaline potassic and sodic rock types are distinguished by their negative and positive Nb-Ta anomalies, respectively. Negative spikes in Nb-Ta are also a feature common to the associated tholeiitic rocks. Sr-Nd-Pb systematics confirm the contribution of both HIMU and EMI mantle components in the formation of the alkaline rocks. Notably, Early and Late Cretaceous carbonatites have the same isotopic Sr-Nd initial ratios of the associated alkaline rocks. C-O isotopic Sr-Nd isotopic ratios indicate typical mantle signature for some carbonatites and the influence of post-magmatic processes in others. Immiscibility of liquids of phonolitic composition, derived from mafic alkaline parental magmas, has been responsible for the origin of the carbonatites. Close association of alkaline

  2. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system

    NASA Astrophysics Data System (ADS)

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-01

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ˜7 nm, which exhibited a quantum yield of ˜75% as compared to rhodamine 6 G dye®. As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ˜0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco’s Modified Eagle Media® (DMEM) and Minimum Essential Media® (MEM), as compared to the Roswell Park Memorial Institute® (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 μM. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact.

  3. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system.

    PubMed

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-11

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ∼7 nm, which exhibited a quantum yield of ∼75% as compared to rhodamine 6 G dye(®). As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ∼0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco's Modified Eagle Media(®) (DMEM) and Minimum Essential Media(®) (MEM), as compared to the Roswell Park Memorial Institute(®) (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 μM. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact.

  4. Shape-controlled colloidal synthesis of rock-salt lead selenide nanocrystals.

    PubMed

    Jawaid, Ali M; Asunskis, Daniel J; Snee, Preston T

    2011-08-23

    Developing simple synthetic methods to control the size and morphology of nanocrystals is an active area of research as these parameters control the material's electronic and optical properties. For a semiconductor with a symmetrical crystal structure such as lead selenide, anisotropic colloidal growth has been previously accomplished via the use of templates, seeds, or by block assembly of smaller, symmetrical subunits. Here, we present a simple method to create monodisperse lead selenide nanorods and multipods at low temperatures. The size distribution and the observed morphologies are consistent with a continuous, anisotropic growth of material. The syntheses of these anisotropic shapes are due to the nature of the nuclei that form upon injection of precursors into partially oxidized alkene solvents that may contain lactone and carbonate-functional derivatives.

  5. Preparation and antibacterial activity studies of degraded polysaccharide selenide from Enteromorpha prolifera.

    PubMed

    Lü, Haitao; Gao, Yujie; Shan, Hu; Lin, Yingting

    2014-07-17

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, degraded polysaccharide selenide (Se-LEP) was synthesized from sodium selenite and degraded polysaccharide (LEP) with the catalysis of nitric acid. The preparation conditions of LEP and Se-LEP were optimized by orthogonal experiments. The selenite ester group was formed, and the selenium content was 1335.27 µg/g. The thermal stability of Se-LEP decreased. LEP had less inhibitory effects on bacteria and plant pathogenic fungi. Se-LEP had stronger inhibitory effect on Eschetichia coli, and weaker inhibitory effect on Staphylococcus aureus than polysaccharide selenide (Se-EP). Se-LEP also had better inhibitory effects on plant pathogenic fungi.

  6. Functional metal sulfides and selenides for the removal of hazardous dyes from Water.

    PubMed

    Shamraiz, Umair; Hussain, Raja Azadar; Badshah, Amin; Raza, Bareera; Saba, Sonia

    2016-06-01

    Water contamination by organic dyes, is among the most alarming threats to healthy green environment. Complete removal of organic dyes is necessary to make water healthy for drinking, cooking, and for other useful aspects. Recently use of nanotechnology for removing organic dyes, became fruitful because of high surface to volume ratio and adsorption properties. Among these materials, metal chalcogenides emerge as new class of active materials for water purification. In this review article, we gathered information related to sulfide and selenide based nanomaterials which include metal sulfides and selenides, their binary composites, and use of different capping agents and dopants for enhancing photocatalysis. We have discussed in detail, about adsorption power of different dyes, relative percentage degradation, reaction time and concentration.

  7. Effects of chemical and mechanical treatments on cadmium selenide single-crystal surface properties

    SciTech Connect

    Komisarchik, M.Sh.; Novosel'tseva, T.D.; Rumyantseva, T.Ya.; Lapushkina, L.V.; Orlov, Yu.F.

    1988-04-01

    The authors have examined the damaged layers on cadmium selenide single crystals after chemical polishing in alcoholic bromine solutions. The crystals were grown by directional crystallization and were cut on (0001) planes or had (01/anti/10) cleavage surfaces. Dynamic chemical polishing was used with 3 vol % bromine in ethanol with a constant stirring rate at room temperature. The surface composition was determined by x-ray photoelectron spectroscopy. Ellipsometry was used to estimate the oxide film thicknesses after various treatments. They examined the surface resistance as affected by the treatment, where electrodes made of eutectic indium-gallium alloy were used with a probe method. The dark surface resistance is dependent on the treatment. Chemical polishing with alcoholic bromine produced a damaged layer in cadmium selenide which differs from that after mechanical treatment.

  8. Peculiarities of thermal extinction of deep-center luminescence in cadmium selenide

    SciTech Connect

    Ermolovich, I.B.; Bulakh, B.M.

    1986-10-01

    The authors study the mechanisms of thermal extinction of the luminescence bands in cadmium selenide with lambda mad = 0.92 (band I) and 1.16 um (band II), for which the main photoluminescence centers are responsible. CdSe crystals grown from the gas phase and deliberately not doped were studied. The curves of the intensities of the bands I and II in the layers and single crystals are shown. A model is presented of the configurational coordinates for explaining the internal mechanism of extinction of impurity luminescence in crystal phosphors. A diagram is shown of the recombination transitions for wide-gap crystal phosphors with the anticipation of two luminescence centers and a nonradiative recombination center. This study proves that the corresponding luminescence centers in cadmium selenide single crystals and layers have the same physicochemical structure.

  9. Chemical synthesis of p-type nanocrystalline copper selenide thin films for heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Ambade, Swapnil B.; Mane, R. S.; Kale, S. S.; Sonawane, S. H.; Shaikh, Arif V.; Han, Sung-Hwan

    2006-12-01

    Nanocrystalline thin films of copper selenide have been grown on glass and tin doped-indium oxide substrates using chemical method. At ambient temperature, golden films have been synthesized and annealed at 200 °C for 1 h and were examined for their structural, surface morphological and optical properties by means of X-ray diffraction (XRD), scanning electron microscopy and UV-vis spectrophotometry techniques, respectively. Cu 2- xSe phase was confirmed by XRD pattern and spherical grains of 30 ± 4 - 40 ± 4 nm in size aggregated over about 130 ± 10 nm islands were seen by SEM images. Effect of annealing on crystallinity improvement, band edge shift and photoelectrochemical performance (under 80 mW/cm 2 light intensity and in lithium iodide electrolyte) has been studied and reported. Observed p-type electrical conductivity in copper selenide thin films make it a suitable candidate for heterojunction solar cells.

  10. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indi...

  11. Spectral properties of powder preparations of cadmium telluride and cadmium selenide with controlled nonstoichiometry

    NASA Astrophysics Data System (ADS)

    Khomyakov, A. V.; Mozhevitina, E. N.; Kuz'min, V. V.; Kon'kova, N. A.; Avetissov, I. Ch.

    2015-03-01

    The reflection spectra of powder preparations of cadmium telluride and cadmium selenide with different contents of overstoichiometric components have been investigated in the range of 800-1700 nm. The reflectance is found to be maximum for samples with compositions close to stoichiometric. An increase in the concentration of overstoichiometric cadmium more radically reduces the reflectance in comparison with preparations containing excess chalcogen. It is shown that halftone images in the near-IR range can be formed by using of these materials.

  12. Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes.

    PubMed

    Li, Wenhua; Zamani, Reza; Ibáñez, Maria; Cadavid, Doris; Shavel, Alexey; Morante, Joan Ramon; Arbiol, Jordi; Cabot, Andreu

    2013-03-27

    Morphology is a key parameter in the design of novel nanocrystals and nanomaterials with controlled functional properties. Here, we demonstrate the potential of foreign metal ions to tune the morphology of colloidal semiconductor nanoparticles. We illustrate the underlying mechanism by preparing copper selenide nanocubes in the presence of Al ions. We further characterize the plasmonic properties of the obtained nanocrystals and demonstrate their potential as a platform to produce cubic nanoparticles with different composition by cation exchange.

  13. Chemically deposited thin films of sulfides and selenides of antimony and bismuth as solar energy materials

    NASA Astrophysics Data System (ADS)

    Nair, M. T.; Nair, Padmanabhan K.; Garcia, V. M.; Pena, Y.; Arenas, O. L.; Garcia, J. C.; Gomez-Daza, O.

    1997-10-01

    Chemical bath deposition techniques for bismuth sulfide, bismuth selenide, antimony sulfide, and antimony selenide thin films of about 0.20 - 0.25 micrometer thickness are reported. All these materials may be considered as solar absorber films: strong optical absorption edges, with absorption coefficient, (alpha) , greater than 104 cm-1, are located at 1.31 eV for Bi2Se3, 1.33 eV for Bi2S3, 1.8 eV for Sb2S3, and 1.35 eV for Sb2Se3. As deposited, all the films are nearly amorphous. However, well defined crystalline peaks matching bismuthinite (JCPDS 17- 0320), paraguanajuatite (JCPDS 33-0214), and stibnite (JCPDS 6-0474) and antimony selenide (JCPDS 15-0861) for Bi2S3, Bi2Se3, Sb2S3 and Sb2Se3 respectively, are observed when the films are annealed in nitrogen at 300 degrees Celsius. This is accompanied by a substantial modification of the electrical conductivity in the films: from 10-7 (Omega) -1 cm-1 (in as prepared films) to 10 (Omega) -1 cm-1 in the case of bismuth sulfide and selenide films, and enhancement of photosensitivity in the case of antimony sulfide films. The chemical deposition of a CuS/CuxSe film on these Vx- VIy films and subsequent annealing at 300 degrees Celsius for 1 h at 1 torr of nitrogen leads to the formation of p-type films (conductivity of 1 - 100 (Omega) -1 cm-1) of multinary composition. Among these, the formation of Cu3BiS3 (JCPDS 9-0488) and Cu3SbS4 (JCPDS 35- 0581), CuSbS2 (JCPDS 35-0413) have been clearly detected. Solar energy applications of these films are suggested.

  14. Effect of sulfur doping on thermoelectric properties of tin selenide – A first principles study

    SciTech Connect

    Jayaraman, Aditya; Molli, Muralikrishna Kamisetti, Venkataramaniah

    2015-06-24

    In this work we present the thermoelectric properties of tin selenide (SnSe) and sulfur doped tin selenide(SnSe{sub (1-x)}S{sub x}, x= 0.125 and 0.25) obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Thermoelectric properties were calculated using BOLTZTRAP code using the constant relaxation time approximation at three different temperatures 300, 600 and 800 K. Seebeck coefficient (S) was found to decrease with increasing temperature, electrical conductivity (σ/τ) was almost constant in the entire temperature range and thermal conductivity (κ/τ) increased with increasing temperature for all samples. Sulfur doped samples showed enhanced seebeck coefficient, decreased thermal conductivity and decreased electrical conductivity at all temperatures. At 300 K, S increased from 1500 µV/K(SnSe) to 1720μV/K(SnSe{sub 0.75}S{sub 0.25}), thermal conductivity decreased from 5 × 10{sup 15} W/mKs(SnSe) to 3 × 10{sup 15} W/mKs(SnSe{sub 0.75}S{sub 0.25}), electrical conductivity decreased from 7 × 10{sup 20}/Ωms(SnSe) to 5 × 10{sup 20} /Ωms(SnSe{sub 0.75}S{sub 0.25}). These calculations show that sulfur doped tin selenide exhibit better thermoelectric properties than undoped tin selenide.

  15. Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide.

    PubMed

    Lee, Yeseul; Lo, Shih-Han; Chen, Changqiang; Sun, Hui; Chung, Duck-Young; Chasapis, Thomas C; Uher, Ctirad; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2014-05-02

    Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23-27 μW cm(-1) K(-2) at temperatures above 400 K. The addition of small amounts (~0.25 mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. The corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.

  16. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    PubMed

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters.

  17. Copper and silver selenide crystal growth rate measurements as a method for determination of ionic conductivity

    NASA Astrophysics Data System (ADS)

    Vučić, Zlatko; Lovrić, Davorin; Gladić, Jadranko; Etlinger, Božidar

    2004-03-01

    The motivation behind this work is the discrepancy between the measured and calculated growth rates of copper selenide spherical single crystals between 740 and 800 K. The growth of cylindrical polycrystalline samples of copper selenide at high temperatures was monitored in experiments that enabled full control of the geometry of growth. Together with the calculations based on Yokota's transport equation, these measurements eliminated ionic conductivity data as a possible reason behind too high values of the calculated growth rates. The equivalent growth experiments on polycrystalline silver selenide samples were performed as a test of the method, yielding excellent agreement with the results obtained by extrapolation of existing data. On the basis of these measurements and associated analysis, this method is proposed as a method for determination of ionic conductivity of mixed superionic conductors on temperatures up to the temperatures of melting, i.e. in the range in which other methods of ionic conductivity measurements either do not work or are not accurate enough.

  18. Copper selenide nanowires and nanocrystallites in alumina: Carrier relaxation, recombination, and trapping

    NASA Astrophysics Data System (ADS)

    Statkutė, G.; Tomašiùnas, R.; Jagminas, A.

    2007-06-01

    Nonequilibrium carrier dynamics in copper selenide (Cu2-δSe δ=0.15, Cu3Se2) nanowires (diameter ≈18 nm, height ≈2 μm) and nanocrystallites (diameter≈18 nm) in femto- and picosecond time domains by the means of a transient dynamic grating technique were investigated. Bulk and quantum confinement approaches were used to fit the experimental results using nonequilibrium carrier fast relaxation, recombination, and trapping mechanisms. A nonradiative Auger recombination was concluded to be the main mechanism of nonequilibrium carrier recombination. The Auger coefficient for copper selenide was estimated of the order of 10-30-10-29 cm6 s-1. Hole trapping at shallow impurity centers in nanowires was interpreted. From calculating the experimental results the trapping parameters and high concentration of centers >1020 cm-3 were evaluated. Finally, direct measurement of carrier lifetime in copper selenide nanostructures showed values of the order of ≈10-10 s. Samples were characterized by the means of transmission electron microscopy, scanning electron microscopy, x-ray diffraction, and optical spectroscopy.

  19. Alkaline resistant phosphate glasses and method of preparation and use thereof

    DOEpatents

    Brow, Richard K.; Reis, Signo T.; Velez, Mariano; Day, Delbert E.

    2010-01-26

    A substantially alkaline resistant calcium-iron-phosphate (CFP) glass and methods of making and using thereof. In one application, the CFP glass is drawn into a fiber and dispersed in cement to produce glass fiber reinforced concrete (GFRC) articles having the high compressive strength of concrete with the high impact, flexural and tensile strength associated with glass fibers.

  20. Zinc electrode in alkaline electrolyte

    SciTech Connect

    McBreen, J.

    1995-12-31

    The zinc electrode in alkaline electrolyte is unusual in that supersaturated zincate solutions can form during discharge and spongy or mossy zinc deposits can form on charge at low overvoltages. The effect of additives on regular pasted ZnO electrodes and calcium zincate electrodes is discussed. The paper also reports on in situ x-ray absorption (XAS) results on mossy zinc deposits.

  1. Sonochemical synthesis and mechanistic study of copper selenides Cu(2-x)Se, beta-CuSe, and Cu(3)Se(2).

    PubMed

    Xie, Yi; Zheng, Xiuwen; Jiang, Xuchuan; Lu, Jun; Zhu, Liying

    2002-01-28

    Nanocrystallites of nonstoichiometric copper selenide (Cu(2-x)Se) and stoichiometric copper selenides (beta-CuSe and Cu(3)Se(2)) were synthesized in different solutions via sonochemical irradiation at room temperature. The influence of solvents, surfactants, and ultrasonic irradiation on the morphology and phase of products has been investigated. The morphological difference of the products was mainly affected by the solvents and surfactants, which can self-aggregate into lamellar structures or microemulsions, and then these unique structures can act as both supramolecular template and microreactor to direct the growth of copper selenides. On the other hand, it was also found that the sonochemical irradiation and solvents played an important role in the formation of different phases of copper selenides. The proposed formation mechanism of copper selenides is discussed.

  2. Freezing resistance of high iron phoasphoaluminate cement

    NASA Astrophysics Data System (ADS)

    Zhang, S. X.; Lu, L. C.; Wang, S. D.; Zhao, P. Q.; Gong, C. C.

    2017-03-01

    The influence of freeze-thaw cycle on the mechanical properties of high iron phoasphoaluminate cement was investigated in the present study. The visual examination was conducted to evaluate the surface damage. The deterioration considering the weight loss, modulus loss of relative dynamic elastic and strength loss of mortar were also investigated. The morphology of hydration products were analysed by SEM. Compared with ordinary Portland cement and sulphoaluminate cement, the frost resistance of high iron phosphoraluminate cement is better. Hydration products of high iron phoasphoaluminate cement contain sheet crystals, and a lot of gel form a dense three-dimensional network structure, which results in a lower porosity. Different from ordinary Portland cement, the hydration product of high iron phoasphoaluminate cement does not contain Ca(OH)2, and low alkalinity reduces its osmotic pressure. The lower porosity and osmotic pressure are the two main reasons which causes in the higher frost resistance of high iron phoasphoaluminate cement.

  3. Iron supplementation in pregnancy and breastfeeding and iron, copper and zinc status of lactating women from a human milk bank.

    PubMed

    Mello-Neto, Julio; Rondó, Patricia Helen Carvalho; Oshiiwa, Marie; Morgano, Marcelo Antonio; Zacari, Cristiane Zago; dos Santos, Mariana Lima

    2013-04-01

    This study evaluated the influence of iron supplementation in pregnancy and breastfeeding on iron status of lactating women from a Brazilian Human Milk Bank. Blood and mature breast milk samples were collected from 145 women for assessment of iron status, as well as copper and zinc status. Haemoglobin, serum iron and ferritin were determined, respectively, by electronic counting, colorimetry and chemiluminescence. Transferrin and ceruloplasmin were analysed by nephelometry. Serum copper and zinc were measured by atomic absorption spectrophotometry, and serum alkaline phosphatase was measured by a colorimetric method. Iron, zinc and copper in breast milk were determined by spectrometry. Mean values of iron, copper and zinc (blood and breast milk) were compared by ANOVA, followed by Tukey's test. Iron supplementation was beneficial to prevent anaemia in pregnancy but not effective to treat anaemia. During breastfeeding, iron supplementation had a negative effect on maternal copper status, confirming an interaction between these micronutrients.

  4. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, David B.; Lao, Guifang

    1998-01-01

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium.

  5. Nucleotide sequences encoding a thermostable alkaline protease

    DOEpatents

    Wilson, D.B.; Lao, G.

    1998-01-06

    Nucleotide sequences, derived from a thermophilic actinomycete microorganism, which encode a thermostable alkaline protease are disclosed. Also disclosed are variants of the nucleotide sequences which encode a polypeptide having thermostable alkaline proteolytic activity. Recombinant thermostable alkaline protease or recombinant polypeptide may be obtained by culturing in a medium a host cell genetically engineered to contain and express a nucleotide sequence according to the present invention, and recovering the recombinant thermostable alkaline protease or recombinant polypeptide from the culture medium. 3 figs.

  6. Finding new ternary transition metal selenides and sulphides

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    The transition metal oxides exhibit many interesting physical properties, and have been explored in detail over time. Recently, the transition metal chalchogenides including selenium and sulfur have been of interest because of their correlated electron properties, as seen in the iron based superconductors and the layered transition metal dichalchogenides. However, the chalchogenides are much less explored than the oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain compositions that are stable, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are either truly empty or have unusual structures or synthesis requirements. This work was supported by the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088.

  7. Iron mobilization in North African dust.

    SciTech Connect

    Ito, A.; Feng, Y.

    2011-01-01

    Iron is an essential nutrient for phytoplankton. Although iron-containing dust mobilized from arid regions supplies the majority of the iron to the oceans, the key flux in terms of the biogeochemical response to atmospheric deposition is the amount of soluble or bioavailable iron. Atmospheric processing of mineral aerosols by anthropogenic pollutants (e.g. sulfuric acid) may transform insoluble iron into soluble forms. Previous studies have suggested higher iron solubility in smaller particles, as they are subject to more thorough atmospheric processing due to a longer residence time than coarse particles. On the other hand, the specific mineralogy of iron in dust may also influence the particulate iron solubility in size. Compared to mineral dust aerosols, iron from combustion sources could be more soluble, and found more frequently in smaller particles. Internal mixing of alkaline dust with iron-containing minerals could significantly reduce iron dissolution in large dust aerosols due to the buffering effect, which may, in contrast, yield higher solubility in smaller particles externally mixed with alkaline dust (Ito and Feng, 2010). Here, we extend the modeling study of Ito and Feng (2010) to investigate atmospheric processing of mineral aerosols from African dust. In contrast to Asian dust, we used a slower dissolution rate for African dust in the fine mode. We compare simulated fractional iron solubility with observations. The inclusion of alkaline compounds in aqueous chemistry substantially limits the iron dissolution during long-range transport to the Atlantic Ocean: only a small fraction of iron (<0.2%) dissolves from illite in coarsemode dust aerosols with 0.45% soluble iron initially. In contrast, a significant fraction (1-1.5%) dissolves in fine-mode dust aerosols due to the acid mobilization of the iron-containing minerals externally mixed with carbonate minerals. Consequently, the model generally reproduces higher iron solubility in smaller particles

  8. [Effect of silver/zinc selenide core-shell structure spheres on the infrared absorption properties of sodium nitrate].

    PubMed

    Guo, Qiang; Li, Chun; Jia, Zhi-Jun; Yuan, Guang

    2013-10-01

    Silver/zinc selenide (Ag/ZnSe) core-shell structure spheres were made through the method of silver mirror reaction on zinc selenide micro spheres. Surface morphology of the spheres was depicted by scanning electron microscopy, X-ray diffraction and Fourier infrared absorption spectrum. This paper studies the effect of Ag/ZnSe core-shell structure spheres on the infrared absorption properties of sodium nitrate solution. The results show that, the anti-symmetric vibration absorption peaks of nitrate are blue-shifted, and the intensity are improved obviously by the effect of core-shell structure spheres.

  9. The secondary alkaline zinc electrode

    NASA Astrophysics Data System (ADS)

    McLarnon, Frank R.; Cairns, Elton J.

    1991-02-01

    The worldwide studies conducted between 1975 and 1990 with the aim of improving cell lifetimes of secondary alkaline zinc electrodes are overviewed. Attention is given the design features and characteristics of various secondary alkaline zinc cells, including four types of zinc/nickel oxide cell designs (vented static-electrolyte, sealed static-electrolyte, vibrating-electrode, and flowing-electrolyte); two types of zinc/air cells (mechanically rechargeable consolidated-electrode and mechanically rechargeable particulate-electrode); zinc/silver oxide battery; zinc/manganese dioxide cell; and zinc/ferric cyanide battery. Particular consideration is given to recent research in the fields of cell thermodynamics, zinc electrodeposition, zinc electrodissolution, zinc corrosion, electrolyte properties, mathematical and phenomenological models, osmotic pumping, nonuniform current distribution, and cell cycle-life perforamnce.

  10. Development of alkaline fuel cells.

    SciTech Connect

    Hibbs, Michael R.; Jenkins, Janelle E.; Alam, Todd Michael; Janarthanan, Rajeswari; Horan, James L.; Caire, Benjamin R.; Ziegler, Zachary C.; Herring, Andrew M.; Yang, Yuan; Zuo, Xiaobing; Robson, Michael H.; Artyushkova, Kateryna; Patterson, Wendy; Atanassov, Plamen Borissov

    2013-09-01

    This project focuses on the development and demonstration of anion exchange membrane (AEM) fuel cells for portable power applications. Novel polymeric anion exchange membranes and ionomers with high chemical stabilities were prepared characterized by researchers at Sandia National Laboratories. Durable, non-precious metal catalysts were prepared by Dr. Plamen Atanassovs research group at the University of New Mexico by utilizing an aerosol-based process to prepare templated nano-structures. Dr. Andy Herrings group at the Colorado School of Mines combined all of these materials to fabricate and test membrane electrode assemblies for single cell testing in a methanol-fueled alkaline system. The highest power density achieved in this study was 54 mW/cm2 which was 90% of the project target and the highest reported power density for a direct methanol alkaline fuel cell.

  11. Solution-Liquid-Solid Synthesis of Hexagonal Nickel Selenide Nanowire Arrays with a Nonmetal Catalyst.

    PubMed

    Xu, Kun; Ding, Hui; Jia, Kaicheng; Lu, Xiuli; Chen, Pengzuo; Zhou, Tianpei; Cheng, Han; Liu, Si; Wu, Changzheng; Xie, Yi

    2016-01-26

    Inorganic nanowire arrays hold great promise for next-generation energy storage and conversion devices. Understanding the growth mechanism of nanowire arrays is of considerable interest for expanding the range of applications. Herein, we report the solution-liquid-solid (SLS) synthesis of hexagonal nickel selenide nanowires by using a nonmetal molecular crystal (selenium) as catalyst, which successfully brings SLS into the realm of conventional low-temperature solution synthesis. As a proof-of-concept application, the NiSe nanowire array was used as a catalyst for electrochemical water oxidation. This approach offers a new possibility to design arrays of inorganic nanowires.

  12. Structure and physical properties of gallium selenide laser-intercalated with nickel

    NASA Astrophysics Data System (ADS)

    Pokladok, N. T.; Grygorchak, I. I.; Lukiyanets, B. A.; Popovich, D. I.

    2007-04-01

    Intercalated crystals of indium and gallium selenide are prepared. It is shown that laser intercalation of nickel into GaSe samples leads to a giant magnetoresistive effect whose magnitude and sign depend on the concentration of the guest component. The giant magnetoresistive effect in the InSe intercalation compounds is considerably weaker and does not exceed 5%. The experimental data obtained are explained in terms of magnetic delocalization (localization) of charge carriers with the participation of states of intercalated magnetically active atoms in the vicinity of the Fermi level.

  13. Scaling and spatial analysis of the dielectric response of cadmium selenide nanowires

    NASA Astrophysics Data System (ADS)

    Kanai, Yosuke; Cicero, Giancarlo

    2014-10-01

    Transverse dielectric response of hexagonal cadmium selenide (CdSe) nanowires was investigated using first-principles quantum mechanical calculations. Scaling behavior of polarizability was found to closely follow a simple dielectric cylinder model even for small nanowires with a diameter of a few nanometers. The spatial dependence of the dielectric response in the nanowires was analyzed in terms of maximally localized Wannier functions in order to elucidate the model behavior. Localized d electrons at cadmium atoms were found responsible for the simple analytic scaling of the polarizability, and the dielectric response in the center of nanowire was found converged to that of bulk already for 3 nm diameter nanowires.

  14. Zinc selenide-based large aperture photo-controlled deformable mirror.

    PubMed

    Quintavalla, Martino; Bonora, Stefano; Natali, Dario; Bianco, Andrea

    2016-06-01

    Realization of large aperture deformable mirrors with a large density of actuators is important in many applications, and photo-controlled deformable mirrors (PCDMs) represent an innovation. Herein we show that PCDMs are scalable realizing a 2-inch aperture device based on a polycrystalline zinc selenide (ZnSe) as the photoconductive substrate and a thin polymeric reflective membrane. ZnSe is electrically characterized and analyzed through a model that we previously introduced. The PCDM is then optically tested, demonstrating its capabilities in adaptive optics.

  15. TOPO-capped silver selenide nanoparticles and their incorporation into polymer nanofibers using electrospinning technique

    SciTech Connect

    More, D.S.; Moloto, M.J.; Moloto, N.; Matabola, K.P.

    2015-05-15

    Highlights: • Ag{sub 2}Se nanoparticles produced spherical particles with sizes 12 nm (180 °C) and 27 nm (200 °C). • Higher temperature produced increased particle size (∼75 nm) and changed in shape. • Ag{sub 2}Se nanoparticles (0.2–0.6%) added into PVP (35–45%) to yield reduced fiber beading. • Polymer nanofibers electrospun at 11–20 kV produced fiber diameters of 425–461 nm. • Optical properties in the fibers were observed due to the Ag{sub 2}Se nanoparticles loaded. - Abstract: Electrospinning is the most common technique for fabricating polymer fibers as well as nanoparticles embedded polymer fibers. Silver selenide nanoparticles were synthesized using tri-n-octylphosphine (TOP) as solvent and tri-n-octylphosphine oxide (TOPO) as capping environment. Silver selenide was prepared by reacting silver nitrate and selenium with tri-n-octylphosphine (TOP) to form TOP–Ag and TOP–Se solutions. Both absorption and emission spectra signify the formation of nanoparticles as well as the TEM which revealed spherical particles with an average particle size of 22 nm. The polymer, PVP used was prepared at concentrations ranging from (35 to 45 wt%) and the TOPO-capped silver selenide nanoparticles (0.2 and 0.6 wt%) were incorporated into them and electrospun by varying the voltage from 11 to 20 kV. The SEM images of the Ag{sub 2}Se/PVP composite fibers revealed the fibers of diameters with average values of 425 and 461 nm. The X-ray diffraction results show peaks which were identified due to α-Ag{sub 2}Se body centered cubic compound. The sharp peak observed for all the samples at 2θ = 44.5 suggest the presence of Ag in the face centered cubic which can be attributed to higher concentration of silver nitrate used with molar ratio of selenium to silver and the abundance of silver in the silver selenide crystal. Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA) and ultraviolet–visible spectroscopy were used to characterize the

  16. White-light emission from magic-sized cadmium selenide nanocrystals.

    PubMed

    Bowers, Michael J; McBride, James R; Rosenthal, Sandra J

    2005-11-09

    Magic-sized cadmium selenide (CdSe) nanocrystals have been pyrolytically synthesized. These ultra-small nanocrystals exhibit broadband emission (420-710 nm) that covers most of the visible spectrum while not suffering from self absorption. This behavior is a direct result of the extremely narrow size distribution and unusually large Stokes shift (40-50 nm). The intrinsic properties of these ultra-small nanocrystals make them an ideal material for applications in solid state lighting and also the perfect platform to study the molecule-to-nanocrystal transition.

  17. Transparent and flexible nonvolatile memory using poly(methylsilsesquioxane) dielectric embedded with cadmium selenide quantum dots

    NASA Astrophysics Data System (ADS)

    Ooi, Poh Choon; Li, Fushan; Perumal Veeramalai, Chandrasekar; Guo, Tailiang

    2014-12-01

    In this work, a transparent and flexible nonvolatile memory was fabricated using a solution process. The conduction mechanisms of the metal/insulator/metal structure consisting of cadmium selenide quantum dots embedded in poly(methylsilsesquioxane) dielectric layers were investigated in terms of current-voltage characteristics. The memory device is reprogrammable and stable up to 1 × 104 s with little deterioration and a distinct ON/OFF ratio of 104. Endurance cycle and retention tests of the as-fabricated memory device were also carried out. The results indicate that the device has good operating stability.

  18. Electrophoretic deposition of poly(3-decylthiophene) onto gold-mounted cadmium selenide nanorods.

    PubMed

    Garate, José-Antonio; English, Niall J; Singh, Ajay; Ryan, Kevin M; Mooney, Damian A; MacElroy, J M D

    2011-11-15

    Molecular mechanisms of electrophoretic deposition (EPD) of poly(3-decylthiophene) (P3DT) molecules onto vertically aligned cadmium selenide arrays have been studied using large-scale, nonequilibrium molecular dynamics (MD), in the absence and presence of static external electric fields. The field application and larger polymer charges accelerated EPD. Placement of multiple polymers at the same lateral displacement from the surface reduced average deposition times due to "crowding", giving monolayer coverage. These findings were used to develop and validate Brownian dynamics simulations of multilayer polymer EPD in scaled-up systems with larger inter-rod spacings, presenting a generalized picture in qualitative agreement with random sequential adsorption.

  19. Electric field modulation of photoluminescence in cadmium selenide liquid junction solar cells

    SciTech Connect

    Garuthara, R.; Tomkiewicz, M.; Silberstein, R.P.

    1983-11-01

    We have utilized photoluminescence, modulated by small periodic changes of electrode potential, to study the potential distribution at the surface of single crystal cadmium selenide in contact with an electrolyte. We have shown that at reverse bias and at electrode potentials, not far from the flat-band potential, the modulated photoluminescence is described by the ''dead layer'' theory, in which the electric field in the space-charge layer quenches completely the photoluminescence in that region. The electrical characterization of the interface, based on modulated photoluminescence, agrees well with more conventional impedance measurements.

  20. Band structure and transport studies of copper selenide: An efficient thermoelectric material

    NASA Astrophysics Data System (ADS)

    Tyagi, Kriti; Gahtori, Bhasker; Bathula, Sivaiah; Auluck, S.; Dhar, Ajay

    2014-10-01

    We report the band structure calculations for high temperature cubic phase of copper selenide (Cu2Se) employing Hartree-Fock approximation using density functional theory within the generalized gradient approximation. These calculations were further extended to theoretically estimate the electrical transport coefficients of Cu2Se employing Boltzmann transport theory, which show a reasonable agreement with the corresponding experimentally measured values. The calculated transport coefficients are discussed in terms of the thermoelectric (TE) performance of this material, which suggests that Cu2Se can be a potential p-type TE material with an optimum TE performance at a carrier concentration of ˜ 4 - 6 × 10 21 cm - 3 .

  1. Ion beam analysis of copper selenide thin films prepared by chemical bath deposition

    NASA Astrophysics Data System (ADS)

    Andrade, E.; García, V. M.; Nair, P. K.; Nair, M. T. S.; Zavala, E. P.; Huerta, L.; Rocha, M. F.

    2000-03-01

    Analyses of Rutherford back scattered (RBS) 4He+-particle spectra of copper selenide thin films deposited on glass slides by chemical bath were carried out to determine the changes brought about in the thin film by annealing processes. The atomic density per unit area and composition of the films were obtained from these measurements. This analysis shows that annealing in a nitrogen atmosphere at 400°C leads to the conversion of Cu xSe thin film to Cu 2Se. Results of X-ray diffraction, optical, and electrical characteristics on the films are presented to supplement the RBS results.

  2. Ovonic switching in tin selenide thin films. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Baxter, C. R.

    1974-01-01

    Amorphous tin selenide thin films which possess Ovonic switching properties were fabricated using vacuum deposition techniques. Results obtained indicate that memory type Ovonic switching does occur in these films the energy density required for switching from a high impedance to a low impedance state is dependent on the spacing between the electrodes of the device. The switching is also function of the magnitude of the applied voltage pulse. A completely automated computer controlled testing procedure was developed which allows precise control over the shape of the applied voltage switching pulse. A survey of previous experimental and theoretical work in the area of Ovonic switching is also presented.

  3. Structural, morphology and electrical properties of layered copper selenide thin film

    NASA Astrophysics Data System (ADS)

    Ying Chyi Liew, J.; Talib, Zainal; Mahmood, W.; Yunus, M.; Zainal, Zulkarnain; Halim, Shaari; Moksin, Mohd; Yusoff, Wan; Pah Lim, K.

    2009-06-01

    Thin films of copper selenide (CuSe) were physically deposited layer-by-layer up to 5 layers using thermal evaporation technique onto a glass substrate. Various film properties, including the thickness, structure, morphology, surface roughness, average grain size and electrical conductivity are studied and discussed. These properties are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), ellipsometer and 4 point probe at room temperature. The dependence of electrical conductivity, surface roughness, and average grain size on number of layers deposited is discussed.

  4. Simultaneous phase and morphology controllable synthesis of copper selenide films by microwave-assisted nonaqueous approach

    NASA Astrophysics Data System (ADS)

    Li, Jing; Fa, Wenjun; Li, Yasi; Zhao, Hongxiao; Gao, Yuanhao; Zheng, Zhi

    2013-02-01

    Copper selenide films with different phase and morphology were synthesized on copper substrate through controlling reaction solvent by microwave-assisted nonaqueous approach. The films were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). The result showed that the pure films could be obtained using cyclohexyl alcohol or benzyl alcohol as solvent. The cubic Cu2-xSe dendrites were synthesized in cyclohexyl alcohol reaction system and hexagonal CuSe flaky crystals were obtained with benzyl alcohol as solvent.

  5. Iron refractory iron deficiency anemia

    PubMed Central

    De Falco, Luigia; Sanchez, Mayka; Silvestri, Laura; Kannengiesser, Caroline; Muckenthaler, Martina U.; Iolascon, Achille; Gouya, Laurent; Camaschella, Clara; Beaumont, Carole

    2013-01-01

    Iron refractory iron deficiency anemia is a hereditary recessive anemia due to a defect in the TMPRSS6 gene encoding Matriptase-2. This protein is a transmembrane serine protease that plays an essential role in down-regulating hepcidin, the key regulator of iron homeostasis. Hallmarks of this disease are microcytic hypochromic anemia, low transferrin saturation and normal/high serum hepcidin values. The anemia appears in the post-natal period, although in some cases it is only diagnosed in adulthood. The disease is refractory to oral iron treatment but shows a slow response to intravenous iron injections and partial correction of the anemia. To date, 40 different Matriptase-2 mutations have been reported, affecting all the functional domains of the large ectodomain of the protein. In vitro experiments on transfected cells suggest that Matriptase-2 cleaves Hemojuvelin, a major regulator of hepcidin expression and that this function is altered in this genetic form of anemia. In contrast to the low/undetectable hepcidin levels observed in acquired iron deficiency, in patients with Matriptase-2 deficiency, serum hepcidin is inappropriately high for the low iron status and accounts for the absent/delayed response to oral iron treatment. A challenge for the clinicians and pediatricians is the recognition of the disorder among iron deficiency and other microcytic anemias commonly found in pediatric patients. The current treatment of iron refractory iron deficiency anemia is based on parenteral iron administration; in the future, manipulation of the hepcidin pathway with the aim of suppressing it might become an alternative therapeutic approach. PMID:23729726

  6. Wide range photodetector based on catalyst free grown indium selenide microwires.

    PubMed

    Ali, Zulfiqar; Mirza, Misbah; Cao, Chuanbao; Butt, Faheem K; Tanveer, M; Tahir, Muhammad; Aslam, Imran; Idrees, Faryal; Safdar, Muhammad

    2014-06-25

    We first report the catalyst free growth of indium selenide microwires through a facile approach in a horizontal tube furnace using indium and selenium elemental powders as precursors. The synthesized microwires are γ-phase, high quality, single crystalline and grown along the [112̅0] direction. The wires have a uniform diameter of ∼1 μm and lengths of several micrometers. Photodetectors fabricated from synthesized microwires show reliable and stable photoresponse exhibiting a photoresponsivity of 0.54 A/W, external quantum efficiency of 1.23 at 633 nm with 4 V bias. The photodetector has a reasonable response time of 0.11 s and specific detectivity of 3.94 × 10(10) Jones at 633 nm with a light detection range from 350 to 1050 nm, covering the UV-vis-NIR region. The photoresponse shown by single wire is attributed to direct band gap (Eg = 1.3 eV) and superior single crystalline quality. The photoresponsive studies of single microwires clearly suggest the use of this new and facile growth technique without using catalysts for fabrication of indium selenide microwires in next-generation sensors and detectors for commercial and military applications.

  7. Bis[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide methanol hemisolvate.

    PubMed

    Seredyuk, Maksym; Sharkina, Natalia O; Gumienna-Kontecka, Elzbieta; Kapshuk, Anatoly A

    2014-02-01

    The asymmetric unit of the title compound, C18H16N6Se·0.5CH3OH, contains two independent mol-ecules of bis-[3-methyl-5-(pyridin-2-yl)-1H-pyrazol-4-yl] selenide with similar C-Se-C bond angles [99.30 (14) and 98.26 (13)°], and a methanol molecule of solvation. In one mol-ecule, the dihedral angles between pyrazole and neighbouring pyridine rings are 18.3 (2) and 15.8 (2)°, and the corresponding angles in the other mol-ecule are 13.5 (2) and 8.3 (2)°. In the crystal, the selenide and solvent mol-ecules are linked by classical O-H⋯N and N-H⋯N hydrogen bonds, as well as by weak C-H⋯O and C-H⋯π inter-actions, forming a three-dimensional supra-molecular architecture.

  8. Investigation of copper indium gallium selenide material growth by selenization of metallic precursors

    NASA Astrophysics Data System (ADS)

    Han, Junfeng; Liao, Cheng; Jiang, Tao; Xie, Huamu; Zhao, Kui; Besland, M.-P.

    2013-11-01

    We report a study of copper indium gallium selenide (CIGS) thin film growth in the annealing process at temperature range from 120 °C to 600 °C. Thin films were prepared by sputtering metal precursors and subsequent selenization process. Surface morphologies of thin films were observed by using high resolution field emission scanning electron microscopy (FESEM). Phases in quaternary systems Cu-In-Ga-Se were investigated by X-ray diffraction (XRD). Evolution of crystalline structure in the film surface was studied by Raman spectra. A possible reaction path from metallic precursors to a single CIGS phase was obtained by merging all results of SEM, XRD and Raman. Above 210 °C, selenium reacted with Cu and In to form binary selenide. CuSe crystalline platelets were observed clearly in the film surfaces. When temperature was reaching 380 °C, Cu2-xSe and InSe reacted with excess Se to form CuInSe2 (CIS) and contributed to the grain growth. Above 410 °C, Ga-rich phase was detected in the films. With increased temperature, Ga diffused into CIS crystalline lattices. Finally, at 600 °C, a single phase of Cu-In-Ga-Se quaternary system was formed. A large number of triangular and hexagonal structures were observed in the film due to a re-crystalline process at a high annealing temperature.

  9. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels.

  10. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P.

    PubMed

    Sasakura, C; Suzuki, K T

    1998-09-01

    The interaction between transition metals (Ag+, Cd2+ and Hg2+) and selenium (Se) in the bloodstream was studied in vitro by means of the HPLC--inductively coupled argon plasma-mass spectrometry (ICP MS) method. Transition metal ions and selenide (produced in vitro from selenite in the presence of glutathione) or sulfide (Na2S) formed a (metal-Se/S) complex, which then bound to a plasma protein, selenoprotein P (Sel P), to form a ternary complex, (metal-Se/S)-Sel P. The molar ratios of metals to Se were 1:1 for Hg/Se and Cd/Se, but either 1:1 or 2:1 for Ag/Se, depending on the ratio of their doses. The results indicate that the interaction between transition metals and Se occurs through the general mechanism, i.e., transition metal ions and selenide form the unit complex (metal-Se)n, and then the complex binds to selenoprotein P to form the ternary complex ¿(metal-Se)n¿m--seleno-protein P in the bloodstream.

  11. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    SciTech Connect

    Ali, Zulfiqar; Cao, Chuanbao Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed; Butt, Sajid

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  12. Methylselenol formed by spontaneous methylation of selenide is a superior selenium substrate to the thioredoxin and glutaredoxin systems.

    PubMed

    Fernandes, Aristi P; Wallenberg, Marita; Gandin, Valentina; Misra, Sougat; Tisato, Francesco; Marzano, Cristina; Rigobello, Maria Pia; Kumar, Sushil; Björnstedt, Mikael

    2012-01-01

    Naturally occurring selenium compounds like selenite and selenodiglutathione are metabolized to selenide in plants and animals. This highly reactive form of selenium can undergo methylation and form monomethylated and multimethylated species. These redox active selenium metabolites are of particular biological and pharmacological interest since they are potent inducers of apoptosis in cancer cells. The mammalian thioredoxin and glutaredoxin systems efficiently reduce selenite and selenodiglutathione to selenide. The reactions are non-stoichiometric aerobically due to redox cycling of selenide with oxygen and thiols. Using LDI-MS, we identified that the addition of S-adenosylmethionine (SAM) to the reactions formed methylselenol. This metabolite was a superior substrate to both the thioredoxin and glutaredoxin systems increasing the velocities of the nonstoichiometric redox cycles three-fold. In vitro cell experiments demonstrated that the presence of SAM increased the cytotoxicity of selenite and selenodiglutathione, which could neither be explained by altered selenium uptake nor impaired extra-cellular redox environment, previously shown to be highly important to selenite uptake and cytotoxicity. Our data suggest that selenide and SAM react spontaneously forming methylselenol, a highly nucleophilic and cytotoxic agent, with important physiological and pharmacological implications for the highly interesting anticancer effects of selenium.

  13. Detection of mycobacterial DNA by a specific and simple lateral flow assay incorporating cadmium selenide quantum dots.

    PubMed

    Cimaglia, Fabio; Liandris, Emmanouil; Gazouli, Maria; Sechi, Leonardo; Chiesa, Maurizio; De Lorenzis, Enrico; Andreadou, Margarita; Taka, Styliani; Mataragka, Antonia; Ikonomopoulos, John

    2015-12-01

    Cadmium selenide quantum dots have been incorporated to a lateral flow assay for the specific and very simple detection of different mycobacterial DNA targets within only a few minutes, bypassing the complexity of conventional DNA hybridization assays. The method extends our previous work on protein detection using an identical procedure.

  14. Molecular geometry and polarizability of small cadmium selenide clusters from all-electron ab initio and Density Functional Theory calculations.

    PubMed

    Karamanis, Panaghiotis; Maroulis, George; Pouchan, Claude

    2006-02-21

    We have calculated molecular geometries and electric polarizabilities for small cadmium selenide clusters. Our calculations were performed with conventional ab initio and density functional theory methods and Gaussian-type basis sets especially designed for (CdSe)(n). We find that the dipole polarizability per atom converges rapidly to the bulk value.

  15. Optical and electronic properties of layer-by-layer and composite polyaniline-cadmium selenide quantum dot films

    NASA Astrophysics Data System (ADS)

    Ayub, Ambreen; Shakoor, Abdul; Elahi, Asmat; Rizvi, Tasneem Zahra

    2015-08-01

    Two organic-inorganic hybrid films of intrinsically conducting polymer; polyaniline and cadmium selenide quantum dots were prepared. One by layer-by-layer deposition of polyaniline and cadmium selenide films on PEDOT-PSS/ITO coated glass substrate (ITO/PEDOT-PSS/PANI/CdSe) and other by depositing polyaniline-cadmium selenide quantum dots composite film on the same substrate (ITO/PEDOT-PSS/PANI-CdSe) using spin coating technique. Pure polyaniline, cadmium selenide quantum dots and their composites thus obtained were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV/VIS/NIR absorption spectroscopy. The surface morphologies were studied by Scanning Electron Microscopy (SEM). The diode performance parameters were compared and contrasted for the two devices obtained by different deposition routes. J-V characteristics of these devices showed a rectifying contact with Al metal, however with variation in performance parameters like barrier height, ideality factor and reverse saturation current the ITO/PEDOT-PSS/PANI-CdSe/Al device exhibited better diode performance as compared to ITO/PEDOT-PSS/PANI/CdSe/Al device.

  16. USE OF ELECTRICALLY CONDUCTING COATINGS OF COPPER SELENIDE AND COATINGS COMPOSED OF Cu3PSx FOR PREPARING ELECTROLUMINESCENT CAPACITORS,

    DTIC Science & Technology

    polymer ribbons are discussed. Copper selenide coatings are produced by vacuum deposition of Cu2Se . Heating the object afterwards at 70-80C for 30-60...the coating. Transmission characteristics of this coating are similar to those of the Cu2Se coating. A detailed explanation is given of the methods

  17. Diclofenac salts. III. Alkaline and earth alkaline salts.

    PubMed

    Fini, Adamo; Fazio, Giuseppe; Rosetti, Francesca; Angeles Holgado, M; Iruín, Ana; Alvarez-Fuentes, Josefa

    2005-11-01

    Diclofenac salts containing the alkaline and two earth alkaline cations have been prepared and characterized by scanning electron microscopy (SEM) and EDAX spectroscopy; and by thermal and thermogravimetric analysis (TGA): all of them crystallize as hydrate when precipitated from water. The salts dehydrate at room temperature and more easily on heating, but recovery the hydration, when placed in a humid environment. X-ray diffraction spectra suggest that on dehydration new peaks appear on diffractograms and the lattice of the salts partially looses crystallinity. This phenomenon is readily visible in the case of the calcium and magnesium salts, whose thermograms display a crystallization exotherm, before melting or decomposing at temperatures near or above 200 degrees C; these last salts appear to form solvates, when prepared from methanol. The thermogram of each salt shows a complex endotherm of dehydration about 100 degrees C; the calcium salt displays two endotherms, well separated at about 120 and 160 degrees C, which disappear after prolonged heating. Decomposition exotherms, before or soon after the melting, appear below 300 degrees C. The ammonium salt is thermally unstable and, when heated to start dehydration, dissociates and leaves acidic diclofenac.

  18. Alkaline fuel cell performance investigation

    NASA Technical Reports Server (NTRS)

    Martin, R. E.; Manzo, M. A.

    1988-01-01

    An exploratory experimental fuel cell test program was conducted to investigate the performance characteristics of alkaline laboratory research electrodes. The objective of this work was to establish the effect of temperature, pressure, and concentration upon performance and evaluate candidate cathode configurations having the potential for improved performance. The performance characterization tests provided data to empirically establish the effect of temperature, pressure, and concentration upon performance for cell temperatures up to 300 F and reactant pressures up to 200 psia. Evaluation of five gold alloy cathode catalysts revealed that three doped gold alloys had more that two times the surface areas of reference cathodes and therefore offered the best potential for improved performance.

  19. Alkaline decomposition of synthetic jarosite with arsenic

    PubMed Central

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb2+, Cr6+, As5+, Cd2+, Hg2+). For the present paper, AsO43- was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH-] > 8 × 10-3 mol L-1, the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol-1 was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH-] > 1.90 × 10-2 mol L-1, the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol-1 was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control. PMID:23566061

  20. Alkaline decomposition of synthetic jarosite with arsenic.

    PubMed

    Patiño, Francisco; Flores, Mizraim U; Reyes, Iván A; Reyes, Martín; Hernández, Juan; Rivera, Isauro; Juárez, Julio C

    2013-01-01

    The widespread use of jarosite-type compounds to eliminate impurities in the hydrometallurgical industry is due to their capability to incorporate several elements into their structures. Some of these elements are of environmental importance (Pb(2+), Cr(6+), As(5+), Cd(2+), Hg(2+)). For the present paper, AsO4 (3-) was incorporated into the lattice of synthetic jarosite in order to carry out a reactivity study. Alkaline decomposition is characterized by removal of sulfate and potassium ions from the lattice and formation of a gel consisting of iron hydroxides with absorbed arsenate. Decomposition curves show an induction period followed by a conversion period. The induction period is independent of particle size and exponentially decreases with temperature. The conversion period is characterized by formation of a hydroxide halo that surrounds an unreacted jarosite core. During the conversion period in NaOH media for [OH(-)] > 8 × 10(-3) mol L(-1), the process showed a reaction order of 1.86, and an apparent activation energy of 60.3 kJ mol(-1) was obtained. On the other hand, during the conversion period in Ca(OH)2 media for [OH(-)] > 1.90 × 10(-2) mol L(-1), the reaction order was 1.15, and an apparent activation energy of 74.4 kJ mol(-1) was obtained. The results are consistent with the spherical particle model with decreasing core and chemical control.

  1. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  2. METABOLISM OF IRON STORES

    PubMed Central

    SAITO, HIROSHI

    2014-01-01

    ABSTRACT Remarkable progress was recently achieved in the studies on molecular regulators of iron metabolism. Among the main regulators, storage iron, iron absorption, erythropoiesis and hepcidin interact in keeping iron homeostasis. Diseases with gene-mutations resulting in iron overload, iron deficiency, and local iron deposition have been introduced in relation to the regulators of storage iron metabolism. On the other hand, the research on storage iron metabolism has not advanced since the pioneering research by Shoden in 1953. However, we recently developed a new method for determining ferritin iron and hemosiderin iron by computer-assisted serum ferritin kinetics. Serum ferritin increase or decrease curves were measured in patients with normal storage iron levels (chronic hepatitis C and iron deficiency anemia treated by intravenous iron injection), and iron overload (hereditary hemochromatosis and transfusion dependent anemia). We thereby confirmed the existence of two iron pathways where iron flows followed the numbered order (1) labile iron, (2) ferritin and (3) hemosiderin in iron deposition and mobilization among many previously proposed but mostly unproven routes. We also demonstrated the increasing and decreasing phases of ferritin iron and hemosiderin iron in iron deposition and mobilization. The author first demonstrated here the change in proportion between pre-existing ferritin iron and new ferritin iron synthesized by removing iron from hemosiderin in the course of iron removal. In addition, the author disclosed the cause of underestimation of storage iron turnover rate which had been reported by previous investigators in estimating storage iron turnover rate of normal subjects. PMID:25741033

  3. Alkaline and alkaline earth metal phosphate halides and phosphors

    DOEpatents

    Lyons, Robert Joseph; Setlur, Anant Achyut; Cleaver, Robert John

    2012-11-13

    Compounds, phosphor materials and apparatus related to nacaphite family of materials are presented. Potassium and rubidium based nacaphite family compounds and phosphors designed by doping divalent rare earth elements in the sites of alkaline earth metals in the nacaphite material families are descried. An apparatus comprising the phosphors based on the nacaphite family materials are presented herein. The compounds presented is of formula A.sub.2B.sub.1-yR.sub.yPO.sub.4X where the elements A, B, R, X and suffix y are defined such that A is potassium, rubidium, or a combination of potassium and rubidium and B is calcium, strontium, barium, or a combination of any of calcium, strontium and barium. X is fluorine, chlorine, or a combination of fluorine and chlorine, R is europium, samarium, ytterbium, or a combination of any of europium, samarium, and ytterbium, and y ranges from 0 to about 0.1.

  4. Alkylthiol-enabled Se powder dissolution in oleylamine at room temperature for the phosphine-free synthesis of copper-based quaternary selenide nanocrystals.

    PubMed

    Liu, Yi; Yao, Dong; Shen, Liang; Zhang, Hao; Zhang, Xindong; Yang, Bai

    2012-05-02

    Enhancement of Se solubility in organic solvents without the use of alkylphosphine ligands is the key for phosphine-free synthesis of selenide semiconductor nanocrystals (NCs). In this communication, we demonstrate the dissolution of elemental Se in oleylamine by alkylthiol reduction at room temperature, which generates soluble alkylammonium selenide. This Se precursor is highly reactive for hot-injection synthesis of selenide semiconductor NCs, such as Cu(2)ZnSnSe(4), Cu(InGa)Se(2), and CdSe. In the case of Cu(2)ZnSnSe(4), for example, the as-synthesized NCs possessed small size, high size monodispersity, strong absorbance in the visible region, and in particular a promising increase in photocurrent under AM1.5 illumination. The current preparation of the Se precursor is simple and convenient, which will promote the synthesis and practical applications of selenide NCs.

  5. Chemically bonded phosphate ceramics of trivalent oxides of iron and manganese

    DOEpatents

    Wagh, Arun S.; Jeong, Seung-Young

    2002-01-01

    A new method for combining elemental iron and other metals to form an inexpensive ceramic to stabilize arsenic, alkaline red mud wastes, swarfs, and other iron or metal-based additives, to create products and waste forms which can be poured or dye cast.

  6. Acute treatment with bis selenide, an organic compound containing the trace element selenium, prevents memory deficits induced by reserpine in rats.

    PubMed

    Bortolatto, Cristiani Folharini; Guerra Souza, Ana Cristina; Wilhelm, Ethel Antunes; Nogueira, Cristina Wayne

    2013-01-01

    Taking into account the promising pharmacological actions of (Z)-2,3-bis(4-chlorophenylselanyl) prop-2-en-1-ol) (bis selenide), an organic compound containing the trace element selenium, and the constant search for drugs that improve the cognitive performance, the objective of the present study was to investigate whether bis selenide treatment ameliorates memory deficits induced by reserpine in rats. For this aim, male adult rats received a single subcutaneous injection of reserpine (1 mg/kg), a biogenic amine-depleting agent used to induce memory deficit. After 24 h, bis selenide at doses of 25 and 50 mg/kg was administered to rats by intragastric route, and 1 h later, the animals were submitted to behavior tasks. The effects of acute administration of bis selenide on memory were evaluated by social recognition, step-down passive avoidance, and object recognition paradigms. Exploratory and locomotor activities of rats were determined using the open-field test. Analysis of data revealed that the social memory disruption caused by reserpine was reversed by bis selenide at both doses. In addition, bis selenide, at the highest dose, prevented the memory deficit resulting from reserpine administration to rats in step-down passive avoidance and object recognition tasks. No significant alterations in locomotor and exploratory behaviors were found in animals treated with reserpine and/or bis selenide. Results obtained from distinct memory behavioral paradigms revealed that an acute treatment with bis selenide attenuated memory deficits induced by reserpine in rats.

  7. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.

    PubMed

    Dong, Hailong; Quintilla, Aina; Cemernjak, Marco; Popescu, Radian; Gerthsen, Dagmar; Ahlswede, Erik; Feldmann, Claus

    2014-02-01

    Selenium nanoparticles with diameters of 100-400nm are prepared via hydrazine-driven reduction of selenious acid. The as-prepared amorphous, red selenium (a-Se) particles were neither a stable phase nor were they colloidally stable. Due to phase transition to crystalline (trigonal), grey selenium (t-Se) at or even below room temperature, the particles merged rapidly and recrystallized as micronsized crystal needles. As a consequence, such Se particles were not suited for layer deposition and as a precursor to manufacture thin-film CIS (copper indium selenide/CuInSe2) solar cells. To overcome this restriction, Se@CuSe core@shell particles are presented here. For these Se@CuSe core@shell nanoparticles, the phase transition a-Se→t-Se is shifted to temperatures higher than 100°C. Moreover, a spherical shape of the particles is retained even after phase transition. Composition and structure of the Se@CuSe core@shell nanostructure are evidenced by electron microscopy (SEM/STEM), DLS, XRD, FT-IR and line-scan EDXS. As a conceptual study, the newly formed Se@CuSe core@shell nanostructures with CuSe acting as a protecting layer to increase the phase-transition temperature and to improve the colloidal stability were used as a selenium precursor for manufacturing of thin-film CIS solar cells and already lead to conversion efficiencies up to 3%.

  8. Closed type alkaline storage battery

    SciTech Connect

    Hayama, H.

    1980-06-10

    The alkaline storage battery employs a metallic hat shaped terminal closure which has a piercing needle as well as a puncturable metallic diaphragm positioned below the piercing needle. The needle is fixed by caulking at its peripheral edge portion to a edge of the closure. A comparatively thick and hard metal plate is placed on the inner surface of the diaphragm and is applied to an open portion of a tubular metallic container which has a battery element. A peripheral edge portion of the closure, the diaphragm and the metallic plate are clamped in airtight relationship through a packing between the caulked end portion and an inner annular step portion of the metallic container of the battery. A lead wire extends from one polarity electrode of the battery element and is connected to a central portion of the metallic plate.

  9. Bismuth selenides from St. Andreasberg, Germany: an oxidised five-element style of mineralisation and its relation to post-Variscan vein-type deposits of central Europe

    NASA Astrophysics Data System (ADS)

    Cabral, Alexandre Raphael; Ließmann, Wilfried; Jian, Wei; Lehmann, Bernd

    2016-12-01

    Carbonate veinlets at Roter Bär, a former underground mine in the polymetallic St. Andreasberg vein district of the Harz Mountains, Germany, host selenide minerals that are characterised as Bi-Ag-bearing clausthalite (PbSe), tiemannite (HgSe), guanajuatite (Bi2Se3) and a number of selenides of Bi, Zn, Cu, Ag and Pd. An unnamed Bi-Pb-Ag selenide species with some Hg and Cu, ideally Bi4Pb3Ag2Se10, is reported here. Specular hematite is disseminated within the clausthalite, at the marginal zones of which other selenide minerals are located. The occurrence of bohdanowiczite (AgBiSe2) and umangite (Cu3Se2) constrains the formation temperature to ≤120 °C, and the selenide-hematite assemblage (plus barite in the carbonate gangue) identifies highly oxidised conditions. Selenide assemblages of Pb, Bi, Ag, with and without Co and Ni, occur in many parts of the Variscan basement of central Europe (Harz, Erzgebirge, Schwarzwald and Bohemian Massif) and represent a high-oxidation variety of five-element (Ag-As-Bi-Co-Ni) veins.

  10. Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae.

    PubMed

    Peng, Eric D; Wyckoff, Elizabeth E; Mey, Alexandra R; Fisher, Carolyn R; Payne, Shelley M

    2015-12-07

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine.

  11. Physicochemical properties and inhibition effect on iron deficiency anemia of a novel polysaccharide-iron complex (LPPC).

    PubMed

    Zhang, Zhong-Shan; Wang, Xiao-Mei; Han, Zhi-Ping; Yin, Li; Zhao, Ming-Xing; Yu, Shu-Chi

    2012-01-01

    Porphyran (P) was extracted from red algae Porphyra by boiling water. A novel polysaccharide-iron complex (LPPC) was prepared under the alkaline condition by adding a ferric chloride solution to the low molecular weight porphyran (LP) solution. Physicochemical properties and inhibition effect on iron deficiency anemia of this complex were studied. The content of iron(III) in the complex is 21.57% determined with iodometry. The results indicate that LPPC was product required. The complex can increase red blood cell count (RBC), hemoglobin (Hb), Serum iron (SI), spleen index, spleen mass and mass of mice with iron deficiency anemia (IDA). Although the structure and deeper mechanisms on hemolytic anemia of LPPC should be further studied, LPPC is hoped to be developed as a late-model iron supplement which has a synergism on anemia.

  12. Heterogeneous nanocomposites of silver selenide and hollow platinum nanoparticles toward methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Cui, Penglei; He, Hongyan; Liu, Hui; Zhang, Suojiang; Yang, Jun

    2016-09-01

    Making use of the electronic coupling between different domains in composite nanomaterials is an effective way to enhance the activity of electrocatalysts. Herein, we demonstrate the preparation of nanocomposites consisting of silver selenide (Ag2Se) and platinum (Pt) nanoparticles with a hollow interior by combining the inside-out diffusion of Ag in core-shell Ag-Pt nanoparticles with the synthesis of highly active hydrophobic Se species. In specific, the Ag2Se-hPt nanocomposites are found to have superior activity and stability for methanol oxidation reaction in an acidic condition due to the strong electronic coupling effect between semiconductor and metal domains. This strategy may provide a greener and less expensive way to the large-scale synthesis of Pt-based nanocomposites, and might be used to generate other heterogeneous nanomaterials with technological importance.

  13. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals.

    PubMed

    Li, Xufan; Basile, Leonardo; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A; Lee, Jaekwang; Idrobo, Juan C; Chi, Miaofang; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2015-02-23

    Characterizing and controlling the interlayer orientations and stacking orders of two-dimensional (2D) bilayer crystals and van der Waals (vdW) heterostructures is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) crystals that result from different layer stackings provide an ideal platform to study the stacking configurations in 2D bilayer crystals. Through a controllable vapor-phase deposition method, bilayer GaSe crystals were selectively grown and their two preferred 0° or 60° interlayer rotations were investigated. The commensurate stacking configurations (AA' and AB stacking) in as-grown bilayer GaSe crystals are clearly observed at the atomic scale, and the Ga-terminated edge structure was identified using scanning transmission electron microscopy. Theoretical analysis reveals that the energies of the interlayer coupling are responsible for the preferred orientations among the bilayer GaSe crystals.

  14. Temperature induced phonon behaviour in germanium selenide thin films probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Taube, A.; Łapińska, A.; Judek, J.; Wochtman, N.; Zdrojek, M.

    2016-08-01

    Here we report a detailed study of temperature-dependent phonon properties of exfoliated germanium selenide thin films (several tens of nanometers thick) probed by Raman spectroscopy in the 70-350 K temperature range. The temperature-dependent behavior of the positions and widths of the Raman modes was nonlinear. We concluded that the observed effects arise from anharmonic phonon-phonon interactions and are explained by the phenomenon of optical phonon decay into acoustic phonons. At temperatures above 200 K, the position of the Raman modes tended to be linearly dependent, and the first order temperature coefficients χ were  -0.0277, -0.0197 and  -0.031 cm-1 K-1 for B 3g , A g(1) and A g(2) modes, respectively.

  15. Resonance enhancement of nonlinear photoluminescence in gallium selenide and related compounds

    SciTech Connect

    Angermann, Ch; Karich, P; Kador, Lothar; Allakhverdiev, K R; Baykara, T; Salaev, E Yu

    2012-05-31

    Maker fringe experiments on the layered chalcogenide semiconductor gallium selenide (GaSe) with weak cw diode lasers are presented. It is demonstrated that nonlinear photoluminescence emitted by this material and by the similar compound GaSe{sub 0.9}S{sub 0.1} under illumination with a 632.8-nm He - Ne laser shows very strong resonance enhancement upon heating when the absorption edge and exciton levels are shifted towards the laser line. The photoluminescence appears to be strongest when the energy level of the direct exciton, which emits it, is resonant with the photon energy of the laser. The previously observed enhancement of the photoluminescence by electric fields is interpreted in this context.

  16. The effect of structural dimensionality on the electrocatalytic properties of the nickel selenide phase.

    PubMed

    Kukunuri, Suresh; Krishnan, M Reshma; Sampath, S

    2015-09-28

    Nickel selenide (NiSe) nanostructures possessing different morphologies of wires, spheres and hexagons are synthesized by varying the selenium precursors, selenourea, selenium dioxide (SeO2) and potassium selenocyanate (KSeCN), respectively, and are characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, transmission electron microscopy and scanning electron microscopy techniques. Electrical measurements of a single nanowire and a hexagon carried out on devices fabricated by the focused ion beam (FIB) technique depict the semiconducting nature of NiSe and its ability to act as a visible light photodetector. The three different morphologies are used as catalysts for hydrogen evolution (HER), oxygen reduction (ORR) and glucose oxidation reactions. The wire morphology is found to be better than that of spheres and hexagons for all the reactions. Among the reactions studied, NiSe is found to be good for HER and glucose oxidation while ORR seems to terminate at the peroxide stage.

  17. In vivo synthesis of europium selenide nanoparticles and related cytotoxicity evaluation of human cells.

    PubMed

    Kim, Eun Bee; Seo, Ji Min; Kim, Gi Wook; Lee, Sang Yup; Park, Tae Jung

    2016-12-01

    Nanotechnology strives to combine new materials for development of noble nanoparticles. As the nanoparticles exhibit unique optical, electronic, and magnetic properties depending on their composition, developing safe, cost-effective and environmentally friendly technologies for the synthesis have become an important issue. In this study, in vivo synthesis of europium selenide (EuSe) nanoparticles was performed using recombinant Escherichia coli cells expressing heavy-metal binding proteins, phytochelatin synthase and metallothionein. The formation of EuSe nanoparticles was confirmed by using UV-vis spectroscopy, spectrofluorometry, X-ray diffraction, energy dispersive X-ray and transmission electron microscopy. The synthesized EuSe nanoparticles exhibited high fluorescence intensities as well as strong magnetic properties. Furthermore, anti-cancer effect of EuSe nanoparticles against cancer cell lines was investigated. This strategy for the biogenic synthesis of nanoparticles has a great potential as bioimaging tools and drug carrying agents in biomedical fields due to its simplicity and nontoxicity.

  18. Simulations of silver-doped germanium-selenide glasses and their response to radiation

    PubMed Central

    2014-01-01

    Chalcogenide glasses doped with silver have many applications including their use as a novel radiation sensor. In this paper, we undertake the first atomistic simulation of radiation damage and healing in silver-doped Germanium-selenide glass. We jointly employ empirical potentials and ab initio methods to create and characterize new structural models and to show that they are in accord with many experimental observations. Next, we simulate a thermal spike and track the evolution of the radiation damage and its eventual healing by application of a simulated annealing process. The silver network is strongly affected by the rearrangements, and its connectivity (and thus contribution to the electrical conductivity) change rapidly in time. The electronic structure of the material after annealing is essentially identical to that of the initial structure. PMID:25426005

  19. The growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Anderson, Elmer E.; Rosenberger, Franz E.; Cheng, Hai-Yuin

    1990-01-01

    Growth and characterization studies will be performed on zinc selenide single crystals. The high temperature outgassing behavior of the silica ampoule material will be studied in order to develop a cleaning and bake-out procedure that will minimize the amount of impurities introduced into the vapor from the ampoule materials and in particular during the seal-off procedure. The outgassing behavior of the ZnSe starting material will be studied during high vacuum refinement at elevated temperatures in order to develop a temperature pressure program that will optimize the removal of impurities while minimizing a shift in stoichiometry due to preferred evaporation of the higher fugacity component. The mass spectrometer system was completed, and after calibration, will be used to perform the above tasks. The system and its operation is described in detail.

  20. Dynamic observation of phase transformation behaviors in indium(III) selenide nanowire based phase change memory.

    PubMed

    Huang, Yu-Ting; Huang, Chun-Wei; Chen, Jui-Yuan; Ting, Yi-Hsin; Lu, Kuo-Chang; Chueh, Yu-Lun; Wu, Wen-Wei

    2014-09-23

    Phase change random access memory (PCRAM) has been extensively investigated for its potential applications in next-generation nonvolatile memory. In this study, indium(III) selenide (In2Se3) was selected due to its high resistivity ratio and lower programming current. Au/In2Se3-nanowire/Au phase change memory devices were fabricated and measured systematically in an in situ transmission electron microscope to perform a RESET/SET process under pulsed and dc voltage swept mode, respectively. During the switching, we observed the dynamic evolution of the phase transformation process. The switching behavior resulted from crystalline/amorphous change and revealed that a long pulse width would induce the amorphous or polycrystalline state by different pulse amplitudes, supporting the improvement of the writing speed, retention, and endurance of PCRAM.

  1. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    SciTech Connect

    Jacob, Rajani Philip, Rachel Reena Nazer, Sheeba Abraham, Anitha Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-28

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ∼1.78eV with high absorption coefficient ∼10{sup 6}/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80–330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ∼2.6Ωm and the films showed good photo response.

  2. Deposition of heteroepitaxial layer of cadmium selenide and telluride on indium arsenide

    SciTech Connect

    Buttaev, M.S.; Gasanov, N.G.; Gasanova, R.N.; Magomedov, K.A.

    1986-04-01

    The authors have investigated how the technological deposition regimes influence the surface morphology, growth rate, and structural perfection of heteroepitaxial layers of cadmium selenide and telluride grown on the polar faces of indium arsenide. Investigation of the process of obtaining layers of CdSe on InAs revealed that the orientation of the polar faces of the substrate influences both the morphology of the surface layer and the rate of growth. Photomicrographs are shown of the surfaces of layers with different growth figures. A phenomenum is explained that does not enable one to grow CdTe layers on InAs at high temperatures; this complicates the choice of particular parameters for the deposition process and rules out the use of indium arsenide as a substrate.

  3. Particle-rod hybrids: growth of arachidic acid molecular rods from capped cadmium selenide nanoparticles.

    PubMed

    Chen, Dongzhong; Wang, Ruomiao; Arachchige, Indika; Mao, Guangzhao; Brock, Stephanie L

    2004-12-22

    This communication describes a spin-coating method to nucleate organic molecular rods of uniform size from an inorganic nanoparticle at a solid surface. The particle-rod hybrid structure spontaneously forms when a film is spin coated from a mixed 2-propanol solution of arachidic acid (AA) and nanoparticles of cadmium selenide capped by mercaptoundecanoic acid (MUA-CdSe) on graphite. AFM images show that MUA-CdSe nanoparticles nucleate single crystalline rods of AA with a cross section of a single unit cell of the C-form. The solution-based process potentially allows the precise tuning of the wetting profile of the solution on the surface-attached nanoparticle, which provides the reservoir for the growth of the single crystalline rods. The results suggest that nanoparticles can be regarded as nanoseeds for the nucleation of guest crystals. It should be possible to further functionalize the AA rods by electrostatic complexation with metal or organic ions.

  4. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    NASA Astrophysics Data System (ADS)

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-01

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  5. A Rapid and Cost-Effective Laser Based Synthesis of High Purity Cadmium Selenide Quantum Dots.

    PubMed

    Gondall, M A; Qahtan, Talal F; Dastageer, M A; Yamani, Z H; Anjum, D H

    2016-01-01

    A rapid and cost effective method is developed to synthesize high purity cadmium Selenide (CdSe) quantum dots in acetone medium using second harmonic of Nd:YAG nanosecond pulsed laser of 532 nm wavelength. The thermal agglomeration due the nanosecond pulse duration of the laser was successfully eliminated by using unfocussed laser beam and thereby providing a favorable conditions for the synthesis of quantum dots having the grain size of 3 nm. The morphological and optical characterizations like XRD, HRTEM, optical absorption of the synthesized CdSe quantum dots, reveal that the material possesses the similar characteristics of the one synthesized through cumbersome wet chemical methods. Relative to the CdSe bulk material, the synthesized CdSe quantum dots showed a blue shift in the measured band gap energy from near infrared spectral region to visible region, making this material very attractive for many solar energy harvesting applications like photo-catalysis and solar cells.

  6. Effect of cadmium selenide quantum dots on the dielectric and physical parameters of ferroelectric liquid crystal

    SciTech Connect

    Singh, D. P.; Gupta, S. K.; Manohar, R.; Varia, M. C.; Kumar, S.; Kumar, A.

    2014-07-21

    The effect of cadmium selenide quantum dots (CdSe QDs) on the dielectric relaxation and material constants of a ferroelectric liquid crystal (FLC) has been investigated. Along with the characteristic Goldstone mode, a new relaxation mode has been induced in the FLC material due to the presence of CdSe QDs. This new relaxation mode is strongly dependent on the concentration of CdSe QDs but is found to be independent of the external bias voltage and temperature. The material constants have also been modified remarkably due to the presence of CdSe QDs. The appearance of this new relaxation phenomenon has been attributed to the concentration dependent interaction between CdSe QDs and FLC molecules.

  7. Preparation of cadmium selenide-polyolefin composites from functional phosphine oxides and ruthenium-based metathesis.

    PubMed

    Skaff, Habib; Ilker, M Firat; Coughlin, E Bryan; Emrick, Todd

    2002-05-22

    Cadmium selenide nanoparticles, prepared by known methods, were stabilized with functional phosphine oxide 1, then used to support the polymerization of cyclic olefins radially outward from the surface by ruthenium-catalyzed ring-opening metathesis polymerization (ROMP). The conversion of compound 1 into the new metathesis catalyst 3 by carbene exchange and the subsequent polymerization of cyclic olefins were observed spectroscopically by (1)H NMR to afford for example CdSe-polycyclooctene composite 6. Transmission electron micrographs on thin films of these composites showed good nanoparticle dispersion. This is in stark contrast to the substantial nanoparticle aggregation observed when similar polymerizations were performed in the presence of conventional TOPO-covered nanoparticles. The methods reported here to prepare composite product 6 are applicable to other cyclic olefins, and suggest that this chemistry will be useful for incorporating CdSe nanoparticles into a wide variety of polymer matrices.

  8. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    PubMed

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-07

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.

  9. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    PubMed Central

    2010-01-01

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2−) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA–CuSe nanosnakes. The prepared BSA–CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA–CuSe nanosnakes have great potentials in applications such as biomedical engineering. PMID:20672034

  10. Copper Selenide Nanosnakes: Bovine Serum Albumin-Assisted Room Temperature Controllable Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Huang, Peng; Kong, Yifei; Li, Zhiming; Gao, Feng; Cui, Daxiang

    2010-06-01

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2-) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA-CuSe nanosnakes. The prepared BSA-CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA-CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  11. Copper Selenide Nanocrystals as a High Performance, Solution Processed Thermoelectric Material

    NASA Astrophysics Data System (ADS)

    Forster, Jason; Lynch, Jared; Coates, Nelson; Sahu, Ayaskanta; Liu, Jun; Cahill, David; Urban, Jeff

    Nano-structuring a thermoelectric material often results in enhanced performance due to a decrease in the materials' thermal conductivity. Traditional nano-structuring techniques involve ball milling a bulk material followed by spark plasma sintering, a very energy intensive process. In this talk, we will describe the development of a self-assembled, high-performing, nano-structured thin film based on copper selenide nanocrystals. Mild thermal annealing of these films results in concurrent increases in the Seebeck coefficient and electrical conductivity. We are able to achieve power factors at room temperature that are as high as the best spark plasma sintered materials. These solution-processed films have potential applications as conformal, flexible materials for thermoelectric power generation.

  12. Copper selenide nanosnakes: bovine serum albumin-assisted room temperature controllable synthesis and characterization.

    PubMed

    Huang, Peng; Kong, Yifei; Li, Zhiming; Gao, Feng; Cui, Daxiang

    2010-04-03

    Herein we firstly reported a simple, environment-friendly, controllable synthetic method of CuSe nanosnakes at room temperature using copper salts and sodium selenosulfate as the reactants, and bovine serum albumin (BSA) as foaming agent. As the amounts of selenide ions (Se2-) released from Na2SeSO3 in the solution increased, the cubic and snake-like CuSe nanostructures were formed gradually, the cubic nanostructures were captured by the CuSe nanosnakes, the CuSe nanosnakes grew wider and longer as the reaction time increased. Finally, the cubic CuSe nanostructures were completely replaced by BSA-CuSe nanosnakes. The prepared BSA-CuSe nanosnakes exhibited enhanced biocompatibility than the CuSe nanocrystals, which highly suggest that as-prepared BSA-CuSe nanosnakes have great potentials in applications such as biomedical engineering.

  13. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts.

    PubMed

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-10-21

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.

  14. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Su, Ching-Hua; Arnold, Bradley; Choa, Fow-Sen

    2016-10-01

    Experiments were performed to study the effect of point defects on the optical and morphological characteristics of zinc selenide-zinc sulfide ZnSe-ZnS (ZnSexS(1-x)) solid solution crystals grown under terrestrial (1-g) condition. We used the composition ZnSe0.91S0.09 and ZnSe0.73S0.27 for the detailed studies. Crystals of 8 mm and 12 mm diameter were grown using physical vapor transport methods. These crystals did not exhibit gross defects such as voids, bubbles or precipitates. The photoluminescence spectra indicated strong red emission for the 610-630-nm wavelength region in both crystals. This emission could be explained on the basis of high energy irradiation of Zn selenide. For the ZnSe0.73S0.27 crystal, absorption starts at a lower wavelength range (300 nm) when compared to the ZnSe0.91S0.09 crystal presumably due to the much higher bandgap of ZnS than that of ZnSe. Sharp peaks at 451 and 455 nm were observed for both samples corresponding to the band edge transitions, followed by a strong peak at 632 nm. These results were consistent with the observations based on Raman spectroscopy studies. Under 532-nm laser illumination both transverse optical (TO) and longitudinal optical (LO) phonon peaks appeared at Raman shifts of 220 and 280 Δcm-1, respectively. These peaks are similar to those observed for pure ZnSe Raman spectra for which TO and LO occur at 200 and 250 Δcm-1 for the x-axis (first order) polarization.

  15. Reaction chemistry and ligand exchange at cadmium-selenide nanocrystal surfaces.

    PubMed

    Owen, Jonathan S; Park, Jungwon; Trudeau, Paul-Emile; Alivisatos, A Paul

    2008-09-17

    The surface chemistry of cadmium selenide nanocrystals, prepared from tri-n-octylphosphine selenide and cadmium octadecylphosphonate in tri-n-octylphosphine oxide, was studied with 1H and {1H}31P NMR spectroscopy as well as ESI-MS and XPS. The identity of the surface ligands was inferred from reaction of nanocrystals with Me3Si-X (X = -S-SiMe3, -Se-SiMe3, -Cl and -S-(CH2CH2O)4OCH3)) and unambiguous assignment of the organic byproducts, O,O'-bis(trimethylsilyl)octadecylphosphonic acid ester and O,O'-bis(trimethylsilyl)ocatdecylphosphonic acid anhydride ester. Nanocrystals isolated from these reactions have undergone exchange of the octadecylphosphonate ligands for -X as was shown by 1H NMR (X = -S-(CH2CH2O)4OCH3) and XPS (X = -Cl). Addition of free thiols to as prepared nanocrystals results in binding of the thiol to the particle surface and quenching of the nanocrystal fluorescence. Isolation of the thiol-ligated nanocrystals shows this chemisorption proceeds without displacement of the octadecylphosphonate ligands, suggesting the presence of unoccupied Lewis-acidic sites on the particle surface. In the presence of added triethylamine, however, the octadecylphosphonate ligands are readily displaced from the particle surface as was shown with 1H and {1H}31P NMR. These results, in conjunction with previous literature reports, indicate that as-prepared nanocrystal surfaces are terminated by X-type binding of octadecylphosphonate moieties to a layer of excess cadmium ions.

  16. Transition from Molecular Vibrations to Phonons in Atomically Precise Cadmium Selenide Quantum Dots.

    PubMed

    Beecher, Alexander N; Dziatko, Rachel A; Steigerwald, Michael L; Owen, Jonathan S; Crowther, Andrew C

    2016-12-28

    We use micro-Raman spectroscopy to measure the vibrational structure of the atomically precise cadmium selenide quantum dots Cd35Se20X30L30, Cd56Se35X42L42, and Cd84Se56X56L56. These quantum dots have benzoate (X) and n-butylamine (L) ligands and tetrahedral (Td) shape with edges that range from 1.7 to 2.6 nm in length. Investigating this previously unexplored size regime allows us to identify the transition from molecular vibrations to bulk phonons in cadmium selenide quantum dots for the first time. Room-temperature Raman spectra have broad CdSe peaks at 175 and 200 cm(-1). Density functional theory calculations assign these peaks to molecular surface and interior vibrational modes, respectively, and show that the interior, surface, and ligand atom motion is strongly coupled. The interior peak intensity increases relative to the surface peak as the cluster size increases due to the relative increase in the polarizability of interior modes with quantum dot size. The Raman spectra do not change with temperature for molecular Cd35Se20X30L30, while the interior peak narrows and shifts to higher energy as temperature decreases for Cd84Se56X56L56, a spectral evolution typical of a phonon. This result shows that the single bulk unit cell contained within Cd84Se56X56L56 is sufficient to apply a phonon confinement model, and that Cd56Se35X42L42, with its 2.1 nm edge length, marks the boundary between molecular vibrations and phonons.

  17. Iron Sucrose Injection

    MedlinePlus

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... and may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called iron ...

  18. Evolution of alkaline phosphatases in primates.

    PubMed Central

    Goldstein, D J; Rogers, C; Harris, H

    1982-01-01

    Alkaline phosphatase [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1] in placenta, intestine, liver, kidney, bone, and lung from a variety of primate species has been characterized by quantitative inhibition, thermostability, and immunological studies. Characteristic human placental-type alkaline phosphatase occurs in placentas of great apes (chimpanzee and orangutan) but not in placentas of other primates, including gibbon. It is also present in trace amounts in human lung but not in lung or other tissues of various Old and New World monkeys. However, a distinctive alkaline phosphatase resembling it occurs in substantial amounts in lungs from Old World monkeys but not New World monkeys. It appears that duplication of alkaline phosphatase genes and mutations of genetic elements controlling their tissue expression have occurred relatively recently in mammalian evolution. Images PMID:6950431

  19. Alkaline pH sensor molecules.

    PubMed

    Murayama, Takashi; Maruyama, Ichiro N

    2015-11-01

    Animals can survive only within a narrow pH range. This requires continual monitoring of environmental and body-fluid pH. Although a variety of acidic pH sensor molecules have been reported, alkaline pH sensor function is not well understood. This Review describes neuronal alkaline pH sensors, grouped according to whether they monitor extracellular or intracellular alkaline pH. Extracellular sensors include the receptor-type guanylyl cyclase, the insulin receptor-related receptor, ligand-gated Cl- channels, connexin hemichannels, two-pore-domain K+ channels, and transient receptor potential (TRP) channels. Intracellular sensors include TRP channels and gap junction channels. Identification of molecular mechanisms underlying alkaline pH sensing is crucial for understanding how animals respond to environmental alkaline pH and how body-fluid pH is maintained within a narrow range.

  20. Hydrothermal synthesis of copper selenides with controllable phases and morphologies from an ionic liquid precursor

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodi; Duan, Xiaochuan; Peng, Peng; Zheng, Wenjun

    2011-12-01

    Cu2-xSe nanocrystals and CuSe nanoflakes are successfully synthesized through a convenient hydrothermal method from an ionic liquid precursor 1-n-butyl-3-ethylimidazolium methylselenite ([BMIm][SeO2(OCH3)]). The phases and morphologies of the copper selenides can be controlled by simply changing the atom ratio of Cu/Se in the reactants and reaction temperature. Furthermore, it is found that the [BMIm][SeO2(OCH3)] not only serves as Se source but also has influence on the shapes of CuSe nanoflakes. The adsorption of alkyl imidazolium rings ([BMIm]+) onto the (0001) facets of covellite CuSe prohibits the growth in the [0001] direction, and CuSe nuclei growth mainly processes along the six symmetric directions (+/-[01&cmb.macr;11], +/-[101&cmb.macr;1&cmb.macr;], and +/-[1&cmb.macr;100]) to form flakelike CuSe. The obtained copper selenides are characterized by XRD, SEM, EDS, XPS, TEM, and HRTEM. The results indicate that the Cu2-xSe nanocrystals are nearly spherical particles with an average diameter of about 20 nm, the hexagonal CuSe nanoflakes are single crystals with an edge length of 100-400 nm and a thickness of 25-50 nm. The potential formation mechanism of the copper selenides is also proposed.Cu2-xSe nanocrystals and CuSe nanoflakes are successfully synthesized through a convenient hydrothermal method from an ionic liquid precursor 1-n-butyl-3-ethylimidazolium methylselenite ([BMIm][SeO2(OCH3)]). The phases and morphologies of the copper selenides can be controlled by simply changing the atom ratio of Cu/Se in the reactants and reaction temperature. Furthermore, it is found that the [BMIm][SeO2(OCH3)] not only serves as Se source but also has influence on the shapes of CuSe nanoflakes. The adsorption of alkyl imidazolium rings ([BMIm]+) onto the (0001) facets of covellite CuSe prohibits the growth in the [0001] direction, and CuSe nuclei growth mainly processes along the six symmetric directions (+/-[01&cmb.macr;11], +/-[101&cmb.macr;1&cmb.macr;], and +/-[1

  1. Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Tang, Qunwei; He, Benlin; Yu, Liangmin

    2015-05-01

    Pursuit of cost-effective and efficient counter electrodes (CEs) is a persistent objective for dye-sensitized solar cells (DSSCs). We present here the design of transparent Fe-Se nanoporous alloy CEs for bifacial DSSC applications. Due to the superior charge-transfer ability for I-/I3- redox couples, electrocatalytic reduction toward I3- species, and optical transparency in visible-light region, the bifacial DSSC with FeSe alloy electrode yields maximum front and rear efficiencies of 9.16% and 5.38%, respectively. A fast start-up, high multiple start capability, and good stability of the FeSe alloy CE demonstrate the potential applications in driving solar panels. The impressive efficiency along with simple preparation of the cost-effective Fe-Se nanoporous alloy CEs highlights their potential application in robust bifacial DSSCs.

  2. Iron and alloys of iron. [lunar resources

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar

    1992-01-01

    All lunar soil contains iron in the metallic form, mostly as an iron-nickel alloy in concentrations of a few tenths of 1 percent. Some of this free iron can be easily separated by magnetic means. It is estimated that the magnetic separation of 100,000 tons of lunar soil would yield 150-200 tons of iron. Agglutinates contain metallic iron which could be extracted by melting and made into powder metallurgy products. The characteristics and potential uses of the pure-iron and iron-alloy lunar products are discussed. Processes for working iron that might be used in a nonterrestrial facility are also addressed.

  3. Optimization of a Non-arsenic Iron-based Superconductor for Wire Fabrication

    DOE PAGES

    Mitchell, Jonathan E; Hillesheim, D A; Bridges, Craig A; ...

    2015-03-13

    Here we report on the optimization of synthesis of iron selenide-based superconducting powders and the fabrication of selenide-based wire. The powders were synthesized by an ammonothermal method, whereby Ba is intercalated between FeSe layers to produce Bax(NH3)yFe2Se2, with tetragonal structure similar to AFe2X2 (X: As, Se), '122', superconductors. The optimal Tc (up to 38 K) and Meissner and shielding superconducting fractions are obtained from the shortest reaction time (t) of reactants in liquid ammonia (30 min). With the increase of t, a second crystalline 122 phase, with a smaller unit cell, emerges. A small amount of NH3 is released frommore » the structure above ~200 °C, which results in loss of superconductivity. However, in the confined space of niobium/Monel tubing, results indicate there is enough pressure for some of NH3 to remain in the crystal lattice, and thermal annealing can be performed at temperatures of up to 780 °C, increasing wire density and yielded a reasonable Tc ≈ 16 K. Here, we report of the first successful wire fabrication of non-arsenic high-Tc iron-based superconductor. We find that although bulk materials are estimated to carry critical current densities >100 kA cm₋2 (4 K, self-field), the current transport within wires need to be optimized (Jc ~ 1 kA cm₋2).« less

  4. Tin selenide synthesized by a chemical route: the effect of the annealing conditions in the obtained phase

    NASA Astrophysics Data System (ADS)

    Bernardes-Silva, Ana Cláudia; Mesquita, A. F.; de Moura Neto, E.; Porto, A. O.; de Lima, G. M.; Ardisson, J. D.; Lameiras, F. S.

    2005-09-01

    The effects of different annealing conditions over the tin selenide obtained from a chemical route are presented in this work. The tin selenide was annealed at 300 and 600 °C under hydrogen, nitrogen and argon atmospheres. The materials were characterized by X-ray diffraction and 119Sn Mössbauer spectroscopy. In the 'as synthetized' material a considerably amount of tin oxide (57%) was detected by Mössbauer spectroscopy. After thermal annealing the amount of these oxides varied according to the temperature and atmosphere used. At 600 °C/hydrogen the smallest amount of tin oxide was obtained (20%). These oxides were formed during the synthetic procedure through the hydrolysis of tin chloride used as reagent.

  5. Iron and iron derived radicals

    SciTech Connect

    Borg, D.C.; Schaich, K.M.

    1987-04-01

    We have discussed some reactions of iron and iron-derived oxygen radicals that may be important in the production or treatment of tissue injury. Our conclusions challenge, to some extent, the usual lines of thought in this field of research. Insofar as they are born out by subsequent developments, the lessons they teach are two: Think fastexclamation Think smallexclamation In other words, think of the many fast reactions that can rapidly alter the production and fate of highly reactive intermediates, and when considering the impact of competitive reactions on such species, think how they affect the microenvironment (on the molecular scale) ''seen'' by each reactive molecule. 21 refs., 3 figs., 1 tab.

  6. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    PubMed

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  7. CONTROL OF LASER RADIATION PARAMETERS: Passive laser Q switches made of glass doped with oxidised nanoparticles of copper selenide

    NASA Astrophysics Data System (ADS)

    Yumashev, K. V.

    2000-01-01

    Passive Q switching of Nd3+:YAG (λ = 1060 nm) and YAlO3:Nd3+ (1340 nm) lasers, as well as of an Er3+ (1540 nm) glass laser was realised by using glass doped with oxidised nanoparticles of copper selenide. Nonlinear optical properties of the nanoparticles (radius of 25 nm) in a glass matrix were studied by the picosecond absorption spectroscopy technique.

  8. Near-IR absorption saturation and mechanism of picosecond recovery dynamics of copper selenide nanostructured via alumina

    NASA Astrophysics Data System (ADS)

    Statkutė, G.; Mikulskas, I.; Tomašiùnas, R.; Jagminas, A.

    2009-06-01

    Absorption saturation at 1.064 μm wavelength in Cu2-xSe material nanostructured by means of an original method—formation and hosting in an array of electrochemically grown alumina voids—was investigated. Columnlike channels provide growth of copper selenide in a shape of nanowire with a fixed diameter. Experimental results obtained from measuring nanowires of various diameters (∅10, 15, 20, and 70 nm) revealed that the ∅20 nm case is most efficient for absorption saturation, manifesting highest optical modulation depth and lowest interlevel transition rate evaluated. A model to analyze the conditions for absorption saturation and absorption recovery dynamics was developed. Depending on pump intensity the nonmonotonous increase in recovery time for the highest applied values was interpreted as filling up of states at an intermediate energy level. From modeling, important material science parameters, such as concentration of resonant and trapping/recombination states, interlevel transition rate, capture time, characteristic for copper selenide, have been evaluated and compared for different samples. Finally, the consequence of the model to a working copper selenide energy level scheme was considered.

  9. Process for extracting technetium from alkaline solutions

    DOEpatents

    Moyer, Bruce A.; Sachleben, Richard A.; Bonnesen, Peter V.

    1995-01-01

    A process for extracting technetium values from an aqueous alkaline solution containing at least one alkali metal hydroxide and at least one alkali metal nitrate, the at least one alkali metal nitrate having a concentration of from about 0.1 to 6 molar. The solution is contacted with a solvent consisting of a crown ether in a diluent for a period of time sufficient to selectively extract the technetium values from the aqueous alkaline solution. The solvent containing the technetium values is separated from the aqueous alkaline solution and the technetium values are stripped from the solvent.

  10. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2002-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  11. Alkaline sorbent injection for mercury control

    DOEpatents

    Madden, Deborah A.; Holmes, Michael J.

    2003-01-01

    A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

  12. The Role of Alkalinity Inputs in the Composition of Sediments in AN Acid Mine Drainage Remediated Stream: Hewett Fork, Ohio

    NASA Astrophysics Data System (ADS)

    Lopez, D. L.; Korenowsky, R. K.; Kruse, N.; Bowman, J.

    2012-12-01

    Hewett Fork, a tributary of Raccoon Creek in SE Ohio, is severely impacted by acid mine drainage. This stream is being actively treated using a calcium oxide doser. In this work, we report the results of our investigations into the chemical effect of remediation in the stream throughout an evaluation of the chemical composition of its sediments. Results show that the grain size of the sediments is finer in the areas where high alkalinity loads enter the stream, at the output from the doser and downstream of the confluence with alkaline tributaries. The composition of heavy metals (magnesium, aluminum, calcium, nickel, zinc, manganese, potassium, lead, chromium, copper, cobalt and arsenic) is higher in concentration in the fine-grained sediments where alkalinity enters the stream, forming two peaks of high sediment concentration along the stream, one at the doser and the second after the confluence with alkaline tributaries. Iron has a different behavior with a higher sediment concentration downstream from the doser at the areas where the grain size is larger, due to the kinetics of the oxidation process for the formation of iron (III) minerals. These results suggest that in remediation of acid-mine-drainage impacted streams, alkalinity inputs along and oxidation processes are important for the storage of heavy metals in the sediments.

  13. Iron-refractory iron deficiency anemia (IRIDA).

    PubMed

    Heeney, Matthew M; Finberg, Karin E

    2014-08-01

    Iron deficiency anemia is a common global problem whose etiology is typically attributed to acquired inadequate dietary intake and/or chronic blood loss. However, in several kindreds multiple family members are affected with iron deficiency anemia that is unresponsive to oral iron supplementation and only partially responsive to parenteral iron therapy. The discovery that many of these cases harbor mutations in the TMPRSS6 gene led to the recognition that they represent a single clinical entity: iron-refractory iron deficiency anemia (IRIDA). This article reviews clinical features of IRIDA, recent genetic studies, and insights this disorder provides into the regulation of systemic iron homeostasis.

  14. Inorganic nanofibers with tailored placement of nanocatalysts for hydrogen production via alkaline hydrolysis of glucose

    NASA Astrophysics Data System (ADS)

    Hansen, Nathaniel S.; Ferguson, Thomas E.; Panels, Jeanne E.; Alissa Park, Ah-Hyung; Lak Joo, Yong

    2011-08-01

    Monoaxial silica nanofibers containing iron species as well as coaxial nanofibers with a pure silica core and a silica shell containing high concentrations of iron nanocrystals were fabricated via electrospinning precursor solutions, followed by thermal treatment. Tetraethyl-orthosilicate (TEOS) and iron nitrate (Fe(NO3)3) were used as the precursors for the silica and iron phases, respectively. Thermal treatments of as-spun precursor fibers were applied to generate nanocrystals of iron with various oxidation states (pure iron and hematite). Scanning electron microscopy (SEM), x-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to probe the fiber morphology and crystal structures. The results indicated that the size, phase, and placement of iron nanocrystals can be tuned by varying the precursor concentration, thermal treatment conditions, and processing scheme. The resulting nanofiber/metal systems obtained via both monoaxial and coaxial electrospinning were applied as catalysts to the alkaline hydrolysis of glucose for the production of fuel gas. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and bulk weight change in a furnace with residual gas analysis (RGA) were used to evaluate the performance of the catalysts for various ratios of both Fe to Si, and catalyst to glucose, and the oxidation state of the iron nanocrystals. The product gas is composed of mostly H2 (>96 mol%) and CH4 with very low concentrations of CO2 and CO. Due to the clear separation of reaction temperature for H2 and CH4 production, pure hydrogen can be obtained at low reaction temperatures. Our coaxial approach demonstrates that placing the iron species selectively near the fiber surface can lead to two to three fold reduction in catalytic consumption compared to the monoaxial fibers with uniform distribution of catalysts.

  15. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  16. Alkaline tolerant dextranase from streptomyces anulatus

    DOEpatents

    Decker, Stephen R.; Adney, William S.; Vinzant, Todd B.; Himmel, Michael E.

    2003-01-01

    A process for production of an alkaline tolerant dextranase enzyme comprises culturing a dextran-producing microorganism Streptomyces anulatus having accession no. ATCC PTA-3866 to produce an alkaline tolerant dextranase, Dex 1 wherein the protein in said enzyme is characterized by a MW of 63.3 kDa and Dex 2 wherein its protein is characterized by a MW of 81.8 kDa.

  17. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  18. Toxicity of alkalinity to Hyalella azteca

    USGS Publications Warehouse

    Lasier, P.J.; Winger, P.V.; Reinert, R.E.

    1997-01-01

    Toxicity testing and chemical analyses of sediment pore water have been suggested for use in sediment quality assessments and sediment toxicity identification evaluations. However, caution should be exercised in interpreting pore-water chemistry and toxicity due to inherent chemical characteristics and confounding relationships. High concentrations of alkalinity, which are typical of sediment pore waters from many regions, have been shown to be toxic to test animals. A series of tests were conducted to assess the significance of elevated alkalinity concentrations to Hyalella azteca, an amphipod commonly used for sediment and pore-water toxicity testing. Toxicity tests with 14-d old and 7-d old animals were conducted in serial dilutions of sodium bicarbonate (NaHCO3) solutions producing alkalinities ranging between 250 to 2000 mg/L as CaCO3. A sodium chloride (NaCl) toxicity test was also conducted to verify that toxicity was due to bicarbonate and not sodium. Alkalinity was toxic at concentrations frequently encountered in sediment pore water. There was also a significant difference in the toxicity of alkalinity between 14-d old and 7-d old animals. The average 96-h LC50 for alkalinity was 1212 mg/L (as CaCO3) for 14-d old animals and 662 mg/L for the younger animals. Sodium was not toxic at levels present in the NaHCO3 toxicity tests. Alkalinity should be routinely measured in pore-water toxicity tests, and interpretation of toxicity should consider alkalinity concentration and test-organism tolerance.

  19. Alkaline Water and Longevity: A Murine Study

    PubMed Central

    Magro, Massimiliano; Corain, Livio; Ferro, Silvia; Baratella, Davide; Bonaiuto, Emanuela; Terzo, Milo; Corraducci, Vittorino; Salmaso, Luigi; Vianello, Fabio

    2016-01-01

    The biological effect of alkaline water consumption is object of controversy. The present paper presents a 3-year survival study on a population of 150 mice, and the data were analyzed with accelerated failure time (AFT) model. Starting from the second year of life, nonparametric survival plots suggest that mice watered with alkaline water showed a better survival than control mice. Interestingly, statistical analysis revealed that alkaline water provides higher longevity in terms of “deceleration aging factor” as it increases the survival functions when compared with control group; namely, animals belonging to the population treated with alkaline water resulted in a longer lifespan. Histological examination of mice kidneys, intestine, heart, liver, and brain revealed that no significant differences emerged among the three groups indicating that no specific pathology resulted correlated with the consumption of alkaline water. These results provide an informative and quantitative summary of survival data as a function of watering with alkaline water of long-lived mouse models. PMID:27340414

  20. Performed surfactant-optimized aqueous alkaline flood

    SciTech Connect

    Thigpen, D.R.; Lawson, J.B.; Nelson, R.C.

    1991-11-26

    This paper describes improvement in a process for recovering oil from an acidic oil reservoir by injecting an aqueous alkaline solution comprising water, sodium chloride, and alkaline material for reacting with the reservoir oil forming a petroleum acid soap to form an in-situ surfactant system. The improvement comprises: selecting a preformed cosurfactant which is soluble in both the aqueous solution and the reservoir oil and has a solubility ratio which is grater than the solubility ratio of the petroleum acid soap where the solubility ratio is the ratio of solubility in the aqueous alkaline solution to the solubility in the reservoir oil; combining with the alkaline solution an amount of the preformed cosurfactant which will result in the in-situ surfacant system having a salinity about equal to a salinity which results in minimal interfacial tension between the oil in the reservoir and the in-situ surfactant system at reservoir temperature, wherein the amount of the preformed cosurfactant is about 0.3 percent by weight in the aqueous alkaline solution; and injecting the cosurfactant-aqueous alkaline solution mixture into the reservoir to displace oil toward a fluid production location.

  1. Transdermal iron replenishment therapy.

    PubMed

    Modepalli, Naresh; Shivakumar, H N; Kanni, K L Paranjothy; Murthy, S Narasimha

    2015-01-01

    Iron deficiency anemia is one of the major nutritional deficiency disorders. Iron deficiency anemia occurs due to decreased absorption of iron from diet, chronic blood loss and other associated diseases. The importance of iron and deleterious effects of iron deficiency anemia are discussed briefly in this review followed by the transdermal approaches to deliver iron. Transdermal delivery of iron would be able to overcome the side effects associated with conventional oral and parenteral iron therapy and improves the patient compliance. During preliminary investigations, ferric pyrophosphate and iron dextran were selected as iron sources for transdermal delivery. Different biophysical techniques were explored to assess their efficiency in delivering iron across the skin, and in vivo studies were carried out using anemic rat model. Transdermal iron delivery is a promising approach that could make a huge positive impact on patients suffering with iron deficiency.

  2. [Iron dysregulation and anemias].

    PubMed

    Ikuta, Katsuya

    2015-10-01

    Most iron in the body is utilized as a component of hemoglobin that delivers oxygen to the entire body. Under normal conditions, the iron balance is tightly regulated. However, iron dysregulation does occasionally occur; total iron content reductions cause iron deficiency anemia and overexpression of the iron regulatory peptide hepcidin disturbs iron utilization resulting in anemia of chronic disease. Conversely, the presence of anemia may ultimately lead to iron overload; for example, thalassemia, a common hereditary anemia worldwide, often requires transfusion, but long-term transfusions cause iron accumulation that leads to organ damage and other poor outcomes. On the other hand, there is a possibility that iron overload itself can cause anemia; iron chelation therapy for the post-transfusion iron overload observed in myelodysplastic syndrome or aplastic anemia improves dependency on transfusions in some cases. These observations reflect the extremely close relationship between anemias and iron metabolism.

  3. Pharmacology of iron transport.

    PubMed

    Byrne, Shaina L; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2013-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors.

  4. Pharmacology of Iron Transport

    PubMed Central

    Byrne, Shaina L.; Krishnamurthy, Divya; Wessling-Resnick, Marianne

    2013-01-01

    Elucidating the molecular basis for the regulation of iron uptake, storage, and distribution is necessary to understand iron homeostasis. Pharmacological tools are emerging to identify and distinguish among different iron transport pathways. Stimulatory or inhibitory small molecules with effects on iron uptake can help characterize the mechanistic elements of iron transport and the roles of the transporters involved in these processes. In particular, iron chelators can serve as potential pharmacological tools to alleviate diseases of iron overload. This review focuses on the pharmacology of iron transport, introducing iron transport membrane proteins and known inhibitors. PMID:23020294

  5. [Alkaline phosphatase in Amoeba proteus].

    PubMed

    Sopina, V A

    2005-01-01

    In free-living Amoeba proteus (strain B), 3 phosphatase were found after disc-electrophoresis of 10 microg of protein in PAGE and using 1-naphthyl phosphate as a substrate a pH 9.0. These phosphatases differed in their electrophoretic mobilities - "slow" (1-3 bands), "middle" (one band) and "fast" (one band). In addition to 1-naphthyl phosphate, "slow" phosphatases were able to hydrolyse 2-naphthyl phosphate and p-nitrophenyl phosphate. They were slightly activated by Mg2+, completely inhibited by 3 chelators (EDTA, EGTA and 1,10-phenanthroline), L-cysteine, sodium dodecyl sulfate and Fe2+, Zn2+ and Mn2+ (50 mM), considerably inactivated by orthovanadate, molybdate, phosphatase inhibitor cocktail 1, p-nitrophenyl phosphate, Na2HPO4, DL-dithiothreitol and urea and partly inhibited by H2O2, DL-phenylalanine, 2-mercaptoethanol, phosphatase inhibitor cocktail 2 and Ca2+. Imidazole, L-(+)-tartrate, okadaic acid, NaF and sulfhydryl reagents -p-(hydroxy-mercuri)benzoate and N-ethylmaleimide - had no influence on the activity of "slow" phosphatases. "Middle" and "fast" phosphatases, in contrast to "slow" ones, were not inactivated by 3 chelators. The "middle" phosphatase differed from the "fast" one by smaller resistance to urea, Ca2+, Mn2+, phosphates and H2O2 and greater resistance to dithiothreitol and L-(+)-tartrate. In addition, the "fast" phosphatase was inhibited by L-cysteine but the "middle" one was activated by it. Of 5 tested ions (Mg2+, Cu2+, Mn2+, Ca2+ and Zn2+), only Zn2+ reactivated "slow" phosphatases after their inactivation by EDTA treatment. The reactivation of apoenzyme was only partial (about 35 %). Thus, among phosphatases found in amoebae at pH 9.0, only "slow" ones are Zn-metalloenzymes and may be considered as alkaline phosphatases (EC 3.1.3.1). It still remains uncertain, to which particular phosphatase class "middle" and "fast" phosphatases (pH 9.0) may belong.

  6. Extremely alkaline (pH > 12) ground water hosts diverse microbial community.

    PubMed

    Roadcap, George S; Sanford, Robert A; Jin, Qusheng; Pardinas, José R; Bethke, Craig M

    2006-01-01

    Chemically unusual ground water can provide an environment for novel communities of bacteria to develop. Here, we describe a diverse microbial community that inhabits extremely alkaline (pH > 12) ground water from the Lake Calumet area of Chicago, Illinois, where historic dumping of steel slag has filled in a wetland. Using microbial 16S ribosomal ribonucleic acid gene sequencing and microcosm experiments, we confirmed the presence and growth of a variety of alkaliphilic beta-Proteobacteria, Bacillus, and Clostridium species at pH up to 13.2. Many of the bacterial sequences most closely matched those of other alkaliphiles found in more moderately alkaline water around the world. Oxidation of dihydrogen produced by reaction of water with steel slag is likely a primary energy source to the community. The widespread occurrence of iron-oxidizing bacteria suggests that reduced iron serves as an additional energy source. These results extend upward the known range of pH tolerance for a microbial community by as much as 2 pH units. The community may provide a source of novel microbes and enzymes that can be exploited under alkaline conditions.

  7. Electronic structure of ruthenium-doped iron chalcogenides

    SciTech Connect

    Winiarski, M. J. Samsel-Czekała, M.; Ciechan, A.

    2014-12-14

    The structural and electronic properties of hypothetical Ru{sub x}Fe{sub 1−x}Se and Ru{sub x}Fe{sub 1−x}Te systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions Ru{sub x}Fe{sub 1−x}Se and Ru{sub x}Fe{sub 1−x}Te become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the Ru{sub x}Fe{sub 1−x}Se and Ru{sub x}Fe{sub 1−x}Te systems are good candidates for new superconducting iron-based materials.

  8. Electronic structure of ruthenium-doped iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.

    2014-12-01

    The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.

  9. Development of new layered selenide oxides with perovskite-type oxide layers

    NASA Astrophysics Data System (ADS)

    Ushiyama, Koichi; Ogino, Hiraku; Kishio, Kohji; Shimoyama, Jun-Ichi

    2010-03-01

    Several Fe-based superconductors with perovskite-type oxide layers, such as Sr2ScFePO3 (Tc ˜ 17 K)^[1], were discovered in our previous study. These compounds are composed of alternate stacking of superconducting layers with antifluorite structure and perovskite-type blocking layers. Since both layers are flexible in terms of chemical composition, development of various new functional materials can be expected from this family. In the present study, we have attempted to synthesize new layered selenide oxides with CuSe layers and discovered more than ten compounds, such as Sr2MCu2Se2O2 (M = Mn, Co, Ni, Cu, Zn) and Sr2MCuSeO3 (M = Sc, Cr, Mn, Fe, Ga, In), thus far. These indicated that the CuSe layer can accommodate various types of blocking layers, which may lead various functions. Among them, Sr2Cu3Se2O2 has a potential as for the mother compound of superconductor, if appropriate concentration of carrier is introduced to the CuO2 layer. Crystal structure and physical properties of these newly found compounds will be reported. [1] H. Ogino et al., Supercond. Sci. Technol. 22 (2009) 075008

  10. Ultra-weak interlayer coupling in two-dimensional gallium selenide.

    PubMed

    Longuinhos, R; Ribeiro-Soares, J

    2016-09-14

    Beyond-graphene two-dimensional (2D) materials are envisioned as the future technology for optoelectronics, and the study of group IIIA metal monochalcogenides (GIIIAMMs) in 2D form is an emerging research field. Bulk gallium selenide (GaSe) is a layered material of this family which is widely used in nonlinear optics and is promising as a lubricant. The interlayer coupling in few-layer GaSe is currently unknown, and the stability of different polytypes is unclear. Here we use symmetry arguments and first-principles calculations to investigate the phase stability, interlayer coupling, and the Raman and infrared activity of the low-frequency shear and breathing modes expected in few-layer GaSe. Strategies to distinguish the number of layers and the β and ε polytypes are discussed. These symmetry results are valid for other isostructural few-layer GIIIAMM materials. Most importantly, by using a linear chain model, we show that the shear and breathing force constants reveal an ultra-weak interlayer coupling at the nanoscale in GaSe. These results suggest that β and ε few-layer GaSe show similar lubricant properties to those observed for few-layer graphite. Our analysis opens new perspectives about the study of interlayer interactions and their role in the mechanical and electrical properties of these new 2D materials.

  11. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals.

    PubMed

    Yarema, Olesya; Bozyigit, Deniz; Rousseau, Ian; Nowack, Lea; Yarema, Maksym; Heiss, Wolfgang; Wood, Vanessa

    2013-09-24

    We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9-10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50-60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting.

  12. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence.

  13. Noncentrosymmetric selenide Ba4Ga4GeSe12: Synthesis, structure, and optical properties

    NASA Astrophysics Data System (ADS)

    Yin, Wenlong; Iyer, Abishek K.; Li, Chao; Lin, Xinsong; Yao, Jiyong; Mar, Arthur

    2016-09-01

    The selenide Ba4Ga4GeSe12, synthesized by reaction of BaSe, Ga2Se3, and GeSe2 at 1173 K, adopts a noncentrosymmetric tetragonal structure (space group P 4 bar21 c , Z=2, a=13.5468(4) Å, c=6.4915(2) Å) consisting of a three-dimensional network built from two types of corner-sharing MSe4 tetrahedra, with Ba cations occupying the intervening voids. It is isostructural to Pb4Ga4GeS12, Pb4Ga4GeSe12, and Ba4Ga4SnSe12, but differs subtly in site ordering. Structural refinements and bond valence sum analysis suggest partial disorder manifested by mixing of 0.75 Ga and 0.25 Ge within one tetrahedral site, and occupation of exclusively Ga within the other tetrahedral site. The optical band gap of 2.18(2) eV, measured from the UV/VIS/NIR diffuse reflectance spectrum, agrees with a calculated gap of 2.35 eV between valence and conduction bands and is consistent with the orange-yellow color of the crystals. Nonlinear optical measurements on powder samples revealed a weak second harmonic generation signal using 2.09 μm as the fundamental laser wavelength.

  14. Nanotexturing To Enhance Photoluminescent Response of Atomically Thin Indium Selenide with Highly Tunable Band Gap.

    PubMed

    Brotons-Gisbert, Mauro; Andres-Penares, Daniel; Suh, Joonki; Hidalgo, Francisco; Abargues, Rafael; Rodríguez-Cantó, Pedro J; Segura, Alfredo; Cros, Ana; Tobias, Gerard; Canadell, Enric; Ordejón, Pablo; Wu, Junqiao; Martínez-Pastor, Juan P; Sánchez-Royo, Juan F

    2016-05-11

    Manipulating properties of matter at the nanoscale is the essence of nanotechnology, which has enabled the realization of quantum dots, nanotubes, metamaterials, and two-dimensional materials with tailored electronic and optical properties. Two-dimensional semiconductors have revealed promising perspectives in nanotechnology. However, the tunability of their physical properties is challenging for semiconductors studied until now. Here we show the ability of morphological manipulation strategies, such as nanotexturing or, at the limit, important surface roughness, to enhance light absorption and the luminescent response of atomically thin indium selenide nanosheets. Besides, quantum-size confinement effects make this two-dimensional semiconductor to exhibit one of the largest band gap tunability ranges observed in a two-dimensional semiconductor: from infrared, in bulk material, to visible wavelengths, at the single layer. These results are relevant for the design of new optoelectronic devices, including heterostructures of two-dimensional materials with optimized band gap functionalities and in-plane heterojunctions with minimal junction defect density.

  15. Development of bismuth tellurium selenide nanoparticles for thermoelectric applications via a chemical synthetic process

    SciTech Connect

    Kim, Cham; Kim, Dong Hwan; Han, Yoon Soo; Chung, Jong Shik; Park, SangHa; Park, Soonheum; Kim, Hoyoung

    2011-03-15

    Research highlights: {yields} We synthesized a Bi{sub 2}Te{sub y}Se{sub 3-y} nano-compound via a chemical synthetic process. {yields} The compound was sintered to achieve an average grain size of about 300 nm. {yields} The resulting sintered body showed very low thermal conductivity. It is likely caused by the vigorous phonon scattering of the nano-sized grains. -- Abstract: Bismuth tellurium selenide (Bi{sub 2}Te{sub y}Se{sub 3-y}) nanoparticles for thermoelectric applications are successfully prepared via a water-based chemical reaction under atmospheric conditions. The nanostructured compound is prepared using a complexing agent (ethylenediaminetetraacetic acid) and a reducing agent (ascorbic acid) to stabilize the bismuth precursor (Bi(NO{sub 3}){sub 3}) in water and to favor the reaction with reduced sources of tellurium and selenium. The resulting powder is smaller than ca. 100 nm and has a crystalline structure corresponding to the rhombohedral Bi{sub 2}Te{sub 2.7}Se{sub 0.3}. The nanocrystalline powder is sintered via a spark plasma sintering process to obtain a sintered body composed of nano-sized grains. Important transport properties of the sintered body are measured to calculate its most important characteristic, the thermoelectric performance. The results demonstrate a relationship between the nanostructure of the sintered body and its thermal conductivity.

  16. Ultrafast Charge- and Energy-Transfer Dynamics in Conjugated Polymer: Cadmium Selenide Nanocrystal Blends

    PubMed Central

    2014-01-01

    Hybrid nanocrystal–polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer–nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic–nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends. PMID:24490650

  17. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    DOE PAGES

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; ...

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale andmore » the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.« less

  18. Multifunctional Bismuth Selenide Nanocomposites for Antitumor Thermo-Chemotherapy and Imaging.

    PubMed

    Li, Zhenglin; Hu, Ying; Howard, Kenneth A; Jiang, Tingting; Fan, Xuelei; Miao, Zhaohua; Sun, Ye; Besenbacher, Flemming; Yu, Miao

    2016-01-26

    To integrate real-time monitoring and therapeutic functions into a single nanoagent, we have designed and synthesized a drug-delivery platform based on a polydopamine(PDA)/human serum albumin (HSA)/doxorubicin (DOX) coated bismuth selenide (Bi2Se3) nanoparticle (NP). The resultant product exhibits high stability and biocompatibility both in vitro and in vivo. In addition to the excellent capability for both X-ray computed tomography (CT) and infrared thermal imaging, the NPs possess strong near-infrared (NIR) absorbance, and high capability and stability of photothermal conversion for efficient photothermal therapy (PTT) applications. Furthermore, a bimodal on-demand pH/photothermal-sensitive drug release has been achieved, resulting in a significant chemotherapeutic effect. Most importantly, the tumor-growth inhibition ratio achieved from thermo-chemotherapy of the Bi2Se3@PDA/DOX/HSA NPs was 92.6%, in comparison to the chemotherapy (27.8%) or PTT (73.6%) alone, showing a superior synergistic therapeutic effect. In addition, there is no noticeable toxicity induced by the NPs in vivo. This multifunctional platform is, therefore, promising for effective, safe and precise antitumor treatment and may stimulate interest in further exploration of drug loading on Bi2Se3 and other competent PTT agents combined with in situ imaging for biomedical applications.

  19. Tubular kidney damage and centrilobular liver injury after intratracheal instillation of dimethyl selenide.

    PubMed

    Cherdwongcharoensuk, Duangrudee; Henrique, Rui; Upatham, Suchart; Pereira, António Sousa; Aguas, Artur P

    2005-01-01

    Accidental inhalation of selenium (Se) derivatives, such as dimethyl selenide (DMSe), has been associated with damage of respiratory tissues. However, systemic effects of inhaled Se have not been thoroughly established. We have investigated whether mouse kidney and liver show cellular pathology as a result of a single intratracheal instillation of two different doses of DMSe (0.05 and 0.1 mg Se/kg BW). The animals were sacrificed 1, 7, 14, and 28 days after either 1 of the 2 DMSe treatments; samples were studied by light microscopy. Instillation of the low DMSe dose resulted in acute and transient tubular disease of the kidney expressed by swelling and vacuolation of epithelial cells of proximal tubules; in some mice, tubular necrosis was observed. After 14 days of the DMSe treatment, these lesions were ameliorated and, by day 28, the kidney tubular epithelium depicted a normal morphology. The same low dose of DMSe caused sustained damage to centrilobular hepatocytes characterized by swollen and vacuolized liver cells. After the instillation of the high DMSe dose, the mice presented sustained liver and kidney focal necrosis. Our data suggest that inhalation of DMSe results in: (i) acute tubular injury of the kidney and damage to centrilobular liver cells and (ii) this systemic pathology induced by DMSe is a dose-dependent phenomenon.

  20. Changes in bronchoalveolar lavage cells after intratracheal instillation of dimethyl selenide in mice.

    PubMed

    Cherdwongcharoensuk, Duangrudee; Upatham, Suchart; Oliveira, José Carlos; Sousa Pereira, António; AGuas, Artur P

    2004-01-01

    CD-1 mice were exposed to a single intratracheal instillation of either 0.025 or 0.075 mg Se/kg wt of dimethyl selenide (DMSe). They were studied over 4 weeks to define the cellular inflammatory response of the airways to DMSe. Bronchoalveolar (BAL) lavage was used to collect the DMSe-induced inflammatory exudates. The DMSe instillation resulted in phlogistic responses that had the neutrophil as the main leukocyte; they were present in BAL samples, mostly at days 1 and 7. Macrophages were also increased during DMSe-induced inflammation. The lower DMSe dose resulted in an inflammatory reaction lasting for 2 weeks. Mice treated with the higher DMSe dose still showed elevated numbers of neutrophils and macrophages 4 weeks after instillation. DMSe did not change the number of lymphocytes harvested from the airways. An early increase in total protein of BAL, and late enhancement in lactate dehydrogenase was observed in mice treated with the high DMSe dose. We conclude that inhalation of DMSe triggers a moderate and dose-dependent inflammatory reaction in the mouse airways, and that this phlogistic reaction is likely to participate in the damage of respiratory epithelia that occurs upon DMSe inhalation.

  1. Influence of different deposition potential on the structural and optical properties of copper selenide nanowires

    NASA Astrophysics Data System (ADS)

    Kaur, Harmanmeet; Kaur, Jaskiran; Singh, Lakhwant

    2016-09-01

    In this paper, nanowires were successfully fabricated from the aqueous solution containing 0.2 M/l CuSO4.5H2O, 0.1 M/l SeO2, 1 g/l PVP and a few drops of H2SO4 in Milli-Q water using electrodeposition technique at room temperature. Influence of different deposition potential on structural and optical properties of copper selenide nanowires has been investigated here. Morphological, structural and optical properties were monitored through field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD) and UV-visible 1800 spectrophotometer. From the XRD analysis, it was found that the stoichiometric (CuSe) nanowires are formed at deposition potential (-0.6 V) and (+0.6 V). Band gap of nanowires were found to be maximum around 3.13 eV for deposition potential (-0.8 V) and minimum of 2.81 eV for deposition potential (-0.6 V).

  2. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    NASA Astrophysics Data System (ADS)

    Bercegol, Adrien; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch.; Liero, Matthias

    2016-04-01

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  3. Field Effect Transistors Using Atomically Thin Layers of Copper Indium Selenide (CuInSe)

    NASA Astrophysics Data System (ADS)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    We will report fabrication of field-effect transistors (FETs) using few-layers of Copper Indium Selenide (CuInSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Our transport measurements indicate n-type FET with electron mobility µ ~ 3 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. Mobility can be further increased significantly when ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) is used as top gate. Similarly subthreshold swing can be further improved from 103 V/dec to 0.55 V/dec by using ionic liquid as a top gate. We also found ON/OFF ratio of ~ 102 for both top and back gate. Comparison between ionic liquid top gate and SiO2 back gate will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  4. A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Dong, Jia; Wu, Jihuai; Jia, Jinbiao; Ge, Jinhua; Bao, Quanlin; Wang, Chaotao; Fan, Leqing

    2017-04-01

    Nickel selenide (Ni0.85Se) was synthesized by a facile one-step hydrothermal reaction and Ni0.85Se film was prepared by spin-coating Ni0.85Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni0.85Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I-/I3-. The electrocatalytic ability of Ni0.85Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni0.85Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni0.85Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

  5. Effect of aluminum and tellurium tetrachloride addition on the loss of arsenic selenide optical fiber

    NASA Astrophysics Data System (ADS)

    Nguyen, Vinh Q.; Drake, Gryphon; Villalobos, Guillermo; Gibson, Daniel; Bayya, Shyam; Kim, Woohong; Baker, Colin; Chin, Geoff; Kung, Frederic H.; Kotov, Mikhail I.; Busse, Lynda; Sanghera, Jasbinder S.

    2017-02-01

    Arsenic selenide glass optical fibers typically possess extrinsic absorption bands in the infrared wavelength regions associated with residual hydrogen and oxygen related impurities, despite using 6N purified elemental precursors. Consequently, special additives and refined processing steps are utilized in an attempt to reduce these and other impurities. We investigate the formation of particulate impurities during a purification process based on the addition of 0.1 wt% elemental aluminum (Al) and 0.2 wt% tellurium tetrachloride (TeCl4) during glass synthesis. It was found that during purification and melting steps, Al reacts with TeCl4 to form AlCl3, which in turn reacts with oxygen and hydrogen impurities and the fused quartz (SiO2) ampoule to produce HCl and stable submicron Al2SiO5 compounds in the As-Se glass and fibers. The intensity of the H-Se absorption band centered at 4.57 μm has been significantly reduced from 18 dB/m to 0.8 dB/m. Using thermodynamic data, we have identified stable Al2SiO5 submicron inclusions in the glass and fibers. A two-step gettering process is proposed as a solution to eliminating these inclusions.

  6. Structural and optical characterizations of chemically deposited cadmium selenide thin films

    SciTech Connect

    Khomane, A.S.

    2011-10-15

    Highlights: {yields} CdSe thin films deposited first time using formic acid as a complexing agent. {yields} The deposited thin films were characterized by XRD, SEM, UV-vis-NIR and electrical techniques. {yields} X-ray diffraction analysis shows presence of zinc blende crystal structure. -- Abstract: Synthesis of cadmium selenide thin films by CBD method has been presented. The deposited film samples were subjected to XRD, SEM, UV-vis-NIR and TEP characterization. X-ray diffraction analysis showed that CdSe film sample crystallized in zinc blende or cubic phase structure. SEM studies reveal that the grains are spherical in shape and uniformly distributed all over the surface of the substrates. The optical band gap energy of as deposited film sample was found to be in the order of 1.8 eV. The electrical conductivity of the film sample was found to be 10{sup -6} ({Omega} cm){sup -1} with n-type of conduction mechanism.

  7. 20 micros photocurrent response from lithographically patterned nanocrystalline cadmium selenide nanowires.

    PubMed

    Kung, Sheng-Chin; van der Veer, Wytze E; Yang, Fan; Donavan, Keith C; Penner, Reginald M

    2010-04-14

    Lithographically patterned nanowire electrodeposition (LPNE) provides a method for patterning nanowires composed of nanocrystalline cadmium selenide (nc-CdSe) over wafer-scale areas. We assess the properties of (nc-CdSe) nanowires for detecting light as photoconductors. Structural characterization of these nanowires by X-ray diffraction and transmission electron microscopy reveals they are composed of stoichiometric, single phase, cubic CdSe with a mean grain diameter of 10 nm. For nc-CdSe nanowires with lengths of many millimeters, the width and height dimensions could be varied over the range from 60 to 350 nm (w) and 20 to 80 nm (h). Optical absorption and photoluminescence spectra for nc-CdSe nanowires were both dominated by band-edge transitions. The photoconductivity properties of nc-CdSe nanowire arrays containing approximately 350 nanowires were evaluated by electrically isolating 5 microm nanowire lengths using evaporated gold electrodes. Photocurrents, i(photo), of 10-100 x (i(dark)) were observed with a spectral response characterized by an onset at 1.75 eV. i(photo) response and recovery times were virtually identical and in the range from 20 to 40 micros for 60 x 200 nm nanowires.

  8. Tunable photoconduction sensitivity and bandwidth for lithographically patterned nanocrystalline cadmium selenide nanowires.

    PubMed

    Kung, Sheng-Chin; Xing, Wendong; van der Veer, Wytze E; Yang, Fan; Donavan, Keith C; Cheng, Ming; Hemminger, John C; Penner, Reginald M

    2011-09-27

    Nanocrystalline cadmium selenide (nc-CdSe) nanowires were prepared using the lithographically patterned nanowire electrodeposition method. Arrays of 350 linear nc-CdSe nanowires with lateral dimensions of 60 nm (h) × 200 nm (w) were patterned at 5 μm pitch on glass. nc-CdSe nanowires electrodeposited from aqueous solutions at 25 °C had a mean grain diameter, d(ave), of 5 nm. A combination of three methods was used to increase d(ave) to 10, 20, and 100 nm: (1) The deposition bath was heated to 75 °C, (2) nanowires were thermally annealed at 300 °C, and (3) nanowires were exposed to methanolic CdCl(2) followed by thermal annealing at 300 °C. The morphology, chemical composition, grain diameter, and photoconductivity of the resulting nanowires were studied as a function of d(ave). As d(ave) was increased from 10 to 100 nm, the photoconductivity response of the nanowires was modified in two ways: First, the measured photoconductive gain, G, was elevated from G = 0.017 (d(ave) = 5 nm) to ∼4.9 (100 nm), a factor of 290. Second, the photocurrent rise time was increased from 8 μs for d(ave) = 10 nm to 8 s for 100 nm, corresponding to a decrease by a factor of 1 million of the photoconduction bandwidth from 44 kHz to 44 mHz.

  9. Photoluminescence properties of lead selenide produced by selenization and a solvothermal method.

    PubMed

    Kim, Jungdong; Ahn, Hak-Young; Kim, Seung Gi; Oh, Eunsoon; Ju, Byeong-Kwon; Choi, Won Jun; Cho, So-Hye

    2017-01-06

    We studied temperature-dependent photoluminescence (PL) spectra of lead selenide (PbSe) dendrites and cubes grown by a solvothermal method. Their PL peaks were located at ∼8 μm at 10 K with a full width at half maximum (FWHM) of 10 meV. Using the temperature-dependent FWHM values, we obtained carrier-phonon coupling coefficients for PbSe. We also demonstrated mechanochemical synthesis of polycrystalline PbS nanoparticles and their successful conversion into a PbSe layer composed of nanocrystals by a selenization process with thermal treatment. The nanocrystals were found to be formed by the orientation alignment of small grains in the process. The PL peak energies of the PbSe layers as well as the PbSe dendrites and the cubes agreed well with their absorption edges in the transmission spectra, indicating that the photoluminescence originates from the band-edge emission. The band-edge emissions hold promise for the development of potential mid-infrared light sources using PbSe fabricated by these methods.

  10. Growth of zinc selenide single crystals by physical vapor transport in microgravity

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1993-01-01

    The goals of this research were the optimization of growth parameters for large (20 mm diameter and length) zinc selenide single crystals with low structural defect density, and the development of a 3-D numerical model for the transport rates to be expected in physical vapor transport under a given set of thermal and geometrical boundary conditions, in order to provide guidance for an advantageous conduct of the growth experiments. In the crystal growth studies, it was decided to exclusively apply the Effusive Ampoule PVT technique (EAPVT) to the growth of ZnSe. In this technique, the accumulation of transport-limiting gaseous components at the growing crystal is suppressed by continuous effusion to vacuum of part of the vapor contents. This is achieved through calibrated leaks in one of the ground joints of the ampoule. Regarding the PVT transport rates, a 3-D spectral code was modified. After introduction of the proper boundary conditions and subroutines for the composition-dependent transport properties, the code reproduced the experimentally determined transport rates for the two cases with strongest convective flux contributions to within the experimental and numerical error.

  11. Ba4Ga2Se8: A ternary selenide containing chains and discrete Se22- units

    NASA Astrophysics Data System (ADS)

    Yin, Wenlong; Iyer, Abishek K.; Lin, Xinsong; Mar, Arthur

    2016-05-01

    The ternary selenide Ba4Ga2Se8 has been synthesized by reaction of BaSe, Ga2Se3, and Se at 1023 K. Single-crystal X-ray diffraction analysis revealed a monoclinic structure (space group P21/c, Z=4, a=13.2393(5) Å, b=6.4305(2) Å, c=20.6432(8) Å, β=104.3148(6)°) featuring one-dimensional chains of corner-sharing Ga-centered tetrahedra and discrete Se22- anionic units, with charge-compensating Ba2+ cations located between them. The UV/vis/NIR diffuse reflectance spectrum reveals an optical band gap of 1.63(2) eV, which is consistent with the black color of the crystals and agrees with a calculated gap of 1.51 eV obtained from band structure calculations. The presence of the Se22- units narrows the band gap in Ba4Ga2Se8 relative to other Ba-Ga-Se phases.

  12. Revealing the preferred interlayer orientations and stackings of two-dimensional bilayer gallium selenide crystals

    SciTech Connect

    Li, Xufan; Basile Carrasco, Leonardo A.; Yoon, Mina; Ma, Cheng; Puretzky, Alexander A.; Lee, Jaekwang; Idrobo Tapia, Juan Carlos; Chi, Miaofang; Rouleau, Christopher M.; Geohegan, David B.; Xiao, Kai

    2015-01-21

    Characterizing and controlling the interlayer orientations and stacking order of bilayer two-dimensional (2D) crystals and van der Waals (vdW) heterostructure is crucial to optimize their electrical and optoelectronic properties. The four polymorphs of layered gallium selenide (GaSe) that result from different layer stacking provide an ideal platform to study the stacking configurations in bilayer 2D crystals. Here, through a controllable vapor-phase deposition method we selectively grow bilayer GaSe crystals and investigate their two preferred 0° or 60° interlayer rotations. The commensurate stacking configurations (AA' and AB-stacking) in as-grown 2D bilayer GaSe crystals are clearly observed at the atomic scale and the Ga-terminated edge structure are identified for the first time by using atomic-resolution scanning transmission electron microscopy (STEM). Theoretical analysis of the interlayer coupling energetics vs. interlayer rotation angle reveals that the experimentally-observed orientations are energetically preferred among the bilayer GaSe crystal polytypes. Here, the combined experimental and theoretical characterization of the GaSe bilayers afforded by these growth studies provide a pathway to reveal the atomistic relationships in interlayer orientations responsible for the electronic and optical properties of bilayer 2D crystals and vdW heterostructures.

  13. Liquid-like cationic sub-lattice in copper selenide clusters

    NASA Astrophysics Data System (ADS)

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-02-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, `liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  14. Photoluminescence properties of lead selenide produced by selenization and a solvothermal method

    NASA Astrophysics Data System (ADS)

    Kim, Jungdong; Ahn, Hak-Young; Kim, Seung Gi; Oh, Eunsoon; Ju, Byeong-Kwon; Choi, Won Jun; Cho, So-Hye

    2017-01-01

    We studied temperature-dependent photoluminescence (PL) spectra of lead selenide (PbSe) dendrites and cubes grown by a solvothermal method. Their PL peaks were located at ˜8 μm at 10 K with a full width at half maximum (FWHM) of 10 meV. Using the temperature-dependent FWHM values, we obtained carrier-phonon coupling coefficients for PbSe. We also demonstrated mechanochemical synthesis of polycrystalline PbS nanoparticles and their successful conversion into a PbSe layer composed of nanocrystals by a selenization process with thermal treatment. The nanocrystals were found to be formed by the orientation alignment of small grains in the process. The PL peak energies of the PbSe layers as well as the PbSe dendrites and the cubes agreed well with their absorption edges in the transmission spectra, indicating that the photoluminescence originates from the band-edge emission. The band-edge emissions hold promise for the development of potential mid-infrared light sources using PbSe fabricated by these methods.

  15. Quantum size confinement in gallium selenide nanosheets: band gap tunability versus stability limitation.

    PubMed

    Andres-Penares, Daniel; Cros, Ana; Martínez-Pastor, Juan P; Sánchez-Royo, Juan F

    2017-04-28

    Gallium selenide is one of the most promising candidates to extend the window of band gap values provided by existing two-dimensional semiconductors deep into the visible potentially reaching the ultraviolet. However, the tunability of its band gap by means of quantum confinement effects is still unknown, probably due to poor nanosheet stability. Here, we demonstrate that the optical band gap band of GaSe nanosheets can be tuned by ∼120 meV from bulk to 8 nm thick. The luminescent response of very thin nanosheets (<8 nm) is strongly quenched due to early oxidation. Oxidation favors the emergence of sharp material nanospikes at the surface attributable to strain relaxation. Simultaneously, incorporated oxygen progressively replaces selenium giving rise to Ga2O3, with a residual presence of Ga2Se3 that tends to desorb. These results are relevant for the development and design of visible/ultraviolet electronics and optoelectronics with tunable functionalities based on atomically thin GaSe.

  16. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy

    NASA Astrophysics Data System (ADS)

    Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan

    2013-06-01

    Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy.

  17. A Solution Processable High-Performance Thermoelectric Copper Selenide Thin Film.

    PubMed

    Lin, Zhaoyang; Hollar, Courtney; Kang, Joon Sang; Yin, Anxiang; Wang, Yiliu; Shiu, Hui-Ying; Huang, Yu; Hu, Yongjie; Zhang, Yanliang; Duan, Xiangfeng

    2017-03-29

    A solid-state thermoelectric device is attractive for diverse technological areas such as cooling, power generation and waste heat recovery with unique advantages of quiet operation, zero hazardous emissions, and long lifetime. With the rapid growth of flexible electronics and miniature sensors, the low-cost flexible thermoelectric energy harvester is highly desired as a potential power supply. Herein, a flexible thermoelectric copper selenide (Cu2 Se) thin film, consisting of earth-abundant elements, is reported. The thin film is fabricated by a low-cost and scalable spin coating process using ink solution with a truly soluble precursor. The Cu2 Se thin film exhibits a power factor of 0.62 mW/(m K(2) ) at 684 K on rigid Al2 O3 substrate and 0.46 mW/(m K(2) ) at 664 K on flexible polyimide substrate, which is much higher than the values obtained from other solution processed Cu2 Se thin films (<0.1 mW/(m K(2) )) and among the highest values reported in all flexible thermoelectric films to date (≈0.5 mW/(m K(2) )). Additionally, the fabricated thin film shows great promise to be integrated with the flexible electronic devices, with negligible performance change after 1000 bending cycles. Together, the study demonstrates a low-cost and scalable pathway to high-performance flexible thin film thermoelectric devices from relatively earth-abundant elements.

  18. Liquid-like cationic sub-lattice in copper selenide clusters

    PubMed Central

    White, Sarah L.; Banerjee, Progna; Jain, Prashant K.

    2017-01-01

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, ‘liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu+ ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu+ sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches. PMID:28216615

  19. Memory functions of nanocrystalline cadmium selenide embedded ZrHfO high-k dielectric stack

    SciTech Connect

    Lin, Chi-Chou; Kuo, Yue

    2014-02-28

    Metal-oxide-semiconductor capacitors made of the nanocrystalline cadmium selenide nc-CdSe embedded Zr-doped HfO{sub 2} high-k stack on the p-type silicon wafer have been fabricated and studied for their charge trapping, detrapping, and retention characteristics. Both holes and electrons can be trapped to the nanocrystal-embedded dielectric stack depending on the polarity of the applied gate voltage. With the same magnitude of applied gate voltage, the sample can trap more holes than electrons. A small amount of holes are loosely trapped at the nc-CdSe/high-k interface and the remaining holes are strongly trapped to the bulk nanocrystalline CdSe site. Charges trapped to the nanocrystals caused the Coulomb blockade effect in the leakage current vs. voltage curve, which is not observed in the control sample. The addition of the nanocrystals to the dielectric film changed the defect density and the physical thickness, which are reflected on the leakage current and the breakdown voltage. More than half of the originally trapped holes can be retained in the embedded nanocrystals for more than 10 yr. The nanocrystalline CdSe embedded high-k stack is a useful gate dielectric for this nonvolatile memory device.

  20. Electrothermal atomic-absorption determination of silver in zinc and cadmium selenides

    SciTech Connect

    Khozhainov, Yu.M.; Dolova, N.K.

    1987-10-01

    An atomic-absorption signal is dependent on the chemical forms of the test element and matrix in the solution as well as on the processes during electrothermal atomization. The authors have examined the absorption due to silver with a Saturn-2 spectrophotometer with such atomization; the authors used the 328.1 nm line (i = 10 mA, slit width 0.15, time-constant 0.6 sec). The presence of cadmium and zinc was monitored from the 326.1 and 213.8 nm lines respectively. The measurements were made in argon. The internal gas flow was turned off during the atomization. The graphite was used until there were sharp changes in the silver absorption due to change in the structure of the graphite and occurrence of the memory effect. The results from over 100 specimens of cadmium selenide films analyzed for silver showed that the results were in full agreement with the conditions for silver activation (time, temperature, and activator mass).

  1. Synthesis and optoelectrical properties of f-graphene/cadmium selenide hybrid system

    NASA Astrophysics Data System (ADS)

    Babkair, Saeed Salem; Azam, Ameer; Singh, Kuldeep; Dhawan, Sundeep Kumar; Khan, Mohd Taukeer

    2015-01-01

    The present work demonstrates the synthesis of a hybrid accepter material containing amino-functionalized graphene oxide (GO) and an inorganic semiconducting material, cadmium selenide (CdSe). First, amino-functionalized graphene was synthesized and then nanocrystals (NCs) of CdSe were in situ grown in the functionalized-(GO) matrix named f-GCdSe. Structural studies such as x-ray diffraction, and a scanning electron microscopic were employed to investigate the growth of CdSe NCs in the graphene matrix. To understand the charge generation and transfer process at the donor/acceptor interface, the absorption, photoluminescence (PL), and transient absorption spectroscopic (TAS) studies have been carried out in poly(3-hexylthiophene) (P3HT)/f-GCdSe thin films. PL quenching in P3HT/f-GCdSe thin film suggests that charge transfer takes place at the donor/acceptor interface. TAS shows higher optical density and long lived free carriers for P3HT/f-GCdSe thin film. These results suggest that f-GCdSe is an excellent electron-acceptor material for organic photovoltaic devices.

  2. Bond thermal expansion and effective pair potential in crystals: the case of cadmium selenide.

    PubMed

    Sanson, Andrea

    2011-08-10

    The local dynamics of cadmium selenide (CdSe) with wurtzite structure has been investigated by molecular dynamics simulations, using a many-body Tersoff potential. The radial distribution functions (i.e., the effective pair potentials) of the first seven coordination shells have been determined as a function of temperature, as well as their parallel and perpendicular mean-square relative atomic displacements. The bond thermal expansion of the first coordination shell is mainly due to the asymmetry of the effective pair potential. In contrast, the bond thermal expansion of the outer shells is mostly due to a rigid shift of the effective pair potential. This behavior, recently observed also in simple cubic monoatomic crystals, can be generalized and related to the correlation of atomic motion. Finally, a shift toward lower values of the first Se-Cd effective pair potential has been observed when increasing the temperature, confirming previous findings by extended x-ray absorption fine-structure measurements. Differently from superionic conductors like AgI and CuBr, in which this anomalous negative shift was tentatively explained by cluster distortion and cation diffusion, the negative shift of CdSe is related to the peculiar properties of the crystalline potential.

  3. Specific features of photoluminescence properties of copper-doped cadmium selenide quantum dots

    SciTech Connect

    Tselikov, G. I.; Dorofeev, S. G.; Tananaev, P. N.; Timoshenko, V. Yu.

    2011-09-15

    The effect of doping with copper on the photoluminescence properties of cadmium selenide quantum dots 4 nm in dimension is studied. The quenching of the excitonic photoluminescence band related to the quantum dots and the appearance of an impurity photoluminescence band in the near-infrared region are observed after doping of the quantum dots with copper. It is established that, on doping of the quantum dots, the photoluminescence kinetics undergoes substantial changes. The photoluminescence kinetics of the undoped quantum dots is adequately described by a sum of exponential relaxation relations, whereas the photoluminescence kinetics experimentally observed in the region of the impurity band of the copper-doped samples follows stretched exponential decay, with the average lifetimes 0.3-0.6 {mu}s at the photon energies in the range of 1.47-1.82 eV. The experimentally observed changes in the photoluminescence properties are attributed to transformation of radiative centers in the quantum dots when doped with copper atoms.

  4. Photoluminescence properties of cadmium-selenide quantum dots embedded in a liquid-crystal polymer matrix

    SciTech Connect

    Tselikov, G. I. Timoshenko, V. Yu.; Plenge, J.; Ruehl, E.; Shatalova, A. M.; Shandryuk, G. A.; Merekalov, A. S.; Tal'roze, R. V.

    2013-05-15

    The photoluminescence properties of cadmium-selenide (CdSe) quantum dots with an average size of {approx}3 nm, embedded in a liquid-crystal polymer matrix are studied. It was found that an increase in the quantum-dot concentration results in modification of the intrinsic (exciton) photoluminescence spectrum in the range 500-600 nm and a nonmonotonic change in its intensity. Time-resolved measurements show the biexponential decay of the photoluminescence intensity with various ratios of fast and slow components depending on the quantum-dot concentration. In this case, the characteristic lifetimes of exciton photoluminescence are 5-10 and 35-50 ns for the fast and slow components, respectively, which is much shorter than the times for colloidal CdSe quantum dots of the same size. The observed features of the photoluminescence spectra and kinetics are explained by the effects of light reabsorption, energy transfer from quantum dots to the liquid-crystal polymer matrix, and the effect of the electronic states at the CdSe/(liquid crystal) interface.

  5. Ultrafast charge- and energy-transfer dynamics in conjugated polymer: cadmium selenide nanocrystal blends.

    PubMed

    Morgenstern, Frederik S F; Rao, Akshay; Böhm, Marcus L; Kist, René J P; Vaynzof, Yana; Greenham, Neil C

    2014-02-25

    Hybrid nanocrystal-polymer systems are promising candidates for photovoltaic applications, but the processes controlling charge generation are poorly understood. Here, we disentangle the energy- and charge-transfer processes occurring in a model system based on blends of cadmium selenide nanocrystals (CdSe-NC) with poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) using a combination of time-resolved absorption and luminescence measurements. The use of different capping ligands (n-butylamine, oleic acid) as well as thermal annealing allows tuning of the polymer-nanocrystal interaction. We demonstrate that energy transfer from MDMO-PPV to CdSe-NCs is the dominant exciton quenching mechanism in nonannealed blends and occurs on ultrafast time scales (<1 ps). Upon thermal annealing electron transfer becomes competitive with energy transfer, with a transfer rate of 800 fs independent of the choice of the ligand. Interestingly, we find hole transfer to be much less efficient than electron transfer and to extend over several nanoseconds. Our results emphasize the importance of tuning the organic-nanocrystal interaction to achieve efficient charge separation and highlight the unfavorable hole-transfer dynamics in these blends.

  6. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    SciTech Connect

    Gupta, Vinay; Upreti, Tanvi; Chand, Suresh

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  7. Biokinetics and in vivo distribution behaviours of silica-coated cadmium selenide quantum dots.

    PubMed

    Vibin, M; Vinayakan, R; John, Annie; Raji, V; Rejiya, C S; Abraham, Annie

    2011-08-01

    Recently, quantum dots derived from trace elements like cadmium and selenium have attracted widespread interest in biology and medicine. They are rapidly being used as novel tools for both diagnostic and therapeutic purposes. In this report, we evaluated the distribution of silica-coated cadmium selenide (CdSe) quantum dots (QDs) following intravenous injection into male Swiss albino mice as a model system for determining tissue localization using in vivo fluorescence and ex vivo elemental analysis by inductively coupled plasma optical emission spectroscopy (ICP-OES). Trioctylphosphine oxide-capped CdSe quantum dots were synthesized and rendered water soluble by overcoating with silica, using aminopropyl silane (APS) as silica precursor. ICP-OES was used to measure the cadmium content to indicate the concentration of QDs in blood, organs and excretion samples collected at predetermined time intervals. Meanwhile, the distribution and aggregation state of QDs in tissues were also investigated in cryosections of the organs by fluorescence microscopy. We have demonstrated that the liver and kidney were the main target organs for QDs. Our systematic investigation clearly shows that most of the QDs were metabolized in the liver and excreted via faeces and urine in vivo. A fraction of free QDs, maintaining their original form, could be filtered by glomerular capillaries and excreted via urine as small molecules within 5 days.

  8. Annealed single-crystal cadmium selenide electrodes in liquid junction solar cells

    SciTech Connect

    Wessel, S.; Colbow, K.; Mackintosh, A.

    1984-12-01

    I-V characteristics, voltage dependence of the quantum efficiency, and spectral response were compared for annealed single-crystal CdSe photoanodes. Annealing in cadmium atmosphere improved the overall solar response considerably, while annealing under vacuum revealed a poor response for photon energies larger than 1.8 eV and a high quantum efficiency for near-bandgap energies. This behavior may be attributed to electron-hole pai generation from interbandgap states and a large density of minority carrier recombination centers near the crystal surface, owing to a high nonstoichiometry and a selenium layer at the surface. Annealing in selenium atmosphere resulted in very poor solar response caused by compensation. Simultaneous illumination of the electrodes with a He-Ne lase strongly enhanced the quantum efficiency for vacuum-annealed crystals for near-bandgap photons. We attribute this to electron trapping in the selenium-rich surface, with a resulting increase in depletion-layer width in the cadmium selenide.

  9. Liquid-like cationic sub-lattice in copper selenide clusters.

    PubMed

    White, Sarah L; Banerjee, Progna; Jain, Prashant K

    2017-02-20

    Super-ionic solids, which exhibit ion mobilities as high as those in liquids or molten salts, have been employed as solid-state electrolytes in batteries, improved thermoelectrics and fast-ion conductors in super-capacitors and fuel cells. Fast-ion transport in many of these solids is supported by a disordered, 'liquid-like' sub-lattice of cations mobile within a rigid anionic sub-lattice, often achieved at high temperatures or pressures via a phase transition. Here we show that ultrasmall clusters of copper selenide exhibit a disordered cationic sub-lattice under ambient conditions unlike larger nanocrystals, where Cu(+) ions and vacancies form an ordered super-structure similar to the bulk solid. The clusters exhibit an unusual cationic sub-lattice arrangement wherein octahedral sites, which serve as bridges for cation migration, are stabilized by compressive strain. The room-temperature liquid-like nature of the Cu(+) sub-lattice combined with the actively tunable plasmonic properties of the Cu2Se clusters make them suitable as fast electro-optic switches.

  10. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy

    PubMed Central

    Li, Juan; Jiang, Fei; Yang, Bo; Song, Xiao-Rong; Liu, Yan; Yang, Huang-Hao; Cao, Dai-Rong; Shi, Wen-Rong; Chen, Guo-Nan

    2013-01-01

    Employing theranostic nanoparticles, which combine both therapeutic and diagnostic capabilities in one dose, has promise to propel the biomedical field toward personalized medicine. Here we investigate the theranostic properties of topological insulator bismuth selenide (Bi2Se3) in in vivo and in vitro system for the first time. We show that Bi2Se3 nanoplates can absorb near-infrared (NIR) laser light and effectively convert laser energy into heat. Such photothermal conversion property may be due to the unique physical properties of topological insulators. Furthermore, localized and irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using Bi2Se3 nanoplates and NIR laser irradiation. In addition, we also demonstrate that Bi2Se3 nanoplates exhibit strong X-ray attenuation and can be utilized for enhanced X-ray computed tomography imaging of tumor tissue in vivo. This study highlights Bi2Se3 nanoplates could serve as a promising platform for cancer diagnosis and therapy. PMID:23770650

  11. Effects of residual copper selenide on CuInGaSe 2 solar cells

    NASA Astrophysics Data System (ADS)

    Hsieh, Tung-Po; Chuang, Chia-Chih; Wu, Chung-Shin; Chang, Jen-Chuan; Guo, Jhe-Wei; Chen, Wei-Chien

    2011-02-01

    Large-grain, copper-poor CuInGaSe2 (CIGS) films are favored in the fabrication of highly efficient solar cells. However, the degradation of cell performance caused by residual copper selenide (Cu2-xSe) remains a problem. This work studies the formation and behavior of excess CuxSe and further compares the cell performance of typical copper-poor with that of copper-rich solar cells. Since excess Cu2-xSe cannot be exhausted during the growth, it fully surrounds the polycrystalline CIGS grains. Excess Cu2-xSe in the CIGS film produces serious shunt paths and causes the pn junction to be of poor quality. A short circuit in copper-rich CIGS solar cells is attributable to the conductive Cu2-xSe. The best way to ensure high-efficiency of the cells is to exhaust Cu2-xSe during growth. Otherwise, a dense, chemically treated CIGS film is required to prevent the negative effects of excess Cu2-xSe.

  12. Electrochemical synthesis and optical characterization of copper selenide nanowire arrays within the alumina pores

    NASA Astrophysics Data System (ADS)

    Jagminas, A.; Juškėnas, R.; Gailiūtė, I.; Statkutė, G.; Tomašiūnas, R.

    2006-09-01

    By choosing an appropriate aqueous solution containing CuSO 4, H 2SeO 3, MgSO 4, and H 2SO 4 the suitable composition for two- or one-phase copper selenide deposition within the alumina pores under alternating current (AC) electrolysis conditions was created. X-ray diffraction spectra recorded within 15-55° 2 Θ range revealed fabrication of Cu 3Se 2+Cu 2-xSe or almost pure Cu 2-xSe crystalline material. The compositional and morphological studies using XRD, EDX, SEM, and TEM techniques show fabrication of nearly pure Cu 2-xSe with some deficiency of copper, say, Cu 1.75Se, nanowires in length up to several microns when the selenious acid to copper-ion ratio is close to 1:2 and pH of the bath is <1.25. The fundamental absorption spectrum for this nanostructured material was shown to be formed by allowed direct and indirect interband transitions with the evaluated energy band gaps 2.3 and 1.1 eV, respectively.

  13. Impact of atmospheric species on copper indium gallium selenide solar cell stability: an overview

    NASA Astrophysics Data System (ADS)

    Theelen, Mirjam

    2016-01-01

    An overview of the measurement techniques and results of studies on the stability of copper indium gallium selenide (CIGS) solar cells and their individual layers in the presence of atmospheric species is presented: in these studies, Cu(In,Ga)Se2 solar cells, their molybdenum back contact, and their ZnO:Al front contact were exposed to liquid water purged with gases from the atmosphere, like carbon dioxide (CO2), oxygen (O2), nitrogen (N2), and air. The samples were analyzed before, during, and after exposure in order to define their stability under these conditions. The complete CIGS solar cells as well as the ZnO:Al front contact degraded rapidly when exposed to H2O combined with CO2, while they were relatively stable in H2O purged with O2 or N2. This was caused by either degradation of the grain boundaries in the ZnO:Al film or by the dissolution of part of this film. Uncovered molybdenum films, on the other hand, oxidized rapidly in the presence of H2O and O2, while they were more stable in the presence of H2O with N2 and/or CO2.

  14. Molecular beam epitaxy of 2D-layered gallium selenide on GaN substrates

    NASA Astrophysics Data System (ADS)

    Lee, Choong Hee; Krishnamoorthy, Sriram; O'Hara, Dante J.; Brenner, Mark R.; Johnson, Jared M.; Jamison, John S.; Myers, Roberto C.; Kawakami, Roland K.; Hwang, Jinwoo; Rajan, Siddharth

    2017-03-01

    Large area epitaxy of two-dimensional (2D) layered materials with high material quality is a crucial step in realizing novel device applications based on 2D materials. In this work, we report high-quality, crystalline, large-area gallium selenide (GaSe) films grown on bulk substrates such as c-plane sapphire and gallium nitride (GaN) using a valved cracker source for Se. (002)-Oriented GaSe with random in-plane orientation of domains was grown on sapphire and GaN substrates at a substrate temperature of 350-450 °C with complete surface coverage. Higher growth temperature (575 °C) resulted in the formation of single-crystalline ɛ-GaSe triangular domains with six-fold symmetry confirmed by in-situ reflection high electron energy diffraction and off-axis x-ray diffraction. A two-step growth method involving high temperature nucleation of single crystalline domains and low temperature growth to enhance coalescence was adopted to obtain continuous (002)-oriented GaSe with an epitaxial relationship with the substrate. While six-fold symmetry was maintained in the two step growth, β-GaSe phase was observed in addition to the dominant ɛ-GaSe in cross-sectional scanning transmission electron microscopy images. This work demonstrates the potential of growing high quality 2D-layered materials using molecular beam epitaxy and can be extended to the growth of other transition metal chalcogenides.

  15. Chemical deposition of bismuth selenide thin films using N,N-dimethylselenourea

    NASA Astrophysics Data System (ADS)

    García, V. M.; Nair, M. T. S.; Nair, P. K.; Zingaro, R. A.

    1997-05-01

    Good quality thin films of bismuth selenide of thickness up to 0268-1242/12/5/020/img7 were deposited from solutions containing bismuth nitrate, triethanolamine and N,N-dimethylselenourea maintained at temperatures ranging from room temperature to 0268-1242/12/5/020/img8. X-ray diffraction patterns of the samples annealed at 0268-1242/12/5/020/img9 in air match the standard pattern of hexagonal 0268-1242/12/5/020/img10 (paraguanajuatite, JCPDS 33-0214). The films exhibit strong optical absorption corresponding to a bandgap of about 1.7 - 1.41 eV in the as-prepared films. These values decrease to about 1.57 - 1.06 eV upon annealing the films at 0268-1242/12/5/020/img9 for 1 h in nitrogen. As-deposited, the films show high sheet resistance 0268-1242/12/5/020/img12 in the dark. Annealing the films in air or in nitrogen enhances the dark current by about seven orders of magnitude; the resulting dark conductivity is about 0268-1242/12/5/020/img13. This enhancement in conductivity results from improved crystallinity as well as from partial loss of selenium.

  16. Highly Luminescent, Size- and Shape-Tunable Copper Indium Selenide Based Colloidal Nanocrystals

    PubMed Central

    2013-01-01

    We report a simple, high-yield colloidal synthesis of copper indium selenide nanocrystals (CISe NCs) based on a silylamide-promoted approach. The silylamide anions increase the nucleation rate, which results in small-sized NCs exhibiting high luminescence and constant NC stoichiometry and crystal structure regardless of the NC size and shape. In particular, by systematically varying synthesis time and temperature, we show that the size of the CISe NCs can be precisely controlled to be between 2.7 and 7.9 nm with size distributions down to 9–10%. By introducing a specific concentration of silylamide-anions in the reaction mixture, the shape of CISe NCs can be preselected to be either spherical or tetrahedral. Optical properties of these CISe NCs span from the visible to near-infrared region with peak luminescence wavelengths of 700 to 1200 nm. The luminescence efficiency improves from 10 to 15% to record values of 50–60% by overcoating as-prepared CISe NCs with ZnSe or ZnS shells, highlighting their potential for applications such as biolabeling and solid state lighting. PMID:24748721

  17. Highly efficient copper-zinc-tin-selenide (CZTSe) solar cells by electrodeposition.

    PubMed

    Jeon, Jong-Ok; Lee, Kee Doo; Seul Oh, Lee; Seo, Se-Won; Lee, Doh-Kwon; Kim, Honggon; Jeong, Jeung-hyun; Ko, Min Jae; Kim, BongSoo; Son, Hae Jung; Kim, Jin Young

    2014-04-01

    Highly efficient copper-zinc-tin-selenide (Cu2ZnSnSe4 ; CZTSe) thin-film solar cells are prepared via the electrodepostion technique. A metallic alloy precursor (CZT) film with a Cu-poor, Zn-rich composition is directly deposited from a single aqueous bath under a constant current, and the precursor film is converted to CZTSe by annealing under a Se atmosphere at temperatures ranging from 400 °C to 600 °C. The crystallization of CZTSe starts at 400 °C and is completed at 500 °C, while crystal growth continues at higher temperatures. Owing to compromises between enhanced crystallinity and poor physical properties, CZTSe thin films annealed at 550 °C exhibit the best and most-stable device performances, reaching up to 8.0 % active efficiency; among the highest efficiencies for CZTSe thin-film solar cells prepared by electrodeposition. Further analysis of the electronic properties and a comparison with another state-of-the-art device prepared from a hydrazine-based solution, suggests that the conversion efficiency can be further improved by optimizing parameters such as film thickness, antireflection coating, MoSe2 formation, and p-n junction properties.

  18. Iron and Your Child

    MedlinePlus

    ... get iron by eating foods like meat and dark green leafy vegetables. Iron is also added to ... tofu dried beans and peas dried fruits leafy dark green vegetables iron-fortified breakfast cereals, breads, and ...

  19. Iron metabolism and toxicity

    SciTech Connect

    Papanikolaou, G.; Pantopoulos, K. . E-mail: kostas.pantopoulos@mcgill.ca

    2005-01-15

    Iron is an essential nutrient with limited bioavailability. When present in excess, iron poses a threat to cells and tissues, and therefore iron homeostasis has to be tightly controlled. Iron's toxicity is largely based on its ability to catalyze the generation of radicals, which attack and damage cellular macromolecules and promote cell death and tissue injury. This is lucidly illustrated in diseases of iron overload, such as hereditary hemochromatosis or transfusional siderosis, where excessive iron accumulation results in tissue damage and organ failure. Pathological iron accumulation in the liver has also been linked to the development of hepatocellular cancer. Here we provide a background on the biology and toxicity of iron and the basic concepts of iron homeostasis at the cellular and systemic level. In addition, we provide an overview of the various disorders of iron overload, which are directly linked to iron's toxicity. Finally, we discuss the potential role of iron in malignant transformation and cancer.

  20. CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States.

    PubMed

    Kirchofer, Abby; Becker, Austin; Brandt, Adam; Wilcox, Jennifer

    2013-07-02

    The availability of industrial alkalinity sources is investigated to determine their potential for the simultaneous capture and sequestration of CO2 from point-source emissions in the United States. Industrial alkalinity sources investigated include fly ash, cement kiln dust, and iron and steel slag. Their feasibility for mineral carbonation is determined by their relative abundance for CO2 reactivity and their proximity to point-source CO2 emissions. In addition, the available aggregate markets are investigated as possible sinks for mineral carbonation products. We show that in the U.S., industrial alkaline byproducts have the potential to mitigate approximately 7.6 Mt CO2/yr, of which 7.0 Mt CO2/yr are CO2 captured through mineral carbonation and 0.6 Mt CO2/yr are CO2 emissions avoided through reuse as synthetic aggregate (replacing sand and gravel). The emission reductions represent a small share (i.e., 0.1%) of total U.S. CO2 emissions; however, industrial byproducts may represent comparatively low-cost methods for the advancement of mineral carbonation technologies, which may be extended to more abundant yet expensive natural alkalinity sources.

  1. Ammonium carbonate and/or bicarbonate plus alkaline chlorate oxidant for recovery of uranium values

    SciTech Connect

    Stapp, P.R.

    1983-09-06

    In accordance with the present invention, uranium values are extracted from materials containing uranium in valence states lower than its hexavalent state by contacting the materials containing uranium with an aqueous alkaline leach solution containing an alkaline chlorate in an amount sufficient to oxidize at least a portion of the uranium in valence states lower than its hexavalent state to its hexavalent state. In a further embodiment of the present invention, the alkaline leach solution is an aqueous solution of a carbonate selected from the group consisting of ammonium carbonate, ammonium bicarbonate and mixtures thereof. In yet another embodiment of the present invention, at least one catalytic compound of a metal selected from the group consisting of copper, cobalt, iron, nickel, chromium and mixtures thereof adapted to assure the presence of the ionic species Cu/sup + +/, Co/sup + +/, Fe/sup + + +/, Ni/sup + +/, Cr/sup + + +/ and mixtures thereof, respectively, during the contacting of the material containing uranium with the alkaline leach solution and in an amount sufficient to catalyze the oxidation of at least a portion of the uranium in its lower valence states to its hexavalent state, is present.

  2. Effect of chloride ions on adsorption and permeation of hydrogen in iron

    SciTech Connect

    Allam, A.M.; Pickering, H.W.; Ateya, B.G.

    1997-04-01

    Effects of chloride ions on hydrogen absorption into iron and on the hydrogen evolution reaction (HER) on an iron surface were studied in acid and alkaline solutions at 23 C using the permeation method of Devanathan and Stachurski. Cl{sup {minus}} ions reduced the overpotential ({eta}) for HER and, in turn, reduced hydrogen coverage and permeation.Effects on hydrogen permeation were more pronounced in alkaline than in acid solutions. Permeation transients at constant electrode potential of he charging surface and subsequent surface analyses of the uppermost atom layers of the hydrogen-charged iron surface indicated a reversible or low coverage with Cl{sup {minus}} ions, a low hydrogen coverage that was not influenced significantly by Cl{sup {minus}} ion concentration at low {eta}, and a marked effect of Cl{sup {minus}} ions in reducing hydrogen coverage of the surface and permeability in alkaline solutions at high cathodic polarizations.

  3. Genetics Home Reference: iron-refractory iron deficiency anemia

    MedlinePlus

    ... refractory iron deficiency anemia iron-refractory iron deficiency anemia Enable Javascript to view the expand/collapse boxes. ... All Close All Description Iron-refractory iron deficiency anemia is one of many types of anemia , which ...

  4. Parenteral iron therapy options.

    PubMed

    Silverstein, Scott B; Rodgers, George M

    2004-05-01

    Parenteral iron therapy is occasionally necessary for patients intolerant or unresponsive to oral iron therapy, for receiving recombinant erythropoietin therapy, or for use in treating functional iron deficiency. There are now three parenteral iron products available: iron dextran, ferric gluconate, and iron sucrose. We summarize the advantages and disadvantages of each product, including risk of anaphylaxis and hypersensitivity, dosage regimens, and costs. The increased availability of multiple parenteral iron preparations should decrease the need to use red cell transfusions in patients with iron-deficiency anemia.

  5. Inorganic polymers from laterite using activation with phosphoric acid and alkaline sodium silicate solution: Mechanical and microstructural properties

    SciTech Connect

    Lassinantti Gualtieri, Magdalena

    2015-01-15

    Geopolymers from laterite, an iron-rich soil available in developing countries, have great potential as building materials. In this work, laterite from Togo (Africa) was used to prepare geopolymers using both phosphoric acid and alkaline sodium silicate solution. Microstructural properties were investigated by scanning electron microscopy, X-ray powder diffraction and mercury porosimetry, whereas thermal properties were evaluated by thermal analyses. The local environment of iron was studied by X-ray Absorption Spectroscopy (XANES region). The mechanical properties were determined. Modulus of Rupture and Young's modulus fell in the ranges 3.3–4.5 MPa and 12–33 GPa, respectively, rendering the materials good candidates for construction purposes. Heating above 900 °C results in weight-gain, presumably due to iron redox reactions. X-ray Absorption Spectroscopy data evidence changes in the chemical and structural environments of iron following thermal treatment of geopolymers. These changes indicate interaction between the geopolymer structure and iron during heating, possibly leading to redox properties. -- Highlights: •Geopolymerization of laterite is promising for fabrication of building materials. •Both phosphoric acid and alkaline sodium silicate solution can be used for activation. •Thermally activated redox properties of the inorganic polymers were observed.

  6. Involvement of L-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of bis selenide in the mouse tail suspension test.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Rocha, João B T; Nogueira, Cristina W

    2010-06-10

    The present study investigated a possible antidepressant-like effect of bis selenide by using the forced swimming and the tail suspension tests. The involvement of the l-arginine-nitric oxide-cyclic guanosine monophosphate signaling pathway in the antidepressant-like action of bis selenide was investigated. Bis selenide, given by oral route at doses of 0.5-5mg/kg, decreased the immobility time in the forced swimming and tail suspension tests. Pretreatment with l-arginine (750mg/kg, intraperitoneal, i.p., a nitric oxide precursor), sildenafil (5mg/kg, i.p., a phosphodiesterase 5 inhibitor) or S-nitroso-N-acetyl-penicillamine (25microg/site, intracerebroventricular, i.c.v., a nitric oxide donor) reversed the reduction in the immobility time elicited by bis selenide (1mg/kg, p.o.) in the tail suspension test. Bis selenide (0.1mg/kg, p.o., a subeffective dose) produced a synergistic antidepressant-like effect with N(G)-nitro-L-arginine (0.3mg/kg, i.p., an inhibitor of nitric oxide synthase) or 7-nitroindazole (25mg/kg, i.p., a specific neuronal nitric oxide synthase inhibitor) in the tail suspension test. Pretreatment of animals with methylene blue (10mg/kg, i.p., an inhibitor of nitric oxide synthase and soluble guanylate cyclase) or 1H-[1,2,4] oxadiazolo [4,3-a]quinoxalin-1-one (30pmol, i.c.v., a specific inhibitor of soluble guanylate cyclase), at subeffective doses, caused a synergistic effect with bis selenide in the tail suspension test. Bis selenide (1mg/kg, p.o.), at an effective dose in the forced swimming and tail suspension tests, caused a significant decrease in the mouse cerebral nitrate/nitrite levels. The antidepressant-like effect of bis selenide in the tail suspension test is dependent on the inhibition of the L-arginine-nitric oxide-cyclic guanosine monophosphate pathway.

  7. Intermediate range order in alkaline borate glasses

    NASA Astrophysics Data System (ADS)

    Crupi, C.; Carini, G.; Ruello, G.; D'Angelo, G.

    2016-03-01

    We describe the neutron diffraction patterns of a series of alkaline borate glasses at different metal oxide content. Strong differences are observed in the intermediate range order as a function of the specific alkaline ion and of its concentration. On these results, we propose that the first sharp diffraction peak arises from correlations of atoms of voids and show that the compositional variation of this peak intensity in alkaline borate glasses is due to changes in the distribution of void sizes within the three-dimensional network. We argue that our interpretation in terms of interstitial (empty and/or filled) voids, having different sizes, provides a general explanation for all anomalous behaviours revealed for the first sharp diffraction peak.

  8. Iron-refractory iron deficiency anemia.

    PubMed

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-03-05

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the "atypical" microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field.

  9. Iron-Refractory Iron Deficiency Anemia

    PubMed Central

    Yılmaz Keskin, Ebru; Yenicesu, İdil

    2015-01-01

    Iron is essential for life because it is indispensable for several biological reactions, such as oxygen transport, DNA synthesis, and cell proliferation. Over the past few years, our understanding of iron metabolism and its regulation has changed dramatically. New disorders of iron metabolism have emerged, and the role of iron as a cofactor in other disorders has begun to be recognized. The study of genetic conditions such as hemochromatosis and iron-refractory iron deficiency anemia (IRIDA) has provided crucial insights into the molecular mechanisms controlling iron homeostasis. In the future, these advances may be exploited to improve treatment of both genetic and acquired iron disorders. IRIDA is caused by mutations in TMPRSS6, the gene encoding matriptase-2, which downregulates hepcidin expression under conditions of iron deficiency. The typical features of this disorder are hypochromic, microcytic anemia with a very low mean corpuscular volume of erythrocytes, low transferrin saturation, no (or inadequate) response to oral iron, and only a partial response to parenteral iron. In contrast to classic iron deficiency anemia, serum ferritin levels are usually low-normal, and serum or urinary hepcidin levels are inappropriately high for the degree of anemia. Although the number of cases reported thus far in the literature does not exceed 100, this disorder is considered the most common of the “atypical” microcytic anemias. The aim of this review is to share the current knowledge on IRIDA and increase awareness in this field. PMID:25805669

  10. Redox control of GPx catalytic activity through mediating self-assembly of Fmoc-phenylalanine selenide into switchable supramolecular architectures.

    PubMed

    Huang, Zupeng; Luo, Quan; Guan, Shuwen; Gao, Jianxiong; Wang, Yongguo; Zhang, Bo; Wang, Liang; Xu, Jiayun; Dong, Zeyuan; Liu, Junqiu

    2014-12-28

    Artificial enzymes capable of achieving tunable catalytic activity through stimuli control of enzymatic structure transition are of significance in biosensor and biomedicine research. Herein we report a novel smart glutathione peroxidise (GPx) mimic with modulatory catalytic activity based on redox-induced supramolecular self-assembly. First, an amphiphilic Fmoc-phenylalanine-based selenide was designed and synthesized, which can self-assemble into nanospheres (NSs) in aqueous solution. The NSs demonstrate extremely low GPx activity. Upon the oxidation of hydroperoxides (ROOH), the selenide can be quickly transformed into the selenoxide form. The change of the molecular structure induces complete morphology transition of the self-assemblies from NSs to nanotubes (NTs), resulting in great enhancement in the GPx catalytic activity. Under the reduction of GSH, the selenoxide can be further reversibly reduced back into the selenide; therefore the reversible switch between the NSs and NTs can be successfully accomplished. The relationship between the catalytic activity and enzymatic structure was also investigated. The dual response nature makes this mimic play roles of both a sensor and a GPx enzyme at the same time, which can auto-detect the signal of ROOH and then auto-change its activity to achieve quick or slow/no scavenging of ROOH. The dynamic balance of ROOH is vital in organisms, in which an appropriate amount of ROOH does benefit to the metabolism, whereas surplus ROOH can cause oxidative damage of the cell instead and this smart mimic is of remarkable significance. We expect that such a mimic can be developed into an effective antioxidant drug and provide a new platform for the construction of intelligent artificial enzymes with multiple desirable properties.

  11. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  12. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  13. Alkaline Capacitors Based on Nitride Nanoparticles

    NASA Technical Reports Server (NTRS)

    Aldissi, Matt

    2003-01-01

    High-energy-density alkaline electrochemical capacitors based on electrodes made of transition-metal nitride nanoparticles are undergoing development. Transition- metal nitrides (in particular, Fe3N and TiN) offer a desirable combination of high electrical conductivity and electrochemical stability in aqueous alkaline electrolytes like KOH. The high energy densities of these capacitors are attributable mainly to their high capacitance densities, which, in turn, are attributable mainly to the large specific surface areas of the electrode nanoparticles. Capacitors of this type could be useful as energy-storage components in such diverse equipment as digital communication systems, implanted medical devices, computers, portable consumer electronic devices, and electric vehicles.

  14. Vacancies Ordered in Screw Form (VOSF) and Layered Indium Selenide Thin Film Deposition by Laser Back Ablation

    SciTech Connect

    Beck, Kenneth M.; Wiley, William R.; Venkatasubramanian, Eswaranand; Ohuchi, Fumio S.

    2009-09-30

    Indium selenide thin films are important due to their applications in non-volatile memory and solar cells. In this work, we present an initial study of a new application of deposition-site selective laser back ablation (LBA) for making thin films of In2Se3. In-vacuo annealing and subsequent characterization of the films by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) indicate that control of substrate temperature during deposition and post-deposition annealing temperature is critical in determining the phase and composition of the films. The initial laser fluence and target film thickness determine the amount of material deposited onto the substrate.

  15. Evaluation of selenide, diselenide and selenoheterocycle derivatives as carbonic anhydrase I, II, IV, VII and IX inhibitors.

    PubMed

    Angeli, Andrea; Tanini, Damiano; Viglianisi, Caterina; Panzella, Lucia; Capperucci, Antonella; Menichetti, Stefano; Supuran, Claudiu T

    2017-04-15

    A series of selenides, diselenides and organoselenoheterocycles were evaluated as carbonic anhydrase (CA, EC 4.2.1.1) inhibitors against the human (h) isoforms hCA I, II, IV, VII and IX, involved in a variety of diseases among which glaucoma, retinitis pigmentosa, epilepsy, arthritis and tumors etc. These investigated compounds showed inhibitory action against these isoforms and some of them were selective for inhibiting the cytosolic over the membrane-bound isoforms, thus making them interesting leads for the development of isoform-selective inhibitors.

  16. The influence of ligand type on self-organization and optical properties of cadmium selenide quantum dots

    NASA Astrophysics Data System (ADS)

    Ushakova, E. V.; Kormilina, T. K.; Burkova, M. A.; Cherevkov, S. A.; Zakharov, V. V.; Turkov, V. K.; Fedorov, A. V.; Baranov, A. V.

    2017-01-01

    A method for successive replacement of organic shells of colloidal cadmium selenide quantum dots (QDs) of different sizes is proposed. It is found that the spectral parameters of QD samples depend on the type of organic shells. It is shown that the structural morphology is independent of the QD size and is determined by the chemical composition of the organic shell. Spectral analysis of the luminescence of QD-based superstructures shows that the luminescence wavelength and intensity strongly depend on the degree of QD surface passivation.

  17. Analysis of space radiation effects in gallium arsenide and cadmium selenide semiconductor samples using luminescence spectroscopic techniques. Master's thesis

    SciTech Connect

    Shaffer, B.L.

    1990-12-01

    Analysis of space radiation effects in gallium arsenide and cadmium selenide semiconductor samples using luminescence spectroscopic techniques. The M0006 semiconductor samples were placed into a 28.5 degree inclination, 480 km altitude, near-circular orbit aboard the Long Duration Exposure Facility satellite and exposed to direct space environment for a period of 11 months, and were shielded by 0.313 inches of aluminum for another 58 months. The samples were examined for changes using cathodoluminescence and photoluminescence in various wavelength regions from 0.5 to 1.8 micrometers. Samples were cooled to approximately 10 degrees Kelvin in a vacuum of 10-8. (JS)

  18. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  19. First principles study of electronic and mechanical properties of molybdenum selenide type nanowires

    NASA Astrophysics Data System (ADS)

    Çakır, D.; Durgun, E.; Gülseren, O.; Ciraci, S.

    2006-12-01

    Using the first-principles plane-wave pseudopotential method within density functional theory, we have systematically investigated structural, electronic, and mechanical properties of M2Y6X6 , Y6X6 ( X=Se,Te,S ; Y=Mo,Cr,W ; and M=Li,Na ) nanowires and bulk phase of M2Y6X6 . We found that not only Mo6X6 , but also transition metal and chalcogen atoms lying in the same columns of Mo and Se can form stable nanowires consisting of staggered triangles of Y3X3 . We have shown that all wires have nonmagnetic ground states in their equilibrium geometry. Furthermore, these structures can be either a metal or semiconductor depending on the type of chalcogen element. All Y6X6 wires with X=Te atom are semiconductors. Mechanical stability, elastic stiffness constants, breaking point, and breaking force of these wires have been calculated in order to investigate the strength of these wires. Ab initio molecular dynamic simulations performed at 500K suggest that overall structure remains unchanged at high temperature. Adsorption of H, O, and transition metal atoms like Cr and Ti on Mo6Se6 have been investigated for possible functionalization. All these elements interact with Mo6Se6 wire forming strong chemisorption bonds, and a permanent magnetic moment is induced upon the adsorption of Cr or Ti atoms. Molybdenum selenide-type nanowires can be alternative for carbon nanotubes, since the crystalline ropes consisting of one type of (M2)Y6X6 structures can be decomposed into individual nanowires by using solvents, and an individual nanowire by itself is either a metal or semiconductor and can be functionalized.

  20. Field-effect transistors from lithographically patterned cadmium selenide nanowire arrays.

    PubMed

    Ayvazian, Talin; Xing, Wendong; Yan, Wenbo; Penner, Reginald M

    2012-09-26

    Field-effect transistors (NWFETs) have been prepared from arrays of polycrystalline cadmium selenide (pc-CdSe) nanowires using a back gate configuration. pc-CdSe nanowires were fabricated using the lithographically patterned nanowire electrodeposition (LPNE) process on SiO(2)/Si substrates. After electrodeposition, pc-CdSe nanowires were thermally annealed at 300 °C × 4 h either with or without exposure to CdCl(2) in methanol-a grain growth promoter. The influence of CdCl(2) treatment was to increase the mean grain diameter from 10 to 80 nm as determined by grazing incidence X-ray diffraction and to convert the crystal structure from cubic to wurtzite. Measured transfer characteristics showed an increase of the field effect mobility (μ(eff)) by an order of magnitude from 1.94 × 10(-4) cm(2)/(V s) to 23.4 × 10(-4) cm(2)/(V s) for pc-CdSe nanowires subjected to the CdCl(2) treatment. The CdCl(2) treatment also reduced the threshold voltage (from 20 to 5 V) and the subthreshold slope (by ~35%). Transfer characteristics for pc-CdSe NWFETs were also influenced by the channel length, L. For CdCl(2)-treated nanowires, μ(eff) was reduced by a factor of eight as L increased from 5 to 25 μm. These channel length effects are attributed to the presence of defects including breaks and constrictions within individual pc-CdSe nanowires.

  1. Exploring the doping effects of copper on thermoelectric properties of lead selenide

    NASA Astrophysics Data System (ADS)

    Gayner, Chhatrasal; Sharma, Raghunandan; Mallik, Iram; Das, Malay K.; Kar, Kamal K.

    2016-07-01

    In this work, we have explored the effect of dopant concentration (copper (Cu)) on the thermoelectric performance of Cu doped lead selenide (Pb1-x Cu x Se (0  ⩽  x  ⩽  0.1)). With increasing the dopant concentration, sign inversion of majority charge carriers takes place for x  ⩾  0.04 due to the donor behaviour of Cu in the P-type pristine PbSe. The room temperature Seebeck coefficients of Pb1-x Cu x Se with x  =  0.01, 0.02, 0.04, 0.06 and 0.08 are observed to be 233, 337, -473.7, -392.5 and  -257.6 μV K-1, respectively as compared to that of 186.4 μV K-1 of the pristine PbSe. This increment in Seebeck coefficient is the result of low carrier concentration and is not related to the resonance states created by Cu dopant. At room temperature, the lattice thermal conductivity of pristine PbSe is 0.52 W m-1 K-1 while for Cu doped PbSe, it varies from 0.8 to 1.1 W m-1 K-1. Finally, with ZT of ~0.59 and power factor of ~700 at 500 K, Pb0.98Cu0.02Se exhibits the highest thermoelectric performance among the studied Pb1-x Cu x Se systems. Owing to the high ZT and power factor, a single thermoelement of Pb0.98Cu0.02Se exhibits thermovoltage of  >100 mV at a temperature gradient of 200 °C.

  2. Parallel molecular dynamics simulations of pressure-induced structural transformations in cadmium selenide nanocrystals

    NASA Astrophysics Data System (ADS)

    Lee, Nicholas Jabari Ouma

    Parallel molecular dynamics (MD) simulations are performed to investigate pressure-induced solid-to-solid structural phase transformations in cadmium selenide (CdSe) nanorods. The effects of the size and shape of nanorods on different aspects of structural phase transformations are studied. Simulations are based on interatomic potentials validated extensively by experiments. Simulations range from 105 to 106 atoms. These simulations are enabled by highly scalable algorithms executed on massively parallel Beowulf computing architectures. Pressure-induced structural transformations are studied using a hydrostatic pressure medium simulated by atoms interacting via Lennard-Jones potential. Four single-crystal CdSe nanorods, each 44A in diameter but varying in length, in the range between 44A and 600A, are studied independently in two sets of simulations. The first simulation is the downstroke simulation, where each rod is embedded in the pressure medium and subjected to increasing pressure during which it undergoes a forward transformation from a 4-fold coordinated wurtzite (WZ) crystal structure to a 6-fold coordinated rocksalt (RS) crystal structure. In the second so-called upstroke simulation, the pressure on the rods is decreased and a reverse transformation from 6-fold RS to a 4-fold coordinated phase is observed. The transformation pressure in the forward transformation depends on the nanorod size, with longer rods transforming at lower pressures close to the bulk transformation pressure. Spatially-resolved structural analyses, including pair-distributions, atomic-coordinations and bond-angle distributions, indicate nucleation begins at the surface of nanorods and spreads inward. The transformation results in a single RS domain, in agreement with experiments. The microscopic mechanism for transformation is observed to be the same as for bulk CdSe. A nanorod size dependency is also found in reverse structural transformations, with longer nanorods transforming more

  3. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  4. The alkaline diet: is there evidence that an alkaline pH diet benefits health?

    PubMed

    Schwalfenberg, Gerry K

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine.

  5. Iron and Your Child

    MedlinePlus

    ... sure to teach kids that iron is an important part of a healthy diet. Foods rich in iron include: beef, pork, poultry, and seafood tofu dried beans and peas dried fruits leafy dark green vegetables iron-fortified breakfast cereals, breads, and pastas (Note: Iron from animal ...

  6. Iron stress in plants.

    PubMed

    Connolly, Erin L; Guerinot, Mary

    2002-07-30

    Although iron is an essential nutrient for plants, its accumulation within cells can be toxic. Plants, therefore, respond to both iron deficiency and iron excess by inducing expression of different gene sets. Here, we review recent advances in the understanding of iron homeostasis in plants gained through functional genomic approaches

  7. Parenteral iron dextran therapy.

    PubMed

    Kumpf, V J; Holland, E G

    1990-02-01

    Parenteral iron therapy is indicated in patients with iron-deficiency anemia associated with conditions that interfere with the ingestion or absorption of oral iron. Replacement doses of iron required to replenish iron stores are based on body weight and the observed hemoglobin value. Methods of administering iron dextran are reviewed, including intramuscular and intravenous injections of the undiluted drug, intravenous infusion of a diluted preparation, and as an addition to parenteral nutrition solutions. The overall incidence of adverse reactions associated with the parenteral administration of iron is low, but the potential for an anaphylactic reaction requires that an initial test dose be given followed by careful patient observation.

  8. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  9. Alkaline electrochemical cells and method of making

    NASA Technical Reports Server (NTRS)

    Hoyt, H. E.; Pfluger, H. L. (Inventor)

    1970-01-01

    Equilibrated cellulose ether membranes of increased electrolytic conductivity for use as separators in concentrated alkaline electrochemical cells are investigated. The method of making such membranes by equilibration to the degree desired in an aqueous alkali solution mantained at a temperature below about 10 C is described.

  10. Kinetics of the alkaline hydrolysis of nitrocellulose.

    PubMed

    Christodoulatos, C; Su, T L; Koutsospyros, A

    2001-01-01

    Cellulose nitrate (nitrocellulose) is an explosive solid substance used in large quantities in various formulations of rocket and gun propellants. Safe destruction of nitrocellulose can be achieved by alkaline hydrolysis, which converts it to biodegradable products that can then be treated by conventional biological processes. The kinetics of the alkaline hydrolysis of munitions-grade nitrocellulose in sodium hydroxide solutions were investigated in completely mixed batch reactors. Experiments were conducted using solutions of alkaline strength ranging from 0.1 to 15% by mass and temperatures in the range of 30 to 90 degrees C. Regression analysis of the kinetic data revealed that alkaline hydrolysis of nitrocellulose is of the order 1.0 and 1.5 with respect to nitrocellulose and hydroxide concentration, respectively. The activation energy of the hydrolysis reaction was found to be 100.9 kJ/mol with a preexponential Arrhenius constant of 4.73 x 10(13). Nitrite and nitrate, in a 3:1 ratio, were the primary nitrogen species present in the posthydrolysis solution. The kinetic information is pertinent to the development and optimization of nitrocellulose chemical-biological treatment systems.

  11. MERCURIC CHLORIDE CAPTURE BY ALKALINE SORBENTS

    EPA Science Inventory

    The paper gives results of bench-scale mechanistic studies of mercury/sorbent reactions that showed that mercuric chloride (HgC12) is readily adsorbed by alkaline sorbents, which may offers a less expensive alternative to the use of activated carbons. A laboratory-scale, fixed-b...

  12. ISSUES WITH ALKALINE TREATMENT OF SLUDGE

    EPA Science Inventory

    This presentation begins with a discussion of the use of lime and other alkaline materials from the very earliest times to the present for killing bacteria, viruses and parasites and for controlling odors in wastewaters and sludge. It answers the question "How did EPA arrive at i...

  13. Parenteral iron supplementation.

    PubMed

    Kumpf, V J

    1996-08-01

    Indications for the use of parenteral iron are limited to conditions in which the oral supplementation of iron is not possible or fails. An overview of iron balance and iron requirements is presented to describe situations in which iron supplementation may be required. When parenteral iron supplementation is required, careful attention to proper dosing and administration is necessary to optimize efficacy and safety. The purpose of this article is to review the literature regarding the clinical use of parenteral iron therapy and provide guidelines on dosing and administration. Methods of iron dextran administration, including the IV and intramuscular injection of undiluted drug and total dose infusion, are compared. Complications associated with the use of parenteral iron are also be reviewed. Finally, the use of iron supplementation in patients receiving parenteral nutrition care explored.

  14. Lithium-aluminum-iron electrode composition

    DOEpatents

    Kaun, Thomas D.

    1979-01-01

    A negative electrode composition is presented for use in a secondary electrochemical cell. The cell also includes an electrolyte with lithium ions such as a molten salt of alkali metal halides or alkaline earth metal halides that can be used in high-temperature cells. The cell's positive electrode contains a a chalcogen or a metal chalcogenide as the active electrode material. The negative electrode composition includes up to 50 atom percent lithium as the active electrode constituent in an alloy of aluminum-iron. Various binary and ternary intermetallic phases of lithium, aluminum and iron are formed. The lithium within the intermetallic phase of Al.sub.5 Fe.sub.2 exhibits increased activity over that of lithium within a lithium-aluminum alloy to provide an increased cell potential of up to about 0.25 volt.

  15. Alkaline earth metal catalysts for asymmetric reactions.

    PubMed

    Kobayashi, Shū; Yamashita, Yasuhiro

    2011-01-18

    The group 2 alkaline earth metals calcium (Ca), strontium (Sr), and barium (Ba) are among the most common elements on Earth, abundant in both the sea and the Earth's crust. Although they are familiar in our daily lives, their application to organic synthesis has, so far, been limited. Some particularly useful properties of these elements include (i) low electronegativity, (ii) a stable oxidation state of +2, meaning that they can potentially form two covalent bonds with anions, and (iii) the ability to occupy a variety of coordination sites due to their large ionic radius. Furthermore, the alkaline earth metals, found between the group 1 and group 3 elements, show mild but significant Lewis acidity, which can be harnessed to control coordinative molecules via a Lewis acid-base interaction. Taken together, these characteristics make the metals Ca, Sr, and Ba very promising components of highly functionalized acid-base catalysts. In this Account, we describe the development of chiral alkaline earth metal catalysts for asymmetric carbon-carbon bond-forming reactions. Recently prepared chiral alkaline earth metal complexes have shown high diastereo- and enantioselectivities in fundamental and important chemical transformations. We chose chiral bisoxazoline (Box) derivatives bearing a methylene tether as a ligand for chiral modification. These molecules are very useful because they can covalently coordinate to alkaline earth metals in a bidentate fashion through deprotonation of the tether portion. It was found that chiral calcium-Box complexes could successfully promote catalytic asymmetric 1,4-addition and [3 + 2] cycloaddition reactions with high diastereo- and enantioselectivities. Both the calcium-Box complexes and chiral strontium-bis-sulfonamide and chiral barium-BINOLate complexes could catalyze asymmetric 1,4-addition reactions with high enantioselectivities. Furthermore, we designed a calcium-neutral coordinative ligand complex as a new type of chiral alkaline

  16. Crystal structure of alkaline cellulase K: insight into the alkaline adaptation of an industrial enzyme.

    PubMed

    Shirai, T; Ishida, H; Noda, J; Yamane, T; Ozaki, K; Hakamada, Y; Ito, S

    2001-07-27

    The crystal structure of the catalytic domain of alkaline cellulase K was determined at 1.9 A resolution. Because of the most alkaliphilic nature and it's highest activity at pH 9.5, it is used commercially in laundry detergents. An analysis of the structural bases of the alkaliphilic character of the enzyme suggested a mechanism similar to that previously proposed for alkaline proteases, that is, an increase in the number of Arg, His, and Gln residues, and a decrease in Asp and Lys residues. Some ion pairs were formed by the gained Arg residues, which is similar to what has been found in the alkaline proteases. Lys-Asp ion pairs are disfavored and partly replaced with Arg-Asp ion pairs. The alkaline adaptation appeared to be a remodeling of ion pairs so that the charge balance is kept in the high pH range.

  17. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments

    USGS Publications Warehouse

    Zehr, J.P.; Oremland, R.S.

    1987-01-01

    Washed cell suspension of Desulfovibrio desulfuricans subsp. aestuarii were capable of reducing nanomolar levels of selenate to selenide as well as sulfate to sulfide. Reduction of these species was inhibited by 1 mM selenate or tungstate. The addition of 1 mM sulfate decreased the reduction of selenate and enhanced the reduction of sulfate. Increasing concentrations of sulfate inhibited rates of selenate reduction but enhanced sulfate reduction rates. Cell suspensions kept in 1 mM selenate were incapable of reducing either selenate or sulfate when the selenate/sulfate ratio was ???0.02, indicating that irreversible inhibition occurs at high selenate concentrations. Anoxic estuarine sediments having an active flora of sulfate-respiring bacteria were capable of a small amount of selenate reduction when ambient sulfate concentrations were low (<4 mM). These results indicate that sulfate is an inhibitor of the reduction of trace qunatitites of selenate. Therefore, direct reduction of traces of selenate to selenide by sulfate-respiring bacteria in natural environments is constrained by the ambient concentration of sulfate ions. The significance of this observation with regard to the role sediments play in sequestering selenium is discussed

  18. Characterization of bismuth selenide (Bi2Se3) thin films obtained by evaporating the hydrothermally synthesised nano-particles

    NASA Astrophysics Data System (ADS)

    Indirajith, R.; Rajalakshmi, M.; Gopalakrishnan, R.; Ramamurthi, K.

    2016-03-01

    Bismuth selenide (Bi2Se3) was synthesized by hydrothermal method at 200 °C and confirmed by powder X-ray diffraction (XRD) studies. The synthesized material was utilized to deposit bismuth selenide thin films at various substrate temperatures (Room Temperature-RT, 150 °C, 250 °C, 350 °C and 450 °C) by electron beam evaporation technique. XRD study confirmed the polycrystalline nature of the deposited Bi2Se3films. Optical transmittance spectra showed that the deposited (at RT) films acquire relatively high average transmittance of 60%in near infrared region (1500-2500 nm). An indirect allowed optical band gap calculated from the absorption edge for the deposited films is ranging from 0.62 to 0.8 eV. Scanning electron and atomic force microscopy analyses reveal the formation of nano-scale sized particles on the surface and that the nature of surface microstructures is influenced by the substrate temperature. Hall measurements showed improved electrical properties, for the films deposited at 350 °C which possess 2.8 times the mobility and 0.9 times the resistivity of the films deposited at RT.

  19. Synthesis and high temperature transport properties of new quaternary layered selenide NaCuMnSe{sub 2}

    SciTech Connect

    Pavan Kumar, V.; Varadaraju, U.V.

    2014-04-01

    Synthesis and high temperature transport properties of NaCu{sub 1+x}Mn{sub 1−x}Se{sub 2}, (x=0−0.75) a new quaternary layered selenide, are reported. NaCuMnSe{sub 2} crystallizes in a trigonal unit cell with space group of P-3m1 (a=4.1276 Å, c=7.1253 Å). The isovalent substitution of Mn{sup 2+} by Cu{sup 2+} is carried out. All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. Compositions with x=0 and 0.025 follow thermally activated behavior. With increase in copper concentration the conduction mechanism transforms to 2D variable range hopping (VRH) for x=0.05 and 0.075. - Graphical abstract: Crystal structure of NaCuMnSe{sub 2}. - Highlights: • A new quaternary layered selenide NaCuMnSe{sub 2} is synthesized. • All the compositions show semiconducting nature, whereas the Seebeck coefficient increases gradually over the entire measured temperature range. • Conduction mechanism transforms from thermally activated behavior to 2D variable range hopping with increase in copper concentration.

  20. Room temperature chemical bath deposition of cadmium selenide, cadmium sulfide and cadmium sulfoselenide thin films with novel nanostructures

    NASA Astrophysics Data System (ADS)

    VanderHyde, Cephas A.; Sartale, S. D.; Patil, Jayant M.; Ghoderao, Karuna P.; Sawant, Jitendra P.; Kale, Rohidas B.

    2015-10-01

    A simple, convenient and low cost chemical synthesis route has been used to deposit nanostructured cadmium sulfide, selenide and sulfoselenide thin films at room temperature. The films were deposited on glass substrates, using cadmium acetate as cadmium ion and sodium selenosulfate/thiourea as a selenium/sulfur ion sources. Aqueous ammonia was used as a complex reagent and also to adjust the pH of the final solution. The as-deposited films were uniform, well adherent to the glass substrate, specularly reflective and red/yellow in color depending on selenium and sulfur composition. The X-ray diffraction pattern of deposited cadmium selenide thin film revealed the nanocrystalline nature with cubic phase; cadmium sulfide revealed mixture of cubic along with hexagonal phase and cadmium sulfoselenide thin film were grown with purely hexagonal phase. The morphological observations revealed the growth and formation of interesting one, two and three-dimensional nanostructures. The band gap of thin films was calculated and the results are reported.

  1. [{Cp2(tBuSe)Nb}2E] (E = O and Se) with bridging oxide or selenide ligands.

    PubMed

    Hector, Andrew L; Jura, Marek; Levason, William; Reid, Gillian; Reid, Stuart D; Webster, Michael

    2008-10-01

    The title compounds, mu-oxido-bis[(tert-butylselenolato)bis(eta(5)-cyclopentadienyl)niobium(IV)] toluene solvate, [Nb(2)(C(5)H(5))(4)(C(4)H(9)Se)(2)O] x C(7)H(8), and mu-selenido-bis[(tert-butylselenolato)bis(eta(5)-cyclopentadienyl)niobium(IV)], [Nb(2)(C(5)H(5))(4)(C(4)H(9)Se)(2)Se], consist of niobium(IV) centres each bonded to two eta(5)-coordinated cyclopentadienyl groups and one tert-butylselenolate ligand and are the first organometallic niobium selenolates to be structurally characterized. A bridging oxide or selenide completes the niobium coordination spheres of the discrete dinuclear molecules. In the oxide, the O atom lies on an inversion centre, resulting in a linear Nb-O-Nb linkage, whereas the selenide has a bent bridging group [Nb-Se-Nb = 139.76 (2) degrees]. The difference is attributable to strong pi bonding in the oxide case, although the effects on the Nb-C and Nb-Se(t)Bu bond lengths are small.

  2. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems.

    PubMed

    Narayanan, Narayanan; Beyene, Getu; Chauhan, Raj Deepika; Gaitán-Solis, Eliana; Grusak, Michael A; Taylor, Nigel; Anderson, Paul

    2015-11-01

    Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.

  3. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Leisch, Jennifer; Taylor, Matthew; Stanbery, Billy J.

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  4. Kinetics of iron removal by phlebotomy in patients with iron overload after allogeneic hematopoietic cell transplantation

    PubMed Central

    Eisfeld, Ann-Kathrin; Krahl, Rainer; Jaekel, Nadja; Niederwieser, Dietger; Al-Ali, Haifa Kathrin

    2012-01-01

    Excess body iron could persist for years after allogeneic hematopoietic cell transplantation (HCT) with possible deleterious sequels. An iron depletive therapy with phlebotomy seems rational. Kinetics of iron removal by phlebotomy without erythropoietin support in non-thalassemic adult patients with iron overload after HCT and the impact of pre- and post-HCT hemochromatosis (HFE) genotype on iron mobilization were investigated. Patients and methods: Phlebotomy was initiated in 61 recipients of allografts due to hematologic malignancies (median age 48 years) after a median of 18 months. The prephlebotomy median serum ferritin (SF) was 1697ng/ml and the median number of blood transfusions 28 units. Alanine aminotransferase (ALT)/aspartate aminotransferase (AST), alkaline phosphates (AP), and bilirubin were elevated in 55.7%, 64% and 11.5% patients respectively. HFE-genotype was elucidated by polymerase chain reaction using hybridization probes and melting curve analysis. Results: Phlebotomy was well-tolerated irrespective of age or conditioning. A negative iron balance in 80% of patients (median SF 1086 ng/ml) and a rise in hemoglobin were observed (p<0.0001). Higher transfusional burden and SF were associated with a greater iron mobilization per session (p=0.02). In 58% of patients, a plateau after an initial steady decline in SF was followed by a second decline under further phlebotomy. The improvement in ALT (p=0.002), AST (p=0.03), AP (p=0.01), and bilirubin (p<0.0001) did not correlate with the decline in SF. Mutant HFE-gene variants were detected in 14/55 (25%) pre-HCT and 22/55 (40%) patients post-HCT. Overall, dissimilar pre- and posttransplantational HFE-genotypes were detected in 20/55 (40%) patients. Posttransplantational mutant HFE variants correlated with a slower decline in SF (p=0.007). Conclusions: Phlebotomy is a convenient therapy of iron overload in survivors of HCT. A negative iron balance and a rise in hemoglobin were observed in the majority of

  5. Crystal structures of the four new quaternary copper(I)-selenides A0.5CuZrSe3 and ACuYSe3(A=Sr, Ba)

    NASA Astrophysics Data System (ADS)

    Maier, Stefan; Prakash, Jai; Berthebaud, David; Perez, Olivier; Bobev, Svilen; Gascoin, Franck

    2016-10-01

    The four new quaternary copper(I)-selenides, Sr0.5CuZrSe3 (a=3.8386(7), b=14.197(2), c=10.1577(17) Å), Ba0.5CuZrSe3 (a=3.8386(7), b=14.196(2), c=10.1577(17) Å), SrCuYSe3 (a=10.620(2), b=4.1000(8), c=13.540(3) Å) and BaCuYSe3 (a=4.1800(7), b=13.940(2), c=10.6200(17) Å) were synthesized by high-temperature solid state reactions and their crystal structures were determined using single-crystal X-ray diffraction. A0.5CuZrSe3 (A= Sr, Ba) and BaCuYSe3 crystallize in the KCuZrS3 structure type (Cmcm), while SrCuYSe3 is isostructural to Eu2CuS3 (Pnma). All compounds form layered structures in which the charge of the - ∞ 2[CuZrSe3 and 2 - ∞ 2[CuYSe3 ] layers as well as the site occupancy of the A cations depend on the transition metal. Combining the alkaline earth metals Sr and Ba with tetravalent Zr leads to the formation of cation vacancies between the - ∞ 2[CuZrSe3 ] layers and structure type as well as symmetry are determined by the ratio between the cation and transition metal ionic radii r(A2+)/r(M3+/4+).

  6. Stabilizing the spin vortex crystal phase in two-dimensional iron-based superconductors

    NASA Astrophysics Data System (ADS)

    O'Halloran, Joseph; Agterberg, D. F.; Chen, M. X.; Weinert, M.

    2017-02-01

    We present an investigation of the magnetic structure for iron-based superconductors (FeSCs) when inversion symmetry is broken, such as in substrate-supported monolayers or in the presence of a c -axis electric field. We perform group-, mean-field-, and density-functional-theoretic analyses on a model system of monolayer iron selenide (FeSe) on a strontium titanate [SrTiO3 (001)] substrate. Our group- and mean-field-theoretic calculations are more generally applicable to thin films of the rest of the 11 (e.g., FeSe) family of iron-based superconductors, as well as to thin films of the 111 (e.g., LiFeAs) and 1111 (e.g., LaOFeAs) families, as these all belong to the same space group. We find that in systems with a collinear antiferromagnetic phase in bulk, when inversion symmetry is broken, the transition is instead into a "spin vortex crystal" phase and that a further phase transition can occur at a lower temperature in some circumstances. The spin vortex crystal is a C4-symmetric magnetic phase which is related to this parent C2-symmetric collinear antiferromagnetic (stripe) phase which is ubiquitous among the iron-based superconductors.

  7. Epitaxial Growth and Characterization of Iron Chalcogenide/Bismuth Chalcogenide Heterostructures

    NASA Astrophysics Data System (ADS)

    Flanagan, Thomas; Kandala, Abhinav; Lee, Joon Sue; Kempinger, Susan E.; Richardella, Anthony; Samarth, Nitin

    Heterostructures consisting of topological insulators (TIs) interfaced with superconductors and with ferromagnets have been predicted to give rise to phenomena of both fundamental and applied interest. With superconductors, the region of proximity-induced superconductivity should have px + ipy symmetry, and vortices in this region have been predicted to host Majorana modes, which may be useful as quantum bits. With ferromagnets, such phenomena as the topological magnetoelectric effect have been predicted. Iron chalcogenides, such as iron selenide and iron telluride, are ideal candidates for combining with TIs, since, with only minor changes to growth conditions, they can be superconducting, ferromagnetic, or antiferromagnetic. We describe the growth and characterization of heterostructures that combine thin films of the iron and bismuth chalcogenides, focusing on low temperature magnetoresistance measurements. Our measurements reveal a transient hysteretic magnetoresistance with surprisingly long relaxation times (minutes). This phenomenon appears to be a generic characteristic of all heterostructures that interface TIs with magnetic spins, albeit with structure-specific relaxation times. We discuss possible origins of this unusual phenomenon. Funded by ARO/MURI.

  8. The sulphate-reduction alkalinity pump tested

    NASA Astrophysics Data System (ADS)

    Meister, Patrick; Petrishcheva, Elena

    2016-04-01

    Carbonate precipitation has been suggested to be induced by alkalinity increase during sulphate reduction under anoxic conditions. This mechanism may explain the formation of carbonate deposits in shallow marine environments, either within a redox stratified sediment inhabited by phototrophic microbial mats or in shallow water within the photic zone where sulphidic water is upwelling onto the shelf. The alkalinity pump may work as long as the sulphide is not reoxidized to sulphate, a process that would acidify the surrounding. The alkalinity effect of sulphate reduction was recently tested by Aloisi (2008) for microbial mats using a model approach. He found that sulphate reduction does not significantly increase or even decrease carbonate saturation and is unlikely to have played a significant role through Earth history. The model considers many environmental factors, including the effect of carbonate precipitation itself on the carbonate equilbrium and on the alkalinity. We used a modified version of Aloisi's (2008) model to simulate the saturation states of aragonite, calcite and dolomite without the effects of carbonate precipitation. This is necessary to evaluate the effect of microbial metabolisms exclusively on carbonate saturation, since carbonate precipitation is only the consequence, but not the cause of oversaturation. First results show that the saturation state is increased in the zone of phototrophic CO2 uptake. In contrast, the saturation state is strongly decreased in the zone where dissolved oxygen overlaps with dissolved sulphide. Aerobic sulphide oxidation consumes most of the HS- and dissipates most of the alkalinity produced in the sulphate reduction zone below. Hence, our results are consistent with the findings of Aloisi (2008), and they even more clearly show that sulphate reduction does not induce carbonate precipitation nor contributes to carbonate precipitation in combination with phototrophic CO2 uptake. The alkalinity effect of sulphate

  9. [Leucocyte alkaline phosphatase in normal and pathological pregnancy (author's transl)].

    PubMed

    Stark, K H; Zaki, I; Sobolewski, K

    1981-01-01

    The activities of leucocyte alkaline phosphatase were determined in 511 patients with normal and pathological pregnancy. Mean values were compared and the enzyme followed up, and the conclusion was drawn that leucocyte alkaline phosphatase was no safe indicator of foetal condition. No direct relationship were found to exist between leucocyte alkaline phosphatase, total oestrogens, HSAP, HLAP, HPL, and oxytocinase.

  10. Iron Catalyzed Halogenation Processes in Saline Soils

    NASA Astrophysics Data System (ADS)

    Tubbesing, C.; Lippe, S.; Kullik, V.; Hauck, L.; Krause, T.; Keppler, F.; Schoeler, H. F.

    2014-12-01

    Within upcoming years the extent of salt deserts and salt lakes will probably increase due to climate change. It is known that volatile organic halogens (VOX) are released from saline soils and thus higher emissions from these environments are likely expected in the future. The origin of some organohalogens is not reasonably constrained by established natural halogenation processes. Therefore detailed biogeochemical investigations of these environments are necessary to identify the specific halogenation pathways. Redox-sensitive metals like iron are already known as triggers of chemical reactions via so called Fenton and Fenton-like reactions requiring H2O2 which is photochemically produced in water. In this study we collected soil samples from several salt lakes in Western Australia with pH values ranging from 2 to 8. The high pH variability was considered useful to study the impact of iron mobility and availability on halogenation processes. Iron was found to mainly occur as oxides and sulfides within the alkaline soils and acidic soils, respectively. All soil samples were lyophilised and finely ground prior to incubation at 40 °C for 24 h in aqueous solutions. Formation of volatile organic compounds (VOC) and VOX from these soils was observed using GC-FID and GC-MS. When H2O2 was added to the samples much higher concentrations of VOC and VOX were observed. Furthermore, when the pH of the soils was changed towards lower values higher emissions of VOC were also observed. Based on C-H activation processes we delineate a halide containing iron complex as a provider of anions reacting with previously generated hydrocarbon radicals. We suggest iron sulfate derivatives as those complexes which are generated if the above-mentioned natural H2O2 addition to iron sulfates and sulfides occurs. The origin of these complexes is able to explain the halogenation of chemically unreactive alkanes.

  11. Chemical characterization of iron oxide precipitates from wetlands constructed to treat polluted mine drainage

    SciTech Connect

    Fish, C.L.; Partezana, J.M.; Hedin, R.S.

    1996-12-31

    The passive treatment of abandoned mine drainage using wetlands will produce a significant amount of iron rich sludge which will require costly removal and disposal. An alternative to disposal may be the use of this iron oxide material as pigments which could defray some of these costs. In this research, iron deposits from five alkaline mine drainage wetlands were collected and a series of standard tests were run. The tests included loss on ignition, moisture, pH, acid soluble metals, oil absorption, and water soluble matter. The results of these tests were compared to those achieved using commercially available natural and synthetic iron oxides. The results indicate that iron oxides from constructed wetlands have chemical properties that are intermediate to those of natural and synthetic iron oxide products.

  12. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    NASA Astrophysics Data System (ADS)

    Rodriguez-Torres, Marcos R.; Velez, Christian; Zayas, Beatriz; Rivera, Osvaldo; Arslan, Zikri; Gonzalez-Vega, Maxine N.; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo; Primera-Pedrozo, Oliva M.

    2015-06-01

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd2+]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate the

  13. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells.

    PubMed

    Rodriguez-Torres, Marcos R; Velez, Christian; Zayas, Beatriz; Rivera, Osvaldo; Arslan, Zikri; Gonzalez-Vega, Maxine N; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo; Primera-Pedrozo, Oliva M

    2015-06-01

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd(2+)]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate

  14. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    PubMed Central

    Rodriguez-Torres, Marcos R.; Velez, Christian; Zayas, Beatriz; Rivera, Osvaldo; Arslan, Zikri; Gonzalez-Vega, Maxine N.; Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo

    2015-01-01

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd2+]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to evaluate the

  15. Formation of dimethyl selenide and trimethylselenonium from selenobetaine in the rat

    SciTech Connect

    Foster, S.J.; Kraus, R.J.; Ganther, H.E.

    1986-05-15

    The 24-h respiratory excretion of dimethyl selenide (DMSe) and urinary excretion of trimethylselenonium (TMSe) were studied in adult male rats injected with 2 mg Se/kg as selenobetaine ((CH/sub 3/)2Se+CH/sub 2/COOH) or its methyl ester, labeled with /sup 75/Se and /sup 14/C. The DMSe was trapped by means of 20% benzyl chloride in xylene. TMSe was measured by cation exchange high performance liquid chromatography. There was extensive respiratory excretion of DMSe from selenobetaine methyl ester (about 50% of the dose) and from selenobetaine (about 25%). About 12% of the dose was converted to TMSe for both compounds. When the Se-methyl carbons were labeled with /sup 14/C and the selenium with /sup 75/Se, doubly labeled DMSe and TMSe were formed; the /sup 14/C//sup 75/Se ratio in DMSe formed from selenobetaine methyl ester was almost unchanged from that administered, and the ratio in TMSe was only slightly lower than in DMSe. In contrast to its ester, doubly labeled selenobetaine yielded DMSe having a lower /sup 14/C//sup 75/Se ratio (approximately one-half of that administered) and a further decrease was observed between DMSe and TMSe. These data indicate that the (CH3)2Se moiety in selenobetaine methyl ester undergoes facile release to form DMSe, which is directly methylated to form TMSe. Selenobetaine, however, appears to lose a methyl group prior to scission of the Se-CH2COOH bond. The results with selenobetaine also suggest that TMSe generated metabolically is not inert, and can undergo demethylation followed by remethylation; confirmatory evidence for this metabolic instability is provided by the exhalation of (/sup 75/Se)DMSe after the direct administration of (/sup 75/Se)TMSe. When (/sup 75/Se)selenobetaine or its ester was given with the methylene carbon in the acetic acid molabeled with /sup 14/C, only /sup 75/Se was present in the DMSe and TMSe.

  16. Acid rock drainage passive remediation: Potential use of alkaline clay, optimal mixing ratio and long-term impacts.

    PubMed

    Plaza, Fernando; Wen, Yipei; Perone, Hanna; Xu, Yi; Liang, Xu

    2017-01-15

    Acid rock drainage (ARD) is one of the most adverse environmental problems of the mining industry. Surface and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and metals/metalloids. In this study, alkaline clay (AC), an industrial waste with a high alkalinity, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation in waste coal piles. Through a series of laboratory experiments (static and kinetic), complemented with field measurements and geochemical modeling, three important issues associated with this passive and sustainable ARD remediation method were investigated: 1) the potential use of alkaline clay as an ARD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values close to neutral conditions, and, 3) the implications for long-term performance, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a local waste coal site. Through the analysis of the field measurements and the outcome of the laboratory experiments, AC proved to be an effective remediation material for ARD. Compared to those found in mine tailings, the concentrations of contaminants such as iron, manganese or sulfate were significantly reduced with this remediation approach. Moreover, results suggest a reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating. These processes also made the amended layer less porous, thus increased water retention and hindered oxygen diffusion.

  17. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  18. Surfactant-enhanced alkaline flooding field project

    SciTech Connect

    French, T.R.

    1991-10-01

    The Tucker sand of Helper (KS) field is a candidate for surfactant-enhanced alkaline flooding. The geology of the Helper site is typical of many DOE Class I reservoirs. The Tucker sand of Helper field was deposited in a fluvial dominated deltaic environment. Helper oil can be mobilized with either chemical system 2 or chemical system 3, as described in this report. Oil fields in the Gulf Coast region are also good candidates for surfactant-enhanced alkaline flooding. The results from laboratory tests conducted in Berea sandstone cores with oil brine from Helper (KS) field are encouraging. The crude oil is viscous and non-acidic and, yet, was mobilized by the chemical formulations described in this report. Significant amounts of the oil were mobilized under simulated reservoir conditions. The results in Berea sandstone cores were encouraging and should be verified by tests with field core. Consumption of alkali, measured with field core, was very low. Surfactant loss appeared to be acceptable. Despite the good potential for mobilization of Helper oil, certain reservoir characteristics such as low permeability, compartmentalization, and shallow depth place constraints on applications of any chemical system in the Tucker sand. These constraints are typical of many DOE Class I reservoirs. Although Hepler field is not a perfect reservoir in which to apply surfactant- enhanced alkaline flooding, Hepler oil is particularly amenable to mobilization by surfactant-enhanced alkaline systems. A field test is recommended, dependent upon final evaluation of well logs and cores from the proposed pilot area. 14 refs., 21 figs., 10 tabs.

  19. The alkaline earth intercalates of molybdenum disulfide

    NASA Technical Reports Server (NTRS)

    Somoano, R. B.; Hadek, V.; Rembaum, A.; Samson, S.; Woollam, J. A.

    1975-01-01

    Molybdenum disulfide has been intercalated with calcium and strontium by means of the liquid ammonia technique. Chemical, X-ray, and superconductivity data are presented. The X-ray data reveal a lowering of crystal symmetry and increase of complexity of the structure upon intercalation with the alkaline earth metals. The Ca and Sr intercalates start to superconduct at 4 and 5.6 K, respectively, and show considerable anisotropy regarding the critical magnetic field.

  20. Alkaline earth cation extraction from acid solution

    DOEpatents

    Dietz, Mark; Horwitz, E. Philip

    2003-01-01

    An extractant medium for extracting alkaline earth cations from an aqueous acidic sample solution is described as are a method and apparatus for using the same. The separation medium is free of diluent, free-flowing and particulate, and comprises a Crown ether that is a 4,4'(5')[C.sub.4 -C.sub.8 -alkylcyclohexano]18-Crown-6 dispersed on an inert substrate material.

  1. Oxidation catalysts on alkaline earth supports

    DOEpatents

    Mohajeri, Nahid

    2017-03-21

    An oxidation catalyst includes a support including particles of an alkaline earth salt, and first particles including a palladium compound on the support. The oxidation catalyst can also include precious metal group (PMG) metal particles in addition to the first particles intermixed together on the support. A gas permeable polymer that provides a continuous phase can completely encapsulate the particles and the support. The oxidation catalyst may be used as a gas sensor, where the first particles are chemochromic particles.

  2. Inhibition of Alkaline Phosphatase by Several Diuretics

    DTIC Science & Technology

    1980-01-01

    August 20th, 1979) . . Summary , . Acetazolamide, furosemide, ethacrynic acid and chlorothiazide, diuretics of considerable structural diversity, inhibit...Ki is calculated to be 8.4, 7.0, 2.8 and 0.1 mmol/l for acetazolamide, furosemide, ethacrynic acid and chlorothiazide, respectively. Chlorothiazide...is a much more potent inhibitor of alkaline phos- phatase than the other three diuretics. The combination of ethacrynic acid and cysteine, itself an

  3. Coordinate responses to alkaline pH stress in budding yeast

    PubMed Central

    Serra-Cardona, Albert; Canadell, David; Ariño, Joaquín

    2015-01-01

    Alkalinization of the medium represents a stress condition for the budding yeast Saccharomyces cerevisiae to which this organism responds with profound remodeling of gene expression. This is the result of the modulation of a substantial number of signaling pathways whose participation in the alkaline response has been elucidated within the last ten years. These regulatory inputs involve not only the conserved Rim101/PacC pathway, but also the calcium-activated phosphatase calcineurin, the Wsc1-Pkc1-Slt2 MAP kinase, the Snf1 and PKA kinases and oxidative stress-response pathways. The uptake of many nutrients is perturbed by alkalinization of the environment and, consequently, an impact on phosphate, iron/copper and glucose homeostatic mechanisms can also be observed. The analysis of available data highlights cases in which diverse signaling pathways are integrated in the gene promoter to shape the appropriate response pattern. Thus, the expression of different genes sharing the same signaling network can be coordinated, allowing functional coupling of their gene products. PMID:28357292

  4. High-Strength / High Alkaline Resistant Fe-Phosphate Glass Fibers as Concrete Reinforcement

    SciTech Connect

    Mariano Velez

    2008-03-31

    Calcium-iron-phosphate glasses were developed whose chemical durabilities in alkaline solutions (pH 13) were comparable or superior to those of commercial alkaline-resistant (AR) silica-based glasses. However, the tensile strength of Ca-Fe-phosphate fibers, after being exposed to alkaline environments, including wet Portland cement pastes, is lower than that of current AR silicate fibers. Another series of Ca-Fe-phosphate glasses were developed with excellent chemical durability in strong acidic solutions (H2SO4, HF), indicating potential applications where silica-based fibers degrade very quickly, including E-glass. The new Ca-Fe-phosphate glasses can be melted and processed 300 to 500°C lower than silica-based glasses. This offers the possibility of manufacturing glass fibers with lower energy costs by 40-60% and the potential to reduce manufacturing waste and lower gas emissions. It was found that Ca-Fe-phosphate melts can be continuously pulled into fibers depending on the slope of the viscosity-temperature curve and with viscosity ~100 poise, using multi-hole Pt/Rh bushings.

  5. Alkaline flooding for enhanced oil recovery

    SciTech Connect

    Gittler, W.E.

    1983-09-01

    There are over 12 active projects of varying size using one of 3 major types of alkaline agents. These include sodium silicate, caustic soda, and soda ash. Among the largest pilots currently is the THUMS project in the Wilmington field, California. Plans called for the injection of a 4% weight concentration of sodium orthosilicate over a 60% PV. Through the first 3 yr, over 27 million bbl of chemicals have been injected. Gulf Oil is operating several alkaline floods, one of which is located off shore in the Quarantine Bay field, Louisiana. In this pilot, sodium hydroxide in a weight concentration of 5 to 12% is being injected. Belco Petroleum Corp. has reported that their pilot operating in the Isenhour Unit in Wyoming is using a .5% weight concentration of soda ash in conjunction with a polymer. Other uses for alkaline agents in chemical flooding include the use of silicate as a preflush or sacrificial agent in micellar/polymer and surfactant recovery systems. In addition, caustic has been tested in the surface-mixed caustic emulsion process while orthosilicate has been tested in a recovery method known as mobility-controlled caustic floods.

  6. Alkaline phosphatase of Physarum polycephalum is insoluble.

    PubMed

    Furuhashi, Kiyoshi

    2008-02-01

    The plasmodia of Physarum polycephalum grow as multinucleated cells in the presence of sufficient humidity and nutriment. Under non-illuminating conditions, stresses such as low temperature or high concentrations of salts transform the plasmodia into spherules whereas dehydration induces sclerotization. Some phosphatases including protein phosphatase and acid phosphatase have been purified from the plasmodia, but alkaline phosphatase remains to be elucidated. Phosphatase of the plasmodia, spherules and sclerotia was visualized by electrophoresis gel-staining assay using 5-bromo-4-chloro-3-indolyl phosphate. Insoluble fractions of the sclerotia were abundant in phosphatase activity. The phosphatase which was extracted by nonionic detergent was subjected to column chromatography and preparative electrophoresis. Purified phosphatase showed the highest activity at pH 8.8, indicating that this enzyme belongs to alkaline phosphatase. The apparent molecular mass from sodium dodecyl sulfate-polyacrylamide gel electrophoresis under non-reducing condition was estimated to be 100 kDa whereas that under reducing was 105 kDa. An amount of 1% sodium dodecyl sulfate or 0.5 M NaCl had no effects on the activity although the phosphatase showed heat instability, Mg(2+)-dependency and sensitivity to 2-glycerophosphate or NaF. The extracting conditions and enzymatic properties suggest that this alkaline phosphatase which is in a membrane-bound form plays important roles in phosphate metabolism.

  7. Optimization of a Non-arsenic Iron-based Superconductor for Wire Fabrication

    SciTech Connect

    Mitchell, Jonathan E; Hillesheim, D A; Bridges, Craig A; Paranthaman, Mariappan Parans; Gofryk, Krzysztof; Rindfleisch, M; Tomsic, M; Safa-Sefat, Athena

    2015-03-13

    Here we report on the optimization of synthesis of iron selenide-based superconducting powders and the fabrication of selenide-based wire. The powders were synthesized by an ammonothermal method, whereby Ba is intercalated between FeSe layers to produce Bax(NH3)yFe2Se2, with tetragonal structure similar to AFe2X2 (X: As, Se), '122', superconductors. The optimal Tc (up to 38 K) and Meissner and shielding superconducting fractions are obtained from the shortest reaction time (t) of reactants in liquid ammonia (30 min). With the increase of t, a second crystalline 122 phase, with a smaller unit cell, emerges. A small amount of NH3 is released from the structure above ~200 °C, which results in loss of superconductivity. However, in the confined space of niobium/Monel tubing, results indicate there is enough pressure for some of NH3 to remain in the crystal lattice, and thermal annealing can be performed at temperatures of up to 780 °C, increasing wire density and yielded a reasonable Tc ≈ 16 K. Here, we report of the first successful wire fabrication of non-arsenic high-Tc iron-based superconductor. We find that although bulk materials are estimated to carry critical current densities >100 kA cm₋2 (4 K, self-field), the current transport within wires need to be optimized (Jc ~ 1 kA cm₋2).

  8. Iron Therapy for Preterm Infants

    PubMed Central

    Rao, Raghavendra; Georgieff, Michael K.

    2009-01-01

    SYNOPSIS Preterm infants are at risk for both iron deficiency and iron overload. The role of iron in multiple organ functions suggests that iron supplementation is essential for the preterm infant. Conversely, the potential for iron overload and the poorly developed anti-oxidant measures in the preterm infant argues against indiscriminate iron supplementation in this population. The purpose of this article is to review the predisposing factors and consequences of iron deficiency and iron overload in the preterm infant, the current recommendation for iron supplementation and its appropriateness, and describe potential management strategies that strike a balance between iron deficiency and iron toxicity. PMID:19161863

  9. Mesozoic mafic alkaline magmatism of southern Scandinavia

    NASA Astrophysics Data System (ADS)

    Tappe, Sebastian

    2004-11-01

    More than 100 volcanic necks in central Scania (southern Sweden) are the product of Jurassic continental rift-related mafic alkaline magmatism at the southwest margin of the Baltic Shield. They are mainly basanites, with rarer melanephelinites. Both rock groups display overlapping primitive Mg-numbers, Cr and Ni contents, steep chondrite-normalized rare earth element patterns (LaN /YbN = 17 27) and an overall enrichment in incompatible elements. However, the melanephelinites are more alkaline and have stronger high field strength element enrichment than the basanites. The existence of distinct primary magmas is also indicated by heterogeneity in highly incompatible element ratios (e.g. Zr/Nb, La/Nb). Trace element modelling indicates that the magmas were generated by comparably low degrees of melting of a heterogeneous mantle source. Such a source can best be explained by a metasomatic overprint of the mantle lithosphere by percolating evolved melts. The former existence of such alkaline trace element-enriched melts can be demonstrated by inversion of the trace element content of green-core clinopyroxenes and anorthoclase which occur as xenocrysts in the melanephelinites and are interpreted as being derived from crystallization of evolved mantle melts. Jurassic magmatic activity in Scania was coeval with the generation of nephelinites in the nearby Egersund Basin (Norwegian North Sea). Both Scanian and North Sea alkaline magmas share similar trace element characteristics. Mantle enrichment processes at the southwest margin of the Baltic Shield and the North Sea Basin generated trace element signatures similar to those of ocean island basalts (e.g. low Zr/Nb and La/Nb) but there are no indications of plume activity during the Mesozoic in this area. On the contrary, the short duration of rifting, absence of extensive lithospheric thinning, and low magma volumes argue against a Mesozoic mantle plume. It seems likely that the metasomatic imprint resulted from the

  10. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.

    PubMed

    Subhedar, Preeti B; Gogate, Parag R

    2014-01-01

    Alkaline and ultrasound-assisted alkaline pretreatment under mild operating conditions have been investigated for intensification of delignification. The effect of NaOH concentration, biomass loading, temperature, ultrasonic power and duty cycle on the delignification has been studied. Most favorable conditions for only alkaline pretreatment were alkali concentration of 1.75 N, solid loading of 0.8% (w/v), temperature of 353 K and pretreatment time of 6 h and under these conditions, 40.2% delignification was obtained. In case of ultrasound-assisted alkaline approach, most favorable conditions obtained were alkali concentration of 1N, paper loading of 0.5% (w/v), sonication power of 100 W, duty cycle of 80% and pretreatment time of 70 min and the delignification obtained in ultrasound-assisted alkaline approach under these conditions was 80%. The material samples were characterized by FTIR, SEM, XRD and TGA technique. The lignin was recovered from solution by precipitation method and was characterized by FTIR, GPC and TGA technique.

  11. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates

    SciTech Connect

    Ruiz-Santaquiteria, C.; Fernandez-Jimenez, A.; Palomo, A.

    2012-09-15

    This study investigates the effect of the alkaline solution/binder (S/B) ratio on the composition and nanostructure of the reaction products generated in the alkaline activation of aluminosilicates. The experiments used two mixtures of fly ash and dehydroxylated white clay and for each of these, varying proportions of the solution components. The alkali activator was an 8 M NaOH solution (with and without sodium silicate) used at three S/B ratios: 0.50, 0.75 and 1.25. The {sup 29}Si, {sup 27}Al MAS NMR and XRD characterisation of the reaction products reveal that for ratios nearest the value delivering suitable paste workability, the reaction-product composition and structure depend primarily on the nature and composition of the starting materials and the alkaline activator used. However, when an excess alkaline activator is present in the system, the reaction products tend to exhibit SiO{sub 2}/Al{sub 2}O{sub 3} ratios of approximately 1, irrespective of the composition of the starting binder or the alkaline activator.

  12. Iron losses in sweat

    SciTech Connect

    Brune, M.; Magnusson, B.; Persson, H.; Hallberg, L.

    1986-03-01

    The losses of iron in whole body cell-free sweat were determined in eleven healthy men. A new experimental design was used with a very careful cleaning procedure of the skin and repeated consecutive sampling periods of sweat in a sauna. The purpose was to achieve a steady state of sweat iron losses with minimal influence from iron originating from desquamated cells and iron contaminating the skin. A steady state was reached in the third sauna period (second sweat sampling period). Iron loss was directly related to the volume of sweat lost and amounted to 22.5 micrograms iron/l sweat. The findings indicate that iron is a physiological constituent of sweat and derived not only from contamination. Present results imply that variations in the amount of sweat lost will have only a marginal effect on the variation in total body iron losses.

  13. Iron in diet

    MedlinePlus

    The best sources of iron include: Dried beans Dried fruits Eggs (especially egg yolks) Iron-fortified cereals Liver Lean red meat (especially beef) Oysters Poultry, dark red meat Salmon Tuna Whole ...

  14. Serum iron test

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  15. Total iron binding capacity

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  16. Iron deficiency anemia

    MedlinePlus

    ... GM. Disorders of iron homeostasis: iron deficiency and overload. In: Hoffman R, Benz EJ Jr, Silberstein LE, ... to achieve this important distinction for online health information and services. Learn more about A.D.A. ...

  17. Iron supplements (image)

    MedlinePlus

    The mineral iron is an essential nutrient for humans because it is part of blood cells, which carry oxygen to all body cells. There is no conclusive evidence that iron supplements contribute to heart attacks.

  18. Iron and Prochlorococcus

    DTIC Science & Technology

    2009-06-01

    iron deprivation in cyanobacteria include loss of pigmentation (chlorosis), changes in the fluorescence/ absorbance wavelengths of chlorophyll a...77 Figure 3: MED4 photosynthetic efficiency and isiB expression during iron stress. ……………………….79 Figure 4: Global expression response of...cyanobacteria, iron is best known for its role as a cofactor in photosynthetic electron transfer. In fact, 22 atoms of iron are considered necessary for the

  19. A novel polysaccharide isolated from mulberry fruits (Murus alba L.) and its selenide derivative: structural characterization and biological activities.

    PubMed

    Chen, Chun; Zhang, Bin; Fu, Xiong; Liu, Rui Hai

    2016-06-15

    A novel polysaccharide (MFP3P) was isolated from Murus alba L. through the hot water extraction method followed by chromatographic purification. The chemical structure of MFP3P was elucidated by acid hydrolysis, Smith degradation and methylation analysis, along with FT-IR, GC-MS, (1)H and (13)C NMR spectroscopy. Its morphological properties were further characterized by SEM and AFM. The selenide of the polysaccharide (MFP3P-Se) was obtained by the Na2SeO3/BaCl2 method. The antioxidant properties showed that MFP3P-Se exhibited higher peroxy radical-scavenging capacity than MFP3P in vitro. Moreover, MFP3P-Se had more significant hypoglycemic effects than MFP3P through promoting pancreatic cell proliferation and increasing glucose metabolism and insulin secretion.

  20. Calculation of the structural parameters of small cadmium selenide clusters, (CdSe)n, n = 1,2,3

    NASA Astrophysics Data System (ADS)

    Alselawe, A. I. A.; Gopir, G.; Anas, M. M.

    2016-11-01

    The structural parameters of small cadmium selenide clusters (CdSe)n, for n=1,2, and 3 were studied. The calculations were performed using the pseudopotential and planewave basis sets, within the density functional theory. These parameters for geometry optimization can be used as elementary information for further investigations. The total energy calculations for the three linear structures of (CdSe)2 showed that these isomers are close in their stability. The rhombus structure (CdSe)2 planar is more stable isomer. The bond distances for the different structures show that the distances decrease with increasing the atoms in the structure. The calculated bond angles were close to other relevant studies.

  1. Observation of Low-Temperature Softening of Transverse Elastic Modulus Due to Cobalt Impurities in Mercury Selenide

    NASA Astrophysics Data System (ADS)

    Zhevstovskikh, Irina V.; Okulov, Vsevolod I.; Gudkov, Vladimir V.; Sarychev, Maksim N.; Medvedev, Kirill A.; Andriichuk, Myroslav D.; Paranchich, Lidiya D.

    2016-12-01

    Influence on elastic moduli of donor electron d-states of cobalt impurities has been investigated in mercury selenide crystals. Experiments have been carried out at the frequency of 53 MHz in the temperature interval of 1.3-100 K. Softening of the (C_{11} - C_{12})/2 modulus below 10 K has been observed in the impurity crystals in contrast with the (C_{11} + C_{12} + 2C_{44})/2 and C_{44} moduli those have exhibited hardening at cooling typical for dielectric and semiconductor crystals. The softening of the elastic modulus has been interpreted as manifestation of hybridization of the impurity d-states in the conduction band of the crystal. Comparison of theoretical calculations with experimental data has been proved to be in good agreement and has made it possible to determine the parameters characterizing the hybridized electron states.

  2. Determination of trace amounts of iron in water by a chemiluminescence method

    SciTech Connect

    Pilipenko, A.T.; Bogoslovskaya, a T.A.; Terletskaya, A.V.

    1986-09-01

    The authors used the chemiluminescent oxidation reaction of luminol with hydrogen peroxide to determine iron in waters of various composition (neutral mine, artesian, and deionized waters). The oxidation reaction takes place in a weakly alkaline medium, and the catalyst is iron (III) activated by TETA and DETA. The iron content is evaluated from the intensity of the luminescence. The method is distinguished by its low detection limit (0.04 ng/ml), sufficient selectivity, stability of the luminescence with time, and accessibility of the reagents.

  3. Optoelectronic characteristics of inorganic/organic hybrid device based on poly(N-vinylcarbazole)/ cadmium selenide thin films.

    PubMed

    Tang, Aiwei; Teng, Feng; Hou, Yanbing; Xiong, Sha; Feng, Bin; Qian, Lei; Wang, Yongsheng

    2008-03-01

    Inorganic/organic hybrid light-emitting diodes were easily fabricated with a thin film containing water-soluble cadmium selenide nanocrystals and poly(N-vinylcarbazole) as an emitting layer by a spin-coating method. The cadmium selenide nanocrystals were synthesized in aqueous solution with L-cysteine hydrochloride as the stabilizer and were transferred from the aqueous solution into chloroform by a cationic surfactant cetyltrimethyl ammonium bromide. A broad emission spanning the whole visible wavelength range was obtained from the inorganic/organic hybrid devices whether poly(N-vinylcarbazole) was present in the devices or not, and the electroluminescence intensity of the devices increased as the applied voltages increased. However, an obvious blue-shift of the wavelength was observed with the increasing applied voltages in the device with poly(N-vinylcarbazole). Accordingly, the emission color of the device made with poly(N-vinylcarbazole) could be tuned from white to blue by varying the applied voltages, but the emission color of the device made without poly(N-vinylcarbazole) was almost constrained in the white region. This can be attributed to a limited contribution of poly(N-vinylcarbazole) emission to the electroluminescence spectra under the higher applied voltage. By comparing the electroluminescence intensity and the current-voltage characteristics of the devices made with and without poly(N-vinylcarbazole), the performance of the device with poly(N-vinylcarbazole) was improved greatly, which indicated that poly(N-vinylcarbazole) played an important role in the carrier injection and transportation in the device with poly(N-vinylcarbazole).

  4. Mackinawite and greigite in ancient alkaline hydrothermal chimneys: Identifying potential key catalysts for emergent life

    NASA Astrophysics Data System (ADS)

    White, Lauren M.; Bhartia, Rohit; Stucky, Galen D.; Kanik, Isik; Russell, Michael J.

    2015-11-01

    One model for the emergence of life posits that ancient, low temperature, submarine alkaline hydrothermal vents, partly composed of iron-sulfides, were capable of catalyzing the synthesis of prebiotic organic molecules from CO2, H2 and CH4. Specifically, hydrothermal mackinawite (FeIIS) and greigite (FeIIFeIII2S4) have been highlighted in previous studies as analogs of the active centers of hydrogenase, ferredoxin, acetyl coenzyme-A synthase and carbon monoxide dehydrogenase featured in the biochemistry of certain autotrophic prokaryotes that occupy the base of the evolutionary tree. Despite the proposed importance of iron sulfide minerals and clusters in the synthesis of abiotic organic molecules, the mechanisms for the formation of these sulfides from solution and their preservation under the anoxic and low temperature (below 100 °C) conditions expected in off-axis submarine alkaline vent systems is not well understood (Bourdoiseau et al., 2011; Rickard and Luther, 2007). To rectify this, single hydrothermal chimneys were precipitated using a unique apparatus to simulate growth at hydrothermal vents of moderate temperature under supposed Hadean ocean-bottom conditions. Iron sulfide phases were observed through Raman spectroscopy at growth temperatures ranging from 40° to 80 °C. Fe(III)-containing mackinawite is confirmed to be present with mackinawite and greigite, supporting an FeIII-mackinawite intermediate mechanism for the transformation of mackinawite to greigite below 100 °C. Raman spectroscopy of the chimneys revealed a maximum yield of greigite at 75 °C. These results suggest abiotic production of catalytically active mackinawite and greigite are possible under early Earth hydrothermal conditions as well as on other wet, rocky worlds geochemically similar to the Earth.

  5. Magnetite solubility and phase stability in alkaline media at elevated temperatures

    SciTech Connect

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1994-05-01

    Magnetite, Fe{sub 3}O{sub 4}, is the dominant oxide constituent of the indigenous corrosion layers that form on iron base alloys in high purity, high temperature water. The apparent simultaneous stability of two distinct oxidation states of iron in this metal oxide is responsible for its unique solubility behavior. The present work was undertaken to extend the experimental and theoretical bases for estimating solubilities of an iron corrosion product (Fe{sub 3}O{sub 4}/Fe(OH){sub 2}) over a broader temperature range and in the presence of complexing, pH-controlling reagents. These results indicate that a surface layer of ferrous hydroxide controls magnetite solubility behavior at low temperatures in much the same manner as a surface layer of nickel(II) hydroxide was previously reported to control the low temperature solubility behavior of NiO. The importance of Fe(III) ion complexes implies not only that most previously-derived thermodynamic properties of the Fe(OH){sub 3}{sup {minus}} ion are incorrect, but that magnetite phase stability probably shifts to favor a sodium ferric hydroxyphosphate compound in alkaline sodium phosphate solutions at elevated temperatures. The test methodology involved pumping alkaline solutions of known composition through a bed of Fe{sub 3}O{sub 4} granules and analyzing the emerging solution for Fe. Two pH-controlling reagents were tested: sodium phosphate and ammonia. Equilibria for the following reactions were described in thermodynamic terms: (a) Fe(OH){sub 2}/Fe{sub 3}O{sub 4} dissolution and transformation, (b) Fe(II) and Fe(III) ion hydroxocomplex formation (hydrolysis), (c) Fe(II) ion amminocomplex formation, and (d) Fe(II) and Fe(III) ion phosphatocomplex formation. 36 refs.

  6. Iron, radiation, and cancer.

    PubMed Central

    Stevens, R G; Kalkwarf, D R

    1990-01-01

    Increased iron content of cells and tissue may increase the risk of cancer. In particular, high available iron status may increase the risk of a radiation-induced cancer. There are two possible mechanisms for this effect: iron can catalyze the production of oxygen radicals, and it may be a limiting nutrient to the growth and development of a transformed cell in vivo. Given the high available iron content of the western diet and the fact that the world is changing to the western model, it is important to determine if high iron increases the risk of cancer. PMID:2269234

  7. Desialylated alkaline phosphatase: activation by 4-nitrophenol.

    PubMed

    Nayudu, P R

    1984-01-01

    Mouse ileal alkaline phosphatase is a sialyl enzyme (12-14 moles per mole of enzyme). When partially desialylated by treatment with neuraminidase, the enzyme loses most of its activity, associated with reduced apparent Vmax and Km. Part of that loss, however, is recovered as the product 4-nitrophenol's concentration builds up in the cuvette. Experimental results are presented to demonstrate that the activation is due to the binding of 4-nitrophenol as a ligand by the partially desialylated enzyme and that both the loss of activity by sialic acid removal and activation by ligand-binding are correlated with changes in protein conformation.

  8. Factors influencing lead and iron release from some Egyptian drinking water pipes.

    PubMed

    Lasheen, M R; Sharaby, C M; El-Kholy, N G; Elsherif, I Y; El-Wakeel, S T

    2008-12-30

    The major objective of this study is to assess the effect of stagnation time, pipe age, pipes material and water quality parameters such as pH, alkalinity and chloride to sulfate mass ratio on lead and iron release from different types of water pipes used in Egypt namely polyvinyl chloride (PVC), polypropylene (PP) and galvanized iron (GI), by using fill and dump method. Low pH increased lead and iron release from pipes. Lead and iron release decreased as pH and alkalinity increased. Lead and iron release increased with increasing chloride to sulfate mass ratio in all pipes. EDTA was used as an example of natural organic matter which may be influence metals release. It is found that lead and iron release increased then this release decreased with time. In general, GI pipes showed to be the most effected by water quality parameters tested and the highest iron release. PVC pipes are the most lead releasing pipes while PP pipes are the least releasing.

  9. RNA Oligomerization in Laboratory Analogues of Alkaline Hydrothermal Vent Systems.

    PubMed

    Burcar, Bradley T; Barge, Laura M; Trail, Dustin; Watson, E Bruce; Russell, Michael J; McGown, Linda B

    2015-07-01

    Discovering pathways leading to long-chain RNA formation under feasible prebiotic conditions is an essential step toward demonstrating the viability of the RNA World hypothesis. Intensive research efforts have provided evidence of RNA oligomerization by using circular ribonucleotides, imidazole-activated ribonucleotides with montmorillonite catalyst, and ribonucleotides in the presence of lipids. Additionally, mineral surfaces such as borates, apatite, and calcite have been shown to catalyze the formation of small organic compounds from inorganic precursors (Cleaves, 2008 ), pointing to possible geological sites for the origins of life. Indeed, the catalytic properties of these particular minerals provide compelling evidence for alkaline hydrothermal vents as a potential site for the origins of life since, at these vents, large metal-rich chimney structures can form that have been shown to be energetically favorable to diverse forms of life. Here, we test the ability of iron- and sulfur-rich chimneys to support RNA oligomerization reactions using imidazole-activated and non-activated ribonucleotides. The chimneys were synthesized in the laboratory in aqueous "ocean" solutions under conditions consistent with current understanding of early Earth. Effects of elemental composition, pH, inclusion of catalytic montmorillonite clay, doping of chimneys with small organic compounds, and in situ ribonucleotide activation on RNA polymerization were investigated. These experiments, under certain conditions, showed successful dimerization by using unmodified ribonucleotides, with the generation of RNA oligomers up to 4 units in length when imidazole-activated ribonucleotides were used instead. Elemental analysis of the chimney precipitates and the reaction solutions showed that most of the metal cations that were determined were preferentially partitioned into the chimneys.

  10. Gelatin hydrolysates from farmed Giant catfish skin using alkaline proteases and its antioxidative function of simulated gastro-intestinal digestion.

    PubMed

    Ketnawa, Sunantha; Martínez-Alvarez, Oscar; Benjakul, Soottawat; Rawdkuen, Saroat

    2016-02-01

    This work aims to evaluate the ability of different alkaline proteases to prepare active gelatin hydrolysates. Fish skin gelatin was hydrolysed by visceral alkaline-proteases from Giant catfish, commercial trypsin, and Izyme AL®. All antioxidant activity indices of the hydrolysates increased with increasing degree of hydrolysis (P<0.05). The hydrolysates obtained with Izyme AL® and visceral alkaline-proteases showed the highest and lowest radical scavenging capacity, while prepared with commercial trypsin was the most effective in reducing ferric ions and showed the best metal chelating properties. The hydrolysate obtained with Izyme AL® showed the lowest iron reducing ability, but provided the highest average molecular weight (⩾ 7 kDa), followed by commercial trypsin (2.2 kDa) and visceral alkaline-proteases (1.75 kDa). After in vitro gastrointestinal digestion, the hydrolysates showed significant higher radical scavenging, reducing ferric ions and chelating activities. Gelatin hydrolysates, from fish skin, could serve as a potential source of functional food ingredients for health promotion.

  11. Porewater evidence for a dynamic sedimentary iron cycle in salt marshes

    SciTech Connect

    Giblin, A.E.; Howarth, R.W.

    1984-01-01

    Dynamic transformations of iron occur seasonally at Great Sippewissett March, Massachusetts. Small changes in the dissolved iron concentration in porewater represent only a small fraction of the iron involved in transformation reactions during the year. During the growing seasons, salt marsh grasses oxidize the sediment, and a large percentage of sedimentary pyrite is converted to an oxidized iron mineral. Over the fall and winter there is a net increase in pyrite as the grass is anaerobically decomposed. When oxidation rates in summer are high enough to neutralize the alkalinity produced by sulfate reduction and substantially lower the pH, oxidized iron minerals become increasingly soluble and iron levels in the porewater increase. If large amounts of soluble iron are lost by tidal flushing, iron availability may limit pyrite formation in later years. For most of the year the porewaters of Great Sippewissett were undersaturated with respect to all iron monosulfide minerals and supersaturated with respect to pyrite (FeS/sub 2/). Thus pyrite formations at Great Sippewissett probably occurs directly by reaction of polysulfides with iron and not by reactions of FeS with elemental sulfur. Porewaters were always undersaturated with respect to manganese minerals.

  12. The alkaline solution to the emergence of life: energy, entropy and early evolution.

    PubMed

    Russell, Michael J

    2007-01-01

    The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun's rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane--separate products of the precursor to the reductive acetyl-coenzyme-A pathway-are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester 'ready-made' iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid-base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through

  13. Selenium as a Structural Surrogate of Sulfur: Template-Assisted Assembly of Five Types of Tungsten-Iron-Sulfur/Selenium Clusters and the Structural Fate of Chalcogenide Reactants

    PubMed Central

    Zheng, Bo; Chen, Xu-Dong; Zheng, Shao-Liang; Holm, R. H.

    2012-01-01

    Syntheses of five types of tungsten-iron-sulfur/selenium clusters–incomplete cubanes, single cubanes, edge-bridged double cubanes (EBDCs), PN-type clusters, and double-cuboidal clusters–have been devised based on the concept of template-assisted assembly. The template reactant is six-coordinate [(Tp*)WVIS3]1−, which in the assembly systems organizes FeII,III and sulfide/selenide into cuboidal [(Tp*)WFe2S3] or cubane [(Tp*)WFe3S3Q] units. With appropriate terminal iron ligation, these units are capable of independent existence or may be transformed into higher nuclearity species. Selenide is used as a surrogate for sulfide in cluster assembly in order to determine by X-ray structures the position occupied by an external chalcogenide nucleophile or an internal chalcogenide atom in product clusters. Specific incorporation of selenide is demonstrated by formation of [WFe3S3Se]2+,3+ cubane cores. Reductive dimerization of the cubane leads to the EBDC core [W2Fe6S6Se2]2+ containing μ4-Se sites. Reaction of these species with HSe− affords the PN-type cores [W2Fe6S6Se3]1+ in which selenide occupies μ6-Se and μ2-Se sites. Reaction of [(Tp*)WS3]1−, FeCl2, and Na2Se results in the double cuboidal [W2Fe4S6Se3]2+,0 core with μ2-Se and μ4-Se bridges. It is highly probable that in analogous sulfide-only assembly systems, external and internal sulfide reactants occupy corresponding positions in cluster products. The results further demonstrate the viability of template-assisted cluster synthesis inasmuch as the reduced (Tp*)WS3 unit is present in all clusters. Structures, zero-field Mössbauer data, and redox potentials are presented for all cluster types. (Tp* = tris(pyrazolyl)hydroborate(1−)) PMID:22424175

  14. Alkaline chemistry of transuranium elements and technetium and the treatment of alkaline radioactive wastes

    SciTech Connect

    Delegard, C.H.; Peretrukhin, V.F.; Shilov, V.P.; Pikaev, A.K.

    1995-05-01

    Goal of this survey is to generalize the known data on fundamental physical-chemical properties of TRUs and Tc, methods for their isolation, and to provide recommendations that will be useful for partitioning them from alkaline high-level wastes.

  15. New rat models of iron sucrose-induced iron overload.

    PubMed

    Vu'o'ng Lê, Bá; Khorsi-Cauet, Hafida; Villegier, Anne-Sophie; Bach, Véronique; Gay-Quéheillard, Jérôme

    2011-07-01

    The majority of murine models of iron sucrose-induced iron overload were carried out in adult subjects. This cannot reflect the high risk of iron overload in children who have an increased need for iron. In this study, we developed four experimental iron overload models in young rats using iron sucrose and evaluated different markers of iron overload, tissue oxidative stress and inflammation as its consequences. Iron overload was observed in all iron-treated rats, as evidenced by significant increases in serum iron indices, expression of liver hepcidin gene and total tissue iron content compared with control rats. We also showed that total tissue iron content was mainly associated with the dose of iron whereas serum iron indices depended essentially on the duration of iron administration. However, no differences in tissue inflammatory and antioxidant parameters from controls were observed. Furthermore, only rats exposed to daily iron injection at a dose of 75 mg/kg body weight for one week revealed a significant increase in lipid peroxidation in iron-treated rats compared with their controls. The present results suggest a correlation between iron overload levels and the dose of iron, as well as the duration and frequency of iron injection and confirm that iron sucrose may not play a crucial role in inflammation and oxidative stress. This study provides important information about iron sucrose-induced iron overload in rats and may be useful for iron sucrose therapy for iron deficiency anemia as well as for the prevention and diagnosis of iron sucrose-induced iron overload in pediatric patients.

  16. Vanadium-catalyzed selenide oxidation with in situ [2,3] sigmatropic rearrangement (SOS reaction): scope and asymmetric applications†‡

    PubMed Central

    Campbell Bourland, T.; Yokochi, Alexandre F. T.

    2008-01-01

    A vanadium-catalyzed method for the oxidation of prochiral aryl, allylic selenides with tandem [2,3] sigmatropic rearrangement has been developed. This protocol has been screened on a series of substrates to test for its generality and effectiveness. The applicability of this methodology to the synthesis of enantiomerically enriched allylic alcohols has been studied on a series of chiral oxazole-containing systems with a diastereomeric ratio (d.r.) of up to 85 : 15. The chiral transfer observed in the allyl alcohol products is the result of a net 1,9- and/or 1,10-induction. Finally, the first example of a selenium–oxygen nonbonding interaction in oxazole-containing selenide appears to have been observed via X-ray crystal analysis. PMID:15105922

  17. Passively Q-switched Erbium-doped and Ytterbium-doped fibre lasers with topological insulator bismuth selenide (Bi2Se3) as saturable absorber

    NASA Astrophysics Data System (ADS)

    Haris, H.; Harun, S. W.; Muhammad, A. R.; Anyi, C. L.; Tan, S. J.; Ahmad, F.; Nor, R. M.; Zulkepely, N. R.; Arof, H.

    2017-02-01

    This paper portrays a simple Q-switched Erbium-doped fibre (EDF) and Ytterbium doped fibre (YDF) lasers by using topological insulator (TI) Bismuth Selenide (Bi2Se3) as saturable absorber. The modulation depth of the fabricated Bi2Se3 is about 39.8% while its saturating intensity is about 90.2 MW/cm2. By depositing the TI Bi2Se3 SA onto fibre ferrules and incorporate it inside the proposed cavity, a stable Q-switching operation was achieved at 1 μm and 1.5 μm. The fabricated Bismuth Selenide (Bi2Se3) as saturable absorber (SA) is a broadband SA where it offers a compact and low cost fabrication which is beneficial in various photonic applications.

  18. Response of Desulfovibrio vulgaris to alkaline stress.

    PubMed

    Stolyar, Sergey; He, Qiang; Joachimiak, Marcin P; He, Zhili; Yang, Zamin Koo; Borglin, Sharon E; Joyner, Dominique C; Huang, Katherine; Alm, Eric; Hazen, Terry C; Zhou, Jizhong; Wall, Judy D; Arkin, Adam P; Stahl, David A

    2007-12-01

    The response of exponentially growing Desulfovibrio vulgaris Hildenborough to pH 10 stress was studied using oligonucleotide microarrays and a study set of mutants with genes suggested by microarray data to be involved in the alkaline stress response deleted. The data showed that the response of D. vulgaris to increased pH is generally similar to that of Escherichia coli but is apparently controlled by unique regulatory circuits since the alternative sigma factors (sigma S and sigma E) contributing to this stress response in E. coli appear to be absent in D. vulgaris. Genes previously reported to be up-regulated in E. coli were up-regulated in D. vulgaris; these genes included three ATPase genes and a tryptophan synthase gene. Transcription of chaperone and protease genes (encoding ATP-dependent Clp and La proteases and DnaK) was also elevated in D. vulgaris. As in E. coli, genes involved in flagellum synthesis were down-regulated. The transcriptional data also identified regulators, distinct from sigma S and sigma E, that are likely part of a D. vulgaris Hildenborough-specific stress response system. Characterization of a study set of mutants with genes implicated in alkaline stress response deleted confirmed that there was protective involvement of the sodium/proton antiporter NhaC-2, tryptophanase A, and two putative regulators/histidine kinases (DVU0331 and DVU2580).

  19. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions.

  20. Advanced inorganic separators for alkaline batteries

    NASA Technical Reports Server (NTRS)

    Sheibley, D. W. (Inventor)

    1982-01-01

    A flexible, porous battery separator comprising a coating applied to a porous, flexible substrate is described. The coating comprises: (1) a thermoplastic rubber-based resin which is insoluble and unreactive in the alkaline electrolyte; (2) a polar organic plasticizer which is reactive with the alkaline electrolyte to produce a reaction product which contains a hydroxyl group and/or a carboxylic acid group; and (3) a mixture of polar particulate filler materials which are unreactive with the electrolyte, the mixture comprising at least one first filler material having a surface area of greater than 25 meters sq/gram, at least one second filler material having a surface area of 10 to 25 sq meters/gram, wherein the volume of the mixture of filler materials is less than 45% of the total volume of the fillers and the binder, the filler surface area per gram of binder is about 20 to 60 sq meters/gram, and the amount of plasticizer is sufficient to coat each filler particle. A method of forming the battery separator is also described.

  1. DNA DAMAGE QUANTITATION BY ALKALINE GEL ELECTROPHORESIS.

    SciTech Connect

    SUTHERLAND,B.M.; BENNETT,P.V.; SUTHERLAND, J.C.

    2004-03-24

    Physical and chemical agents in the environment, those used in clinical applications, or encountered during recreational exposures to sunlight, induce damages in DNA. Understanding the biological impact of these agents requires quantitation of the levels of such damages in laboratory test systems as well as in field or clinical samples. Alkaline gel electrophoresis provides a sensitive (down to {approx} a few lesions/5Mb), rapid method of direct quantitation of a wide variety of DNA damages in nanogram quantities of non-radioactive DNAs from laboratory, field, or clinical specimens, including higher plants and animals. This method stems from velocity sedimentation studies of DNA populations, and from the simple methods of agarose gel electrophoresis. Our laboratories have developed quantitative agarose gel methods, analytical descriptions of DNA migration during electrophoresis on agarose gels (1-6), and electronic imaging for accurate determinations of DNA mass (7-9). Although all these components improve sensitivity and throughput of large numbers of samples (7,8,10), a simple version using only standard molecular biology equipment allows routine analysis of DNA damages at moderate frequencies. We present here a description of the methods, as well as a brief description of the underlying principles, required for a simplified approach to quantitation of DNA damages by alkaline gel electrophoresis.

  2. Thermodynamic model for an alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Verhaert, Ivan; De Paepe, Michel; Mulder, Grietus

    Alkaline fuel cells are low temperature fuel cells for which stationary applications, e.g. cogeneration in buildings, are a promising market. In order to guarantee a long life, water and thermal management has to be done in a careful way. In order to better understand the water, alkali and thermal flows, a two-dimensional model for an Alkaline Fuel Cell is developed using a control volume approach. In each volume the electrochemical reactions together with the mass and energy balance are solved. The model is created in Aspen Custom Modeller, the development environment of Aspen Plus, where special attention is given to the physical flow of hydrogen, water and air in the system. In this way the developed component, the AFC-cell, can be built into stack configurations to understand its effect on the overall performance. The model is validated by experimental data from measured performance by VITO with their Cell Voltage Monitor at a test case, where the AFC-unit is used as a cogeneration unit.

  3. The effect of alkaline agents on retention of EOR chemicals

    SciTech Connect

    Lorenz, P.B.

    1991-07-01

    This report summarizes a literature survey on how alkaline agents reduce losses of surfactants and polymers in oil recovery by chemical injection. Data are reviewed for crude sulfonates, clean anionic surfactants, nonionic surfactants, and anionic and nonionic polymers. The role of mineral chemistry is briefly described. Specific effects of various alkaline anions are discussed. Investigations needed to improve the design of alkaline-surfactant-polymer floods are suggested. 62 refs., 28 figs., 6 tabs.

  4. Role of iron and aluminum coagulant metal residuals and lead release from drinking water pipe materials.

    PubMed

    Knowles, Alisha D; Nguyen, Caroline K; Edwards, Marc A; Stoddart, Amina; McIlwain, Brad; Gagnon, Graham A

    2015-01-01

    Bench-scale experiments investigated the role of iron and aluminum residuals in lead release in a low alkalinity and high (> 0.5) chloride-to-sulfate mass ratio (CSMR) in water. Lead leaching was examined for two lead-bearing plumbing materials, including harvested lead pipe and new lead: tin solder, after exposure to water with simulated aluminum sulfate, polyaluminum chloride and ferric sulfate coagulation treatments with 1-25-μM levels of iron or aluminum residuals in the water. The release of lead from systems with harvested lead pipe was highly correlated with levels of residual aluminum or iron present in samples (R(2) = 0.66-0.88), consistent with sorption of lead onto the aluminum and iron hydroxides during stagnation. The results indicate that aluminum and iron coagulant residuals, at levels complying with recommended guidelines, can sometimes play a significant role in lead mobilization from premise plumbing.

  5. Indefinitely stable iron(IV) cage complexes formed in water by air oxidation

    NASA Astrophysics Data System (ADS)

    Tomyn, Stefania; Shylin, Sergii I.; Bykov, Dmytro; Ksenofontov, Vadim; Gumienna-Kontecka, Elzbieta; Bon, Volodymyr; Fritsky, Igor O.

    2017-01-01

    In nature, iron, the fourth most abundant element of the Earth's crust, occurs in its stable forms either as the native metal or in its compounds in the +2 or +3 (low-valent) oxidation states. High-valent iron (+4, +5, +6) compounds are not formed spontaneously at ambient conditions, and the ones obtained synthetically appear to be unstable in polar organic solvents, especially aqueous solutions, and this is what limits their studies and use. Here we describe unprecedented iron(IV) hexahydrazide clathrochelate complexes that are assembled in alkaline aqueous media from iron(III) salts, oxalodihydrazide and formaldehyde in the course of a metal-templated reaction accompanied by air oxidation. The complexes can exist indefinitely at ambient conditions without any sign of decomposition in water, nonaqueous solutions and in the solid state. We anticipate that our findings may open a way to aqueous solution and polynuclear high-valent iron chemistry that remains underexplored and presents an important challenge.

  6. Iron deficiency anaemia.

    PubMed

    Lopez, Anthony; Cacoub, Patrice; Macdougall, Iain C; Peyrin-Biroulet, Laurent

    2016-02-27

    Anaemia affects roughly a third of the world's population; half the cases are due to iron deficiency. It is a major and global public health problem that affects maternal and child mortality, physical performance, and referral to health-care professionals. Children aged 0-5 years, women of childbearing age, and pregnant women are particularly at risk. Several chronic diseases are frequently associated with iron deficiency anaemia--notably chronic kidney disease, chronic heart failure, cancer, and inflammatory bowel disease. Measurement of serum ferritin, transferrin saturation, serum soluble transferrin receptors, and the serum soluble transferrin receptors-ferritin index are more accurate than classic red cell indices in the diagnosis of iron deficiency anaemia. In addition to the search for and treatment of the cause of iron deficiency, treatment strategies encompass prevention, including food fortification and iron supplementation. Oral iron is usually recommended as first-line therapy, but the most recent intravenous iron formulations, which have been available for nearly a decade, seem to replenish iron stores safely and effectively. Hepcidin has a key role in iron homoeostasis and could be a future diagnostic and therapeutic target. In this Seminar, we discuss the clinical presentation, epidemiology, pathophysiology, diagnosis, and acute management of iron deficiency anaemia, and outstanding research questions for treatment.

  7. The ubiquity of iron.

    PubMed

    Frey, Perry A; Reed, George H

    2012-09-21

    The importance of iron in living systems can be traced to the many complexes within which it is found, to its chemical mobility in undergoing oxidation-reduction reactions, and to the abundance of iron in Earth's crust. Iron is the most abundant element, by mass, in the Earth, constituting about 80% of the inner and outer cores of Earth. The molten outer core is about 8000 km in diameter, and the solid inner core is about 2400 km in diameter. Iron is the fourth most abundant element in Earth's crust. It is the chemically functional component of mononuclear iron complexes, dinuclear iron complexes, [2Fe-2S] and [4Fe-4S] clusters, [Fe-Ni-S] clusters, iron protophorphyrin IX, and many other complexes in protein biochemistry. Metals such as nickel, cobalt, copper, and manganese are present in the crust and could in principle function chemically in place of iron, but they are scarce in Earth's crust. Iron is plentiful because of its nuclear stability in stellar nuclear fusion reactions. It seems likely that other solid planets, formed by the same processes as Earth, would also foster the evolution of life and that iron would be similarly important to life on those planets as it is on Earth.

  8. Synthesis and characterization of (Ni1-xCox)Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Theerthagiri, J.; Senthil, R. A.; Buraidah, M. H.; Raghavender, M.; Madhavan, J.; Arof, A. K.

    2016-06-01

    Ternary metal selenides of (Ni1-xCox)Se2 with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni0.5Co0.5Se2 counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni0.5Co0.5Se2 offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might be due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni0.5Co0.5Se2 counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni0.5Co0.5Se2 as counter electrode in dye-sensitized solar cells.

  9. Electrolytic iron or ferrous sulfate increase body iron in women with moderate to low iron stores.

    PubMed

    Swain, James H; Johnson, LuAnn K; Hunt, Janet R

    2007-03-01

    Commercial elemental iron powders (electrolytic and reduced iron), as well as heme iron supplements, were tested for efficacy in improving the iron status of women. In a randomized, double-blind trial, 51 women with moderate to low iron stores received daily for 12 wk: 1) placebo, 2) 5 mg iron as heme iron or 50 mg iron as 3) electrolytic iron, 4) reduced iron, or 5) FeSO(4). Treatments were provided in 2 capsules (heme carrier) and 3 wheat rolls (other iron sources). Differences in iron status, food nonheme iron absorption, and fecal properties were evaluated. Body iron, assessed from the serum transferrin receptor:ferritin ratio, increased significantly more in subjects administered FeSO(4) (127 +/- 29 mg; mean +/- SEM) and electrolytic (115 +/- 37 mg), but not the reduced (74 +/- 32 mg) or heme (65 +/- 26 mg) iron forms, compared with those given placebo (2 +/- 19 mg). Based on body iron determinations, retention of the added iron was estimated as 3.0, 2.7, 1.8, and 15.5%, in the 4 iron-treated groups, respectively. Iron treatments did not affect food iron absorption. The 50 mg/d iron treatments increased fecal iron and free radical-generating capacity in vitro, but did not affect fecal water cytotoxicity. In subjects administered FeSO(4), fecal water content was increased slightly but significantly more than in the placebo group. In conclusion, electrolytic iron was approximately 86% as efficacious as FeSO(4) for improving body iron, but the power of this study was insufficient to detect any efficacy of the reduced or heme iron within 12 wk. With modification, this methodology of testing higher levels of food fortification for several weeks in healthy women with low iron stores has the potential for economically assessing the efficiency of iron compounds to improve iron status.

  10. Evidence for the involvement of the serotonergic 5-HT2A/C and 5-HT3 receptors in the antidepressant-like effect caused by oral administration of bis selenide in mice.

    PubMed

    Jesse, Cristiano R; Wilhelm, Ethel A; Bortolatto, Cristiani F; Nogueira, Cristina W

    2010-03-17

    The present study investigated a possible antidepressant-like activity of bis selenide using two predictive tests for antidepressant effect on rodents: the forced swimming test (FST) and the tail suspension test (TST). Bis selenide (0.5-5 mg/kg, p.o.) decreased the immobility time in the mouse FST and TST. The anti-immobility effect of bis selenide (1 mg/kg, p.o.) in the TST was prevented by the pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA; 100 mg/kg, i.p., an inhibitor of serotonin synthesis), ketanserin (1 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), and ondasentron (1 mg/kg, i.p., a 5-HT(3) receptor antagonist). Pretreatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), propranolol (2 mg/kg, i.p., a beta-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist), sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist), or WAY 100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist) did not block the antidepressant-like effect of bis selenide (1 mg/kg, p.o.) in the TST. Administration of bis selenide (0.1 mg/kg, p.o.) and fluoxetine (1 mg/kg), at subeffective doses, produced an antidepressant-like effect in the TST. Bis selenide did not alter Na(+) K(+) ATPase, MAO-A and MAO-B activities in whole brains of mice. Bis selenide produced an antidepressant-like effect in the mouse TST and FST, which may be related to the serotonergic system (5-HT(2A/2C) and 5-HT(3) receptors).

  11. Brain iron homeostasis.

    PubMed

    Moos, Torben

    2002-11-01

    Iron is essential for virtually all types of cells and organisms. The significance of the iron for brain function is reflected by the presence of receptors for transferrin on brain capillary endothelial cells. The transport of iron into the brain from the circulation is regulated so that the extraction of iron by brain capillary endothelial cells is low in iron-replete conditions and the reverse when the iron need of the brain is high as in conditions with iron deficiency and during development of the brain. Whereas there is good agreement that iron is taken up by means of receptor-mediated uptake of iron-transferrin at the brain barriers, there are contradictory views on how iron is transported further on from the brain barriers and into the brain extracellular space. The prevailing hypothesis for transport of iron across the BBB suggests a mechanism that involves detachment of iron from transferrin within barrier cells followed by recycling of apo-transferrin to blood plasma and release of iron as non-transferrin-bound iron into the brain interstitium from where the iron is taken up by neurons and glial cells. Another hypothesis claims that iron-transferrin is transported into the brain by means of transcytosis through the BBB. This thesis deals with the topic "brain iron homeostasis" defined as the attempts to maintain constant concentrations of iron in the brain internal environment via regulation of iron transport through brain barriers, cellular iron uptake by neurons and glia, and export of iron from brain to blood. The first part deals with transport of iron-transferrin complexes from blood to brain either by transport across the brain barriers or by uptake and retrograde axonal transport in motor neurons projecting beyond the blood-brain barrier. The transport of iron and transport into the brain was examined using radiolabeled iron-transferrin. Intravenous injection of [59Fe-125]transferrin led to an almost two-fold higher accumulation of 59Fe than of

  12. Probing metabolic stability of CdSe nanoparticles: alkaline extraction of free cadmium from liver and kidney samples of rats exposed to CdSe nanoparticles

    PubMed Central

    Arslan, Zikri; Ates, Mehmet; McDuffy, Wanaki; Agachan, M. Sabri; Farah, Ibrahim O.; Yu, W. William; Bednar, Anthony J.

    2011-01-01

    Cadmium selenide nanoparticles (CdSe NPs) exhibit novel optoelectronic properties for potential biomedical applications. However, their metabolic stability is not fully understood because of the difficulties in measurement of free Cd from biological tissues of exposed individuals. In this study, alkaline dissolution with tetramethylammonium hydroxide (TMAH) is demonstrated for selective determination of free Cd and intact NPs from liver and kidney samples of animals that were exposed to thiol-capped CdSe NPs. Aqueous suspensions of CdSe NPs (3.2 nm) were used to optimize the conditions for extracting free Cd without affecting NPs. Nanoparticles were found to aggregate when heated in TMAH without releasing any significant Cd to solution. Performance of the method in discriminating free Cd and intact NPs were verified by Dogfish Liver (DOLT-4) certified reference material. The samples from the animals were digested in 4 mL TMAH at 70 °C to extract free Cd followed by analysis of aqueous phase by ICP-MS. Both liver and kidney contained significant levels of free Cd. Total Cd was higher in the liver, while kidney accumulated mostly free Cd such that up to 47.9% of total Cd in the kidney was free Cd when NPs were exposed to UV-light before injection. PMID:21700388

  13. Erythropoietin and iron.

    PubMed

    Kaltwasser, J P; Gottschalk, R

    1999-03-01

    Serum ferritin concentration is most informative in estimating the amount of storage iron available for a particular individual. The serum transferrin receptor concentration, in contrast to serum ferritin, provides direct information about any deficit in the adequacy of iron supply to the erythropoiesis. The combination of serum transferrin receptor and serum ferritin provides complete information about storage and functional iron compartments. Using this combination along with the hemoglobin concentration, it is possible to define the iron nutritional status completely. Inflammatory conditions as well as parenteral iron administration interfere, however, with the direct and quantitative ferritin to storage iron relationship and, therefore, have to be considered carefully with respect to diagnostic purposes. The diagnostic use of the serum transferrin receptor is presently limited because of limitations in methodology and definition (standardization) of reference ranges.

  14. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  15. Iron sensors and signals in response to iron deficiency.

    PubMed

    Kobayashi, Takanori; Nishizawa, Naoko K

    2014-07-01

    The transcription of genes involved in iron acquisition in plants is induced under iron deficiency, but our understanding of iron sensors and signals remains limited. Iron Deficiency-responsive Element-binding Factor 1 (IDEF1) and Hemerythrin motif-containing Really Interesting New Gene- and Zinc-finger proteins (HRZs)/BRUTUS (BTS) have recently emerged as candidate iron sensors because of their functions as potent regulators of iron deficiency responses and their iron-binding properties. IDEF1 is a central transcriptional regulator of graminaceous genes involved in iron uptake and utilization, predominantly during the early stages of iron deficiency. HRZs/BTS are E3 ubiquitin ligases and negative regulators of iron deficiency responses in both graminaceous and non-graminaceous plants. Rice OsHRZ1 and OsHRZ2 are also potent regulators of iron accumulation. Characterizing these putative iron sensors also provides clues to understanding the nature of iron signals, which may involve ionized iron itself, other metals, oxygen, redox status, heme and iron-sulfur clusters, in addition to metabolites affected by iron deficiency. Systemic iron responses may also be regulated by phloem-mobile iron and its chelators such as nicotianamine. Iron sensors and signals will be identified by demonstration of signal transmission by IDEF1, HRZs/BTS, or unknown factors.

  16. Development of Iron Aluminides.

    DTIC Science & Technology

    1986-03-01

    IRON ALUMINIDES G. Culbertson C. S. Kortovich TRW Inc. Materials & Manufacturing Center 23555 Euclid Avenue Euclid, Ohio 44117 March 1986 Final Report...NO. N I 1 Ti TILE Inciuav Securty ltassificafton, 621 02F 2420 02 1 flevelonment of Iron Aluminides 12 PERSONAL AUJTHOR(S) rl Cul bertson, C~r...rnumber) nrceqrarl w.as conducted to develop improved iron- aluminide alloys with higher qlevated ernerature strength and room temperature ductility

  17. Iron and the athlete.

    PubMed

    Suedekum, Natalie A; Dimeff, Robert J

    2005-08-01

    Iron is an important mineral necessary for many biologic pathways. Different levels of deficiency can occur in the athlete, resulting in symptoms that range from none to severe fatigue. Iron deficiency without anemia may adversely affect athletic performance. Causes of iron deficiency include poor intake, menstrual losses, gastrointestinal and genitourinary losses due to exercise-induced ischemia or organ movement, foot strike hemolysis, thermohemolysis, and sweat losses. A higher incidence of deficiency occurs in female athletes compared with males.

  18. 35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. GREY IRON TUMBLERS, IN THE GREY IRON FOUNDRY ROTATE CASTINGS WITH SHOT TO REMOVE AND SURFACE OXIDES AND REMAINING EXCESS METALS. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL

  19. Physics of iron

    NASA Astrophysics Data System (ADS)

    Anderson, O.

    1993-10-01

    This volume comprises papers presented at the AIRAPT Conference, 28 June - 2 July 1993. The iron sessions at the meeting were identified as the Second Ironworkers Convention. The renewal of interest stems from advances in technologies in both diamond-anvil cell (DAC) and shock wave studies as well as from controversies arising from a lack of consensus among both experimentalists and theoreticians. These advances have produced new data on iron in the pressure-temperature regime of interest for phase diagrams and for temperatures of the core/mantle and inner-core/outer-core boundaries. Particularly interesting is the iron phase diagram inferred from DAC studies. A new phase, (beta), with a (gamma)-(beta)-(epsilon) triple point at about 30 GPa and 1190 K, and possible sixth phase, (omega), with an (epsilon)-(Theta)-melt triple point at about 190 GPa and 4000 K are deemed possible. The importance of the equation of state of iron in consideration of Earth's heat budget and the origin of its magnetic field invoke the interest of theoreticians who argue on the basis of molecular dynamics and other first principles methods. While the major thrust of both meetings was on the physics of pure iron, there were notable contributions on iron alloys. Hydrogen-iron alloys, iron-sulfur liquids, and the comparability to rhenium in phase diagram studies are discussed. The knowledge of the physical properties of iron were increased by several contributions.

  20. Physiology of Iron Metabolism

    PubMed Central

    Waldvogel-Abramowski, Sophie; Waeber, Gérard; Gassner, Christoph; Buser, Andreas; Frey, Beat M.; Favrat, Bernard; Tissot, Jean-Daniel

    2014-01-01

    Summary A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. ‘Ironomics’ certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism. PMID:25053935