Science.gov

Sample records for alkaline paddy soil

  1. Speciation and Release Kinetics of Cadmium in an Alkaline Paddy Soil Under Various Flooding Periods and Draining Conditions

    SciTech Connect

    S Khaokaew; R Chaney; G Landrot; M Ginder-Vogel; D Sparks

    2011-12-31

    This study determined Cd speciation and release kinetics in a Cd-Zn cocontaminated alkaline paddy soil, under various flooding periods and draining conditions, by employing synchrotron-based techniques, and a stirred-flow kinetic method. Results revealed that varying flooding periods and draining conditions affected Cd speciation and its release kinetics. Linear least-squares fitting (LLSF) of bulk X-ray absorption fine structure (XAFS) spectra of the air-dried, and the 1 day-flooded soil samples, showed that at least 50% of Cd was bound to humic acid. Cadmium carbonates were found as the major species at most flooding periods, while a small amount of cadmium sulfide was found after the soils were flooded for longer periods. Under all flooding and draining conditions, at least 14 mg/kg Cd was desorbed from the soil after a 2-hour desorption experiment. The results obtained by micro X-ray fluorescence ({mu}-XRF) spectroscopy showed that Cd was less associated with Zn than Ca, in most soil samples. Therefore, it is more likely that Cd and Ca will be present in the same mineral phases rather than Cd and Zn, although the source of these two latter elements may originate from the same surrounding Zn mines in the Mae Sot district.

  2. [Microbial metabolism in typical flooded paddy soils ].

    PubMed

    Cai, Yuanfeng; Wu, Yucheng; Wang, Shuwei; Yan, Xiaoyuan; Zhu, Yongguan; Jia, Zhongjun

    2014-09-01

    [OBJECTIVE] The object of this study is to reveal the composition of active microorganism and their metabolic activities in flooded paddy soils with long-term fertilization ( Mineral nitrogen, phosphorus, and potassium, NPK) and without fertilizer (Control check, CK) by environmental transcriptomics. [METHODS] Flooded soil microcosms were incubated in the laboratory for two weeks, then total RNA were extracted from the soil for transcriptome sequencing. Resulting fastq files were uploaded to the Metagenomics Analysis Server (MG-RAST) for taxonomic analysis, gene annotation and function classification. [RESULTS] Transcripts from diverse active microorganism, including bacteria ( > 95% ) , archaea, eukaryotes and viruses, were detected in both flooded paddy soils of CK and NPK treatments. Most of the transcripts (active genes) of bacteria and archaea were derived from Proteobacteria (more than 50% of total bacterial transcripts) and Thaumarchaaeota (about 70% of total archaeal transcripts ) respectively in both treatments. Transcriptional activity of Acidobacteria in NPK treatment paddy soil was significantly higher than that in CK treatment paddy soil. As for other phyla of bacteria and archaea, there were no significant differences of transcriptional activity of them between CK and NPK treatment paddy soils. The highest expressed gene in both CK and NPK treatment paddy soils is ABC transporter encoding gene which related to the transmembrane transport of substances. Based on gene function category of COG (Clusters of Orthologous Genes), Subsystem and KEGG (Kyoto Encyclopedia of Genes and Genomes) database, we found that the main metabolic activities of microorganisms in both CK and NPK treatment paddy soils were related to energy production and conversion, carbohydrate metabolism, protein metabolism and amino acid metabolism, and the dominant KEGG pathways were oxidative phosphorylation and aminoacyl-tRNA biosynthesis. [ CONCLUSION] Composition of active

  3. Speciation and release kinetics of zinc in contaminated paddy soils.

    PubMed

    Khaokaew, Saengdao; Landrot, Gautier; Chaney, Rufus L; Pandya, Kaumudi; Sparks, Donald L

    2012-04-01

    Zinc is an important nutrient for plants, but it can be toxic at high concentrations. The solubility and speciation of Zn is controlled by many factors, especially soil pH and Eh, which can vary in lowland rice culture. This study determined Zn speciation and release kinetics in Cd-Zn cocontaminated alkaline and acidified paddy soils, under various flooding periods and draining conditions, by employing synchrotron-based techniques and a stirred-flow kinetic method. Results showed almost no change in Zn speciation and release kinetics in the two soils, although the soils were subjected to different flooding periods and draining conditions. The mineral phases in which Zn is immobilized in the soil samples were constrained by linear least squares fitting (LLSF) analyses of bulk X-ray absorption fine structure (XAFS) spectra. Only two main phases were identified by LLSF, i.e., Zn-layered double hydroxides (Zn/Mg-hydrotalcite-like, and ZnAl-LDH) and Zn-phyllosilicates (Zn-kerolite). Under all soil pHs, flooding, and draining conditions, less than 22% of Zn was desorbed from the soil after a two-hour desorption experiment. The information on Zn chemistry obtained in this study will be useful in finding the best strategy to control Cd and Zn bioavailability in the Cd-Zn cocontaminated paddy soils. PMID:22423594

  4. Fertilization increases paddy soil organic carbon density*

    PubMed Central

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-01-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC. PMID:22467369

  5. Fertilization increases paddy soil organic carbon density.

    PubMed

    Wang, Shao-xian; Liang, Xin-qiang; Luo, Qi-xiang; Fan, Fang; Chen, Ying-xu; Li, Zu-zhang; Sun, Huo-xi; Dai, Tian-fang; Wan, Jun-nan; Li, Xiao-jun

    2012-04-01

    Field experiments provide an opportunity to study the effects of fertilization on soil organic carbon (SOC) sequestration. We sampled soils from a long-term (25 years) paddy experiment in subtropical China. The experiment included eight treatments: (1) check, (2) PK, (3) NP, (4) NK, (5) NPK, (6) 7F:3M (N, P, K inorganic fertilizers+30% organic N), (7) 5F:5M (N, P, K inorganic fertilizers+50% organic N), (8) 3F:7M (N, P, K inorganic fertilizers+70% organic N). Fertilization increased SOC content in the plow layers compared to the non-fertilized check treatment. The SOC density in the top 100 cm of soil ranged from 73.12 to 91.36 Mg/ha. The SOC densities of all fertilizer treatments were greater than that of the check. Those treatments that combined inorganic fertilizers and organic amendments had greater SOC densities than those receiving only inorganic fertilizers. The SOC density was closely correlated to the sum of the soil carbon converted from organic amendments and rice residues. Carbon sequestration in paddy soils could be achieved by balanced and combined fertilization. Fertilization combining both inorganic fertilizers and organic amendments is an effective sustainable practice to sequestrate SOC.

  6. Fly ash effect on improving soil properties and rice productivity in Korean paddy soils.

    PubMed

    Lee, Hyup; Ha, Ho Sung; Lee, Chang Hoon; Lee, Yong Bok; Kim, Pil Joo

    2006-09-01

    Paddy soils in Korea generally require the addition of Si to enhance rice productivity. Coal combustion fly ash, which has a high available Si content and alkaline pH, was selected as a potential source of Si in this study. Two field experiments were carried out to evaluate rice (Oryza sativa) productivity in silt loam and loamy sand soils to which 0, 40, 80, and 120 Mg ha(-1) of fly ash were added with 2 Mg ha(-1) Si as a control. Fly ash increased the soil pH and available Si and P contents of both soils. The amount of available B increased to a maximum of 2.57 mg kg(-1), and the B content of the rice plants increased to a maximum of 52-53 mg kg(-1) following the addition of 120 Mg ha(-1) fly ash. The rice plants did not show toxicity effects. The highest rice yields were achieved following the addition of around 90 Mg ha(-1) fly ash. The application of fly ash increased Si, P and K uptake by the rice plants, but did not result in an excessive uptake of heavy metals in the submerged paddy soil. In conclusion, fly ash could be a good supplement to other inorganic soil amendments to improve the nutrient balance in paddy soils.

  7. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Utami, S. R.; Marxen, A.; Mangelsdorf, K.; Bauersachs, T.; Schwark, L.

    2015-10-01

    Insufficient knowledge of the composition and variation of isoprenoid and branched glycerol dialkyl glycerol tetraethers (GDGTs) in agricultural soils exists, despite of the potential effect of different management types (e.g. soil/water and redox conditions, cultivated plants) on GDGT distribution. Here, we determined the influence of different soil management types on the GDGT composition in paddy (flooded) and adjacent upland (non-flooded) soils, and if available also forest, bushland and marsh soils. To compare the local effects on GDGT distribution patterns, we collected comparable soil samples in various locations from tropical (Indonesia, Vietnam and Philippines) and subtropical (China and Italy) sites. We found that differences in the distribution of isoprenoid GDGTs (iGDGTs) as well as of branched GDGTs (brGDGTs) are predominantly controlled by management type and only secondarily by climatic exposition. In general upland soil had higher crenarchaeol contents than paddy soil, which on the contrary was more enriched in GDGT-0. The GDGT-0 / crenarchaeol ratio was 3-27 times higher in paddy soil and indicates the enhanced presence of methanogenic archaea, which were additionally linked to the number of rice cultivation cycles per year (higher number of cycles was coupled with an increase in the ratio). The TEX86 values were 1.3 times higher in upland, bushland and forest soils than in paddy soils. In all soils brGDGT predominated over iGDGTs, with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher BIT values in paddy soils compared to upland soils together with higher BIT values in soil from subtropical climates indicate effects on the amounts of brGDGT through differences in management as well as climatic zones. In acidic soil CBT values correlated well with soil pH. In neutral to alkaline soils, however, no apparent correlation but an offset between paddy and upland managed soils was detected, which may suggest that soil

  8. Distribution of tetraether lipids in agricultural soils - differentiation between paddy and upland management

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Rahayu Utami, Sri; Marxen, Anika; Mangelsdorf, Kai; Bauersachs, Thorsten; Schwark, Lorenz

    2016-03-01

    GDGT predominated over iGDGTs with the relative abundance of brGDGTs increasing from subtropical to tropical soils. Higher branched vs. isoprenoid tetraether (BIT) values in paddy soils compared to upland soils together with higher BIT values in soils from subtropical climates indicated effects on the amounts of brGDGT induced by differences in management as well as climate. In acidic soils cyclization ratio of branched tetraethers (CBT) values correlated well with soil pH. In neutral to alkaline soils, however, no correlation but an offset in CBT between paddy and upland managed soils was detected. This is interpreted as indicating soil moisture exerting an additional control on the CBT in these soils. Lower modified methylation index of branched tetraether (MBT') values and temperatures calculated from this (TMC) in paddy soils compared to upland soils are attributed to a management-induced (e.g. enhanced soil moisture via flooding) effect on mean annual soil temperature (MST).

  9. Enzyme dynamics in paddy soils of the rice district (NE Italy) under different cropping patterns

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Fornasier, Flavio; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    The recent widespread interest on soil enzymes is due to the need to develop sensitive indicators of soil quality that reflect the effects of land management on soil and assist land managers in promoting long-term sustainability of terrestrial ecosystems. The activities of six important enzymes involved in C, N, P, and S cycling were investigated in a paddy soil from the Veneto region, Italy, in four different rotation systems (rice-rice-rice: R-R-R; soya-rice-rice: S-R-R; fallow-rice: F-R; pea-soya-rice: P-S-R) with three replications in April (after field preparation, field moist condition), June (after seedling, waterlogged soil condition), August (after tillering stage of rice, waterlogged soil condition) and October (after rice harvesting, drained soil condition) over the 2012 growing season. Our results demonstrated that enzyme activities varied with rotation systems and growth stages in paddy soil. Compared with field moist soil, drained soil condition resulted in a significant increase (P < 0.05) of β-glucosidase, arylsulfatase, alkaline and acid phosphatases, leucine aminopeptidase (except of fallow-rice), and chitinase activities in all rotations, while compared with drained soil, early waterlogging (in month of June) significantly decreased (P moist soil> late waterlogged>early waterlogged. There was an inhibitory effect of waterlogging (except P-S-R rotation) for both alkaline and acid phosphatases due to high pH and redox conditions. However, the response of enzymes to waterlogging differed with the chemical species and the cropping pattern. The best rotation system for chitinase, leucine aminopeptidase and β-glucosidase activity (C and N cycles) proved R-R-R, while for arylsulfatase, alkaline and acid phosphatases (P and S cycles) it was the S-R-R. Key Words: enzyme activity, paddy soil, Crop Rotation System, Italy __ Corresponding Author: Mandana Nadimi-Goki, Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com

  10. [Microbial anaerobic dechlorination of polychlorinated biphenyls in paddy soil slurry].

    PubMed

    Yang, Kai; Yao, Xiao-yan; Chen, Chen; Shen, Chao-feng; Qin, Zhi-hui; Huang, Rong-lang

    2015-10-01

    We studied the dechlorination process of Aroclor1260, a high-chlorinated polychlorinated biphenyls (PCBs) mixture in an anaerobic paddy soil slurry, and further analyzed the related microbial community structures. The Aroclor1260 was reduced up to 55.5% in the natural paddy soil slurry in 128 days, and the reduction percentage dropped to 46.9% after incoculating the paddy soil slurry with a PCBs-dechlorination enrichment culture. The dechlorination mainly occurred in congeners of pentachlorobiphenyl, hexachlorobiphenyl, and specially, the heptachlorobiphenyl, with pentachlorobiphenyl accumulated as dechlorination intermediate. Hydrogen gas produced from fermentation of organic matters was maintained at a lower partial pressure due to its consumption during the dechlorination process, so that the methanogens was suppressed as well. The microbial community structure was significantly different between natural and inoculated paddy soils. Introducing the PCBs-dechlorination enrichment culture changed the local microbial community by the competition between the exogenetic dchlorinators and the indigenous bacteria, overall decreasing the dechlorination activity.

  11. Soil type-depending effect of paddy management: composition and distribution of soil organic matter

    NASA Astrophysics Data System (ADS)

    Urbanski, Livia; Kölbl, Angelika; Lehndorff, Eva; Houtermans, Miriam; Schad, Peter; Zhang, Gang-Lin; Rahayu Utami, Sri; Kögel-Knabner, Ingrid

    2016-04-01

    Paddy soil management is assumed to promote soil organic matter accumulation and specifically lignin caused by the resistance of the aromatic lignin structure against biodegradation under anaerobic conditions during inundation of paddy fields. The present study investigates the effect of paddy soil management on soil organic matter composition compared to agricultural soils which are not used for rice production (non-paddy soils). A variety of major soil types, were chosen in Indonesia (Java), including Alisol, Andosol and Vertisol sites (humid tropical climate of Java, Indonesia) and in China Alisol sites (humid subtropical climate, Nanjing). This soils are typically used for rice cultivation and represent a large range of soil properties to be expected in Asian paddy fields. All topsoils were analysed for their soil organic matter composition by solid-state 13C nuclear magnetic resonance spectroscopy and lignin-derived phenols by CuO oxidation method. The soil organic matter composition, revealed by solid-state 13C nuclear magnetic resonance, was similar for the above named different parent soil types (non-paddy soils) and was also not affected by the specific paddy soil management. The contribution of lignin-related carbon groups to total SOM was similar in the investigated paddy and non-paddy soils. A significant proportion of the total aromatic carbon in some paddy and non-paddy soils was attributed to the application of charcoal as a common management practise. The extraction of lignin-derived phenols revealed low VSC (vanillyl, syringyl, cinnamyl) values for all investigated soils, being typical for agricultural soils. An inherent accumulation of lignin-derived phenols due to paddy management was not found. Lignin-derived phenols seem to be soil type-dependent, shown by different VSC concentrations between the parent soil types. The specific paddy management only affects the lignin-derived phenols in Andosol-derived paddy soils which are characterized by

  12. Organic phosphorus fractions in organically amended paddy soils in continuously and intermittently flooded conditions.

    PubMed

    Yang, Changming; Yang, Linzhang; Jianhua, Lee

    2006-01-01

    Soil organic phosphorus (SOP) can greatly contribute to plant-available P and P nutrition. The study was conducted to determine the effects of organic amendments on organic P fractions and microbiological activities in paddy soils. Samples were collected at the Changshu Agro-ecological Experiment Station in Tahu Lake Basin, China, from an experiment that has been performed from 1999 to 2004, on a paddy soil (Gleysols). Treatments consisted of swine manure (SM), wheat straw (WS), swine manure plus wheat straw (SM + WS), and a control (chemical fertilization alone). Organic amendments markedly increased soil total organic phosphorus (TOP) and total organic carbon (TOC), especially in continuously flooded conditions. Based on the fractionation of SOP, organic amendments significantly increased soil labile organic phosphorus (LOP), moderately labile organic phosphorus (MLOP), and moderately stable organic phosphorus (MSOP) compared with the control. For SM and SM + WS treatments, LOP in continuously flooded soils decreased by 30.1 and 36.4%, respectively, compared to intermittently flooded soils. In organically amended soils, continuous flooding showed significantly lower microbial biomass phosphorus (MBP) and alkaline phosphatase activities (APA) than intermittent flooding. In intermittently flooded conditions, incorporating organic amendments into soil resulted in greater P uptake and biomass yield of rice than the control. In the intermittently flooded soils, APA (P < 0.05) and MBP (P < 0.01) were significantly and positively related to TOP, LOP, MLOP, and MSOP, whereas in continuously flooded soils, there was a significant (P < 0.05) negative relationship between MBP, TOP, and MSOP. Based on soil organic P fractions and soil enzymatic and microbiological activities, continuous flooding applied to paddy soils should be avoided, especially when swine manure is incorporated into paddy soil. PMID:16738400

  13. Effect of paddy-upland rotation on methanogenic archaeal community structure in paddy field soil.

    PubMed

    Liu, Dongyan; Ishikawa, Hiroki; Nishida, Mizuhiko; Tsuchiya, Kazunari; Takahashi, Tomoki; Kimura, Makoto; Asakawa, Susumu

    2015-01-01

    Methanogenic archaea are strict anaerobes and demand highly reduced conditions to produce methane in paddy field soil. However, methanogenic archaea survive well under upland and aerated conditions in paddy fields and exhibit stable community. In the present study, methanogenic archaeal community was investigated in fields where paddy rice (Oryza sativa L.) under flooded conditions was rotated with soybean (Glycine max [L.] Merr.) under upland conditions at different rotation histories, by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR methods targeting 16S rRNA and mcrA genes, respectively. Soil samples collected from the fields before flooding or seeding, during crop cultivation and after harvest of crops were analyzed. The abundance of the methanogenic archaeal populations decreased to about one-tenth in the rotational plots than in the consecutive paddy (control) plots. The composition of the methanogenic archaeal community also changed. Most members of the methanogenic archaea consisting of the orders Methanosarcinales, Methanocellales, Methanomicrobiales, and Methanobacteriales existed autochthonously in both the control and rotational plots, while some were strongly affected in the rotational plots, with fatal effect to some members belonging to the Methanosarcinales. This study revealed that the upland conversion for one or longer than 1 year in the rotational system affected the methanogenic archaeal community structure and was fatal to some members of methanogenic archaea in paddy field soil. PMID:25113614

  14. Microbial lipids in Paddy Soils of the Yangtze Area

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Bannert, Andrea; Schloter, Michael; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    Geobiochemical studies of rice paddy soils and their effect on the global carbon cycle are of paramount importance. Paddy soils comprise manmade wetlands because soil flooding is a prerequisite for lowland rice cultivation. Except for sulphate-rich substrates, rice growth is not very sensitive to soil conditions prevailing prior to conversion of marine tidal flat sediments to paddy cultivation. Thus, soil management practices, such as artificial submergence or drainage, ploughing and puddling (i.e. ploughing a submerged soil), manuring, liming, and fertilization, are the major driving factors of paddy soil development. Soil organic matter (SOM) decomposition and humification proceeds in hydromorphic soils at a slower rate than in well-drained, aerated soils. Rice paddy soils thus also represent a suitable model system to study fundamental aspects of redox sensitive soil processes. These processes are of special interest because in flooded rice fields the anaerobic fermentation of SOM leads to the release of methane and to denitrification losses of inorganic nitrogen. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. We here describe the biomarker geochemistry of six paddy soils that developed on marine tidal sediments and where cultivation started 50, 100, 300, 700, 1000 or 2000 years before present. As reference substrates recent marine and lacustrine sediments were selected. The differentiation of the lipid biomass was achieved by investigating glycerol dialkyl glycerol tetraethers (GDGT). These specific organic geochemical biomarkers allow for determining the abundance of fossil microbial consortia (archaea and bacteria input) into paddy soils, justified by the diversity of the archaeal and bacterial cell membrane constituents. The dominant proportion of

  15. Arsenic mobilization and immobilization in paddy soils

    NASA Astrophysics Data System (ADS)

    Kappler, A.; Hohmann, C.; Zhu, Y. G.; Morin, G.

    2010-05-01

    Arsenic is oftentimes of geogenic origin and in many cases bound to iron(III) minerals. Iron(III)-reducing bacteria can harvest energy by coupling the oxidation of organic or inorganic electron donors to the reduction of Fe(III). This process leads either to dissolution of Fe(III)-containing minerals and thus to a release of the arsenic into the environment or to secondary Fe-mineral formation and immobilisation of arsenic. Additionally, aerobic and anaerobic iron(II)-oxidizing bacteria have the potential to co-precipitate or sorb arsenic during iron(II) oxidation at neutral pH that is usually followed by iron(III) mineral precipitation. We are currently investigating arsenic immobilization by Fe(III)-reducing bacteria and arsenic co-precipitation and immobilization by anaerobic iron(II)-oxidizing bacteria in batch, microcosm and rice pot experiments. Co-precipitation batch experiments with pure cultures of nitrate-dependent Fe(II)-oxidizing bacteria are used to quantify the amount of arsenic that can be immobilized during microbial iron mineral precipitation, to identify the minerals formed and to analyze the arsenic binding environment in the precipitates. Microcosm and rice pot experiments are set-up with arsenic-contaminated rice paddy soil. The microorganisms (either the native microbial population or the soil amended with the nitrate-dependent iron(II)-oxidizing Acidovorax sp. strain BoFeN1) are stimulated either with iron(II), nitrate, or oxygen. Dissolved and solid-phase arsenic and iron are quantified. Iron and arsenic speciation and redox state in batch and microcosm experiments are determined by LC-ICP-MS and synchrotron-based methods (EXAFS, XANES).

  16. Effects of butachlor on microbial enzyme activities in paddy soil.

    PubMed

    Min, Hang; Ye, Yang-Fang; Chen, Zhong-Yun; Wu, Wei-Xiang; Du, Yu-Feng

    2002-07-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethl-chloro-2', 6'-diethylacetnilide) on microbial respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that after application of butachlor with concentrations of 5.5 micrograms/g dried soil, 11.0 micrograms/g dried soil and 22.0 micrograms/g dried soil, the application of butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 micrograms/g dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed within a period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  17. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.

    PubMed

    Khan, K Asaduzzaman; Stroud, Jacqueline L; Zhu, Yong-Guan; McGrath, Steve P; Zhao, Fang-Jie

    2010-11-15

    Some paddy soils in the Bengal delta are contaminated with arsenic (As) due to irrigation of As-laden groundwater, which may lead to yield losses and elevated As transfer to the food chain. Whether these soils have a higher As bioavailability than other soils containing either geogenic As or contaminated by mining activities was investigated in a pot experiment. Fourteen soils varying in the source and the degree (4-138 mg As kg 1⁻¹) of As contamination were collected, 10 from Bangladeshi paddy fields (contaminated by irrigation water) and two each from China and the UK (geogenic or mining impacted), for comparison. Bangladeshi soils had higher percentages of the total As extractable by ammonium phosphate (specifically sorbed As) than other soils and also released more As into the porewater upon flooding. Porewater As concentrations increased with increasing soil As concentrations more steeply in Bangladeshi soils, with arsenite being the dominant As species. Rice growth and grain yield decreased markedly in Bangladeshi soils containing > 13 mg As kg 1⁻¹, but not in the other soils. Phosphate-extractable or porewater As was a better indicator of As bioavailability than total soil As. Rice straw As concentrations increased with increasing soil As concentrations; however, As phytotoxicity appeared to result in lower grain As concentrations. The relative proportions of inorganic As and dimethylarsinic acid (DMA) in grain varied among soils, and the percentage DMA was larger in greenhouse-grown plants than grain samples collected from the paddy fields of the same soil and the same rice cultivar, indicating a strong environmental influence on As species found in rice grain. This study shows that Bangladeshi paddy soils contaminated by irrigation had a higher As bioavailability than other soils, resulting in As phytotoxicity in rice and substantial yield losses.

  18. Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils.

    PubMed

    Khan, K Asaduzzaman; Stroud, Jacqueline L; Zhu, Yong-Guan; McGrath, Steve P; Zhao, Fang-Jie

    2010-11-15

    Some paddy soils in the Bengal delta are contaminated with arsenic (As) due to irrigation of As-laden groundwater, which may lead to yield losses and elevated As transfer to the food chain. Whether these soils have a higher As bioavailability than other soils containing either geogenic As or contaminated by mining activities was investigated in a pot experiment. Fourteen soils varying in the source and the degree (4-138 mg As kg 1⁻¹) of As contamination were collected, 10 from Bangladeshi paddy fields (contaminated by irrigation water) and two each from China and the UK (geogenic or mining impacted), for comparison. Bangladeshi soils had higher percentages of the total As extractable by ammonium phosphate (specifically sorbed As) than other soils and also released more As into the porewater upon flooding. Porewater As concentrations increased with increasing soil As concentrations more steeply in Bangladeshi soils, with arsenite being the dominant As species. Rice growth and grain yield decreased markedly in Bangladeshi soils containing > 13 mg As kg 1⁻¹, but not in the other soils. Phosphate-extractable or porewater As was a better indicator of As bioavailability than total soil As. Rice straw As concentrations increased with increasing soil As concentrations; however, As phytotoxicity appeared to result in lower grain As concentrations. The relative proportions of inorganic As and dimethylarsinic acid (DMA) in grain varied among soils, and the percentage DMA was larger in greenhouse-grown plants than grain samples collected from the paddy fields of the same soil and the same rice cultivar, indicating a strong environmental influence on As species found in rice grain. This study shows that Bangladeshi paddy soils contaminated by irrigation had a higher As bioavailability than other soils, resulting in As phytotoxicity in rice and substantial yield losses. PMID:20977268

  19. [Microbial anaerobic dechlorination of polychlorinated biphenyls in paddy soil slurry].

    PubMed

    Yang, Kai; Yao, Xiao-yan; Chen, Chen; Shen, Chao-feng; Qin, Zhi-hui; Huang, Rong-lang

    2015-10-01

    We studied the dechlorination process of Aroclor1260, a high-chlorinated polychlorinated biphenyls (PCBs) mixture in an anaerobic paddy soil slurry, and further analyzed the related microbial community structures. The Aroclor1260 was reduced up to 55.5% in the natural paddy soil slurry in 128 days, and the reduction percentage dropped to 46.9% after incoculating the paddy soil slurry with a PCBs-dechlorination enrichment culture. The dechlorination mainly occurred in congeners of pentachlorobiphenyl, hexachlorobiphenyl, and specially, the heptachlorobiphenyl, with pentachlorobiphenyl accumulated as dechlorination intermediate. Hydrogen gas produced from fermentation of organic matters was maintained at a lower partial pressure due to its consumption during the dechlorination process, so that the methanogens was suppressed as well. The microbial community structure was significantly different between natural and inoculated paddy soils. Introducing the PCBs-dechlorination enrichment culture changed the local microbial community by the competition between the exogenetic dchlorinators and the indigenous bacteria, overall decreasing the dechlorination activity. PMID:26995917

  20. Soil removal as a decontamination practice and radiocesium accumulation in tadpoles in rice paddies at Fukushima.

    PubMed

    Sakai, Masaru; Gomi, Takashi; Nunokawa, Masanori; Wakahara, Taeko; Onda, Yuichi

    2014-04-01

    We investigated the biological accumulation of radiocesium in tadpoles [Rana (Pelophylax) porosa porosa] in rice paddies with and without decontamination practice at Fukushima. Radiocesium was accumulated in surface part of soils both in the control and decontaminated paddies one year after decontamination. Mean (134)Cs and (137)Cs concentrations in tadpoles in the control and decontaminated paddies were 3000 and 4500, and 600 and 890 Bq/kg dry weight, respectively. Radiocesium concentrations in surface soil (0-5 cm depth) and tadpoles in the decontaminated paddy were five times smaller than in the control paddy. These results suggest that decontamination practice can reduce radiocesium concentrations in both soil and tadpoles. However, at the decontaminated paddy, radiocesium concentrations in surface soils became 3.8 times greater one year after decontamination, which indicates that monitoring the subsequent movement of radiocesium in rice paddies and surrounding areas is essential for examining contamination propagation.

  1. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].

    PubMed

    Jin, Zhen-jiang; Zeng, Hong-hu; Li, Qiang; Cheng, Ya-ping; Tang, Hua-feng; Li, Min; Huang, Bing-fu

    2016-01-15

    The purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively. Microbial DNA was extracted according to the manufacturer's instructions of the kit. Microbial activity was examined using soil enzyme assays as well. The result showed that the bacteria number in paddy filed was (4.36 +/- 2.25) x 10(7) CFU x g(-1), which was significantly higher than those in wetland and dryland. Fungi numbers were (6.41 +/- 2.16) x 10(4) CFU x g(-1) in rice paddy and (6.52 +/- 1.55) x 10(4) CFU x g(-1) in wetland, which were higher than that in dryland. Actinomycetes number was (2.65 +/- 0.72) x 10(6) CFU x g(-1) in dryland, which was higher than that in wetland. Microbial DNA concentration in rice paddy was (11.92 +/- 3.69) microg x g(-1), which was higher than that in dryland. Invertase activity was (66.87 +/- 18.61) mg x (g x 24 h)(-1) in rice paddy and alkaline phosphatase activity was (2.07 +/- 0.99) mg x (g x 2 h)(-1) in wetland, both of which were higher than those in dryland. Statistical analysis showed there was a significant positive correlation of microbial DNA content, alkaline phosphatase activity and microbial carbon with soil pH, soil organic carbon (SOC), total nitrogen, alkali-hydrolyzable nitrogen, soil moisture, exchangeable Ca2+ and exchangeable Mg2+, as well as a significant positive correlation of intervase activity with the former three microbial factors. The above results indicated that microbial biomass and function responded much more sensitively to land-use change than microbial number in karst cave wetland system. Soil moisture, SOC and some factors induced by land-use change

  2. [Comparisons of Microbial Numbers, Biomasses and Soil Enzyme Activities Between Paddy Field and Drvland Origins in Karst Cave Wetland].

    PubMed

    Jin, Zhen-jiang; Zeng, Hong-hu; Li, Qiang; Cheng, Ya-ping; Tang, Hua-feng; Li, Min; Huang, Bing-fu

    2016-01-15

    The purpose of this study is to compare microbial number, microbial biomass as well as soil enzyme activity between paddy field and dryland originated karst wetland ecosystems. The soil samples (0-20 cm) of uncultivated wetland, paddy field and dryland were collected in Huixian karst cave wetland, Guilin, China. Microbial numbers and biomass were detected using dilute plate incubation counting and chloroform fumigation-extraction, respectively. Microbial DNA was extracted according to the manufacturer's instructions of the kit. Microbial activity was examined using soil enzyme assays as well. The result showed that the bacteria number in paddy filed was (4.36 +/- 2.25) x 10(7) CFU x g(-1), which was significantly higher than those in wetland and dryland. Fungi numbers were (6.41 +/- 2.16) x 10(4) CFU x g(-1) in rice paddy and (6.52 +/- 1.55) x 10(4) CFU x g(-1) in wetland, which were higher than that in dryland. Actinomycetes number was (2.65 +/- 0.72) x 10(6) CFU x g(-1) in dryland, which was higher than that in wetland. Microbial DNA concentration in rice paddy was (11.92 +/- 3.69) microg x g(-1), which was higher than that in dryland. Invertase activity was (66.87 +/- 18.61) mg x (g x 24 h)(-1) in rice paddy and alkaline phosphatase activity was (2.07 +/- 0.99) mg x (g x 2 h)(-1) in wetland, both of which were higher than those in dryland. Statistical analysis showed there was a significant positive correlation of microbial DNA content, alkaline phosphatase activity and microbial carbon with soil pH, soil organic carbon (SOC), total nitrogen, alkali-hydrolyzable nitrogen, soil moisture, exchangeable Ca2+ and exchangeable Mg2+, as well as a significant positive correlation of intervase activity with the former three microbial factors. The above results indicated that microbial biomass and function responded much more sensitively to land-use change than microbial number in karst cave wetland system. Soil moisture, SOC and some factors induced by land-use change

  3. [Response of mineralization of dissolved organic carbon to soil moisture in paddy and upland soils in hilly red soil region].

    PubMed

    Chen, Xiang-Bi; Wang, Ai-Hua; Hu, Le-Ning; Huang, Yuan; Li, Yang; He, Xun-Yang; Su, Yi-Rong

    2014-03-01

    Typical paddy and upland soils were collected from a hilly subtropical red-soil region. 14C-labeled dissolved organic carbon (14C-DOC) was extracted from the paddy and upland soils incorporated with 14C-labeled straw after a 30-day (d) incubation period under simulated field conditions. A 100-d incubation experiment (25 degrees C) with the addition of 14C-DOC to paddy and upland soils was conducted to monitor the dynamics of 14C-DOC mineralization under different soil moisture conditions [45%, 60%, 75%, 90%, and 105% of the field water holding capacity (WHC)]. The results showed that after 100 days, 28.7%-61.4% of the labeled DOC in the two types of soils was mineralized to CO2. The mineralization rates of DOC in the paddy soils were significantly higher than in the upland soils under all soil moisture conditions, owing to the less complex composition of DOC in the paddy soils. The aerobic condition was beneficial for DOC mineralization in both soils, and the anaerobic condition was beneficial for DOC accumulation. The biodegradability and the proportion of the labile fraction of the added DOC increased with the increase of soil moisture (45% -90% WHC). Within 100 days, the labile DOC fraction accounted for 80.5%-91.1% (paddy soil) and 66.3%-72.4% (upland soil) of the cumulative mineralization of DOC, implying that the biodegradation rate of DOC was controlled by the percentage of labile DOC fraction.

  4. Arsenic release from paddy soils during monsoon flooding

    NASA Astrophysics Data System (ADS)

    Roberts, Linda C.; Hug, Stephan J.; Dittmar, Jessica; Voegelin, Andreas; Kretzschmar, Ruben; Wehrli, Bernhard; Cirpka, Olaf A.; Saha, Ganesh C.; Ashraf Ali, M.; Badruzzaman, A. Borhan M.

    2010-01-01

    Bangladesh relies heavily on groundwater for the irrigation of dry-season rice. However, the groundwater used for irrigation often contains high concentrations of arsenic, potentially jeopardizing the future of rice production in the country. In seasonally flooded fields, topsoil arsenic concentrations decrease during the monsoon season, suggesting that flooding attenuates arsenic accumulation in the soils. Here we examine the chemistry of soil porewater and floodwater during the monsoon season in rice paddies in Munshiganj, Bangladesh, to assess whether flooding releases significant quantities of arsenic from the soils. We estimate that between 51 and 250mgm-2 of soil arsenic is released into floodwater during the monsoon season. This corresponds to a loss of 13-62% of the arsenic added to soils through irrigation each year. The arsenic was distributed throughout the entire floodwater column by vertical mixing and was laterally removed when the floodwater receded. We conclude that monsoon floodwater removes a large amount of the arsenic added to paddy soils through irrigation, and suggest that non-flooded soils are particularly at risk of arsenic accumulation.

  5. Phylogenetically Distinct Phylotypes Modulate Nitrification in a Paddy Soil

    PubMed Central

    Zhao, Jun; Wang, Baozhan

    2015-01-01

    Paddy fields represent a unique ecosystem in which regular flooding occurs, allowing for rice cultivation. However, the taxonomic identity of the microbial functional guilds that catalyze soil nitrification remains poorly understood. In this study, we provide molecular evidence for distinctly different phylotypes of nitrifying communities in a neutral paddy soil using high-throughput pyrosequencing and DNA-based stable isotope probing (SIP). Following urea addition, the levels of soil nitrate increased significantly, accompanied by an increase in the abundance of the bacterial and archaeal amoA gene in microcosms subjected to SIP (SIP microcosms) during a 56-day incubation period. High-throughput fingerprints of the total 16S rRNA genes in SIP microcosms indicated that nitrification activity positively correlated with the abundance of Nitrosospira-like ammonia-oxidizing bacteria (AOB), soil group 1.1b-like ammonia-oxidizing archaea (AOA), and Nitrospira-like nitrite-oxidizing bacteria (NOB). Pyrosequencing of 13C-labeled DNA further revealed that 13CO2 was assimilated by these functional groups to a much greater extent than by marine group 1.1a-associated AOA and Nitrobacter-like NOB. Phylogenetic analysis demonstrated that active AOB communities were closely affiliated with Nitrosospira sp. strain L115 and the Nitrosospira multiformis lineage and that the 13C-labeled AOA were related to phylogenetically distinct groups, including the moderately thermophilic “Candidatus Nitrososphaera gargensis,” uncultured fosmid 29i4, and acidophilic “Candidatus Nitrosotalea devanaterra” lineages. These results suggest that a wide variety of microorganisms were involved in soil nitrification, implying physiological diversification of soil nitrifying communities that are constantly exposed to environmental fluctuations in paddy fields. PMID:25724959

  6. [Straw return to rice paddy: soil carbon sequestration and increased methane emission].

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Zheng, Hua

    2010-01-01

    Based on the long-term datasets of soil organic matter content and the observation data of rice paddies' methane (CH4) emission collected from the agricultural experiment stations across the country, the rice paddies in China were divided into single cropping and double cropping regions. The soil carbon sequestration potential of straw return in three types of rice paddies in the two regions, i. e., single cropping rice paddies, upland/paddy alternated rice paddies, and double cropping rice paddies, was evaluated, based on the datasets of soil organic matter content; and the total CH4 emission from rice paddies without straw return was estimated, with reference to the experimental data of paddies' CH4 emission and by the method of mean emission coefficient. The total CH4 emission from our paddies after straw return and the global warming potential of the increased CH4 emission were also estimated by using the related methods and parameters given by IPCC. It was estimated that the full popularization of straw return to China's rice paddies would sequester 10.48 Tg x a(-1) of C, and the contribution to the global warming mitigation was 38.43 Tg CO2-eqv x a(-1). In the meanwhile, the CH4 emission from our rice paddies would be increased from 5.796 Tg x a(-1) to 9.114 Tg x a(-1), and the increased 3.318 Tg x a(-1) of CH4 emission would lead to a global warming potential of 82.95 Tg CO2 -eqv x a(-1), which was 2.158 times of the mitigation from carbon sequestration in rice paddies. Therefore, the increased CH4 emission due to straw return should be regarded as an important greenhouse gas leakage, since it could greatly offset the mitigation benefits of soil carbon sequestration in China's rice paddies.

  7. Microbial communities play important roles in modulating paddy soil fertility

    PubMed Central

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-01-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production. PMID:26841839

  8. Microbial communities play important roles in modulating paddy soil fertility

    NASA Astrophysics Data System (ADS)

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.

  9. Heavy metals accumulation in parts of paddy Oryza sativa L. grown in paddy field adjacent to ultrabasic soil

    NASA Astrophysics Data System (ADS)

    Hadif, Waqeed Mahdi; Rahim, Sahibin Abd; Sahid, Ismail; Bhuiyan, Atiqur Rahman; Ibrahim, Izyanti

    2015-09-01

    The present study was carried out to evaluate the accumulation and translocation of heavy metals from soil around the root zone to various parts of the paddy plant, namely the roots, stems, leaves and rice grains. This study was conducted in 2014 in paddy field adjacent to ultrabasic soil (field 1 and 2) located in Ranau, Sabah and one field (Field 3) taken as control located at the UKM experimental plot in peninsular of Malaysia. The plant species used in the present investigation is Paddy Batu. The heavy metals studied were Chromium (Cr), Iron (Fe) and Nickel (Ni). Heavy metals in soil and plant were extracted by wet digestion method. Heavy metals present in paddy plants and soils extract were measured using the ICP-MS. Heavy metals concentrations in the plant parts in descending order is the root > leaves > stem > rice grain. Lower concentration of all heavy metals in soils and plant parts was shown by the control site (Field 3) in UKM Bangi. Higher concentration of heavy metals occurred in the roots compared to other above ground parts (stem, leaves, and grains) of the paddy plant in all of the paddy field. The bioaccumulation factor (BAF) of heavy metals in all locations were recorded in descending order as Ni > Cr > Fe, the BAF values for all metals in the rice grains were low, whereas the BAF values were recorded high for Ni in all locations. The results also showed that Fe was the most predominant metal ion in the roots, followed by Ni then Cr.

  10. CADMIUM SOLUBILITY IN PADDY SOILS: EFFECTS OF SOIL OXIDATION, METAL SULFIDES AND COMPETITIVE IONS.

    EPA Science Inventory

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) an...

  11. Effects of sulfur in flooded paddy soils: Implications for iron chemistry and arsenic mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2013-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (amplified by erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Iron and sulfur both interact strongly with arsenic in paddy soils: iron oxides are strong adsorbents for arsenic in oxic conditions, and sulfur (in the form of sulfide) is a strong adsorbent under anoxic conditions. In the process of reductive dissolution of iron oxides, arsenic, which had been adsorbed to the iron oxides, is released. Therefore, higher levels of reduced iron (ferrous iron) will likely correlate with higher levels of mobilized arsenic. However, the mobilized arsenic may then co-precipitate with or adsorb to iron sulfides, which form under sulfate-reducing conditions and with the aid of certain microbes already present in the soil. In a batch experiment, we investigated how these processes correlate and which has the greatest influence on arsenic mobilization and potential plant availability. The experiment was designed to measure the effects of various sources of sulfur (dried rice straw, charred rice straw, and gypsum) on the iron and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. The two types of rice straw were designed to introduce the same amount of organic sulfur (7.7 μg/g of soil), but different levels of available carbon, since carbon stimulates microbial activity in the soil. In comparison, two different levels of gypsum (calcium sulfate) were used, 7.7 and 34.65 μg/g of soil, to test the effect of directly available inorganic sulfate without carbon addition. The soil was flooded with a buffer solution at pH 7.07 in airtight serum vials and kept as a slurry on a shaker at 25 °C. We measured pH, alkalinity, ferrous iron, ferric iron, sulfide, sulfate, total iron, sulfur, and arsenic in the

  12. A Simple Evaluation of Soil Quality of Waterlogged Purple Paddy Soils with Different Productivities

    PubMed Central

    Liu, Zhanjun; Zhou, Wei; Lv, Jialong; He, Ping; Liang, Guoqing; Jin, Hui

    2015-01-01

    Evaluation of soil quality can be crucial for designing efficient farming systems and ensuring sustainable agriculture. The present study aimed at evaluating the quality of waterlogged purple paddy soils with different productivities in Sichuan Basin. The approach involved comprehensive analyses of soil physical and chemical properties, as well as enzyme activities and microbial community structure measured by phospholipid fatty acid analysis (PLFA). A total of 36 soil samples were collected from four typical locations, with 12 samples representing high productivity purple paddy soil (HPPS), medium productivity purple paddy soil (MPPS) and low productivity purple paddy soil (LPPS), respectively. Most measured soil properties showed significant differences (P ≤ 0.05) among HPPS, MPPS and LPPS. Pearson correlation analysis and principal component analysis were used to identify appropriate soil quality indicators. A minimum data set (MDS) including total nitrogen (TN), available phosphorus (AP), acid phosphatase (ACP), total bacteria (TB) and arbuscular mycorrhizal fungi was established and accounted for 82.1% of the quality variation among soils. A soil quality index (SQI) was developed based on the MDS method, whilst HPPS, MPPS and LPPS received mean SQI scores of 0.725, 0.536 and 0.425, respectively, with a ranking of HPPS > MPPS > LPPS. HPPS showed relatively good soil quality characterized by optimal nutrient availability, enzymatic and microbial activities, but the opposite was true of LPPS. Low levels of TN, AP and soil microbial activities were considered to be the major constraints limiting the productivity in LPPS. All soil samples collected were rich in available N, K, Si and Zn, but deficient in available P, which may be the major constraint for the studied regions. Managers in our study area should employ more appropriate management in the LPPS to improve its rice productivity, and particularly to any potential limiting factor. PMID:25997107

  13. Community structure and soil pH determine chemoautotrophic carbon dioxide fixation in drained paddy soils.

    PubMed

    Long, Xi-En; Yao, Huaiying; Wang, Juan; Huang, Ying; Singh, Brajesh K; Zhu, Yong-Guan

    2015-06-16

    Previous studies suggested that microbial photosynthesis plays a potential role in paddy fields, but little is known about chemoautotrophic carbon fixers in drained paddy soils. We conducted a microcosm study using soil samples from five paddy fields to determine the environmental factors and quantify key functional microbial taxa involved in chemoautotrophic carbon fixation. We used stable isotope probing in combination with phospholipid fatty acid (PLFA) and molecular approaches. The amount of microbial (13)CO2 fixation was determined by quantification of (13)C-enriched fatty acid methyl esters and ranged from 21.28 to 72.48 ng of (13)C (g of dry soil)(-1), and the corresponding ratio (labeled PLFA-C:total PLFA-C) ranged from 0.06 to 0.49%. The amount of incorporationof (13)CO2 into PLFAs significantly increased with soil pH except at pH 7.8. PLFA and high-throughput sequencing results indicated a dominant role of Gram-negative bacteria or proteobacteria in (13)CO2 fixation. Correlation analysis indicated a significant association between microbial community structure and carbon fixation. We provide direct evidence of chemoautotrophic C fixation in soils with statistical evidence of microbial community structure regulation of inorganic carbon fixation in the paddy soil ecosystem.

  14. Correlations between soil microbial and physicochemical variations in a rice paddy: implications for assessing soil health.

    PubMed

    Doi, Ryoichi; Ranamukhaarachchi, Senaratne Leelananda

    2009-12-01

    This study was conducted to test the hypothesis that spatial variations in soil microbial variables in a Thai rice paddy are accurately described by multivariate profiles of the soil bacterial communities. We found that community-level physiological profiles of soil bacterial communities could better describe the population density of Rhizoctonia solani in soil than the physicochemical profi les do. However, soil dehydrogenase levels were closely correlated with soil fertility (P<0.05), and these were better described by the physicochemical profiles. Hence, the hypothesis was rejected, and we suspect that soil microbial variables react differently to the same physicochemical changes. The average population density of R. solani (35 colony-forming units/g dry soil) was relatively high in the soil we studied, and the soil fertility was found to be among the poorest in Thailand. The soil quality was comparable to the most degraded bare ground soil in an adjacent bioreserve in terms of Shannon diversity index based on the communitylevel physiological profile as well as values of soil fertility indices. Overall, the soil microbial and physicochemical indicators showed that the paddy soil needs to be supplemented with soil nutrients. Otherwise, R. solani may cause a significant reduction in rice production. PMID:20093750

  15. Evaluation of soil quality indicators in paddy soils under different crop rotation systems

    NASA Astrophysics Data System (ADS)

    Nadimi-Goki, Mandana; Bini, Claudio; Haefele, Stephan; Abooei, Monireh

    2013-04-01

    Evaluation of soil quality indicators in paddy soils under different crop rotation systems Soil quality, by definition, reflects the capacity to sustain plant and animal productivity, maintain or enhance water and air quality, and promote plant and animal health. Soil quality assessment is an essential issue in soil management for agriculture and natural resource protection. This study was conducted to detect the effects of four crop rotation systems (rice-rice-rice, soya-rice-rice, fallow-rice and pea-soya-rice) on soil quality indicators (soil moisture, porosity, bulk density, water-filled pore space, pH, extractable P, CEC, OC, OM, microbial respiration, active carbon) in paddy soils of Verona area, Northern Italy. Four adjacent plots which managed almost similarly, over five years were selected. Surface soil samples were collected from each four rotation systems in four times, during growing season. Each soil sample was a composite of sub-samples taken from 3 points within 350 m2 of agricultural land. A total of 48 samples were air-dried and passed through 2mm sieve, for some chemical, biological, and physical measurements. Statistical analysis was done using SPSS. Statistical results revealed that frequency distribution of most data was normal. The lowest CV% was related to pH. Analysis of variance (ANOVA) and comparison test showed that there are significant differences in soil quality indicators among crop rotation systems and sampling times. Results of multivariable regression analysis revealed that soil respiration had positively correlation coefficient with soil organic matter, soil moisture and cation exchange capacity. Overall results indicated that the rice rotation with legumes such as bean and soybean improved soil quality over a long time in comparison to rice-fallow rotation, and this is reflected in rice yield. Keywords: Soil quality, Crop Rotation System, Paddy Soils, Italy

  16. Differential Assemblage of Functional Units in Paddy Soil Microbiomes

    PubMed Central

    Kim, Yongkyu; Liesack, Werner

    2015-01-01

    Flooded rice fields are not only a global food source but also a major biogenic source of atmospheric methane. Using metatranscriptomics, we comparatively explored structural and functional succession of paddy soil microbiomes in the oxic surface layer and anoxic bulk soil. Cyanobacteria, Fungi, Xanthomonadales, Myxococcales, and Methylococcales were the most abundant and metabolically active groups in the oxic zone, while Clostridia, Actinobacteria, Geobacter, Anaeromyxobacter, Anaerolineae, and methanogenic archaea dominated the anoxic zone. The protein synthesis potential of these groups was about 75% and 50% of the entire community capacity, respectively. Their structure-function relationships in microbiome succession were revealed by classifying the protein-coding transcripts into core, non-core, and taxon-specific transcripts based on homologous gene distribution. The differential expression of core transcripts between the two microbiomes indicated that structural succession is primarily governed by the cellular ability to adapt to the given oxygen condition, involving oxidative stress, nitrogen/phosphorus metabolism, and fermentation. By contrast, the non-core transcripts were expressed from genes involved in the metabolism of various carbon sources. Among those, taxon-specific transcripts revealed highly specialized roles of the dominant groups in community-wide functioning. For instance, taxon-specific transcripts involved in photosynthesis and methane oxidation were a characteristic of the oxic zone, while those related to methane production and aromatic compound degradation were specific to the anoxic zone. Degradation of organic matters, antibiotics resistance, and secondary metabolite production were detected to be expressed in both the oxic and anoxic zones, but by different taxonomic groups. Cross-feeding of methanol between members of the Methylococcales and Xanthomonadales was suggested by the observation that in the oxic zone, they both

  17. Development of bulk density, total C distribution and OC saturation in fine mineral fractions during paddy soil evolution

    NASA Astrophysics Data System (ADS)

    Wissing, Livia; Kölbl, Angelika; Cao, Zhi-Hong; Kögel-Knabner, Ingrid

    2010-05-01

    Paddy soils are described as important accumulator for OM (Zhang and He, 2004). In southeast China, paddy soils have the second highest OM stocks (Zhao et al, 1997) and thus a large proportion of the terrestrial carbon is conserved in wetland rice soils. The paddy soil management is believed to be favorable for accumulation of organic matter, as its content in paddy soils is statistically higher than that of non-paddy soils (Cai, 1996). However, the mechanism of OM storage and the development of OM distribution during paddy soil evolution is largely unknown. The aim of the project is to identify the role of organo-mineral complexes for the stabilization of organic carbon during management-induced paddy soil formation in a chronosequence ranging from 50 to 2000 years of paddy soil use. The soil samples were analysed for bulk density, total organic carbon (TOC) and total inorganic carbon (TIC) concentrations of bulk soils and the concentration of organic carbon as well as the organic carbon stocks of physical soil fractions. First results indicate distinctly different depth distributions between paddy and non-paddy (control) sites. The paddy soils are characterized by relatively low bulk densities in the puddled layer (between 0.9 and 1.3 g cm-3) and high values in the plough pan (1.4 to 1.6 g cm-3) and the non-paddy soils by relatively homogeneous values throughout the profiles (1.3 to 1.4 g cm-3). In contrast to the carbonate-rich non-paddy sites, we found a significant loss of carbonates during paddy soil formation, resulting in decalcification of the upper 20 cm after 100 yr of paddy soil use, and decalcification of the total soil profile in 700, 1000 and 2000 yr old paddy soils. The calculation of the organic carbon stocks of each horizon indicate that paddy sites always have higher values in topsoils compared to non-paddy sites, and show increasing values with increasing soil age. The capacity of fine mineral fractions to preserve OC was calculated according to

  18. Fly ash application in nutrient poor agriculture soils: impact on methanotrophs population dynamics and paddy yields.

    PubMed

    Singh, Jay Shankar; Pandey, Vimal Chandra

    2013-03-01

    There are reports that the application of fly ash, compost and press mud or a combination thereof, improves plant growth, soil microbial communities etc. Also, fly ash in combination with farmyard manure or other organic amendments improves soil physico-chemical characteristics, rice yield and microbial processes in paddy fields. However, the knowledge about the impact of fly ash inputs alone or in combination with other organic amendments on soil methanotrophs number in paddy soils is almost lacking. We hypothesized that fly ash application at lower doses in paddy agriculture soil could be a potential amendment to elevate the paddy yields and methanotrophs number. Here we demonstrate the impact of fly ash and press mud inputs on number of methanotrophs, antioxidants, antioxidative enzymatic activities and paddy yields at agriculture farm. The impact of amendments was significant for methanotrophs number, heavy metal concentration, antioxidant contents, antioxidant enzymatic activities and paddy yields. A negative correlation was existed between higher doses of fly ash-treatments and methanotrophs number (R(2)=0.833). The content of antioxidants and enzymatic activities in leaves of higher doses fly ash-treated rice plants increased in response to stresses due to heavy metal toxicity, which was negatively correlated with rice grain yield (R(2)=0.944) and paddy straw yield (R(2)=0.934). A positive correlation was noted between heavy metals concentrations and different antioxidant and enzymatic activities across different fly ash treated plots.The data of this study indicate that heavy metal toxicity of fly ash may cause oxidative stress in the paddy crop and the antioxidants and related enzymes could play a defensive role against phytotoxic damages. We concluded that fly ash at lower doses with press mud seems to offer the potential amendments to improving soil methanotrophs population and paddy crop yields for the nutrient poor agriculture soils.

  19. Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields

    PubMed Central

    Li, Yong; Wu, Jinshui; Shen, Jianlin; Liu, Shoulong; Wang, Cong; Chen, Dan; Huang, Tieping; Zhang, Jiabao

    2016-01-01

    Maintaining good soil productivity in rice paddies is important for global food security. Numerous methods have been developed to evaluate paddy soil productivity (PSP), most based on soil physiochemical properties and relatively few on biological indices. Here, we used a long-term dataset from experiments on paddy fields at eight county sites and a short-term dataset from a single field experiment in southern China, and aimed at quantifying relationships between PSP and the ratios of carbon (C) to nutrients (N and P) in soil microbial biomass (SMB). In the long-term dataset, SMB variables generally showed stronger correlations with the relative PSP (rPSP) compared to soil chemical properties. Both correlation and variation partitioning analyses suggested that SMB N, P and C:N ratio were good predictors of rPSP. In the short-term dataset, we found a significant, negative correlation of annual rice yield with SMB C:N (r = −0.99), confirming SMB C:N as a robust indicator for PSP. In treatments of the short-term experiment, soil amendment with biochar lowered SMB C:N and improved PSP, while incorporation of rice straw increased SMB C:N and reduced PSP. We conclude that SMB C:N ratio does not only indicate PSP but also helps to identify management practices that improve PSP. PMID:27739462

  20. Microbial phototrophic fixation of atmospheric CO2 in China subtropical upland and paddy soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida; Wu, Xiaohong; Chen, Xiaojuan; Yuan, Hongzhao; Zou, Ziying; Li, Baozhen; Zhou, Ping; Liu, Shoulong; Tong, Chengli; Brookes, Phil; Wu, Jinshui

    2013-07-01

    Autotrophic microorganisms, which can fix atmospheric CO2 to synthesize organic carbon, are numerous and widespread in soils. However, the extent and the mechanism of CO2 fixation in soils remain poorly understood. We incubated five upland and five paddy soils from subtropical China in an enclosed, continuously 14CO2-labeled, atmosphere and measured 14CO2 incorporated into soil organic matter (SOC14) and microbial biomass (MBC14) after 110 days. The five upland soils supported dominant crops soils (maize, wheat, sweet potato, and rapeseed) in the region, while all paddy soils were cultivated in a regime consisting of permanently-flooded double-cropping rice cultivation. The upland and paddy soils represented typical soil types (fluvisols and ultisols) and three landforms (upland, hill, and low mountain), ranging in total carbon from low (<10 g kg-1 soil organic carbon) to medium (10-20 g kg-1) to high (>20 g kg-1). Substantial amounts of 14CO2 were fixed into SOC14 (mean 20.1 ± 7.1 mg C kg-1 in upland soil, 121.1 ± 6.4 mg C kg-1 in paddy soil) in illuminated soils (12 h light/12 h dark), whereas no 14C was fixed in soils incubated in continuous darkness. We concluded that the microbial CO2 fixation was almost entirely phototrophic rather than chemotrophic. The rate of SOC14 synthesis was significantly higher in paddy soils than in upland soils. The SOC14 comprised means of 0.15 ± 0.01% (upland) and 0.65 ± 0.03% (paddy) of SOC. The extent of 14C immobilized as MBC14 and that present as dissolved organic C (DOC14) differed between soil types, accounting for 15.69-38.76% and 5.54-18.37% in upland soils and 15.57-40.03% and 3.67-7.17% of SOC14 in paddy soils, respectively. The MBC14/MBC and DOC14/DOC were 1.76-5.70% and 1.69-5.17% in the upland soils and 4.23-28.73% and 5.65-14.30% in the paddy soils, respectively. Thus, the newly-incorporated C stimulated the dynamics of DOC and MBC more than the dynamics of SOC. The SOC14 and MBC14 concentrations were highly

  1. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil.

    PubMed

    Chen, Wen-Ching; Yen, Jui-Hung; Chang, Ching-Shu; Wang, Yei-Shung

    2009-01-01

    The composition of culture-independent microbial communities and the change of nitrogenase activities under the application of butachlor in paddy soil were investigated. Nitrogen-fixation ability was expressed by the amount of acetylene reduction, and changes of microbial communities were studied by using denaturing gradient gel electrophoresis (DGGE) technique; afterward, minimum distance (MD, in brief) statistics was applied to determine the cluster numbers in UPGMA dendrograms. The results showed that the reduction of acetylene was suppressed shortly after butachlor application but was augmented after 37 days in both upper and lower layer soils. From UPGMA dendrograms, the diazotrophic divergences ranged from 33% to 64% throughout rice growth stages. For general bacterial communities, the diversities ranged from 28% to 52%. The divergences became higher with the cultivation period, and the application of butachlor imposed a significant variation on microbial community shift, which may be a reason for the boosting nitrogen-fixation ability in paddy soils.

  2. Inhibition experiments on nitrous oxide emission from paddy soils

    NASA Astrophysics Data System (ADS)

    Xu, Xingkai; Boeckx, Pascal; Zhou, Likai; Van Cleemput, Oswald

    2002-08-01

    Rice fields using nitrogen-based fertilizers play an important role in the global N2O budget. However, our knowledge is still limited with regard to the mechanisms affecting the N2O emission and to the measures that can reduce the emission. This paper reports a study of N2O emission from paddy soils. The effects of urea, hydroquinone (HQ, a urease inhibitor), and dicyandiamide (DCD, a nitrification inhibitor) have been studied in pot experiments with and without rice plants and with and without addition of wheat straw. With no wheat straw amendment, all treatments with inhibitors, especially with HQ + DCD, had a much smaller N2O emission during the rice growing period than the urea treatment, whereas a substantially increased N2O emission was observed from a rice-free soil with inhibitors. The N2O emission from the rice-planted soil was exponentially positive correlated with the NO3--N concentration in the rice aboveground biomass. By comparing the total N2O emission from the rice-free soil and from the rice-planted soil, we found that urea application alone might induce an apparent plant-mediated N2O emission, being 0.39 +/- 0.08% of the applied urea N. Wheat straw incorporated into the flooded surface layer soil could increase the plant-mediated N2O emission significantly. However, application of HQ + DCD could reduce this emission (0.27 +/- 0.08% of the applied urea N, compared with 0.89 +/- 0.18% in the urea treatment). It also reduced the N2O emission from the rice-free soil and from the rice-planted soil. Stepwise regression analysis indicates that denitrification in the flooded surface layer soil was the main source of N2O emission from this wetland rice cultivation, particularly when wheat straw was added. A significantly nonlinear negative relation was found between the N2O emission and the CH4 emission when no wheat straw was added, but it was hard to quantify this trade-off relation when wheat straw was incorporated into the flooded surface layer soil.

  3. Intra- versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Bannert, A.; Schloter, M.; Lehndorff, E.; Schwark, L.

    2012-03-01

    In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10% to 20%), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20-40%) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 yr paddy chronosequence under wetland rice cultivation restricted was conducted. Observations cannot be extrapolated to

  4. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale.

    PubMed

    Liu, Xiaojuan; Tian, Guangjin; Jiang, Dong; Zhang, Chi; Kong, Lingqiang

    2016-09-01

    Rice is a staple food by an increasing number of people in China. As more issues have arisen in China due to rice contaminated by cadmium (Cd), Cd contamination in arable soils has become a severe problem. In China, many studies have examined Cd contamination in arable soils on a national scale, but little studies have focused on the distribution of Cd in paddy fields. This study explored the spatial pattern of Cd in paddy soils in China, made a preliminary evaluation of the potential risk, and identified the most critically contaminated regions based on the domestic rough rice trade flow. The results showed that Cd concentrations in paddy soils in China ranged from 0.01 to 5.50 mg/kg, with a median value of 0.23 mg/kg. On average, the highest Cd concentrations were in Hunan (0.73 mg/kg), Guangxi (0.70 mg/kg), and Sichuan (0.46 mg/kg) provinces. Cd concentrations in paddy soils in central and western regions were higher than those in eastern regions, especially the southeastern coastal regions. Of the administrative regions, Cd standard exceedance rate was 33.2 %, and the heavy pollution rate was 8.6 %. Regarding to Cd of paddy soil, soil environmental quality was better in Northeast China Plain than in Yangtze River Basin and southeastern coastal region. Mining activities were the main anthropogenic pollution source of Cd in Chinese paddy soil. Based on rice trade, more of the Chinese population would be exposed to Cd through intake of rice produced in Hunan province. Certain regions that output rice, especially Hunan province, should be given priority in the management and control of Cd contamination in paddy soil.

  5. Cadmium (Cd) distribution and contamination in Chinese paddy soils on national scale.

    PubMed

    Liu, Xiaojuan; Tian, Guangjin; Jiang, Dong; Zhang, Chi; Kong, Lingqiang

    2016-09-01

    Rice is a staple food by an increasing number of people in China. As more issues have arisen in China due to rice contaminated by cadmium (Cd), Cd contamination in arable soils has become a severe problem. In China, many studies have examined Cd contamination in arable soils on a national scale, but little studies have focused on the distribution of Cd in paddy fields. This study explored the spatial pattern of Cd in paddy soils in China, made a preliminary evaluation of the potential risk, and identified the most critically contaminated regions based on the domestic rough rice trade flow. The results showed that Cd concentrations in paddy soils in China ranged from 0.01 to 5.50 mg/kg, with a median value of 0.23 mg/kg. On average, the highest Cd concentrations were in Hunan (0.73 mg/kg), Guangxi (0.70 mg/kg), and Sichuan (0.46 mg/kg) provinces. Cd concentrations in paddy soils in central and western regions were higher than those in eastern regions, especially the southeastern coastal regions. Of the administrative regions, Cd standard exceedance rate was 33.2 %, and the heavy pollution rate was 8.6 %. Regarding to Cd of paddy soil, soil environmental quality was better in Northeast China Plain than in Yangtze River Basin and southeastern coastal region. Mining activities were the main anthropogenic pollution source of Cd in Chinese paddy soil. Based on rice trade, more of the Chinese population would be exposed to Cd through intake of rice produced in Hunan province. Certain regions that output rice, especially Hunan province, should be given priority in the management and control of Cd contamination in paddy soil. PMID:27255314

  6. Intra-versus inter-site macroscale variation in biogeochemical properties along a paddy soil chronosequence

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, C.; Bannert, A.; Schloter, M.; Lehndorff, E.; Schwark, L.

    2011-10-01

    In order to assess the intrinsic heterogeneity of paddy soils, a set of biogeochemical soil parameters was investigated in five field replicates of seven paddy fields (50, 100, 300, 500, 700, 1000, and 2000 yr of wetland rice cultivation), one flooded paddy nursery, one tidal wetland (TW), and one freshwater site (FW) from a coastal area at Hangzhou Bay, Zhejiang Province, China. All soils evolved from a marine tidal flat substrate due to land reclamation. The biogeochemical parameters based on their properties were differentiated into (i) a group behaving conservatively (TC, TOC, TN, TS, magnetic susceptibility, soil lightness and colour parameters, δ13C, δ15N, lipids and n-alkanes) and (ii) one encompassing more labile properties or fast cycling components (Nmic, Cmic, nitrate, ammonium, DON and DOC). The macroscale heterogeneity in paddy soils was assessed by evaluating intra- versus inter-site spatial variability of biogeochemical properties using statistical data analysis (descriptive, explorative and non-parametric). Results show that the intrinsic heterogeneity of paddy soil organic and minerogenic components per field is smaller than between study sites. The coefficient of variation (CV) values of conservative parameters varied in a low range (10 % to 20 %), decreasing from younger towards older paddy soils. This indicates a declining variability of soil biogeochemical properties in longer used cropping sites according to progress in soil evolution. A generally higher variation of CV values (>20-40 %) observed for labile parameters implies a need for substantially higher sampling frequency when investigating these as compared to more conservative parameters. Since the representativeness of the sampling strategy could be sufficiently demonstrated, an investigation of long-term carbon accumulation/sequestration trends in topsoils of the 2000 year paddy chronosequence under wetland rice cultivation was conducted. The evolutionary trend showed that the

  7. Effects of Land Use Changes from Paddy Fields on Soil Bacterial Communities in a Hilly and Mountainous Area

    PubMed Central

    Rokunuzzaman, Md; Ueda, Yumiko; Chen, Li; Tanaka, Sota; Ohnishi, Kouhei

    2016-01-01

    Soil bacterial community structures in terraced rice fields and abandoned lands in a hilly and mountainous area were analyzed using 16S rRNA gene sequences. The DGGE band patterns of each soil were similar. Based on pyrosequencing data, the richness and diversity of bacterial species were slightly higher in paddy fields than in other soils. A beta-diversity analysis clearly indicated that the bacterial community structure in paddy fields differed from those in non-paddy field lands and crop fields that had not been used as a paddy field. These results may reflect the history of land use. PMID:27098398

  8. Fate of 14C-labeled dissolved organic matter in paddy and upland soils in responding to moisture.

    PubMed

    Chen, Xiangbi; Wang, Aihua; Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang; Ge, Tida; Wu, Jinshui; Kuzyakov, Yakov; Su, Yirong

    2014-08-01

    Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). (14)C labeled DOM, extracted from the (14)C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to (14)CO2 and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial (14)C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial (14)C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of (14)C incorporated into the microbial biomass (2.4-11.0% of the initial DOM-(14)C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to (14)CO2 within 100 days was 1.2-2.1-fold higher in the paddy soils (41.9-60.0% of the initial DOM-(14)C activity) than in the upland soils (28.7-35.7%), 2) (14)C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) (14)C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm indicates less aromaticity of DOM from the paddy soils than from the

  9. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China.

    PubMed

    Zhang, Si-Yu; Zhao, Fang-Jie; Sun, Guo-Xin; Su, Jian-Qiang; Yang, Xiao-Ru; Li, Hu; Zhu, Yong-Guan

    2015-04-01

    Microbe-mediated arsenic (As) biotransformation in paddy soils determines the fate of As in soils and its availability to rice plants, yet little is known about the microbial communities involved in As biotransformation. Here, we revealed wide distribution, high diversity, and abundance of arsenite (As(III)) oxidase genes (aioA), respiratory arsenate (As(V)) reductase genes (arrA), As(V) reductase genes (arsC), and As(III) S-adenosylmethionine methyltransferase genes (arsM) in 13 paddy soils collected across Southern China. Sequences grouped with As biotransformation genes are mainly from rice rhizosphere bacteria, such as some Proteobacteria, Gemmatimonadales, and Firmicutes. A significant correlation of gene abundance between arsC and arsM suggests that the two genes coexist well in the microbial As resistance system. Redundancy analysis (RDA) indicated that soil pH, EC, total C, N, As, and Fe, C/N ratio, SO4(2-)-S, NO3(-)-N, and NH4(+)-N were the key factors driving diverse microbial community compositions. This study for the first time provides an overall picture of microbial communities involved in As biotransformation in paddy soils, and considering the wide distribution of paddy fields in the world, it also provides insights into the critical role of paddy fields in the As biogeochemical cycle.

  10. Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China.

    PubMed

    Zhang, Si-Yu; Zhao, Fang-Jie; Sun, Guo-Xin; Su, Jian-Qiang; Yang, Xiao-Ru; Li, Hu; Zhu, Yong-Guan

    2015-04-01

    Microbe-mediated arsenic (As) biotransformation in paddy soils determines the fate of As in soils and its availability to rice plants, yet little is known about the microbial communities involved in As biotransformation. Here, we revealed wide distribution, high diversity, and abundance of arsenite (As(III)) oxidase genes (aioA), respiratory arsenate (As(V)) reductase genes (arrA), As(V) reductase genes (arsC), and As(III) S-adenosylmethionine methyltransferase genes (arsM) in 13 paddy soils collected across Southern China. Sequences grouped with As biotransformation genes are mainly from rice rhizosphere bacteria, such as some Proteobacteria, Gemmatimonadales, and Firmicutes. A significant correlation of gene abundance between arsC and arsM suggests that the two genes coexist well in the microbial As resistance system. Redundancy analysis (RDA) indicated that soil pH, EC, total C, N, As, and Fe, C/N ratio, SO4(2-)-S, NO3(-)-N, and NH4(+)-N were the key factors driving diverse microbial community compositions. This study for the first time provides an overall picture of microbial communities involved in As biotransformation in paddy soils, and considering the wide distribution of paddy fields in the world, it also provides insights into the critical role of paddy fields in the As biogeochemical cycle. PMID:25738639

  11. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    PubMed Central

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg−1 dry weight soil, dws season−1 to 112.2 mg kg−1 dws season−1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change. PMID:27090814

  12. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    NASA Astrophysics Data System (ADS)

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-04-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg‑1 dry weight soil, dws season‑1 to 112.2 mg kg‑1 dws season‑1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  13. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change.

    PubMed

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E; Wu, Weixiang

    2016-04-19

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg(-1) dry weight soil, dws season(-1) to 112.2 mg kg(-1) dws season(-1)) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  14. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change.

    PubMed

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E; Wu, Weixiang

    2016-01-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg(-1) dry weight soil, dws season(-1) to 112.2 mg kg(-1) dws season(-1)) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change. PMID:27090814

  15. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.

    PubMed

    de Livera, Jennifer; McLaughlin, Mike J; Hettiarachchi, Ganga M; Kirby, Jason K; Beak, Douglas G

    2011-03-15

    Cadmium (Cd) is a non-essential element for human nutrition and is an agricultural soil contaminant. Cadmium solubility in paddy soils affects Cd accumulation in the grain of rice. This is a human health risk, exacerbated by the fact that rice grains are deficient in iron (Fe) and zinc (Zn) for human nutrition. To find ways of limiting this potential risk, we investigated factors influencing Cd solubility relative to Fe and Zn during pre-harvest drainage of paddy soils, in which soil oxidation is accompanied by the grain-filling stage of rice growth. This was simulated in temperature-controlled "reaction cell" experiments by first excluding oxygen to incubate soil suspensions anaerobically, then inducing aerobic conditions. In treatments without sulfur addition, the ratios of Cd:Fe and Cd:Zn in solution increased during the aerobic phase while Cd concentrations were unaffected and the Fe and Zn concentrations decreased. However, in treatments with added sulfur (as sulfate), up to 34 % of sulfur (S) was precipitated as sulfide minerals during the anaerobic phase and the Cd:Fe and Cd:Zn ratios in solution during the aerobic phase were lower than for treatments without S addition. When S was added, Cd solubility decreased whereas Fe and Zn were unaffected. When soil was spiked with Zn the Cd:Zn ratio was lower in solution during the aerobic phase, due to higher Zn concentrations. Decreased Cd:Fe and Cd:Zn ratios during the grain filling stage could potentially limit Cd enrichment in paddy rice grain due to competitive ion effects for root uptake.

  16. [Methane emission from rice paddy soils as influenced by soil physicochemical properties].

    PubMed

    Jiao, Yan; Huang, Yao; Zong, Lianggang; Zhou, Quansuo; Sass, Ronald L; Fisher, Frank M

    2002-09-01

    To identify the key soil parameters influencing methane emission from rice paddies, and to quantitatively describe the relationship of methane emission with the soil properties, an outdoor pot experiment with a total of 18 paddy soils sampled from different regions in Jiangsu province was conducted in Nanjing Agricultural University during 2000 rice growing season. Seasonal average rate of CH4 emission for all the 18 soils was 6.42 +/- 2.70 mg.(m2.h)-1, ranging from 1.96 to 11.06 mg.(m2.h)-1, approximately a 5.6-fold difference between the maximum and the minimum. Correlation analysis indicated that the seasonal average of CH4 emission was positively dependent on soil sand content (r = 0.528, p = 0.024) and negatively on soil clay content (r = -0.484, p = 0.042). Negative correlation of CH4 emission against soil total nitrogen (r = -0.449, p = 0.062), available nitrogen (r = -0.611, p = 0.007) and NH4(+)-N(r = -0.649, p = 0.004) was also observed. Copper content of soils has a significant negative impact on CH4 emission. The correlation coefficient (r) of CH4 emission against soil available copper and with total copper was -0.594 (p = 0.009) and -0.547 (p = 0.019), respectively. No clear relationship existed between CH4 emission and soil carbon content. A further investigation suggests that the seasonal average rate of CH4 emission can be quantitatively determined by a linear combination of soil available copper, total manganese, and a ratio of available to total iron (R2 = 0.755, p = 0.0001).

  17. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale.

    PubMed

    Li, Yilin; Kronzucker, Herbert J; Shi, Weiming

    2016-01-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world's leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4(+)) and nitrate (NO3(-)), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4(+) and NO3(-) exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0-3.5 mm depth, and O2soil became undetectable at 1.7-4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4(+) > O2water > NO3(-) > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field. PMID:27265522

  18. [Translocation and transformation characteristics of fertilizer nitrogen in paddy soil: a study with simulated soil column].

    PubMed

    Zhang, Chao; Che, Yu-Ping; Li, Zhong-Pei

    2011-12-01

    Aimed to understand the translocation and transformation characteristics of applied fertilizer nitrogen in paddy soil, a simulated soil column experiment was conducted in laboratory to study the variations of soil mineral nitrogen along the profile under the application of 360 mg x kg(-1) (3 folds of conventional application rate) of urea- and ammonium sulfate nitrogen. In the experimental period, the soil NH4(+)-N and NO3(-)-N contents in the control (no fertilization) had less change, and no significant differences among different soil layers. Applying urea- and ammonium sulfate nitrogen resulted in a significant increase of soil NH4(+)-N and NO3(-)-N in 0-50 mm layer, being 186.0-2882.1 mg x kg(-1) and 268.7-351.5 mg x kg(-1), and 4.8-242 times and 5.7-316 times of those in CK, respectively. However, the NH4(+)-N and NO3(-)-N contents below 50 mm soil depth were similar to those in CK, indicating that the translocation and transformation of applied fertilizer nitrogen mainly occurred in 0-50 mm soil layer. The translocation of fertilizer nitrogen mostly occurred in the first 14 days after fertilization. In the whole experimental period, the NH4(+)-N and NO3(-)-N contents in each soil layer under the application of ammonium sulfate were 0.7-2.0 times of those under the application of urea, and the nitrification rate was 0.9-1.4 times of that, suggesting the higher transformation rate of applied ammonium sulfate in paddy soil, as compared with applied urea.

  19. [Distribution characteristics of aggregates organic carbon in a paddy soil chronosequence].

    PubMed

    Wang, Xin-Xin; Fu, Jian-Rong; Zou, Ping; Chen, Wei; Ye, Jing; Yu, Qiao-Gang; Jiang, Li-Na; Wang, Qiang

    2013-03-01

    By the method of physical fractionation of organic matter, this paper studied the distribution characteristics of organic carbon in different particle size aggregates in a paddy soil chronosequence on the south bank of Hangzhou Bay, East China. In the plow layers of the paddy soil chronosequence, micro-aggregates (<0. 25 mm) dominated, and the proportion of large micro-aggregates (0.053-0.25 mm) decreased with increasing rice cultivation year. In the micro-aggregates (<0. 053 mm and 0. 053-0. 25 mm), the organic carbon content increased with increasing rice cultivation time; and in the aggregates (0. 053-2 mm), the ratio of the organic carbon in different particle size fractions to the bulk soil organic carbon increased with decreasing particle size, and the organic carbon mainly distributed in large micro-aggregates (0. 053 -0. 25 mm). With increasing rice cultivation time, soil particulate organic carbon decreased, indicating that the paddy soil with a longer rice cultivation history had a stronger capability of carbon sequestration than the soil with a shorter rice cultivation history, and the early cultivated paddy soil still had great potential for carbon sequestration.

  20. pH regulates ammonia-oxidizing bacteria and archaea in paddy soils in Southern China.

    PubMed

    Li, Hu; Weng, Bo-Sen; Huang, Fu-Yi; Su, Jian-Qiang; Yang, Xiao-Ru

    2015-07-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning. The results showed that PNA was highly variable between paddy soils, ranging from 4.05 ± 0.21 to 9.81 ± 1.09 mg NOx-N kg(-1) dry soil day(-1), and no significant correlation with soil parameters was found. The abundance of AOA was predominant over AOB, indicating that AOA may be the major members in aerobic ammonia oxidation in these paddy soils. Community compositions of AOA and AOB were highly variable among samples, but the variations were best explained by pH. AOA sequences were affiliated to the Nitrosopumilus cluster and Nitrososphaera cluster, and AOB were classified into the lineages of Nitrosospira and Nitrosomonas, with Nitrosospira being predominant over Nitrosomonas, accounting for 83.6 % of the AOB community. Moreover, the majority of Nitrosomonas was determined in neutral soils. Canonical correspondence analysis (CCA) analysis further demonstrated that AOA and AOB community structures were significantly affected by pH, soil total organic carbon, total nitrogen, and C/N ratio, suggesting that these factors exert strong effects on the distribution of AOB and AOA in paddy soils in Southern China. In conclusion, our results imply that soil pH was a key explanatory variable for both AOA and AOB community structure and nitrification activity.

  1. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2007-09-01

    Arsenic-rich groundwater from shallow tube wells is widely used for the irrigation of boro rice in Bangladesh and West Bengal. In the long term this may lead to the accumulation of As in paddy soils and potentially have adverse effects on rice yield and quality. In the companion article in this issue, we have shown that As input into paddy fields with irrigation water is laterally heterogeneous. To assess the potential for As accumulation in soil, we investigated the lateral and vertical distribution of As in rice field soils near Sreenagar (Munshiganj, Bangladesh) and its changes over a 1 year cycle of irrigation and monsoon flooding. At the study site, 18 paddy fields are irrigated with water from a shallow tube well containing 397 +/- 7 microg L(-1) As. The analysis of soil samples collected before irrigation in December 2004 showed that soil As concentrations in paddy fields did not depend on the length of the irrigation channel between well and field inlet. Within individual fields, however, soil As contents decreased with increasing distance to the water inlet, leading to highly variable topsoil As contents (11-35 mg kg(-1), 0-10 cm). Soil As contents after irrigation (May 2005) showed that most As input occurred close to the water inlet and that most As was retained in the top few centimeters of soil. After monsoon flooding (December 2005), topsoil As contents were again close to levels measured before irrigation. Thus, As input during irrigation was at least partly counteracted by As mobilization during monsoon flooding. However, the persisting lateral As distribution suggests net arsenic accumulation over the past 15 years. More pronounced As accumulation may occur in regions with several rice crops per year, less intense monsoon flooding, or different irrigation schemes. The high lateral and vertical heterogeneity of soil As contents must be taken into account in future studies related to As accumulation in paddy soils and potential As transfer into rice.

  2. Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. 2. Paddy soil.

    PubMed

    Dittmar, Jessica; Voegelin, Andreas; Roberts, Linda C; Hug, Stephan J; Saha, Ganesh C; Ali, M Ashraf; Badruzzaman, A Borhan M; Kretzschmar, Ruben

    2007-09-01

    Arsenic-rich groundwater from shallow tube wells is widely used for the irrigation of boro rice in Bangladesh and West Bengal. In the long term this may lead to the accumulation of As in paddy soils and potentially have adverse effects on rice yield and quality. In the companion article in this issue, we have shown that As input into paddy fields with irrigation water is laterally heterogeneous. To assess the potential for As accumulation in soil, we investigated the lateral and vertical distribution of As in rice field soils near Sreenagar (Munshiganj, Bangladesh) and its changes over a 1 year cycle of irrigation and monsoon flooding. At the study site, 18 paddy fields are irrigated with water from a shallow tube well containing 397 +/- 7 microg L(-1) As. The analysis of soil samples collected before irrigation in December 2004 showed that soil As concentrations in paddy fields did not depend on the length of the irrigation channel between well and field inlet. Within individual fields, however, soil As contents decreased with increasing distance to the water inlet, leading to highly variable topsoil As contents (11-35 mg kg(-1), 0-10 cm). Soil As contents after irrigation (May 2005) showed that most As input occurred close to the water inlet and that most As was retained in the top few centimeters of soil. After monsoon flooding (December 2005), topsoil As contents were again close to levels measured before irrigation. Thus, As input during irrigation was at least partly counteracted by As mobilization during monsoon flooding. However, the persisting lateral As distribution suggests net arsenic accumulation over the past 15 years. More pronounced As accumulation may occur in regions with several rice crops per year, less intense monsoon flooding, or different irrigation schemes. The high lateral and vertical heterogeneity of soil As contents must be taken into account in future studies related to As accumulation in paddy soils and potential As transfer into rice

  3. Similarities in chemical composition of soil organic matter across a millennia-old paddy soil chronosequence as revealed by advanced solid-state NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil organic matter (SOM) accumulation in paddy soils has aroused considerable attention due to its vital significance in global food, energy, climate, and environmental issues. Considerable progress has been made toward the understanding of changes in the quantity of SOM in paddy soils over a mille...

  4. [Research on vertical distribution pattern and reserve of organic carbon in paddy field soil of Qianguo, Jilin].

    PubMed

    Tang, Jie; Zhang, Wen-Hui; Li, Zhao-Yang; Zhang, Nan; Hu, Meng

    2013-07-01

    Taking Qianguo paddy field of Jilin Province as investigation object, based on the soil test data of 7 different periods developed for 4 to 55 years, the vertical distribution of SOC content in the 1 m paddy field section was studied adopting the space scale method instead of time scale. The paddy soil carbon sink in last 20 years was discussed and the organic carbon storage of Qianguo paddy field soil was estimated. According to the second soil census data, the characteristics of soil SOC used in fields of different type were comparatively analyzed. The results showed that the paddy field SOC decreased from top to bottom by layer, which showed an increasing trend with the increase of development age; the organic carbon content in the surface soil layer (0-30 cm) (1 820.79 t) was 46.87% of the total organic carbon storage in deep soil (3 885.05 t), and the soil SOCD content was highly different depending on the type of field, ranked in descending order as paddy field, dry land, and saline field. The development of paddy field is a SOC accumulating carbon sink process, which is conducive to the transfer of organic carbon from the surface soil layer to the bottom soil layer.

  5. [Dynamics of polycyclic aromatic hydrocarbons (PAHs) in the paddy-soil system during the crop rotation process].

    PubMed

    Jiao, Xing-chun; Ye, Chuan-yong; Chen, Su-hua; Yang, Yong-liang; Wu, Zhen-yan

    2010-07-01

    The concentrations of polycyclic aromatic hydrocarbons (PAHs) in the paddy root-soil system were determined to study the dynamic and the influencing factors during crop rotation period. It showed that the dynamic of PAHs in paddy roots was most correlative with the factor of root surface area, but less correlated with PAHs in air and particles, which indicates that the physiological characters rather than the environment media are the main factors influencing the PAHs accumulation in paddy roots. According to the EPA risk standard about BaP and sigma PAHs, the PAHs accumulation in the paddy seeds won't decrease the food security to human being. The PAHs concentrations in paddy soil showed a declined trend during the period of paddy growth, which was affected not only by the processes of water elution and microbe degradation, but also depended on the absorption rate of paddy roots. When the crop rotation begins and paddy planting rolls into the next growing period, the PAHs in the paddy soil will again increase into a higher level which is correlated with the TOC content in the soil.

  6. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China.

    PubMed

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  7. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

    PubMed Central

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology. PMID:27679621

  8. Geographical Distribution of Methanogenic Archaea in Nine Representative Paddy Soils in China

    PubMed Central

    Zu, Qianhui; Zhong, Linghao; Deng, Ye; Shi, Yu; Wang, Baozhan; Jia, Zhongjun; Lin, Xiangui; Feng, Youzhi

    2016-01-01

    Paddy field methanogenic archaea are responsible for methane (CH4) production and contribute significantly to climate change. The information regarding the spatial variations in the abundance, the diversity and the composition of such ecologically important microbes, however, is quite limited at large scale. In this investigation, we studied the abundance, alpha diversity and geographical distribution of methanogenic archaeal communities in nine representative paddy sites, along a large latitudinal gradient in China, using pyrosequencing and real-time quantitative PCR. It is found that all paddy soils harbor constant methanogenic archaeal constituents, which is dominated by family Methanocellaceae (37.3%), Methanobacteriaceae (22.1%), Methanosaetaceae (17.2%), and Methanosarcinaceae (9.8%). Methanogenic archaeal abundance is primarily influenced by soil C (R = 0.612, P = 0.001) and N (R = 0.673, P = 0.001) contents, as well as alpha diversity by soil pH (PD: R = -0.552, P = 0.006; Chao1: R = -0.615, P = 0.002). Further exploration revealed that both spatial distance (R = 0.3469, P = 0.001, partial mental test) and soil chemical variables mainly about soil C and N (R = 0.2847, P = 0.001) are the two major factors affecting methanogenic archaeal community composition distribution in paddy soils. This finding will allow us to develop a better picture of the biogeographic ranges of these ecologically important microbes and get deeper insights into their ecology.

  9. Soil physicochemical and biological properties of paddy-upland rotation: a review.

    PubMed

    Zhou, Wei; Lv, Teng-Fei; Chen, Yong; Westby, Anthony P; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  10. Soil Physicochemical and Biological Properties of Paddy-Upland Rotation: A Review

    PubMed Central

    Lv, Teng-Fei; Chen, Yong; Westby, Anthony P.; Ren, Wan-Jun

    2014-01-01

    Paddy-upland rotation is an unavoidable cropping system for Asia to meet the increasing demand for food. The reduction in grain yields has increased the research interest on the soil properties of rice-based cropping systems. Paddy-upland rotation fields are unique from other wetland or upland soils, because they are associated with frequent cycling between wetting and drying under anaerobic and aerobic conditions; such rotations affect the soil C and N cycles, make the chemical speciation and biological effectiveness of soil nutrient elements varied with seasons, increase the diversity of soil organisms, and make the soil physical properties more difficult to analyze. Consequently, maintaining or improving soil quality at a desirable level has become a complicated issue. Therefore, fully understanding the soil characteristics of paddy-upland rotation is necessary for the sustainable development of the system. In this paper, we offer helpful insight into the effect of rice-upland combinations on the soil chemical, physical, and biological properties, which could provide guidance for reasonable cultivation management measures and contribute to the improvement of soil quality and crop yield. PMID:24995366

  11. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.

    PubMed

    Wang, Yong-Jie; Dang, Fei; Zhao, Jia-Ting; Zhong, Huan

    2016-06-01

    There is increasing interest in understanding factors controlling methylmercury (MeHg) production in mercury-contaminated rice paddy soil. Sulfate has been reported to affect MeHg biogeochemistry under anoxic conditions, and recent studies revealed that selenium (Se) could evidently reduce MeHg production in paddy soil. However, the controls of sulfate and Se on net MeHg production in paddy soil under fluctuating redox conditions remain largely unknown. Microcosm experiments were conducted to explore the effects of sulfate and Se on net MeHg production in rice paddy soil. Soil was added with 0-960 mg/kg sulfate, in the presence or absence of 3.0 mg/kg selenium (selenite or selenate), and incubated under anoxic (40 days) or suboxic conditions (5 days), simulating fluctuating redox conditions in rice paddy field. Sulfate addition moderately affected soil MeHg concentrations under anoxic conditions, while reoxidation resulted in evidently higher (18-40%) MeHg levels in sulfate amended soils than the control. The observed changes in net MeHg production were related to dynamics of sulfate and iron. However, Se could inhibit sulfate-mediated MeHg production in the soils: Se addition largely reduced net MeHg production in the soils (23-86%, compared to the control), despite of sulfate addition. Similarly, results of the pot experiments (i.e., rice cultivation in amended soils) indicated that soil MeHg levels were rather comparable in Se-amended soils during rice growth period, irrespective of added sulfate doses. The more important role of Se than sulfate in controlling MeHg production was explained by the formation of HgSe nanoparticles irrespective of the presence of sulfate, confirmed by TEM-EDX and XANES analysis. Our findings regarding the effects of sulfate and Se on net MeHg production in rice paddy soil together with the mechanistic explanation of the processes advance our understanding of MeHg dynamics and risk in soil-rice systems. PMID:26901075

  12. Metagenomic profiles of antibiotic resistance genes in paddy soils from South China.

    PubMed

    Xiao, Ke-Qing; Li, Bing; Ma, Liping; Bao, Peng; Zhou, Xue; Zhang, Tong; Zhu, Yong-Guan

    2016-03-01

    Overuse and arbitrary discarding of antibiotics have expanded antibiotic resistance reservoirs, from gut, waste water and activated sludge, to soil, freshwater and even the ocean. Based on the structured Antibiotic Resistance Genes Database and next generation sequencing, metagenomic analysis was used for the first time to detect and quantify antibiotic resistance genes (ARGs) in paddy soils from South China. A total of 16 types of ARGs were identified, corresponding to 110 ARG subtypes. The abundances and distribution pattern of ARGs in paddy soil were distinctively different from those in activated sludge and pristine deep ocean sediment, but close to those of sediment from human-impacted estuaries. Multidrug resistance genes were the most dominant type (38-47.5%) in all samples, and the ARGs detected encompassed the three major resistance mechanisms, among which extrusion by efflux pumps was predominant. Redundancy analysis (RDA) showed that pH was significantly correlated with the distribution of ARG subtypes (P < 0.05). Our results provided a broad spectrum profile of ARGs in paddy soil, indicating that ARGs are widespread in paddy soils of South China.

  13. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    PubMed Central

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  14. [Characteristics and Inputs of Cd Contamination in Paddy Soils in Typical Mining and Industrial Areas in Youxian County, Hunan Province].

    PubMed

    Zhang, Min; Wang Mei-e; Chen, Wei-ping; Niu, Jun-jie

    2015-04-01

    In order to explore input pathways and pollution characteristics of Cd contamination in paddy soil in Youxian, Hunan Province, Cd contents in paddy soils, sediments of irrigation canals, typical mineral and industrial products such as coal, gangue and cement were analyzed. It was suggested that the average contents of Cd both in surface paddy soil and the corresponding natural soil were higher than the soil quality standard 0.3 mg x kg(-1). Cd contents in gangue and cement were similar as those in the corresponding natural soils. The atmosphere deposition of Cd was the highest in factory area. The profiles of Cd in 0-100 cm paddy soil and 0-40 cm in natural soils varied significantly from the upper to the lower layer. Cd contents in 0-40 cm layer in paddy soil were much higher than those in corresponding natural soils in mineral and mineral-factory areas. The potentiality for downward movement of Cd in soils in mineral area was the highest among the three studied areas. It suggested Cd contents in surface paddy soil were higher in upwind areas than those in downwind areas in mineral-factory and factory areas. It could be concluded that the main input pathways of Cd in mineral and mineral-factory. areas were from irrigation water, while contribution of atmosphere deposition in mineral-factory and factory areas was also very significant. PMID:26164922

  15. [Characteristics and Inputs of Cd Contamination in Paddy Soils in Typical Mining and Industrial Areas in Youxian County, Hunan Province].

    PubMed

    Zhang, Min; Wang Mei-e; Chen, Wei-ping; Niu, Jun-jie

    2015-04-01

    In order to explore input pathways and pollution characteristics of Cd contamination in paddy soil in Youxian, Hunan Province, Cd contents in paddy soils, sediments of irrigation canals, typical mineral and industrial products such as coal, gangue and cement were analyzed. It was suggested that the average contents of Cd both in surface paddy soil and the corresponding natural soil were higher than the soil quality standard 0.3 mg x kg(-1). Cd contents in gangue and cement were similar as those in the corresponding natural soils. The atmosphere deposition of Cd was the highest in factory area. The profiles of Cd in 0-100 cm paddy soil and 0-40 cm in natural soils varied significantly from the upper to the lower layer. Cd contents in 0-40 cm layer in paddy soil were much higher than those in corresponding natural soils in mineral and mineral-factory areas. The potentiality for downward movement of Cd in soils in mineral area was the highest among the three studied areas. It suggested Cd contents in surface paddy soil were higher in upwind areas than those in downwind areas in mineral-factory and factory areas. It could be concluded that the main input pathways of Cd in mineral and mineral-factory. areas were from irrigation water, while contribution of atmosphere deposition in mineral-factory and factory areas was also very significant.

  16. Uptake of arsenic by alkaline soils near alkaline coal fly ash disposal facilities.

    PubMed

    Khodadoust, Amid P; Theis, Thomas L; Murarka, Ishwar P; Naithani, Pratibha; Babaeivelni, Kamel

    2013-12-01

    The attenuation of arsenic in groundwater near alkaline coal fly ash disposal facilities was evaluated by determining the uptake of arsenic from ash leachates by surrounding alkaline soils. Ten different alkaline soils near a retired coal fly ash impoundment were used in this study with pH ranging from 7.6 to 9.0, while representative coal fly ash samples from two different locations in the coal fly ash impoundment were used to produce two alkaline ash leachates with pH 7.4 and 8.2. The arsenic found in the ash leachates was present as arsenate [As(V)]. Adsorption isotherm experiments were carried out to determine the adsorption parameters required for predicting the uptake of arsenic from the ash leachates. For all soils and leachates, the adsorption of arsenic followed the Langmuir and Freundlich equations, indicative of the favorable adsorption of arsenic from leachates onto all soils. The uptake of arsenic was evaluated as a function of ash leachate characteristics and the soil components. The uptake of arsenic from alkaline ash leachates, which occurred mainly as calcium hydrogen arsenate, increased with increasing clay fraction of soil and with increasing soil organic matter of the alkaline soils. Appreciable uptake of arsenic from alkaline ash leachates with different pH and arsenic concentration was observed for the alkaline soils, thus attenuating the contamination of groundwater downstream of the retired coal fly ash impoundment.

  17. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    PubMed Central

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-01-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587

  18. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    NASA Astrophysics Data System (ADS)

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-12-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.

  19. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study. PMID:25508755

  20. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study. PMID:25474976

  1. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    PubMed

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  2. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

    PubMed

    Meharg, Andrew A; Rahman, Md Mazibur

    2003-01-15

    Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1). PMID:12564892

  3. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption.

    PubMed

    Meharg, Andrew A; Rahman, Md Mazibur

    2003-01-15

    Arsenic contaminated groundwater is used extensively in Bangladesh to irrigate the staple food of the region, paddy rice (Oryza sativa L.). To determine if this irrigation has led to a buildup of arsenic levels in paddy fields, and the consequences for arsenic exposure through rice ingestion, a survey of arsenic levels in paddy soils and rice grain was undertaken. Survey of paddy soils throughout Bangladesh showed that arsenic levels were elevated in zones where arsenic in groundwater used for irrigation was high, and where these tube-wells have been in operation for the longest period of time. Regression of soil arsenic levels with tube-well age was significant. Arsenic levels reached 46 microg g(-1) dry weight in the most affected zone, compared to levels below l0 microg g(-1) in areas with low levels of arsenic in the groundwater. Arsenic levels in rice grain from an area of Bangladesh with low levels of arsenic in groundwaters and in paddy soils showed that levels were typical of other regions of the world. Modeling determined, even these typical grain arsenic levels contributed considerably to arsenic ingestion when drinking water contained the elevated quantity of 0.1 mg L(-1). Arsenic levels in rice can be further elevated in rice growing on arsenic contaminated soils, potentially greatly increasing arsenic exposure of the Bangladesh population. Rice grain grown in the regions where arsenic is building up in the soil had high arsenic concentrations, with three rice grain samples having levels above 1.7 microg g(-1).

  4. Aging well: methanotrophic potential and community structure along a paddy soil chronosequence of 2000 years.

    NASA Astrophysics Data System (ADS)

    Ho, Adrian; Frenzel, Peter

    2010-05-01

    Given that rice paddies are anthropogenic methane sources and the inevitable need to increase rice production to sustain human population growth, it is pertinent to identify the effects of long term agriculture on the selection of methanotrophs. Methanotrophs play a crucial role in mitigating methane emission from rice paddies. Therefore, we analyzed the methanotroph community along a chronosequence of paddy soils from China covering recently reclaimed sites to paddies under permanent agriculture since 2000 years (Cheng et al., 2009; doi:10.1016/j.geoderma.2009.03.016). Maximum potential methane oxidation rate (PMOR) increased monotonically with age. Our results also showed that long-term agriculture imposes a selection pressure on different groups of methanotrophs. In contrast to younger soils, type Ib methanotrophs were observed to multiply in correspondence with increasing PMOR in ancient soils, while other groups showed a relatively stable community composition as revealed by pmoA-based fingerprints (T-RFLP) and quantitative PCR. Cloning and sequencing the pmoA (a key gene in methane oxidation), the soils were found to harbour known and putative methanotrophs, ammonium-oxidizing bacteria, and interestingly, sequences affiliated to Crenothrix, a methane oxidizer with an unusual pmoA (Stoecker et al., 2006; doi:10.1073/pnas.0506361103). In summary, long-term agriculture shapes the community and allows for an elevated level of potential methane oxidation.

  5. [Diversity of microbial genes in paddy soil stressed by cadmium using DGGE].

    PubMed

    Duan, Xue-jun; Min, Hang

    2004-09-01

    Variations of diversity of microbial genes in submerged paddy soil stressed by heavy metal cadmium were studied using modern molecular biotechnology which includes directly extracting total DNA from paddy soil, amplifying 16S rDNA and their V3 variable region by PCR, the denaturing gradient gel electrophoresis (DGGE). Two methods for extraction and purification of microbial DNA were compared. Bacterial communities were quantified by analyzing the DGGE band patterns. The genetic clusters and correlative comparison of bacterial communities were analyzed based on the DGGE finger-print. The results showed that there are some significant differences between bacterial communities in paddy soils treated with different concentrations of cadmium. The information about effect of cadium on microbial population based on molecular biological techniques are conformed with that from traditional methods, but that obtained about variations of microbial genes in paddy soil is much more than results based on the latter methods. It could provide a new way and foundation to research microbial gene diversity in contaminated environment.

  6. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01). PMID:25338383

  7. [Effects of different fertilizer species on carbon and nitrogen leaching in a reddish paddy soil].

    PubMed

    Liu, Xi-Yu; Zou, Jing-Dong; Xu, Li-Li; Zhang, Xin-Yu; Yang, Feng-Ting; Dai, Xiao-Qin; Wang, Zhong-Qiang; Sun, Xiao-Min

    2014-08-01

    Enhanced fertilization could decrease nitrogen utilization rate and increase carbon and nitrogen leaching, leading to water pollution in agricultural ecosystem. A long-term field experiment had been established on a reddish paddy soil of Qianyanzhou Ecological Experimental Station (114 degrees 53'E, 26 degrees 48'N) in Jiangxi Province in 1998. Soil solution samples were collected by clay tube and vacuum pump. Four fertilizer species treatments were selected: control with no fertilizer (CK), straw return (ST), nitrogen, phosphorus and potassium mineral fertilizers (NPK) and pig manure (OM), aiming to evaluate the effects of different species of fertilizer on carbon and nitrogen leaching in a double rice cropping system. The results showed that: (1) ammonium nitrogen (NH4(+) -N) was the major type of N in soil leachate in reddish paddy soil. The application of NPK could significantly increase the ammonium nitrogen concentration (1.2 mg x L(-1) +/- 0.1 mg x L(-1)) compared with the CK, ST and OM treatments, and the application of OM could significantly increase the dissolved organic carbon (DOC) concentration (27.3 mg x L(-1) +/- 1.6 mg x L(-1)) in soil leachate. The carbon and nitrogen leaching were more notable in the vegetative growth stage than the reproductive growth stage of rice (P < 0.05); (2) the long-term application of NPK and OM increased the NH4(+) -N, DOC, soil organic carbon (SOC) and total nitrogen (TN) contents. The NPK was best beneficial to improve TN contents and OM to improve SOC contents. (3) The DOC contents in soil leachate and SOC in paddy soil had a positive correlation (P < 0.01), while NH4(+) -N contents in soil leachate and TN contents in paddy soil had a positive correlation (P < 0.01).

  8. [Study on Paddy Soil Chronosequences Based on Visiblc-Near Infrared Diffuse Reflectance Spectra].

    PubMed

    Wu, Deng-wei; Zhang, Gan-lin

    2015-12-01

    To investigate spectral characteristics of different soil compositions, eight soil profiles from two paddy soil chronosequences developed on red clays and red sandstones respectively were collected in Jiangxi Province. A total of 37 soil samples were taken from each soil horizons of the profiles. The paddy soil chronosequences were chosen mainly because all soil profiles have the same land management and thus parent materials and rice cultivation time would be two major soil formative factors. This makes it possible to study spectral response characteristics of soil organic matter (SOM) and parent material characteristics. We measured diffuse reflectance spectra data of soil samples using the Cary 5000 spectrophotometer at 350-2500 nm spectral range. Spectral response characteristics of SOM and inorganic minerals in paddy soils were analyzed according to different soil horizons, soil forming times and parent materials. Experiment results showed that for soil samples from a single parent material, overall reflectance presented by PC_1 score can be calibrated for soil organic matter (SOM) content with high precision (R(RC)² = 0.91, R(RS)² = 0.79), even though the SOM content was low (not more than 20 g · kg⁻¹). The absorption strength (AS) at 1400, 1900 and 2200 nm was mainly affected by the minerals inherited from parent materials. And the more the sample was near to bottom of a soil profile, the higher the AS value. Samples with the same mineral components had the similar AS ratio among these three wavelength locations. The differences in parent materials can significantly affect spectral curve shape and spectral absorption strength. To make the calibration more interpretative, parent material factors should be considered. PMID:26964213

  9. Lignin decomposition and microbial community in paddy soils: effects of alternating redox conditions

    NASA Astrophysics Data System (ADS)

    Cerli, Chiara; Liu, Qin; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten

    2013-04-01

    Paddy soils are characterised by interchanging cycles of anaerobic and aerobic conditions. Such fluctuations cause continuous changes in soil solution chemistry as well as in the composition and physiological responses of the microbial community. Temporary deficiency in oxygen creates conditions favourable to facultative or obligates anaerobic bacteria, while aerobic communities can thrive in the period of water absence. These alterations can strongly affect soil processes, in particular organic matter (OM) accumulation and mineralization. In submerged soils, lignin generally constitutes a major portion of the total OM because of hampered degradation under anoxic conditions. The alternating redox cycles resulting from paddy soil management might promote both degradation and preservation of lignin, affecting the overall composition and reactivity of total and dissolved OM. We sampled soils subjected to cycles of anoxic (rice growing period) and oxic (harvest and growth of other crops) conditions since 700 and 2000 years. We incubated suspended Ap material, sampled from the two paddy plus two corresponding non-paddy control soils under oxic and anoxic condition, for 3 months, interrupted by a short period of three weeks (from day 21 to day 43) with reversed redox conditions. At each sampling time (day 2, 21, 42, 63, 84), we determined lignin-derived phenols (by CuO oxidation) as well as phospholipids fatty acids contents and composition. We aimed to highlight changes in lignin decomposition as related to the potential rapid changes in microbial community composition. Since the studied paddy soils had a long history of wet rice cultivation, the microbial community should be well adapted to interchanging oxic and anoxic cycles, therefore fully expressing its activity at both conditions. In non-paddy soil changes in redox conditions caused modification of quantity and composition of the microbial community. On the contrary, in well-established paddy soils the microbial

  10. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    PubMed Central

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  11. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-05

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  12. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil.

    PubMed

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-01-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using (13)C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems. PMID:25944542

  13. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil

    NASA Astrophysics Data System (ADS)

    Wu, Mengxiong; Feng, Qibo; Sun, Xue; Wang, Hailong; Gielen, Gerty; Wu, Weixiang

    2015-05-01

    Conversion of rice straw into biochar for soil amendment appears to be a promising method to increase long-term carbon sequestration and reduce greenhouse gas (GHG) emissions. The stability of biochar in paddy soil, which is the major determining factor of carbon sequestration effect, depends mainly on soil properties and plant functions. However, the influence of plants on biochar stability in paddy soil remains unclear. In this study, bulk and surface characteristics of the biochars incubated without rice plants were compared with those incubated with rice plants using a suite of analytical techniques. Results showed that although rice plants had no significant influence on the bulk characteristics and decomposition rates of the biochar, the surface oxidation of biochar particles was enhanced by rice plants. Using 13C labeling we observed that rice plants could significantly increase carbon incorporation from biochar into soil microbial biomass. About 0.047% of the carbon in biochar was incorporated into the rice plants during the whole rice growing cycle. These results inferred that root exudates and transportation of biochar particles into rice plants might decrease the stability of biochar in paddy soil. Impact of plants should be considered when predicting carbon sequestration potential of biochar in soil systems.

  14. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale

    PubMed Central

    Li, Yilin; Kronzucker, Herbert J.; Shi, Weiming

    2016-01-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world’s leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4+) and nitrate (NO3−), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4+ and NO3− exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0–3.5 mm depth, and O2soil became undetectable at 1.7–4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4+ > O2water > NO3− > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field. PMID:27265522

  15. Microprofiling of nitrogen patches in paddy soil: Analysis of spatiotemporal nutrient heterogeneity at the microscale

    NASA Astrophysics Data System (ADS)

    Li, Yilin; Kronzucker, Herbert J.; Shi, Weiming

    2016-06-01

    Flooded paddy soil ecosystems in the tropics support the cultivation of the majority of the world’s leading crop, rice, and nitrogen (N) availability in the paddy-soil rooting zone limits rice production more than any other nutritional factor. Yet, little is known about the dynamic response of paddy soil to N-fertiliser application, in terms of horizontal and vertical patchiness in N distribution and transformation. Here, we present a microscale analysis of the profile of ammonium (NH4+) and nitrate (NO3‑), nitrification, oxygen (O2water and O2soil), and pH (pHwater and pHsoil) in paddy soils, collected from two representative rice-production areas in subtropical China. NH4+ and NO3‑ exhibited dramatic spatiotemporal profiles within N patches on the microscale. We show that pHsoil became constant at 1.0–3.5 mm depth, and O2soil became undetectable at 1.7–4.0 mm. Fertiliser application significantly increased pH, and decreased O2, within N patches. Path analysis showed that the factors governing nitrification scaled in the order: pHwater > pHsoil > NH4+ > O2water > NO3‑ > O2soil. We discuss the soil properties that decide the degree of nutrient patchiness within them and argue that such knowledge is critical to intelligent appraisals of nutrient-use efficiencies in the field.

  16. Carbon Dioxide Flux from Rice Paddy Soils in Central China: Effects of Intermittent Flooding and Draining Cycles

    PubMed Central

    Liu, Yi; Wan, Kai-yuan; Tao, Yong; Li, Zhi-guo; Zhang, Guo-shi; Li, Shuang-lai; Chen, Fang

    2013-01-01

    A field experiment was conducted to (i) examine the diurnal and seasonal soil carbon dioxide (CO2) fluxes pattern in rice paddy fields in central China and (ii) assess the role of floodwater in controlling the emissions of CO2 from soil and floodwater in intermittently draining rice paddy soil. The soil CO2 flux rates ranged from −0.45 to 8.62 µmol.m−2.s−1 during the rice-growing season. The net effluxes of CO2 from the paddy soil were lower when the paddy was flooded than when it was drained. The CO2 emissions for the drained conditions showed distinct diurnal variation with a maximum efflux observed in the afternoon. When the paddy was flooded, daytime soil CO2 fluxes reversed with a peak negative efflux just after midday. In draining/flooding alternating periods, a sudden pulse-like event of rapidly increasing CO2 efflux occured in response to re-flooding after draining. Correlation analysis showed a negative relation between soil CO2 flux and temperature under flooded conditions, but a positive relation was found under drained conditions. The results showed that draining and flooding cycles play a vital role in controlling CO2 emissions from paddy soils. PMID:23437170

  17. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    PubMed

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change. PMID

  18. Do microorganism stoichiometric alterations affect carbon sequestration in paddy soil subjected to phosphorus input?

    PubMed

    Zhang, ZhiJian; Li, HongYi; Hu, Jiao; Li, Xia; He, Qiang; Tian, GuangMing; Wang, Hang; Wang, ShunYao; Wang, Bei

    2015-04-01

    Ecological stoichiometry provides a powerful tool for integrating microbial biomass stoichiometry with ecosystem processes, opening far-reaching possibilities for linking microbial dynamics to soil carbon (C) metabolism in response to agricultural nutrient management. Despite its importance to crop yield, the role of phosphorus (P) with respect to ecological stoichiometry and soil C sequestration in paddy fields remains poorly understood, which limits our ability to predict nutrient-related soil C cycling. Here, we collected soil samples from a paddy field experiment after seven years of superphosphate application along a gradient of 0, 30, 60, and 90 (P-0 through P-90, respectively) kg.ha-1.yr-1 in order to evaluate the role of exogenous P on soil C sequestration through regulating microbial stoichiometry. P fertilization increased soil total organic C and labile organic C by 1-14% and 4-96%, respectively, while rice yield is a function of the activities of soil β-1,4-glucosidase (BG), acid phosphatase (AP), and the level of available soil P through a stepwise linear regression model. P input induced C limitation, as reflected by decreases in the ratios of C:P in soil and microbial biomass. An eco-enzymatic ratio indicating microbial investment in C vs. P acquisition, i.e., ln(BG): ln(AP), changed the ecological function of microbial C acquisition, and was stoichiometrically related to P input. This mechanism drove a shift in soil resource availability by increasing bacterial community richness and diversity, and stimulated soil C sequestration in the paddy field by enhancing C-degradation-related bacteria for the breakdown of plant-derived carbon sources. Therefore, the decline in the C:P stoichiometric ratio of soil microorganism biomass under P input was beneficial for soil C sequestration, which offered a "win-win" relationship for the maximum balance point between C sequestration and P availability for rice production in the face of climate change.

  19. Mercury Fractionation in Superficial Sediment and Paddy Soil Samples from Tianjin, Northern China.

    PubMed

    Wu, Chao; Zhang, Zhaoji; Fei, Yuhong; Wu, Guoqing; Qian, Yong

    2016-08-01

    Sediment and soil samples from the Beitang River (BR) and the Haihe River (HR) in Tianjin were analyzed to investigate the extent of mercury contamination. The results show that total mercury (THg) contents in the BR and HR sediments were 2241 ± 1024 and 653 ± 450 ng g(-1), and THg in rice paddy soils were 907 ± 345 and 328 ± 286 ng g(-1), respectively. Industrial and domestic sewage were regarded as the main sources of mercury in the two river basins. Sediment-bound mercury in the BR and the HR were found to be predominantly associated with the organic-bound fraction (55 %) and residual fraction and (54 %), while soil-bound mercury was mainly in organic-bound fraction in paddy soils (61 % and 57 %, respectively). The availability of this element (soluble and exchangeable and specifically sorbed fraction) seemed restricted, but significantly higher in the paddy soils than in sediments. Higher soluble and exchangeable, specifically sorbed fraction and organic-bound fraction may promote the higher toxic methylmercury and bioavailable fraction formation in the soils during the rice cultivation. PMID:27283074

  20. Increase of available phosphorus by fly-ash application in paddy soils

    SciTech Connect

    Lee, C.H.; Lee, H.; Lee, Y.B.; Chang, H.H.; Ali, M.A.; Min, W.; Kim, S.; Kim, P.J.

    2007-07-01

    Fly ash from the coal- burning industry may be a potential inorganic soil amendment to increase rice productivity and to restore the soil nutrient balance in paddy soil. In this study, fly ash was applied at rates of 0, 40, 80, and 120 Mg ha{sup -1} in two paddy soils (silt loam in Yehari and loamy sand in Daegok). During rice cultivation, available phosphorus (P) increased significantly with fly ash application, as there was high content of P (786 mg kg{sup -1}) in the applied fly ash. In addition, high content of silicon (Si) and high pH of fly ash contributed to increased available-P content by ion competition between phosphate and silicate and by neutralization of soil acidity, respectively. With fly-ash application, water-soluble P (W-P) content increased significantly together with increasing aluminum- bound P (Al- P) and calcium- bound P (Ca- P) fractions. By contrast, iron- bound P (Fe- P) decreased significantly because of reduction of iron under the flooded paddy soil during rice cultivation. The present experiment indicated that addition of fly ash had a positive benefit on increasing the P availability.

  1. Mercury Fractionation in Superficial Sediment and Paddy Soil Samples from Tianjin, Northern China.

    PubMed

    Wu, Chao; Zhang, Zhaoji; Fei, Yuhong; Wu, Guoqing; Qian, Yong

    2016-08-01

    Sediment and soil samples from the Beitang River (BR) and the Haihe River (HR) in Tianjin were analyzed to investigate the extent of mercury contamination. The results show that total mercury (THg) contents in the BR and HR sediments were 2241 ± 1024 and 653 ± 450 ng g(-1), and THg in rice paddy soils were 907 ± 345 and 328 ± 286 ng g(-1), respectively. Industrial and domestic sewage were regarded as the main sources of mercury in the two river basins. Sediment-bound mercury in the BR and the HR were found to be predominantly associated with the organic-bound fraction (55 %) and residual fraction and (54 %), while soil-bound mercury was mainly in organic-bound fraction in paddy soils (61 % and 57 %, respectively). The availability of this element (soluble and exchangeable and specifically sorbed fraction) seemed restricted, but significantly higher in the paddy soils than in sediments. Higher soluble and exchangeable, specifically sorbed fraction and organic-bound fraction may promote the higher toxic methylmercury and bioavailable fraction formation in the soils during the rice cultivation.

  2. Microbes influence the fractionation of arsenic in paddy soils with different fertilization regimes.

    PubMed

    Li, Feng; Zheng, Yuan-Ming; He, Ji-Zheng

    2009-04-01

    Sequential extraction procedures were used to investigate the influence of the microbes on the distribution of arsenic in a Chinese paddy soil under different long-term fertilization treatments. The paddy soil with four long-term fertilization treatments (CK, M, NPK and NPK+M) and three levels of arsenate addition (0, 50, 100 mg As kg(-1) dry soil), were selected to construct microcosms for laboratory incubation. After the incubation, soil samples were sequentially extracted to determine As in various fractions, i.e. water soluble (F0), exchangeable (F1), bound to carbonates (F2), bound to Fe and Mn oxides (F3), bound to organic matter and sulfides (F4), and residual (F5, mineral matrix). Results showed that most of the As was fixed by mineral matrix (F5, ratios ranging from 46.22% to 96.37%), followed by As bound to Fe and Mn oxides (F3, ratios ranging from 3.14% to 28.18%), and the ratios of the other four fractions (F0, F1, F2 and F4) were mostly less than 10%. The microbes in the paddy soil could make As transform from inactive fraction (F5) to relatively active fractions (F0, F1, F2 and F3) and thus increase its environmental risk. With the increase of the As addition levels and with the application of manure or chemical NPK fertilizers, As was distributed more in the relatively active fractions (F0, F1, F2, F3 and F4) in the paddy soil mediated by the microbes. In addition, Fe and Mn oxides could play an important role in decreasing the As leaching potential from the mineral matrix to soil solution and thus abate the As risk to human health. PMID:19155050

  3. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    PubMed

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions. PMID:26915193

  4. [Variation characteristics of soil carbon sequestration under long-term different fertilization in red paddy soil].

    PubMed

    Huang, Jing; Zhang, Yang-zhu; Gao, Ju-sheng; Zhang, Wen-ju; Liu, Shu-jun

    2015-11-01

    The objective of this study was to clarify the changes of soil organic carbon (SOC) content, the saturation capacity of soil carbon sequestration and its cooperation with carbon input (crop source and organic fertilizer source carbon) under long-term (1982-2012) different fertilization in red paddy soil. The results showed that fertilization could increase SOC content. The SOC content of all the fertilization treatments demonstrated a trend of stabilization after applying fertilizer for 30 years. The SOC content in the treatments applying organic manure with mineral fertilizers was between 21.02 and 21.24 g · kg(-1), and the increase rate ranged from 0.41 to 0.59 g · kg(-1) · a(-1). The SOC content in the treatments applying mineral fertilizers only was 15.48 g · kg(-1). The average soil carbon sequestration in the treatments that applied organic manure with mineral fertilizers ranged from 43.61 to 48.43 t C · hm(-2), and the average SOC storage over the years in these treatments was significantly greater than those applying mineral fertilizers only. There was an exponentially positive correlation between C sequestration efficiency and annual average organic C input. It must input exogenous organic carbon at least at 0. 12 t C · hm(-2) · a(-1) to maintain the balance of soil organic carbon under the experimental conditions.

  5. Change of PAHs with evolution of paddy soils from prehistoric to present over the last six millennia in the Yangtze River Delta region, China.

    PubMed

    Zhang, Jin; Cornelia, Mueller-Niggemann; Wang, Minyan; Cao, Zhihong; Luo, Xiping; Wong, Minghung; Chen, Wei

    2013-04-01

    To evaluate the influence of hydroponics management on soil organic components with evolution of paddy soil over the last six millennia, PAHs, as a biomarker, as well as total organic carbon content were used to explore changes of paddy soil organic carbon in two entirely buried ancient paddy soil profiles. The results showed that hydroponics management can cause organic carbon deposition in rice paddy. The changing of total PAH concentrations was not always in accordance with the changing of total organic carbon contents in layers of the buried ancient paddy soils. The PAHs in 6280 BP prehistoric paddy soil layer was 3-ring>5-ring>4-ring>6-ring, while in layers of the present paddy soil and the prehistoric upland were 3-ring>4-ring>5-ring>6-ring. The contribution of phenanthrene to total PAHs in two profiles and the increasing ratio of phenanthrene to alkylated PAHs from parent material/6280 BP prehistoric upland to 6280 BP paddy suggested substantial increase of the anthropogenic influence of hydroponics management on rice paddy soil. And in view of the (14)C age and bioremains in the two profiles, it was only possible for PAHs to be derived from hydroponics management with evolution of the paddy soils form the Neolithic age. Cadalene could be used as an indicator for biological sources of PAHs released by rice plant residues, and benzo[g,h,i]fluoranthene and benzo[g,h,i]perylene for pyrogenic sources released by field vegetation fires. PMID:23435064

  6. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  7. Immobilization of Cd in a paddy soil using moisture management and amendment.

    PubMed

    Li, Jianrui; Xu, Yingming

    2015-03-01

    To offer basis for remediation of Cd-polluted paddy soil under reasonable water condition, pot experiment was conducted to study the effects of moisture management and amendment on the immobilization of Cd in paddy soil. Application of sepiolite in combination with phosphate fertilizer reduced exchangeable Cd by 18.2%, 13.7% and 12.5%, brown rice Cd by 52.3%, 46.0% and 46.8%, under continuous flooding, conventional irrigation and wetting irrigation, respectively, compared to the control groups. Under no amendments, the content of Fe(II) in root coating in the continuous flooding treatment was 2.3 and 3.6 times of that in the conventional and wetting irrigation treatments, but Cd content in root coating in the continuous flooding treatment was only 82.6% and 73.8% of that in the conventional and wetting irrigation treatments. Amendments application increased Fe(II) in root coating by 40.1%, 70.2% and 78.0%, but reduced the Cd content in root coating by 35.3%, 42.4% and 38.6% under continuous flooding, conventional irrigation and wetting irrigation, respectively. The lower availability of Cd in soil and the competition for adsorption sites in root coating of rice plant between Cd(2+) and Fe(2+) etc. reduced form bivalent ions in paddy soil resulted in lower Cd concentrations in brown rice in amended soil treatments.

  8. Immobilization of Cd in a paddy soil using moisture management and amendment.

    PubMed

    Li, Jianrui; Xu, Yingming

    2015-03-01

    To offer basis for remediation of Cd-polluted paddy soil under reasonable water condition, pot experiment was conducted to study the effects of moisture management and amendment on the immobilization of Cd in paddy soil. Application of sepiolite in combination with phosphate fertilizer reduced exchangeable Cd by 18.2%, 13.7% and 12.5%, brown rice Cd by 52.3%, 46.0% and 46.8%, under continuous flooding, conventional irrigation and wetting irrigation, respectively, compared to the control groups. Under no amendments, the content of Fe(II) in root coating in the continuous flooding treatment was 2.3 and 3.6 times of that in the conventional and wetting irrigation treatments, but Cd content in root coating in the continuous flooding treatment was only 82.6% and 73.8% of that in the conventional and wetting irrigation treatments. Amendments application increased Fe(II) in root coating by 40.1%, 70.2% and 78.0%, but reduced the Cd content in root coating by 35.3%, 42.4% and 38.6% under continuous flooding, conventional irrigation and wetting irrigation, respectively. The lower availability of Cd in soil and the competition for adsorption sites in root coating of rice plant between Cd(2+) and Fe(2+) etc. reduced form bivalent ions in paddy soil resulted in lower Cd concentrations in brown rice in amended soil treatments. PMID:25497757

  9. Dissimilatory Nitrate Reduction Processes in Typical Chinese Paddy Soils: Rates, Relative Contributions, and Influencing Factors.

    PubMed

    Shan, Jun; Zhao, Xu; Sheng, Rong; Xia, Yongqiu; Ti, Chaopu; Quan, Xiaofei; Wang, Shuwei; Wei, Wenxue; Yan, Xiaoyuan

    2016-09-20

    Using soil slurry-based (15)N tracer combined with N2/Ar technique, the potential rates of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA), and their respective contributions to total nitrate reduction were investigated in 11 typical paddy soils across China. The measured rates of denitrification, anammox, and DNRA varied from 2.37 to 8.31 nmol N g(-1) h(-1), 0.15 to 0.77 nmol N g(-1) h(-1) and 0.03 to 0.54 nmol N g(-1) h(-1), respectively. The denitrification and anammox rates were significantly correlated with the soil organic carbon content, nitrate concentration, and the abundance of nosZ genes. The DNRA rates were significantly correlated with the soil C/N, extractable organic carbon (EOC)/NO3(-) ratio, and sulfate concentration. Denitrification was the dominant pathway (76.75-92.47%), and anammox (4.48-9.23%) and DNRA (0.54-17.63%) also contributed substantially to total nitrate reduction. The N loss or N conservation attributed to anammox and DNRA was 4.06-21.24 and 0.89-15.01 g N m(-2) y(-1), respectively. This study reports the first simultaneous investigation of the dissimilatory nitrate reduction processes in paddy soils, highlighting that anammox and DNRA play important roles in removing nitrate and should be considered when evaluating N transformation processes in paddy fields. PMID:27499451

  10. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  11. Coal fly ash and phospho-gypsum mixture as an amendment to improve rice paddy soil fertility

    SciTech Connect

    Lee, Y.B.; Ha, H.S.; Lee, C.H.; Kim, P.J.

    2008-04-15

    Rice is a plant that requires high levels of silica (Si). As a silicate NOD source to rice, coal fly ash (hereafter, fly ash), which has an alkaline pH and high available silicate and boron (B) contents, was mixed with phosphor-gypsum (hereafter, gypsum, 50%, wt wt{sup -1}), a by-product from the production of phosphate fertilizer, to improve the fly ash limitation. Field experiments were carried out to evaluate the effect of the mixture on soil properties and rice (Oryza sativa) productivity in silt loam (SiL) and loamy sand (LS) soils to which 0 (FG 0), 20 (FG 20), 40 (FG 40), and 60 (FG 60) Mg ha{sup -1} were added. The mixture increased the amount of available silicate and exchangeable calcium (Ca) contents in the soils and the uptake of silicate by rice plant. The mixture did not result in accumulation of heavy metals in soil and an excessive uptake of heavy metals by the rice grain. The available boron content in soil increased with the mixture application levels up to 1.42 mg kg{sup -1} following the application of 60 Mg ha{sup -1} but did not show toxicity. The mixture increased significantly rice yield and showed the highest yields following the addition of 30-40 Mg ha{sup -1} in two soils. It is concluded that the fly ash and gypsum mixture could be a good source of inorganic soil amendments to restore the soil nutrient balance in rice paddy soil.

  12. Potential Contribution of Anammox to Nitrogen Loss from Paddy Soils in Southern China

    PubMed Central

    Yang, Xiao-Ru; Li, Hu; Nie, San-An; Su, Jian-Qiang; Weng, Bo-Sen; Zhu, Gui-Bing; Yao, Huai-Ying; Gilbert, Jack A.

    2014-01-01

    The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to “Candidatus Brocadia” and “Candidatus Kuenenia” and two novel unidentified clusters were detected, with “Candidatus Brocadia” comprising 50% of the anammox population. The prevalence of the anammox was confirmed by the quantitative PCR results based on hydrazine synthase (hzsB) genes, which showed that the abundance ranged from 1.16 × 104 to 9.65 × 104 copies per gram of dry weight. The anammox rates measured by the isotope-pairing technique ranged from 0.27 to 5.25 nmol N per gram of soil per hour in these paddy soils, which contributed 0.6 to 15% to soil N2 production. It is estimated that a total loss of 2.50 × 106 Mg N per year is linked to anammox in the paddy fields in southern China, which implied that ca. 10% of the applied ammonia fertilizers is lost via the anammox process. Anammox activity was significantly correlated with the abundance of hzsB genes, soil nitrate concentration, and C/N ratio. Additionally, ammonia concentration and pH were found to be significantly correlated with the anammox bacterial structure. PMID:25416768

  13. The variations of Oxidation-Reduction Potential in paddy soil and effects on the methane emission from a periodically irrigated paddy field.

    NASA Astrophysics Data System (ADS)

    Yagi, K.; Iwata, T.; Wakikuromaru, N.

    2014-12-01

    Paddy fields are one of the most important eco-system in monsoon Asia and one of the largest source of CH4 emission. CH4 has significant contribution to the global warming next to CO2 and its greenhouse effect is about 21 times as large as same amount of CO2. CH4 is generated by decomposition of organic matter in soil under anaerobic condition. Oxidation-Reduction Potential (ORP) is the most suitable index representing soil aerobic condition. Or, CH4 is more generated under lower ORP conditions. In this study, ORP in paddy soil was measured during rice cultivated season at a periodically irrigated paddy field, and some effects on the methane flux from the paddy soil was investigated. 3-days flood and 4-days drained condition were regularly repeated at the site from late-June to early October. ORP under flooded condition was measured during irrigated term in 2013 at two mode; regular interval measurement every 2 weeks and intensive measurements during two flooded periods. Methane flux was also measured by the aerodynamic gradient technique. ORP showed rapid decrease when irrigation water was introduced in the paddy field, and lower ORP was shown under the longer flooded condition. From the seasonal-term point of view, lower ORP was shown in later rice season. ORP was suitably modeled as a function of irrigation time. During an irrigation period for four days, higher methane emissions were shown under lower OPR conditions as shown in Fig.1. From the seasonal-term point of view, however, no significant relationship between ORP and methane fluxes. Rapid rise of CH4 flux in early August and gradual decrease between late August and September were shown. It is suggested that seasonal change of methane flux is affected by seasonal changes of soil temperature or the growth level of rice plants.

  14. Baseline soil variation is a major factor in arsenic accumulation in Bengal Delta paddy rice.

    PubMed

    Lu, Ying; Adomako, Eureka E; Solaiman, A R M; Islam, M Rafiqul; Deacon, Claire; Williams, P N; Rahman, G K M M; Meharg, Andrew A

    2009-03-15

    Factors responsible for paddy soil arsenic accumulation in the tubewell irrigated systems of the Bengal Delta were investigated. Baseline (i.e., nonirrigated) and paddy soils were collected from 30 field systems across Bangladesh. For each field, soil sampled at dry season (Boro) harvest i.e., the crop cycle irrigated with tubewell water, was collected along a 90 m transect away from the tubewell irrigation source. Baseline soil arsenic levels ranged from 0.8 to 21. mg/kg, with lower values found on the Pliestocene Terrace around Gazipur (average, 1.6 +/- 0.2 mg/kg), and higher levels found in Holecene sediment tracts of Jessore and Faridpur (average, 6.6 +/- 1.0 mg/kg). Two independent approaches were used to assess the extent of arsenic build-up in irrigated paddy soils. First, arsenic build-up in paddy soil at the end of dry season production (irrigated - baseline soil arsenic) was regressed against number of years irrigated and tubewell arsenic concentration. Years of irrigation was not significant (P = 0.711), indicating no year-on-year arsenic build-up, whereas tubewell As concentration was significant (P = 0.008). The second approach was analysis of irrigated soils for 20 fields over 2 successive years. For nine of the fields there was a significant (P < 0.05) decrease in soil arsenic from year 1 to 2, one field had a significant increase, whereas there was no change for the remaining 10. Over the dry season irrigation cycle, soil arsenic built-up in soils at a rate dependent on irrigation tubewell water, 35* (tubewell water concentration in mg/kg, triple bond mg/L). Grain arsenic rises steeply at low soil/shoot arsenic levels, plateauing out at concentratations. Baseline soil arsenic at Faridpur sites corresponded to grain arsenic levels at the start of this saturation phase. Therefore, variation in baseline levels of soil arsenic leads to a large range in grain arsenic. Where sites have high baseline soil arsenic, further additional arsenic from irrigation

  15. [Seasonal dynamics of soil active carbon pool in a purple paddy soil in southwest China].

    PubMed

    Wu, Yan; Jiang, Chang-sheng; Hao, Qing-ju

    2012-08-01

    The seasonal dynamics of soil organic carbon (SOC), readily oxidized carbon (ROC), dissolved organic carbon (DOC) and microbial biomass carbon (MBC) in a purple paddy soil were studied in a long-term field experimental station in Chongqing, China. The results showed that the seasonal variations of the contents of SOC, ROC and MBC had similar trends in the rape growing season. The contents were much higher in the early and late stages than in the middle stage of the rape growth. SOC, ROC and MBC all achieved the highest values of 16.20 g x kg(-1), 3.58 g x kg(-1) and 309.70 mg x kg(-1) at the end of the growing period, respectively. The seasonal change of DOC content presented as a single peak and reached to the highest value of 37.64 mg x kg(-1) at the middle stage of the rape growth. The temporal dynamics of the allocation ratios of ROC, MBC and DOC were similar to that of their contents. The allocation ratios of ROC, MBC and DOC were 15.49%-23.93%, 1.44%-2.06% and 0.11%-0.32% during the rape growing season, respectively. The influencing factors of SOC and ROC contents were the soil temperature at 5 cm soil depth, soil total nitrogen content and pH. MBC content was jointly impacted by the soil temperature at 5 cm soil depth, root biomass and its C and N contents. DOC content was mainly affected by soil moisture. PMID:23213908

  16. Transformation of marine sediment to paddy soil: Primary marine, lacustrine, and land plant lipids

    NASA Astrophysics Data System (ADS)

    Mueller-Niggemann, Cornelia; Cao, Zhihong; Schwark, Lorenz

    2010-05-01

    More than fifty percent of the world's population feeds on rice. The continuous population increase and urban sprawl leads to an ever-increasing demand for new rice cultivation area, in particular China. For centuries suitable coastal areas in China have been exploited for land reclamation, i.e. conversion of coastal marine and lacustrine marshlands into rice paddy fields. Flooded rice paddies are considered one of the major biogenic sources of methane into the atmospheric. Methane is thought to be about 30 times more efficient as greenhouse gas, when compared to carbon dioxide. Overall, rice fields are assumed to contribute app. 10-25% to global CH4 production. It is thus paramount importance to study the effects of increasing rice cultivation and land reclamation in China. For global carbon cycle investigation, it is crucial whether paddy soils, due to their large extent and higher carbon turnover, serve as carbon (CO2) sinks or sources. Here we present results from a chronosequence study of paddy soils with different and well known starting dates of cultivation, in the Zhejiang province (Yangtze River delta) by land reclamation through the building of protective dikes over the past 2000 years. Two end members of natural sediments subjected to land reclamation, a marine tidal mudflat in the Yangtze delta and a coastal lake, represent the substrate on which the paddy soil evolution started. Dike systems were constructed 2000, 1000, 700, 300, 100, and 50 years before present. We are thus able to follow the evolution of rice paddy soils developed on marine sediments using eight well defined tie-points. This chronosequence is then used for assessing the relative proportion of primary marine or lacustrine organic matter preserved in present day soils and to identify the amount and composition of organic matter added since cultivation started. Paddy soil management introduces rice plants debris and exudates as well as rice-associated microbial biomass (covered in a

  17. Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Anderson, Christopher W. N.; Qiu, Guangle; Meng, Bo; Wang, Dingyong; Feng, Xinbin

    2016-04-01

    Rice paddy plantation is the dominant agricultural land use throughout Asia. Rice paddy fields have been identified as important sites for methylmercury (MeHg) production in the terrestrial ecosystem and a primary pathway of MeHg exposure to humans in mercury (Hg) mining areas. We compared the source and distribution of Hg species in different compartments of the rice paddy during a complete rice-growing season at two different typical Hg-contaminated mining sites in Guizhou province, China: an abandoned site with a high Hg concentration in soil but a low concentration in the atmosphere and a current-day artisanal site with a low concentration in soil but a high concentration in the atmosphere. Our results showed that the flux of new Hg to the ecosystem from irrigation and atmospheric deposition was insignificant relative to the pool of old Hg in soil; the dominant source of MeHg to paddy soil is in situ methylation of inorganic Hg (IHg). Elevated MeHg concentrations and the high proportion of Hg as MeHg in paddy water and the surface soil layer at the artisanal site demonstrated active Hg methylation at this site only. We propose that the in situ production of MeHg in paddy water and surface soil is dependent on elevated Hg in the atmosphere and the consequential deposition of new Hg into a low-pH anoxic geochemical system. The absence of depth-dependent variability in the MeHg concentration in soil cores collected from the abandoned Hg mining site, consistent with the low concentration of Hg in the atmosphere and high pH of the paddy water and irrigation water, suggested that net production of MeHg at this site was limited. We propose that the concentration of Hg in ambient air is an indicator for the risk of MeHg accumulation in paddy rice.

  18. Microbial characteristics of purple paddy soil in response to Pb pollution.

    PubMed

    Jiang, Qiu-Ju; Zhang, Yue-Qiang; Zhang, La-Mei; Zhou, Xin-Bin; Shi, Xiao-Jun

    2014-05-01

    The study focused on the change of microbial characteristics affected by Plumbum pollution with purple paddy soil in an incubation experiment. The results showed that low concentration of Plumbum had little effect on most of microbial amounts, biological activity and enzymatic activity. However, denitrifying activity was inhibited severely, and inhibition rate was up to 98%. Medium and high concentration of Plumbum significantly reduced the amounts and activity of all microorganisms and enzymatic activity, which increased with incubation time. Negative correlations were found between Plumbum concentrations and microbial amounts, biological activity and enzymatic activities except fungi and actinomyces. Thus they can be used to indicate the Plumbum pollution levels to some extent. LD(50) of denitrifying bacteria (DB) and ED50 of denitrifying activity were 852mg/kg and 33.5mg/kg. Across all test soil microbes, denitrifying bacteria was most sensitive to Plumbum pollution in purple paddy soil. Value of early warning showed that anaerobic cellulose-decomposing bacteria (ACDB) and actinomyces were also sensitive to Plumbum pollution. We concluded that denitrifying activity, actinomyces, ACDB or DB can be chosen as predictor of Plumbum contamination in purple paddy soil.

  19. Immobilization of Cd in paddy soil using moisture management and amendment.

    PubMed

    Li, Jianrui; Xu, Yingming

    2015-04-01

    To offer scientific data support for remediation of Cd-contaminated paddy soils under reasonable water condition, pot experiment was conducted to study the effects of moisture management and amendments on Cd immobilization in a paddy soil. Application of biochar combined with organic fertilizer reduced the exchangeable Cd by 20.4, 15.7, and 13.0% and brown rice Cd by 43.8, 35.5, and 42.1% under continuous flooding, conventional irrigation, and wetting irrigation, respectively, compared to the controls. Under no amendments, the content of Fe(II) in root coating in the continuous flooding treatment was 2.3 and 3.6 times of that in the conventional and wetting irrigation treatments, but Cd in root coating in the continuous flooding treatment was only 82.6 and 73.8% of that in the conventional and wetting irrigation treatments. Applying amendments increased the Fe(II) in root coating by 27.3, 59.1, and 65.0% but reduced the Cd in root coating by 33.6, 26.5, and 25.1% under continuous flooding, conventional irrigation, and wetting irrigation, respectively. The lower bioavailability of Cd in paddy soil and the competition for adsorption sites in root coating of rice plant between Cd(2+) and Fe(2+) reduced from bivalent ions jointly caused the lower brown rice Cd in amended soils. PMID:25388557

  20. Effect of ferrihydrite biomineralization on methanogenesis in an anaerobic incubation from paddy soil

    NASA Astrophysics Data System (ADS)

    Zhuang, Li; Xu, Jielong; Tang, Jia; Zhou, Shungui

    2015-05-01

    Microbial reduction of Fe(III) can be one of the major factors controlling methane production from anaerobic sedimentary environments, such as paddy soils and wetlands. Although secondary iron mineralization following Fe(III) reduction is a process that occurs naturally over time, it has not yet been considered in methanogenic systems. This study performed a long-term anaerobic incubation of a paddy soil and ferrihydrite-supplemented soil cultures to investigate methanogenesis during ferrihydrite biomineralization. The results revealed that the long-term effect of ferrihydrite on methanogenesis may be enhancement rather than suppression documented in previous studies. During initial microbial ferrihydrite reduction, methanogenesis was suppressed; however, the secondary minerals of magnetite formation was simultaneous with facilitated methanogenesis in terms of average methane production rate and acetate utilization rate. In the phase of magnetite formation, microbial community analysis revealed a strong stimulation of the bacterial Geobacter, Bacillus, and Sedimentibacter and the archaeal Methanosarcina in the ferrihydrite-supplemented cultures. Direct electric syntrophy between Geobacter and Methanosarcina via conductive magnetite is the plausible mechanism for methanogenesis acceleration along with magnetite formation. Our data suggested that a change in iron mineralogy might affect the conversion of anaerobic organic matter to methane and might provide a fresh perspective on the mitigation of methane emissions from paddy soils by ferric iron fertilization.

  1. Assessing nitrification and denitrification in a paddy soil with different water dynamics and applied liquid cattle waste using the ¹⁵N isotopic technique.

    PubMed

    Zhou, Sheng; Sakiyama, Yukina; Riya, Shohei; Song, Xiangfu; Terada, Akihiko; Hosomi, Masaaki

    2012-07-15

    Using livestock wastewater for rice production in paddy fields can remove nitrogen and supplement the use of chemical fertilizers. However, paddy fields have complicated water dynamics owing to varying characteristics and would influence nitrogen removal through nitrification followed by denitrification. Quantification of nitrification and denitrification is of great importance in assessing the influence of water dynamics on nitrogen removal in paddy fields. In this study, nitrification and nitrate reduction rates with different water dynamics after liquid cattle waste application were evaluated, and the in situ denitrification rate was determined directly using the (15)N isotopic technique in a laboratory experiment. A significant linear regression correlation between nitrification and the nitrate reduction rate was observed and showed different regression coefficients under different water dynamics. The regression coefficient in the continuously flooded paddy soil was higher than in the drained-reflooded paddy soil, suggesting that nitrate would be consumed faster in the flooded paddy soil. However, nitrification was limited and the maximum rate was only 13.3 μg Ng(-1)day(-1) in the flooded paddy soil with rice plants, which limited the supply of nitrate. In contrast, the drained-reflooded paddy soil had an enhanced nitrification rate up to 56.8 μg Ng(-1)day(-1), which was four times higher than the flooded paddy soil and further stimulated nitrate reduction rates. Correspondingly, the in situ denitrification rates determined directly in the drained-reflooded paddy soil ranged from 5 to 1035 mg Nm(-2)day(-1), which was higher than the continuously flooded paddy soil (from 5 to 318 mg Nm(-2)day(-1)) during the vegetation period. The nitrogen removal through denitrification accounted for 38.9% and 9.9% of applied nitrogen in the drained-reflooded paddy soil and continuously flooded paddy soil, respectively.

  2. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions.

    PubMed

    Stroud, Jacqueline L; Khan, M Asaduzzman; Norton, Gareth J; Islam, M Rafiqul; Dasgupta, Tapash; Zhu, Yong-Guan; Price, Adam H; Meharg, Andrew A; McGrath, Steve P; Zhao, Fang-Jie

    2011-05-15

    Arsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2-21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils. PMID:21504212

  3. Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions.

    PubMed

    Stroud, Jacqueline L; Khan, M Asaduzzman; Norton, Gareth J; Islam, M Rafiqul; Dasgupta, Tapash; Zhu, Yong-Guan; Price, Adam H; Meharg, Andrew A; McGrath, Steve P; Zhao, Fang-Jie

    2011-05-15

    Arsenic (As) contamination of paddy soils threatens rice cultivation and the health of populations relying on rice as a staple crop. In the present study, isotopic dilution techniques were used to determine the chemically labile (E value) and phytoavailable (L value) pools of As in a range of paddy soils from Bangladesh, India, and China and two arable soils from the UK varying in the degree and sources of As contamination. The E value accounted for 6.2-21.4% of the total As, suggesting that a large proportion of soil As is chemically nonlabile. L values measured with rice grown under anaerobic conditions were generally larger than those under aerobic conditions, indicating increased potentially phytoavailable pool of As in flooded soils. In an incubation study, As was mobilized into soil pore water mainly as arsenite under flooded conditions, with Bangladeshi soils contaminated by irrigation of groundwater showing a greater potential of As mobilization than other soils. Arsenic mobilization was best predicted by phosphate-extractable As in the soils.

  4. [Establishing a minimum data set of soil quality assessment for cold-waterlogged paddy field in Fujian Province, China].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian

    2015-05-01

    The yields of cold-waterlogged (CW) paddy fields widely spreading in Jiangnan mountainous areas are moderate or low but have a high potential to be increased. Based on data including 41 soil characteristics of 17 pairs of typical surface soils of cold-waterlogged paddy field and non cold-waterlogged (NCW) paddy field at a neighboring landscape unit in Fujian Province, various index differences of soil properties and causes between CW paddy field and NCW paddy field were systematically studied, and a minimum data set (MDS) of soil quality assessment for CW paddy field was established by principal component analysis. By pair analysis, soil characteristics of CW paddy field showed that the content of organic matter increased by 31.7%, but the microbial biomass C decreased by 37.8%, which belonged to active soil organic matter component. The content of ferrous iron (Fe2+) increased by 177.0%, but the available phosphorus (P) and potassium (K) decreased by 52.3% and 22.8%, respectively. Catalase and invertase activities increased by 58.3% and 22. 1%, but phosphatase, nitrate reductase activities and microflora decreased by 47. 8%, 66.6% and 29.8%-46.0%, respectively. The sand content increased about 8.0%, but the water immersed bulk density decreased by 25.8%. There were significant differences of indices for 28 of all 41 soil characteristics. Five principal components cumulatively exhibiting about 78.5% contribution were concluded from the 28 soil characteristics to reflect characteristics related to soil biochemistry, active organic nitrogen, reducing barriers, physical and chemical nutrients, respectively. Eventually, correlation analysis combined with expert experience method were applied to optimize MDS containing six factors for soil quality assessments, including C/N, bacteria, microbial biomass N, total reducing agents, physical sand and total P. PMID:26571666

  5. [Response of nitrification/denitrification and their associated microbes to soil moisture change in paddy soil].

    PubMed

    Liu, Ruo-Xuan; He, Ji-Zheng; Zhang, Li-Mei

    2014-11-01

    To investigate the effect of moisture change on nitrification and denitrification and their corresponding functional microbes, an acidic paddy soil from Taoyuan, Hunan Province was selected as the study object, and soil microcosm experiment containing 4 different water holding capacity (WHC) levels (30% WHC, 60% WHC, 90% WHC, and waterlog) was set up in this study. Results showed that no active nitrification and denitrification occurred in 30% WHC treatment as there were no obvious ammonia consumption and nitrate accumulation, while nitrification was active in 60% WHC and 90% WHC treatments as indicated by the obvious accumulation of nitrate in those two treatments. Meanwhile, significant ammonia consumption and N2O emission were only observed in 90% WHC treatment, implying that a much stronger nitrification in 90% WHC treatment than in 60% WHC treatment and the co-occurrence of nitrification and denitrification in 90% WHC treatment. In waterlog treatment, relatively lower N2O emission was detected and no obvious nitrification was detected, corresponding to a significant lower soil Eh in this treatment than in the other three non-waterlog treatments. Except the early stage of incubation (7 d), the abundance of nirS, nirK and ammonia-oxidizing bacteria (AOB) amoA genes showed similar responses to soil moisture change over time. Except the slight decrease in waterlog treatment, the abundances of the three genes increased significantly as the soil moisture increased, and the highest abundances of nirS, nirK, and amoA gene were observed in 90% WHC treatment in which the highest nitrification and denitrification activity was detected. T-RFLP analysis showed that the community composition of nirS gene-containing denitrifiers changed significantly in response to soil moisture change after two weeks, and soil Eh and C(w) were the main factors affecting the community composition of denitrifiers. PMID:25639106

  6. [Response of nitrification/denitrification and their associated microbes to soil moisture change in paddy soil].

    PubMed

    Liu, Ruo-Xuan; He, Ji-Zheng; Zhang, Li-Mei

    2014-11-01

    To investigate the effect of moisture change on nitrification and denitrification and their corresponding functional microbes, an acidic paddy soil from Taoyuan, Hunan Province was selected as the study object, and soil microcosm experiment containing 4 different water holding capacity (WHC) levels (30% WHC, 60% WHC, 90% WHC, and waterlog) was set up in this study. Results showed that no active nitrification and denitrification occurred in 30% WHC treatment as there were no obvious ammonia consumption and nitrate accumulation, while nitrification was active in 60% WHC and 90% WHC treatments as indicated by the obvious accumulation of nitrate in those two treatments. Meanwhile, significant ammonia consumption and N2O emission were only observed in 90% WHC treatment, implying that a much stronger nitrification in 90% WHC treatment than in 60% WHC treatment and the co-occurrence of nitrification and denitrification in 90% WHC treatment. In waterlog treatment, relatively lower N2O emission was detected and no obvious nitrification was detected, corresponding to a significant lower soil Eh in this treatment than in the other three non-waterlog treatments. Except the early stage of incubation (7 d), the abundance of nirS, nirK and ammonia-oxidizing bacteria (AOB) amoA genes showed similar responses to soil moisture change over time. Except the slight decrease in waterlog treatment, the abundances of the three genes increased significantly as the soil moisture increased, and the highest abundances of nirS, nirK, and amoA gene were observed in 90% WHC treatment in which the highest nitrification and denitrification activity was detected. T-RFLP analysis showed that the community composition of nirS gene-containing denitrifiers changed significantly in response to soil moisture change after two weeks, and soil Eh and C(w) were the main factors affecting the community composition of denitrifiers.

  7. Heavy metal contamination of paddy soils and rice (Oryza sativa L.) from Kocani Field (Macedonia).

    PubMed

    Rogan, Nastja; Serafimovski, Todor; Dolenec, Matej; Tasev, Goran; Dolenec, Tadej

    2009-08-01

    This research focuses on the heavy metal contamination of the paddy soils and rice from Kocani Field (eastern Macedonia) resulting from irrigation by riverine water impacted by past and present base-metal mining activities and acid mine drainage. Very high concentrations of As, Cd, Cu, Pb and Zn were found in the paddy soils (47.6, 6.4, 99, 983 and 1,245 microg g(-1)) and the rice (0.53, 0.31, 5.8, 0.5 and 67 microg g(-1)) in the western part of Kocani Field, close to the Zletovska River, which drains the mining facilities of the Pb-Zn mine in Zletovo. In terms of health risk, the observed highest concentrations of these elements in the rice could have an effect on human health and should be the subject of further investigations. PMID:18777118

  8. Stability of soil organic matter accumulated under long-term use as a rice paddy

    NASA Astrophysics Data System (ADS)

    Nakahara, Shiko; Zou, Ping; Ando, Ho; Fu, Jianrong; Cao, Zhihong; Nakamura, Toshio; Sugiura, Yuki; Watanabe, Akira

    2016-01-01

    To understand the mechanism responsible for the enhanced accumulation of soil organic matter (SOM) under long-term use as a rice paddy, soil samples from the plow layer from 16 fields that have been used for irrigated rice production from 5 to 2000 years in the Hangzhou Bay, China, were analyzed. The humin in silt/clay particles was isolated as a representative relatively stable SOM pool, and isotopic signatures (δ13C, δ15N, and 14C concentration), 13C nuclear magnetic resonance (NMR) spectra, and biodegradability in an incubation were examined. The amounts of C and N in the bulk soil, silt/clay, and silt/clay-humin increased with increasing period of use as a rice paddy within the east and west zones, respectively. The degree of humification determined for humic acids indicated that the progression of humification did not contribute to the accumulation of C beyond 100 years. The δ15N of silt/clay-humin suggested an increase in organic N derived from chemical fertilizer or recent biological fixation with increasing amount of this fraction. The 14C concentration showed a negative correlation with the amount of silt/clay-humin C. The structural property with regard to 13C NMR spectra and biodegradability of the silt/clay-humin remained constant with the length of use as a rice paddy or 14C concentration. These results suggest that the larger C or N accumulation in the soils with a longer rice paddy history can be attributed to an enhancement in the accumulation of recently generated SOM rather than the stable accumulation of humus over the years.

  9. Variations in soil microbial community structure induced by the conversion from paddy fields to upland fields

    NASA Astrophysics Data System (ADS)

    Dai, X.

    2015-12-01

    Land-use conversion is an important factor influencing the carbon and nitrogen gas exchange between land and atmosphere, and soil microorganisms is main driver of soil carbon and nitrogen gas production. Understanding the effect of land-use conversion on soil microbial communities and its influencing factor is important for greenhouse gas emission reduction and soil organic carbon and nitrogen sequestration and stability. The influence of land use conversion on soil process was undergoing a dynamic change, but little research has been done to understand the effect on soil microbial communities during the initial years after land conversion. In the study, the influences of land-use conversion from double rice cropping (RR) to maize-maize (MM) and soybean-peanut (SP) double cropping systems on soil physical and chemical properties, and microbial community structure was studied after two years of the conversion in southern China. The results showed that land use conversion significantly changed soil properties, microbial communities and biomass. Soil pH significantly decreased by 0.50 and 0.52 after conversion to MM and SP, respectively. Soil TN and NH4-N also significantly decreased by 9%-15% and 60% after conversion to upland fields, respectively. The total PLFAs, bacterial, gram-positive bacterial (G+), gram-negative bacterial (G-) and actinomycetic PLFAs decreased significantly. The ng g-1 soil concentration of monounsaturated chain PLFAs 16:1ω7c and 18:1ω9t were significantly higher at paddy fields than at upland fields. No significant differences in soil properties, microbial communities and biomass were found between conversed MM and SP. Our results indicated that land use conversion, not crop type conversed had a significant effects on soil properties and microbial communities at the initial of land conversion. And soil pH was the key factor regulating the variations in soil microbial community structure after land use conversion from paddy to upland fields.

  10. Eco-stoichiometric alterations in paddy soil ecosystem driven by phosphorus application.

    PubMed

    Li, Xia; Wang, Hang; Gan, Shaohua; Jiang, Daqian; Tian, Guangming; Zhang, Zhijian

    2013-01-01

    Agricultural fertilization may change processes of elemental biogeochemical cycles and alter the ecological function. Ecoenzymatic stoichiometric feature plays a critical role in global soil carbon (C) metabolism, driving element cycles, and mediating atmospheric composition in response to agricultural nutrient management. Despite the importance on crop growth, the role of phosphorous (P) in compliance with eco-stoichiometry on soil C and nitrogen (N) sequestration in the paddy field remains poorly understood in the context of climate change. Here, we collected soil samples from a field experiment after 6 years of chemical P application at a gradient of 0 (P-0), 30 (P-30), 60 (P-60), and 90 (P-90) kg ha(-1) in order to evaluate the role of P on stoichiometric properties in terms of soil chemical, microbial biomass, and eco-enzyme activities as well as greenhouse gas (GHG: CO2, N2O and CH4) emissions. Continuous P input increased soil total organic C and N by 1.3-9.2% and 3%-13%, respectively. P input induced C and N limitations as indicated by the decreased ratio of C:P and N:P in the soil and microbial biomass. A synergistic mechanism among the ecoenzymatic stoichiometry, which regulated the ecological function of microbial C and N acquisition and were stoichiometrically related to P input, stimulated soil C and N sequestration in the paddy field. The lower emissions of N2O and CH4 under the higher P application (P-60 and P-90) in July and the insignificant difference in N2O emission in August compared to P-30; however, continuous P input enhanced CO2 fluxes for both samplings. There is a technical conflict for simultaneously regulating three types of GHGs in terms of the eco-stoichiometry mechanism under P fertilization. Thus, it is recommended that the P input in paddy fields not exceed 60 kg ha(-1) may maximize soil C sequestration, minimize P export, and guarantee grain yields.

  11. Spatial variability of soil nutrient in paddy plantation: Sites FELCRA Seberang Perak

    NASA Astrophysics Data System (ADS)

    Kamarudin, H.; Adnan, N. A.; Mispan, M. R.; Athirah. A, A.

    2016-06-01

    The conventional methods currently used for rice cultivation in Malaysia are unable to give maximum yield although the yield production of paddy is increasing. This is due to the conversional method being unable to include soil properties as one of their parameters in agriculture management. Soil properties vary spatially in farm scale due to differences in topography, parent material, vegetation or land management and soil characteristics; also plantation productivity varies significantly over small spatial scales. Knowledge of spatial variability in soil fertility is important for site specific nutrient management. Analysis of spatial variability of soil nutrient of nitrogen (N), phosphorus (P) and potassium (K) were conducted in this study with the aid of GIS (i.e ArcGIS) and statistical softwares. In this study different temporal and depths of soil nutrient were extracted on the field and further analysis of N,P,K content were analysed in the chemical laboratory and using spatially technique in GIS sofware. The result indicated that for the Seberang Perak site of 58 hactares area, N and K are met minimum requirements nutrient content as outlines by the MARDI for paddy cultivation. However, P indicated poor condition in the study area; therefore the soil needs further attention and treatment.

  12. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils.

    PubMed

    Xiao, Wendan; Ye, Xuezhu; Yang, Xiaoe; Li, Tingqiang; Zhao, Shouping; Zhang, Qi

    2015-03-01

    Anthropogenic chromium (Cr) pollution in soils poses a great threat to human health through the food chain. It is imperative to understand Cr fate under the range of conditions suitable for rice growth. In this study, the effects of irrigation managements on dynamics of porewater Cr(VI) concentrations in rice paddies and Cr distribution in rice were investigated with pot experiments under greenhouse conditions. Soil redox potential in continuous flooding (CF) treatments showed that reducing conditions remained for the whole duration of rice growing period, while soil redox potential in alternating wetting and drying (AWD) treatments showed that soil conditions alternately changed between reducing and oxic. As soil redox potential is an important factor affecting Cr(VI) reduction in paddy soils, dynamics of Cr(VI) concentration were clearly different under different irrigation managements. In CF treatments, porewater Cr(VI) concentrations decreased with time after planting, while in AWD treatments porewater Cr(VI) concentrations were increased and decreased alternately response to the irrigation cycles. Chromium(VI) concentrations in the CF treatments were lower than those in AWD treatments for most part of rice-growing season. Moreover, Cr concentrations in rice tissues were significantly influenced by irrigation with relatively higher values in the AWD treatments, which might be attributed to the higher porewater Cr(VI) concentrations in AWD treatments. Therefore, it would be better to use CF than AWD management in Cr-contaminated paddy soils to reduce Cr accumulation in rice, and thus to reduce the potential risk to human health.

  13. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    PubMed

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and < 0.05 mm) in a purple paddy soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and < 0.05 mm particle size, respectively. The contents of organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF. PMID:27506049

  14. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils.

    PubMed

    Xiao, Wendan; Ye, Xuezhu; Yang, Xiaoe; Li, Tingqiang; Zhao, Shouping; Zhang, Qi

    2015-03-01

    Anthropogenic chromium (Cr) pollution in soils poses a great threat to human health through the food chain. It is imperative to understand Cr fate under the range of conditions suitable for rice growth. In this study, the effects of irrigation managements on dynamics of porewater Cr(VI) concentrations in rice paddies and Cr distribution in rice were investigated with pot experiments under greenhouse conditions. Soil redox potential in continuous flooding (CF) treatments showed that reducing conditions remained for the whole duration of rice growing period, while soil redox potential in alternating wetting and drying (AWD) treatments showed that soil conditions alternately changed between reducing and oxic. As soil redox potential is an important factor affecting Cr(VI) reduction in paddy soils, dynamics of Cr(VI) concentration were clearly different under different irrigation managements. In CF treatments, porewater Cr(VI) concentrations decreased with time after planting, while in AWD treatments porewater Cr(VI) concentrations were increased and decreased alternately response to the irrigation cycles. Chromium(VI) concentrations in the CF treatments were lower than those in AWD treatments for most part of rice-growing season. Moreover, Cr concentrations in rice tissues were significantly influenced by irrigation with relatively higher values in the AWD treatments, which might be attributed to the higher porewater Cr(VI) concentrations in AWD treatments. Therefore, it would be better to use CF than AWD management in Cr-contaminated paddy soils to reduce Cr accumulation in rice, and thus to reduce the potential risk to human health. PMID:25546832

  15. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    PubMed

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and < 0.05 mm) in a purple paddy soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and < 0.05 mm particle size, respectively. The contents of organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  16. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.

    PubMed

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-04-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans. PMID:26736050

  17. Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents.

    PubMed

    Xiao, Ke-Qing; Li, Li-Guan; Ma, Li-Ping; Zhang, Si-Yu; Bao, Peng; Zhang, Tong; Zhu, Yong-Guan

    2016-04-01

    Microbe-mediated arsenic (As) metabolism plays a critical role in global As cycle, and As metabolism involves different types of genes encoding proteins facilitating its biotransformation and transportation processes. Here, we used metagenomic analysis based on high-throughput sequencing and constructed As metabolism protein databases to analyze As metabolism genes in five paddy soils with low-As contents. The results showed that highly diverse As metabolism genes were present in these paddy soils, with varied abundances and distribution for different types and subtypes of these genes. Arsenate reduction genes (ars) dominated in all soil samples, and significant correlation existed between the abundance of arr (arsenate respiration), aio (arsenite oxidation), and arsM (arsenite methylation) genes, indicating the co-existence and close-relation of different As resistance systems of microbes in wetland environments similar to these paddy soils after long-term evolution. Among all soil parameters, pH was an important factor controlling the distribution of As metabolism gene in five paddy soils (p = 0.018). To the best of our knowledge, this is the first study using high-throughput sequencing and metagenomics approach in characterizing As metabolism genes in the five paddy soil, showing their great potential in As biotransformation, and therefore in mitigating arsenic risk to humans.

  18. Role of water flow in modeling methane emissions from flooded paddy soils

    NASA Astrophysics Data System (ADS)

    Rizzo, A.; Boano, F.; Revelli, R.; Ridolfi, L.

    2013-02-01

    Methane (CH4) is a potent greenhouse gas that is emitted from paddy fields, and the large CH4 fluxes represent a worldwide issue for the rice production eco-compatibility. In this work a model is proposed to investigate the role of water flows on CH4 emissions from flooded paddy soils. The model is based on a system of partial differential mass balance equations of the chemical species affecting CH4 fate, and water flows are modeled by the Darcy equation. Moreover, in order to properly model the dynamics of CH4, a number of physico-chemical processes and features not included in currently available CH4 emission models are considered: paddy soil stratigraphy; nutrient adsorption and root water uptake; gas transport and respiration within root aerenchyma compartment. The proposed model allows to simulate the spatio-temporal dynamics of chemical compounds within paddy soil as well as to quantify the influence of different processes on nutrient input/output budgets. Simulations without water flow have shown a considerable overestimation of CH4 emissions due to a different spatio-temporal dynamics of dissolved organic matter (DOC - source of energy for CH4 production). In particular, when water fluxes have not been modeled the overestimation can reach 54%, 41% and 67% of daily minimum, daily maximum, and total over the whole growing season CH4 emission, respectively. Moreover, the model results suggest that roots influence CH4 dynamics principally due to their nutrient uptake, while root effect on advective flow plays a minor role. Finally, the analysis of CH4 transport fluxes has shown the limiting effect of upward dispersive transport fluxes on the downward CH4 percolation.

  19. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.

    PubMed

    Ahmed, Zia U; Panaullah, Golam M; DeGloria, Stephen D; Duxbury, John M

    2011-12-15

    Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020. PMID:22055452

  20. Factors affecting paddy soil arsenic concentration in Bangladesh: prediction and uncertainty of geostatistical risk mapping.

    PubMed

    Ahmed, Zia U; Panaullah, Golam M; DeGloria, Stephen D; Duxbury, John M

    2011-12-15

    Knowledge of the spatial correlation of soil arsenic (As) concentrations with environmental variables is needed to assess the nature and extent of the risk of As contamination from irrigation water in Bangladesh. We analyzed 263 paired groundwater and paddy soil samples covering highland (HL) and medium highland-1 (MHL-1) land types for geostatistical mapping of soil As and delineation of As contaminated areas in Tala Upazilla, Satkhira district. We also collected 74 non-rice soil samples to assess the baseline concentration of soil As for this area. The mean soil As concentrations (mg/kg) for different land types under rice and non-rice crops were: rice-MHL-1 (21.2)>rice-HL (14.1)>non-rice-MHL-1 (11.9)>non-rice-HL (7.2). Multiple regression analyses showed that irrigation water As, Fe, land elevation and years of tubewell operation are the important factors affecting the concentrations of As in HL paddy soils. Only years of tubewell operation affected As concentration in the MHL-1 paddy soils. Quantitatively similar increases in soil As above the estimated baseline-As concentration were observed for rice soils on HL and MHL-1 after 6-8 years of groundwater irrigation, implying strong retention of As added in irrigation water in both land types. Application of single geostatistical methods with secondary variables such as regression kriging (RK) and ordinary co-kriging (OCK) gave little improvement in prediction of soil As over ordinary kriging (OK). Comparing single prediction methods, kriging within strata (KWS), the combination of RK for HL and OCK for MHL-1, gave more accurate soil As predictions and showed the lowest misclassification of declaring a location "contaminated" with respect to 14.8 mg As/kg, the highest value obtained for the baseline soil As concentration. Prediction of soil As buildup over time indicated that 75% or the soils cropped to rice would contain at least 30 mg/L As by the year 2020.

  1. Effect of moisture regime on the redistribution of heavy metals in paddy soil.

    PubMed

    Zheng, Shunan; Zhang, Mingkui

    2011-01-01

    Sequential extraction procedure was applied to assess the dynamics of solid-phase transformation of added Cu, Pb, Cd, and Hg in a typical Chinese paddy soil incubated under three moisture regimes (75% field capacity, wetting-drying cycle, and flooding). The heavy metals spiked in the soil were time-dependently transferred from the easily extractable fraction (the exchangeable fraction) into less labile fractions (Fe-Mn oxide- and organic matter-bound fractions), and thus reduced lability of the metals. No significant changes were found for the carbonate-bound and residual fractions of the heavy metals in the soil during the whole incubation. Change rate of the mobility factor (MF), a proportion of weakly bound fractions (exchangeable and carbonate-bound) in the total metal of soil, reflected the transformation rate of metal speciation from the labile fractions toward stable fractions. It was found that soil moisture regime did not change the direction and pathways of transformation of metal speciation, but it significantly affected the transformation rate. In general, the paddy soil under flooding regime had higher metal reactivity compared with 75% field capacity and wetting-drying cycle regimes, resulting in the more complete movement of metals toward stable fractions. This might be related to the increased pH, precipitation of the metals with sulfides and higher concentration of amorphous Fe oxides under submerged condition.

  2. An examination of soil and water conservation practices in the paddy fields of Guilan province, Iran.

    PubMed

    Ashoori, Daryoush; Bagheri, Asghar; Allahyari, Mohammad S; Al-Rimawi, Ahmad S

    2016-06-01

    This study examined the use of soil and water conservation (SWC) practices among rice farmers in Iran. A random sample of 400 rice paddy farmers in the Foumanat plain of Guilan province, who use SWC measures, was drawn from a population of 52 thousand farmers. A two-part questionnaire was used to examine the level of utilization of SWC practices and to profile paddy farmers. Internal consistency was demonstrated with a coefficient alpha of 0.76, and the content and face validity of the instrument was confirmed by a panel of soil and water experts. Descriptive and analytical statistics were used to analyze the data. Results of ANOVA indicated that the mean levels of SWC practices vary considerably at the 0.01 level of significance by groups of age, education, non-agricultural income, production costs, yield, cultivated paddies and distance from home to the farm or to the main road. Similarly, significant differences were observed by groups of family size, rice production, ownership of livestock and profits from rice production at 0.05 level. The levels of experience in agriculture and ownership of poultry were found to have no significant effects on SWC practices. PMID:27276379

  3. An examination of soil and water conservation practices in the paddy fields of Guilan province, Iran.

    PubMed

    Ashoori, Daryoush; Bagheri, Asghar; Allahyari, Mohammad S; Al-Rimawi, Ahmad S

    2016-06-01

    This study examined the use of soil and water conservation (SWC) practices among rice farmers in Iran. A random sample of 400 rice paddy farmers in the Foumanat plain of Guilan province, who use SWC measures, was drawn from a population of 52 thousand farmers. A two-part questionnaire was used to examine the level of utilization of SWC practices and to profile paddy farmers. Internal consistency was demonstrated with a coefficient alpha of 0.76, and the content and face validity of the instrument was confirmed by a panel of soil and water experts. Descriptive and analytical statistics were used to analyze the data. Results of ANOVA indicated that the mean levels of SWC practices vary considerably at the 0.01 level of significance by groups of age, education, non-agricultural income, production costs, yield, cultivated paddies and distance from home to the farm or to the main road. Similarly, significant differences were observed by groups of family size, rice production, ownership of livestock and profits from rice production at 0.05 level. The levels of experience in agriculture and ownership of poultry were found to have no significant effects on SWC practices.

  4. Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil.

    PubMed

    Su, Jian-Qiang; Ding, Long-Jun; Xue, Kai; Yao, Huai-Ying; Quensen, John; Bai, Shi-Jie; Wei, Wen-Xue; Wu, Jin-Shui; Zhou, Jizhong; Tiedje, James M; Zhu, Yong-Guan

    2015-01-01

    The influence of long-term chemical fertilization on soil microbial communities has been one of the frontier topics of agricultural and environmental sciences and is critical for linking soil microbial flora with soil functions. In this study, 16S rRNA gene pyrosequencing and a functional gene array, geochip 4.0, were used to investigate the shifts in microbial composition and functional gene structure in paddy soils with different fertilization treatments over a 22-year period. These included a control without fertilizers; chemical nitrogen fertilizer (N); N and phosphate (NP); N and potassium (NK); and N, P and K (NPK). Based on 16S rRNA gene data, both species evenness and key genera were affected by P fertilization. Functional gene array-based analysis revealed that long-term fertilization significantly changed the overall microbial functional structures. Chemical fertilization significantly increased the diversity and abundance of most genes involved in C, N, P and S cycling, especially for the treatments NK and NPK. Significant correlations were found among functional gene structure and abundance, related soil enzymatic activities and rice yield, suggesting that a fertilizer-induced shift in the microbial community may accelerate the nutrient turnover in soil, which in turn influenced rice growth. The effect of N fertilization on soil microbial functional genes was mitigated by the addition of P fertilizer in this P-limited paddy soil, suggesting that balanced chemical fertilization is beneficial to the soil microbial community and its functions. PMID:25410123

  5. Incorporating rice residues into paddy soils affects methylmercury accumulation in rice.

    PubMed

    Zhu, Huike; Zhong, Huan; Wu, Jialu

    2016-06-01

    Paddy fields are characterized by frequent organic input (e.g., fertilization and rice residue amendment), which may affect mercury biogeochemistry and bioaccumulation. To explore potential effects of rice residue amendment on methylmercury (MMHg) accumulation in rice, a mercury-contaminated paddy soil was amended with rice root (RR), rice straw (RS) or composted rice straw (CS), and planted with rice. Incorporating RS or CS increased grain MMHg concentration by 14% or 11%. The observed increases could be attributed to the elevated porewater MMHg levels and thus enhanced MMHg uptake by plants, as well as increased MMHg translocation to grain within plants. Our results indicated for the first time that rice residue amendment could significantly affect MMHg accumulation in rice grain, which should be considered in risk assessment of MMHg in contaminated areas. PMID:26974480

  6. Effect of phosphate fertilizer application on phosphorus (P) losses from paddy soils in Taihu Lake Region. I. Effect of phosphate fertilizer rate on P losses from paddy soil.

    PubMed

    Zhang, H C; Cao, Z H; Shen, Q R; Wong, M H

    2003-02-01

    A field plot study was conducted on two types of paddy soils in the Taihu Lake Region, during the rice season of year 2000 in order to assess phosphorus (P) losses by runoff and vertical leaching, which are considered the two main pathways of P movement from paddy soil into its surrounding water course. Commercial NPK compound fertilizer and single superphosphate fertilizer were applied to furnish 0, 30, 150, and 300 kg applied P ha m(-2). The experiments consisted of three replicates of each treatment in Changshu site and four replicates in Anzhen site, with a plot size of 5 x 6 m2 in a randomized block. Results revealed that the average concentration range for total P (TP) in runoff was 1.857-7.883, 1.038-5.209, 0.783-1.255 and 0.572-0.691 mg P l(-1) respectively for P300, P150, P30 and P0 in Anzhen, while it was 2.431-2.449, 1.578-1.890, 1.050-1.315 and 0.749-0.941 mg P l(-1) respectively in Changshu. In all treatments, particulate P (PP) represented a major portion of the TP lost in runoff, it was 80% in Anzhen, and it was even more (>90%) in Changshu. Phosphate fertilizer treatments significantly affected P concentrations and P loads in the runoff. The mean concentration and average seasonal TP load from the P150 plots were 1.809 mg P l(-1) and 395 g P ha m(-2) season(-1) respectively, and lower than that from the P300 plots (2.957 mg P l(-1) and 652 g P ha m(-2) season(-1)). These were obviously higher than from the P30 (0.761 mg P l(-1) and 221 g P ha m(-2) season(-1)) and P0 (0.484 mg P l(-1) and 146 g P ha m(-2) season(-1)) respectively. There was no significant difference found between the P30 and the P0 in both sites. Under usual P application rate, there were total 31.7 and 20.6 tones P removed by runoff from permeable (Anzhen site) and waterlogged (Changshu site) paddy soils in the southern Jiangsu region (major part of the TLR) in the rice season of the year 2000. But if the P application rate is unusual high, or the Olsen P in soil accumulates to

  7. [Humus composition and stable carbon isotope natural abundance in paddy soil under long-term fertilization].

    PubMed

    Ma, Li; Yang, Lin-Zhang; Ci, En; Wang, Yan; Yin, Shi-Xue; Shen, Ming-Xing

    2008-09-01

    Soil samples were collected from an experimental paddy field with long-term (26 years) fertilization in Taihu Lake region of Jiangsu Province to study the effects of different fertilization on the organic carbon distribution and stable carbon isotope natural abundance (delta 13C) in the soil profile, and on the humus composition. The results showed that long-term fertilization increased the organic carbon content in top soil significantly, and there was a significantly negative exponential correlation between soil organic carbon content and soil depth (P < 0.01). The organic carbon content in 10-30 cm soil layer under chemical fertilizations and in 20-40 cm soil layer under organic fertilizations was relatively stable. Soil delta 13C increased gradually with soil depth, its variation range being from -24% per thousand to -28 per thousand, and had a significantly negative linear correlation with soil organic carbon content (P < 0.05). In 0-20 cm soil layer, the delta 13C in treatments organic manure (M), M + NP, M + NPK, M + straw (R) + N, and R + N decreased significantly; while in 30-50 cm soil layer, the delta 13C in all organic fertilization treatments except R + N increased significantly. Tightly combined humus (humin) was the main humus composition in the soil, occupying 50% or more, and the rest were loosely and stably combined humus. Long-term fertilization increased the content of loosely combined humus and the ratio of humic acid (HA) to fulvic acid (FA).

  8. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice.

    PubMed

    Ye, Wen-Ling; Khan, M Asaduzzaman; McGrath, Steve P; Zhao, Fang-Jie

    2011-12-01

    Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice. PMID:21840633

  9. Stabilization by hydrophobic protection as a molecular mechanism for organic carbon sequestration in maize-amended rice paddy soils.

    PubMed

    Song, X Y; Spaccini, R; Pan, G; Piccolo, A

    2013-08-01

    The hydrophobic components of soil organic matter (SOM) are reckoned to play an important role in the stabilization of soil organic carbon (SOC). The contribution of hydrophobic substances to SOC sequestration was evaluated in four different paddy soils in the South of China, following a 6-month incubation experiment with maize straw amendments. Soil samples included: a well developed paddy soil (TP) derived from clayey lacustrine deposits in the Tai Lake plain of Jiangsu; an acid clayey paddy soil (RP) derived from red earth in the rolling red soil area of Jiangxi; a weakly developed neutral paddy soil (PP) formed on Jurassic purple shale from Chongq; and a calcic Fluvisol (MS) derived from riverine sediments from a wetland along the Yangtze valley of Anhui, China. The SOC molecular composition after 30 and 180 days of incubation, was determined by off-line thermochemolysis followed by gas chromatography-mass spectrometry analysis. Lignin, lipids and carbohydrates were the predominant thermochemolysis products released from the treated soils. A selective preservation of hydrophobic OM, including lignin and lipids, was shown in maize amended soils with prolonged incubation. The decomposition of lignin and lipids was significantly slower in the TP and RP soils characterized by a larger content of extractable iron oxyhydrates (Fed) and lower pH. The overall increase in hydrophobic substances in maize incubated samples was correlated, positively, with total content of clay and Fed, and, negatively, with soil pH. Moreover, yields of both lignin and lipid components showed a significant relationship with SOC increase after incubation. These findings showed that the larger the lipid and lignin content of SOM, the greater was the stability of SOC, thereby suggesting that OM hydrophobic components may have an essential role in controlling the processes of OC sequestration in paddy soils of South China.

  10. Evaluation of potential effects of soil available phosphorus on soil arsenic availability and paddy rice inorganic arsenic content.

    PubMed

    Jiang, Wei; Hou, Qingye; Yang, Zhongfang; Zhong, Cong; Zheng, Guodong; Yang, Zhiqiang; Li, Jie

    2014-05-01

    The transfer of arsenic from paddy field to rice is a major exposure route of the highly toxic element to humans. The aim of our study is to explore the effects of soil available phosphorus on As uptake by rice, and identify the effects of soil properties on arsenic transfer from soil to rice under actual field conditions. 56 pairs of topsoil and rice samples were collected. The relevant parameters in soil and the inorganic arsenic in rice grains were analyzed, and then all the results were treated by statistical methods. Results show that the main factors influencing the uptake by rice grain include soil pH and available phosphorus. The eventual impact of phosphorus is identified as the suppression of As uptake by rice grains. The competition for transporters from soil to roots between arsenic and phosphorus in rhizosphere soil has been a dominant feature. PMID:24598788

  11. Silica fertilization and nano-MnO₂ amendment on bacterial community composition in high arsenic paddy soils.

    PubMed

    Shao, Jihai; He, Yaxian; Zhang, Huiling; Chen, Anwei; Lei, Ming; Chen, Junfeng; Peng, Liang; Gu, Ji-Dong

    2016-03-01

    Silica fertilization and nano-MnO2 amendment are reported as useful approaches in lowering the accumulation of arsenic in rice grains, but the effects of silica fertilization or nano-MnO2 amendment on microbial community in the paddy soils containing high concentration of arsenic are still unknown. In order to elucidate this question, the structures and composition of microbial community in the paddy soils, in response to silica fertilization and nano-MnO2 amendment, were investigated using pyrosequencing technique. The results indicated that Proteobacteria, Chloroflexi, and Acidobacteria were the main dominating phyla in these paddy soils. A decrease in the relative abundance of Chloroflexi and Cyanobacteria, but an increase in the relative abundance of Acidobacteria was observed after silica fertilization and nano-MnO2 amendment. The changes of Acidobacteria, Chloroflexi, and Cyanobacteria were strongly correlated with pH and the concentration of bioavailable arsenic in the paddy soils. The α-diversity of bacteria in the paddy soils increased in response to silica fertilization at low amendment level, but decreased under silica or nano-MnO2 amendment at high amendment level. Results of β-diversity analysis indicated that the microbial communities in the control treatment shared more similarity with that of those received low level of nano-MnO2 amendment, and the two silica fertilization treatments also shared more similarity with each other. PMID:26563550

  12. Silica fertilization and nano-MnO₂ amendment on bacterial community composition in high arsenic paddy soils.

    PubMed

    Shao, Jihai; He, Yaxian; Zhang, Huiling; Chen, Anwei; Lei, Ming; Chen, Junfeng; Peng, Liang; Gu, Ji-Dong

    2016-03-01

    Silica fertilization and nano-MnO2 amendment are reported as useful approaches in lowering the accumulation of arsenic in rice grains, but the effects of silica fertilization or nano-MnO2 amendment on microbial community in the paddy soils containing high concentration of arsenic are still unknown. In order to elucidate this question, the structures and composition of microbial community in the paddy soils, in response to silica fertilization and nano-MnO2 amendment, were investigated using pyrosequencing technique. The results indicated that Proteobacteria, Chloroflexi, and Acidobacteria were the main dominating phyla in these paddy soils. A decrease in the relative abundance of Chloroflexi and Cyanobacteria, but an increase in the relative abundance of Acidobacteria was observed after silica fertilization and nano-MnO2 amendment. The changes of Acidobacteria, Chloroflexi, and Cyanobacteria were strongly correlated with pH and the concentration of bioavailable arsenic in the paddy soils. The α-diversity of bacteria in the paddy soils increased in response to silica fertilization at low amendment level, but decreased under silica or nano-MnO2 amendment at high amendment level. Results of β-diversity analysis indicated that the microbial communities in the control treatment shared more similarity with that of those received low level of nano-MnO2 amendment, and the two silica fertilization treatments also shared more similarity with each other.

  13. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.

    PubMed

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui

    2016-05-01

    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions. PMID:26801928

  14. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.

    PubMed

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui

    2016-05-01

    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions.

  15. [Study on mechanism of SOM stabilization of paddy soils under long-term fertilizations].

    PubMed

    Luo, Lu; Zhou, Ping; Tong, Cheng-Li; Shi, Hui; Wu, Jin-Shui; Huang, Tie-Ping

    2013-02-01

    Fourier transform infrared spectroscopy (FTIR) was applied to study the structure of soil organic matter (SOM) of paddy soils under long-term different fertilization treatments. The aim was to clarify the different distribution of SOM between different fertilization methods and between topsoil and subsoil, and to explore the stability mechanism of SOM under different fertilization treatments. The results showed that the content of topsoil organic carbon (SOC) was the highest under organic-inorganic fertilizations, with the increment of SOC by 18.5%, 12.9% and 18.4% under high organic manure (HOM), low organic manure (LOM) and straw returning (STW) respectively compared with no fertilization treatment (CK). The long-term fertilizations also changed the chemical structure of SOM. As compared with CK, different fertilization treatments increased the functional group absorbing intensity of chemical resistance compounds (aliphatic, aromaticity), carbohydrate and organo-silicon compounds, which was the most distinctive under treatments of HOM, LOM and STW. For example, the absorbing intensity of alkyl was 0.30, 0.25 and 0.29 under HOM, LOM and STW, respectively. These values were increased by 87% , 56% and 81% as compared with that under CK treatment. The functional group absorbing intensity of SOM in the topsoil was stronger than that in the subsoil, with the most distinctive difference under HOM, LOM and STW treatments. The present research indicated that the enhanced chemical resistance of functional group of SOM may contribute to the high contents of SOC in the paddy soils under long-term organic-inorganic fertilizations, which also suggested a chemical stabilization mechanism of SOM in the paddy soils.

  16. Radiocesium sorption in relation to clay mineralogy of paddy soils in Fukushima, Japan.

    PubMed

    Nakao, Atsushi; Ogasawara, Sho; Sano, Oki; Ito, Toyoaki; Yanai, Junta

    2014-01-15

    Relationships between Radiocesium Interception Potential (RIP) and mineralogical characteristics of the clay fraction isolated from 97 paddy soils (Hama-dori, n = 25; Naka-dori, n = 36; Aizu, n = 36) in Fukushima Prefecture, Japan were investigated to clarify the mineralogical factors controlling the (137)Cs retention ability of soils (half-life 30.1 y). Of all the fission products released by the Fukushima accident, (137)Cs is the most important long-term contributor to the environmental contamination. The RIP, a quantitative index of the (137)Cs retention ability, was determined for the soil clays. The composition of clay minerals in the soil clays was estimated from peak areas obtained using X-ray diffraction (XRD) analyses. The predominant clay mineral was smectite in soils from Hama-dori and Aizu, while this was variable for those from Naka-dori. Native K content of the soil clays was found to be an indicator of the amount of micaceous minerals. The average RIP for the 97 soil clays was 7.8 mol kg(-1), and ranged from 2.4 mol kg(-1) to 19.4 mol kg(-1). The RIP was significantly and positively correlated with native K content for each of the geographical regions, Hama-dori (r = 0.76, p < 0.001), Naka-dori (r = 0.43, p < 0.05), and Aizu (r = 0.76, P < 0.001), while it was not related to the relative abundance of smectite. The linear relationship between RIP and native K content not only indicate a large contribution of micaceous minerals to the (137)Cs retention ability of the soil clays, but also could be used to predict the (137)Cs retention ability of soil clays for other paddy fields in Fukushima and other areas.

  17. Yield performance of cowpea genotypes grown in alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  18. Field screening of cowpea cultivars for alkaline soil tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  19. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    PubMed Central

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management. PMID:26795428

  20. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils.

    PubMed

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A S; Wu, Jinshui

    2016-01-22

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation ((14)C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.

  1. Effect of simulated tillage on microbial autotrophic CO2 fixation in paddy and upland soils

    NASA Astrophysics Data System (ADS)

    Ge, Tida; Wu, Xiaohong; Liu, Qiong; Zhu, Zhenke; Yuan, Hongzhao; Wang, Wei; Whiteley, A. S.; Wu, Jinshui

    2016-01-01

    Tillage is a common agricultural practice affecting soil structure and biogeochemistry. To evaluate how tillage affects soil microbial CO2 fixation, we incubated and continuously labelled samples from two paddy soils and two upland soils subjected to simulated conventional tillage (CT) and no-tillage (NT) treatments. Results showed that CO2 fixation (14C-SOC) in CT soils was significantly higher than in NT soils. We also observed a significant, soil type- and depth-dependent effect of tillage on the incorporation rates of labelled C to the labile carbon pool. Concentrations of labelled C in the carbon pool significantly decreased with soil depth, irrespective of tillage. Additionally, quantitative PCR assays revealed that for most soils, total bacteria and cbbL-carrying bacteria were less abundant in CT versus NT treatments, and tended to decrease in abundance with increasing depth. However, specific CO2 fixation activity was significantly higher in CT than in NT soils, suggesting that the abundance of cbbL-containing bacteria may not always reflect their functional activity. This study highlights the positive effect of tillage on soil microbial CO2 fixation, and the results can be readily applied to the development of sustainable agricultural management.

  2. Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters.

    PubMed

    Huang, Hai; Jia, Yan; Sun, Guo-Xin; Zhu, Yong-Guan

    2012-02-21

    Arsenic (As) methylation and volatilization in soil can be increased after organic matter (OM) amendment, though the factors influencing this are poorly understood. Herein we investigate how amended OM influences As speciation as well as how it alters microbial processes in soil and soil solution during As volatilization. Microcosm experiments were conducted on predried and fresh As contaminated paddy soils to investigate microbial mediated As speciation and volatilization under different OM amendment conditions. These experiments indicated that the microbes attached to OM did not significantly influence As volatilization. The arsine flux from the treatment amended with 10% clover (clover-amended treatment, CT) and dried distillers grain (DDG) (DDG-amended treatment, DT2) were significantly higher than the control. Trimethylarsine (TMAs) was the dominant species in arsine derived from CT, whereas the primary arsine species from DT2 was TMAs and arsine (AsH(3)), followed by monomethylarsine (MeAsH(2)). The predominant As species in the soil solutions of CT and DT2 were dimethylarsinic acid (DMAA) and As(V), respectively. OM addition increased the activities of arsenite-oxidizing bacteria (harboring aroA-like genes), though they did not increase or even decrease the abundance of arsenite oxidizers. In contrast, the abundance of arsenate reducers (carrying the arsC gene) was increased by OM amendment; however, significant enhancement of activity of arsenate reducers was observed only in CT. Our results demonstrate that OM addition significantly increased As methylation and volatilization from the investigated paddy soil. The physiologically active bacteria capable of oxidization, reduction, and methylation of As coexisted and mediated the As speciation in soil and soil solution. PMID:22295880

  3. Effects of butachlor on microbial populations and enzyme activities in paddy soil.

    PubMed

    Min, H; Ye, Y F; Chen, Z Y; Wu, W X; Yufeng, D

    2001-09-01

    This paper reports the influences of the herbicide butachlor (n-butoxymethlchloro -2', 6'-diethylacetnilide) on microbial populations, respiration, nitrogen fixation and nitrification, and on the activities of dehydrogenase and hydrogen peroxidase in paddy soil. The results showed that the number of actinomycetes declined significantly after the application of butachlor at different concentrations ranging from 5.5 microg g(-1) to 22.0 microg g(-1) dried soil, while that of bacteria and fungi increased. Fungi were easily affected by butachlor compared to the bacteria. The growth of fungi was retarded by butachlor at higher concentrations. Butachlor however, stimulated the growth of anaerobic hydrolytic fermentative bacteria, sulfate-reducing bacteria (SRB) and denitrifying bacteria. The increased concentration of butachlor applied resulted in the higher number of SRB. Butachlor inhibited the growth of hydrogen-producing acetogenic bacteria. The effect of butachlor varied on methane-producing bacteria (MPB) at different concentrations. Butachlor at the concentration of 1.0 microg g(-1) dried soil or less than this concentration accelerated the growth of MPB, while at 22.0 microg g(-1) dried soil showed an inhibition. Butachlor enhanced the activity of dehydrogenase at increasing concentrations. The soil dehydrogenase showed the highest activity on the 16th day after application of 22.0 microg g(-1) dried soil of butachlor. The hydrogen peroxidase could be stimulated by butachlor. The soil respiration was depressed during the period from several days to more than 20 days, depending on concentrations of butachlor applied. Both the nitrogen fixation and nitrification were stimulated in the beginning but reduced greatly afterwards in paddy soil.

  4. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  5. [Influence of paddy rice-upland crop rotation of cold-waterlogged paddy field on crops produc- tion and soil characteristics].

    PubMed

    Wang, Fei; Li, Qing-hua; Lin, Cheng; He, Chun-mei; Zhong, Shao-jie; Li, Yu; Lin, Xin-jian; Huang, Jian-cheng

    2015-05-01

    Two consecutive years (4-crop) experiments were conducted to study the influence of different paddy rice-upland crop rotation in cold-waterlogged paddy field on the growth of crops and soil characteristics. The result showed that compared with the rice-winter fallow (CK) pattern, the two-year average yield of paddy rice under four rotation modes, including rape-rice (R-R), spring corn-rice (C-R), Chinese milk vetch-rice (M-R) and bean-rice (B-R), were increased by 5.3%-26.7%, with significant difference observed in C-R and R-R patterns. Except for M-R pattern, the annual average total economic benefits were improved by 79.0%-392.4% in all rotation pattern compared with the CK, and the ration of output/input was enhanced by 0.06-0.72 unit, with the most significant effect found in the C-R pattern. Likewise, compared with the CK, the contents of chlorophyll and carotenoid, and net photosynthetic rate (Pn) of rice plant were all increased during the full-tillering stage of rice in all rotation patterns. The rusty lines and rusty spots of soils were more obvious compared with the CK during the rice harvest, particularly in R-R, C-R and B-R patterns. The ratio of water-stable soil macro aggregates of plough layer of soil (> 2 mm) decreased at different levels in all rotation patterns while the ratios of middle aggregate (0.25-2 mm, expect for M-R) and micro aggregate of soil (< 0.25 mm) were opposite. There was a decreasing trend for soil active reducing agents in all rotation patterns, whereas the available nutrient increased. The amounts of soil bacteria in C-R and B-R patterns, fungi in B-R rotation pattern, cellulose bacteria in R-R, C-R and B-R patterns and N-fixing bacteria in B-R pattern were improved by 285.7%-403.0%, 221.7%, 64.6-92.2% and 162.2%, respectively. Moreover, the differences in all microorganisms were significant. Thus, based on the experimental results of cold-waterlogged paddy field, it was concluded that changing from single cropping rice system

  6. [Dynamics of active organic carbon in a paddy soil under different rice farming modes].

    PubMed

    Zhan, Ming; Cao, Cou-Gui; Jiang, Yang; Wang, Jin-Ping; Yue, Li-Xin; Cai, Ming-Li

    2010-08-01

    A field experiment was conducted to study the dynamics of dissolved organic carbon (DOC), readily oxidizable organic carbon (ROC), and microbial biomass carbon (MBC) in a paddy soil under integrated rice-duck farming (RD), intermittent irrigation (RW), and conventional flooded irrigation (CK), the three rice farming modes typical in southern China. Under these three farming modes, the soil DOC and MBC contents reached the highest during the period from rice booting to heading, while the soil ROC content had less change during the whole rice growth period. Two-factor variance analysis showed that soil MBC was greatly affected by rice growth stage, soil DOC was greatly affected by rice growth stage and farming mode, and soil ROC was mainly affected by farming mode. Comparing with CK, RD significantly increased the soil DOC and ROC contents and their availability, while RW significantly decreased the soil DOC content and its availability but increased the soil ROC content and its availability. No significant differences were observed in the soil MBC and microbial quotient among RD, RW, and CK.

  7. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw.

    PubMed

    Bao, Qiong-Li; Xiao, Ke-Qing; Chen, Zheng; Yao, Huai-Ying; Zhu, Yong-Guan

    2014-05-01

    Soil type and returning straw to the field are the important factors that regulate CH4 formation in paddy soil, and the variations of biogeochemical parameters and methanogens communities play important roles in the formation of CH4 . In the present study, two paddy soil types [silt loam soil (JX) and silty clay loam soil (GD)] with different amounts of rice straw additions were incubated under anaerobic conditions to investigate the relationship between CH4 production, biogeochemical variations, and methanogenic archaeal communities. Straw incorporation significantly stimulated CH4 production in two soil types. CH4 production in JX soil was higher than the GD soil with equal straw addition. Significant differences between biogeochemical parameters and methanogenic archaeal communities were observed between two soil types. Straw addition increased archaeal 16S rRNA genes and mcrA genes copy numbers, especially in JX soil. Multiple regression analysis indicated that variations in H2 , sulfate, Fe (II) concentrations, archaeal 16S rRNA genes and mcrA genes copy numbers, methanogens diversity index, and the relative abundance of Methanosarcinaceae and Methanobacteriaceae together influenced CH4 production in two soil types. These results indicated that methane production was influenced by the comprehensive effects of biotic and abiotic factors in paddy soils. PMID:24579928

  8. Methane production and methanogenic archaeal communities in two types of paddy soil amended with different amounts of rice straw.

    PubMed

    Bao, Qiong-Li; Xiao, Ke-Qing; Chen, Zheng; Yao, Huai-Ying; Zhu, Yong-Guan

    2014-05-01

    Soil type and returning straw to the field are the important factors that regulate CH4 formation in paddy soil, and the variations of biogeochemical parameters and methanogens communities play important roles in the formation of CH4 . In the present study, two paddy soil types [silt loam soil (JX) and silty clay loam soil (GD)] with different amounts of rice straw additions were incubated under anaerobic conditions to investigate the relationship between CH4 production, biogeochemical variations, and methanogenic archaeal communities. Straw incorporation significantly stimulated CH4 production in two soil types. CH4 production in JX soil was higher than the GD soil with equal straw addition. Significant differences between biogeochemical parameters and methanogenic archaeal communities were observed between two soil types. Straw addition increased archaeal 16S rRNA genes and mcrA genes copy numbers, especially in JX soil. Multiple regression analysis indicated that variations in H2 , sulfate, Fe (II) concentrations, archaeal 16S rRNA genes and mcrA genes copy numbers, methanogens diversity index, and the relative abundance of Methanosarcinaceae and Methanobacteriaceae together influenced CH4 production in two soil types. These results indicated that methane production was influenced by the comprehensive effects of biotic and abiotic factors in paddy soils.

  9. Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils.

    PubMed

    Wang, Ning; Ding, Long-Jun; Xu, Hui-Juan; Li, Hong-Bo; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-03-01

    Fertilization affects bacterial communities and element biogeochemical cycling in flooded paddy soils and the effect might differ among soil types. In this study, five paddy soils from Southern China were subjected to urea addition to explore impacts of fertilization on nitrogen oxide (N2O) emission and bacterial community composition under the flooding condition. 16S rRNA gene-based illumina sequencing showed no obvious shifts in bacterial community composition of five soils after urea addition. However, some genera were affected by fertilization addition and the influenced genera varied among soils. During the late period (day 8-19) of flooding incubation without urea addition, N2O emission rates were elevated for all soils. However, urea effects on N2O emission were different among flooded soils. For soils where nirS and nirK gene abundances increased with urea addition, N2O emission was significantly increased compared to control treatment. Redundancy analysis showed that dissolved organic carbon, ammonium (NH4 (+)), ferrous iron (Fe(2+)) and nitrate (NO3 (-)) in pore water explained 33.4% of the variation in soil bacterial community composition, implying that urea regimes influenced the relative abundance of some bacterial populations possibly by regulating soil characteristics and then influencing N2O emission. These results provided insights into soil type-dependent effect of fertilization on the overall bacterial communities and nitrogen oxide emission in flooded paddy soils.

  10. Variability in responses of bacterial communities and nitrogen oxide emission to urea fertilization among various flooded paddy soils.

    PubMed

    Wang, Ning; Ding, Long-Jun; Xu, Hui-Juan; Li, Hong-Bo; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-03-01

    Fertilization affects bacterial communities and element biogeochemical cycling in flooded paddy soils and the effect might differ among soil types. In this study, five paddy soils from Southern China were subjected to urea addition to explore impacts of fertilization on nitrogen oxide (N2O) emission and bacterial community composition under the flooding condition. 16S rRNA gene-based illumina sequencing showed no obvious shifts in bacterial community composition of five soils after urea addition. However, some genera were affected by fertilization addition and the influenced genera varied among soils. During the late period (day 8-19) of flooding incubation without urea addition, N2O emission rates were elevated for all soils. However, urea effects on N2O emission were different among flooded soils. For soils where nirS and nirK gene abundances increased with urea addition, N2O emission was significantly increased compared to control treatment. Redundancy analysis showed that dissolved organic carbon, ammonium (NH4 (+)), ferrous iron (Fe(2+)) and nitrate (NO3 (-)) in pore water explained 33.4% of the variation in soil bacterial community composition, implying that urea regimes influenced the relative abundance of some bacterial populations possibly by regulating soil characteristics and then influencing N2O emission. These results provided insights into soil type-dependent effect of fertilization on the overall bacterial communities and nitrogen oxide emission in flooded paddy soils. PMID:25764461

  11. [Effect of butachlor on CH4 emission and anaerobes in paddy soil].

    PubMed

    Zhao, Y; Mei, Q; Chen, M; Min, H

    1997-12-01

    Effects of butachlor on CH4 emission and the count of anaerobes in paddy soil or in the media were studied. The results obtained showed that CH4 emission and growth of methanogens would be greatly affected at field rates of butachlor within 2 weeks, but this adverse effects would disappear as time went on. CH4 emission and methanogenic activities would be retarded by butachlor in media for longer time. The amount of butachlor available to act upon anaerobes depended on application rate and method of application.

  12. Eco-stoichiometric alterations in paddy soil ecosystem driven by phosphorus application.

    PubMed

    Li, Xia; Wang, Hang; Gan, Shaohua; Jiang, Daqian; Tian, Guangming; Zhang, Zhijian

    2013-01-01

    Agricultural fertilization may change processes of elemental biogeochemical cycles and alter the ecological function. Ecoenzymatic stoichiometric feature plays a critical role in global soil carbon (C) metabolism, driving element cycles, and mediating atmospheric composition in response to agricultural nutrient management. Despite the importance on crop growth, the role of phosphorous (P) in compliance with eco-stoichiometry on soil C and nitrogen (N) sequestration in the paddy field remains poorly understood in the context of climate change. Here, we collected soil samples from a field experiment after 6 years of chemical P application at a gradient of 0 (P-0), 30 (P-30), 60 (P-60), and 90 (P-90) kg ha(-1) in order to evaluate the role of P on stoichiometric properties in terms of soil chemical, microbial biomass, and eco-enzyme activities as well as greenhouse gas (GHG: CO2, N2O and CH4) emissions. Continuous P input increased soil total organic C and N by 1.3-9.2% and 3%-13%, respectively. P input induced C and N limitations as indicated by the decreased ratio of C:P and N:P in the soil and microbial biomass. A synergistic mechanism among the ecoenzymatic stoichiometry, which regulated the ecological function of microbial C and N acquisition and were stoichiometrically related to P input, stimulated soil C and N sequestration in the paddy field. The lower emissions of N2O and CH4 under the higher P application (P-60 and P-90) in July and the insignificant difference in N2O emission in August compared to P-30; however, continuous P input enhanced CO2 fluxes for both samplings. There is a technical conflict for simultaneously regulating three types of GHGs in terms of the eco-stoichiometry mechanism under P fertilization. Thus, it is recommended that the P input in paddy fields not exceed 60 kg ha(-1) may maximize soil C sequestration, minimize P export, and guarantee grain yields. PMID:23667435

  13. Inhibition of methane oxidation by nitrogenous fertilizers in a paddy soil

    PubMed Central

    Alam, M. Saiful; Jia, Zhongjun

    2012-01-01

    Nitrogenous fertilizers are generally thought to have an important role in regulating methane oxidation. In this study, the effect of ammonium on methane oxidation activity was investigated in a paddy soil using urea at concentrations of 0, 50, 100, 200, and 400 μg N per gram dry weight soil (N/g.d.w.s) and ammonium sulfate at concentrations of 0, 50, and 200 μg N/g.d.w.s. The results of this study demonstrate that urea concentrations of 200 μg N/g.d.w.s. and above significantly inhibit methane oxidation activity, whereas no statistically significant difference was observed in methane oxidation activity among soil microcosms with urea concentrations of less than 200 μg N/g.d.w.s after incubation for 27 days. Similar results were obtained in a sense that methane oxidation activity was inhibited only when the ammonium sulfate concentration was 200 μg N/g.d.w.s in soil microcosms in this study. Phylogenetic analysis of pmoA genes showed that nitrogen fertilization resulted in apparent changes in the community composition of methane-oxidizing bacteria (MOB). Type I MOB displayed an increased abundance in soil microcosms amended with nitrogenous fertilizers, whereas type II MOB dominated the native soil. Furthermore, although no statistically significant relationship was observed between pmoA gene and amoA gene abundances, methane oxidation activity was significantly negatively correlated with nitrification activity in the presence of urea or ammonium sulfate. Our results indicate that the methane oxidation activity in paddy soils might be inhibited when the concentration of ammonium fertilizers is high and that the interactions between ammonia and methane oxidizers need to be further investigated. PMID:22783249

  14. [Effects and mechanism of alkaline wastes application and zinc fertilizer addition on Cd bioavailability in contaminated soil].

    PubMed

    Liu, Zhao-Bing; Ji, Xiong-Hui; Tian, Fa-Xiang; Peng, Hua; Wu, Jia-Mei; Shi, Li-Hong

    2011-04-01

    The effects of paper mill sludge, red mud and zinc fertilizer addition on remediation of acid cadmium contaminated paddy soil were studied in a pot experiment, and their beneficial effects were verified in a field experiment, by using lime as comparison. The pot experiment results showed that a single application (2 g x kg(-1)) of lime, paper mill sludge or red mud increased soil pH significantly. Compared with no applying alkaline substances, the soil exchangeable Ca content was increased by 33.1%-76.0% at 7 days after applying alkaline substances and 31.0%-78.3% at 30 days after rice transplanting, respectively. The soil available Cd content was significantly decreased by 38.4%-45.0% at 7 days after the three alkaline substances applications, and was decreased by 37.4%-52.9% and 33.2%-38.7% at 30 days and 60 days after rice transplanting, respectively. The Cd content in rice root and brown rice was decreased by 24.0%-48.5% and 26.3%-44.7%, respectively. With equal applications of lime, paper mill sludge and red mud, the effects on increase of soil pH and decrease in Cd accumulation by rice was lime > red mud > paper mill sludge. Compared with a single application (2 g x kg(-1)) of paper mill sludge or red mud, Cd accumulation decreased significantly following the application of zinc fertilizer (0.2 g x kg(-1)) field experimental results were similar to the pot experiment that Cd accumulation apparently declined in the first and second crops (late rice and autumn rape) following the application of paper mill sludge, red mud and addition of zinc fertilizer. The Cd content in brown rice and rape seeds was decreased by 27.1-65.1% and 16.4%-41.6%, respectively, compared with no alkaline substances application. The Cd content in brown rice reached the National Hygienic Standard for Grains (GB 2715-2005). Therefore, combined application of paper mill sludge or red mud with zinc fertilizer was a feasible method to remediate acid cadmium contaminated paddy soil. Rice

  15. Arsenic dissolution from Japanese paddy soil by a dissimilatory arsenate-reducing bacterium Geobacter sp. OR-1.

    PubMed

    Ohtsuka, Toshihiko; Yamaguchi, Noriko; Makino, Tomoyuki; Sakurai, Kazuhiro; Kimura, Kenta; Kudo, Keitaro; Homma, Eri; Dong, Dian Tao; Amachi, Seigo

    2013-06-18

    Dissimilatory As(V) (arsenate)-reducing bacteria may play an important role in arsenic release from anoxic sediments in the form of As(III) (arsenite). Although respiratory arsenate reductase genes (arrA) closely related to Geobacter species have been frequently detected in arsenic-rich sediments, it is still unclear whether they directly participate in arsenic release, mainly due to lack of pure cultures capable of arsenate reduction. In this study, we isolated a novel dissimilatory arsenate-reducing bacterium, strain OR-1, from Japanese paddy soil, and found that it was phylogenetically closely related to Geobacter pelophilus. OR-1 also utilized soluble Fe(III), ferrihydrite, nitrate, and fumarate as electron acceptors. OR-1 catalyzed dissolution of arsenic from arsenate-adsorbed ferrihydrite, while Geobacter metallireducens GS-15 did not. Furthermore, inoculation of washed cells of OR-1 into sterilized paddy soil successfully restored arsenic release. Arsenic K-edge X-ray absorption near-edge structure analysis revealed that strain OR-1 reduced arsenate directly on the soil solid phase. Analysis of putative ArrA sequences from paddy soils suggested that Geobacter-related bacteria, including those closely related to OR-1, play an important role in arsenic release from paddy soils. Our results provide direct evidence for arsenic dissolution by Geobacter species and support the hypothesis that Geobacter species play a significant role in reduction and mobilization of arsenic in flooded soils and anoxic sediments. PMID:23668621

  16. From tidal wetland to paddy rice fields - Changes in soil microbial communities during 2000 years of rice cultivation

    NASA Astrophysics Data System (ADS)

    Bannert, Andrea; Kleineidam, Kristina; Frenzel, Peter; Ho, Adrian; Schloter, Michael

    2010-05-01

    In many areas of China tidal wetlands have been converted into agricultural land for lowland rice cultivation. However, the consequences and effects on soil microbial communities are poorly understood. Therefore, we investigated bacterial and archaeal communities involved in nitrification and denitrification based on diversity and abundance pattern of the corresponding functional genes in a tidal wetland and two paddy soils cultivated for 50 years respectively 2000 years with rice. The abundances of all measured genes increased from the tidal wetland to the 2000 years paddy soil in reference to one gram of soil due to a significant increase of the microbial biomass. When relating the functional gene copies to the extracted microbial biomass highest copy numbers were observed in the paddy soil with 50 years of rice cultivation history with exception of the archaeal nitrification gene amoA. T-RFLP data of the archaeal amoA gene and the bacterial denitrification gene nosZ revealed significant differences in community composition in the three investigated soils. Overall, our results indicate clear changes in abundance and diversity pattern of microbial communities participating in nitrogen cycling during rice paddy evolution.

  17. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.

    PubMed

    Wang, Yongjie; Dang, Fei; Zhong, Huan; Wei, Zhongbo; Li, Ping

    2016-03-01

    Biogeochemical cycling of sulfur and selenium (Se) could play an important role in methylmercury (MeHg) dynamics in soil, while their potential effects on MeHg production in rice paddy soil are less understood. The main objective of this study was to explore the effects of sulfate and selenite on net MeHg production in contaminated rice paddy soil, characterized with massive MeHg production and thus MeHg accumulation in rice. A series of microcosm incubation experiments were conducted using a contaminated paddy soil amended with sulfate and/or selenite, in which sulfate-reducing bacteria were mainly responsible for MeHg production. Our results demonstrated that sulfate addition reduced solid and dissolved MeHg levels in soils by ≤18 and ≤25 %, respectively. Compared to sulfate, selenite was more effective in inhibiting net MeHg production, and the inhibitory effect depended largely on amended selenite doses. Moreover, sulfate input played a dual role in affecting Hg-Se interactions in soil, which could be explained by the dynamics of sulfate under anoxic conditions. Therefore, the effects of sulfate and selenium input should be carefully considered when assessing risk of Hg in anoxic environments (e.g., rice paddy field and wetland).

  18. Conversion of upland to paddy field specifically alters the community structure of archaeal ammonia oxidizers in an acid soil

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ren, G. D.; Lu, L.; Zheng, Y.; Peng, X. H.; Jia, Z. J.

    2013-08-01

    The function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) depends on the major energy-generating compounds (i.e., ammonia and oxygen). The diversification of AOA and AOB communities along ecological gradients of substrate availability in a complex environment have been much debated but rarely tested. In this study, two ecosystems of maize and rice crops under different fertilization regimes were selected to investigate the community diversification of soil AOA and AOB upon conversion of an upland field to a paddy field and long-term field fertilization in an acid soil. Real-time quantitative polymerase chain reaction of ammonia monooxygenase (amoA) genes demonstrated that the abundance of AOA was significantly stimulated after conversion of upland to paddy soils for more than 100 yr, whereas a slight decline in AOB numbers was observed. Denaturing gradient gel electrophoresis fingerprints of amoA genes further revealed remarkable changes in the community compositions of AOA after conversion of aerobic upland to flooded paddy field. Sequencing analysis revealed that upland soil was dominated by AOA within the soil group 1.1b lineage, whereas the marine group 1.1a-associated lineage predominated in AOA communities in paddy soils. Irrespective of whether the soil was upland or paddy soil, long-term field fertilization led to increased abundance of amoA genes in AOA and AOB compared with control treatments (no fertilization), whereas archaeal amoA gene abundances outnumbered their bacterial counterparts in all samples. Phylogenetic analyses of amoA genes showed that Nitrosospira cluster-3-like AOB dominated bacterial ammonia oxidizers in both paddy and upland soils, regardless of fertilization treatment. The results of this study suggest that the marine group 1.1a-associated AOA will be better adapted to the flooded paddy field than AOA ecotypes of the soil group 1.1b lineage, and indicate that long-term flooding is the dominant selective force driving the

  19. [Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization].

    PubMed

    Lin, Shan; Chen, Tao; Zhao, Jin-Song; Xiang, Rong-Biao; Hu, Rong-Gui; Zhang, Shui-Qing; Wang, Mi-Lan; Lu, Zhao-Qi

    2014-05-01

    Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere. PMID:25129934

  20. [Characteristics of soil organic carbon mineralization at different temperatures in paddy soils under long-term fertilization].

    PubMed

    Lin, Shan; Chen, Tao; Zhao, Jin-Song; Xiang, Rong-Biao; Hu, Rong-Gui; Zhang, Shui-Qing; Wang, Mi-Lan; Lu, Zhao-Qi

    2014-05-01

    Dynamics of soil organic carbon mineralization affected by long-term fertilizations and temperature in relation to different soil carbon fractions were investigated in paddy soils. Soil samples were collected from the plough layer of 3 long-term national experimental sites in Xinhua, Ningxiang and Taojiang counties of Hunan Province. Mineralization of soil organic C was estimated by 33-day aerobic incubation at different temperatures of 10, 20 and 30 degrees C. The results showed that the rates of CO2 production were higher during the earlier phase (0-13 d) in all treatments, and then decreased according to a logarithm function. Higher incubation temperature strengthened C mineralization in the different treatments. The quantities of cumulative CO2 production in NPK with manure or straw treatments were greater than in inorganic fertilizers treatments. The Q10 values in the different soil treatments ranged from 1.01-1.53. There were significantly positive correlations between the Q10 values and soil total organic carbon (TOC), easy oxidation organic carbon (EOOC), humic acid carbon (C(HA)), fulvic acid carbon (CFA). The cumulative amount of mineralized C was significantly positively correlated with microbial biomass carbon (MBC) at 10 and 20 degrees C, but not significantly at 30 degrees C. Significant correlations were found between the cumulative amount of mineralized C and different soil carbon fractions and C(HA)/C(FA). The correlations of differ- ent soil carbon fractions with the ratio of cumulative mineralized C to TOC were negatively correlated at 10 degrees C, but not significantly at 20 and 30 degrees C. These results suggested that the application of NPK with manure or straw would be helpful to increase the sequestration of C in paddy soils and reduce its contribution of CO2 release in the atmosphere.

  1. Effects of Carbon in Flooded Paddy Soils: Implications for Microbial Activity and Arsenic Mobilization

    NASA Astrophysics Data System (ADS)

    Avancha, S.; Boye, K.

    2014-12-01

    In the Mekong delta in Cambodia, naturally occurring arsenic (originating from erosion in the Himalaya Mountains) in paddy soils is mobilized during the seasonal flooding. As a consequence, rice grown on the flooded soils may take up arsenic and expose people eating the rice to this carcinogenic substance. Microbial activity will enhance or decrease the mobilization of arsenic depending on their metabolic pathways. Among the microbes naturally residing in the soil are denitrifying bacteria, sulfate reducers, metal reducers (Fe, Mn), arsenic reducers, methanogens, and fermenters, whose activity varies based on the presence of oxygen. The purpose of the experiment was to assess how different amendments affect the microbial activity and the arsenic mobilization during the transition from aerobic to anaerobic metabolism after flooding of naturally contaminated Cambodian soil. In a batch experiment, we investigated how the relative metabolic rate of naturally occurring microbes could vary with different types of organic carbon. The experiment was designed to measure the effects of various sources of carbon (dried rice straw, charred rice straw, manure, and glucose) on the microbial activity and arsenic release in an arsenic-contaminated paddy soil from Cambodia under flooded conditions. All amendments were added based on the carbon content in order to add 0.036 g of carbon per vial. The soil was flooded with a 10mM TRIS buffer solution at pH 7.04 in airtight 25mL serum vials and kept at 25 °C. We prepared 14 replicates per treatment to sample both gas and solution. On each sampling point, the solution replicates were sampled destructively. The gas replicates continued on and were sampled for both gas and solution on the final day of the experiment. We measured pH, total arsenic, methane, carbon dioxide, and nitrous oxide at 8 hours, 1.5 days, 3.33 days, and 6.33 days from the start of the experiment.

  2. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils.

    PubMed

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-05-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3(-)-N g(-1) dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in (13)C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of (13)CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the (13)C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The (13)C-NOB was

  3. Differential contributions of ammonia oxidizers and nitrite oxidizers to nitrification in four paddy soils

    PubMed Central

    Wang, Baozhan; Zhao, Jun; Guo, Zhiying; Ma, Jing; Xu, Hua; Jia, Zhongjun

    2015-01-01

    Rice paddy fields are characterized by regular flooding and nitrogen fertilization, but the functional importance of aerobic ammonia oxidizers and nitrite oxidizers under unique agricultural management is poorly understood. In this study, we report the differential contributions of ammonia-oxidizing archaea (AOA), bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to nitrification in four paddy soils from different geographic regions (Zi-Yang (ZY), Jiang-Du (JD), Lei-Zhou (LZ) and Jia-Xing (JX)) that are representative of the rice ecosystems in China. In urea-amended microcosms, nitrification activity varied greatly with 11.9, 9.46, 3.03 and 1.43 μg NO3−-N g−1 dry weight of soil per day in the ZY, JD, LZ and JX soils, respectively, over the course of a 56-day incubation period. Real-time quantitative PCR of amoA genes and pyrosequencing of 16S rRNA genes revealed significant increases in the AOA population to various extents, suggesting that their relative contributions to ammonia oxidation activity decreased from ZY to JD to LZ. The opposite trend was observed for AOB, and the JX soil stimulated only the AOB populations. DNA-based stable-isotope probing further demonstrated that active AOA numerically outcompeted their bacterial counterparts by 37.0-, 10.5- and 1.91-fold in 13C-DNA from ZY, JD and LZ soils, respectively, whereas AOB, but not AOA, were labeled in the JX soil during active nitrification. NOB were labeled to a much greater extent than AOA and AOB, and the addition of acetylene completely abolished the assimilation of 13CO2 by nitrifying populations. Phylogenetic analysis suggested that archaeal ammonia oxidation was predominantly catalyzed by soil fosmid 29i4-related AOA within the soil group 1.1b lineage. Nitrosospira cluster 3-like AOB performed most bacterial ammonia oxidation in the ZY, LZ and JX soils, whereas the majority of the 13C-AOB in the JD soil was affiliated with the Nitrosomona communis lineage. The 13C-NOB was overwhelmingly

  4. Efficient Arsenic Methylation and Volatilization Mediated by a Novel Bacterium from an Arsenic-Contaminated Paddy Soil.

    PubMed

    Huang, Ke; Chen, Chuan; Zhang, Jun; Tang, Zhu; Shen, Qirong; Rosen, Barry P; Zhao, Fang-Jie

    2016-06-21

    Microbial arsenic (As) methylation and volatilization are important processes controlling the As biogeochemical cycle in paddy soils. To further understand these processes, we isolated a novel bacterial strain, SM-1, from an As-contaminated paddy soil. SM-1 showed strong As methylation and volatilization abilities, converting almost all arsenite (10 μM) to dimethylarsenate and trimethylarsenic oxide in the medium and trimethylarsine gas into the headspace within 24 h, with trimethylarsine accounting for nearly half of the total As. On the basis of the 16S rRNA sequence, strain SM-1 represents a new species in a new genus within the family Cytophagaceae. Strain SM-1 is abundant in the paddy soil and inoculation of SM-1 greatly enhanced As methylation and volatilization in the soil. An arsenite methyltransferase gene (ArarsM) was cloned from SM-1. When expressed in Escherichia coli, ArArsM conferred the As methylation and volatilization abilities to E. coli and increased its resistance to arsenite. The high As methylation and volatilization abilities of SM-1 are likely attributed to an efficient ArArsM enzyme coupled with low arsenite efflux. These results suggest that strain SM-1 plays an important role in As methylation and volatilization in the paddy soil and has a great potential for As bioremediation. PMID:27258163

  5. The key microorganisms for anaerobic degradation of pentachlorophenol in paddy soil as revealed by stable isotope probing.

    PubMed

    Tong, Hui; Liu, Chengshuai; Li, Fangbai; Luo, Chunling; Chen, Manjia; Hu, Min

    2015-11-15

    Pentachlorophenol (PCP) is a common residual persistent pesticide in paddy soil and has resulted in harmful effect on soil ecosystem. The anaerobic microbial transformation of PCP, therefore, has been received much attentions, especially the functional microbial communities for the reductive transformation. However, the key functional microorganisms for PCP mineralization in the paddy soil still remain unknown. In this work, DNA-based stable isotope probing (SIP) was applied to explore the key microorganisms responsible for PCP mineralization in paddy soil. The SIP results indicated that the dominant bacteria responsible for PCP biodegradation belonged to the genus Dechloromonas of the class β-Proteobacteria. In addition, the increased production of (13)CH4 and (13)CO2 indicated that the addition of lactate enhanced the rate of biodegradation and mineralization of PCP. Two archaea classified as the genera of Methanosaeta and Methanocella of class Methanobacteria were enriched in the heavy fraction when with lactate, whereas no archaea was detected in the absence of lactate. These findings provide direct evidence for the species of bacteria and archaea responsible for anaerobic PCP or its breakdown products mineralization and reveal a new insight into the microorganisms linked with PCP degradation in paddy soil.

  6. On the apparent CO2 absorption by alkaline soils

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wang, W. F.

    2014-02-01

    Alkaline soils in the Gubantonggut Desert were recently demonstrated socking away large quantities of CO2 in an abiotic form. This demands a better understanding of abiotic CO2 exchange in alkaline sites. Reaction of CO2 with the moisture or dew in the soil was conjectured as a potential mechanism. The main goal of this study is to determine the extent to which the dew deposition modulates Land-Atmosphere CO2 exchange at highly alkaline sites (pH ~ 10). Experiments were conducted at the most barren sites (canopy coverage < 5%) to cut down uncertainty. Dew quantities and soil CO2 fluxes were measured using a micro-lysimeters and an automated flux system (LI-COR, Lincoln, Nebraska, USA), respectively. There is an evident increase of dew deposition in nocturnal colder temperatures and decrease in diurnal warmer temperatures. Variations of soil CO2 flux are almost contrary, but the increase in diurnal warmer temperatures is obscure. It was shown that the accumulation and evaporation of dew in the soil motivates the apparent absorption and release of CO2. It was demonstrated that dew amounts in the soil has an exponential relation with the part in Fc beyond explanations of the worldwide utilized Q10 model. Therefore dew deposition in highly alkaline soils exerted a potential CO2 sink and can partly explain the apparent CO2 absorption. This implied a crucial component in the net ecosystem carbon balance (NECB) at alkaline sites which occupies approximately 5% of the Earth's land surface (7 million km). Further explorations for its mechanisms and representativeness over other arid climate systems have comprehensive perspectives in the quaternary research.

  7. Potential effects of earthworm activity on C and N dynamics in tropical paddy soil

    NASA Astrophysics Data System (ADS)

    John, Katharina; Zaitsev, Andrey S.; Wolters, Volkmar

    2016-04-01

    Earthworms are involved in key ecosystem processes and are generally considered important for sustainable crop production. However, their provision of essential ecosystem services and contribution to tropical soil carbon and nitrogen balance in rice-based agroecosystems are not yet completely understood. We carried out two microcosm experiments to quantify the impact of a tropical earthworm Pheretima sp. from the Philippines on C and N turnover in rice paddy soils. First one was conducted to understand the modulation impact of soil water saturation level and nitrogen fertilizer input intensity on C and N cycles. The second one focused on the importance of additional organic matter (rice straw) amendment on the earthworm modulation of mineralization in non-flooded conditions. We measured CO2, CH4 (Experiments 1 and 2) and N2O evolution (Experiment 2) from rice paddy soil collected at the fields of the International Rice Research Institute (Philippines). Further we analysed changes in soil C and N content as well as nutrient loss via leaching induced by earthworms (Experiment 2). Addition of earthworms resulted in the strong increase of CH4 release under flooded conditions as well as after rice straw amendment. Compared to flooded conditions, earthworms suppressed the distinct CO2 respiration maximum at intermediate soil water saturation levels. In the first few days after the experiment establishment (Experiment 1) intensive nitrogen application resulted in the suppression of CO2 emission by earthworms at non-flooded soil conditions. However, at the longer term perspective addressed in the second experiment (30 days) earthworm activity rather increased average soil respiration under intensive fertilization or rice straw amendment. The lowest N2O release rates were revealed in the microcosms with earthworm and straw treatments. The combined effect of N fertilizer and straw addition to microcosms resulted in the increased leachate volume due to earthworm bioturbation

  8. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils.

    PubMed

    Bogdan, Katja; Schenk, Manfred K

    2008-11-01

    Paddy rice is a global staple food which in some circumstances can contain high levels of the toxic element arsenic (As). In order to elucidate factors influencing As dissolution in the soil solution during paddy rice cultivation, rice (Oryza sativa L. "Selenio") was cultivated to maturity in six paddy soils in the greenhouse in 2005 and 2006. Concentrations of Mn, Fe, As, P, and silicic acid in soil solution and As concentrations in rice straw and polished rice grain were determined. There was a close relationship between Fe and As concentrations in the soil solution, suggesting that the major part of dissolved As originated from reduced iron-(hydr)oxide. However, in addition to the factors causing As dissolution in the soil, other factors influenced the uptake of As by rice. The inhibitory effect of indigenous silicic acid in the soil solution on As uptake was clearly shown. This implied that soils with high plant available Si contents resulted in low plant As contents and that Si application to soils may decrease the As content of rice. PMID:19031876

  9. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles.

  10. Mapping spatial variability of soil salinity in a coastal paddy field based on electromagnetic sensors.

    PubMed

    Guo, Yan; Huang, Jingyi; Shi, Zhou; Li, Hongyi

    2015-01-01

    In coastal China, there is an urgent need to increase land area for agricultural production and urban development, where there is a rapid growing population. One solution is land reclamation from coastal tidelands, but soil salinization is problematic. As such, it is very important to characterize and map the within-field variability of soil salinity in space and time. Conventional methods are often time-consuming, expensive, labor-intensive, and unpractical. Fortunately, proximal sensing has become an important technology in characterizing within-field spatial variability. In this study, we employed the EM38 to study spatial variability of soil salinity in a coastal paddy field. Significant correlation relationship between ECa and EC1:5 (i.e. r >0.9) allowed us to use EM38 data to characterize the spatial variability of soil salinity. Geostatistical methods were used to determine the horizontal spatio-temporal variability of soil salinity over three consecutive years. The study found that the distribution of salinity was heterogeneous and the leaching of salts was more significant in the edges of the study field. By inverting the EM38 data using a Quasi-3D inversion algorithm, the vertical spatio-temporal variability of soil salinity was determined and the leaching of salts over time was easily identified. The methodology of this study can be used as guidance for researchers interested in understanding soil salinity development as well as land managers aiming for effective soil salinity monitoring and management practices. In order to better characterize the variations in soil salinity to a deeper soil profile, the deeper mode of EM38 (i.e., EM38v) as well as other EMI instruments (e.g. DUALEM-421) can be incorporated to conduct Quasi-3D inversions for deeper soil profiles. PMID:26020969

  11. Effect of Different Fertilizer Application on the Soil Fertility of Paddy Soils in Red Soil Region of Southern China

    PubMed Central

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0–20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mg·kg−1. Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region. PMID:23028550

  12. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China.

    PubMed

    Dong, Wenyi; Zhang, Xinyu; Wang, Huimin; Dai, Xiaoqin; Sun, Xiaomin; Qiu, Weiwen; Yang, Fengting

    2012-01-01

    Appropriate fertilizer application is an important management practice to improve soil fertility and quality in the red soil regions of China. In the present study, we examined the effects of five fertilization treatments [these were: no fertilizer (CK), rice straw return (SR), chemical fertilizer (NPK), organic manure (OM) and green manure (GM)] on soil pH, soil organic carbon (SOC), total nitrogen (TN), C/N ratio and available nutrients (AN, AP and AK) contents in the plowed layer (0-20 cm) of paddy soil from 1998 to 2009 in Jiangxi Province, southern China. Results showed that the soil pH was the lowest with an average of 5.33 units in CK and was significantly higher in NPK (5.89 units) and OM (5.63 units) treatments (P<0.05). The application of fertilizers have remarkably improved SOC and TN values compared with the CK, Specifically, the OM treatment resulted in the highest SOC and TN concentrations (72.5% and 51.2% higher than CK) and NPK treatment increased the SOC and TN contents by 22.0% and 17.8% compared with CK. The average amounts of C/N ratio ranged from 9.66 to 10.98 in different treatments, and reached the highest in OM treatment (P<0.05). During the experimental period, the average AN and AP contents were highest in OM treatment (about 1.6 and 29.6 times of that in the CK, respectively) and second highest in NPK treatment (about 1.2 and 20.3 times of that in the CK). Unlike AN and AP, the highest value of AK content was observed in NPK treatments with 38.10 mg·kg(-1). Thus, these indicated that organic manure should be recommended to improve soil fertility in this region and K fertilizer should be simultaneously applied considering the soil K contents. Considering the long-term fertilizer efficiency, our results also suggest that annual straw returning application could improve soil fertility in this trial region.

  13. Clomazone dissipation, adsorption and translocation in four paddy topsoils.

    PubMed

    Li, Lian-fang; Li, Guo-xue; Yang, Ren-bin; Guo, Zheng-yuan; Liao, Xiao-yong

    2004-01-01

    Laboratory experiments about the dissipation, adsorption and translocation in four paddy topsoils were conducted in this paper. From the results it can be concluded as follows: the dissipation rate of clomazone differed greatly in different paddy soil derived from different parent materials. The half-lives for clomazone degradation in paddy soils ranged from 5.7 to 22.0 d. The order of clomazone dissipation rate was reddish yellow paddy soil > alluvial sandy paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Clomazone sorption quantity was significantly correlated with organic carbon (R2 = 0.62) and clay content(R2 = 0.67) in the tested paddy soils. Positive correlation was found between apparent Kd value and cation exchange content(CEC). The consequences for the adsorption of different soils were purple sandy paddy soil > yellow clayey paddy soil > reddish yellow paddy soil > alluvial sandy paddy soil. Under the simulated rainfall of 200 mm through four different unsaturated soil lysimeters over 24 h, clomazone was readily to be leached into lower surface soil and there was about 2.6%--4.2% of applied clomazone leached out of 20 cm cultivated soil layer. Translocation experiments showed that the order of clomazone leaching ability was: alluvial sandy paddy soil > reddish yellow paddy soil > yellow clayey paddy soil > purple sandy paddy soil. Simple regression results manifested that factors like CEC, organic carbon, clay, and adsorption rate constant had been negatively correlated with the percentage of clomazone loss from soil lysimeters.

  14. Characteristics of boron accumulation by fly ash application in paddy soil.

    PubMed

    Lee, Seul Bi; Lee, Yong Bok; Lee, Chang Hoon; Hong, Chang Oh; Kim, Pil Joo; Yu, Chan

    2008-09-01

    Fly ash has a high content of plant available silicate which is strongly needed for rice cultivation in Korea. One concern for plants grown on soils amended with fly ash is boron (B) toxicity because most of the fresh fly ash contains considerable B. This study was conducted in paddy soil to determine B uptake by rice and characteristics of B accumulation in soil after fly ash application (0, 40, 80, and 120 Mg fly ash ha(-1)). In all fly ash treatments, B content in rice leaves and available B in soil at all growing stage were higher than those of control, but were not exceeded a toxicity levels. Boron occluded in amorphous Fe and Al oxides comprised ca. 20-39% of total B and was not affected by fly ash application. Most of the B was accumulated by fly ash application as a residual B which is plant-unavailable form, comprised >60% of the total B in soil. Thus, fly ash can be a good soil amendment for rice production without B toxicity. PMID:18194862

  15. [Effects of water managements on soil nematode communities in a paddy field].

    PubMed

    Ou, Wei; Li, Qi; Liang, Wenju; Jiang, Yong; Wen, Dazhong

    2004-10-01

    This paper studied the effect of water managements on the abundance, trophic groups and community composition of soil nematodes in a paddy field in the Lower Reaches of Liaohe Plain at the depths of 0-10 cm, 10-20 cm and 20-30 cm during rice (Oryza sativa L.) growth season. The total number of nematodes at 0-10 cm soil depth was lower in percolation-controlling treatments than in control during pre-tillage and yellow ripeness stage. No significant difference was found in the total number of nematodes at 10-20 cm soil depth during the study period, but significant difference was observed in 20-30 cm soil depth during pre-tillage and yellow ripeness stage. Sixteen families and 22 genera were observed, and Plectus, Tylenchus and Monhystera were the dominant genera. Plectus and Tylenchus were sensitive to different water managements. Significant difference was found in the number of bacterivores at 0-10 cm soil depth during pre-tillage and yellow ripeness stage in percolation-controlling treatments, which exhibited a similar trend with the total number of nematodes. Bacterivores and plant-parasites were the most abundant trophic groups in all plots and at all soil depths during the study period, averaging 60.8% and 33.8% of the nematode communities, respectively, and omnivores-predators were the least abundant groups.

  16. [Effects of soil factors on vegetation community structure in an abandoned subtropical paddy wetland].

    PubMed

    Peng, Yi; Li, Yu-Yuan; Li, Zhong-Wu; Ye, Fang-Yi; Pan, Chun-Xiang; Xie, Xiao-Li

    2009-07-01

    Based on the investigation data from a subtropical wetland having been abandoned from paddy agriculture for one year, a redundancy analysis was conducted on the relationships between vegetation community and soil factors in the wetland. It was found that soil moisture regime, available K and P, and pH were the main factors affecting the distribution of plant species. The common plant species could be classified into three groups, i. e., Ludwigia prostrata - Murdannia triquetra group (G1), Hemarthria altissima - Rotala rotundifolia - Lapsana apogonoides group (G2), and Conyza canadensis - Polygonum hydropiper - Paspalum pasaloides group (G3). G1 mainly distributed on the soils with higher available K, G2 mainly distributed in periodically flooded area, while G3 mainly distributed in drainage area and was positively correlated to soil available P and pH. Species diversity and above-ground biomass had significant positive correlations with soil pH and total K, respectively, while evenness index was significantly negatively correlated with soil available N. No significant correlations were observed among other indices.

  17. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  18. Microbial utilization of rice straw and its derived biochar in a paddy soil.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Khan, Sardar; Yao, Huaiying

    2016-07-15

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using (13)C-labeled rice straw and its derived biochar ((13)C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO2 emission in the initial stage of incubation and reached the highest level (0.52 and 3.96mgCkg(-1)soilh(-1)) at 1d and 3d after incubation, respectively. Straw amendment significantly (p<0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and (13)C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p<0.05) higher in (13)C-labeled straw amended soil than the (13)C-labeled biochar amended soil. According to the (13)C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of (13)C-PLFAs derived from straw amendment was significantly (p<0.01) different from biochar amendment. The PLFAs18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest that the function, size and structure of the microbial

  19. phoD Alkaline Phosphatase Gene Diversity in Soil.

    PubMed

    Ragot, Sabine A; Kertesz, Michael A; Bünemann, Else K

    2015-10-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples.

  20. phoD Alkaline Phosphatase Gene Diversity in Soil

    PubMed Central

    Kertesz, Michael A.; Bünemann, Else K.

    2015-01-01

    Phosphatase enzymes are responsible for much of the recycling of organic phosphorus in soils. The PhoD alkaline phosphatase takes part in this process by hydrolyzing a range of organic phosphoesters. We analyzed the taxonomic and environmental distribution of phoD genes using whole-genome and metagenome databases. phoD alkaline phosphatase was found to be spread across 20 bacterial phyla and was ubiquitous in the environment, with the greatest abundance in soil. To study the great diversity of phoD, we developed a new set of primers which targets phoD genes in soil. The primer set was validated by 454 sequencing of six soils collected from two continents with different climates and soil properties and was compared to previously published primers. Up to 685 different phoD operational taxonomic units were found in each soil, which was 7 times higher than with previously published primers. The new primers amplified sequences belonging to 13 phyla, including 71 families. The most prevalent phoD genes identified in these soils were affiliated with the orders Actinomycetales (13 to 35%), Bacillales (1 to 29%), Gloeobacterales (1 to 18%), Rhizobiales (18 to 27%), and Pseudomonadales (0 to 22%). The primers also amplified phoD genes from additional orders, including Burkholderiales, Caulobacterales, Deinococcales, Planctomycetales, and Xanthomonadales, which represented the major differences in phoD composition between samples, highlighting the singularity of each community. Additionally, the phoD bacterial community structure was strongly related to soil pH, which varied between 4.2 and 6.8. These primers reveal the diversity of phoD in soil and represent a valuable tool for the study of phoD alkaline phosphatase in environmental samples. PMID:26253682

  1. Assessment of the air-soil partitioning of polycyclic aromatic hydrocarbons in a paddy field using a modified fugacity sampler.

    PubMed

    Wang, Yan; Luo, Chunling; Wang, Shaorui; Liu, Junwen; Pan, Suhong; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-01-01

    Rice, one of the most widely cultivated crops, has received great attention in contaminant uptake from soil and air, especially for the special approaches used for its cultivation. The dry-wet alternation method can influence the air-soil partitioning of semivolatile organic compounds (SVOCs) in the paddy ecosystem. Here, we modified a fugacity sampler to investigate the air-surface in situ partitioning of ubiquitous polycyclic aromatic hydrocarbons (PAHs) at different growth stages in a suburban paddy field in South China. The canopy of rice can form a closed space, which acts like a chamber that can force the air under the canopy to equilibrate with the field surface. When we compared the fugacities calculated using a fugacity model of the partition coefficients to the measured fugacities, we observed similar trends in the variation, but significantly different values between different growing stages, especially during the flooding stages. However, the measured and calculated fugacity fractions were comparable when uncertainties in our calculations were considered, with the exception of the high molecular weight (HMW) PAHs. The measured fugacity fractions suggested that the HMW PAHs were also closed to equilibrium between the paddy field and atmosphere. The modified fugacity sampler provided a novel way of accurately determining the in situ air-soil partitioning of SVOCs in a wet paddy field.

  2. Effectiveness of lime and peat applications on cadmium availability in a paddy soil under various moisture regimes.

    PubMed

    Chen, Yanhui; Xie, Tuanhui; Liang, Qiaofeng; Liu, Mengjiao; Zhao, Mingliu; Wang, Mingkuang; Wang, Guo

    2016-04-01

    In paddy soils, amendments and moisture play important role in the immobilization of cadmium (Cd). The effects of applying lime, peat, and a combination of both on soil Eh, pH, and Cd availability in contaminated soils were investigated under wetted (80 ± 5 % of water holding capacity) and flooded (completely submerged) conditions. In wetted soils, there was little change in Eh, compared to flooded soils where Eh reduced rapidly. Amendments of lime only or in a mixture with peat increased soil pH to different degrees, depending on the lime application rate. However, peat addition only slightly affected soil pH. The decreased Cd availability in flooded soils was related to submergence duration and was significantly lower than that in wetted soils after 14 days. Liming wetted and flooded soils decreased exchangeable Cd and increased carbonates or Fe-Mn oxides bound fractions, while peat addition transformed Cd from carbonates to organic matter bound fractions. The combined application of peat and lime generally showed better inhibitory effects on the availability of Cd than separately application of lime or peat. Higher application rates of lime, peat, or their mixture were more effective at reducing Cd contamination in flooded soil. This indicates that application of peat and lime mixture under flooded conditions was most effective for in situ remediation of Cd-contaminated soils. Further studies are required to assess the long-term effectiveness of the peat and lime mixture on Cd availability in paddy soils.

  3. Stereoisomeric isolation and stereoselective fate of insecticide paichongding in flooded paddy soils.

    PubMed

    Li, Juying; Zhang, Jianbo; Li, Chao; Wang, Wei; Yang, Zhen; Wang, Haiyan; Gan, Jay; Ye, Qingfu; Xu, Xiaoyong; Li, Zhong

    2013-11-19

    Chiral insecticide paichongding (IPP) is one of the prospective substitutes for imidacloprid used in China due to its higher activity against imidacloprid-resistant insects. However, little is known about the fate of IPP in soils, including especially the different behaviors among its stereoisomers. In this study, four stereoisomers of IPP were separated and applied in flooded soils. Kinetics of mineralization, extractable residues, and bound residues showed diastereoselectivity in IPP degradation, with enantiomers (5S,7R)-IPP (IPP-SR) and (5R,7S)-IPP (IPP-RS) being more readily mineralized and preferentially bound to soils than enantiomers (5R,7R)-IPP (IPP-RR) and (5S,7S)-IPP (IPP-SS). The overall mineralization was rather limited and did not exceed 4% of the spiked rate. Concurrent to the decreases of extractable residues, the fraction of bound residues increased with time and reached about 34% of the applied radioactivity for (14)C-IPP-SR and (14)C-IPP-RS as compared to about 23% for (14)C-IPP-RR or (14)C-IPP-SS. Soil properties such as organic matter content and pH likely contributed to the variability. Relatively rapid formation of bound residue suggests that IPP may be quickly detoxified in flooded paddy soil, decreasing the potential for off-site transport such as leaching or runoff, especially for enantiomers IPP-SR and IPP-RS.

  4. Phyllosphere bacterial community of floating macrophytes in paddy soil environments as revealed by illumina high-throughput sequencing.

    PubMed

    Xie, Wan-Ying; Su, Jian-Qiang; Zhu, Yong-Guan

    2015-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments.

  5. [Effects of biochar application on greenhouse gas emission from paddy soil and its physical and chemical properties].

    PubMed

    Liu, Yu-xue; Wang, Yao-feng; Lü, Hao-hao; Chen, Yi; Tang, Xu; Wu, Chun-yan; Zhong, Zhe-ke; Yang, Sheng-mao

    2013-08-01

    A field experiment was conducted to investigate the effects of rice straw returning and rice straw biochar and life rubbish biochar application on the greenhouse gas (CH4, CO2 and N2O) emission from paddy soil, its physical and chemical properties, and rice grain yield. Compared with rice straw returning, applying rice straw biochar decreased the cumulative CH4 and N2O emissions from paddy soil significantly by 64.2% - 78.5% and 16.3% - 18.4%, respectively. Whether planting rice or not, the cumulative N2O emission from paddy soil under the applications of rice straw biochar and life rubbish biochar was decreased significantly, compared with that without biochar amendment. Under the condition of no rice planting, applying life rubbish biochar reduced the cumulative CO2 emission significantly by 25.3%. Rice straw biochar was superior to life rubbish biochar in improving soil pH and available potassium content. Both rice straw biochar and life rubbish biochar could increase the soil organic carbon content significantly, but had less effects on the soil bulk density, total nitrogen and available phosphorus contents, cation exchange capacity (CEC), and grain yield. It was suggested that compared with rice straw returning, straw biochar was more effective in improving rice grain yield.

  6. Phyllosphere Bacterial Community of Floating Macrophytes in Paddy Soil Environments as Revealed by Illumina High-Throughput Sequencing

    PubMed Central

    Xie, Wan-Ying

    2014-01-01

    The phyllosphere of floating macrophytes in paddy soil ecosystems, a unique habitat, may support large microbial communities but remains largely unknown. We took Wolffia australiana as a representative floating plant and investigated its phyllosphere bacterial community and the underlying driving forces of community modulation in paddy soil ecosystems using Illumina HiSeq 2000 platform-based 16S rRNA gene sequence analysis. The results showed that the phyllosphere of W. australiana harbored considerably rich communities of bacteria, with Proteobacteria and Bacteroidetes as the predominant phyla. The core microbiome in the phyllosphere contained genera such as Acidovorax, Asticcacaulis, Methylibium, and Methylophilus. Complexity of the phyllosphere bacterial communities in terms of class number and α-diversity was reduced compared to those in corresponding water and soil. Furthermore, the bacterial communities exhibited structures significantly different from those in water and soil. These findings and the following redundancy analysis (RDA) suggest that species sorting played an important role in the recruitment of bacterial species in the phyllosphere. The compositional structures of the phyllosphere bacterial communities were modulated predominantly by water physicochemical properties, while the initial soil bacterial communities had limited impact. Taken together, the findings from this study reveal the diversity and uniqueness of the phyllosphere bacterial communities associated with the floating macrophytes in paddy soil environments. PMID:25362067

  7. Effects of biochar addition on the sorption of polar herbicides in paddy soils

    NASA Astrophysics Data System (ADS)

    Garcia-Jaramillo, Manuel; Cox, Lucía; Hermosín, Mari Carmen; Helmus, Rick; Parsons, John R.; Kalbitz, Karsten

    2016-04-01

    Organic amendments, and their water soluble fraction, induce an important impact on pesticide dissipation in soils, affecting their adsorption and transport processes through various chemical interactions. Although in most cases addition of organic amendments increases sorption, leaching of the pesticides can be either reduced or promoted. Because of that, their effect on pesticide behavior must be assessed in order to optimize their use. The major objectives of this study were to investigate the impact of biochar and biochar water extractable substances (BWES) on the sorption behavior of two polar herbicides, azimsulfuron and penoxsulam, in two amended and unamended paddy soils under flooded conditions. The adsorption - desorption of these herbicides was studied in soils amended with fresh biochar and in soils amended with a washed version of the biochar, simulating the conditions of a soil recently amended and a soil where biochar was applied longer time before and most part of the BWES has been already removed because of the flooded conditions. Therefore, sorption on biochar was assessed before and after removing 80% of its water extractable substances, separately and in combination with each soil (at 2 and 5% w/w). BWES were analyzed by high resolution mass spectrometry. The most abundant fractions present in the high mass range were nitrogen-containing molecules. The aromatic character of the DOC-extracts of the unamended and amended soils, based on the specific UV absorbance at 280 nm (SUVA280), was increased with the amendment in all the conditions tested. Adsorption data of both herbicides fitted very well to the Freundlich equation, with R2 values higher than 0.9 in all the conditions tested. Sorption isotherms were in all cases nonlinear, with Nf values <1, resembling L-type isotherms. Biochar had a very different effect on the sorptive properties of each soil. The highest sorption affinity of azimsulfuron to amended soils was observed for the soils

  8. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].

    PubMed

    Chang, Tong-Ju; Cui, Xiao-Qiang; Ruan, Zhen; Zhao, Xiu-Lan

    2014-06-01

    A long-term experiment, conducted at Southwest University since 1990, was used to evaluate the effect of tillage methods on the total and available contents of heavy metals (Fe, Mn, Cu, Zn, Pb, Cd) in the profile of purple paddy soil and the contents of those metals in root, stem leaf and brown rice. The experiment included five tillage methods: conventional tillage, paddy-upland rotation, no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage. The results showed that the total concentrations of Fe, Cu, Zn, Pb and Cd in the soil profile had no significant differences among five treatments, but it was found that total Mn has a significant decline in 0-20 cm under conventional tillage, paddy-upland rotation and no-tillage and fallow in winter compared with ridge-no-tillage and compartments-no-tillage. The availability of Fe, Cu, Zn, Pb and Cd decreased with the increase of soil depth in all treatments, but the availability of Mn was found to be the highest in the 20-40 cm layers except those in the paddy-upland rotation. In the ploughed layer, the contents of available Fe, Mn was the highest in paddy-upland rotation, while the contents of available Zn and Pb was the highest in conventional tillage, but tillage treatments had not significant influence to the contents of available Cu. Correlation analysis showed that available Fe was significantly negatively related to the pH values and significantly negatively related to the organic matter of soils, available Mn was significantly negatively related to the pH values and organic matter of soils, whereas the available Zn was significantly positively related to total Zn. The contents of Fe, Mn in rice root, the contents of Fe, Mn, Cu and Cd in rice straw and Cu in brown rice were higher under paddy-upland rotation, ridge-no-tillage and compartments-no-tillage than those in conventional tillage and no-tillage and fellow in winter. Paddy-upland rotation can significantly lower the migration

  9. [Long-term effects of tillage methods on heavy metal accumulation and availability in purple paddy soil].

    PubMed

    Chang, Tong-Ju; Cui, Xiao-Qiang; Ruan, Zhen; Zhao, Xiu-Lan

    2014-06-01

    A long-term experiment, conducted at Southwest University since 1990, was used to evaluate the effect of tillage methods on the total and available contents of heavy metals (Fe, Mn, Cu, Zn, Pb, Cd) in the profile of purple paddy soil and the contents of those metals in root, stem leaf and brown rice. The experiment included five tillage methods: conventional tillage, paddy-upland rotation, no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage. The results showed that the total concentrations of Fe, Cu, Zn, Pb and Cd in the soil profile had no significant differences among five treatments, but it was found that total Mn has a significant decline in 0-20 cm under conventional tillage, paddy-upland rotation and no-tillage and fallow in winter compared with ridge-no-tillage and compartments-no-tillage. The availability of Fe, Cu, Zn, Pb and Cd decreased with the increase of soil depth in all treatments, but the availability of Mn was found to be the highest in the 20-40 cm layers except those in the paddy-upland rotation. In the ploughed layer, the contents of available Fe, Mn was the highest in paddy-upland rotation, while the contents of available Zn and Pb was the highest in conventional tillage, but tillage treatments had not significant influence to the contents of available Cu. Correlation analysis showed that available Fe was significantly negatively related to the pH values and significantly negatively related to the organic matter of soils, available Mn was significantly negatively related to the pH values and organic matter of soils, whereas the available Zn was significantly positively related to total Zn. The contents of Fe, Mn in rice root, the contents of Fe, Mn, Cu and Cd in rice straw and Cu in brown rice were higher under paddy-upland rotation, ridge-no-tillage and compartments-no-tillage than those in conventional tillage and no-tillage and fellow in winter. Paddy-upland rotation can significantly lower the migration

  10. Direct interspecies electron transfer accelerates syntrophic oxidation of butyrate in paddy soil enrichments.

    PubMed

    Li, Huijuan; Chang, Jiali; Liu, Pengfei; Fu, Li; Ding, Dewen; Lu, Yahai

    2015-05-01

    Syntrophic interaction occurs during anaerobic fermentation of organic substances forming methane as the final product. H2 and formate are known to serve as the electron carriers in this process. Recently, it has been shown that direct interspecies electron transfer (DIET) occurs for syntrophic CH4 production from ethanol and acetate. Here, we constructed paddy soil enrichments to determine the involvement of DIET in syntrophic butyrate oxidation and CH4 production. The results showed that CH4 production was significantly accelerated in the presence of nanoFe3 O4 in all continuous transfers. This acceleration increased with the increase of nanoFe3 O4 concentration but was dismissed when Fe3 O4 was coated with silica that insulated the mineral from electrical conduction. NanoFe3 O4 particles were found closely attached to the cell surfaces of different morphology, thus bridging cell connections. Molecular approaches, including DNA-based stable isotope probing, revealed that the bacterial Syntrophomonadaceae and Geobacteraceae, and the archaeal Methanosarcinaceae, Methanocellales and Methanobacteriales, were involved in the syntrophic butyrate oxidation and CH4 production. Among them, the growth of Geobacteraceae strictly relied on the presence of nanoFe3 O4 and its electrical conductivity in particular. Other organisms, except Methanobacteriales, were present in enrichments regardless of nanoFe3 O4 amendment. Collectively, our study demonstrated that the nanoFe3 O4 -facilitated DIET occurred in syntrophic CH4 production from butyrate, and Geobacter species played the key role in this process in the paddy soil enrichments.

  11. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    NASA Astrophysics Data System (ADS)

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-08-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment.

  12. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability

    PubMed Central

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-01-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment. PMID:27530495

  13. Biochar amendment immobilizes lead in rice paddy soils and reduces its phytoavailability.

    PubMed

    Li, Honghong; Liu, Yuting; Chen, Yanhui; Wang, Shanli; Wang, Mingkuang; Xie, Tuanhui; Wang, Guo

    2016-01-01

    This study aimed to determine effects of rice straw biochar on Pb sequestration in a soil-rice system. Pot experiments were conducted with rice plants in Pb-contaminated paddy soils that had been amended with 0, 2.5, and 5% (w/w) biochar. Compared to the control treatment, amendment with 5% biochar resulted in 54 and 94% decreases in the acid soluble and CaCl2-extractable Pb, respectively, in soils containing rice plants at the maturity stage. The amount of Fe-plaque on root surfaces and the Pb concentrations of the Fe-plaque were also reduced in biochar amended soils. Furthermore, lead species in rice roots were determined using Pb L3-edge X-ray absorption near edge structure (XANES), and although Pb-ferrihydrite complexes dominated Pb inventories, increasing amounts of organic complexes like Pb-pectins and Pb-cysteine were found in roots from the 5% biochar treatments. Such organic complexes might impede Pb translocation from root to shoot and subsequently reduce Pb accumulation in rice with biochar amendment. PMID:27530495

  14. Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China.

    PubMed

    Huan, Xiujia; Lu, Houyuan; Wang, Can; Tang, Xiangan; Zuo, Xinxin; Ge, Yong; He, Keyang

    2015-01-01

    Bulliform phytoliths play an important role in researching rice origins as they can be used to distinguish between wild and domesticated rice. Rice bulliform phytoliths are characterized by numerous small shallow fish-scale decorations on the lateral side. Previous studies have shown that domesticated rice has a larger number of these decorations than wild rice and that the number of decorations ≥9 is a useful feature for identifying domesticated rice. However, this standard was established based on limited samples of modern rice plants. In this study, we analyzed soil samples from both wild and domesticated rice paddies. Results showed that, in wild rice soil samples, the proportion of bulliform phytoliths with ≥9 decorations was 17.46% ± 8.29%, while in domesticated rice soil samples, the corresponding proportion was 63.70% ± 9.22%. This suggests that the proportion of phytoliths with ≥9 decorations can be adopted as a criterion for discriminating between wild and domesticated rice in prehistoric soil. This indicator will be of significance in improving the application of fish-scale decorations to research into rice origins and the rice domestication process.

  15. Accumulation of mercury and cadmium in rice from paddy soil near a mercury mine.

    PubMed

    Li, W C; Ouyang, Y; Ye, Z H

    2014-11-01

    Paddy soil and rice (Oryza sativa L.) in the Wanshan mining area in Guizhou Province, China, have been contaminated by toxic trace metals such as cadmium (Cd) and mercury (Hg). The present study examined correlations between the types and physicochemical parameters of the soil and the contents of trace metals and the different forms of Hg in rice. The health risks of consuming contaminated rice from the Wanshan mining area were also assessed. Sequential extraction procedures were used to investigate the chemical behavior of Hg in the soil. The results showed that Hg and Cd were the most abundant trace metals in the Wanshan mining area. The toxic methylmercury (MeHg) content was substantial in brown rice, and the total amounts of total Hg (THg), diethylenetriaminepentaacetic acid-Hg, and water-soluble Hg varied in the rhizosphere and non-rhizosphere soils. An antagonistic interaction between Mn in brown rice, straw, and husk and MeHg in brown rice was also shown. An analysis of calculated dietary intake, target hazard quotients, and hazard indexes showed a potential risk of transferring Hg, MeHg, and Cd to humans when rice from the Wanshan mining area is consumed. Therefore, it must be concluded that consuming contaminated rice near the Wanshan mining area is a potential threat to human health.

  16. Bulliform Phytolith Research in Wild and Domesticated Rice Paddy Soil in South China

    PubMed Central

    Huan, Xiujia; Lu, Houyuan; Wang, Can; Tang, Xiangan; Zuo, Xinxin; Ge, Yong; He, Keyang

    2015-01-01

    Bulliform phytoliths play an important role in researching rice origins as they can be used to distinguish between wild and domesticated rice. Rice bulliform phytoliths are characterized by numerous small shallow fish-scale decorations on the lateral side. Previous studies have shown that domesticated rice has a larger number of these decorations than wild rice and that the number of decorations ≥9 is a useful feature for identifying domesticated rice. However, this standard was established based on limited samples of modern rice plants. In this study, we analyzed soil samples from both wild and domesticated rice paddies. Results showed that, in wild rice soil samples, the proportion of bulliform phytoliths with ≥9 decorations was 17.46% ± 8.29%, while in domesticated rice soil samples, the corresponding proportion was 63.70% ± 9.22%. This suggests that the proportion of phytoliths with ≥9 decorations can be adopted as a criterion for discriminating between wild and domesticated rice in prehistoric soil. This indicator will be of significance in improving the application of fish-scale decorations to research into rice origins and the rice domestication process. PMID:26488583

  17. [Effects of Long-term Different Tillage Methods on Mercury and Methylmercury Contents in Purple Paddy Soil and Overlying Water].

    PubMed

    Wang, Xin-yue; Tang, Zhen-ya; Zhang, Cheng; Wang, Yong-min; Wang, Ding-yong

    2016-03-15

    A long-term experiment was conducted to evaluate the effect of tillage methods on mercury and methylmercury contents in the purple paddy soil and overlying water. The experiment included five tillage methods: no-tillage and fallow in winter, ridge-no-tillage, compartments-no-tillage, paddy-upland rotation and conventional tillage. The results showed that the content of total mercury in soil had the maximum value in the 10-20 cm layer of no-tillage and fallow in winter, ridge-no-tillage and compartments-no-tillage, and the enrichment effect of no-tillage and fallow in winter was especially significant. The concentration of total mercury in soil of paddy-upland rotation and conventional tillage decreased with the increase of the soil depth, and paddy-upland rotation was specifically beneficial to the migration of mercury. The distribution of soil methylmercury was similar to that of total mercury in the soil profile. The methylation ability of soil mercury in the surface and middle of the soil profile was weaker than that at the bottom, while there was an opposite trend for other tillage methods. The concentrations of dissolved mercury ( DHg) and dissolved methylmercury ( DMeHg) in the overlaying water declined with the rise of the water depth in all treatments. The content of DHg in sediment porewater was related to the value of soil total mercury, and they had the same distribution in the soil profile. The content of DMeHg and its proportion accounted for DHg in porewater owned their largest value in the 10-20 cm layer of no-tillage and fallow in winter and ridge-no-tillage, where showed the lowest value of DMeHg in porewater for paddy-upland rotation and conventional tillage. And the percentage of DMeHg in DHg in porewater grew with the increase of soil depth of the latter two methods. Noticeably, the concentration of DMeHg and its proportion accounted for DHg in porewater were both higher than the values in overlying water for all tillage methods.

  18. Anaerobic 2-propanol degradation in anoxic paddy soil and the possible role of methanogens in its degradation.

    PubMed

    Tonouchi, Akio

    2004-08-01

    The anaerobic degradation of 2-propanol in anoxic paddy soil was studied with soil cultures and a 2-propanol-utilizing methanogen. Acetone was the first and the major intermediate involved in the methanogenic degradation of 2-propanol. Analyses with a methanogenesis inhibitor, bacteria antibiotics, and the addition of H2 to the gas phase revealed that 2-propanol oxidation to acetone directly occurred using 2-propanol-utilizing methanogens, but not with H2-producing syntrophic bacteria, for which the removal of acetone is required for complete 2-propanol oxidation. The 2-propanol-utilizing strain IIE1, which is phylogenetically closely related to Methanoculleus palmolei, was isolated from paddy soil, and the potential role of the strain in 2-propanol degradation was investigated. 2-Propanol is one of the representative fermentation intermediates in anaerobic environments. This is the first report on the anaerobic 2-propanol degradation process. PMID:15297909

  19. Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils

    NASA Astrophysics Data System (ADS)

    Sauerwein, Meike; Hanke, Alexander; Kaiser, Klaus; Kalbitz, Karsten

    2010-05-01

    Effects of redox conditions on the adsorption of dissolved organic matter to soil minerals and differently aged paddy soils Meike Sauerwein1, Alexander Hanke2, Klaus Kaiser3, Karsten Kalbitz2 1) Dept. of Soil Ecology, Bayreuth Centre of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440 Bayreuth, Germany, meike.sauerwein@gmail.com 2) Institute of ecosystem dynamics and biodiversity, University of Amsterdam, 1018 WV, Netherlands, a.hanke@uva.nl, k.kalbitz@uva.nl 3) Soil Sciences, Martin Luther University Halle, 06099 Halle, Germany, klaus.kaiser@landw.uni-halle.de Current knowledge on dissolved organic matter (DOM) in soils is based mainly on observations and experiments in aerobic environments. Adsorption to soil minerals is an important mechanism of DOM retention and stabilization against microbial decay under oxic conditions. Under anoxic conditions where hydrous iron oxides, the potential main adsorbents of DOM, possibly dissolve, the importance of adsorption seems questionable. Therefore, we studied the adsorption of DOM to selected soil minerals and to mineral soils under oxic and anoxic conditions. In detail, we tested the following hypotheses: 1. Minerals and soils adsorb less DOM under anoxic conditions than under oxic ones. 2. The reduced adsorption under anoxic conditions is result of the smaller adsorption to hydrous Fe oxides whereas adsorption to clay minerals and Al hydroxides is not sensitive to changes in redox conditions 3. DOM adsorption will increase with the number of redox cycles, thus time of soil formation, due to increasing contents of poorly crystalline Fe oxides. This will, however, cause a stronger sensitivity to redox changes as poor crystalline Fe oxides are more reactive. 4. Aromatic compounds, being preferentially adsorbed under oxic conditions, will be less strongly adsorbed under anoxic conditions. We chose paddy soils as models because their periodically and regular exposure to changing redox cycles, with

  20. Responses of seasonal and diurnal soil CO2 effluxes to land-use change from paddy fields to Lei bamboo (Phyllostachys praecox) stands

    NASA Astrophysics Data System (ADS)

    Zhang, Tao; Li, Yongfu; Chang, Scott X.; Jiang, Peikun; Zhou, Guomo; Zhang, Jiaojiao; Liu, Juan

    2013-10-01

    Land-use change often markedly alters soil carbon (C) dynamics such as soil surface CO2 efflux. This study aims to test the hypotheses that converting paddy fields to bamboo stands would markedly reduce soil CO2 efflux and their temperature sensitivity (change of soil CO2 efflux rate by increasing 10 °C of temperature), and change the relationship between soil CO2 efflux and other environmental factors. A 12-month field study was conducted to measure the seasonal and diurnal soil CO2 effluxes in three adjacent paddy field-bamboo forest pairs with the automated soil CO2 flux system (LI-8100). Results showed that soil CO2 effluxes from both of the two land-uses had distinct seasonal patterns, and were reduced from 45.4 to 34.7 t CO2 ha-1 yr-1 in cumulative CO2 emissions when paddy fields were converted to bamboo stands. About 80% of the variation in soil respiration in the bamboo stands was explained by soil temperature; however, a positive relationship between soil CO2 efflux and soil temperature in the paddy field was observed only when the soil was not submerged under water, indicating that soil water saturation in the paddy fields altered the soil CO2 efflux-temperature relationship. A negative relationship (P < 0.01) between soil CO2 efflux and soil moisture was observed in the paddy fields, while no such relationship was observed in the bamboo stands. The apparent temperature sensitivity of soil respiration (Q10) was dependent on the depth of the soil temperature measurement and was increased by converting paddy fields to bamboo stands, rejecting the hypothesis. In Lei bamboo stands, the R2 for the soil respiration-temperature regression was higher using seasonal and diurnal CO2 efflux data together than using the seasonal data alone. We conclude that the conversion of paddy fields to Lei bamboo stands decreased the annual soil CO2 efflux but increased its temperature sensitivity, and altered the relationship between soil respiration and soil moisture. When

  1. Risk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, Southern China.

    PubMed

    Wang, Meie; Chen, Weiping; Peng, Chi

    2016-02-01

    Cadmium (Cd) contamination in rice in Youxian, Hunan, China is a major environmental health concern. In order to reveal the Cd contamination in rice and paddy soils and the health risks to the population consuming the local rice grain, field surveys were conducted in eight towns in Youxian, China. The Cd contents of paddy soils averaged 0.228-1.91 mg kg(-1), 90% exceeding the allowable limit of 0.3 mg kg(-1) stipulated by the China Soil Environmental Quality Standards. Low average pH values (for air dried oxidized soils) ranging from 4.98 to 6.02 in paddy soil were also found. More than seventy percent (39 of 53) of the grain samples exceeded the maximum safe concentration of Cd, 0.2 mg kg(-1) on a dry weight basis. Considering the high consumption of local rice (339 g capita(-1) DW d(-1)) and Cd levels measured, dietary ingestion of 78% of the sampled rice grains would have adverse health risks because the intake exposure of Cd was greater than the JECFA recommended exposures, 0.8 µg Cd BW kg(-1) day(-1) or 25 µg Cd BW kg(-1) month(-1).

  2. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil

    PubMed Central

    Navarro-Noya, Yendi E.; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G.; Marsch, Rodolfo

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH. PMID:26074731

  3. Archaeal Communities in a Heterogeneous Hypersaline-Alkaline Soil.

    PubMed

    Navarro-Noya, Yendi E; Valenzuela-Encinas, César; Sandoval-Yuriar, Alonso; Jiménez-Bueno, Norma G; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    In this study the archaeal communities in extreme saline-alkaline soils of the former lake Texcoco, Mexico, with electrolytic conductivities (EC) ranging from 0.7 to 157.2 dS/m and pH from 8.5 to 10.5 were explored. Archaeal communities in the 0.7 dS/m pH 8.5 soil had the lowest alpha diversity values and were dominated by a limited number of phylotypes belonging to the mesophilic Candidatus Nitrososphaera. Diversity and species richness were higher in the soils with EC between 9.0 and 157.2 dS/m. The majority of OTUs detected in the hypersaline soil were members of the Halobacteriaceae family. Novel phylogenetic branches in the Halobacteriales class were detected in the soil, and more abundantly in soil with the higher pH (10.5), indicating that unknown and uncharacterized Archaea can be found in this soil. Thirteen different genera of the Halobacteriaceae family were identified and were distributed differently between the soils. Halobiforma, Halostagnicola, Haloterrigena, and Natronomonas were found in all soil samples. Methanogenic archaea were found only in soil with pH between 10.0 and 10.3. Retrieved methanogenic archaea belonged to the Methanosarcinales and Methanomicrobiales orders. The comparison of the archaeal community structures considering phylogenetic information (UniFrac distances) clearly clustered the communities by pH.

  4. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil.

    PubMed

    Huang, Bin; Li, Zhongwu; Huang, Jinquan; Chen, Guiqiu; Nie, Xiaodong; Ma, Wenming; Yao, Hongbo; Zhen, Jiamei; Zeng, Guangming

    2015-08-01

    Aging effect can influence the fractions distribution and mobility of metals after they are added into soil. In this study, incubation and soil column experiments under simulated acid rain condition were conducted to evaluate aging effect on the leaching characteristic of Cu, Zn, and Cd in artificial polluted red paddy soil. Our results showed that aging effect reduced metal contents in exchangeable and HoAc soluble fractions. Power function was the most excellent to describe the variation of exchangeable fraction, while pseudo first- and second-order functions were more successful to describe the leaching characteristic of metals from soil columns. The leaching amount of the metals from the polluted soil only accounted for a small part of their total content in soil, and the leachability of Cu was the weakest. Both the exchangeable and HoAc soluble fraction were available as indicators to evaluate the leachability of metals in red paddy soil. The shorter time the soil was contaminated, the more amounts of metals released from the soil. The reduction of exchangeable fraction caused by aging effect was the main reason for the decrease of metal mobility in soil. PMID:25821039

  5. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil.

    PubMed

    Huang, Bin; Li, Zhongwu; Huang, Jinquan; Chen, Guiqiu; Nie, Xiaodong; Ma, Wenming; Yao, Hongbo; Zhen, Jiamei; Zeng, Guangming

    2015-08-01

    Aging effect can influence the fractions distribution and mobility of metals after they are added into soil. In this study, incubation and soil column experiments under simulated acid rain condition were conducted to evaluate aging effect on the leaching characteristic of Cu, Zn, and Cd in artificial polluted red paddy soil. Our results showed that aging effect reduced metal contents in exchangeable and HoAc soluble fractions. Power function was the most excellent to describe the variation of exchangeable fraction, while pseudo first- and second-order functions were more successful to describe the leaching characteristic of metals from soil columns. The leaching amount of the metals from the polluted soil only accounted for a small part of their total content in soil, and the leachability of Cu was the weakest. Both the exchangeable and HoAc soluble fraction were available as indicators to evaluate the leachability of metals in red paddy soil. The shorter time the soil was contaminated, the more amounts of metals released from the soil. The reduction of exchangeable fraction caused by aging effect was the main reason for the decrease of metal mobility in soil.

  6. Residue level of polycyclic aromatic hydrocarbons in Japanese paddy soils from 1959 to 2002.

    PubMed

    Honda, K; Mizukami, M; Ueda, Y; Hamada, N; Seike, N

    2007-08-01

    The residue level of 21 polycyclic aromatic hydrocarbons (PAHs) and the temporal changes in this level were investigated in paddy soils collected from particular experimental sites in Japan from 1959 to 2002. The average total PAH concentration in all the samples was 496 microg kg(-1), and it ranged from 52.9 to 2180 microg kg(-1). The residue level of the PAHs was the highest during the 1960s, rapidly decreased during the 1970s, and remained almost constant thereafter. Relatively high PAH concentrations were observed in soils from areas that experienced heavy snowfall and that had relatively low air temperature. The predominant PAHs were phenanthrene, fluoranthene, naphthalene, and pyrene, and their concentration overall and in relation to that of the total PAHs decreased each year since the 1960s. Similarities in the PAH profiles among the locations were determined using the concentration correlation matrix and cluster analysis, and ratios of the levels of specific PAH pairs were also calculated to determine their origin. The collected data suggested that the origins of soil PAHs changed chronologically from the burning of agricultural wastes such as stubble before the mid-1970s to the combustion of fossil fuel and its secondary products after the mid-1970s.

  7. Evaluation of soil characteristics potentially affecting arsenic concentration in paddy rice (Oryza sativa L.).

    PubMed

    Bogdan, Katja; Schenk, Manfred K

    2009-10-01

    Paddy rice may contribute considerably to the human intake of As. The knowledge of soil characteristics affecting the As content of the rice plant enables the development of agricultural measures for controlling As uptake. During field surveys in 2004 and 2006, plant samples from 68 fields (Italy, Po-area) revealed markedly differing As concentration in polished rice. The soil factors total As(aqua regia), pH, grain size fractions, total C, plant available P(CAL), poorly crystalline Fe(oxal.) and plant available Si(Na-acetate) content that potentially affect As content of rice were determined. A multiple linear regression analysis showed a significant positive influence of the total As(aqua regia) and plant available P(CAL) content and a negative influence of the poorly crystalline Fe(oxal.) content of the soil on the As content in polished rice and rice straw. Si concentration in rice straw varied widely and was negatively related to As content in straw and polished rice. PMID:19482396

  8. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    PubMed Central

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L. E.; Conrad, Ralf; Jia, Zhongjun

    2016-01-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ∼1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this ‘high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane. PMID:27248847

  9. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils

    NASA Astrophysics Data System (ADS)

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L. E.; Conrad, Ralf; Jia, Zhongjun

    2016-06-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ~1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this `high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane.

  10. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils.

    PubMed

    Cai, Yuanfeng; Zheng, Yan; Bodelier, Paul L E; Conrad, Ralf; Jia, Zhongjun

    2016-01-01

    Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ∼1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this 'high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane. PMID:27248847

  11. Mechanism and kinetics of aluminum dissolution during copper sorption by acidity paddy soil in South China.

    PubMed

    Liu, Peiya; Li, Yujiao; Wen, Qinliang; Dong, Changxun; Pan, Genxing

    2015-08-01

    Soil aggregates were prepared from a bulk soil collected from paddy soil in the Taihu Lake region and aluminum (Al) dissolution, solution pH changes during copper (Cu(2+)) sorption were investigated with static sorption and magnetic stirring. Kinetics of Cu(2+) sorption and Al dissolution were also studied by magnetic stirring method. No Al dissolution was observed until Cu(2+) sorption was greater than a certain value, which was 632, 450, 601 and 674 mg/kg for sand, clay, silt, and coarse silt fractions, respectively. Aluminum dissolution increased with increasing Cu(2+) sorption and decreasing solution pH. An amount of dissolved Al showed a significant positive correlation with non-specific sorption of Cu(2+) (R(2)>0.97), and it was still good under different pH values (R(2)>0.95). Copper sorption significantly decreased solution pH. The magnitude of solution pH decline increased as Cu(2+) sorption and Al dissolution increased. The sand and clay fraction had a less Al dissolution and pH drop due to the higher ferric oxide, Al oxide and organic matter contents. After sorption reaction for half an hour, the Cu(2+) sorption progress reached more than 90% while the Al dissolution progress was only 40%, and lagged behind the Cu(2+) sorption. It indicated that aluminum dissolution is associated with non-specific sorption.

  12. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application.

    PubMed

    Lee, Chia-Hsing; Huang, Hsuan-Han; Syu, Chien-Hui; Lin, Tzu-Huei; Lee, Dar-Yuan

    2014-07-15

    Silicon (Si) was shown to be able to reduce arsenic (As) uptake by rice in hydroponic culture or in low As soils using high Si application rates. However, the effect of Si application on As uptake of rice grown in As-contaminated soils using Si fertilizer recommendation rate has not been investigated. In this study, the effect of Si application using Si fertilizer recommendation rate on As release and phytotoxicity in soils with different properties and contents of As was examined. The results show that the concentrations of As in soil solutions increased after Si applications due to competitive adsorption between As and Si on soil solids and the Si concentrations in soil solutions were also elevated to beneficial levels for rice growth. The rice seedlings accumulated more As and its growth was inhibited by Si application in As contaminated/spiked soils. The results indicate that there is an initial aggravation in As toxicity before the beneficial effects of Si fertilizing to rice were revealed when Si application based on fertilizer recommendation rate to As-contaminated paddy soils. Therefore, for As-contaminated paddy soils with high levels of As, the application of Si fertilizer could result in increasing As phytotoxicity and uptake by rice. PMID:24892775

  13. Increase of As release and phytotoxicity to rice seedlings in As-contaminated paddy soils by Si fertilizer application.

    PubMed

    Lee, Chia-Hsing; Huang, Hsuan-Han; Syu, Chien-Hui; Lin, Tzu-Huei; Lee, Dar-Yuan

    2014-07-15

    Silicon (Si) was shown to be able to reduce arsenic (As) uptake by rice in hydroponic culture or in low As soils using high Si application rates. However, the effect of Si application on As uptake of rice grown in As-contaminated soils using Si fertilizer recommendation rate has not been investigated. In this study, the effect of Si application using Si fertilizer recommendation rate on As release and phytotoxicity in soils with different properties and contents of As was examined. The results show that the concentrations of As in soil solutions increased after Si applications due to competitive adsorption between As and Si on soil solids and the Si concentrations in soil solutions were also elevated to beneficial levels for rice growth. The rice seedlings accumulated more As and its growth was inhibited by Si application in As contaminated/spiked soils. The results indicate that there is an initial aggravation in As toxicity before the beneficial effects of Si fertilizing to rice were revealed when Si application based on fertilizer recommendation rate to As-contaminated paddy soils. Therefore, for As-contaminated paddy soils with high levels of As, the application of Si fertilizer could result in increasing As phytotoxicity and uptake by rice.

  14. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    PubMed

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability.

  15. Effect of organic matter and calcium carbonate on behaviors of cadmium adsorption-desorption on/from purple paddy soils.

    PubMed

    Zhao, Xiulan; Jiang, Tao; Du, Bin

    2014-03-01

    Batch experiments and sequential extraction analysis were employed to investigate the effects of soil organic matter and CaCO3 on the adsorption and desorption of cadmium (Cd(2+)) onto and from two purple paddy soils, an acidic purple paddy soil (APPS) and a calcareous purple paddy soil (CPPS). The Cd(2+) adsorption isotherms on both soils could be well-described by the Langmuir and Freundlich equations. CPPS had a higher capacity and a stronger affinity for Cd(2+) adsorption compared with APPS. The adsorption process of Cd(2+) on APPS was dominated by electrostatic attractions, whereas the adsorption mechanism varied depending on the Cd(2+) concentrations in equilibrium solutions on CPPS. At low equilibrium concentrations, the adsorption process was primarily specific adsorption, but nonspecific adsorption dominated at high equilibrium concentrations. Removal of organic matter decreased the amount of Cd(2+) adsorption on both of the soils, slightly affected the Cd(2+) desorption rate and exchangeable Cd (EXC-Cd) in APPS and increased the desorption rate and EXC-Cd in CPPS, suggesting that the effect of organic matter on Cd(2+) adsorption-desorption depends on the soils. CPPS and APPS containing CaCO3 exhibited higher adsorption amounts but lower desorption rates and lower proportions of EXC-Cd than those of their corresponding soils without CaCO3, demonstrating that CaCO3 played an important role in Cd(2+) specific adsorption on soil. The changes in the thermodynamic parameters, including free energy (ΔG(0)), enthalpy (ΔH(0)) and entropy (ΔS(0)), as evaluated by the Van't Hoff equations, indicated that the adsorption was a spontaneous and endothermic process with the primary interaction forces of dipole interactions and hydrogen bonds on APPS, whereas both physical and chemical interactions dominated the adsorption on CPPS.

  16. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    PubMed

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. PMID:21764102

  17. Arsenic binding to iron(II) minerals produced by an iron(III)-reducing Aeromonas strain isolated from paddy soil.

    PubMed

    Wang, Xin-Jun; Chen, Xue-Ping; Kappler, Andreas; Sun, Guo-Xin; Zhu, Yong-Guan

    2009-11-01

    An iron reducing bacterial strain was isolated from a paddy soil and identified as a member of the Aeromonas group by 16S rRNA gene sequence analysis. When the cells were growing with dissolved Fe(III) as electron acceptor in the presence of As(V), Fe(II) minerals (siderite and vivianite) were formed and dissolved As was removed efficiently from solution. When the cells were growing with the Fe(III) hydroxide mineral (ferrihydrite) as electron acceptor in the presence of As(V), ferrihydrite was reduced and dissolved As(V) concentrations decreased sharply. Our results demonstrated firstly that members of the Aeromonas group can reduce Fe(III) in paddy soils, and secondly that iron reduction does not necessarily lead to arsenic mobilization. However, As immobilization can occur in environments that contain significant concentrations of counter ions such as bicarbonate and phosphate. PMID:19572768

  18. [Effect of short-time drought process on denitrifying bacteria abundance and N2O emission in paddy soil].

    PubMed

    Lu, Jing; Liu, Jin-Bo; Sheng, Rong; Liu, Yi; Chen, An-Lei; Wei, Wen-Xue

    2014-10-01

    In order to investigate the impact of drying process on greenhouse gas emissions and denitrifying microorganisms in paddy soil, wetting-drying process was simulated in laboratory conditions. N2O flux, redox potential (Eh) were monitored and narG- and nosZ-containing denitrifiers abundances were determined by real-time PCR. N2O emission was significantly increased only 4 h after drying process began, and it was more than 6 times of continuous flooding (CF) at 24 h. In addition, narG and nosZ gene abundances were increased rapidly with the drying process, and N2O emission flux was significantly correlated with narG gene abundance (P < 0.01). Our results indicated that the narG-containing deniteifiers were the main driving microorganisms which caused the N2O emission in the short-time drought process in paddy soil. PMID:25796895

  19. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil

    PubMed Central

    Ehara, Ayaka; Suzuki, Haruo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  20. Draft Genome Sequence of Geobacter sp. Strain OR-1, an Arsenate-Respiring Bacterium Isolated from Japanese Paddy Soil.

    PubMed

    Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Geobacter sp. strain OR-1, an arsenate-respiring bacterium isolated from Japanese paddy soil. It contained two distinct arsenic islands, one including genes for a respiratory arsenate reductase (Arr) as well as for arsenic resistance (arsD-arsA-acr3-arsR-arrA-arrB) and the second containing only genes for arsenic resistance. PMID:25635012

  1. Modelling cadmium contamination in paddy soils under long-term remediation measures: Model development and stochastic simulations.

    PubMed

    Peng, Chi; Wang, Meie; Chen, Weiping

    2016-09-01

    A pollutant accumulation model (PAM) based on the mass balance theory was developed to simulate long-term changes of heavy metal concentrations in soil. When combined with Monte Carlo simulation, the model can predict the probability distributions of heavy metals in a soil-water-plant system with fluctuating environmental parameters and inputs from multiple pathways. The model was used for evaluating different remediation measures to deal with Cd contamination of paddy soils in Youxian county (Hunan province), China, under five scenarios, namely the default scenario (A), not returning paddy straw to the soil (B), reducing the deposition of Cd (C), liming (D), and integrating several remediation measures (E). The model predicted that the Cd contents of soil can lowered significantly by (B) and those of the plants by (D). However, in the long run, (D) will increase soil Cd. The concentrations of Cd in both soils and rice grains can be effectively reduced by (E), although it will take decades of effort. The history of Cd pollution and the major causes of Cd accumulation in soil were studied by means of sensitivity analysis and retrospective simulation. PMID:27257714

  2. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors.

    PubMed

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75-1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray-Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors.

  3. The large-scale distribution of ammonia oxidizers in paddy soils is driven by soil pH, geographic distance, and climatic factors

    PubMed Central

    Hu, Hang-Wei; Zhang, Li-Mei; Yuan, Chao-Lei; Zheng, Yong; Wang, Jun-Tao; Chen, Deli; He, Ji-Zheng

    2015-01-01

    Paddy soils distribute widely from temperate to tropical regions, and are characterized by intensive nitrogen fertilization practices in China. Mounting evidence has confirmed the functional importance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in soil nitrification, but little is known about their biogeographic distribution patterns in paddy ecosystems. Here, we used barcoded pyrosequencing to characterize the effects of climatic, geochemical and spatial factors on the distribution of ammonia oxidizers from 11 representative rice-growing regions (75–1945 km apart) of China. Potential nitrification rates varied greatly by more than three orders of magnitude, and were significantly correlated with the abundances of AOA and AOB. The community composition of ammonia oxidizer was affected by multiple factors, but changes in relative abundances of the major lineages could be best predicted by soil pH. The alpha diversity of AOA and AOB displayed contrasting trends over the gradients of latitude and atmospheric temperature, indicating a possible niche separation between AOA and AOB along the latitude. The Bray–Curtis dissimilarities in ammonia-oxidizing community structure significantly increased with increasing geographical distance, indicating that more geographically distant paddy fields tend to harbor more dissimilar ammonia oxidizers. Variation partitioning analysis revealed that spatial, geochemical and climatic factors could jointly explain majority of the data variation, and were important drivers defining the ecological niches of AOA and AOB. Our findings suggest that both AOA and AOB are of functional importance in paddy soil nitrification, and ammonia oxidizers in paddy ecosystems exhibit large-scale biogeographic patterns shaped by soil pH, geographic distance, and climatic factors. PMID:26388866

  4. Silicon improves maize photosynthesis in saline-alkaline soils.

    PubMed

    Xie, Zhiming; Song, Ri; Shao, Hongbo; Song, Fengbin; Xu, Hongwen; Lu, Yan

    2015-01-01

    The research aimed to determine the effects of Si application on photosynthetic characteristics of maize on saline-alkaline soil, including photosynthetic rate (P n ), stomatal conductance (g s ), transpiration rate (E), and intercellular CO2 concentration (C i ) of maize in the field with five levels (0, 45, 90, 150, and 225 kg · ha(-1)) of Si supplying. Experimental results showed that the values of P n, g s, and C i of maize were significantly enhanced while the values of E of maize were dramatically decreased by certain doses of silicon fertilizers, which meant that Si application with proper doses significantly increased photosynthetic efficiency of maize in different growth stages under stressing environment of saline-alkaline soil. The optimal dose of Si application in this experiment was 150 kg · ha(-1) Si. It indicated that increase in maize photosynthesis under saline-alkaline stress took place by Si application with proper doses, which is helpful to improve growth and yield of maize. PMID:25629083

  5. Predicting Phosphorus Release from Anaerobic, Alkaline, Flooded Soils.

    PubMed

    Amarawansha, Geethani; Kumaragamage, Darshani; Flaten, Don; Zvomuya, Francis; Tenuta, Mario

    2016-07-01

    Anaerobic conditions induced by prolonged flooding often lead to an enhanced release of phosphorus (P) to floodwater; however, this effect is not consistent across soils. This study aimed to develop an index to predict P release potential from alkaline soils under simulated flooded conditions. Twelve unamended or manure-amended surface soils from Manitoba were analyzed for basic soil properties, Olsen P (Ols-P), Mehlich-3 extractable total P (M3P), Mehlich-3 extractable molybdate-reactive P (M3P), water extractable P (WEP), soil P fractions, single-point P sorption capacity (P), and Mehlich-3 extractable Ca (M3Ca), and Mg (M3Mg). Degree of P saturation (DPS) was calculated using Ols-P, M3P or M3P as the intensity factor, and an estimated adsorption maximum based on either P or M3Ca + M3Mg as the capacity factor. To develop the model, we used the previously reported floodwater dissolved reactive P (DRP) concentration changes during 8 wk of flooding for the same unamended and manured soils. Relative changes in floodwater DRP concentration (DRP), calculated as the ratio of maximum to initial DRP concentration, ranged from 2 to 15 across ten of the soils, but were ≤1.5 in the two soils with the greatest clay content. Partial least squares analysis indicated that DPS3 calculated using M3P as the intensity factor and (2 × P) + M3P as the capacity factor with clay percentage can effectively predict DRP ( = 0.74). Results suggest that P release from a soil to floodwater may be predicted using simple and easily measurable soil properties measured before flooding, but validation with more soils is needed. PMID:27380097

  6. Effect of microbial mediated iron plaque reduction on arsenic mobility in paddy soil.

    PubMed

    Wang, Xinjun; Chen, Xueping; Yang, Jing; Wang, Zhaosu; Sun, Guoxin

    2009-01-01

    The potential of microbial mediated iron plaque reduction, and associated arsenic (As) mobility were examined by iron reducing bacteria enriched from As contaminated paddy soil. To our knowledge, this is the first time to report the impact of microbial iron plaque reduction on As mobility. Iron reduction occurred during the inoculation of iron reducing enrichment culture in the treatments with iron plaque and ferrihydrite as the electron acceptors, respectively. The Fe(II) concentration with the treatment of anthraquinone-2, 6-disulfonic acid (AQDS) and iron reducing bacteria increased much faster than the control. Arsenic released from iron plaque with the iron reduction, and a significant correlation between Fe(II) and total As in culture was observed. However, compared with control, the increasing rate of As was inhibited by iron reducing bacteria especially in the presence of AQDS. In addition, the concentrations of As(III) and As(V) in abiotic treatments were higher than those in the biotic treatments at day 30. These results indicated that both microbial and chemical reductions of iron plaque caused As release from iron plaque to aqueous phase, however, microbial iron reduction induced the formation of more crystalline iron minerals, leading to As sequestration. In addition, the presence of AQDS in solution can accelerate the iron reduction, the As release from iron plaque and subsequently the As retention in the crystalline iron mineral. Thus, our results suggested that it is possible to remediate As contaminated soils by utilizing iron reducing bacteria and AQDS. PMID:20108691

  7. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

    PubMed Central

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  8. [Effects of heavy metals pollution on paddy soil aggregates composition and heavy metals distribution].

    PubMed

    Zhang, Liang-Yun; Li, Lian-Qing; Pan, Gen-Xing; Cui, Li-Qiang; Li, Hong-Lei; Wu, Xiao-Yan; Shao, Jie-Qi

    2009-11-01

    Topsoil samples were collected from a polluted and an adjacent non-polluted paddy field in the Taihu Lake region of China. Different particle size fractions of soil aggregates were separated by low-energy dispersion procedure, and their mass composition and Pb, Cd, Hg, and As concentrations were determined. Under heavy metals pollution, the mass composition of sand-sized fractions reduced, while that of clay-sized fractions increased. The concentrations of test metals in different particle size fractions differed, with the highest in < 0.002 mm fraction, followed by in 2-0.2 mm fraction. In 0.02-0.002 mm and 0.2-0.02 mm fractions, all the test metals were relatively deficient, with an enrichment index of 0.56-0.96. The present study showed that the aggregation of fine particles could be depressed by heavy metals pollution, which in turn, led to a relative increase in the mass composition of fine particles and the associated allocation of heavy metals in weakly aggregated silt particles, and further, increased the risks of heavy metals translocation from polluted farmland into water and atmosphere. Further studies should be made on the impacts of heavy metals pollution on soil biophysical and biochemical processes and related mechanisms.

  9. Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution.

    PubMed

    Yamaguchi, N; Nakamura, T; Dong, D; Takahashi, Y; Amachi, S; Makino, T

    2011-05-01

    Arsenic (As) is highly mobilized when paddy soil is flooded, causing increased uptake of As by rice. We investigated factors controlling soil-to-solution partitioning of As under anaerobic conditions. Changes in As and iron (Fe) speciation due to flooded incubation of two paddy soils (soils A and B) were investigated by HPLC/ICP-MS and XANES. The flooded incubation resulted in a decrease in Eh, a rise in pH, and an increase in the As(III) fraction in the soil solid phase up to 80% of the total As in the soils. The solution-to-soil ratio of As(III) and As(V) (R(L/S)) increased with pH due to the flooded incubation. The R(L/S) for As(III) was higher than that for As(V), indicating that As(III) was more readily released from soil to solution than was As(V). Despite the small differences in As concentrations between the two soils, the amount of As dissolved by anaerobic incubation was lower in soil A. With the development of anaerobic conditions, Fe(II) remained in the soil solid phase as the secondary mineral siderite, and a smaller amount of Fe was dissolved from soil A than from soil B. The dissolution of Fe minerals rather than redox reaction of As(V) to As(III) explained the different dissolution amounts of As in the two paddy soils. Anaerobic incubation for 30 d after the incomplete suppression of microbial activity caused a drop in Eh. However, this decline in Eh did not induce the transformation of As(V) to As(III) in either the soil solid or solution phases, and the dissolution of As was limited. Microbial activity was necessary for the reductive reaction of As(V) to As(III) even when Eh reached the condition necessary for the dominance of As(III). Ratios of released As to Fe from the soils were decreased with incubation time during both anaerobic incubation and abiotic dissolution by sodium ascorbate, suggesting that a larger amount of As was associated with an easily soluble fraction of Fe (hydr) oxide in amorphous phase and/or smaller particles. PMID

  10. Iodide sorption and partitioning in solid, liquid and gas phases in soil samples collected from Japanese paddy fields.

    PubMed

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2011-07-01

    Sorption kinetics of iodide (I(-)), which is one of the major inorganic chemical forms of iodine in soil environments, were studied under four sets of experimental conditions characterised by temperature or biological activity. We compared partitioning ratios in solid, liquid and gas phases in soils as well as soil-soil solution distribution coefficients (K(d)s) at two different temperatures 4 and 23 °C, for 63 paddy soil samples collected throughout Japan. Interestingly, (125)I emission from soil was observed; the partitioning ratios in gas phase ranged from 0 to 27 % at 4 °C and from 0 to 42 % at 23 °C. In addition, the authors found that K(d) values at 23 °C had good correlation with pH though there was no correlation between K(d) values at 4 °C and pH because of the difference in biological activity.

  11. Anaerobic arsenite oxidation by an autotrophic arsenite-oxidizing bacterium from an arsenic-contaminated paddy soil.

    PubMed

    Zhang, Jun; Zhou, Wuxian; Liu, Bingbing; He, Jian; Shen, Qirong; Zhao, Fang-Jie

    2015-05-19

    Microbe-mediated arsenic (As) redox reactions play an important role in the biogeochemical cycling of As. Reduction of arsenate [As(V)] generally leads to As mobilization in paddy soils and increased As availability to rice plants, whereas oxidation of arsenite [As(III)] results in As immobilization. A novel chemoautotrophic As(III)-oxidizing bacterium, designated strain SY, was isolated from an As-contaminated paddy soil. The isolate was able to derive energy from the oxidation of As(III) to As(V) under both aerobic and anaerobic conditions using O2 or NO3(-) as the respective electron acceptor. Inoculation of the washed SY cells into a flooded soil greatly enhanced As(III) oxidation to As(V) both in the solution and adsorbed phases of the soil. Strain SY is phylogenetically closely related to Paracoccus niistensis with a 16S rRNA gene similarity of 96.79%. The isolate contains both the denitrification and ribulose 1,5-bisphosphate carboxylase/oxygenase gene clusters, underscoring its ability to denitrify and to fix CO2 while coupled to As(III) oxidation. Deletion of the aioA gene encoding the As(III) oxidase subunit A abolished the As(III) oxidation ability of strain SY and led to increased sensitivity to As(III), suggesting that As(III) oxidation is a detoxification mechanism in this bacterium under aerobic and heterotrophic growth conditions. Analysis of the aioA gene clone library revealed that the majority of the As(III)-oxidizing bacteria in the soil were closely related to the genera Paracoccus of α-Proteobacteria. Our results provide direct evidence for As(III) oxidation by Paracoccus species and suggest that these species may play an important role in As(III) oxidation in paddy soils under both aerobic and denitrifying conditions. PMID:25905768

  12. [Distribution characteristics of soil profile nitrous oxide concentration in paddy fields with different rice-upland crop rotation systems].

    PubMed

    Liu, Ping-li; Zhang, Xiao-lin; Xiong, Zheng-qin; Huang, Tai-qing; Ding, Min; Wang, Jin-yang

    2011-09-01

    To investigate the dynamic distribution patterns of nitrous oxide (N2O) in the soil profiles in paddy fields with different rice-upland crop rotation systems, a special soil gas collection device was adopted to monitor the dynamics of N2O at the soil depths 7, 15, 30, and 50 cm in the paddy fields under both flooding and drainage conditions. Two rotation systems were installed, i.e., wheat-single rice and oilseed rape-double rice, each with or without nitrogen (N) application. Comparing with the control, N application promoted the N2O production in the soil profiles significantly (P < 0.01), and there existed significant correlations in the N2O concentration among the four soil depths during the whole observation period (P < 0.01). In the growth seasons of winter wheat and oilseed rape under drainage condition and with or without N application, the N2O concentrations at the soil depths 30 cm and 50 cm were significantly higher than those at the soil depths 7 cm and 15 cm; whereas in the early rice growth season under flooding condition and without N application, the N2O concentrations at the soil depth 7 cm and 15 cm were significantly higher than those at the soil depths 30 cm and 50 cm (P < 0.05). No significant differences were observed in the N2O concentrations at the test soil depths among the other rice cropping treatments. The soil N2O concentrations in the treatments without N application peaked in the transitional period from the upland crops cropping to rice planting, while those in the treatments with N application peaked right after the second topdressing N of upland crops. Relatively high soil N2O concentrations were observed at the transitional period from the upland crops cropping to rice planting.

  13. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia.

    PubMed

    Seyfferth, Angelia L; McCurdy, Sarah; Schaefer, Michael V; Fendorf, Scott

    2014-05-01

    Despite the global importance of As in rice, research has primarily focused on Bangladesh, India, China, and the United States with limited attention given to other countries. Owing to both indigenous As within the soil and the possible increases arising from the onset of irrigation with groundwater, an assessment of As in rice within Cambodia is needed, which offers a "base-case" comparison against sediments of similar origin that comprise rice paddy soils where As-contaminated water is used for irrigation (e.g., Bangladesh). Here, we evaluated the As content of rice from five provinces (Kandal, Prey Veng, Battambang, Banteay Meanchey, and Kampong Thom) in the rice-growing regions of Cambodia and coupled that data to soil-chemical factors based on extractions of paddy soil collected and processed under anoxic conditions. At total soil As concentrations ranging 0.8 to 18 μg g(-1), total grain As concentrations averaged 0.2 μg g(-1) and ranged from 0.1 to 0.37 with Banteay Meanchey rice having significantly higher values than Prey Veng rice. Overall, soil-extractable concentrations of As, Fe, P, and Si and total As were poor predictors of grain As concentrations. While biogeochemical factors leading to reduction of As(V)-bearing Fe(III) oxides are likely most important for predicting plant-available As, husk and straw As concentrations were the most significant predictors of grain-As levels among our measured parameters. PMID:24712677

  14. [Effects of nitrogen application rate on soil nitrate nitrogen accumulation under vegetable-paddy rice rotation system].

    PubMed

    Li, Juan; Zhang, Ming-Qing; Kong, Qing-Bo; Yao, Bao-Quan

    2013-12-01

    A 2-year field experiment of mustard-cabbage-early rice rotation was conducted to investigate the effects of nitrogen application on yield and accumulation of nitrate nitrogen in the soil. The results showed that the applications of 150 kg N x hm(-2) for mustard and cabbage respectively and 90 kg N x hm(-2) for early rice were the best economic application mode, which could increase the net profit by 0.2%-75.6% compared with other application modes. Nitrogen application rates were positively correlated with NO3(-)-N concentration in the soil and in the percolating water. The vegetable-paddy rice rotation decreased the surplus of nitrogen in the soil. The average soil NO3(-)-N concentration was 29.7 mg x kg(-1) under the rotation of mustard-cabbage-early rice, which was only 84.4% of that under the continuous cropping of mustard-cabbage. The average NO3(-)-N concentration in the percolating water under mustard-cabbage-early rice rotation was little different from that in basal soil. Therefore, with the optimum nitrogen application mode, the vegetable-paddy rice rotation could gain the best economic benefit while significantly decrease the accumulation of nitrate nitrogen in the soil to effectively control non-point source pollution of nitrogen from vegetable fields.

  15. Arsenic concentrations in paddy soil and rice and health implications for major rice-growing regions of Cambodia.

    PubMed

    Seyfferth, Angelia L; McCurdy, Sarah; Schaefer, Michael V; Fendorf, Scott

    2014-05-01

    Despite the global importance of As in rice, research has primarily focused on Bangladesh, India, China, and the United States with limited attention given to other countries. Owing to both indigenous As within the soil and the possible increases arising from the onset of irrigation with groundwater, an assessment of As in rice within Cambodia is needed, which offers a "base-case" comparison against sediments of similar origin that comprise rice paddy soils where As-contaminated water is used for irrigation (e.g., Bangladesh). Here, we evaluated the As content of rice from five provinces (Kandal, Prey Veng, Battambang, Banteay Meanchey, and Kampong Thom) in the rice-growing regions of Cambodia and coupled that data to soil-chemical factors based on extractions of paddy soil collected and processed under anoxic conditions. At total soil As concentrations ranging 0.8 to 18 μg g(-1), total grain As concentrations averaged 0.2 μg g(-1) and ranged from 0.1 to 0.37 with Banteay Meanchey rice having significantly higher values than Prey Veng rice. Overall, soil-extractable concentrations of As, Fe, P, and Si and total As were poor predictors of grain As concentrations. While biogeochemical factors leading to reduction of As(V)-bearing Fe(III) oxides are likely most important for predicting plant-available As, husk and straw As concentrations were the most significant predictors of grain-As levels among our measured parameters.

  16. Controlled-release urea commingled with rice seeds reduced emission of ammonia and nitrous oxide in rice paddy soil.

    PubMed

    Yang, Yuechao; Zhang, Min; Li, Yuncong; Fan, Xiaohui; Geng, Yuqing

    2013-11-01

    Reduction of ammonia (NH) and nitrous oxide (NO) emission and enhanced nitrogen (N) fertilizer use efficiency have been investigated with different N fertilizer management and application methods for irrigated rice production. Few studies have examined NH and NO emissions from rice paddy soil when commingling controlled release urea with rice seeds. The objective of this study was to assess NH volatilization and NO emission from a novel controlled-release urea formulation (CRU-180) when commingled at the full application rate with seeds in a single application during the preparation of plant plugs at the nursery stage. The experiment was conducted as a factorial design with two fertilizer sources (conventional urea and CRU-180), four rates (0, 100, 200, and 300 kg N ha), and three replicates. The entire amount of CRU-180 was incorporated into each plug with germinated seed. The conventional urea was split into four applications based on the standard practice for fertilizer application. The CRU-180 treatments reduced the NH and NO concentration in the paddy flood water and paddy soil solution as compared with the conventional urea treatments. The percentage of applied N fertilizer emitted as NH volatilization and NO emission in the CRU-180 treatments was only about 10% of that from the conventional urea treatments at the same N application rate. The application of CRU-180 with seeds offers a novel N fertilizer management technique, a method to reduce environmental impacts associated with rice production and the cost of rice production. PMID:25602407

  17. Controlled-release urea commingled with rice seeds reduced emission of ammonia and nitrous oxide in rice paddy soil.

    PubMed

    Yang, Yuechao; Zhang, Min; Li, Yuncong; Fan, Xiaohui; Geng, Yuqing

    2013-11-01

    Reduction of ammonia (NH) and nitrous oxide (NO) emission and enhanced nitrogen (N) fertilizer use efficiency have been investigated with different N fertilizer management and application methods for irrigated rice production. Few studies have examined NH and NO emissions from rice paddy soil when commingling controlled release urea with rice seeds. The objective of this study was to assess NH volatilization and NO emission from a novel controlled-release urea formulation (CRU-180) when commingled at the full application rate with seeds in a single application during the preparation of plant plugs at the nursery stage. The experiment was conducted as a factorial design with two fertilizer sources (conventional urea and CRU-180), four rates (0, 100, 200, and 300 kg N ha), and three replicates. The entire amount of CRU-180 was incorporated into each plug with germinated seed. The conventional urea was split into four applications based on the standard practice for fertilizer application. The CRU-180 treatments reduced the NH and NO concentration in the paddy flood water and paddy soil solution as compared with the conventional urea treatments. The percentage of applied N fertilizer emitted as NH volatilization and NO emission in the CRU-180 treatments was only about 10% of that from the conventional urea treatments at the same N application rate. The application of CRU-180 with seeds offers a novel N fertilizer management technique, a method to reduce environmental impacts associated with rice production and the cost of rice production.

  18. [Characteristics of the mineralization and transformation of autotrophic microbes-assimilated carbon in upland and paddy soils].

    PubMed

    Jian, Yan; Ge, Ti-Da; Wu, Xiao-Hong; Zhou, Ping; Wang, Jiu-Rong; Yuan, Hong-Zhao; Zou, Dong-Sheng; Wu, Jin-Shui

    2014-06-01

    In this study, the mineralization and decomposition of autotrophic microbe assimilated carbon (new carbon) and native organic carbon in three upland and three paddy soils in subtropical China were measured using the 14C-labelled tracer technique. The results showed that, during the 100-d incubation, the mineralization of the 'new carbon' displayed three stages: a rise in the first 10 days, a slowdown from 11-d to 50-d, and a stabilization stage after 50 d. The mineralization ratio of the 'new carbon' ranged between 8.0% and 26.9% and the mineralization rate ranged from 0.01 to 0.22 microg 14C x g(-1) x d(-1) (0.01-0.22 microg 14C x g(-1) x d(-1) in paddy soils and 0.01-0.08 microg 14C x g(-1) x d(-1) in upland soils). However, the mineralization ratio and rate for native SOC were 1.55%-5.74% and 1.3-25.66 microg C x g(-1) x d(-1), respectively. In the soil active C pools, the 14C-dissolved organic carbon (DOC) first rose by as much as 0.3 mg x kg(-1) in the early stages of incubation (0-10 d), decreased rapidly by 0.42 mg x kg(-1) from 10-30 d, and then declined gradually. The fluctuation of the 14C-microbial biomass carbon (MBC) differed from that of the 14C DOC. At the beginning stage of the incubation (0-10 d), the 14C-MBC decreased rapidly, and then rapidly increased from 10 to 30 d, and the rate of increase reduced and was gradually stabilized after 40 d. The 14C-DOC/DOC renewal rate in the paddy soil was significantly higher than in the upland soil while the 14C-MBC/MBC renewal rate in the upland soil was significantly greater than in the paddy soil.

  19. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils.

    PubMed

    Ali, Muhammad Aslam; Kim, P J; Inubushi, K

    2015-10-01

    Effects of different soil amendments were investigated on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK+fly ash, NPK+silicate slag, NPK+phosphogypsum(PG), NPK+blast furnace slag (BFS), NPK+revolving furnace slag (RFS), NPK+silicate slag (50%)+RFS (50%), NPK+biochar, NPK+biochar+Azolla-cyanobacteria, NPK+silicate slag+Azolla-cyanobacteria, NPK+phosphogypsum (PG)+Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N2O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH4 emissions were significantly increased by 9.5-14.0% with biochar amendments, however, global warming potentials were decreased by 8.0-12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0-30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43-50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries.

  20. Mitigating yield-scaled greenhouse gas emissions through combined application of soil amendments: A comparative study between temperate and subtropical rice paddy soils.

    PubMed

    Ali, Muhammad Aslam; Kim, P J; Inubushi, K

    2015-10-01

    Effects of different soil amendments were investigated on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and yield scaled GWPs in paddy soils of Republic of Korea, Japan and Bangladesh. The experimental treatments were NPK only, NPK+fly ash, NPK+silicate slag, NPK+phosphogypsum(PG), NPK+blast furnace slag (BFS), NPK+revolving furnace slag (RFS), NPK+silicate slag (50%)+RFS (50%), NPK+biochar, NPK+biochar+Azolla-cyanobacteria, NPK+silicate slag+Azolla-cyanobacteria, NPK+phosphogypsum (PG)+Azolla-cyanobacteria. The maximum decrease in cumulative seasonal CH4 emissions was recorded 29.7% and 32.6% with Azolla-cyanobacteria plus phospho-gypsum amendments in paddy soils of Japan and Bangladesh respectively, followed by 22.4% and 26.8% reduction with silicate slag plus Azolla-cyanobacteria application. Biochar amendments in paddy soils of Japan and Bangladesh decreased seasonal cumulative N2O emissions by 31.8% and 20.0% respectively, followed by 26.3% and 25.0% reduction with biochar plus Azolla-cyanobacteria amendments. Although seasonal cumulative CH4 emissions were significantly increased by 9.5-14.0% with biochar amendments, however, global warming potentials were decreased by 8.0-12.0% with cyanobacterial inoculation plus biochar amendments. The maximum decrease in GWP was calculated 22.0-30.0% with Azolla-cyanobacteria plus silicate slag amendments. The evolution of greenhouse gases per unit grain yield (yield scaled GWP) was highest in the NPK treatment, which was decreased by 43-50% from the silicate slag and phosphogypsum amendments along with Azolla-cyanobacteria inoculated rice planted soils. Conclusively, it is recommended to incorporate Azolla-cyanobacteria with inorganic and organic amendments for reducing GWP and yield scaled GWP from the rice planted paddy soils of temperate and subtropical countries. PMID:26011612

  1. Effect of water and heat transport processes on methane emissions from paddy soils: a process-based model analysis

    NASA Astrophysics Data System (ADS)

    Rizzo, Anacleto; Boano, Fulvio; Revelli, Roberto; Ridolfi, Luca

    2013-04-01

    High CH4 fluxes are emitted from paddy fields worldwide and represent a considerable issue for the rice production eco-sustainability. Water and heat transport fluxes are known to strongly influence biogeochemical cycles in wetland environments, and therefore also CH4 emissions from paddy soils. Water percolation affects the dynamics of many compounds (e.g. DOC, O2) influencing CH4 fate. On the other hand, heat fluxes strongly influence CH4 production in submerged rice crops, and lowering ponding water temperature (LPWT) can reduce microbial activities and consequently decrease CH4 emissions. Moreover, as long as the optimal temperature range for rice growth is maintained, LPWT can lower CH4 emissions without rice yield limitation. Hence, a process-based model is proposed and applied to investigate the role of water flow on CH4 emissions, and to analyse the efficiency of LPWT as mitigation strategy for CH4 production and release. The process-based model relies on a system of partial differential mass balance equations to describe the vertical dynamics of the chemical compounds leading to CH4 production. Many physico-chemical processes and features characteristic of paddy soil are included: paddy soil stratigraphy; spatio-temporal variations of plant-root compartment; water and heat transport; SOC decomposition; heterotrophic reactions in both aerobic and anaerobic conditions; root radial oxygen loss; root solute uptake; DOC root exudation; plant-mediated, ebullition, and diffusion gas exchange pathways. LPWT is included as a temperature shift subtracted directly to the ponding water temperature. Model results confirm the importance of water flow on CH4 emission, since simulations that do not include water fluxes show a considerable overestimation of CH4 emissions due to a different DOC spatio-temporal dynamics. Particularly, when water fluxes are not modeled the overestimation can reach 67 % of the total CH4 emission over the whole growing season. Moreover, model

  2. Rhodovastum atsumiense gen. nov., sp. nov., a phototrophic alphaproteobacterium isolated from paddy soil.

    PubMed

    Okamura, Keiko; Hisada, Takayoshi; Kanbe, Toshio; Hiraishi, Akira

    2009-02-01

    A photoorganotrophic alphaproteobacterium designated strain G2-11(T) was isolated from submerged paddy soil. This bacterium had relatively large, oval to rod-shaped cells (2.0-3.0x3.0-10 microm). Cells were motile by means of single polar flagella. The color of phototrophically growing cultures was reddish-brown. The cell extract had absorption maxima at 375, 465, 492, 529, 592, 804, and 844 nm, indicating the presence of bacteriochlorophyll a and carotenoides of the spirilloxanthin series. Vesicular intracytoplasmic membranes were present. The main component of cellular fatty acids was C(18:1)omega7c. Ubiquinone-10 and rhodoquinone-10 were the major quinones. A 16S rRNA gene sequence analysis revealed that the isolate is closest to the acidophilic aerobic photosynthetic bacterium Acidisphaera rubrifaciens strain HS-AP3(T) (93.3% similarity). The G+C content of genomic DNA is 67.8 mol%. The name Rhodovastum atsumiense gen. nov., sp. nov. is proposed for the novel isolate. The type strain is strain G2-11(T) (=NBRC 104268(T)=KCTC 5708(T)).

  3. Microbial processes of CH 4 production in a rice paddy soil: model and experimental validation

    NASA Astrophysics Data System (ADS)

    van Bodegom, Peter M.; Scholten, Johannes C. M.

    2001-07-01

    The importance of different anaerobic processes leading to CH 4 production in rice paddies is quantified by a combination of experiments and model. A mechanistic model is presented that describes competition for acetate and H 2/CO 2, inhibition effects and chemolithotrophic redox reactions. The model is calibrated with anaerobic incubation experiments with slurried rice soil, monitoring electron donors and electron acceptors influencing CH 4 production. Only the values for maximum conversion rates ( Vmax) for sulphate and iron reduction and CH 4 production are tuned. The model is validated with similar experiments in which extra electron donors or electron acceptors had been added. The differences between model estimates without kinetic parameter adjustments and experiment were not significant, showing that the model contains adequate process descriptions. The model is sensitive to the estimates of Vmax, that are site dependent and to the description of substrate release, that drives all competition processes. For well-shaken systems, the model is less sensitive to chemolithotrophic reactions and inhibitions. Inhibition of sulphate reduction and methanogenesis during iron reduction can however explain acetate accumulation at the start of the incubations. Iron reduction itself is most probably retarded due to manganese reduction.

  4. Microbial community dynamics during the early stages of plant polymer breakdown in paddy soil.

    PubMed

    Wegner, Carl-Eric; Liesack, Werner

    2016-09-01

    We used paddy soil slurries amended with rice straw to identify the microbial populations involved in the methanogenic breakdown of plant polymers. Rice straw greatly stimulated microbial activity over the 28-day incubation period. On day 7, the transient peak concentration of acetate (24 mM) coincided with the onset of increased methane production. Microbial 16S rRNA transcript numbers increased by one to two orders of magnitude, but not the 16S rRNA gene copy numbers. Using metatranscriptomic rRNA, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, Veillonellaceae and Pseudomonadaceae were identified to be the most abundant and the most dynamic bacterial groups. Changes in methanogen rRNA and mRNA abundances corresponded well with methanogenic activity. Acetate determined the abundance ratio between Methanosarcinaceae and Methanosaetaceae. Methanocellaceae dominated hydrogenotrophic methanogenesis. Transcript levels of mRNA families involved in plant polymer breakdown increased slightly with time. Glycosyl hydrolase (GH) transcripts involved in cellulose and chitin breakdown were predominantly expressed by the Firmicutes, whereas those involved in hemicellulose breakdown exhibited more diverse taxonomic sources, including Acidobacteria, Bacteriodetes and Chloroflexi. Taken together, we observed strong population dynamics and the expression of taxonomically diverse GH families, suggesting that not only Firmicutes, but also less abundant groups play a major functional role in the decomposition of rice straw. PMID:25712035

  5. Degradation of monocrotophos by Starkeya novella YW6 isolated from paddy soil.

    PubMed

    Sun, Lina; Zhu, Shijun; Yang, Zhengzhong; Chen, Qing; Liu, Hongming; Zhang, Jun; Hu, Gang; Li, Shunpeng; Hong, Qing

    2016-02-01

    A bacteria strain, YW6, capable of utilizing monocrotophos (MCP) as the sole carbon and nitrogen sources for growth was isolated from paddy soil and identified as Starkeya novella. Strain YW6 completely degraded 0.2 mM MCP within 36 h without any lag period. Addition of carbon source resulted in slowing down of the initial rate of degradation of MCP, while the presence of a more favorable source of nitrogen enhanced the degradation of MCP. In addition to the degradation of MCP, strain YW6 was also able to degrade a wide range of organophosphorus pesticides (OPs) containing P-O-C bond, but not dimethoate, which has P-S-C bond. A MCP degradation pathway was proposed on the basis of metabolite production patterns and identification of the metabolites. MCP is hydrolyzed at the P-O-C bond to form N-methylacetoacetamide and dimethyl phosphate; N-methylacetoacetamide is transformed to N-methyl-4-oxo-pentanamide, which was subsequently converted to 5-(methylamino)-5-oxo-pentanoic acid, and 5-(methylamino)-5-oxo-pentanoic acid is cleaved to glutaric acid and methylamine. These findings provide new insights into the microbial metabolism of MCP. To the best of our knowledge, this is the first report on the degradation of MCP by Starkeya bacteria.

  6. [Variations of arsenic species in the solution of arsenic-contaminated paddy soil under flooding and at different temperatures].

    PubMed

    Wang, Zhao; Cui, Jiang-Hui; Chen, Zheng; Lu, Xiu-Jun; Liu, Wen-Ju

    2013-05-01

    Taking arsenic (As)-contaminated paddy soil as test object, and by using high performance liquid chromatography inductively coupled plasma-mass spectrometry (HPLC-ICP-MS), this paper studied the variations of As species in soil solution when the soil was sterilized or non-sterilized and incubated at different temperatures (5, 27, and 50 degrees C) under flooding. In the soil solution (pore water), only As(III) (arsenite), As(V) (arsenate), and DMA(V) ( dimethylarsinic acid) were detected, but no MMA(V)(mono methylarsinic acid) was found. With the increasing time of flooding and at the test temperatures, arsenite became the predominant species, averagely accounting for 64%, followed by As(V), with the proportion of 35%, and DMA(V), with the least proportion of 1%. Soil sterilization or non-sterilization had less effect on the concentrations of As(III) and DMA(V) in the soil solution, but remarkably affected the reduction of As(V) and the methylation of As(III). The promotion effect of soil sterilization decreased gradually with the increasing time of flooding and incubation. At 50 degrees C and after flooded for 23 days, the DMA(V) concentration in sterilized soil solution was the highest and up to 23.7 ng x mL(-1), indicating that some thermophilic microbes remained in sterilized soil became predominant species, and promoted the methylation of As(III) In sum, the total arsenic concentration in non-sterilized soil at incubation temperature 27 degrees C and flooded for 23 days was relatively low (501 ng x mL(-1)), and thus, in As-contaminated paddy rice planting areas, to adopt the water management mode of short cycle flooding-non-flooding could decrease the As level in soil solution as far as possible, and in the same time, save water resources and ensure yielding. PMID:24015564

  7. Redox-controlled changes in cadmium solubility and solid-phase speciation in a paddy soil as affected by reducible sulfate and copper.

    PubMed

    Fulda, Beate; Voegelin, Andreas; Kretzschmar, Ruben

    2013-11-19

    The solubility of Cd in contaminated paddy soils controls Cd uptake by rice, which is an important food safety issue. We investigated the solution and solid-phase dynamics of Cd in a paddy soil spiked with ∼20 mg kg(-1) Cd during 40 days of soil reduction followed by 28 days of soil reoxidation as a function of the amounts of sulfate available for microbial reduction and of Cu that competes with Cd for precipitation with biogenic sulfide. At an excess of sulfate over (Cd + Cu), dissolved Cd decreased during sulfate reduction and Cd was transformed into a poorly soluble phase identified as Cd-sulfide using Cd K-edge X-ray absorption spectroscopy (XAS). The extent of Cd-sulfide precipitation decreased with decreasing sulfate and increasing Cu contents, even if sulfate exceeded Cd. When both Cu and Cd exceeded sulfate, dissolved and mobilizable Cd remained elevated after 40 days of soil reduction. During soil reoxidation, Cd-sulfide was readily transformed back into more soluble species. Our data suggest that Cd-sulfide formation in flooded paddy soil may be limited when the amounts of Cd and other chalcophile metals significantly exceed reducible sulfate Therefore, in multimetal contaminated paddy soils with low sulfate contents, Cd may remain labile during soil flooding, which enhances the risk for Cd transfer into rice. PMID:24171446

  8. [Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils].

    PubMed

    Yuan, Hong-zhao; Wu, Hao; Ge, Ti-da; Li, Ke-lin; Wu, Jin-shui; Wang, Jiu-rong

    2015-06-01

    Paddy soils not only function as an important sink for "missing carbon" but also play an important role in the production of greenhouse gases such as N2O and CH4. Dynamic changes in greenhouse gases in the atmosphere are closely related to microbially mediated carbon and nitrogen transformation processes occurring in soil. Using soil samples collected from a long-term fertilization experimental site in Taojiang County, subtropical China (established in 1986), we determined the effects of long-term (>25 years) non-fertilization (CK), chemical fertilization (NPK), and NPK combined with rice straw residues (NPKS) on soil bacterial and archaeal community structures. The 16S rRNA genotypes from the three differently treated soils were divided into 9 bacterial phylotypes, mainly including Proteobacteria, Acidobacteria, Chloroflexi, and archaea of Crenarchaeota and Euryarchaeota. The relative abundance of Proteobacteria, Acidobacteria and Crenarchaeota increased in the soils under NPK and NPKS treatments, with the increase being greater in the latter treatment. LUBSHUFF statistical analyses also demonstrated that there was significant difference among the microbial community compositions in CK-, NPK- and NPKS-treated soils. The abundance of bacterial and archaeal 16S rRNA genes ranged from 0.58 x 10(10) to 1.06 x 10(10) copies · g(-1) dry soil and from 1.16 x 10(6) to 1.72 x 10(6) copies · g(-1) dry soil, respectively. Application of fertilizers increased the bacterial and archaeal abundance and diversity in the treated soils, with NPKS > NPK. Long-term chemical and organic applications significantly affected the abundance, diversity and composition of bacterial and archaeal communities in paddy ecosystems. PMID:26572036

  9. [Effects of long-term fertilization on bacterial and archaeal diversity and community structure within subtropical red paddy soils].

    PubMed

    Yuan, Hong-zhao; Wu, Hao; Ge, Ti-da; Li, Ke-lin; Wu, Jin-shui; Wang, Jiu-rong

    2015-06-01

    Paddy soils not only function as an important sink for "missing carbon" but also play an important role in the production of greenhouse gases such as N2O and CH4. Dynamic changes in greenhouse gases in the atmosphere are closely related to microbially mediated carbon and nitrogen transformation processes occurring in soil. Using soil samples collected from a long-term fertilization experimental site in Taojiang County, subtropical China (established in 1986), we determined the effects of long-term (>25 years) non-fertilization (CK), chemical fertilization (NPK), and NPK combined with rice straw residues (NPKS) on soil bacterial and archaeal community structures. The 16S rRNA genotypes from the three differently treated soils were divided into 9 bacterial phylotypes, mainly including Proteobacteria, Acidobacteria, Chloroflexi, and archaea of Crenarchaeota and Euryarchaeota. The relative abundance of Proteobacteria, Acidobacteria and Crenarchaeota increased in the soils under NPK and NPKS treatments, with the increase being greater in the latter treatment. LUBSHUFF statistical analyses also demonstrated that there was significant difference among the microbial community compositions in CK-, NPK- and NPKS-treated soils. The abundance of bacterial and archaeal 16S rRNA genes ranged from 0.58 x 10(10) to 1.06 x 10(10) copies · g(-1) dry soil and from 1.16 x 10(6) to 1.72 x 10(6) copies · g(-1) dry soil, respectively. Application of fertilizers increased the bacterial and archaeal abundance and diversity in the treated soils, with NPKS > NPK. Long-term chemical and organic applications significantly affected the abundance, diversity and composition of bacterial and archaeal communities in paddy ecosystems.

  10. Assessment of reclaimed wastewater irrigation impacts on water quality, soil, and rice cultivation in paddy fields.

    PubMed

    Kang, Moon Seong; Kim, Sang Min; Park, Seung Woo; Lee, Jeong Jae; Yoo, Kyung H

    2007-03-01

    The objective of this research was to monitor and assess the impact of reclaimed wastewater irrigation on water quality, soil, and rice cultivation by comparing the effects of various wastewater treatment levels on the growth and yield of rice. A randomized complete block design was used for the application methods of the wastewater effluents to paddy rice, with five treatments and six replications. The treatments were: control with groundwater irrigation (GW); irrigation with polluted water form a nearby stream (SW); and three treatments of reclaimed wastewater irrigation at different treatment levels. The three levels of wastewater treatments included wastewater effluents: (i) directly from the wastewater plant (WW); (ii) after passing through a sand filter (WSF); and (iii) after passing a sand filter followed by an ultraviolet treatment (WSFUV). Each plot was 4 x 4 m and was planted with rice (Oryza sativa L.) in 2002 and 2003. The results indicated that irrigation of rice with reclaimed municipal wastewater caused no adverse effects on the growth and yield of rice. The chemical compositions of the rice from all plots were within the normal ranges of brown rice quality in Korea. No adverse effects were observed on chemical concentrations including the heavy metals Cu, As, Cd, Zn, Hg, and Pb, in either the brown rice or the field. The results showed that treated municipal wastewater can be safely used as an alternative water source for the irrigation of rice, although continued monitoring will be needed to determine the long-term effects with regard to soil contamination and other potential health concerns.

  11. Inconsistent Changes in Microbial Community Structure and Abundance with Biochar Amendment in Rice Paddy Soils from South China

    NASA Astrophysics Data System (ADS)

    Chen, J.; Qu, J.; Liu, X.; Zheng, J.; Li, L.; Pan, G.

    2012-04-01

    Effects of biochar amendment on soil microbiota had not yet been well understood. We conducted a cross site field study on biochar amendment to rice paddies from south China in 2010. The experiment was performed with four treatments including N fertilization only (C0N), N fertilization plus biochar at 20t/ha (C1N) and at 40t/ha (C2N) as well as a control without N fertilization and biochar (C0N0) consistently with three sites. Biochar was spread at soil surface and incorporated into soil and thoroughly mixed to depth of about 12cm before padding for rice seedling transplantation. Rice production was conducted with conventional water and nutrient management practices adapting to local climate and cultivar conditions. Topsoil samples were collected from each treatment plot across sites for chemical properties and molecular analysis after rice harvest in autumn of 2010. Contents of organic carbon, total N as well as soil microbial biomass carbon were determined with recommended methods. Quantitative real-time PCR coupled with 16S rRNA gene and 18S rRNA gene denaturing gradient gel electrophoresis (DGGE) were respectively employed to trace changes in abundance and structure of bacteria and fungi community with biochar amendment. Increase in microbial biomass carbon (SMBC) was not observed in one site but by 10-20% in other two sites while SOC contents were increased by 25-45% in all sites under biochar treatments. Copy numbers of bacterial genes were different between the sites but no changes with biochar treatment in a single site. However, cluster analysis revealed a more or less decreased similarity of bacterial community to the control (ranging from 75% to 85%) by biochar treatment in a single site. Nevertheless, a number of special bands appeared both in bacterial and fungal DGGE patterns under biochar treatments, though varying with site also. While the fungi copy numbers markedly varied both with sites and with biochar treatments, lower similarity and greater

  12. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil.

    PubMed

    Mestrot, Adrien; Uroic, M Kalle; Plantevin, Thomas; Islam, Md Rafiqul; Krupp, Eva M; Feldmann, Jörg; Meharg, Andrew A

    2009-11-01

    Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment.

  13. Quantitative and qualitative trapping of arsines deployed to assess loss of volatile arsenic from paddy soil.

    PubMed

    Mestrot, Adrien; Uroic, M Kalle; Plantevin, Thomas; Islam, Md Rafiqul; Krupp, Eva M; Feldmann, Jörg; Meharg, Andrew A

    2009-11-01

    Arsenic volatilization in the environment is thought to be an important pathway for transfer from terrestrial pools to the atmosphere. However, this phenomenon is not well characterized due to inherent sampling issues in trapping, quantifying and qualifying these arsine gases; including arsine (AsH(3)), monomethyl arsine (MeAsH(2)), dimethyl arsine (Me(2)AsH) and trimethyl arsine (TMAs). To quantify and qualify arsines in air we developed a novel technique based on silver nitrate impregnated silica gel filled tubes. The method was characterized by measuring the recovery of trapped arsines after elution of this chemo-trap with hot boiling diluted nitric acid. Results from three separate experiments, measured by ICP-MS, showed that the method is reproducible and quantitative. Arsine species recovery ranged from 80.1 to 95.6%, with limit of detection as low as 3.8 ng per chemo-trap tube. Moreover, HPLC-ICP-MS analysis of hot boiling water eluted traps showed that the corresponding oxy ions of the arsines were formed with the As-C bonds of the molecule intact, hence, allowing qualification of trapped arsine species. A microcosm study examining volatile arsenic evolution from field contaminated Bangladeshi paddy soils (24.2 mg/kg arsenic) was used to show the application of silver nitrate chemo-trapping approach. Traps were placed on the inlet and the outlet of microcosms containing the soils that were either (cattle derived) manured or not, or flooded or not, in a factorial design. The headspace was purged with air at a flow rate of 12 mL/min. Results showed that as much as 320 ng of arsenic (0.014% of total soil content) could be emitted in a 3 week period for manured and flooded soils and that TMAs was the dominant species evolved, with lesser quantities of Me(2)AsH. No volatile arsenic evolution was observed for nonmanured treatments, and arsine release from the nonflooded, manured treatment was much less than the flooded treatment. PMID:19924955

  14. Burkholderiales participating in pentachlorophenol biodegradation in iron-reducing paddy soil as identified by stable isotope probing.

    PubMed

    Tong, Hui; Hu, Min; Li, Fangbai; Chen, Manjia; Lv, Yahui

    2015-07-01

    As the most prevalent preservative worldwide for many years, pentachlorophenol (PCP) has attracted much interest in the study of biodegradation in soil and aquatic ecosystems. However, the key microorganisms involved in anaerobic degradation are less well understood. Hence, we used DNA-based stable isotope probing (SIP) to identify the PCP-degrading microorganisms in iron-rich paddy soil under anaerobic conditions. (12)C- and (13)C-labeled PCP were almost completely degraded in 30 days under iron-reducing conditions. The results of terminal restriction fragment length polymorphism (T-RFLP) of 16S rRNA genes showed that 197 and 217 bp (HaeIII digests) restriction fragments (T-RFs) were enriched in heavy DNA fractions of (13)C-labeled samples, and the information from 16S rRNA gene clone libraries suggested that the microorganisms corresponding to these T-RF fragments, which increased in relative abundance during incubation, belonged to the order of Burkholderiales, in which 197 and 217 bp were classified as unclassified Burkholderiales and the genus Achromobacter, respectively. The results of the present study indicated that Burkholderiales-affiliated microorganisms were responsible for PCP degradation in anaerobic paddy soil and shed new light on in situ bioremediation in anaerobic PCP contaminated soil.

  15. Modeling the effect of rainfall intensity on soil-water nutrient exchange in flooded rice paddies and implications for nitrate fertilizer runoff to the Oita River in Japan

    NASA Astrophysics Data System (ADS)

    Higashino, Makoto; Stefan, Heinz G.

    2014-11-01

    This paper examines the effect of rainfall intensity on nutrient exchange at the soil-water interface of rice paddy fields and the implications to nitrate runoff to the Oita River. The Oita River Basin on Kyushu Island in Japan covers 650 km2 of which 11% are used for agriculture (rice). During the monsoon season in June/July, the heavily fertilized paddy fields are flooded and large amounts of NO3-N are discharged to the Oita River. A model has been developed for the NO3-N release in the rice paddy fields. The model focuses on the effect of rainfall intensity. It assumes that in addition to increased surface runoff and infiltration, the monsoon rain enhances pore water flow and causes nitrate release from the soil by dynamic pressure fluctuations at the soil/water interface. The magnitude of NO3-N release from paddy fields is described by the simulated soil/water exchange velocity (W) which increases with rising rainfall intensity and hydraulic conductivity, and is on the order of 10-2 to 10-6 cm/s. When the river flow rises due to precipitation (monsoon), the NO3-N load rises almost proportionately to the river discharge, and with little delay. Measured unit NO3-N loads in the Oita River per day and m2 of paddy fields were nearly proportional to precipitation intensity R (R1.042) and so were modeled unit NO3-N release rates in the paddy fields (R1.095). This result suggests that raindrop-induced pumping is an important if not crucial process that enhances NO3-N runoff from rice paddy fields. An implication is that the nutrient loading of surface water bodies may grow as the occurrence of extreme rainfall events increases with climate change.

  16. Quantitative analyses of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) large-subunit genes (cbbL) in typical paddy soils.

    PubMed

    Xiao, Ke-Qing; Bao, Peng; Bao, Qiong-Li; Jia, Yan; Huang, Fu-Yi; Su, Jian-Qiang; Zhu, Yong-Guan

    2014-01-01

    The Calvin cycle is known to be the major pathway for CO2 fixation, but our current understanding of its occurrence and importance in paddy soils is poor. In this study, the diversity of three ribulose-1,5-bisphosphate carboxylase/oxygenase large-subunit genes (cbbLG, cbbLR, cbbM) was investigated by clone library, T-RFLP, qPCR, and enzyme assay in five paddy soils in China. The cbbLG sequences revealed a relatively low level of diversity and were mostly related to the sequences of species from Thiobacillus. In contrast, highly diverse cbbLR and cbbM sequences were dispersed on the phylogenetic trees, and most of them were distantly related to known sequences, even forming separate clusters. Abundances of three cbbL genes ranged from 10(6) to 10(9) copies g(-1) soil, and cbbLR outnumbered cbbM and cbbLG in all soil samples, indicating that cbbLR may play a more important role than other two cbbL genes. Soil properties significantly influenced cbbL diversity in five paddy soils, of which clay content, C/N ratio, CEC, pH, and SOC correlated well with variations in microbial composition and abundance. In summary, this study provided a comparison of three cbbL genes, advancing our understanding of their role in carbon sequestration and nutrient turnover in the paddy soil.

  17. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    PubMed

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  18. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    PubMed Central

    Tang, Xianjin; Hashmi, Muhammad Z.; Long, Dongyan; Chen, Litao; Khan, Muhammad I.; Shen, Chaofeng

    2014-01-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  19. Forces and straw cutting performance of double disc furrow opener in no-till paddy soil.

    PubMed

    Ahmad, Fiaz; Weimin, Ding; Qishuo, Ding; Hussain, Mubshar; Jabran, Khawar

    2015-01-01

    Conservation tillage is an energy efficient and low cost tillage system to improve soil environment compared with conventional tillage systems. However, the rice residue management becomes an "impossible to achieve" task due to high soil moisture content at harvest time and the thickness of rice straw. Disc type furrow openers are used for both seed drilling as well as straw cutting during no tillage sowing. A study was conducted to evaluate the draft requirement and straw cutting performances of different sized furrow openers in no-till paddy soil conditions. Double disc furrow opener was tested on an in-field traction bench for three working depths, i.e. 30, 60 and 90 mm, and three forwarding speeds, i.e. 0.1, 0.2 and 0.3 m/s. The draft and vertical forces on the disc were recorded with load cells. These sensors were connected to a data acquisition system developed with hardware and software. The results revealed that the size of the furrow opener, operating depth and the forwarding speed had significant effects (P<0.05) on the horizontal and vertical forces, and the straw cutting performance. Mean values of the draft were 648.9, 737.2 and 784.6 N for the opener with diameters of 330, 450 and 600 mm respectively, and the vertical forces for similar openers were 904.7, 1553.9 and 1620.4 N, respectively. Furthermore, the mean straw cutting efficiencies for the double disc opener with diameters of 330, 450 and 600 mm were 39.36, 78.47 and 65.46%, respectively. The opener with 450 mm diameter provided higher straw cutting efficiency as compared to 600 mm diameter disc, while lowest straw cutting efficiency was observed with 330 mm diameter disc. The 450 mm diameter opener provided the highest straw cutting efficiency (88.6%) at 90 mm working depth and expressed optimum performance compared with other furrow openers. PMID:25822984

  20. Forces and Straw Cutting Performance of Double Disc Furrow Opener in No-Till Paddy Soil

    PubMed Central

    Ahmad, Fiaz; Weimin, Ding; Qishuo, Ding; Hussain, Mubshar; Jabran, Khawar

    2015-01-01

    Conservation tillage is an energy efficient and low cost tillage system to improve soil environment compared with conventional tillage systems. However, the rice residue management becomes an “impossible to achieve” task due to high soil moisture content at harvest time and the thickness of rice straw. Disc type furrow openers are used for both seed drilling as well as straw cutting during no tillage sowing. A study was conducted to evaluate the draft requirement and straw cutting performances of different sized furrow openers in no-till paddy soil conditions. Double disc furrow opener was tested on an in-field traction bench for three working depths, i.e. 30, 60 and 90 mm, and three forwarding speeds, i.e. 0.1, 0.2 and 0.3 m/s. The draft and vertical forces on the disc were recorded with load cells. These sensors were connected to a data acquisition system developed with hardware and software. The results revealed that the size of the furrow opener, operating depth and the forwarding speed had significant effects (P<0.05) on the horizontal and vertical forces, and the straw cutting performance. Mean values of the draft were 648.9, 737.2 and 784.6 N for the opener with diameters of 330, 450 and 600 mm respectively, and the vertical forces for similar openers were 904.7, 1553.9 and 1620.4 N, respectively. Furthermore, the mean straw cutting efficiencies for the double disc opener with diameters of 330, 450 and 600 mm were 39.36, 78.47 and 65.46%, respectively. The opener with 450 mm diameter provided higher straw cutting efficiency as compared to 600 mm diameter disc, while lowest straw cutting efficiency was observed with 330 mm diameter disc. The 450 mm diameter opener provided the highest straw cutting efficiency (88.6%) at 90 mm working depth and expressed optimum performance compared with other furrow openers. PMID:25822984

  1. [Effect of sulfur on the species of Fe and As under redox condition in paddy soil].

    PubMed

    Tang, Bing-Pei; Yang, Shi-Jie; Wang, Dai-Zhang; Rao, Wei; Zhang, Ya-Nan; Wang, Dan; Zhu, Yun-Ji

    2014-10-01

    Redox conditions of the polluted paddy soil with exogenous As were simulated by redox reaction apparatus after flowing N2 and O2 applied with different forms of inorganic sulfur(CK-S0, elemental sulfur-S1 and sulfate-S2). Results showed that redox potential (Eh) was about -100 - -200 mV and the pH 7.0-8.0 and the pe + pH 4-7 in soil solution when flowed N2, and Eh about 200 mV and the pH 6.5-7.5 and pe + pH 9-12 when continuously flowed O2. Concentrations of the dissolved Fe in soil solution were in 1.2-1.6 mg x L(-1) either flowed N2 or O2, and the order of Fe concentrations was AsS0 treatment > AsS1 treatment > AsS2 treatment. Amounts of soil Fe oxide by HCl extraction from different treatments were 5 g · kg(-1) lower than the original soil [(21.4 ± 0.3) g · kg(-1)] when flowed N2, and it was in favor of the transformation of crystal Fe into amorphous iron and Fe2+. Activity of Fe oxides from different treatments increased comparing to that of the original soil (46. 8%), and the order of activity of Fe oxides was AsS2 treatment (49.4%) < AsS1 treatment (60%). Fe2+ in solution and FeS were oxidized into Fe3+, and hydrolysis of Fe3+ was produced into Fe(OH)3 precipitation when flowed O2. It increased the contents of acid-soluble and crystal Fe oxide, and the order of activity of Fe oxides was AsS1 (41.2%) treatment > AsS2 (36.1%) treatment. Concentrations of As in soil solution were in the order of AsS0 [(1.13 ± 0.04) mg · L(-1)] > AsS1 [(0.89 ± 0.01) mg L(- 1)] > AsS2 [ (0.77 ± 0.04 )mg · L(-1)] when flowed N2 and was AsS1 [(0.77 ± 0.01) mg · L(-1)] > AsS0 [(0.20 ± 0.09 ) mg · L(-1)] > AsS2 [(0.09 ± 0.01) mg · L(-1)] when flowed O2. The proportions of arsenic fractions followed the order of the residual phases (34.9%-41.4%) ≈ specifically-sorbed (37.4%-39.5%) > well-crystallized hydrous oxides of Fe/Mn (23.3%-25.6%) > non-specifically sorbed (2.4%-3.3%) > amorphous hydrous oxides of Fe/Mn (0.5%-0.8%) when flowed N2, and was the residual phases (30

  2. Genome sequence of the anaerobic bacterium Bacillus sp. strain ZYK, a selenite and nitrate reducer from paddy soil.

    PubMed

    Bao, Peng; Su, Jian-Qiang; Hu, Zheng-Yi; Häggblom, Max M; Zhu, Yong-Guan

    2014-06-15

    Bacillus sp. strain ZYK, a member of the phylum Firmicutes, is of interest for its ability to reduce nitrate and selenite and for its resistance to arsenic under anaerobic conditions. Here we describe some key features of this organism, together with the complete genome sequence and annotation. The 3,575,797 bp long chromosome with its 3,454 protein-coding and 70 RNA genes, and the information gained from its sequence will be relevant to the elucidation of microbially-mediated transformations of nitrogen, selenium and arsenic in paddy soil. PMID:25197451

  3. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-01

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown. PMID:23796060

  4. Sewage sludge biochar influence upon rice (Oryza sativa L) yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil.

    PubMed

    Khan, Sardar; Chao, Cai; Waqas, Muhammad; Arp, Hans Peter H; Zhu, Yong-Guan

    2013-08-01

    Biochar addition to soil has been proposed to improve plant growth by increasing soil fertility, minimizing bioaccumulation of toxic metal(liod)s and mitigating climate change. Sewage sludge (SS) is an attractive, though potentially problematic, feedstock of biochar. It is attractive because of its large abundance; however, it contains elevated concentrations of metal(loid)s and other contaminants. The pyrolysis of SS to biochar (SSBC) may be a way to reduce the availability of these contaminants to the soil and plants. Using rice plant pot experiments, we investigated the influence of SSBC upon biomass yield, bioaccumulation of nutrients, and metal(loid)s, and green housegas (GHG) emissions. SSBC amendments increased soil pH, total nitrogen, soil organic carbon and available nutrients and decreased bioavailable As, Cr, Co, Ni, and Pb (but not Cd, Cu, and Zn). Regarding rice plant properties, SSBC amendments significantly (P ≤ 0.01) increased shoot biomass (71.3-92.2%), grain yield (148.8-175.1%), and the bioaccumulation of phosphorus and sodium, though decreased the bioaccumulation of nitrogen (except in grain) and potassium. Amendments of SSBC significantly (P ≤ 0.05) reduced the bioaccumulation of As, Cr, Co, Cu, Ni, and Pb, but increased that of Cd and Zn, though not above limits set by Chinese regulations. Finally regarding GHG emissions, SSBC significantly (P < 0.01) reduced N2O emissions and stimulated the uptake/oxidation of CH4 enough to make both the cultivated and uncultivated paddy soil a CH4 sink. SSBC can be beneficial in rice paddy soil but the actual associated benefits will depend on site-specific conditions and source of SS; long-term effects remain a further unknown.

  5. Partitioning of arsenic in soil-crop systems irrigated using groundwater: a case study of rice paddy soils in southwestern Taiwan.

    PubMed

    Hsu, Wen-Ming; Hsi, Hsing-Cheng; Huang, You-Tuan; Liao, Chien-Sen; Hseu, Zeng-Yei

    2012-02-01

    The accumulation of As in rice due to groundwater irrigation in paddy fields represents a serious health hazard in South and Southeast Asia. In Taiwan, the fate of As in long-term irrigated paddy fields is poorly understood. Groundwater, surface soil, and rice samples were collected from a paddy field that was irrigated with As-containing groundwater in southwestern Taiwan. The purpose of this study is to elucidate the source and sink of As in the paddy field by comparing the As fractions in the soils that were obtained by a sequential extraction procedure (SEP) with the As uptake of rice. The risks associated with eating rice from the field can thus be better understood. The concentration of As in groundwater varied with time throughout the growing seasons of rice, but always exceeded the permitted maximum (10 μg L(-1)) for drinking water by the WHO. The As concentration increased with the concentration of Fe in the groundwater, supporting the claim that a large amount of As was concentrated in the Fe flocs collected from the internal wall of the groundwater pump. The results of the SEP revealed that As bound with amorphous and crystalline hydrous oxides exhibited high availability in the soils. The root of rice accumulated the largest amount of As, followed by the straw, husk, and grain. Although the As concentration in the rice grain was less than 1.0 mg kg(-1), the estimated intake level was close to the maximum tolerable daily intake of As, as specified by the WHO. PMID:22094052

  6. The Potential of Soft Soil Improvement Through a Coupled Technique Between Electro Kinetic and Alkaline Activation of Soft Soil

    NASA Astrophysics Data System (ADS)

    Ahmed, G. E.; Ismail, H. B.; Huat, B. K.; Afshin, A.; Azhar, A. T. S.

    2016-07-01

    Soil stabilization techniques have been in development for decades with different rates of success. Alkaline activation of soft soil is one of those techniques that has proved to deliver some of the best shear strength values with minor drawbacks in comparison with conventional soil stabilization methods. However, environmental considerations have not been taken into account, as major mineral glassy phase activators are poisoning alkaline solutions, such as sodium-, potassium-hydroxide, and sodium-, potassium-silicate, which poses serious hazards to man and environment. This paper addresses the ways of discarding the involvement of the aforementioned alkaline solutions in soft soil stabilization by investigating the potential of a coupled electro kinetic alkaline activation technique for soft soil strengthening, through which the provision of alkaline pH is governed by electro kinetic potential. Uncertainties in regard to the dissolution of aluminosilicate as well as the dominance of acidic front are challenges that need to be overcome.

  7. Effect of rice straw application on microbial community and activity in paddy soil under different water status.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Yao, Huaiying

    2016-03-01

    Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity. PMID:26596827

  8. Estimating CH4 emission from paddy managed soils in southern guinea savanna zone of Nigeria using an integrated approach

    NASA Astrophysics Data System (ADS)

    Akpeokhai, Agatha; Menz, Gunter; Thonfeld, Frank; Akinluyi, Francis

    2016-04-01

    ESTIMATING CH4 EMISSION FROM PADDY MANAGED SOILS IN SOUTHERN GUINEA SAVANNA ZONE OF NIGERIA USING AN INTEGRATED APPROACH Akpeokhai Agatha 1, Menz Gunter 1, Thonfeld Frank 1, Akinluyi Francis 2 1 Remote Sensing Research Group (RSRG), Geography Institute, University of Bonn, Germany. 2 Department Remote Sensing and Geo-Science Information System, School of Earth and Mineral Science, Federal University of Technology, Akure Nigeria. Methane is one of the most important greenhouse gases as it has the second greatest climate forcing potential. Paddy fields have been identified to be sources of methane and Nigerian paddies are not left out. In Nigeria, the guinea savanna region is regarded as the bread basket of the nation and this area is one of the major rice producing regions in Nigeria. Its location in the food basket region of the country makes this part a very important study site. However, since Nigerian paddies contribute to methane emission by how much do these paddies contribute to the emissions? Also, so far, there limited studies on methane from rice fields in West Africa thus making this study a very important start off point. To answer this huge question, methane emission will be estimated using an integrated approach in the North Central part of Nigeria. Land use change cultivated to rice was analysed using Remote sensing techniques to determine the changes in land cultivated to rice. Methane emission from these identified rice fields will be estimated using the IPCC Tier 1 set of equations. First relevant indices (Normalized Differential Moisture Index, Normalized Differential Wetness Index and Rice Growth Vegetation Index) were generated to aid classification of rice fields using LANDSAT data from the USGS. Next the LANDSAT datasets were analyzed for land use change cultivated to rice from 1990 to 2014 to generate rice field maps. ERDAS Imagine, ARCGIS and ENVI tools were used to meet these spatial needs. Methane emissions from this region will be

  9. Carbon decomposition process of the residual biomass in the paddy soil of a single-crop rice field

    NASA Astrophysics Data System (ADS)

    Okada, K.; Iwata, T.

    2014-12-01

    In cultivated fields, residual organic matter is plowed into soil after harvest and decaying in fallow season. Greenhouse gases such as CO2 and CH4 is generated by the decomposition of the substantial organic matter and released into the atmosphere. In some fields, open burning is carried out by tradition, when carbon in residual matter is released into atmosphere as CO2. However, burning effect on carbon budget between crop lands and atmosphere is not entirely considered yet. In this study, coarse organic matter (COM) in paddy soil of a single-crop rice field was sampled on regular intervals between January, 2011 and August, 2014 The amount of carbon release from residual matter was estimated by analyzing of the variations in carbon content of COM. Effects of soil temperature (Ts) and soil water content (SWC) at the paddy field on the rate of carbon decomposition was investigated. Though decreasing rate of COM was much smaller in winter season, it is accelerated at the warming season between April and June every year. Decomposition was resisted for next rice cultivated season despite of highest soil temperature. In addition, the observational field was divided into two areas, and three time open burning experiments were conducted in November, 2011, 2012, and 2013. In each year, three sampling surveys, or plants before harvest and residuals before and after the burning experiment, were done. From these surveys, it is suggested that about 48±2% of carbon contents of above-ground plant was yield out as grain by harvest, and about 27±2% of carbon emitted as CO2 by burning. Carbon content of residuals plowed into soil after the harvest was estimated 293±1 and 220±36gC/m2 in no-burned and burned area, respectively, based on three-years average. It is estimated that 70 and 60% of the first input amount of COM was decomposed after a year in no-burned and burned area, respectively.

  10. [Effects of no-tillage and stubble-remaining on soil enzyme activities in broadcasting rice seedlings paddy field].

    PubMed

    Ren, Wan-Jun; Huang, Yun; Wu, Jin-Xiu; Liu, Dai-Yin; Yang, Wen-Yu

    2011-11-01

    A field experiment was conducted to study the effects of four cultivation modes (conventional tillage, no-tillage, conventional tillage + stubble-remaining, and no-tillage + stubble-remaining) on the activities of urease, acid phosphatase, protease, and cellulose in different soil layers in a broadcasting rice seedlings paddy field. Under the four cultivation modes, the activities of test enzymes were higher in upper than in deeper soil layers, and had a greater difference between the soil layers under no-tillage + stubble-remaining. In upper soil layers, the activities of test enzymes were higher in the treatments of no-tillage than in the treatments of conventional tillage, being the highest under no-tillage + stubble-remaining and the lowest under conventional tillage. In deeper soil layers, the test enzyme activities were the highest under conventional tillage + stubble-remaining, followed by no-tillage + stubble-remaining, no-tillage, and conventional tillage. During the growth period of rice, soil urease and cellulose activities were lower at tillering stage, increased to the maximum at booting stage, and decreased then, soil acid phosphatase activity was higher at tillering stage but lower at elongating stage, whereas soil protease activity peaked at tillering and heading stages.

  11. Fate of organic carbon in paddy soils - results of Alisol and Andosol incubation with 13C marker

    NASA Astrophysics Data System (ADS)

    Winkler, Pauline; Cerli, Chiara; Fiedler, Sabine; Woche, Susanne; Rahayu Utami, Sri; Jahn, Reinhold; Kalbitz, Karsten; Kaiser, Klaus

    2016-04-01

    For a better understanding of organic carbon (OC) decomposition in paddy soils an incubation experiment was performed. Two soil types with contrasting mineralogy (Alisol and Andosol) were exposed to 8 anoxic‒oxic cycles over 1 year. Soils received rice straw marked with 13C (228 ‰) at the beginning of each cycle. A second set of samples without straw addition was used as control. Headspaces of the incubation vessels were regularly analysed for CO2 and CH4. In soil solutions, redox potential, pH, dissolved organic C (DOC), and Fe2+ were measured after each anoxic and each oxic phase. Soils were fractionated by density at the end of the experiment and the different fractions were isotopically analysed. Samples of genuine paddy soils that developed from the test soils were used as reference. During anoxic cycles, soils receiving rice straw released large amounts of CO2 and CH4, indicating strong microbial activity. Consequently, Eh values dropped and pH as well as Fe2+ concentrations increased. Concentrations of DOC were relatively small, indicating either strong consumption and/or strong retention of dissolved organic compounds. During oxic cycles, concentrations of dissolved Fe dropped in both soils while DOC concentrations remained constant in the Alisol and decreased in the Andosol. Density fractionation revealed increased contents of mineral associated OC for the Andosol incubated with straw addition as compared to the parent soil. No changes were found for the Alisol. However, the mineral-associated OC fraction of both soil types contained 13C of the added straw. Hence, fresh organic matter is incorporated while part of the older organic matter has been released or mineralized. The increase in the Andosol might be due to effective binding of fresh OC to minerals and/or stronger retention/preservation of older OC. Both could be explained by the more reactive mineralogy of the Andosol than of the Alisol. XPS analyses of the soils are currently performed and

  12. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts

    PubMed Central

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-01-01

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil. PMID:27319579

  13. Risk assessment of heavy metals contamination in paddy soil, plants, and grains (Oryza sativa L.) at the East Coast of India.

    PubMed

    Satpathy, Deepmala; Reddy, M Vikram; Dhal, Soumya Prakash

    2014-01-01

    Heavy metals known to be accumulated in plants adversely affect human health. This study aims to assess the effects of agrochemicals especially chemical fertilizers applied in paddy fields, which release potential toxic heavy metals into soil. Those heavy metals get accumulated in different parts of paddy plant (Oryza sativa L.) including the grains. Concentrations of nonessential toxic heavy metals (Cd, Cr, and Pb) and the micronutrients (Cu, Mn, and Zn) were measured in the paddy field soil and plant parts. Mn and Cd are found to be accumulated more in shoot than in root. The metal transfer factors from soil to rice plant were significant for Pb, Cd, Cu, Cr, Mn, and Zn. The ranking order of bioaccumulation factor (BAF) for heavy metals was Zn > Mn > Cd > Cu > Cr > Pb indicating that the accumulation of micronutrients was more than that of nonessential toxic heavy metals. The concentrations of heavy metals were found to be higher in paddy field soils than that of the nearby control soil but below permissible limits. The higher Health Index (HI) values of rice consuming adults (1.561) and children (1.360) suggest their adverse health effects in the near future.

  14. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  15. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil. PMID:27319579

  16. [Impacts of different alkaline soil on canopy spectral characteristics of overlying vegetation].

    PubMed

    Jia, Ke-Li; Zhang, Jun-Hua

    2014-03-01

    The relationship between alkalinity and pH of the soil, reflectance spectra and red-edge parameters of the sunflower canopy in different growth periods under different alkalinity soil were analyzed, respectively. The results showed that the spectral reflectance of the sunflower canopy in different stage under different alkalinity soil is the same as the spectral reflectance characters of the other greenery canopy. Along with the advancement of the sunflower growth period, sunflower canopy spectral reflectance increases gradually at different stages, the spectral reflectance is higher at flowering stage than 7-leaf stage and budding stage, and there exists a high reflection peak at 809nm at flowering period. At the same time, the spectral reflectance is affected by salinity-alkalinity stress at different stages, in the near infrared shortwave band, the spectral reflectance of the sunflower canopy in different stage increases with the decreases in soil alkalinity. When the derivatives are applied to determine the wavelength of the red-edge, there is a shift phenomenon of the red edge. The red edges were at 702-720 nm during every growth period of the sunflower. The "blue shift" phenomenon is also emerged for red edge position and red edge sloped with the increase in the soil alkalinity. Conversely, at the same growth periods, the red edge positions and red edge slope move to longer wave bands with the decrease in soil alkalinity. There is a "red shift" phenomenon before flowering period and "blue shift" phenomenon after flowering period for the red edge position and red edge slope of canopy spectrum at the same soil alkalinity. Respectively. The red edges at different growth stages of the sunflower show very significant positive correlation and quadratic polynomial to alkalinity and pH of the soil. Therefore, we thought used the red edge features of greenery could indicate the soil alkalization degree, it providing scientific basis for monitoring soil alkalization

  17. Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice.

    PubMed

    Okkenhaug, Gudny; Zhu, Yong-Guan; He, Junwen; Li, Xi; Luo, Lei; Mulder, Jan

    2012-03-20

    Foods produced on soils impacted by antimony (Sb) mining activities are a potential health risk due to plant uptake of the contaminant metalloids (Sb) and arsenic (As). Here we report for the first time the chemical speciation of Sb in soil and porewater of flooded paddy soil, impacted by active Sb mining, and its effect on uptake and speciation in rice plants (Oryza sativa L. cv Jiahua). Results are compared with behavior and uptake of As. Pot experiments were conducted under controlled conditions in a climate chamber over a period of 50 days. In pots without rice plants, flooding increased both the concentration of dissolved Sb (up to ca. 2000 μg L(-1)) and As (up to ca. 1500 μg L(-1)). When rice was present, Fe plaque developing on rice roots acted as a scavenger for both As and Sb, whereby the concentration of As, but not Sb, in porewater decreased substantially. Dissolved Sb in porewater, which occurred mainly as Sb(V), correlated with Ca, indicating a solubility governed by Ca antimonate. No significant differences in bioaccumulation factor and translocation factor between Sb and As were observed. Greater relative concentration of Sb(V) was found in rice shoots compared to rice root and porewater, indicating either a preferred uptake of Sb(V) or possibly an oxidation of Sb(III) to Sb(V) in shoots. Adding soil amendments (olivine, hematite) to the paddy soil had no effect on Sb and As concentrations in porewater. PMID:22309044

  18. [Effects of long-term fertilization on reddish paddy soil quality and its evaluation in a typical double-rice cropping region of China].

    PubMed

    Nie, Jun; Yang, Zeng-Ping; Zheng, Sheng-Xian; Liao, Yu-Lin; Xie, Jian; Xiang, Yan-Wen

    2010-06-01

    In order to quantify the effects of 27 years application of chemical fertilizers, pig manure, and rice straw on the reddish paddy soil quality in double rice cropping region, the indices of soil bulk density, porosity, maximum water holding capacity, normalized mean weight diameter, pH, cation exchange capacity, available nutrients, organic matter, microbial biomass C, enzyme activities, and rice yield were selected as the evaluation indicators, and classified into four functional groups, i. e., resistance to physical degradation, plant nutrients supply and storage, resistance to biochemical degradation, and sustaining of crop productivity. The soil quality index (SQI) was calculated based on the four functional groups. The results showed that the SQI ranged from 0.544 in treatment CK to 0.729 in treatment NPK plus rice straw. Treatments PK, NP, and NK induced soil degradation, compared to treatment NPK. The deficiencies of soil P and K were the main limiting factors for the double rice productivity in reddish paddy soil area. Even though 30 t x hm(-2) x a(-1) of pig manure and 4.2 t x hm(-2) x a(-1) of rice straw were applied, the soil P and K were still not adequate for the requirement of rice growth. There was no obvious effect of long-term application of lime on the reddish paddy soil quality. The combined application of NPK with organic manure was an important and effective measure in improving soil quality in double rice cropping regions of Southern China. PMID:20873620

  19. A humic substance analogue AQDS stimulates Geobacter sp. abundance and enhances pentachlorophenol transformation in a paddy soil.

    PubMed

    Chen, Manjia; Tong, Hui; Liu, Chengshuai; Chen, Dandan; Li, Fangbai; Qiao, Jiangtao

    2016-10-01

    Soil humic substances can be used as redox mediators in accelerating the biotransformation of organic pollutants, and humus-respiring bacteria are widely distributed in soils. However, the impact of humic substances on the soil microbial community during the biotransformation of organic pollutants is expected to be crucial while remains to be unclear. In this study, the biostimulation of indigenous microbial communities and the consequent effects on anaerobic transformation of pentachlorophenol (PCP) by a model humic substance, anthraquinone-2,6-disulfonate (AQDS), were systematically investigated in a paddy soil. The addition of AQDS was observed to increase the production of HCl-extractable Fe(II) and enhance the PCP transformation rates consequently. The pseudo-first-order rate constants of the PCP transformation showed a positive exponential relationship with the AQDS dosage. The terminal restriction fragment length polymorphism (T-RFLP) results indicated the substantial effect of added AQDS on soil microbial community. The enhanced abundance of Geobacter sp. was disclosed to be most critical for accelerated PCP transformation when with AQDS, in which Geobacter sp. functioned for promoting the generation of active Fe(II) and consequently enhancing the PCP transformation rates. The transformation rates of PCP were exponentially correlated with the abundance of Geobacter sp. positively. The findings are expected to improve the understanding of diversity and ubiquity of microorganisms in humic substances-rich soils for accelerating the transformations of soil chlorinated pollutants. PMID:27372263

  20. Activity of soil dehydrogenases, urease, and acid and alkaline phosphatases in soil polluted with petroleum.

    PubMed

    Wyszkowska, Jadwiga; Wyszkowski, Mirosław

    2010-01-01

    This study was undertaken to (1) determine the effects of petroleum pollution on changes in the biochemical properties of soil and (2) demonstrate whether the application of compost, bentonite, and calcium oxide is likely to restore biological balance. Petroleum soil pollution at a dose ranging from 2.5 to 10 cm(3)/kg disturbed the biochemical balance as evidenced by inhibition of the activities of soil dehydrogenases (SDH), urease (URE), and acid phosphatase (ACP). The greatest change was noted in the activity of SDH, whereas the least change occurred in URE. Petroleum significantly increased the activity of soil alkaline phosphatase (ALP) in soil used for spring rape, whereas in soil used for oat harvest there was decreased ALP activity. The application of compost, bentonite, and calcium oxide to soil proved effective in mitigating the adverse effects of petroleum on the activities of soil enzymes. Soil enrichment with compost, bentonite, and calcium oxide was found to stimulate the activities of URE and ALP and inhibit the activity of ACP. The influence of bentonite and calcium oxide was greater than that of compost. Calcium oxide and, to a lesser extent, compost were found to increase the activity of SDH, whereas bentonite exerted the opposite effect, especially in the case of the main crop, spring rape. The activities of SDH, URE, and ACP were higher in soil used for rape than that for oats. In contrast the activity of ALP was higher in soil used for oats. Data thus indicate that compost and especially bentonite and calcium oxide exerted a positive effect on activities of some enzymes in soil polluted with petroleum. Application of neutralizing additives to soil restored soil biological balance by counteracting the negative influence of petroleum on activities of URE and ALP. PMID:20706945

  1. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies.

    PubMed

    Liao, Guojian; Wu, Qianhua; Feng, Renwei; Guo, Junkang; Wang, Ruigang; Xu, Yingming; Ding, Yongzhen; Fan, Zhilian; Mo, Liangyu

    2016-04-01

    Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils. PMID:26807822

  2. Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening and foliage dressing technologies.

    PubMed

    Liao, Guojian; Wu, Qianhua; Feng, Renwei; Guo, Junkang; Wang, Ruigang; Xu, Yingming; Ding, Yongzhen; Fan, Zhilian; Mo, Liangyu

    2016-04-01

    Paddy soils in many regions of China have been seriously polluted by multiple heavy metals or metalloids, such as arsenic (As), cadmium (Cd) and lead (Pb). In order to ensure the safety of food and take full advantage of the limited farmland resources of China, exploring an effective technology to repair contaminated soils is urgent and necessary. In this study, three technologies were employed, including variety screening, water management and foliage dressing, to assess their abilities to reduce the accumulation of Cd and As in the grains of different rice varieties, and meanwhile monitor the related yields. The results of variety screening under insufficient field drying condition showed that the As and Cd contents in the grains of only four varieties [Fengliangyouxiang 1 (P6), Zhongzheyou 8 (P7), Guangliangyou 1128 (P10), Y-liangyou 696 (P11)] did not exceed their individual national standard. P6 gained a relatively high grain yield but accumulated less As and Cd in the grains despite of the relatively high As and Cd concentrations in the rhizosphere soil. However, long-playing field drying in water management trial significantly increased Cd but decreased As content in the grains of all tested three varieties including P6, suggesting an important role of water supply in controlling the accumulation of grain As and Cd. Selenium (Se) showed a stronger ability than silicon (Si) to reduce As and Cd accumulation in the grains of Fengliangyou 4 (P2) and Teyou 524 (P13), and keep the yields. The results of this study suggest that combined application of water management and foliage dressing may be an efficient way to control As and Cd accumulation in the grains of paddy rice exposing to As- and Cd-contaminated soils.

  3. Impact of S fertilizers on pore-water Cu dynamics and transformation in a contaminated paddy soil with various flooding periods.

    PubMed

    Yang, Jianjun; Zhu, Shenhai; Zheng, Cuiqing; Sun, Lijuan; Liu, Jin; Shi, Jiyan

    2015-04-01

    Impact of S fertilization on Cu mobility and transformation in contaminated paddy soils has been little reported. In this study, we investigated the dynamics and transformation of dissolved and colloidal Cu in the pore water of a contaminated paddy soil after applying ammonium sulphate (AS) and sulfur coated urea (SCU) with various flooding periods (1, 7 and 60 days). Compared to the control soil, the AS-treated soil released more colloidal and dissolved Cu over the entire flooding period, while the SCU-treated soil had lower colloidal Cu after 7-day flooding but higher colloidal and dissolved Cu after 60-day flooding. Microscopic X-ray fluorescence (μ-XRF) analysis found a close relationship between Fe and Cu distribution on soil colloids after 60-day flooding, implying the formation of colloidal Fe/Cu sulphide coprecipitates. Cu K-edge X-ray absorption near-edge structure (XANES) spectroscopy directly revealed the transformation of outer-sphere complexed Cu(II) species to Cu(II) sulphide and reduced Cu2O in the colloids of S-treated soils after 60-day flooding. These results demonstrated the great influence of S fertilization on pore-water Cu mobility by forming Cu sulphide under flooding conditions, which facilitated our understanding and control of Cu loss in contaminated paddy soils under S fertilization. PMID:25603292

  4. Impact of S fertilizers on pore-water Cu dynamics and transformation in a contaminated paddy soil with various flooding periods.

    PubMed

    Yang, Jianjun; Zhu, Shenhai; Zheng, Cuiqing; Sun, Lijuan; Liu, Jin; Shi, Jiyan

    2015-04-01

    Impact of S fertilization on Cu mobility and transformation in contaminated paddy soils has been little reported. In this study, we investigated the dynamics and transformation of dissolved and colloidal Cu in the pore water of a contaminated paddy soil after applying ammonium sulphate (AS) and sulfur coated urea (SCU) with various flooding periods (1, 7 and 60 days). Compared to the control soil, the AS-treated soil released more colloidal and dissolved Cu over the entire flooding period, while the SCU-treated soil had lower colloidal Cu after 7-day flooding but higher colloidal and dissolved Cu after 60-day flooding. Microscopic X-ray fluorescence (μ-XRF) analysis found a close relationship between Fe and Cu distribution on soil colloids after 60-day flooding, implying the formation of colloidal Fe/Cu sulphide coprecipitates. Cu K-edge X-ray absorption near-edge structure (XANES) spectroscopy directly revealed the transformation of outer-sphere complexed Cu(II) species to Cu(II) sulphide and reduced Cu2O in the colloids of S-treated soils after 60-day flooding. These results demonstrated the great influence of S fertilization on pore-water Cu mobility by forming Cu sulphide under flooding conditions, which facilitated our understanding and control of Cu loss in contaminated paddy soils under S fertilization.

  5. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  6. Positive feedback of crop residue incorporation on dissolved organic carbon contents under anaerobic conditions in temperate rice paddy soils

    NASA Astrophysics Data System (ADS)

    Said-Pullicino, Daniel; Sodano, Marcella; Bertora, Chiara; Lerda, Cristina; Sacco, Dario; Celi, Luisella

    2016-04-01

    Rice paddy soils are generally characterized by large concentrations and fluxes of DOC in comparison to other ecosystems. Our recent studies have shown that the combination of relatively high pore-water DOC concentrations under anoxic soil conditions (>10-20 mg C l‑1) and important percolation fluxes of water during field flooding may contribute significant organic C inputs into the subsoil (18-51 g C m‑2) over the cropping season. Crop residues incorporated into the soil after harvest represent the main input of organic C into paddy soils, returning about 200-300 g C m‑2 y‑1 in single-cropped rice paddies. The anaerobic decomposition of these residues may supply important amounts of DOC to soil pore waters. Moreover, the supply of electron donors with the input of residue-derived labile OM may further increase DOC contents by stimulating the microbially-catalyzed reductive dissolution of Fe and Mn oxyhydroxides under anoxic conditions, and release of DOC previously stabilized on the mineral matrix (i.e. positive feedback). This could have important implications on organic C inputs into the subsoil as well as substrate availability for methane production. We therefore hypothesized that crop residue management practices that influence the amount of labile organic matter present in the soil at the time of field flooding may strongly influence soil solution DOC concentrations as well as the positive feedback on the release of soil-derived DOC. We tested this hypothesis at field-scale by evaluating variations in the contents and quality of DOC above and beneath the plough pan over the cropping season as a function of crop residue management practices involving: tillage and crop residue incorporation in spring (SPR), tillage and crop residue incorporation in spring, dry seeding and 1 month delayed flooding (DRY), tillage and crop residue incorporation in autumn (AUT), and straw removal after harvest and tillage in spring (REM). Moreover, we linked changes in DOC

  7. Positive feedback of crop residue incorporation on dissolved organic carbon contents under anaerobic conditions in temperate rice paddy soils

    NASA Astrophysics Data System (ADS)

    Said-Pullicino, Daniel; Sodano, Marcella; Bertora, Chiara; Lerda, Cristina; Sacco, Dario; Celi, Luisella

    2016-04-01

    Rice paddy soils are generally characterized by large concentrations and fluxes of DOC in comparison to other ecosystems. Our recent studies have shown that the combination of relatively high pore-water DOC concentrations under anoxic soil conditions (>10-20 mg C l-1) and important percolation fluxes of water during field flooding may contribute significant organic C inputs into the subsoil (18-51 g C m-2) over the cropping season. Crop residues incorporated into the soil after harvest represent the main input of organic C into paddy soils, returning about 200-300 g C m-2 y-1 in single-cropped rice paddies. The anaerobic decomposition of these residues may supply important amounts of DOC to soil pore waters. Moreover, the supply of electron donors with the input of residue-derived labile OM may further increase DOC contents by stimulating the microbially-catalyzed reductive dissolution of Fe and Mn oxyhydroxides under anoxic conditions, and release of DOC previously stabilized on the mineral matrix (i.e. positive feedback). This could have important implications on organic C inputs into the subsoil as well as substrate availability for methane production. We therefore hypothesized that crop residue management practices that influence the amount of labile organic matter present in the soil at the time of field flooding may strongly influence soil solution DOC concentrations as well as the positive feedback on the release of soil-derived DOC. We tested this hypothesis at field-scale by evaluating variations in the contents and quality of DOC above and beneath the plough pan over the cropping season as a function of crop residue management practices involving: tillage and crop residue incorporation in spring (SPR), tillage and crop residue incorporation in spring, dry seeding and 1 month delayed flooding (DRY), tillage and crop residue incorporation in autumn (AUT), and straw removal after harvest and tillage in spring (REM). Moreover, we linked changes in DOC

  8. [Effects of applying different kind fertilizers on enzyme activities related to carbon, nitrogen, and phosphorus cycles in reddish paddy soil].

    PubMed

    Xu, Li-Li; Wang, Qiu-Bing; Zhang, Xin-Yu; Sun, Xiao-Min; Dai, Xiao-Qin; Yang, Feng-Ting; Bu, Jin-Feng; Wang, Hui-min

    2013-04-01

    Based on the long-term fixed position experimental data from Qianyanzhou Ecological Experiment Station, Chinese Academy of Sciences in 1998, this paper analyzed the effects of applying different kind fertilizers (straw, ST; pig manure, OM; and chemical fertilizer, NPK) on the nutrients (C, N, and P) status and the activities of related enzymes ( beta-1,4-glucosidase, betaG; beta-1,4-N-acetylglucosaminidase, NAG; L-leucine aminopeptidase, LAP; and acid phosphatase, AP) in reddish paddy soil. With the application of OM, the activities of soil betaG, NAG, and LAP increased significantly, as compared with other treatments, and were 1.4, 2. 6, and 1.9 times higher than the control (CK) , respectively. Applying OM also improved the ratio of soil organic carbon to total nitrogen (C/N), but decreased the soil betaG/(NAG+LAP) ratio, suggesting that pig manure could benefit the degradation of soil cellulose and the accumulation of soil organic carbon. Applying NPK increased the activities of soil betaG, NAG, and LAP, but decreased the AP activity, with a decrement of 34% as compared with CK. Under the application of NPK, the soilbetaG/AP and (NAG+ LAP)/AP ratios increased, but the ratios of soil organic carbon to total phosphorus (C/P) and of soil total nitrogen to total phosphorus (N/P) decreased, indicating that chemical fertilizers could induce the accumulation of soil inorganic phosphorus, and inhibit the microbial functions of degrading polysaccharides and phosphate phospholipids.

  9. [Effects of cropping systems on nitrous oxide emissions from paddy soils during the rice-growing season].

    PubMed

    Xiong, Zhengqin; Xing, Guangxi; Shi, Shulian; Du, Lijuan

    2003-10-01

    Cropping systems influence nitrous oxide (N2O) emissions from agricultural soils. Effects of 3 rice-based cropping systems on N2O emissions from paddy soils in pot experiment were investigated with closed chambers in triplicate. The results demonstrated that the seasonal N2O emission rate of the rice pot under rice-wheat cropping system was obviously higher than that of the early rice pot under double rice-wheat system, being 4.21 and 2.17 kg.hm-2, respectively. No distinct difference was observed between the seasonal average fluxes, which were 116.9 and 117.6 micrograms.m-2.h-1 respectively. Both of above mentioned seasonal average fluxes were greatly higher than that of the late rice pot under early rice-late rice-wheat cropping system and of rice pot under rice-flooding fallow system, being 67.0 and 42.1 micrograms.m-2.h-1 respectively. More than 91% of the seasonal emission was focused on the first half growing period both in the rice season in rice-wheat system and in the early rice season in double rice-wheat system in which the previous cropping was upland wheat. 91% of the seasonal emission was focused on the water drainage period including the mid-season aeration and final drainage in the late rice season in double rice-wheat system in which the previous cropping was lowland rice. The results implied that cropping system and water status of previous cropping impacted N2O emission from paddy soil. PMID:14986383

  10. Effect of Elevated CO2 Concentration, Elevated Temperature and No Nitrogen Fertilization on Methanogenic Archaeal and Methane-Oxidizing Bacterial Community Structures in Paddy Soil

    PubMed Central

    Liu, Dongyan; Tago, Kanako; Hayatsu, Masahito; Tokida, Takeshi; Sakai, Hidemitsu; Nakamura, Hirofumi; Usui, Yasuhiro; Hasegawa, Toshihiro; Asakawa, Susumu

    2016-01-01

    Elevated concentrations of atmospheric CO2 ([CO2]) enhance the production and emission of methane in paddy fields. In the present study, the effects of elevated [CO2], elevated temperature (ET), and no nitrogen fertilization (LN) on methanogenic archaeal and methane-oxidizing bacterial community structures in a free-air CO2 enrichment (FACE) experimental paddy field were investigated by PCR-DGGE and real-time quantitative PCR. Soil samples were collected from the upper and lower soil layers at the rice panicle initiation (PI) and mid-ripening (MR) stages. The composition of the methanogenic archaeal community in the upper and lower soil layers was not markedly affected by the elevated [CO2], ET, or LN condition. The abundance of the methanogenic archaeal community in the upper and lower soil layers was also not affected by elevated [CO2] or ET, but was significantly increased at the rice PI stage and significantly decreased by LN in the lower soil layer. In contrast, the composition of the methane-oxidizing bacterial community was affected by rice-growing stages in the upper soil layer. The abundance of methane-oxidizing bacteria was significantly decreased by elevated [CO2] and LN in both soil layers at the rice MR stage and by ET in the upper soil layer. The ratio of mcrA/pmoA genes correlated with methane emission from ambient and FACE paddy plots at the PI stage. These results indicate that the decrease observed in the abundance of methane-oxidizing bacteria was related to increased methane emission from the paddy field under the elevated [CO2], ET, and LN conditions. PMID:27600710

  11. Role of Iron Oxyhydrates in Accumulation and Stabilization of Soil Organic Matter in Rice Paddy: Case Studies from China

    NASA Astrophysics Data System (ADS)

    Pan, G.; Lu, H.; Sun, J.; Li, L.; Liu, X.; Zheng, J.; Zhang, X.; Cheng, K.

    2014-12-01

    Iron is an important element in soils, often in forms either of crystalline mineral or amorphous colloids upon redox cycling in hydromorphic soils. However, role of iron particularly via oxyhydrates in organic matter dynamics n rice soils has been not yet well assessed. Rice paddy soils of China have been recognized as a unique type of Anthrosols mostly with iron accumulation and dynamic movement in soil profile through long term hydroagric management. Soil organic matter contents of rice soils are shown significantly correlated with the contents of free or amorphous iron oxyhydrates. And organic matter accumulation in young rice soils followed iron oxyhydrate content changes as rice cultivation proceed, which could be often traced by the changes in iron oxyhydrate-bound OC fractions. The importance of association of OC with iron oxyhydrates is known by the fact that organic carbon was not related to total free iron oxyhydrates in wetland but in rice soil shifted from the wetlands, with OC contents much higher in rice soils than in the precedent wetland soil. This could be attributed to the chemical binding of OC to oxyhydrate surface, contributing to the stabilization of newly sequestered OC. This has been again confirmed by lab incubation studies, where total mineralization of OC has been found significantly lower in iron-oxyhrate rich soil than in iron-oxyhrate poor soils. This effect has been further explored in an incubation study with experimental warming that the temperature dependence of OC mineralization of rice soils from a long term fertilizer treated trial was linked to the abundance of iron oxyhydrate content, varying with the long term management practice. Initial carbon sequestration in rice soil subject to new carbon input was promoted by the iron oxyhydrates in the soil, showing a fast increase in iron hydrate-bound OC in the initial stage. The bound OC exerted further stabilization through enhanced humification to form residual OC fraction in long

  12. Relationship of catchment topography and soil hydraulic characteristics to lake alkalinity in the northeastern United States

    SciTech Connect

    Wolock, D.M.; Hornberger, G.M.; Beven, K.J.; Campbell, W.G.

    1989-01-01

    The authors undertook the task of determining whether base flow alkalinity of surface waters in the northeastern United States is related to indices of soil contact time and flow path partitioning that are derived from topographic and soils information. The influence of topography and soils on catchment hydrology has been incorporated previously in the variable source area model TOPMODEL as the relative frequency distribution of ln(a/Kb tan B), where ln is the Naperian logarithm, a is the area drained per unit contour, K is the saturated hydraulic conductivity, b is the soil depth, and tan B is the slope. Using digital elevation and soil survey data, the authors calculated the ln (a/Kb tan B) distribution for 145 catchments. Indices of flow path partitioning and soil contact time were derived from the ln(a/Kb tan B) distributions and compared to measurements of alkalinity in lakes to which the catchments drain. They found that alkalinity was, in general, positively correlated with the index of soil contact time, whereas the correlation between alkalinity and the flow path partitioning index was weak at best. A portion of the correlation between the soil contact time index and alkalinity was attributable to covariation with soil base saturation and cation exchange capacity, while another portion was found to be independent of these factors. Although their results indicate that catchments with long soil contact time indices are most likely to produce high alkalinity base flow, a sensitivity analysis of TOPMODEL suggests that surface waters of these same watersheds may be susceptible to alkalinity depressions during storm events, due to the role of flow paths.

  13. Response of hydrolytic enzyme activities and nitrogen mineralization to fertilizer and organic matter application in subtropical paddy soils

    NASA Astrophysics Data System (ADS)

    Kader, Mohammed Abdul; Yeasmin, Sabina; Akter, Masuda; Sleutel, Steven

    2016-04-01

    Driving controllers of nitrogen (N) mineralization in paddy soils, especially under anaerobic soil conditions, remain elusive. The influence of exogenous organic matter (OM) and fertilizer application on the activities of five relevant enzymes (β-glucosaminidase, β-glucosidase, L-glutaminase, urease and arylamidase) was measured in two long-term field experiments. One 18-years field experiment was established on a weathered terrace soil with a rice-wheat crop rotation at the Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) having five OM treatments combined with two mineral N fertilizer levels. Another 30-years experiment was established on a young floodplain soil with rice-rice crop rotation at the Bangladesh Agricultural University (BAU) having eight mineral fertilizer treatments combined with organic manure. At BSMRAU, N fertilizer and OM amendments significantly increased all enzyme activities, suggesting them to be primarily determined by substrate availability. At BAU, non-responsiveness of β-glucosidase activity suggested little effect of the studied fertilizer and OM amendments on general soil microbial activity. Notwithstanding probably equal microbial demand for N, β-glucosaminidase and L-glutaminase activities differed significantly among the treatments (P>0.05) and followed strikingly opposite trends and correlations with soil organic N mineralization. So enzymatic pathways to acquire N differed by treatment at BAU, indicating differences in soil N quality and bio-availability. L-glutaminase activity was significantly positively correlated to the aerobic and anaerobic N mineralization rates at both field experiments. Combined with negative correlations between β-glucosaminidase activity and N mineralization rates, it appears that terminal amino acid NH2 hydrolysis was a rate-limiting step for soil N mineralization at BAU. Future investigations with joint quantification of polyphenol accumulation and binding of N, alongside an

  14. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    PubMed

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising. PMID:26629644

  15. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value.

    PubMed

    Yu, Huan-Yun; Liu, Chuanping; Zhu, Jishu; Li, Fangbai; Deng, Dong-Mei; Wang, Qi; Liu, Chengshuai

    2016-02-01

    Cadmium (Cd) availability can be significantly affected by soil properties. The effect of pH value on Cd availability has been confirmed. Paddy soils in South China generally contain high contents of iron (Fe). Thus, it is hypothesized that Fe fractions, in addition to pH value, may play an important role in the Cd bioavailability in paddy soil and this requires further investigation. In this study, 73 paired soil and rice plant samples were collected from paddy fields those were contaminated by acid mine drainage containing Cd. The contents of Fe in the amorphous and DCB-extractable Fe oxides were significantly and negatively correlated with the Cd content in rice grain or straw (excluding DCB-extractable Fe vs Cd in straw). In addition, the concentration of HCl-extractable Fe(II) derived from Fe(III) reduction was positively correlated with the Cd content in rice grain or straw. These results suggest that soil Fe redox could affect the availability of Cd in rice plant. Contribution assessment of soil properties to Cd accumulation in rice grain based on random forest (RF) and stochastic gradient boosting (SGB) showed that pH value should be the most important factor and the content of Fe in the amorphous Fe oxides should be the second most important factor in affecting Cd content in rice grain. Overall, compared with the studies from temperate regions, such as Europe and northern China, Fe oxide exhibited its unique role in the bioavailability of Cd in the reddish paddy soil from our study area. The exploration of practical remediation strategies for Cd from the perspective of Fe oxide may be promising.

  16. Biochar amendment reduces rice Cd uptake in polluted and unpolluted paddy soils: a long term field experiment

    NASA Astrophysics Data System (ADS)

    Bian, R.; Cui, L.; Pan, G.; Li, L.

    2012-04-01

    The bioavailability of Cd in agricultural soils has been a great health concern due to the potential risk through exposure of agro-food produced in Cd-contaminated fields. Yet, rice subject to Cd contamination appears to have expanded at the last decade due to irrigation with waste water and chemical fertilization in south china. This is supposed to raise the Cd accumulation of rice grain. Therefore, techniques to reduce Cd mobility and plant uptake have been a urgent demand for food safety in China.A field experiment was performed in a high-polluted (HP), mid-pollute (MP) and unpolluted (UP) paddy soil with biochar(BC) amendment in 2011. BC was applied in HP, MP and UP in 2008, 2009, 2009 with the rates of 0, 10, 20, 40t ha-1 in HP, MP and 0, 40t ha-1 in UP. The experiment was monitored in 2011. It was observed that BC amendment did not affect rice grain yield but significantly increased soil pH by 0.58-0.77, 1.30 units in MP, UP and there was no difference in HP. The Cacl2 extracted Cd in soil was decreased by 18.1%-28.9% in HP, 49.3%-67.5% in MP and 83.1% in UP, respectively. Meanwhile, H2O extractable Cd in soil was decreased by 20.0%-31.7% in HP, 32.7%-44.2% in MP and 25.0% in UP, respectively. With the BC treatment, rice grain Cd concentration was decreased 4.7%-17.6% in HP, 35.9%-53.4% in MP. Especially in UP field, the rice grain Cd concentration was decreased from 0.22mg kg-1 to 0.07mg kg-1 which was below National standard (0.20mg kg-1) in China. The straw and root Cd contents were also significantly decreased with BC application. Therefore, BC amendment in polluted and unpolluted fields can sustainably reduce rice Cd uptake and it may offer a basic option to reduce Cd levels in rice. Keywords: Biochar, Cd, bioavailability, paddy soil, food safety

  17. [Effects of different iron oxides on methane emission in paddy soil as related to drying/wetting cycles].

    PubMed

    Zhang, Tian-Jiao; Tang, Jia; Zhuang, Li; Xiong, Ge-Sheng; Liu, Zhi; Zhou, Shun-Gui

    2014-03-01

    This study investigated the effects of iron oxides with different crystallinities, ferrihydrite (SF) and hematite (SH), on the methane emission in paddy soil of South China under different water conditions, alternative drying/wetting cycles (DW) and continuous flooding (CF). The rates of methane emission, methane production potential and concentrations of Fe(II) and Fe(III) were determined. Results showed that compared with CF, the average methane emission rate was greatly inhibited by DW over 61%, and the addition of iron oxides reduced methane emission rates by 53%. Under the circumstance of DW and iron oxides addition, the combined inhibition effect on the average methane emission (65%-94%) and methane production potential (57%-93%) was significantly higher than the single effect caused by DW or iron oxides. Interestingly, DW coupling poorly crystalline ferrihydrite (SF-DW, 94%) posed a more significantly inhibitory effect on the methane emission than coupling crystalline hematite (SH-DW, 65%). Statistical analysis showed that there was a significantly negative correlation between the Fe(III) concentrations and the methane emission rates (R2 = -0.98, P < 0.01). Experimental results showed that DW facilitated the cyclic regeneration of Fe(III), and the Fe(III)/Fe(II) cycle in poorly crystalline ferrihydrite was more susceptible to DW than hematite. This study suggested that alternative drying/wetting cycles can remarkably enhance the inhibitory effect of iron oxides on methane emission from paddy soil, and the coupled suppression effect of DW and poorly crystalline ferrihydrite is more obvious than the coupled effect of DW and crystalline hematite.

  18. Community structure and abundance of ammonia-oxidizing archaea and bacteria after conversion from soybean to rice paddy in albic soils of Northeast China.

    PubMed

    Wang, Jing; Wang, Weidong; Gu, Ji-Dong

    2014-03-01

    Community composition of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in the albic soil grown with soybean and rice for different years was investigated by construction of clone libraries, denaturing gradient gel electrophoresis (DGGE), and quantitative polymerase chain reaction (q-PCR) by PCR amplification of the ammonia monooxygenase subunit A (amoA) gene. Soil samples were collected at two layers (0-5 and 20-25 cm) from a soybean field and four rice paddy fields with 1, 5, 9, and 17 years of continuous rice cultivation. Both the community structures and abundances of AOA and AOB showed detectable changes after conversion from soybean to rice paddy judged by clone library, DGGE, and q-PCR analyses. In general, the archaeal amoA gene abundance increased after conversion to rice cultivation, while bacterial amoA gene abundance decreased. The abundances of both AOA and AOB were higher in the surface layer than the bottom one in the soybean field, but a reverse trend was observed for AOB in all paddy samples regardless of the duration of paddy cultivation. Phylogenetic analysis identified nine subclusters of AOA and seven subclusters of AOB. Community composition of both AOA and AOB was correlated with available ammonium and increased pH value caused by flooding in multiple variance analysis. Community shift of AOB was also observed in different paddy fields, but the two layers did not show any detectable changes in DGGE analysis. Conversion from soybean to rice cultivation changed the community structure and abundance of AOA and AOB in albic agricultural soil, which requires that necessary cultivation practice be followed to manage the N utilization more effectively. PMID:24092004

  19. Toxic assessment of the leachates of paddy soils and river sediments from e-waste dismantling sites to microalga, Pseudokirchneriella subcapitata.

    PubMed

    Nie, Xiangping; Fan, Canpeng; Wang, Zhaohui; Su, Tian; Liu, Xinyu; An, Taicheng

    2015-01-01

    The potential adverse effects of e-waste recycling activity on environment are getting increasing concern. In this work, a model alga, Pseudokirchneriella subcapitata, was employed to assess the toxic effects of the leachates of paddy soils and river sediments collected from e-waste dismantling sites. Chemical analysis of the paddy soils and river sediments and their leachates were carried out and the growth rate, chlorophyll a fluorescence and anti-oxidative systems of the alga were measured. Results showed that two leachates decreased the amount of PSII active reaction centers and affected photosynthesis performance, interfered with chlorophyll synthesis and inhibited algal growth. Some chemical pollutants in the sediments and soils such as polybrominated diphenyl ethers (PBDEs) and metals derived from e-waste recycling activity may impose oxidative stress on algae and affect the activity of anti-oxidative enzymes such as GST, SOD, CAT and APX. The leachates of both river sediments and paddy soils are potentially toxic to the primary producers, P. subcapitata and the leachate from sediments was more deleterious than that from soils. PMID:25450930

  20. Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil.

    PubMed

    Zhou, Hang; Zhou, Xin; Zeng, Min; Liao, Bo-Han; Liu, Li; Yang, Wen-Tao; Wu, Yan-Ming; Qiu, Qiong-Yao; Wang, Ying-Jie

    2014-03-01

    Stabilization of heavy metals in situ was investigated. Two combined amendments (LS, limestone+sepiolite; HZ, hydroxyhistidine+zeolite) were applied at ratios of 0.2%, 0.4%, and 0.8% (w/w) to paddy soil with multi-metal (Pb, Cd, Cu, and Zn) contamination. The effects of these two combined amendments on heavy metal bioavailability in soil, and on uptake and accumulation of heavy metals in rice plants were investigated. Application of LS and HZ significantly increased soil pH values and cation exchange capacity contents, and resulted in a reduction in exchangeable fraction of metals and in extract metal concentrations of amended soils through toxicity characteristic leaching procedure (TCLP). LS and HZ obviously inhibited uptake and accumulation of Pb, Cd, Cu, and Zn in rice plants. Compared with the control soil, concentrations of Pb, Cd, Cu, and Zn in brown rice were decreased by 10.6-31.8%, 16.7-25.5%, 11.5-22.1%, and 11.7-16.3%, respectively, as a result of 0.2% to 0.8% addition of LS, and decreased by 5.1-40.8%, 16.7-20.0%, 8.1-16.2%, and 13.3-21.7%, respectively, as a result of 0.2-0.8% addition of HZ. Significant positive linear correlations were found between heavy metal concentrations in TCLP extracts and those in rice tissues except for Pb. Extracting heavy metals with TCLP was a more suitable method for estimating heavy metal bioavailability concentrations of amended soil than exchangeable fraction of heavy metals, because the latter underestimated heavy metal bioavailability. These results demonstrate that LS and HZ could be effective in reducing heavy metal bioavailability and accumulation in rice grown on multi-metal-contaminated soils.

  1. Assessment of heavy metals (Cd and Pb) and micronutrients (Cu, Mn, and Zn) of paddy (Oryza sativa L.) field surface soil and water in a predominantly paddy-cultivated area at Puducherry (Pondicherry, India), and effects of the agricultural runoff on the elemental concentrations of a receiving rivulet.

    PubMed

    Reddy, M Vikram; Satpathy, Deepmala; Dhiviya, K Shyamala

    2013-08-01

    The concentrations of toxic heavy metals-Cd and Pb and micronutrients-Cu, Mn, and Zn were assessed in the surface soil and water of three different stages of paddy (Oryza sativa L.) fields, the stage I-the first stage in the field soon after transplantation of the paddy seedlings, holding adequate amount of water on soil surface, stage II-the middle stage with paddy plants of stem of about 40 cm length, with sufficient amount of water on the soil surface, and stage III-the final stage with fully grown rice plants and very little amount of water in the field at Bahour, a predominantly paddy cultivating area in Puducherry located on the southeast Coast of India. Comparison of the heavy metal and micronutrient concentrations of the soil and water across the three stages of paddy field showed their concentrations were significantly higher in soil compared with that of water (p < 0.05) of the fields probably because of accumulation and adsorption in soil. The elemental concentrations in paddy soil as well as water was in the ranking order of Cd > Mn > Zn > Cu > Pb indicating concentration of Cd was maximum and Pb was minimum. The elemental concentrations in both soil and water across the three stages showed a ranking order of stage II > stage III > stage I. The runoff from the paddy fields has affected the elemental concentrations of the water and sediment of an adjacent receiving rivulet.

  2. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    PubMed

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role. PMID:27209244

  3. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    PubMed

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role.

  4. Novel anaerobic ultramicrobacteria belonging to the Verrucomicrobiales lineage of bacterial descent isolated by dilution culture from anoxic rice paddy soil.

    PubMed Central

    Janssen, P H; Schuhmann, A; Mörschel, E; Rainey, F A

    1997-01-01

    The use of dilution culture techniques to cultivate saccharolytic bacteria present in the anoxic soil of flooded rice microcosms allowed the isolation of three new strains of bacteria, typified by their small cell sizes, with culturable numbers estimated at between 1.2 x 10(5) and 7.3 x 10(5) cells per g of dry soil. The average cell volumes of all three strains were 0.03 to 0.04 microns3, and therefore they can be termed ultramicrobacteria or "dwarf cells." The small cell size is a stable characteristic, even when the organisms grow at high substrate concentrations, and thus is not a starvation response. All three strains have genomic DNA with a mol% G+C ratio of about 63, are gram negative, and are motile by means of a single flagellum. The three new isolates utilized only sugars and some sugar polymers as substrates for growth. The metabolism is strictly fermentative, but the new strains are oxygen tolerant. Sugars are metabolized to acetate, propionate, and succinate. Hydrogen production was not significant. In the presence of 0.2 atm of oxygen, the fermentation end products or ratios did not change. The phylogenetic analysis on the basis of 16S ribosomal DNA (rDNA) sequence comparisons indicates that the new isolates belong to a branch of the Verrucomicrobiales lineage and are closely related to a cloned 16S rDNA sequence (PAD7) recovered from rice paddy field soil from Japan. The isolation of these three strains belonging to the order Verrucomicrobiales from a model rice paddy system, in which rice was grown in soil from an Italian rice field, provides some information on the possible physiology and phenotype of the organism represented by the cloned 16S rDNA sequence PAD7. The new isolates also extend our knowledge on the phenotypic and phylogenetic depths of members of the order Verrucomicrobiales, to date acquired mainly from cloned 16S rDNA sequences from soils and other habitats. PMID:9097435

  5. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil.

    PubMed

    Mao, Xinyu; Han, Fengxiang X; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2016-03-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electro-kinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants.

  6. Electro-kinetic remediation coupled with phytoremediation to remove lead, arsenic and cesium from contaminated paddy soil.

    PubMed

    Mao, Xinyu; Han, Fengxiang X; Shao, Xiaohou; Guo, Kai; McComb, Jacqueline; Arslan, Zikri; Zhang, Zhanyu

    2016-03-01

    The objectives of this study were to investigate distribution and solubility of Pb, Cs and As in soils under electrokinetic field and examine the processes of coupled electrokinetic phytoremediation of polluted soils. The elevated bioavailability and bioaccumulation of Pb, As and Cs in paddy soil under an electro-kinetic field (EKF) were studied. The results show that the EKF treatment is effective on lowering soil pH to around 1.5 near the anode which is beneficial for the dissolution of metal(loid)s, thus increasing their overall solubility. The acidification in the anode soil efficiently increased the water soluble (SOL) and exchangeable (EXC) Pb, As and Cs, implying enhanced solubility and elevated overall potential bioavailability in the anode region while lower solubility in the cathode areas. Bioaccumulations of Pb, As and Cs were largely determined by the nature of elements, loading levels and EKF treatment. The native Pb in soil usually is not bioavailable. However, EKF treatment tends to transfer Pb to the SOL and EXC fractions improving the phytoextraction efficiency. Similarly, EKF transferred more EXC As and Cs to the SOL fraction significantly increasing their bioaccumulation in plant roots and shoots. Pb and As were accumulated more in plant roots than in shoots while Cs was accumulated more in shoots due to its similarity of chemical properties to potassium. Indian mustard, spinach and cabbage are good accumulators for Cs. Translocation of Pb, As and Cs from plant roots to shoots were enhanced by EKF. However, this study indicated the overall low phytoextraction efficiency of these plants. PMID:26650421

  7. Spatial Changes in the Bacterial Community Structure along a Vertical Oxygen Gradient in Flooded Paddy Soil Cores

    PubMed Central

    Lüdemann, Heiner; Arth, Inko; Liesack, Werner

    2000-01-01

    Molecular ecology techniques were applied to assess changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Microsensor measurements showed that oxygen was depleted from 140 μM at the floodwater/soil interface to nondetectable amounts at a depth of approximately 2.0 mm and below. Bacterial 16S rRNA gene (rDNA)-based community fingerprint patterns were obtained from 200-μm-thick soil slices of both the oxic and anoxic zones by using the T-RFLP (terminal restriction fragment length polymorphism) technique. The fingerprints revealed a tremendous shift in the community patterns in correlation to the oxygen depletion measured with depth. 16S rDNA clone sequences recovered from the oxic or anoxic zone directly corresponded to those terminal restriction fragments which were highly characteristic of the respective zone. Comparative sequence analysis of these clones identified members of the α and β subclasses of Proteobacteria as the abundant populations in the oxic zone. In contrast, members of clostridial cluster I were determined to be the predominant bacterial group in the oxygen-depleted soil. The extraction of total RNA followed by reverse transcription-PCR of the bacterial 16S rRNA and T-RFLP analysis resulted for both oxic and anoxic zones of flooded soil cores in community fingerprint patterns similar to those obtained by the rDNA-based analysis. This finding suggests that the microbial groups detected on the rDNA level are the metabolically active populations within the oxic and anoxic soil slices examined. PMID:10653747

  8. Pseudomonas zhaodongensis sp. nov., isolated from saline and alkaline soils.

    PubMed

    Zhang, Lei; Pan, Yuanyuan; Wang, Kaibiao; Zhang, Xiaoxia; Zhang, Cheng; Zhang, Shuang; Fu, Xiaowei; Jiang, Juquan

    2015-03-01

    Strain NEAU-ST5-21(T) was isolated from saline and alkaline soils in Zhaodong City, Heilongjiang Province, China. It was aerobic, Gram-stain-negative, rod-shaped and motile with a polar flagellum. It produced yellow-orange colonies with a smooth surface, and grew in the presence of 0-5 % (w/v) NaCl (optimum 0 %, w/v), at temperatures of 20-40 °C (optimum 28 °C) and at pH 7-11 (optimum pH 7). Phylogenetic analyses based on the separate 16S rRNA gene sequences and concatenated 16S rRNA, gyrB and rpoD gene sequences indicated that strain NEAU-ST5-21(T) belongs to the genus Pseudomonas in the class Gammaproteobacteria. The most closely related species is Pseudomonas xanthomarina, whose type strain (KMM 1447(T)) showed gene sequence similarities of 99.0 % for 16S rRNA, 81.8 % for gyrB and 85.0 % for rpoD with strain NEAU-ST5-21(T). DNA-DNA hybridization values between strain NEAU-ST5-21(T) and P. xanthomarina DSM 18231(T), Pseudomonas kunmingensis CGMCC 1.12273(T), Pseudomonas stutzeri DSM 5190(T), Pseudomonas oleovorans subsp. lubricantis DSM 21016(T), Pseudomomas chengduensis CGMCC 2318(T), Pseudomonas alcaliphila DSM 17744(T) and Pseudomonas toyotomiensis DSM 26169(T) were 52±0 % to 25±2 %. The DNA G+C content of strain NEAU-ST5-21(T) was 65 mol%. The major fatty acids (>10 %) were C18 : 1ω7c and/or C18 : 1ω6c, C16 : 1ω7c and/or C16 : 1ω6c and C16 : 0, the predominant respiratory quinone was ubiquinone 9, and polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, one unknown phospholipid, phosphatidylglycerol, one unknown aminolipid, one unknown lipid and a glycolipid. The proposed name is Pseudomonas zhaodongensis sp. nov., NEAU-ST5-21(T) ( = ACCC 06362(T) = DSM 27559(T)) being the type strain. PMID:25574037

  9. Lysinibacillus halotolerans sp. nov., isolated from saline-alkaline soil.

    PubMed

    Kong, Delong; Wang, Yanwei; Zhao, Bingqiang; Li, Yanting; Song, Jinlong; Zhai, Yi; Zhang, Chi; Wang, Huimin; Chen, Xiaorong; Zhao, Bin; Ruan, Zhiyong

    2014-08-01

    A novel aerobic, halotolerant bacterium, designated strain LAM612(T), was isolated from saline-alkaline soil samples from Lingxian County, Shandong Province, China. Cells of strain LAM612(T) were Gram-reaction-positive, endospore-forming, motile and rod-shaped. The optimal temperature and pH for growth were 35 °C and pH 6.0, respectively. Strain LAM612(T) could grow in the presence of up to 10% (w/v) NaCl. The genomic DNA G+C conten was 36.4 mol% as detected by the T(m) method. Comparative analysis of 16S rRNA gene sequences revealed that LAM612(T) was closely related to Lysinibacillus sinduriensis KACC 16611(T) (98.0%), L. chungkukjangi KACC 16626(T) (97.5%), L. massiliensis KCTC 13178(T) (97.4%), L. xylanilyticus KACC 15113(T) (97.2%), L. macroides DSM 54(T) (97.0%) and L. manganicus DSM 26584(T) (96.5%). The DNA-DNA hybridization values between strain LAM612(T) and its closest relatives ranged from 20.6% to 41.9%. The major fatty acids of strain LAM612(T) were iso-C(15 : 0) (40.8%), iso-C(16 : 0) (15.2%) and anteiso-C(15 : 0) (10.8%). The cell-wall peptidoglycan content was A4α (L-Lys-D-Asp). The predominant menaquinone was MK-7 and the main polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unknown phospholipids, five unknown glycolipids and an unknown lipid. Based on the DNA-DNA hybridization results and phenotypic, phylogenetic and chemotaxonomic properties, strain LAM612(T) could be distinguished from the recognized species of the genus Lysinibacillus, and was suggested to represent a novel species of this genus, for which the name Lysinibacillus halotolerans sp. nov. is proposed. The type strain is LAM612(T) ( = ACCC 00718(T) = JCM 19611(T)). PMID:24814335

  10. Highly stable rice-straw-derived charcoal in 3700-year-old ancient paddy soil: evidence for an effective pathway toward carbon sequestration.

    PubMed

    Wu, Mengxiong; Yang, Min; Han, Xingguo; Zhong, Ting; Zheng, Yunfei; Ding, Pin; Wu, Weixiang

    2016-01-01

    Recalcitrant charcoal application is predicted to decelerate global warming through creating a long-term carbon sink in soil. Although many studies have showed high stability of charcoal derived from woody materials, few have focused on the dynamics of straw-derived charcoal in natural environment on a long timescale to evaluate its potential for agricultural carbon sequestration. Here, we examined straw-derived charcoal in an ancient paddy soil dated from ~3700 calendar year before present (cal. year BP). Analytical results showed that soil organic matter consisted of more than 25% of charcoal in charcoal-rich layer. Similarities in morphology and molecular structure between the ancient and the fresh rice-straw-derived charcoal indicated that ancient charcoal was derived from rice straw. The lower carbon content, higher oxygen content, and obvious carbonyl of the ancient charcoal compared with fresh rice straw charcoal implied that oxidation occurred in the scale of thousands years. However, the dominant aromatic C of ancient charcoal indicated that rice-straw-derived charcoal was highly stable in the buried paddy soil due to its intrinsic chemical structures and the physical protection of ancient paddy wetland. Therefore, it may suggest that straw charcoal application is a potential pathway for C sequestration considering its longevity.

  11. Effects of Different Application Methods of Methane Fermentation Digested Liquid into the Paddy Plot on Soil Nitrogen Behavior and Rice Yield

    NASA Astrophysics Data System (ADS)

    Watanabe, Satoko; Nakamura, Kimihito; Seok Ryu, Chan; Iida, Michihisa; Kawashima, Shigeto

    Methane fermentation technique with the treatment of animal waste and food waste is drawing public attention as a good option for the utilization of biomass resources and it is investigated how to apply the by-product of fermentation (methane fermentation digested liquid) to agricultural fields as a fertilizer. It is important to determine an adequate method of applying digested liquid to a paddy plot as fertilizer taking into account the concentrations of soil nitrogen components and rice yield. The objective of this study is to compare the performances of three methods of applying digested liquid to paddy plots in terms of the nitrogen transformation in soil, rice yield, and nitrogen load in effluent. The three methods were pouring (with irrigation water), spreading onto the surface of a plot, and injection into paddy soil. It was found that the ammonium nitrogen concentration and the dissolved organic nitrogen concentration in soil of the spreading plot were higher than that for the pouring plot and that for the injecting plot. The rice yield was higher in the spreading plot than in the injecting and pouring plots. And, there was a significant correlation between the rice yield and the dissolved organic nitrogen just before and after the panicle initiation stage. There were no differences in the nitrogen effluent loads with surface drainage.

  12. Evaluation of carbon dioxide emission factor from urea during rice cropping season: A case study in Korean paddy soil

    NASA Astrophysics Data System (ADS)

    Kim, Gil Won; Jeong, Seung Tak; Kim, Gun Yeob; Kim, Pil Joo; Kim, Sang Yoon

    2016-08-01

    Fertilization with urea can lead to a loss of carbon dioxide (CO2) that was fixed during the industrial production process. The extent of atmospheric CO2 removal from urea manufacturing was estimated by the Industrial Processes and Product Use sector (IPPU sector). On its basis, the Intergovernmental Panel on Climate Change (IPCC) has proposed a value of 0.2 Mg C per Mg urea (available in 2006 revised IPCC guidelines for greenhouse gas inventories), which is the mass fractions of C in urea, as the CO2 emission coefficient from urea for the agricultural sector. Notably, due to the possibility of bicarbonate leaching to waters, all C in urea might not get released as CO2 to the atmosphere. Hence, in order to provide an accurate value of the CO2 emission coefficient from applied urea in the rice ecosystem, the CO2 emission factors were characterized under different levels of 13C-urea applied paddy field in the current study. The total CO2 fluxes and rice grain yields increased significantly with increasing urea application (110-130 kg N ha-1) and thereafter, decreased. However, with increasing 13C-urea application, a significant and proportional increase of the 13CO2sbnd C emissions from 13C-urea was also observed. From the relationships between urea application levels and 13CO2sbnd C fluxes from 13C-urea, the CO2sbnd C emission factor from urea was estimated to range between 0.0143 and 0.0156 Mg C per Mg urea. Thus, the CO2sbnd C emission factor of this study is less than that of the value proposed by IPCC. Therefore, for the first time, we propose to revise the current IPCC guideline value of CO2sbnd C emission factor from urea as 0.0143-0.0156 Mg C per Mg urea for Korean paddy soils.

  13. [Influences of water-saved and nitrogen-reduced practice on soil microbial and microfauna assemblage in paddy field].

    PubMed

    Gui, Juan; Chen, Xiao-yun; Liu, Man-qiang; Zhuang, Xi-ping; Sun, Zhen; Hu, Feng

    2016-01-01

    The resource and environmental problems caused by excessive consumption of water and fertilizer in rice production have recently aroused widespread concern. This study investigated the effects of irrigation modes (conventional irrigation and 25% water-saved irrigation) and different N application rates (conventional high-nitrogen fertilization and 40% nitrogen-reduced fertilization) on microbial and microfauna assemblages at tillering and ripening stages in paddy field. The results showed that compared with conventional irrigation (CF), water-saved irrigation (WS) decreased the soil pH at tillering stage. Soil dissolved organic matter (dissolved organic C and N) and microbial biomass C and N were significantly affected by irrigation, nitrogen fertilizer and their interactions. WS or N-reduced fertilization (LN) decreased the contents of dissolved organic matter; WS increased microbial biomass C but decreased microbial biomass N. Nitrate was significantly higher in WS than CF, while ammonium showed reverse pattern. At tillering stage, the soil microbial biomass from bacteria, fungi, actinomy and protozoa was higher in WS than in CF, but the trend was opposite at ripening stage. There was a significant interation between irrigation and fertilization on soil rotifer numbers and microbial-feeding nematodes. At tillering stage, WS increased the numbers of rotifer and nematode, and also the proportion of bacterial-feeding nematode; LN increased the abundance of rotifer but decreased the abundance of nematode. In summary, soil microbial and microfauna assemblages showed different response to water-saved and nitrogen-reduced agricultural managements, which depended on different crop growth stages, but also the complex interactions of water and nitrogen and between biological groups in food webs. PMID:27228599

  14. [Influences of water-saved and nitrogen-reduced practice on soil microbial and microfauna assemblage in paddy field].

    PubMed

    Gui, Juan; Chen, Xiao-yun; Liu, Man-qiang; Zhuang, Xi-ping; Sun, Zhen; Hu, Feng

    2016-01-01

    The resource and environmental problems caused by excessive consumption of water and fertilizer in rice production have recently aroused widespread concern. This study investigated the effects of irrigation modes (conventional irrigation and 25% water-saved irrigation) and different N application rates (conventional high-nitrogen fertilization and 40% nitrogen-reduced fertilization) on microbial and microfauna assemblages at tillering and ripening stages in paddy field. The results showed that compared with conventional irrigation (CF), water-saved irrigation (WS) decreased the soil pH at tillering stage. Soil dissolved organic matter (dissolved organic C and N) and microbial biomass C and N were significantly affected by irrigation, nitrogen fertilizer and their interactions. WS or N-reduced fertilization (LN) decreased the contents of dissolved organic matter; WS increased microbial biomass C but decreased microbial biomass N. Nitrate was significantly higher in WS than CF, while ammonium showed reverse pattern. At tillering stage, the soil microbial biomass from bacteria, fungi, actinomy and protozoa was higher in WS than in CF, but the trend was opposite at ripening stage. There was a significant interation between irrigation and fertilization on soil rotifer numbers and microbial-feeding nematodes. At tillering stage, WS increased the numbers of rotifer and nematode, and also the proportion of bacterial-feeding nematode; LN increased the abundance of rotifer but decreased the abundance of nematode. In summary, soil microbial and microfauna assemblages showed different response to water-saved and nitrogen-reduced agricultural managements, which depended on different crop growth stages, but also the complex interactions of water and nitrogen and between biological groups in food webs.

  15. [Contrastive analysis on soil alkalinization predicting models based on measured reflectance and TM image reflectance].

    PubMed

    Zhang, Fang; Xiong, Hei-Gang; Long, Tao; Lu, Wen-Juan

    2011-01-01

    Based on the monitored data of soil pH and measured Vis-NIR reflectance on spot in Qitai oasis alkalinized area in Xinjiang, as well as comparison of the relationship between measured reflectance and soil pH and the relationship between TM reflectance and soil pH, both of the reflectance multivariate linear regression models were built to evaluate soil alkalinization level, and the model accuracy of pH fitting was discussed with error inspection of post-sample. The results showed that there is a significant positive correlation between soil pH and reflectance. With pH rising the reflectance increased concurrently. So the alkalinization soil characterized by hardening had good spectral response characteristics. Both measured reflectance and TM image reflectance had good potential ability for change detection of the alkalinization soil. The pH predicting model of measured reflectance had higher accuracy and the major error was from different hardening state. If building model by TM reflectance directly, the accuracy of fitting was lower because of the vegetation information in image spectrum. With the vegetation factor removed with NDVI, the accuracy of TM predicting model was near the accuracy of measured reflectance predicting model, and both of the model levels were good. PMID:21428094

  16. [Contrastive analysis on soil alkalinization predicting models based on measured reflectance and TM image reflectance].

    PubMed

    Zhang, Fang; Xiong, Hei-Gang; Long, Tao; Lu, Wen-Juan

    2011-01-01

    Based on the monitored data of soil pH and measured Vis-NIR reflectance on spot in Qitai oasis alkalinized area in Xinjiang, as well as comparison of the relationship between measured reflectance and soil pH and the relationship between TM reflectance and soil pH, both of the reflectance multivariate linear regression models were built to evaluate soil alkalinization level, and the model accuracy of pH fitting was discussed with error inspection of post-sample. The results showed that there is a significant positive correlation between soil pH and reflectance. With pH rising the reflectance increased concurrently. So the alkalinization soil characterized by hardening had good spectral response characteristics. Both measured reflectance and TM image reflectance had good potential ability for change detection of the alkalinization soil. The pH predicting model of measured reflectance had higher accuracy and the major error was from different hardening state. If building model by TM reflectance directly, the accuracy of fitting was lower because of the vegetation information in image spectrum. With the vegetation factor removed with NDVI, the accuracy of TM predicting model was near the accuracy of measured reflectance predicting model, and both of the model levels were good.

  17. The specific role of fungal community structure on soil aggregation and carbon sequestration: results from long-term field study in a paddy soil

    NASA Astrophysics Data System (ADS)

    Murugan, Rajasekaran; Kumar, Sanjay

    2015-04-01

    Soil aggregate stability is a crucial soil property that affects soil biota, biogeochemical processes and C sequestration. The relationship between soil aggregate stability and soil C cycling is well known but the influence of specific fungal community structure on this relationship is largely unknown in paddy soils. The aim of the present study was to evaluate the long-term fertilisation (mineral fertiliser-MIN; farmyard manure-FYM; groundnut oil cake-GOC) effects on soil fungal community shifts associated with soil aggregates under rice-monoculture (RRR) and rice-legume-rice (RLR) systems. Fungal and bacterial communities were characterized using phospholipid fatty acids, and glucosamine and muramic acid were used as biomarkers for fungal and bacterial residues, respectively. Microbial biomass C and N, fungal biomass and residues were significantly higher in the organic fertiliser treatments than in the MIN treatment, for all aggregate sizes under both crop rotation systems. In general, fungal/bacterial biomass ratio and fungal residue C/bacterial residue C ratio were significantly higher in macroaggregate fractions (> 2000 and 250-2000 μm) than in microaggregate fractions (53-250 and <53 μm). In both crop rotation systems, the long-term application of FYM and GOC led to increased accumulation of saprotrophic fungi (SF) in aggregate fractions > 2000 μm. In contrast, we found that arbuscular mycorrhizal fungi (AMF) was surprisingly higher in aggregate fractions > 2000 μm than in aggregate fraction 250-2000 μm under MIN treatment. The RLR system showed significantly higher AMF biomass and fungal residue C/ bacterial residue C ratio in both macroaggregate fractions compared to the RRR system. The strong relationships between SF, AMF and water stable aggregates shows the specific contribution of fungi community on soil aggregate stability. Our results highlight the fact that changes within fungal community structure play an important role in shaping the soil

  18. Affects of mining activities on Cd pollution to the paddy soils and rice grain in Hunan province, Central South China.

    PubMed

    Du, Yan; Hu, Xue-Feng; Wu, Xiao-Hong; Shu, Ying; Jiang, Ying; Yan, Xiao-Juan

    2013-12-01

    Located in Central South China, Hunan province is rich in mineral resources. To study the influence of mining on Cd pollution to local agricultural eco-system, the paddy soils and rice grain of Y county in northern Hunan province were intensively monitored. The results were as follows: (1) Total Cd (T-Cd) content in the soils of the county ranges from 0.13 to 6.02 mg kg(-1), with a mean of 0.64 mg kg(-1), of which 57.5% exceed the allowable limit specified by the China Soil Environmental Quality Standards. T-Cd in the soils varies largely, with the coefficient of variation reaching 146.4%. The spatial distribution of T-Cd in the soils quite matches with that of mining and industries. The content of HCl-extractable Cd (HCl-Cd) in the soils ranges from 0.02 to 2.17 mg kg(-1), with a mean of 0.24 mg kg(-1). A significant positive correlation exists between T-Cd and HCl-Cd in the soils (r = 0.770, ρ < 0.01). (2) Cd content in the rice produced in Y county ranges from 0.01 to 2.77 mg kg(-1), with a mean of 0.46 mg kg(-1). The rate of rice with Cd exceeding the allowable limit specified by the Chinese Grain Security Standards reaches 59.6%; that with Cd exceeding 1 mg kg(-1), called as "Cd rice," reaches 11.1%. (3) Cd content in the rice of Y county is positively significantly correlated with HCl-Cd (r = 0.177, ρ < 0.05) but not significantly with T-Cd in the soils (r = 0.091, ρ > 0.05), which suggests that the amount of Cd accumulating in the rice is more affected by its availability in the soils, rather than the total content. (4) The dietary intake of Cd via rice consumption in Y county is estimated to be 179.9 μg day(-1) person(-1) on average, which is far beyond the allowable limit specified by FAO/WHO and the target hazard quotients of Cd much higher than 1, suggesting the high risk on human health from Cd exposure.

  19. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.

    PubMed

    Lu, Sijin; Wang, Yeyao; Teng, Yanguo; Yu, Xuan

    2015-10-01

    Soil pollution by Cd, Hg, As, Pb, Cr, Cu, and Zn was characterized in the area of the mining and smelting of metal ores at Guiyang, northeast of Hunan Province. A total of 150 topsoil (0-20 cm) samples were collected in May 2012 with a nominal density of one sample per 4 km(2). High concentrations of heavy metals especially, Cd, Zn, and Pb were found in many of the samples taken from surrounding paddy soil, indicating a certain extent of spreading of heavy metal pollution. Sequential extraction technique and risk assessment code (RAC) were used to study the mobility of chemical forms of heavy metals in the soils and their ecological risk. The results reveal that Cd represents a high ecological risk due to its highest percentage of the exchangeable and carbonate fractions. The metals of Zn and Cu pose a medium risk, and the rest of the metals represent a low environmental risk. The range of the potential ecological risk of soil calculated by risk index (RI) was 123.5~2791.2 and revealed a considerable-high ecological risk in study area especially in the neighboring and surrounding the mining activities area. Additionally, cluster analyses suggested that metals such as Pb, As, Hg, Zn, and Cd could be from the same sources probably related to the acidic drainage and wind transport of dust. Cluster analysis also clearly distinguishes the samples with similar characteristics according to their spatial distribution. The results could be used during the ecological risk screening stage, in conjunction with total concentrations and metal fractionation values to better estimate ecological risk.

  20. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.

    PubMed

    Lu, Sijin; Wang, Yeyao; Teng, Yanguo; Yu, Xuan

    2015-10-01

    Soil pollution by Cd, Hg, As, Pb, Cr, Cu, and Zn was characterized in the area of the mining and smelting of metal ores at Guiyang, northeast of Hunan Province. A total of 150 topsoil (0-20 cm) samples were collected in May 2012 with a nominal density of one sample per 4 km(2). High concentrations of heavy metals especially, Cd, Zn, and Pb were found in many of the samples taken from surrounding paddy soil, indicating a certain extent of spreading of heavy metal pollution. Sequential extraction technique and risk assessment code (RAC) were used to study the mobility of chemical forms of heavy metals in the soils and their ecological risk. The results reveal that Cd represents a high ecological risk due to its highest percentage of the exchangeable and carbonate fractions. The metals of Zn and Cu pose a medium risk, and the rest of the metals represent a low environmental risk. The range of the potential ecological risk of soil calculated by risk index (RI) was 123.5~2791.2 and revealed a considerable-high ecological risk in study area especially in the neighboring and surrounding the mining activities area. Additionally, cluster analyses suggested that metals such as Pb, As, Hg, Zn, and Cd could be from the same sources probably related to the acidic drainage and wind transport of dust. Cluster analysis also clearly distinguishes the samples with similar characteristics according to their spatial distribution. The results could be used during the ecological risk screening stage, in conjunction with total concentrations and metal fractionation values to better estimate ecological risk. PMID:26373302

  1. Growing season net ecosystem CO2 exchange of two desert ecosystems with alkaline soils in Kazakhstan

    PubMed Central

    Li, Longhui; Chen, Xi; van der Tol, Christiaan; Luo, Geping; Su, Zhongbo

    2014-01-01

    Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia. PMID:24455157

  2. Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil.

    PubMed

    Yan, Yubo; Qi, Fangjie; Seshadri, Balaji; Xu, Yilu; Hou, Jiexi; Ok, Yong Sik; Dong, Xiaoli; Li, Qiao; Sun, Xiuyun; Wang, Lianjun; Bolan, Nanthi

    2016-11-01

    The alkaline residue generated from the production of soda ash using the ammonia-soda method has been successfully used in removing phosphorus (P) from aqueous solution. But the accumulation of P-containing solid after P removal is an undesirable menace to the environment. To achieve the goal of recycling, this study explored the feasibility of reusing the P loaded alkaline residue as an amendment for immobilization of lead (Pb) in a shooting range soil. The main crystalline phase and micromorphology of amendments were determined using X-ray diffraction (XRD) and scanning electron microscopy-electron dispersion spectroscopy (SEM-EDS) methods. The toxicity characteristic leaching procedure (TCLP), sequential extraction procedure, and physiologically based extraction test (PBET) were employed to evaluate the effectiveness of Pb immobilization in soil after 45 d incubation. Treatment with P loaded alkaline residue was significantly effective in reducing the TCLP and PBET extractable Pb concentrations in contrast to the untreated soil. Moreover, a positive change in the distribution of Pb fractions was observed in the treated soil, i.e., more than 60% of soil-Pb was transformed to the residual fraction compared to the original soil. On the other hand, P loaded amendments also resulted in a drastic reduction in phytoavailable Pb to the winter wheat and a mild release of P as a nutrient in treated soil, which also confirmed the improvement of soil quality. PMID:27513552

  3. Utilization of phosphorus loaded alkaline residue to immobilize lead in a shooting range soil.

    PubMed

    Yan, Yubo; Qi, Fangjie; Seshadri, Balaji; Xu, Yilu; Hou, Jiexi; Ok, Yong Sik; Dong, Xiaoli; Li, Qiao; Sun, Xiuyun; Wang, Lianjun; Bolan, Nanthi

    2016-11-01

    The alkaline residue generated from the production of soda ash using the ammonia-soda method has been successfully used in removing phosphorus (P) from aqueous solution. But the accumulation of P-containing solid after P removal is an undesirable menace to the environment. To achieve the goal of recycling, this study explored the feasibility of reusing the P loaded alkaline residue as an amendment for immobilization of lead (Pb) in a shooting range soil. The main crystalline phase and micromorphology of amendments were determined using X-ray diffraction (XRD) and scanning electron microscopy-electron dispersion spectroscopy (SEM-EDS) methods. The toxicity characteristic leaching procedure (TCLP), sequential extraction procedure, and physiologically based extraction test (PBET) were employed to evaluate the effectiveness of Pb immobilization in soil after 45 d incubation. Treatment with P loaded alkaline residue was significantly effective in reducing the TCLP and PBET extractable Pb concentrations in contrast to the untreated soil. Moreover, a positive change in the distribution of Pb fractions was observed in the treated soil, i.e., more than 60% of soil-Pb was transformed to the residual fraction compared to the original soil. On the other hand, P loaded amendments also resulted in a drastic reduction in phytoavailable Pb to the winter wheat and a mild release of P as a nutrient in treated soil, which also confirmed the improvement of soil quality.

  4. Fate of rice shoot and root residues, rhizodeposits, and microbe-assimilated carbon in paddy soil - Part 1: Decomposition and priming effect

    NASA Astrophysics Data System (ADS)

    Zhu, Zhenke; Zeng, Guanjun; Ge, Tida; Hu, Yajun; Tong, Chengli; Shibistova, Olga; He, Xinhua; Wang, Juan; Guggenberger, Georg; Wu, Jinshui

    2016-08-01

    The input of recently photosynthesized C has significant implications on soil organic C sequestration, and in paddy soils, both plants and soil microbes contribute to the overall C input. In the present study, we investigated the fate and priming effect of organic C from different sources by conducting a 300-day incubation study with four different 13C-labelled substrates: rice shoots (shoot-C), rice roots (root-C), rice rhizodeposits (rhizo-C), and microbe-assimilated C (micro-C). The efflux of both 13CO2 and 13CH4 indicated that the mineralization of C in shoot-C-, root-C-, rhizo-C-, and micro-C-treated soils rapidly increased at the beginning of the incubation and decreased gradually afterwards. The highest cumulative C mineralization was observed in root-C-treated soil (45.4 %), followed by shoot-C- (31.9 %), rhizo-C- (7.90 %), and micro-C-treated (7.70 %) soils, which corresponded with mean residence times of 39.5, 50.3, 66.2, and 195 days, respectively. Shoot and root addition increased C emission from native soil organic carbon (SOC), up to 11.4 and 2.3 times higher than that of the control soil by day 20, and decreased thereafter. Throughout the incubation period, the priming effect of shoot-C on CO2 and CH4 emission was strongly positive; however, root-C did not exhibit a significant positive priming effect. Although the total C contents of rhizo-C- (1.89 %) and micro-C-treated soils (1.90 %) were higher than those of untreated soil (1.81 %), no significant differences in cumulative C emissions were observed. Given that about 0.3 and 0.1 % of the cumulative C emission were derived from labelled rhizo-C and micro-C, we concluded that the soil organic C-derived emissions were lower in rhizo-C- and micro-C-treated soils than in untreated soil. This indicates that rhizodeposits and microbe-assimilated C could be used to reduce the mineralization of native SOC and to effectively improve soil C sequestration. The contrasting behaviour of the different

  5. DNA-based determination of microbial biomass suitable for frozen and alkaline soil samples

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Blagodatskaya, Evgeniya; Kogut, Boris; Kuzyakov, Yakov

    2015-04-01

    Microbial biomass is a sensitive indicator of changes due to soil management, long before other basic soil measures such as Corg or Ntot. Improvement of methods for determination of microbial biomass still remains relevant, and these methods should be correctly applicable for the soil samples being in various state. This study was designed to demonstrate the applicability of DNA-based determination of microbial biomass under conditions when the common basic approaches, namely chloroform fumigation-extraction (CFE) and substrate-induced respiration (SIR), are restricted by certain soil properties, experimental designs or research needs, e.g. in frozen, alkaline or carbonaceous soils. We compared microbial biomass determined by CFE, SIR and by DNA approaches in the range of neutral and slightly alkaline Chernozem and alkaline Calcisol of semi-arid climate. The samples of natural and agricultural ecosystems were taken throughout the soil profile from long-term static field experiments in the European part of Russia. Extraction and subsequent quantification of dsDNA revealed a strong agreement with SIR and CFE when analyzing the microbial biomass content in soils with pH below 8. The conversion factors (FDNA) from dsDNA to SIR-Cmic (5.10) and CFE-Cmic (4.41) were obtained by testing a range of the soil samples down to 1.5 m depth and indicated a good reproducibility of DNA-based estimations. In alkaline soils (pH > 8), CO2 retention due to alkaline pH and exchange with carbonates resulted in a strong underestimation of soil microbial biomass by SIR or even in the absence of any CO2 emission, especially at low absolute values of microbial biomass in subsoil. Correction of CO2 efflux by theoretical retention pH-dependent factors caused overestimation of SIR-biomass. In alkaline conditions, DNA extraction proved to be a reliable alternative for microbial biomass determination. Moreover, the DNA-based approach can serve as an excellent alternative enabling correct

  6. Depth distribution of abiotic drivers of N mineralization and methane emission from a continuously and intermittently flooded Bangladeshi paddy soil

    NASA Astrophysics Data System (ADS)

    Akter, Masuda; Kader, Md. Abdul; Pierreux, Sofie; Boeckx, Pascal; Kamal, Ahammad Mostafa; Sleutel, Steven

    2016-04-01

    logically linked. The elevated redox potential in puddle layer depth increments during AWD drainage events, significantly (p<0.01) declined the cumulative CH4 emission by 47% when compared to CF management. Moreover, seasonal CH4 emissions in N-fertilized fields (N120) decreased by 29 and 8% under CF and AWD, respectively relative to the control (N0), possibly due to promotion of methanotrophs, which were N-limited in N0. Mostly, mineral N content in N120 plots of AWD and CF exceeded contents in the N0 fields. Contrary to CH4 emission, irrigation management did not affect evolutions of pH, Fe, Mn and DOC in soil solution. Likewise, soil exchangeable N content evolution was unaffected and followed zero-order kinetics (N120: R2=0.53 to 0.81; N0: R2=0.12 to 0.48). Our results generally indicate that in Northern Bangladesh's Boro season, evolutions in paddy soil solution chemistry and CH4 emission are strongly depending on course soil temperature and only secondarily on irrigation management. Whether temperature steers microbial activity and methanogenesis directly or via concomitant plant activity and exudation is not known. Key words: Redox, CH4, emission, mineralization, Fe, Mn, DOC, water management

  7. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    PubMed

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer. PMID:21774322

  8. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    PubMed

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer.

  9. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-03-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and pmoA genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity by 6-fold during a 19 day incubation period, while ammonia oxidation activity was significantly inhibited in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like type Ia MOB, and nitrifying communities appeared to be suppressed by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to equal increase in Methylosarcina and Methylobacter-related MOB, indicating the differential growth requirements of representatives of these genera. Strikingly, type Ib MOB did not respond to methane nor to urea. Increase in 13C-assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, in addition of nitrite

  10. Migration of (14)C in the paddy soil-to-rice plant system after (14)C-acetic acid breakdown by microorganisms below the plow layer.

    PubMed

    Ogiyama, Shinichi; Takeda, Hiroshi; Ishii, Nobuyoshi; Uchida, Shigeo

    2010-02-01

    Migration of (14)C derived from (14)C-acetic acid was examined by using soils sampled from paddies in four administrative areas in Japan (Aomori, Yamanashi, Ehime and Okinawa) and rice plant in a tracer experiment to understand the fate of (14)C in the paddy soil-to-rice plant system. The loss of (14)C radioactivity levels derived from (14)C-acetic acid was caused by soil microorganism breakdown. A part of the (14)C fixation to soil was caused by microbial assimilation into the fatty acid fraction. (14)C moved upward via two different types of (14)C dynamics in soil: quick movement upward; and constant but slow movement upward. (14)C was highly assimilated into the plant panicle and that was caused by the root-uptake and the transfer of (14)C. Migration of (14)C derived from (14)C-acetic acid relied heavily upon changes of chemical forms and characteristics of (14)C-compound as caused by microorganisms in soil.

  11. Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline-alkaline soils of the former Lake Texcoco.

    PubMed

    Betancur-Galvis, L A; Alvarez-Bernal, D; Ramos-Valdivia, A C; Dendooven, L

    2006-03-01

    Polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene, anthracene and Benzo[a]pyrene (BaP) are toxic for the environment. Removing these components from soil is difficult as they are resistant to degradation and more so in soils with high pH and large salt concentrations as in soil of the former lake Texcoco, but stimulating soil micro-organisms growth by adding nutrients might accelerate soil restoration. Soil of Texcoco and an agricultural Acolman soil, which served as a control, were spiked with phenanthrene, anthracene and BaP, added with or without biosolid or inorganic fertilizer (N, P), and dynamics of PAHs, N and P were monitored in a 112-day incubation. Concentrations of phenanthrene did not change significantly in sterilized Acolman soil, but decreased 2-times in unsterilized soil and >25-times in soil amended with biosolid and NP. The concentration of phenanthrene in unsterilized soil of Texcoco was 1.3-times lower compared to the sterilized soil, 1.7-times in soil amended with NP and 2.9-times in soil amended with biosolid. In unsterilized Acolman soil, degradation of BaP was faster in soil amended with biosolid than in unamended soil and soil amended with NP. In unsterilized soil of Texcoco, degradation of BaP was similar in soil amended with biosolid and NP but faster than in the unamended soil. It was found that application of biosolid and NP increased degradation of phenanthrene, anthracene and BaP, but to a different degree in alkaline-saline soil of Texcoco compared to an agricultural Acolman soil.

  12. Behavior of bensulfuron-methyl in an agricultural alkaline soil.

    PubMed

    Delgado-Moreno, L; Sánchez, L; Castillo, A; Pot, V; Peña, A

    2007-01-01

    A field experiment to determine the available bensulfuron-methyl (BSM) in the upper soil layer was conducted in an agricultural area in the South of Spain. To facilitate herbicide analysis, two application rates were employed, 200 g ha(-1) and 5 kg ha(-1). Samples of upper soil and soil solution were collected. Soil solution was sampled by means of metallic samplers, placed at a depth of 35 cm. In the plots receiving the lower dose ceramic suction, porous cups were also installed. Results from soil solution samples showed that the maximum BSM concentration was found after 8-10 days for the high irrigation supply (945 mm) and after 18-25 days for the lower irrigation regime (405 mm). The mathematical model FOCUSPELMO 1.1.1 was applied to interpret the data obtained in the field experiments. In general, there was a reasonable agreement between experimental and simulated data for soil samples, although the model did not acceptably predict herbicide concentrations in water soil samples. Ceramic cups sampled a higher soil water volume and more frequently than did the metallic samplers. However some variable results were attributed to preferential flow. PMID:17454376

  13. Effects of 10-Year Management Regimes on the Soil Seed Bank in Saline-Alkaline Grassland

    PubMed Central

    Ma, Hongyuan; Yang, Haoyu; Liang, Zhengwei; Ooi, Mark K. J.

    2015-01-01

    Background Management regimes for vegetation restoration of degraded grasslands can significantly affect the process of ecological succession. However, few studies have focused on variation in the soil seed bank during vegetation restoration under different management regimes, especially in saline-alkaline grassland habitats. Our aim was to provide insights into the ecological effects of grassland management regimes on soil seed bank composition and vegetation establishment in mown, fenced, transplanted and natural grassland sites, all dominated by the perennial rhizomatous grass Leymus chinensis. Methodology We studied species composition and diversity in both the soil seed bank and aboveground vegetation in differently managed grasslands in Northeast China. An NMDS (nonmetric multidimensional scaling) was used to evaluate the relationship between species composition, soil seed banks, aboveground vegetation and soil properties. Principal Findings Fenced and mown grassland sites had high density and species richness in both the soil seed bank and aboveground vegetation. The Transplanted treatment exhibited the highest vegetation growth and seed production of the target species L. chinensis. Seeds of L. chinensis in the soil occurred only in transplanted and natural grassland. Based on the NMDS analysis, the number of species in both the soil seed bank and aboveground vegetation were significantly related to soil Na+, Cl-, RSC (residual sodium carbonate), alkalinity, ESP (exchangeable sodium percentage) and AP (available phosphorus). Conclusions Soil seed bank composition and diversity in the saline-alkaline grassland were significantly affected by the management regimes implemented, and were also significantly related to the aboveground vegetation and several soil properties. Based on vegetative growth, reproductive output and maintenance of soil seed bank, the transplanting was identified as the most effective method for relatively rapid restoration of the target

  14. Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil.

    PubMed

    Akasaka, Hiroshi; Izawa, Tomoe; Ueki, Katsuji; Ueki, Atsuko

    2003-03-01

    Culturable anaerobic bacterial populations on rice plant residue (straw and stubble with roots) in paddy field soil were found on the order of 10(9) CFU (colony-forming units) (g dry weight of plant residue)(-1), and the percentages of spores were usually less than 1% of the total anaerobes. Anaerobic bacteria were isolated from each sample by picking up colonies on the roll tube agar used for the enumeration. The phylogenetic analysis of 47 isolates based on 16S rRNA gene sequences revealed that the composition of dominant culturable anaerobic bacteria on rice plant residue was rather simple. The most dominant group was closely related to the Cellulomonas species in the Actinobacteria phylum and accounted for more than 60% of the isolates for most of the samples. The second major group was also affiliated with the Actinobacteria phylum and tentatively named the 'propionate-producing Actinobacteria group' because the strains in the group commonly produced propionate. Strains in the third group, the 'Prevotella-like group', were Gram-negative, strictly anaerobic rods and placed in the Bacteroides phylum with 16S rRNA gene similarities of 86-92% to the closest relatives. Some other strains belonging to Betaproteobacteria and the clostridial group were also isolated. Most of the strains affiliated to the clostridial group were isolated from the heat-treated samples. Some phenotypic characteristics of representative strains of each group are also described.

  15. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.

    PubMed

    Amarawansha, E A G S; Kumaragamage, D; Flaten, D; Zvomuya, F; Tenuta, M

    2015-07-01

    Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions. PMID:26437107

  16. Phosphorus Mobilization from Manure-Amended and Unamended Alkaline Soils to Overlying Water during Simulated Flooding.

    PubMed

    Amarawansha, E A G S; Kumaragamage, D; Flaten, D; Zvomuya, F; Tenuta, M

    2015-07-01

    Anaerobic soil conditions resulting from flooding often enhance release of phosphorus (P) to overlying water. Enhanced P release is well documented for flooded acidic soils; however, there is little information for flooded alkaline soils. We examined the effect of flooding and anaerobic conditions on P mobilization using 12 alkaline soils from Manitoba that were either unamended or amended with solid cattle manure. Pore water and floodwater were analyzed over 8 wk of simulated flooding for dissolved reactive P (DRP), Ca, Mg, Fe, and Mn. As expected, manured soils had significantly greater pore and floodwater DRP concentrations than unamended. Flooding increased pore water DRP concentrations significantly in all soils and treatments except one manured clay in which concentrations increased initially and then decreased. Floodwater DRP concentrations increased significantly by two- to 15-fold in 10 soils regardless of amendment treatment but remained relatively stable in the two soils with greatest clay content. Phosphorus release at the onset of flooding was associated with the release of Ca, Mg, and Mn, suggesting that P release may be controlled by the dissolution of Mg and Ca phosphates and reductive dissolution of Mn phosphates. Thereafter, P release was associated with release of Fe, suggesting the reductive dissolution of Fe phosphates. Differences in pore water and floodwater DRP concentrations among soils and amendment treatments and the high variability in P mobilization from pore water to floodwater among soils indicate the need to further investigate chemical reactions responsible for P release and mobility under anaerobic conditions.

  17. Long-term nitrogen fertilization of paddy soil shifts iron-reducing microbial community revealed by RNA-(13)C-acetate probing coupled with pyrosequencing.

    PubMed

    Ding, Long-Jun; Su, Jian-Qiang; Xu, Hui-Juan; Jia, Zhong-Jun; Zhu, Yong-Guan

    2015-03-01

    Iron reduction is an important biogeochemical process in paddy soils, yet little is known about the microbial coupling between nitrogen and iron reduction. Here, we investigated the shift of acetate-metabolizing iron-reducers under long-term nitrogen fertilization using (13)C-acetate-based ribosomal RNA (rRNA)-stable isotope probing (SIP) and pyrosequencing in an incubation experiment, and the shift of putative iron-reducers in original field samples were investigated by 16S rRNA gene-based pyrosequencing. During SIP incubations, in the presence of iron(III) oxyhydroxides, more iron(II) formation and less methane production were detected in nitrogen-fertilized (N) compared with non-fertilized (NF) soil. In (13)C-rRNA from microcosms amended with ferrihydrite (FER), Geobacter spp. were the important active iron-reducers in both soils, and labeled to a greater extent in N (31% of the bacterial classified sequences) than NF soils (11%). Pyrosequencing of the total 16S rRNA transcripts from microcosms at the whole community level further revealed hitherto unknown metabolisms of potential FER reduction by microorganisms including Pseudomonas and Solibacillus spp. in N soil, Dechloromonas, Clostridium, Bacillus and Solibacillus spp. in NF soil. Goethite (GOE) amendment stimulated Geobacter spp. to a lesser extent in both soils compared with FER treatment. Pseudomonas spp. in the N soil and Clostridium spp. in the NF soil may also be involved in GOE reduction. Pyrosequencing results from field samples showed that Geobacter spp. were the most abundant putative iron-reducers in both soils, and significantly stimulated by long-term nitrogen fertilization. Overall, for the first time, we demonstrate that long-term nitrogen fertilization promotes iron(III) reduction and modulates iron-reducing bacterial community in paddy soils.

  18. Fractionation and solubility of cadmium in paddy soils amended with porous hydrated calcium silicate.

    PubMed

    Zhao, Xiu-Lan; Masaihiko, Saigusa

    2007-01-01

    Previous studies have shown that porous hydrated calcium silicate (PS) is very effective in decreasing cadmium (Cd) content in brown rice. However, it is unclear whether the PS influences cadmium transformation in soil. The present study examined the effect of PS on pH, cadmium transformation and cadmium solubility in Andosol and Alluvial soil, and also compared its effects with CaCO3, acidic porous hydrated calcium silicate (APS) and silica gel. Soil cadmium was operationally fractionationed into exchangeable (Exch), bound to carbonates (Carb), bound to iron and manganese oxides (FeMnO(x)), bound to organic matters (OM) and residual (Res) fraction. Application of PS and CaCO3 at hig rates enhanced soil pH, while APS and silica gel did not obviously change soil pH. PS and CaCO3 also increased the FeMnO(x)-Cd in Andosol and Carb-Cd in Alluvial soil, thus reducing the Exch-Cd in the tested soils. However, PS was less effective than CaCO3 at the same application rate. Cadmium fractions in the two soils were not changed by the treatments of APS and silica gel. There were no obvious differences in the solubility of cadmium in soils treated with PS, APS, silica gel and CaCO3 except Andosol treated 2.0% CaCO3 at the same pH of soil-CaCl2 suspensions. These findings suggested that the decrease of cadmium availability in soil was mainly attributed to the increase of soil pH caused by PS. PMID:17918598

  19. Open-pit coal-mining effects on rice paddy soil composition and metal bioavailability to Oryza sativa L. plants in Cam Pha, northeastern Vietnam.

    PubMed

    Martinez, Raul E; Marquez, J Eduardo; Hòa, Hoàng Thị Bích; Gieré, Reto

    2013-11-01

    This study quantified Cd, Pb, and Cu content, and the soil-plant transfer factors of these elements in rice paddies within Cam Pha, Quang Ninh province, northeastern Vietnam. The rice paddies are located at a distance of 2 km from the large Coc Sau open-pit coal mine. Electron microprobe analysis combined with backscattered electron imaging and energy-dispersive spectroscopy revealed a relatively high proportion of carbon particles rimmed by an iron sulfide mineral (probably pyrite) in the quartz-clay matrix of rice paddy soils at 20-30 cm depth. Bulk chemical analysis of these soils revealed the presence of Cd, Cu, and Pb at concentrations of 0.146±0.004, 23.3±0.1, and 23.5±0.1 mg/kg which exceeded calculated background concentrations of 0.006±0.004, 1.9±0.5, and 2.4±1.5 mg/kg respectively at one of the sites. Metals and metalloids in Cam Pha rice paddy soils, including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, and Zn, were found in concentrations ranging from 0.2±0.1 to 140±3 mg/kg, which were in close agreement with toxic metal contents in mine tailings and Coc Sau coal samples, suggesting mining operations as a major cause of paddy soil contamination. Native and model Oryza sativa L. rice plants were grown in the laboratory in a growth medium to which up to 1.5 mg/kg of paddy soil from Cam Pha was added to investigate the effects on plant growth. A decrease in growth by up to 60% with respect to a control sample was found for model plants, whereas a decrease of only 10% was observed for native (Nep cai hoa vang variety) rice plants. This result suggests an adaptation of native Cam Pha rice plants to toxic metals in the agricultural lands. The Cd, Cu, and Pb contents of the native rice plants from Cam Pha paddies exceeded permitted levels in foods. Cadmium and Pb were highest in the rice plant roots with concentrations of 0.84±0.02 and 7.7±0.3 mg/kg, suggesting an intake of these metals into the rice plant as shown, for example, by Cd and Pb concentrations of 0

  20. Contrasting effects of elevated CO2 and warming on temperature sensitivity of soil organic matter decomposition in a Chinese paddy field.

    PubMed

    Chen, Zhaozhi; Wang, Bingyu; Wang, Jinyang; Pan, Genxing; Xiong, Zhengqin

    2015-10-01

    Climate changes including elevated CO2 and temperature have been known to affect soil carbon (C) storage, while the effects of climate changes on the temperature sensitivity of soil organic matter (SOM) are unclear. A 365-day laboratory incubation was used to investigate the temperature sensitivity for decomposition of labile (Q 10-L) and recalcitrant (Q 10-R) SOMs by comparing the time required to decompose a given amount of C at 25 and 35 °C. Soils were collected from a paddy field that was subjected to four treatments: ambient CO2 and temperature, elevated CO2 (500 μmol/mol), enhanced temperature (+2 °C), and their combination. The results showed that the temperature sensitivity of SOM decomposition increased with increasing SOM recalcitrance in this paddy soil (Q 10-L = 2.21 ± 0.16 vs. Q 10-R = 2.78 ± 0.42; mean ± SD). Elevated CO2 and enhanced temperature showed contrasting effects on the temperature sensitivity of SOM decomposition. Elevated CO2 stimulated Q 10-R but had no effect on Q 10-L; in contrast, enhanced temperature increased Q 10-L but had no effect on Q 10-R. Furthermore, the elevated CO2 combined with enhanced temperature treatment significantly increased Q 10-L and Q 10-R by 18.9 and 10.2 %, respectively, compared to the ambient conditions. Results suggested that the responses of SOM to temperature, especially for the recalcitrant SOM pool, were altered by climate changes. The greatly enhanced temperature sensitivity of SOM decomposition by elevated CO2 and temperature indicates that more CO2 will be released to the atmosphere and losses of soil C may be even greater than that previously expected in paddy field. PMID:27590882

  1. Comparative Phylogenetic Assignment of Environmental Sequences of Genes Encoding 16S rRNA and Numerically Abundant Culturable Bacteria from an Anoxic Rice Paddy Soil

    PubMed Central

    Hengstmann, Ulf; Chin, Kuk-Jeong; Janssen, Peter H.; Liesack, Werner

    1999-01-01

    We used both cultivation and direct recovery of bacterial 16S rRNA gene (rDNA) sequences to investigate the structure of the bacterial community in anoxic rice paddy soil. Isolation and phenotypic characterization of 19 saccharolytic and cellulolytic strains are described in the accompanying paper (K.-J. Chin, D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen, Appl. Environ. Microbiol. 65:5042–5049, 1999). Here we describe the phylogenetic positions of these strains in relation to 57 environmental 16S rDNA clone sequences. Close matches between the two data sets were obtained for isolates from the culturable populations determined by the most-probable-number counting method to be large (3 × 107 to 2.5 × 108 cells per g [dry weight] of soil). This included matches with 16S rDNA similarity values greater than 98% within distinct lineages of the division Verrucomicrobia (strain PB90-1) and the Cytophaga-Flavobacterium-Bacteroides group (strains XB45 and PB90-2), as well as matches with similarity values greater than 95% within distinct lines of descent of clostridial cluster XIVa (strain XB90) and the family Bacillaceae (strain SB45). In addition, close matches with similarity values greater than 95% were obtained for cloned 16S rDNA sequences and bacteria (strains DR1/8 and RPec1) isolated from the same type of rice paddy soil during previous investigations. The correspondence between culture methods and direct recovery of environmental 16S rDNA suggests that the isolates obtained are representative geno- and phenotypes of predominant bacterial groups which account for 5 to 52% of the total cells in the anoxic rice paddy soil. Furthermore, our findings clearly indicate that a dual approach results in a more objective view of the structural and functional composition of a soil bacterial community than either cultivation or direct recovery of 16S rDNA sequences alone. PMID:10543822

  2. Effects of Tillage and Nitrogen Fertilizers on CH4 and CO2 Emissions and Soil Organic Carbon in Paddy Fields of Central China

    PubMed Central

    Zhi-Kui, Kou; Zhi-Sheng, Zhang; Jin-Ping, Wang; Ming-Li, Cai; Cou-Gui, Cao

    2012-01-01

    Quantifying carbon (C) sequestration in paddy soils is necessary to help better understand the effect of agricultural practices on the C cycle. The objective of the present study was to assess the effects of tillage practices [conventional tillage (CT) and no-tillage (NT)] and the application of nitrogen (N) fertilizer (0 and 210 kg N ha−1) on fluxes of CH4 and CO2, and soil organic C (SOC) sequestration during the 2009 and 2010 rice growing seasons in central China. Application of N fertilizer significantly increased CH4 emissions by 13%–66% and SOC by 21%–94% irrespective of soil sampling depths, but had no effect on CO2 emissions in either year. Tillage significantly affected CH4 and CO2 emissions, where NT significantly decreased CH4 emissions by 10%–36% but increased CO2 emissions by 22%–40% in both years. The effects of tillage on the SOC varied with the depth of soil sampling. NT significantly increased the SOC by 7%–48% in the 0–5 cm layer compared with CT. However, there was no significant difference in the SOC between NT and CT across the entire 0–20 cm layer. Hence, our results suggest that the potential of SOC sequestration in NT paddy fields may be overestimated in central China if only surface soil samples are considered. PMID:22574109

  3. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Huang, R.; Wang, B. Z.; Bodelier, P. L. E.; Jia, Z. J.

    2014-06-01

    Pure culture studies have demonstrated that methanotrophs and ammonia oxidizers can both carry out the oxidation of methane and ammonia. However, the expected interactions resulting from these similarities are poorly understood, especially in complex, natural environments. Using DNA-based stable isotope probing and pyrosequencing of 16S rRNA and functional genes, we report on biogeochemical and molecular evidence for growth stimulation of methanotrophic communities by ammonium fertilization, and that methane modulates nitrogen cycling by competitive inhibition of nitrifying communities in a rice paddy soil. Pairwise comparison between microcosms amended with CH4, CH4+Urea, and Urea indicated that urea fertilization stimulated methane oxidation activity 6-fold during a 19-day incubation period, while ammonia oxidation activity was significantly suppressed in the presence of CH4. Pyrosequencing of the total 16S rRNA genes revealed that urea amendment resulted in rapid growth of Methylosarcina-like MOB, and nitrifying communities appeared to be partially inhibited by methane. High-throughput sequencing of the 13C-labeled DNA further revealed that methane amendment resulted in clear growth of Methylosarcina-related MOB while methane plus urea led to an equal increase in Methylosarcina and Methylobacter-related type Ia MOB, indicating the differential growth requirements of representatives of these genera. An increase in 13C assimilation by microorganisms related to methanol oxidizers clearly indicated carbon transfer from methane oxidation to other soil microbes, which was enhanced by urea addition. The active growth of type Ia methanotrops was significantly stimulated by urea amendment, and the pronounced growth of methanol-oxidizing bacteria occurred in CH4-treated microcosms only upon urea amendment. Methane addition partially inhibited the growth of Nitrosospira and Nitrosomonas in urea-amended microcosms, as well as growth of nitrite-oxidizing bacteria. These

  4. [Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China].

    PubMed

    Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin

    2013-12-01

    A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a

  5. [Effects of different organic manure sources and their combinations with chemical fertilization on soil nematode community structure in a paddy field of East China].

    PubMed

    Liu, Ting; Ye, Cheng-Long; Chen, Xiao-Yun; Ran, Wei; Shen, Qi-Rong; Hu, Feng; Li, Hui-Xin

    2013-12-01

    A comparative study was conducted to investigate the effects of different fertilization modes on the soil nematode community structure in a paddy field with paddy rice and wheat rotation in Jintan County (31 degrees 39'41.8" N, 119 degrees 28'23.5" E) of Jiangsu Province, East China. Six treatments were installed, i. e., no fertilization (CK), 100% chemical NPK fertilization (F), pig manure compost plus 50% chemical fertilization (PF), straw returning plus 100% chemical fertilization (SF), pig manure compost and straw returning plus 50% chemical fertilization (PSF), and application of commercial pig manure-inorganic complex fertilizer (PMF). The soil samples were collected from the field after the paddy rice harvested in autumn. The two continuous years study showed that the soil nematode community structure varied with fertilization treatments and years. The combined application of chemical fertilizers and organic manures increased the total number of soil nematodes, decreased the abundance of soil bacterivorous nematodes, and made the abundance of predator- and omnivore nematodes increased significantly. No significant differences were observed in the abundance of soil fungivorous nematodes among all the treatments. Chemical fertilization alone and the application of commercial pig manure-inorganic complex fertilizer had no obvious suppression effect on the soil phytophagous nematodes. The abundance of soil bacteriavorous nematodes under the combined application of chemical fertilizers and organic manures was relatively increased in the second year, as compared with that in the first year, while the abundance of soil phytophagous nematodes (Hirschmanniella) was relatively decreased in the second year. From the aspect of nematode ecological indices, the Margalef diversity index (H) under the combined application of chemical fertilizers and organic manures in the second year had an increasing trend, while the NCR index had less change. The Wasilewka index had a

  6. Mitigation of arsenic contamination in irrigated paddy soils in South and South-East Asia.

    PubMed

    Brammer, Hugh

    2009-08-01

    It has recently become apparent that arsenic-contaminated groundwater used for irrigation in several countries of South and South-east Asia is adding arsenic to soils and rice, thus posing a serious threat to sustainable agricultural production and to the health and livelihoods of affected people in those countries. This paper describes the many environmental, agricultural and social factors that determine practical mitigation strategies and research needs, and describes possible mitigation measures that need to be tested. These measures include providing alternative irrigation sources, various agronomic measures, use of soil amendments, growing hyperaccumulator plants, removing contaminated soil and using alternative cooking methods. PMID:19394085

  7. Mitigation of arsenic contamination in irrigated paddy soils in South and South-East Asia.

    PubMed

    Brammer, Hugh

    2009-08-01

    It has recently become apparent that arsenic-contaminated groundwater used for irrigation in several countries of South and South-east Asia is adding arsenic to soils and rice, thus posing a serious threat to sustainable agricultural production and to the health and livelihoods of affected people in those countries. This paper describes the many environmental, agricultural and social factors that determine practical mitigation strategies and research needs, and describes possible mitigation measures that need to be tested. These measures include providing alternative irrigation sources, various agronomic measures, use of soil amendments, growing hyperaccumulator plants, removing contaminated soil and using alternative cooking methods.

  8. [Effects of irrigation of untreated livestock farm wastewater on accumulation and vertical mig- ration of nitrogen and phosphorus in paddy soil].

    PubMed

    Zhang, Ming-kui; Ahmed Elgodah; Bao, Chen-yan

    2014-12-01

    Although a series of process techniques for treating wastewater from livestock and poultry breeding have been developed in China and overseas, it is still common in China's rural areas for utilization of the untreated wastewater to irrigate farmland directly because of economic reasons. The impact of untreated wastewater irrigation on accumulation and vertical migration of nitrogen and phosphorus in paddy soil is concerned. Consequently, four representative paddy fields with different histories of livestock farm wastewater irrigation (0, 4, 7, 13 years) were selected for collecting profile soil samples to study the effects of long-term irrigation of untreated livestock farm wastewater on various forms of nitrogen and phosphorus in the soils at different vertical depths. As compared with control field without any irrigation of wastewater, long-term irrigation of untreated livestock farm wastewater significantly increased the accumulation of N and P in the soils with increasing the irrigation year, and the increment of total P in the soil was greater than that of total N. Total P content in surface soil from fields with 4, 7, and 13 years irrigation was increased by 43.6%, 95.2%, and 148.4%, while total N increased by 7.6%, 16.9%, and 28.4%, respectively. Different forms of soil N were increased in order of NH4+ -N, NO3- -N > acid hydrolyzable N > non-acid hydrolyzable N, and soil available P changed much more than total P. Long-term irrigation of untreated livestock farm wastewater could promote vertical migration of soil nitrogen and phosphorus, and increase the pollution risk for groundwater.

  9. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.

    PubMed

    Jia, Yan; Huang, Hai; Sun, Guo-Xin; Zhao, Fang-Jie; Zhu, Yong-Guan

    2012-08-01

    Recent studies have shown that higher plants are unable to methylate arsenic (As), but it is not known whether methylated As species taken up by plants can be volatilized. Rice (Oryza sativa L.) plants were grown axenically or in a nonsterile soil using a two-chamber system. Arsenic transformation and volatilization were investigated. In the axenic system, uptake of As species into rice roots was in the order of arsenate (As(V)) > monomethylarsonic acid (MMAs(V)) > dimethylarsinic acid (DMAs(V)) > trimethylarsine oxide (TMAs(V)O), but the order of the root-to-shoot transport index (Ti) was reverse. Also, volatilization of trimethylarsine (TMAs) from rice plants was detected when plants were treated with TMAs(V)O but not with As(V), DMAs(V), or MMAs(V). In the soil culture, As was volatilized mainly from the soil. Small amounts of TMAs were also volatilized from the rice plants, which took up DMAs(V), MMAs(V), and TMAs(V)O from the soil solution. The addition of dried distillers grain (DDG) to the soil enhanced As mobilization into the soil solution, As methylation and volatilization from the soil, as well as uptake of different As species and As volatilization from the rice plants. Results show that rice is able to volatilize TMAs after the uptake of TMAs(V)O but not able to convert inorganic As, MMAs(V) or DMAs(V) into TMAs and that the extent of As volatilization from rice plants was much smaller than that from the flooded soil. PMID:22724924

  10. Dynamics of the microbial community and Fe(III)-reducing and dechlorinating microorganisms in response to pentachlorophenol transformation in paddy soil.

    PubMed

    Chen, Manjia; Liu, Chengshuai; Chen, Pengcheng; Tong, Hui; Li, Fangbai; Qiao, Jiangtao; Lan, Qing

    2016-07-15

    Soil microorganisms play crucial roles in the fates of pollutants, and understanding the behaviour of these microorganisms is critical for the bioremediation of PCP-contaminated soil. However, shifts remain unclear in the community structure and Fe(III)-reducing and dechlorinating microorganisms during PCP transformation processes, especially during the stages from the lag to the dechlorination phase and from the dechlorination to the stationary phase. Here, a set of lab-scale experiments was performed to investigate the microbial community dynamics accompanying PCP transformation in paddy soil. 19μM of PCP was biotransformed completely in 10days for all treatments. T-RFLP analysis of the microbial community confirmed that Veillonellaceae and Clostridium sensu stricto were the dominant groups during PCP transformation, and the structures of the microbial communities changed due to the degree of biotransformation and the addition of lactate and AQDS. However, similar temporal dynamics of the microbial communities were obtained among all treatments. Furthermore, as revealed by quantitative PCR, the dynamics of Fe(III)-reducing and dechlorinating microorganisms, including Geobacter sp., Shewanella sp., and Dehalobacter sp., were consistent with the transformation kinetics of PCP, suggesting the critical roles played by these microorganisms in PCP transformation. These findings are valuable for making predictions of and proposing methods for the microbial detoxification of residual organochlorine pesticides in paddy soil. PMID:27017395

  11. Characterization and risk assessment of polychlorinated biphenyls in soils and rice tissues in a suburban paddy field of the Pearl River Delta, South China.

    PubMed

    Li, Qilu; Wang, Yan; Luo, Chunling; Li, Jun; Zhang, Gan

    2015-08-01

    We investigated the concentration and composition of polychlorinated biphenyls (PCBs) in paddy soils and rice tissues and the associated potential health risks in the urban agricultural areas of the Pearl River Delta (PRD), South China. The results indicated that highly chlorinated PCBs were more prominent in soil when the concentrations of low-molecular-weight PCBs were relatively high in rice plants. There was a trend of decreasing PCB concentrations with soil depth and a significant correlation between PCBs and the total organic carbon or total nitrogen concentration in section soils. The PCB concentrations followed the order of root > leaf > stem > grain. Although the dioxin toxicity equivalency values and estimated daily intake levels (based direct and indirect consumption) were lower than in other seriously contaminated regions, there is still a need to monitor PCB pollution in urban agriculture because of the PCB emissions from capacitor storage following the rapid urbanization experienced in the PRD.

  12. Clonal Integration Enhances the Performance of a Clonal Plant Species under Soil Alkalinity Stress

    PubMed Central

    Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  13. Clonal integration enhances the performance of a clonal plant species under soil alkalinity stress.

    PubMed

    Zhang, Wenjun; Yang, Gaowen; Sun, Juanjuan; Chen, Jishan; Zhang, Yingjun

    2015-01-01

    Clonal plants have been shown to successfully survive in stressful environments, including salinity stress, drought and depleted nutrients through clonal integration between original and subsequent ramets. However, relatively little is known about whether clonal integration can enhance the performance of clonal plants under alkalinity stress. We investigated the effect of clonal integration on the performance of a typical rhizomatous clonal plant, Leymus chinensis, using a factorial experimental design with four levels of alkalinity and two levels of rhizome connection treatments, connected (allowing integration) and severed (preventing integration). Clonal integration was estimated by comparing physiological and biomass features between the rhizome-connected and rhizome-severed treatments. We found that rhizome-connected treatment increased the biomass, height and leaf water potential of subsequent ramets at highly alkalinity treatments but did not affect them at low alkalinity treatments. However, rhizome-connected treatment decreased the root biomass of subsequent ramets and did not influence the photosynthetic rates of subsequent ramets. The biomass of original ramets was reduced by rhizome-connected treatment at the highest alkalinity level. These results suggest that clonal integration can increase the performance of clonal plants under alkalinity stress. Rhizome-connected plants showed dramatically increased survival of buds with negative effects on root weight, indicating that clonal integration influenced the resource allocation pattern of clonal plants. A cost-benefit analysis based on biomass measures showed that original and subsequent ramets significantly benefited from clonal integration in highly alkalinity stress, indicating that clonal integration is an important adaptive strategy by which clonal plants could survive in local alkalinity soil. PMID:25790352

  14. The fate of nitrogen in a moderately alkaline and calcareous soil amended with biosolids and urea.

    PubMed

    Mendoza, Christina; Assadian, Naomi W; Lindemann, William

    2006-06-01

    The determination of nitrogen (N) based loading rates for land application of biosolids is challenging and site specific. Over loading may contribute to environmental, agricultural, or human health problems. The objective of this study was to monitor N mineralization and losses in a moderately alkaline and calcareous desert soil amended with either anaerobically digested (AN) or lime-stabilized (LS) biosolids, and irrigated with and without urea enriched water. For Experiment 1, N inputs, leaching and residuals in soil were evaluated in an open soil column system. For Experiment 2, ammonia (NH(3)) emissions were evaluated in a closed soil column system. In Experiment 1, AN and LS biosolids increased soil ON (organic N) by three and two fold, respectively. Respective net N mineralization of ON from biosolids alone was 90% and 62% without urea, and 71% and 77%, respectively with added urea. Nitrogen leaching losses and residuals in amended soil did not account for all N inputs into the soil/biosolids system. In Experiment 2, NH(3) emissions were not significantly different among treated soils with or without added urea, except LS amended soil receiving urea. Ammonia losses did not account for unaccounted N in Experiment 1. We concluded that deep placement and rapid mineralization of AN biosolids promoted anaerobic soil conditions and denitrification, in addition to the high denitrification potential of desert soil. LS biosolids showed greater potential than AN biosolids for safe and beneficial land application to desert soils regardless of biosolids placement and the inclusion of N rich irrigation water.

  15. Effect of nitrogen fertilizer and/or rice straw amendment on methanogenic archaeal communities and methane production from a rice paddy soil.

    PubMed

    Bao, Qiongli; Huang, Yizong; Wang, Fenghua; Nie, Sanan; Nicol, Graeme W; Yao, Huaiying; Ding, Longjun

    2016-07-01

    Nitrogen fertilization and returning straw to paddy soil are important factors that regulate CH4 production. To evaluate the effect of rice straw and/or nitrate amendment on methanogens, a paddy soil was anaerobically incubated for 40 days. The results indicated that while straw addition increased CH4 production and the abundances of mcrA genes and their transcripts, nitrate amendment showed inhibitory effects on them. The terminal restriction fragment length polymorphism (T-RFLP) analysis based on mcrA gene revealed that straw addition obviously changed methanogenic community structure. Based on mcrA gene level, straw-alone addition stimulated Methanosarcinaceaes at the early stage of incubation (first 11 days), but nitrate showed inhibitory effect. The relative abundance of Methanobacteriaceae was also stimulated by straw addition during the first 11 days. Furthermore, Methanosaetaceae were enriched by nitrate-alone addition after 11 days, while Methanocellaceae were enriched by nitrate addition especially within the first 5 days. The transcriptional methanogenic community indicated more dynamic and complicated responses to straw and/or nitrate addition. Based on mcrA transcript level, nitrate addition alone resulted in the increase of Methanocellaceae and the shift from Methanosarcinaceae to Methanosaetaceae during the first 5 days of incubation. Straw treatments increased the relative abundance of Methanobacteriaceae after 11 days. These results demonstrate that nitrate addition influences methanogens which are transcriptionally and functionally active and can alleviate CH4 production associated with straw amendment in paddy soil incubations, presumably through competition for common substrates between nitrate-utilizing organisms and methanogens. PMID:26923143

  16. Hexavalent uranium diffusion into soils from concentrated acidic and alkaline solutions

    SciTech Connect

    Tokunaga, Tetsu K.; Wan, Jiamin; Pena, Jasquelin; Sutton, Stephen R.; Newville, Matthew

    2004-03-29

    Uranium contamination of soils and sediments often originates from acidic or alkaline waste sources, with diffusion being a major transport mechanism. Measurements of U(VI) diffusion from initially pH 2 and pH 11 solutions into a slightly alkaline Altamont soil and a neutral Oak Ridge soil were obtained through monitoring uptake from boundary reservoirs and from U concentration profiles within soil columns. The soils provided pH buffering, resulting in diffusion at nearly constant pH. Micro x-ray absorption near edge structure spectra confirmed that U remained in U(VI) forms in all soils. Time trends of U(VI) depletion from reservoirs, and U(VI) concentration profiles within soil columns yielded K{sub d} values consistent with those determined in batch tests at similar concentrations ({approx} 1 mM), and much lower than values for sorption at much lower concentrations (nM to {mu}M). These results show that U(VI) transport at high concentrations can be relatively fast at non-neutral pH, with negligible surface diffusion, because of weak sorption.

  17. Soil organic carbon (SOC) accumulation in rice paddies under long-term agro-ecosystem experiments in southern China - VI. Changes in microbial community structure and respiratory activity

    NASA Astrophysics Data System (ADS)

    Liu, D.; Liu, X.; Liu, Y.; Li, L.; Pan, G.; Crowley, D.; Tippkötter, R.

    2011-02-01

    Biological stabilization within accumulated soil organic carbon (SOC) has not been well understood, while its role in physical and chemical protection as well as of chemical recalcitrance had been addressed in Chinese rice paddies. In this study, topsoil samples were collected and respiratory activity measured in situ following rice harvest under different fertilization treatments of three long-term experimental sites across southern China in 2009. The SOC contents, microbial biomass carbon (SMBC) and nitrogen (SMBN) were analysed using chemical digestion and microbial community structure assessment via clony dilute plate counting methods. While SOC contents were consistently higher under compound chemical fertilization (Comp-Fert) or combined organic and inorganic fertilization (Comb-Fert) compared to N fertilization only (N-Fert), there was significantly higher fungal-bacterial ratio under Comb-Fert than under N-Fert and Comp-Fert. When subtracting the background effect under no fertilization treatment (Non-Fert), the increase both in SMBC and SMBN under fertilization treatment was found very significantly correlated to the increase in SOC over controls across the sites. Also, the ratio of culturable fungal to bacterial population numbers (F/B ratio) was well correlated with soil organic carbon contents in all samples across the sites studied. SOC accumulation favoured a build-up the microbial community with increasing fungal dominance in the rice paddies under fertilization treatments. While soil respiration rates were high under Comb-Fert as a result of enhanced microbial community build-up, the specific soil respiratory activity based on microbial biomass carbon was found in a significantly negatively correlation with the SOC contents for overall samples. Thus, a fungal-dominated microbial community seemed to slow SOC turnover, thereby favouring SOC accumulation under Comp-Fert or under Comb-Fert in the rice paddies. Therefore, the biological stabilization

  18. Interactive effects of straw-derived biochar and N fertilization on soil C storage and rice productivity in rice paddies of Northeast China.

    PubMed

    Sui, Yanghui; Gao, Jiping; Liu, Caihong; Zhang, Wenzhong; Lan, Yu; Li, Shuhang; Meng, Jun; Xu, Zhengjin; Tang, Liang

    2016-02-15

    Impacts of biochar on greenhouse gas emissions and C sequestration in agricultural soils have been considered as the key to mitigate climate change. There is limited knowledge regarding the effects of rice straw-derived biochar and interaction with N fertilization on soil C sequestration and rice productivity in fertile paddy fields. A 2-year (2013 and 2014) consecutive field trial was performed using straw treatment (5.05 t ha(-1)) and biochar amendment (0, 1.78, 14.8 and 29.6 t ha(-1)) with or without urea application in a rice paddy in Northeast China. A super high yielding rice variety (Oryza sativa L. subsp. Japonica cv. 'Shennong 265') was cultivated with permanent flooding. Results showed that biochar amendments significantly decreased CH4 emissions relative to straw treatment irrespective of N fertilization, especially in N-fertilized soils with 1.78 t ha(-1) biochar. There were no differences in CO2 emissions with respect to biochar amendments, except for 14.8 t ha(-1) biochar with N fertilization. Straw treatment had the highest global warming potential over a 100-year time frame, which was nearly 1.5 times that of 14.8 t ha(-1) biochar amendment without N fertilization. Biochar addition increased total soil C by up to 5.75 mg g(-1) and 11.69 mg g(-1) (with 14.8 and 29.6 t ha(-1) biochar, respectively), whereas straw incorporation increased this value by only 3.92 mg g(-1). The aboveground biomass of rice in biochar-amended soils increased to varying degrees compared with that in straw-treated soils. However, biochar application had no effects on rice yield, regardless of N fertilization. This study indicated that transforming straw to biochar was more stabilized and more suitable to mitigate greenhouse gas emissions and increase C storage in agriculture soils in Northeast China. PMID:26657366

  19. Microsymbionts of Phaseolus vulgaris in acid and alkaline soils of Mexico.

    PubMed

    Verástegui-Valdés, Myrthala M; Zhang, Yu Jing; Rivera-Orduña, Flor N; Cheng, Hai-Ping; Sui, Xing Hua; Wang, En Tao

    2014-12-01

    In order to investigate bean-nodulating rhizobia in different types of soil, 41 nodule isolates from acid and alkaline soils in Mexico were characterized. Based upon the phylogenetic studies of 16S rRNA, atpD, glnII, recA, rpoB, gyrB, nifH and nodC genes, the isolates originating from acid soils were identified as the phaseoli symbiovar of the Rhizobium leguminosarum-like group and Rhizobium grahamii, whereas the isolates from alkaline soils were defined as Ensifer americanum sv. mediterranense and Rhizobium radiobacter. The isolates of "R. leguminosarum" and E. americanum harbored nodC and nifH genes, but the symbiotic genes were not detected in the four isolates of the other two species. It was the first time that "R. leguminosarum" and E. americanum have been reported as bean-nodulating bacteria in Mexico. The high similarity of symbiotic genes in the Rhizobium and Ensifer populations showed that these genes had the same origin and have diversified recently in different rhizobial species. Phenotypic characterization revealed that the "R. leguminosarum" population was more adapted to the acid and low salinity conditions, while the E. americanum population preferred alkaline conditions. The findings of this study have improved the knowledge of the diversity, geographic distribution and evolution of bean-nodulating rhizobia in Mexico.

  20. Effect of common ions on nitrate removal by zero-valent iron from alkaline soil.

    PubMed

    Tang, Cilai; Zhang, Zengqiang; Sun, Xining

    2012-09-15

    Zero-valent iron (Fe(0))-based permeable reactive barrier (PRB) technology has been proved to be effective for soil and groundwater nitrate remediation under acidic or near neutral conditions. But few studies have been reported about it and the effects of coexistent ions under alkaline conditions. In this study, nitrate reduction by Fe(0) was evaluated via batch tests in the presence of alkaline soil and common cation (Fe(2+), Fe(3+) and Cu(2+)) and anion (citrate, oxalate, acetate, SO(4)(2-), PO(4)(3-), Cl(-) and HCO(3)(-)). The results showed that cation significantly enhanced nitrate reduction with an order of Fe(3+)>Fe(2+)>Cu(2+) due to providing Fe(2+) directly or indirectly. Most anions enhanced nitrate reduction, but PO(4)(3-) behaved inhibition. The promotion decreased in the order of citrate>acetate>SO(4)(2-)>Cl(-)≈HCO(3)(-)≈oxalate≫PO(4)(3-). Ammonium was the major final product from nitrate reduction by Fe(0), while a little nitrite accumulated in the beginning of reaction. The nitrogen recovery in liquid and gas phase was only 56-78% after reaction due to ammonium adsorption onto soil. The solution pH and electric conductivity (EC) varied depending on the specific ion added. The results implied that PRB based Fe(0) is a potential approach for in situ remediation of soil and groundwater nitrate contamination in the alkaline conditions.

  1. Straw application in paddy soil enhances methane production also from other carbon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Pump, J.; Conrad, R.

    2013-08-01

    Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition exerted a positive priming effect on SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the positive priming effect of RS on ROC-derived CH4 production was probably caused by the significant increase of the abundance of methanogenic archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  2. Straw application in paddy soil enhances methane production also from other carbon sources

    NASA Astrophysics Data System (ADS)

    Yuan, Q.; Pump, J.; Conrad, R.

    2014-01-01

    Flooded rice fields are an important source of the greenhouse gas methane. Methane is produced from rice straw (RS), soil organic matter (SOM), and rice root organic carbon (ROC). Addition of RS is widely used for ameliorating soil fertility. However, this practice provides additional substrate for CH4 production and results in increased CH4 emission. Here, we found that decomposing RS is not only a substrate of CH4 production, but in addition stimulates CH4 production from SOM and ROC. Apart from accelerating the creation of reduced conditions in the soil environment, RS decomposition resulted in enhancement of SOM-derived CH4 production. In particular, hydrogenotrophic methanogenesis from SOM-derived CO2 was stimulated, presumably by H2 released from RS decomposition. On the other hand, the enhancement of ROC-derived CH4 production after RS application was probably caused by the significant increase of the abundance of methanogenic Archaea in the RS treatment compared with the untreated control. Our results show that traditional management of rice residues exerts a positive feedback on CH4 production from rice fields, thus exacerbating its effect on the global CH4 budget.

  3. [Effect of carbon substrate concentration on N2, N2O, NO, CO2, and CH4 emissions from a paddy soil in anaerobic condition].

    PubMed

    Chen, Nuo; Liao, Ting-ting; Wang, Rui; Zheng, Xun-hua; Hu, Rong-gui; Butterbach-Bahl, Klaus

    2014-09-01

    Understanding the effects of carbon and nitrogen substrates concentrations on the emissions of denitrification gases including nitrogen (N2) , nitrous oxide (N2O) and nitric oxide (NO), carbon dioxide (CO2) and methane (CH4) from anaerobic paddy soils is believed to be helpful for development of greenhouse gas mitigation strategies. Moreover, understanding the quantitative dependence of denitrification products compositions on carbon substrate concentration could provide some key parameters or parameterization scheme for developing process-oriented model(s) of nitrogen transformation. Using a silt loam soil collected from a paddy field, we investigated the influence of carbon substrate concentration on the emissions of the denitrification gases, CO2 and CH4 from anaerobically incubated soils by setting two treatments: control (CK) with initial soil nitrate and dissolved organic carbon (DOC) concentrations of ~ 50 mg.kg-1 and -28 mg kg-1 , respectively; and DOC added (C + ) with initial soil nitrate and DOC concentrations of ~50 mg.kg-1 and ~300 mg.kg-1 , respectively. The emissions of denitrification gases, CO2 and CH4, as well as concentrations of carbon and nitrogen substrates for each treatment were dynamically measured, using the gas-flow-soil-core technique and a paralleling substrate monitoring system. The results showed that CH4 emission was not observed in CK treatment while observed in C treatment. Aggregate emission of greenhouse gases for C + treatment was significantly higher comparing with the CK treatment (P <0. 01). The mass fractions of NO, N20 and N2 emissions in total nitrogen gases emissions were approximately 9% , 35% and 56% for CK treatment, respectively; and approximately 31% , 50% and 19% for C+ treatment, respectively, with significant differences between these two treatments (P < 0.01). The results indicated that carbon substrate concentrations can significantly change the composition of nitrogen gas emissions. The results also implicated

  4. Storage/Turnover rate of inorganic carbon and its dissolvable part in the profile of saline/alkaline soils.

    PubMed

    Wang, Yugang; Wang, Zhongyuan; Li, Yan

    2013-01-01

    Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m(-2) yr(-1) and 1.34 to 5.33 g C m(-2) yr(-1) respectively for saline soil, and from 1.43 to 4.9 g C m(-2) yr(-1) and 0.79 to 1.27 g C m(-2) yr(-1)respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile.

  5. Storage/Turnover Rate of Inorganic Carbon and Its Dissolvable Part in the Profile of Saline/Alkaline Soils

    PubMed Central

    Wang, Yugang; Wang, Zhongyuan; Li, Yan

    2013-01-01

    Soil inorganic carbon is the most common form of carbon in arid and semiarid regions, and has a very long turnover time. However, little is known about dissolved inorganic carbon storage and its turnover time in these soils. With 81 soil samples taken from 6 profiles in the southern Gurbantongute Desert, China, we investigated the soil inorganic carbon (SIC) and the soil dissolved inorganic carbon (SDIC) in whole profiles of saline and alkaline soils by analyzing their contents and ages with radiocarbon dating. The results showed that there is considerable SDIC content in SIC, and the variations of SDIC and SIC contents in the saline soil profile were much larger than that in the alkaline profile. SDIC storage accounted for more than 20% of SIC storage, indicating that more than 1/5 of the inorganic carbon in both saline and alkaline soil is not in non-leachable forms. Deep layer soil contains considerable inorganic carbon, with more than 80% of the soil carbon stored below 1 m, whether for SDIC or SIC. More importantly, SDIC ages were much younger than SIC in both saline soil and alkaline soil. The input rate of SDIC and SIC ranged from 7.58 to 29.54 g C m-2 yr-1 and 1.34 to 5.33 g C m-2 yr-1 respectively for saline soil, and from 1.43 to 4.9 g C m-2 yr-1 and 0.79 to 1.27 g C m-2 yr-1respectively for alkaline soil. The comparison of SDIC and SIC residence time showed that using soil inorganic carbon to estimate soil carbon turnover would obscure an important fraction that contributes to the modern carbon cycle: namely the shorter residence and higher input rate of SDIC. This is especially true for SDIC in deep layers of the soil profile. PMID:24312399

  6. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    PubMed

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected. PMID:24638260

  7. Changes in methane oxidation activity and methanotrophic community composition in saline alkaline soils.

    PubMed

    Serrano-Silva, Nancy; Valenzuela-Encinas, César; Marsch, Rodolfo; Dendooven, Luc; Alcántara-Hernández, Rocio J

    2014-05-01

    The soil of the former Lake Texcoco is a saline alkaline environment where anthropogenic drainage in some areas has reduced salt content and pH. Potential methane (CH4) consumption rates were measured in three soils of the former Lake Texcoco with different electrolytic conductivity (EC) and pH, i.e. Tex-S1 a >18 years drained soil (EC 0.7 dS m(-1), pH 8.5), Tex-S2 drained for ~10 years (EC 9.0 dS m(-1), pH 10.3) and the undrained Tex-S3 (EC 84.8 dS m(-1), pH 10.3). An arable soil from Alcholoya (EC 0.7 dS m(-1), pH 6.7), located nearby Lake Texcoco was used as control. Methane oxidation in the soil Tex-S1 (lowest EC and pH) was similar to that in the arable soil from Alcholoya (32.5 and 34.7 mg CH4 kg(-1) dry soil day(-1), respectively). Meanwhile, in soils Tex-S2 and Tex-S3, the potential CH4 oxidation rates were only 15.0 and 12.8 mg CH4 kg(-1) dry soil day(-1), respectively. Differences in CH4 oxidation were also related to changes in the methane-oxidizing communities in these soils. Sequence analysis of pmoA gene showed that soils differed in the identity and number of methanotrophic phylotypes. The Alcholoya soil and Tex-S1 contained phylotypes grouped within the upland soil cluster gamma and the Jasper Ridge, California JR-2 clade. In soil Tex-S3, a phylotype related to Methylomicrobium alcaliphilum was detected.

  8. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system.

    PubMed

    Lin, Hui; Sun, Wanchun; Zhang, Zulin; Chapman, Stephen J; Freitag, Thomas E; Fu, Jianrong; Zhang, Xin; Ma, Junwei

    2016-04-01

    This work investigated the responses of antibiotic resistance genes (ARGs) and the soil microbial community in a paddy-upland rotation system to mineral fertilizer (NPK) and different application dosages of manure combined with NPK. The occurrence of five tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), two sulfonamide ARGs (sul1 and sul2) and one genetic element (IntI1) was quantified. NPK application showed only slight or no impact on soil ARGs abundances compared with the control without fertilizer. Soil ARGs abundances could be increased by manure-NPK application but was related to manure dosage (2250-9000 kg ha(-1)). Principal component analysis (PCA) showed that the soil ARG profile of the treatment with 9000 kg ha(-1) manure separated clearly from the other treatments; the ARGs that contributed most to the discrimination of this treatment were tetA, tetG, tetW, sul1, sul2 and IntI1. Community level physiological profile (CLPP) analysis showed that increasing manure dosage from 4500 kg ha(-1) to 9000 kg ha(-1) induced a sharp increase in almost all of the detected ARGs but would not change the microbial community at large. However, 9000 kg ha(-1) manure application produced a decline in soil microbial activity. Determination of antibiotics and heavy metals in soils suggested that the observed bloom of soil ARGs might associate closely with the accumulation of copper and zinc in soil. PMID:26774780

  9. Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy-upland rotation system.

    PubMed

    Lin, Hui; Sun, Wanchun; Zhang, Zulin; Chapman, Stephen J; Freitag, Thomas E; Fu, Jianrong; Zhang, Xin; Ma, Junwei

    2016-04-01

    This work investigated the responses of antibiotic resistance genes (ARGs) and the soil microbial community in a paddy-upland rotation system to mineral fertilizer (NPK) and different application dosages of manure combined with NPK. The occurrence of five tetracycline ARGs (tetA, tetB, tetC, tetG and tetW), two sulfonamide ARGs (sul1 and sul2) and one genetic element (IntI1) was quantified. NPK application showed only slight or no impact on soil ARGs abundances compared with the control without fertilizer. Soil ARGs abundances could be increased by manure-NPK application but was related to manure dosage (2250-9000 kg ha(-1)). Principal component analysis (PCA) showed that the soil ARG profile of the treatment with 9000 kg ha(-1) manure separated clearly from the other treatments; the ARGs that contributed most to the discrimination of this treatment were tetA, tetG, tetW, sul1, sul2 and IntI1. Community level physiological profile (CLPP) analysis showed that increasing manure dosage from 4500 kg ha(-1) to 9000 kg ha(-1) induced a sharp increase in almost all of the detected ARGs but would not change the microbial community at large. However, 9000 kg ha(-1) manure application produced a decline in soil microbial activity. Determination of antibiotics and heavy metals in soils suggested that the observed bloom of soil ARGs might associate closely with the accumulation of copper and zinc in soil.

  10. Diversity and activity of methanotrophs in alkaline soil from a Chinese coal mine.

    PubMed

    Han, Bing; Chen, Yin; Abell, Guy; Jiang, Hao; Bodrossy, Levente; Zhao, Jiangang; Murrell, J Colin; Xing, Xin-Hui

    2009-11-01

    Culture-independent molecular biological techniques, including 16S rRNA gene and functional gene clone libraries and microarray analyses using pmoA (encoding a key subunit of particulate methane monooxygenase), were applied to investigate the methanotroph community structure in alkaline soil from a Chinese coal mine. This environment contained a high diversity of methanotrophs, including the type II methanotrophs Methylosinus/Methylocystis, type I methanotrophs related to Methylobacter/Methylosoma and Methylococcus, and a number of as yet uncultivated methanotrophs. In order to identify the metabolically active methane-oxidizing bacteria from this alkaline environment, DNA stable isotope probing (DNA-SIP) experiments using (13)CH(4) were carried out. This showed that both type I and type II methanotrophs were active, together with methanotrophs related to Methylocella, which had previously been found only in acidic environments. Methylotrophs, including Methylopila and Hyphomicrobium, were also detected in soil DNA and after DNA-SIP experiments. DNA sequence information on the most abundant, active methanotrophs in this alkaline soil will facilitate the design of oligonucleotide probes to monitor enrichment cultures when isolating key alkaliphilic methanotrophs from such environments. PMID:19515201

  11. In situ electrokinetic remediation of As-, Cu-, and Pb-contaminated paddy soil using hexagonal electrode configuration: a full scale study.

    PubMed

    Jeon, Eun-Ki; Jung, Ji-Min; Kim, Woo-Seung; Ko, Sung-Hwan; Baek, Kitae

    2015-01-01

    We investigated the in situ applicability of the electrokinetic process with a hexagonal electrode configuration in order to remediate arsenic (As)-, copper (Cu)-, and lead (Pb)-contaminated paddy rice field soil at a field scale (width 17 m, length 12.2 m, and depth 1.6 m). An iron electrode was used in order to prevent the severe acidification of the soil near the anode. We selected ethylenediaminetetraacetic acid (EDTA) as a pursing electrolyte to enhance the extraction of Cu and Pb. The system removed 44.4% of the As, 40.3% of the Cu, and 46.6% of the Pb after 24 weeks of operation. Fractionation analysis showed that the As bound to amorphous ion (Fe) and aluminum (Al) oxyhydroxides was changed into a form of As specifically bound. In the case of Cu and Pb, the fraction bound to Fe-Mn oxyhydroxide primarily decreased. The EDTA formed negatively charged complexes with Cu and Pb, and those complexes were transported toward the anode. The energy consumption was very low compared to that on a small scale because there was less energy consumption due to Joule heating. These results show that the in situ electrokinetic process could be applied in order to remediate paddy rice fields contaminated with multiple metals. PMID:25103944

  12. Genetic diversity and community structure of rhizobia nodulating Sesbania cannabina in saline-alkaline soils.

    PubMed

    Li, Yan; Li, Xiangyue; Liu, Yajing; Wang, En Tao; Ren, Chenggang; Liu, Wei; Xu, Hualing; Wu, Hailong; Jiang, Nan; Li, Yunzhao; Zhang, Xiaoli; Xie, Zhihong

    2016-05-01

    Sesbania cannabina is a plant that grows naturally along the seashores in Rudong County, China (RDC) and it has been introduced into the Yellow River Delta (YRD) as a pioneer plant to improve the saline-alkaline soils. In order to investigate the diversity of S. cannabina rhizobia in these soils, a total of 198 rhizobial isolates were characterized and phylogenetic trees were constructed based on data from multilocus sequence analysis (MLSA) of the housekeeping genes recA, atpD and glnII, as well as 16S rRNA. Symbiotic features were also studied by establishing the phylogeny of the symbiotic genes nodA and nifH, and by performing nodulation assays. The isolates had highly conserved symbiotic genes and were classified into nine genospecies belonging to the genera Ensifer, Agrobacterium, Neorhizobium and Rhizobium. A unique community structure was detected in the rhizobia associated with S. cannabina in the saline-alkaline soils that was characterized by five novel genospecies and four defined species. In addition, Ensifer sp. I was the predominant rhizobia in YRD, whereas Ensifer meliloti and Neorhizobium huautlense were the dominant species in RDC. Therefore, the study demonstrated for the first time that this plant strongly selected the symbiotic gene background but not the genomic background of its microsymbionts. In addition, biogeographic patterns existed in the rhizobial populations associated with S. cannabina, which were mainly correlated with pH and salinity, as well as the mineral nutrient contents. This study provided novel information concerning the interaction between soil conditions, host plant and rhizobia, in addition to revealing the diversity of S. cannabina rhizobia in saline-alkaline soils. PMID:27061259

  13. Phosphate solubilization potential and modeling of stress tolerance of rhizobacteria from rice paddy soil in northern Iran.

    PubMed

    Bakhshandeh, Esmaeil; Rahimian, Heshmatollah; Pirdashti, Hematollah; Nematzadeh, Ghorban Ali

    2014-09-01

    The purposes of this study were to evaluate the phosphate solubilization activity of bacteria isolated from the rhizosphere of rice paddy soil in northern Iran, and to study the effect of temperature, NaCl and pH on the growth of these isolates by modeling. Three of the most effective strains from a total of 300 isolates were identified and a phylogenetic analysis was carried out by 16S rDNA sequencing. The isolates were identified as Pantoea ananatis (M36), Rahnella aquatilis (M100) and Enterobacter sp. (M183). These isolates showed multiple plant growth-promoting attributes such as phosphate solubilization activity and indole-3-acetic acid (IAA) production. The M36, M100 and M183 isolates were able to solubilize 172, 263 and 254 µg ml(-1) of Ca3(PO4)2 after 5 days of growth at 28 °C and pH 7.5, and to produce 8.0, 2.0 and 3.0 μg ml(-1) of IAA when supplemented with L-tryptophan (1 mg ml(-1)) for 72 h, at 28 °C and pH 7.0, respectively. The solubilization of insoluble phosphate was associated with a drop in the pH of the culture medium and there was an inverse relationship between pH and solubilized P (r = -0.98, P < 0.0952). There were no significant differences among isolates in terms of acidity tolerance based on their confidence limits as assessed by segmented model analysis and all isolates were able to grow at pH 4.3-11 (with optimum at 7.0-7.5). Based on a sigmoidal trend of a three-parameter logistic model, the salt concentration required for 50 % inhibition was 8.15, 6.30 and 8.23 % NaCl for M36, M100 and M183 isolates, respectively. Moreover, the minimum and maximum growth temperatures estimated by the segmented model were 5.0 and 42.75 °C for M36, 12.76 and 40.32 °C for M100, and 10.63 and 43.66 °C for M183. The three selected isolates could be deployed as inoculants to promote plant growth in an agricultural environment.

  14. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments.

    PubMed

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography-mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0-15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6-9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7-9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration

  15. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments

    PubMed Central

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography–mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0–15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6–9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7–9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon

  16. Root-Derived Short-Chain Suberin Diacids from Rice and Rape Seed in a Paddy Soil under Rice Cultivar Treatments.

    PubMed

    Ji, Haishi; Ding, Yuanjun; Liu, Xiaoyu; Li, Lianqing; Zhang, Dengxiao; Li, Zichuan; Sun, Jingling; Lashari, Muhammad Siddique; Joseph, Stephen; Meng, Yuanduo; Kuzyakov, Yakov; Pan, Genxing

    2015-01-01

    Suberin-derived substituted fatty acids have been shown to be potential biomarkers for plant-derived carbon (C) in soils across ecosystems. Analyzing root derived suberin compounds bound in soil could help to understand the root input into a soil organic carbon pool. In this study, bound lipids were extracted and identified in root and topsoil samples. Short-chain suberin diacids were quantified under rice (Oryza sativa L.) and rape (Brassica campestris) rotations with different cultivar combinations in a Chinese rice paddy. After removal of free lipids with sequential extraction, the residual bound lipids were obtained with saponification and derivatization before analysis using gas chromatography-mass spectrometry (GC-MS). Diacids C16 and C18 in bound lipids were detected both in rice and rape root samples, while diacids C20 and C22 were detected only in rape root samples. Accordingly, diacids were quantified in both rhizosphere and bulk soil (0-15 cm). The amount of total root-derived diacids in bulk soil varied in a range of 5.6-9.6 mg/kg across growth stages and crop seasons. After one year-round rice-rape rotation, root-derived suberin diacids were maintained at a level of 7-9 mg/kg in bulk soil; this was higher under a super rice cultivar LY than under a hybrid cultivar IIY. While concentrations of the analyzed diacids were generally higher in rhizosphere than in bulk soil, the total diacid (DA) concentration was higher at the time of rape harvest than at rice harvest, suggesting that rape roots made a major contribution to the preservation of diacids in the paddy. Moreover, the net change in the concentration and the ratios of C16:0 DA to C18:1 DA, and of C16:0 DA to C18:0 DA, over a whole growing season, were greater under LY than under IIY, though there was no difference between cultivars within a single growth stage. Overall, total concentration of root-derived suberin diacids was found to be positively correlated to soil organic carbon concentration

  17. Quantification and modelling of water flow in rain-fed paddy fields in NE Thailand: Evidence of soil salinization under submerged conditions by artesian groundwater

    NASA Astrophysics Data System (ADS)

    Hammecker, Claude; Maeght, Jean-Luc; Grünberger, Olivier; Siltacho, Siwaporn; Srisruk, Kriengsak; Noble, Andrew

    2012-08-01

    SummaryWater flow and solute transport in soils forms an essential part in many groundwater hydrology studies. This is especially true for Northeast Thailand, where the agricultural land is affected by the soil salinity, which is a widespread and an increasing phenomenon affecting 25% of the agricultural land. Salinization appears as scattered discrete patches of 10-100 m2 in the lowlands, illustrated by white efflorescences during the dry season and bare soil during the cropping season. A field study was undertaken in farm plots to measure the water flow and solute transport within the soil surface and the vadose zone, both inside and outside a saline patch. The water flow was measured on the soil surface with lysimeters and infiltration rings, and was derived in the soil from the hydraulic gradients measured with tensiometers placed at different depths. The salt transport was evaluated with water traps also placed at different depths, where the soil water's electrical conductivity was measured throughout the rainy season. Field study results demonstrated that the accumulation of saline solutions in rain fed paddy fields, occurred mainly during the rainy season while the soil surface remained flooded. During this period the saline water table rose towards the soil surface independently of infiltration into the soil. It happened in specific places where the compacted soil layer, generally ubiquitous in the area at a depth of 40-50 cm, is interrupted. Therefore salinity appeareds in discret points as patches. Artesian upward flow already described in this area (Haworth et al., 1966; Williamson et al., 1989; Imaizumi et al., 2002) is most probably responsible for this water table rise, thereby affecting crop productivity. Numerical modelling of water flow using HYDRUS-3D further supported these results and showed that managing the depth of flooding within the plot can significantly reduce the outbreak of these saline plumes.

  18. Effects of the Application of Digestates from Wet and Dry Anaerobic Fermentation to Japanese Paddy and Upland Soils on Short-Term Nitrification

    PubMed Central

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers. PMID:25740173

  19. Role of cosubstrate and bioaccessibility played in the enhanced anaerobic biodegradation of organochlorine pesticides (OCPs) in a paddy soil by nitrate and methyl-β-cyclodextrin amendments.

    PubMed

    Ye, Mao; Sun, Mingming; Ni, Ni; Chen, Yinwen; Liu, Zongtang; Gu, Chengang; Bian, Yongrong; Hu, Feng; Li, Huixin; Kengara, Fredrick Orori; Jiang, Xin

    2014-01-01

    The present study was conducted to investigate the anaerobic biodegradation potential of biostimulation by nitrate (KNO3) and methyl-β-cyclodextrin (MCD) addition on an aged organochlorine pesticide (OCP)-contaminated paddy soil. After 180 days of incubation, total OCP biodegradation was highest in soil receiving the addition of nitrate and MCD simultaneously and then followed by nitrate addition, MCD addition, and control. The highest biodegradation of chlordanes, hexachlorocyclohexanes, endosulfans, and total OCPs was 74.3, 63.5, 51.2, and 65.1%, respectively. Meanwhile, MCD addition significantly increased OCP bioaccessibility (p < 0.05) evaluated by Tenax TA extraction and a three-compartment model method. Moreover, the addition of nitrate and MCD also obtained the highest values of soil microbial activities, including soil microbial biomass carbon and nitrogen, ATP production, denitrifying bacteria count, and nitrate reductase activity. Such similar trend between OCP biodegradation and soil-denitrifying activities suggests a close relationship between OCP biodegradation and N cycling and the indirect/direct involvement of soil microorganisms, especially denitrifying microorganisms in the anaerobic biodegradation of OCPs.

  20. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification.

    PubMed

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers.

  1. [Effects of mulberry-soybean intercropping on carbon-metabolic microbial diversity in saline-alkaline soil].

    PubMed

    Li, Xin; Zhang, Hui-Hui; Yue, Bing-Bing; Jin, Wei-Wei; Xu, Nan; Zhu, Wen-Xu; Sun, Guang-Yu

    2012-07-01

    Aiming at the characteristics that mulberry-soybean intercropping could alleviate the damage of saline-alkaline soil, Biolog technique was adopted to study the effects of this intercropping on the diversity of carbon-metabolic microbial community in the rhizosphere of saline-alkaline soil. Under mulberry-soybean intercropping, the average well color development (AWCD) symbolizing the metabolic activity of soil microbes was obviously higher, as compared with that under mulberry or soybean monocropping, being the lowest under mulberry monocropping. The McIntosh index was also higher under intercropping than under monocropping, but the Shannon index and Simpson index had less difference between intercropping and monocropping, indicating that intercropping changed the composition and enhanced the diversity of the microbial community in the rhizosphere of saline-alkaline soil. Principal component analysis (PCA) showed that the carbon source utilization mode of the soil microbial community differed between intercropping and monocropping, and the main carbon sources were carbohydrate, carboxylic acid, and polymers. Soil pH and salinity were the main factors limiting the diversity of the microbial community in saline-alkaline soil, and intercropping could effectively decrease the soil pH and salinity and promote the improvement of soil microbial community diversity.

  2. Zoom in new insights of potential microbial control of N and CH4 gaseous losses induced by different agricultural practices in temperate paddy soils

    NASA Astrophysics Data System (ADS)

    Cucu, Maria Alexandra; Bardi, Laura; Said-Pullicino, Daniel; Sacco, Dario; Celi, Luisella; Gorra, Roberta

    2016-04-01

    Rice is the world's single most important food crop and a primary food source for more than a third of the world's population. Usually, rice is grown in flooded paddies that result in anoxic soil conditions throughout a major part of the cropping period. Redox processes in wetland ecosystems combined with crop residue incorporation play an important role in element cycling and ecological functions of rice ecosystems. Microbial communities are at the basis of the functioning of wetlands and the ecosystem services they provide. Agronomic management practices adopted in rice paddies may have important effects on microbial biomass functionality and interactions, but these are largely unknown in situ. They mediate important processes such as nitrification, anaerobic ammonia oxidation (Anammox), denitrification, and methanogenesis that regulate ecosystem functioning and control greenhouse gases (GHG) emissions. Therefore, it is crucial to comprehend the microbial control of these processes as a function of different crop residue and water management practices. Here we highlight recent findings based on the exploration of microbial functional genes as biogeochemical indicators. Through both lab and field experiments and by linking to GHG emissions and soil chemistry, we evaluated niche differentiation between microbial communities and the crucial role of agronomic management in regulating their potential functionality. Recent studies showed a high abundance of both 16S communities, bacteria and archaea, confirming the high relevance of archaeal mediated processes in rice ecosystems. Our results unravel the complete denitrification as key player in regulating major nitrogen (N) fluxes in fertilized paddies. In a laboratory experiment this process was shown to be driven by both archaea and bacteria harboring nosZ gene, but especially by archaea in the absence of straw. In addition, part of the immobilized N was attributed to nitrous oxide (N2O) reducing archaea, suggesting

  3. [Effects of no-tillage and fertilization on paddy soil CH4 and N2O emissions and their greenhouse effect in central China].

    PubMed

    Dai, Guang-zhao; Li, Cheng-fang; Cao, Cou-gui; Zhan, Ming; Tong, Le-ga; Mei, Shao-hua; Zhai, Zhong-bing; Fan, Duan-yang

    2009-09-01

    By using static chamber-gas chromatographic techniques, the CH4 and N2O emissions from the paddy soil in southeast Hubei were measured. Four treatments were installed, i.e., no-tillage plus no-fertilization (NT0), conventional tillage plus no-fertilization (CT0), no-tillage plus fertilization (NTC), and conventional tillage plus fertilization (CTC). In all treatments, the CH4 emission had a seasonal variation of increasing first and decreasing then, while the N2O emission had no significant seasonal variation. Fertilization increased the CH4 and N2O emissions significantly. NT0 increased the CH4 emission and decreased the N2O emission significantly, compared with CT0; NTC only decreased the CH4 emission and increased the N2O emission slightly, compared with CTC. The analysis on the integrated greenhouse effect of CH4 and N2O showed that NT0 increased the effect by 25.9%, compared with CT0, while NTC decreased the effect by 10.1%, compared with CTC. Therefore, a reasonable arrangement of fertilization and no-tillage could reduce the integrated greenhouse effect of CH4 and N2O from paddy field.

  4. [Effect of long-term application of nitrogen fertilizer on the diversity of nitrifying genes (amoA and hao) in paddy soil].

    PubMed

    Chen, Chun-lan; Wu, Min-na; Wei, Wen-xue

    2011-05-01

    The aim of this study was to determine the effect of long-term (16 years) application of nitrogen fertilizer on the diversity of nitrifying genes (amoA and hao) in paddy soil on the basis of long-term paddy field experimental station (started in 1990) located in Taoyuan, with the molecular approaches of PCR, constructing libraries and sequencing. The fertilizer was urea and no fertilizer was as control. The Shannon index showed that long-term application of nitrogen fertilizer made the diversity of amoA gene descend while no effect on the diversity of hao gene. The LIBSHUFF statistical analyses demonstrated that both amoA and hao libraries of CK and N treatments were significantly different from each other and the rarefaction curves of libraries failed to meet the plateaus indicating that there were lots kinds of genes haven't been detected. The results of blasting with GenBank and the phylogenetic tree showed that the amoA genes detected in our study had a similarity with the uncultured gene of amoA, which showed some similar to Nitrosospira. Otherwise, the hao genes cloned showed a relationship to the genes of cultured bacteria such as Silicibacteria, Nitrosospira and Methylococcus, and the hao genes found in the N treatment dominated in alpha-Proteobacteria. These results suggest that long-term fertilization of nitrogen had significant impacts on the diversity or community of amoA and hao genes.

  5. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling. PMID:26974565

  6. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    PubMed

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  7. [Aluminum dissolution and changes of pH in soil solution during sorption of copper by aggregates of paddy soil].

    PubMed

    Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun

    2014-01-01

    Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.

  8. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains.

  9. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. PMID:27060198

  10. Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China.

    PubMed

    Zhang, Yun; Luo, Xiao-Jun; Mo, Ling; Wu, Jiang-Ping; Mai, Bi-Xian; Peng, Yong-Hong

    2015-10-01

    The bioaccumulation and translocation of polyhalogenated compounds (PHCs) in rice planted in the paddy soils of an electronic waste (e-waste) recycling site were investigated, along with the effect of contaminated soils on rice growth. The PHCs included polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), and dechlorane plus (DPs). The morphological development and all measured physiological parameters of rice plants except for peroxidase were significantly inhibited by e-waste contaminated soils. Specifically, soil-root bioaccumulation factors (RCFs) increased with increasing logarithm of octanol-water partition coefficient (logKow) for PCBs, but decreased for PBDEs. During translocation from root to stem, translocation factors (TFs) and logKow were positively correlated. However, the accumulation mechanism in the leaf was concentration-dependent. In the high concentration exposure group, translocation play more important role in determination PHCs burden in leaf than atmospheric uptake, with logTF (from stem to leaf) being positively correlated with logKow. In contrast, in the low exposure and control groups, logTF (from stem to leaf) was negatively correlated with logKow. In addition, Syn-DP was selectively accumulated in plant tissues. In conclusion, this study demonstrates that e-waste contaminated soils affect rice growth, revealed the rule of the bioaccumulation and translocation of PHCs in rice plants.

  11. Bioavailability and dissipation of anthracene from soil with different alkalinity and salinity.

    PubMed

    Castro-Silva, Carolina; Ruiz-Valdiviezo, Víctor Manuel; Rivas-Rivera, Sandra Gabriela; Sosa-Trinidad, Alma Rosa; Luna-Guido, Marco; Delgado-Balbuena, Laura; Marsch, Rodolfo; Dendooven, Luc

    2015-01-01

    Bioavailability of contaminants, such as anthracene (Anthra), a polycyclic aromatic hydrocarbon (PAHs), and their removal from soil has been related to their extractability with non-exhaustive techniques, such as hydroxypropyl-beta-cyclodextrin (HPCD) or n-butanol. Anthra was extracted with HPCD, n-butanol and by exhaustive ultrasonic extraction method from sterilized and unsterilized alkaline soil of the former lake Texcoco, having pH ranging from pH 8.2 to 10.1 and electrolytic conductivity varying from 1.2 dS m(-1) to 95.2 dS m(-1), respectively. About 24.4 and 37.6% of Anthra was removed biologically from soil as estimated by exhaustive technique after 56 days. The percentage of Anthra that was removed from soil by exhaustive technique was not related to the amount thatwas extractable with HPCD or n-butanol. It was found that the Anthra extractable with n-butanol or HPCD did not correlate well with the removal of the contaminant from soil. In this study, the removal of Anthra from soil could not be predicted by the amount of Anthra that was extracted with n-butanol or HPCD .

  12. A three-year in-situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals.

    PubMed

    Wu, Yu-Jun; Zhou, Hang;