Science.gov

Sample records for alkaline ph conditions

  1. Uranium(VI) Diffusion in Sodium-Montmorillonite at Alkaline pH Conditions

    NASA Astrophysics Data System (ADS)

    Tinnacher, R. M.; Davis, J. A.; Tournassat, C.; Birkholzer, J. T.

    2015-12-01

    Diffusive transport of uranium(VI) in montmorillonite clay and bentonite has important implications for uranium(VI) mobility in engineered barrier systems or host rocks in high level radioactive waste repositories, and clay-rich soils and sediments in the environment. The prediction of uranium(VI) adsorption and diffusion in clay-rich media, however, is complicated by (1) the complexity of the mineralogical structure of montmorillonite, in terms of its pore-size distributions and available surface site types, and (2) the complex uranium(VI) solution speciation, which can include cationic, uncharged, and anionic complexes, depending on solution conditions. For instance, a partial or full exclusion of anions from negatively charged clay interlayer spaces could change the effective 'anion-accessible' porosity and decrease the diffusive flux of these solutes under steady state conditions. In contrast, weak cation exchange reactions can result in 'surface diffusion' of adsorbed cations, such as UO2OH+, in addition to diffusion in the liquid phase, resulting in greater diffusive fluxes at steady state. In order to investigate these complex interactions, we performed two, lab-scale uranium(VI) through-diffusion experiments in lightly compacted Na-montmorillonite at slightly different, alkaline pH conditions (average pH values of 8.69 and 8.87). Observed uranium(VI) diffusive fluxes were decreased by approximately an order of magnitude in comparison to a tritium tracer. This indicates a relevance of 'anion exclusion' effects, the full or partial exclusion of anionic U(VI)-carbonato species from clay interlayer spaces. In addition, uranium(VI) sorption reactions were shown to be relevant in the diffusion experiments, even at alkaline pH values of around 8.7 and 8.9, where uranium(VI) sorption is low compared to other pH conditions. Despite the similarity of pH conditions, different degrees of uranium(VI) retardation were determined for the two systems. Additionally, we

  2. TOXICITY OF COPPER TO CUTTHROAT TROUT ('SALMO CLARKI') UNDER DIFFERENT CONDITIONS OF ALKALINITY, PH, AND HARDNESS

    EPA Science Inventory

    Median lethal concentration (96-h LC50) values for acute copper toxicity to 3-10 g cutthroat trout (Salmo clarki) have been determined for nine different combinations of alkalinity, hardness, and pH. Equilibrium calculations were performed on the copper LC50 values; seven differe...

  3. Computational Design of a pH Stable Enzyme: Understanding Molecular Mechanism of Penicillin Acylase's Adaptation to Alkaline Conditions

    PubMed Central

    Suplatov, Dmitry; Panin, Nikolay; Kirilin, Evgeny; Shcherbakova, Tatyana; Kudryavtsev, Pavel; Švedas, Vytas

    2014-01-01

    Protein stability provides advantageous development of novel properties and can be crucial in affording tolerance to mutations that introduce functionally preferential phenotypes. Consequently, understanding the determining factors for protein stability is important for the study of structure-function relationship and design of novel protein functions. Thermal stability has been extensively studied in connection with practical application of biocatalysts. However, little work has been done to explore the mechanism of pH-dependent inactivation. In this study, bioinformatic analysis of the Ntn-hydrolase superfamily was performed to identify functionally important subfamily-specific positions in protein structures. Furthermore, the involvement of these positions in pH-induced inactivation was studied. The conformational mobility of penicillin acylase in Escherichia coli was analyzed through molecular modeling in neutral and alkaline conditions. Two functionally important subfamily-specific residues, Gluβ482 and Aspβ484, were found. Ionization of these residues at alkaline pH promoted the collapse of a buried network of stabilizing interactions that consequently disrupted the functional protein conformation. The subfamily-specific position Aspβ484 was selected as a hotspot for mutation to engineer enzyme variant tolerant to alkaline medium. The corresponding Dβ484N mutant was produced and showed 9-fold increase in stability at alkaline conditions. Bioinformatic analysis of subfamily-specific positions can be further explored to study mechanisms of protein inactivation and to design more stable variants for the engineering of homologous Ntn-hydrolases with improved catalytic properties. PMID:24959852

  4. Field measurement of alkalinity and pH

    USGS Publications Warehouse

    Barnes, Ivan

    1964-01-01

    The behavior of electrometric pH equipment under field conditions departs from the behavior predicted from Nernst's law. The response is a linear function of pH, and hence measured pH values may be corrected to true pH if the instrument is calibrated with two reference solutions for each measurement. Alkalinity titrations may also be made in terms of true pH. Standard methods, such as colorimetric titrations, were rejected as unreliable or too cumbersome for rapid field use. The true pH of the end point of the alkalinity titration as a function of temperature, ionic strength, and total alkalinity has been calculated. Total alkalinity in potable waters is the most important factor influencing the end point pH, which varies from 5.38 (0 ? C, 5 ppm (parts per million) HC0a-) to 4.32 (300 ppm HC0a-,35 ? C), for the ranges of variables considered. With proper precautions, the pH may be determined to =i:0.02 pH and the alkalinity to =i:0.6 ppm HCO3- for many naturally occurring bodies of fresh water.

  5. The Alkaline Diet: Is There Evidence That an Alkaline pH Diet Benefits Health?

    PubMed Central

    Schwalfenberg, Gerry K.

    2012-01-01

    This review looks at the role of an alkaline diet in health. Pubmed was searched looking for articles on pH, potential renal acid loads, bone health, muscle, growth hormone, back pain, vitamin D and chemotherapy. Many books written in the lay literature on the alkaline diet were also reviewed and evaluated in light of the published medical literature. There may be some value in considering an alkaline diet in reducing morbidity and mortality from chronic diseases and further studies are warranted in this area of medicine. PMID:22013455

  6. Alkaline pH Homeostasis in Bacteria: New Insights

    PubMed Central

    Padan, Etana; Bibi, Eitan; Ito, Masahiro; Krulwich, Terry A.

    2011-01-01

    The capacity of bacteria to survive and grow at alkaline pH values is of widespread importance in the epidemiology of pathogenic bacteria, in remediation and industrial settings, as well as in marine, plant-associated and extremely alkaline ecological niches. Alkali-tolerance and alkaliphily, in turn, strongly depend upon mechanisms for alkaline pH homeostasis, as shown in pH shift experiments and growth experiments in chemostats at different external pH values. Transcriptome and proteome analyses have recently complemented physiological and genetic studies, revealing numerous adaptations that contribute to alkaline pH homeostasis. These include elevated levels of transporters and enzymes that promote proton capture and retention (e.g. the ATP synthase and monovalent cation/proton antiporters), metabolic changes that lead to increased acid production, and changes in the cell surface layers that contribute to cytoplasmic proton retention. Targeted studies over the past decade have followed up the long-recognized importance of monovalent cations in active pH homeostasis. These studies show the centrality of monovalent cation/proton antiporters in this process while microbial genomics provides information about the constellation of such antiporters in individual strains. A comprehensive phylogenetic analysis of both eukaryotic and prokaryotic genome databases has identified orthologes from bacteria to humans that allow better understanding of the specific functions and physiological roles of the antiporters. Detailed information about the properties of multiple antiporters in individual strains is starting to explain how specific monovalent cation/proton antiporters play dominant roles in alkaline pH homeostasis in cells that have several additional antiporters catalyzing ostensibly similar reactions. New insights into the pH-dependent Na+/H+ antiporter NhaA that plays an important role in Escherichia coli have recently emerged from the determination of the structure

  7. In vitro alkaline pH resistance of Enterococcus faecalis.

    PubMed

    Weckwerth, Paulo Henrique; Zapata, Ronald Ordinola; Vivan, Rodrigo Ricci; Tanomaru Filho, Mário; Maliza, Amanda Garcia Alves; Duarte, Marco Antonio Hungaro

    2013-01-01

    Enterococcus faecalis is a bacterial species often found in root canals with failed endodontic treatment. Alkaline pastes are widely used in Endodontics because of their biocompatibility and antimicrobial activity, but this microorganism can resist alkalinity. The purpose of this study was to evaluate in vitro the alkaline pH resistance of E. faecalis for different periods up to 14 days. Samples were obtained from the oral cavity of 150 patients from the Endodontic clinic. The pH of the experimental tubes (n=84) was first adjusted with 6M NaOH to pH values of 9.5, 10.5, 11.5 and 12.5 (21 tubes per pH). Twenty clinical isolates and the ATCC 29212 strain were tested. The 5 positive controls and experimental tubes of each pH were inoculated with 10 µL of bacterial suspension and incubated at 36 °C for 24, 48 and 72 h, 7 and 14 days. For each period, the turbidity of the medium was visually compared with a 0.5 McFarland standard. The presence of the microorganism was confirmed by seeding on M-Enterococcus agar. Four tubes containing BHI broth adjusted to the tested pHs were incubated for 14 days to verify if pH changes occurred. The pH of inoculated BHI broth was also measured on day 14 to determine if the microorganism acidified the medium. The growth of all E. faecalis strains occurred at pH 9.5 to 11.5 in all periods. Although turbidity was not observed at pH 12.5, there was growth of 13 and 2 strains at 24 and 48 h, respectively, on M-Enterococcus agar. No tube showed growth at pH 12.5 after 72 h. It was concluded that E. faecalis can survive in highly alkaline pH, and some clinical isolates require 72 h at pH 12.5 to be killed. PMID:24474287

  8. Microbial thiocyanate utilization under highly alkaline conditions.

    PubMed

    Sorokin, D Y; Tourova, T P; Lysenko, A M; Kuenen, J G

    2001-02-01

    activity which converted cyanate (CNO-) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a "cyanate pathway" in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate. PMID:11157213

  9. Microbial Thiocyanate Utilization under Highly Alkaline Conditions

    PubMed Central

    Sorokin, Dimitry Y.; Tourova, Tatyana P.; Lysenko, Anatoly M.; Kuenen, J. Gijs

    2001-01-01

    activity which converted cyanate (CNO−) to ammonia and CO2. On the other hand, cyanase activity either was absent or was present at very low levels in the autotrophic strains grown on thiocyanate as the sole energy and N source. As a result, large amounts of cyanate were found to accumulate in the media during utilization of thiocyanate at pH 10 in batch and thiocyanate-limited continuous cultures. This is a first direct proof of a “cyanate pathway” in pure cultures of thiocyanate-degrading bacteria. Since it is relatively stable under alkaline conditions, cyanate is likely to play a role as an N buffer that keeps the alkaliphilic bacteria safe from inhibition by free ammonia, which otherwise would reach toxic levels during dissimilatory degradation of thiocyanate. PMID:11157213

  10. Improved volatile fatty acids anaerobic production from waste activated sludge by pH regulation: Alkaline or neutral pH?

    PubMed

    Ma, Huijun; Chen, Xingchun; Liu, He; Liu, Hongbo; Fu, Bo

    2016-02-01

    In this study, the anaerobic fermentation was carried out for volatile fatty acids (VFAs) production at different pH (between 7.0 and 10.0) conditions with untreated sludge and heat-alkaline pretreated waste activated sludge. In the fermentation with untreated sludge, the extent of hydrolysis of organic matters and extent of acidification at alkaline pH are 54.37% and 30.37%, respectively, resulting in the highest VFAs yield at 235.46mg COD/gVS of three pH conditions. In the fermentation with heat-alkaline pretreated sludge, the acidification rate and VFAs yield at neutral pH are 30.98% and 240.14mg COD/gVS, respectively, which are higher than that at other pH conditions. With the glucose or bovine serum albumin as substrate for VFAs production, the neutral pH showed a higher VFAs concentration than the alkaline pH condition. The results of terminal restriction fragment length polymorphism (T-RFLP) analysis indicated that the alkaline pH caused low microbial richness. Based on the results in this study, we demonstrated that the alkaline pH is favor of hydrolysis of organic matter in sludge while neutral pH improved the acidogenesis for the VFAs production from sludge. Our finding is obvious different to the previous research and helpful for the understanding of how heat-alkaline pretreatment and alkaline fermentation influence the VFAs production, and beneficial to the development of VFAs production process. PMID:26652215

  11. Interpretation of pH, acidity, and alkalinity in fisheries and aquaculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of pH, acidity, and alkalinity are commonly used to describe water quality. The three variables are interrelated and are sometimes confused. The pH of water is an intensity factor, while the acidity and alkalinity of waters are capacity factors. More precisely, acidity and alkalinity ar...

  12. Alkaline pH activates the transport activity of GLUT1in L929 fibroblast cells

    PubMed Central

    Gunnink, Stephen M.; Kerk, Samuel A.; Kuiper, Benjamin D.; Alabi, Ola D.; Kuipers, David P.; Praamsma, Riemer C.; Wrobel, Kathryn E.; Louters, Larry L.

    2016-01-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  13. Alkaline pH activates the transport activity of GLUT1 in L929 fibroblast cells.

    PubMed

    Gunnink, Stephen M; Kerk, Samuel A; Kuiper, Benjamin D; Alabi, Ola D; Kuipers, David P; Praamsma, Riemer C; Wrobel, Kathryn E; Louters, Larry L

    2014-04-01

    The widely expressed mammalian glucose transporter, GLUT1, can be acutely activated in L929 fibroblast cells by a variety of conditions, including glucose deprivation, or treatment with various respiration inhibitors. Known thiol reactive compounds including phenylarsine oxide and nitroxyl are the fastest acting stimulators of glucose uptake, implicating cysteine biochemistry as critical to the acute activation of GLUT1. In this study, we report that in L929 cells glucose uptake increases 6-fold as the pH of the uptake solution is increased from 6 to 9 with the half-maximal activation at pH 7.5; consistent with the pKa of cysteine residues. This pH effect is essentially blocked by the pretreatment of the cells with either iodoacetamide or cinnamaldehyde, compounds that form covalent adducts with reduced cysteine residues. In addition, the activation by alkaline pH is not additive at pH 8 with known thiol reactive activators such as phenylarsine oxide or hydroxylamine. Kinetic analysis in L929 cells at pH 7 and 8 indicate that alkaline conditions both increases the Vmax and decreases the Km of transport. This is consistent with the observation that pH activation is additive to methylene blue, which activates uptake by increasing the Vmax, as well as to berberine, which activates uptake by decreasing the Km. This suggests that cysteine biochemistry is utilized in both methylene blue and berberine activation of glucose uptake. In contrast a pH increase from 7 to 8 in HCLE cells does not further activate glucose uptake. HCLE cells have a 25-fold higher basal glucose uptake rate than L929 cells and the lack of a pH effect suggests that the cysteine biochemistry has already occurred in HCLE cells. The data are consistent with pH having a complex mechanism of action, but one likely mediated by cysteine biochemistry. PMID:24333987

  14. Mechanisms of Glucagon Degradation at Alkaline pH

    PubMed Central

    Caputo, Nicholas; Castle, Jessica R.; Bergstrom, Colin P.; Carroll, Julie M.; Bakhtiani, Parkash A.; Jackson, Melanie A.; Roberts, Charles T.; David, Larry L.; Ward, W. Kenneth

    2014-01-01

    Glucagon is unstable and undergoes degradation and aggregation in aqueous solution. For this reason, its use in portable pumps for closed loop management of diabetes is limited to very short periods. In this study, we sought to identify the degradation mechanisms and the bioactivity of specific degradation products. We studied degradation in the alkaline range, a range at which aggregation is minimized. Native glucagon and analogs identical to glucagon degradation products were synthesized. To quantify biological activity in glucagon and in the degradation peptides, a protein kinase A-based bioassay was used. Aged, fresh, and modified peptides were analyzed by liquid chromatography with mass spectrometry (LCMS). Oxidation of glucagon at the Met residue was common but did not reduce bioactivity. Deamidation and isomerization were also common and were more prevalent at pH 10 than 9. The biological effects of deamidation and isomerization were unpredictable; deamidation at some sites did not reduce bioactivity. Deamidation of Gln 3, isomerization of Asp 9, and deamidation with isomerization at Asn 28 all caused marked potency loss. Studies with molecular-weight-cutoff membranes and LCMS revealed much greater fibrillation at pH 9 than 10. Further work is necessary to determine formulations of glucagon that minimize degradation and fibrillation. PMID:23651991

  15. Decision making in C. elegans chemotaxis to alkaline pH

    PubMed Central

    Murayama, Takashi; Maruyama, Ichi N

    2013-01-01

    Monitoring of environmental and tissue pH is critical for animal survival. The nematode, Caenorhabditis elegans (C. elegans), is attracted to mildly alkaline pH, but avoids strongly alkaline pH. However, little is known about how the behavioral switching or decision making occurs. Genetic dissection and Ca2+ imaging have previously demonstrated that ASEL and ASH are the major sensory neurons responsible for attraction and repulsion, respectively. Here we report that unlike C. elegans wild type, mutants deficient in ASEL or ASH were repelled by mildly alkaline pH, or were attracted to strongly alkaline pH, respectively. These results suggest that signals through ASEL and ASH compete to determine the animal’s alkaline-pH chemotaxis. Furthermore, mutants with 2 ASEL neurons were more efficiently attracted to mildly alkaline pH than the wild type with a single ASEL neuron, indicating that higher activity of ASEL induces stronger attraction to mildly alkaline pH. This stronger attraction was overridden by normal activity of ASH, suggesting that ASH-mediated avoidance dominates ASEL-mediated attraction. Thus, C. elegans chemotactic behaviors to alkaline pH seems to be determined by signal strengths from the sensory neurons ASEL and ASH, and the behavior decision making seems to be the result of competition between the 2 sensory neurons. PMID:24563708

  16. Prebiotic synthesis of protobiopolymers under alkaline ocean conditions.

    PubMed

    Ruiz-Bermejo, Marta; Rivas, Luis A; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH(4). At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life. PMID:21161385

  17. Prebiotic Synthesis of Protobiopolymers Under Alkaline Ocean Conditions

    NASA Astrophysics Data System (ADS)

    Ruiz-Bermejo, Marta; Rivas, Luis A.; Palacín, Arantxa; Menor-Salván, César; Osuna-Esteban, Susana

    2011-08-01

    Clasically, prebiotic chemistry has focused on the production and identification of simple organic molecules, many of them forming part of "intractable polymers" named tholins. In a previous work, we demonstrated that in experiments using an external energy source and inorganic carbon the aqueous aerosols improved the formation of hydrophilic tholins. Herein, we elucidate the role of pH (from 4 to 12) in prebiotic experiments using saline aqueous aerosols, spark discharges and an atmosphere containing CH4. At all values of pH, the saline aqueous aerosols increased the production of a significant variety of carboxylic acids that could have been present in a primitive Krebs cycle. Moreover, the study for the first time of hydrophilic tholins by 2-D electrophoresis revealed that these are formed by a set of unexpected heavy polymeric species. The initial alkaline conditions significantly increased both the apparent molecular weight of polymeric species up to 80 kDa and their diversity. We propose the term of protobiopolymers to denote those polymeric species fractionated by 2-D electrophoresis since these are formed by biomolecules present in living systems and show diversity in length as well as in functional groups. Thus, aerosols formed in simulated alkaline ocean conditions could provide an optimal medium for the formation of the primeval materials that could be precursors to the emergence of life.

  18. Transcriptome Profiling of Shewanella oneidensis Gene Expressionfollowing Exposure to Acidic and Alkaline pH

    SciTech Connect

    Leaphart, Adam B.; Thompson, Dorothea K.; Huang, Katherine; Alm,Eric; Wan, Xiu-Feng; Arkin, Adam P.; Brown, Steven D.; Wu, Liyou; Yan,Tingfen; Liu, Xueduan; Wickham, Gene S.; Zhou, Jizhong

    2007-04-02

    The molecular response of Shewanella oneidensis MR-1 tovariations in extracellular pH was investigated based on genomewide geneexpression profiling. Microarray analysis revealed that cells elicitedboth general and specific transcriptome responses when challenged withenvironmental acid (pH 4) or base (pH 10) conditions over a 60-minperiod. Global responses included the differential expression of genesfunctionally linked to amino acid metabolism, transcriptional regulationand signal transduction, transport, cell membrane structure, andoxidative stress protection. Response to acid stress included theelevated expression of genes encoding glycogen biosynthetic enzymes,phosphate transporters, and the RNA polymerase sigma-38 factor (rpoS),whereas the molecular response to alkaline pH was characterized byupregulation of nhaA and nhaR, which are predicted to encode an Na+/H+antiporter and transcriptional activator, respectively, as well assulfate transport and sulfur metabolism genes. Collectively, theseresults suggest that S. oneidensis modulates multiple transporters, cellenvelope components, and pathways of amino acid consumption and centralintermediary metabolism as part of its transcriptome response to changingexternal pH conditions.

  19. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities

    PubMed Central

    Rout, Simon P.; Charles, Christopher J.; Doulgeris, Charalampos; McCarthy, Alan J.; Rooks, Dave J.; Loughnane, J. Paul; Laws, Andrew P.; Humphreys, Paul N.

    2015-01-01

    One design concept for the long-term management of the UK’s intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  20. Anoxic Biodegradation of Isosaccharinic Acids at Alkaline pH by Natural Microbial Communities.

    PubMed

    Rout, Simon P; Charles, Christopher J; Doulgeris, Charalampos; McCarthy, Alan J; Rooks, Dave J; Loughnane, J Paul; Laws, Andrew P; Humphreys, Paul N

    2015-01-01

    One design concept for the long-term management of the UK's intermediate level radioactive wastes (ILW) is disposal to a cementitious geological disposal facility (GDF). Under the alkaline (10.0<pH>13.0) anoxic conditions expected within a GDF, cellulosic wastes will undergo chemical hydrolysis. The resulting cellulose degradation products (CDP) are dominated by α- and β-isosaccharinic acids (ISA), which present an organic carbon source that may enable subsequent microbial colonisation of a GDF. Microcosms established from neutral, near-surface sediments demonstrated complete ISA degradation under methanogenic conditions up to pH 10.0. Degradation decreased as pH increased, with β-ISA fermentation more heavily influenced than α-ISA. This reduction in degradation rate was accompanied by a shift in microbial population away from organisms related to Clostridium sporosphaeroides to a more diverse Clostridial community. The increase in pH to 10.0 saw an increase in detection of Alcaligenes aquatilis and a dominance of hydrogenotrophic methanogens within the Archaeal population. Methane was generated up to pH 10.0 with acetate accumulation at higher pH values reflecting a reduced detection of acetoclastic methanogens. An increase in pH to 11.0 resulted in the accumulation of ISA, the absence of methanogenesis and the loss of biomass from the system. This study is the first to demonstrate methanogenesis from ISA by near surface microbial communities not previously exposed to these compounds up to and including pH 10.0. PMID:26367005

  1. SIMPLE WAYS TO IMPROVE PH AND ALKALINITY MEASUREMENTS FOR WATER UTILITIES AND LABORATORIES

    EPA Science Inventory

    Both pH and total alkalinity determinations are critical in characterizing chemical properties of water, being important to implementing good process control, determining corrosivity and other water quality properties, and assessing changes in water characteristics. Poor charac...

  2. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen. PMID:26855359

  3. An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200 °C as a function of pH, total dissolved carbonate concentration, and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Oelkers, Eric H.

    2010-11-01

    Steady-state magnesite dissolution rates were measured in mixed-flow reactors at 150 and 200 °C and 4.6 < pH < 8.4, as a function of ionic strength (0.001 M ⩽ I ⩽ 1 M), total dissolved carbonate concentration (10 -4 M < ΣCO 2 < 0.1 M), and distance from equilibrium. Rates were found to increase with increasing ionic strength, but decrease with increasing temperature from 150 to 200 °C, pH, and aqueous CO 32- activity. Measured rates were interpreted using the surface complexation model developed by Pokrovsky et al. (1999a) in conjunction with transition state theory ( Eyring, 1935). Within this formalism, magnesite dissolution rates are found to be consistent with r=k{>MgOH2+}41-exp (-4ART), where rd represents the BET surface area normalized dissolution rate, {>MgOH2+} stands for the concentration of hydrated magnesium centers on the magnesite surface, kMg designates a rate constant, A refers to the chemical affinity of the overall reaction, R denotes the gas constant, and T symbolizes absolute temperature. Within this model decreasing rates at far-from-equilibrium conditions (1) at constant pH with increasing temperature and (2) at constant temperature with increasing pH and ΣCO 2 stem from a corresponding decrease in {>MgOH2+}. This decrease in {>MgOH2+} results from the increasing stability of the >MgCO3- and >MgOH° surface species with increasing temperature, pH and CO 32- activity. The decrease in constant pH dissolution rates yields negative apparent activation energies. This behavior makes magnesite resistant to re-dissolution if formed as part of mineral carbon sequestration efforts in deep geologic formations.

  4. Extracellular Alkaline pH Leads to Increased Metastatic Potential of Estrogen Receptor Silenced Endocrine Resistant Breast Cancer Cells

    PubMed Central

    Khajah, Maitham A.; Almohri, Iman; Mathew, Princy M.; Luqmani, Yunus A.

    2013-01-01

    Introduction Endocrine resistance in breast cancer is associated with enhanced metastatic potential and poor clinical outcome, presenting a significant therapeutic challenge. We have established several endocrine insensitive breast cancer lines by shRNA induced depletion of estrogen receptor (ER) by transfection of MCF-7 cells which all exhibit enhanced expression profile of mesenchymal markers with reduction of epithelial markers, indicating an epithelial to mesenchymal transition. In this study we describe their behaviour in response to change in extracellular pH, an important factor controlling cell motility and metastasis. Methods Morphological changes associated with cell exposure to extracellular alkaline pH were assessed by live cell microscopy and the effect of various ion pumps on this behavior was investigated by pretreatment with chemical inhibitors. The activity and expression profile of key signaling molecules was assessed by western blotting. Cell motility and invasion were examined by scratch and under-agarose assays respectively. Total matrix metalloproteinase (MMP) activity and specifically of MMP2/9 was assessed in conditioned medium in response to brief alkaline pH exposure. Results Exposure of ER –ve but not ER +ve breast cancer cells to extracellular alkaline pH resulted in cell shrinkage and spherical appearance (termed contractolation); this was reversed by returning the pH back to 7.4. Contractolation was blocked by targeting the Na+/K+ and Na+/H+ pumps with specific chemical inhibitors. The activity and expression profile of key signaling molecules critical for cell adhesion were modulated by the exposure to alkaline pH. Brief exposure to alkaline pH enhanced MMP2/9 activity and the invasive potential of ER –ve cells in response to serum components and epithelial growth factor stimulation without affecting unhindered motility. Conclusions Endocrine resistant breast cancer cells behave very differently to estrogen responsive cells in

  5. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, David T.

    1992-01-01

    A method for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction.

  6. Alkalinity and pH effects on nitrification in a membrane aerated bioreactor: an experimental and model analysis.

    PubMed

    Shanahan, John W; Semmens, Michael J

    2015-05-01

    A nitrifying biofilm was grown in a laboratory-scale membrane aerated bioreactor (MABR) to calibrate and test a one-dimensional biofilm model incorporating chemical equilibria to calculate local pH values. A previously developed model (Shanahan and Semmens, 2004) based upon AQUASIM was modified to incorporate the impact of local pH changes within the biofilm on the kinetics of nitrification. Shielded microelectrodes were used to measure the concentration profiles of dissolved oxygen, ammonium, nitrate, and pH within the biofilm and the overlying boundary layer under actual operating conditions. Operating conditions were varied to assess the impact of bicarbonate loading (alkalinity), ammonium loading, and intra-membrane oxygen partial pressure on biofilm performance. Nitrification performance improved with increased ammonium and bicarbonate loadings over the range of operating conditions tested, but declined when the intra-membrane oxygen partial pressure was increased. Minor discrepancies between the measured and predicted concentration profiles within the biofilm were attributed to changes in biofilm density and vertical heterogeneities in biofilm structure not accounted for by the model. Nevertheless, predicted concentration profiles within the biofilm agreed well with experimental results over the range of conditions studied and highlight the fact that pH changes in the biofilm are significant especially in low alkalinity waters. The influent pH and buffer capacity of a wastewater may therefore have a significant impact on the performance of a membrane-aerated bioreactor with respect to nitrification, and nitrogen removal. PMID:25703659

  7. Metal mobilization under alkaline conditions in ash-covered tailings.

    PubMed

    Lu, Jinmei; Alakangas, Lena; Wanhainen, Christina

    2014-06-15

    The aim of this study was to determine element mobilization and accumulation in mill tailings under alkaline conditions. The tailings were covered with 50 cm of fly ash, and above a sludge layer. The tailings were geochemically and mineralogically investigated. Sulfides, such as pyrrhotite, sphalerite and galena along with gangue minerals such as dolomite, calcite, micas, chlorite, epidote, Mn-pyroxene and rhodonite were identified in the unoxidized tailings. The dissolution of the fly ash layer resulted in a high pH (close to 12) in the underlying tailings. This, together with the presence of organic matter, increased the weathering of the tailings and mobilization of elements in the uppermost 47 cm of the tailings. All primary minerals were depleted, except quartz and feldspar which were covered by blurry secondary carbonates. Sulfide-associated elements such as Cd, Fe, Pb, S and Zn and silicate-associated elements such as Fe, Mg and Mn were released from the depletion zone and accumulated deeper down in the tailings where the pH decreased to circum-neutral. Sequential extraction suggests that Cd, Cu, Fe, Pb, S and Zn were retained deeper down in the tailings and were mainly associated with the sulfide phase. Calcium, Cr, K and Ni released from the ash layer were accumulated in the uppermost depletion zone of the tailings. PMID:24681363

  8. Zinc ions and alkaline pH alter the phosphorylation state of human erythrocyte membrane proteins

    SciTech Connect

    Fennell, R.L. Jr.

    1988-01-01

    Since the phosphorylation state of the red cell membrane proteins in vitro is likely to be regulated by phosphorylation and dephosphorylation, this research was carried out to investigate the possible role of membrane-bound phosphatase activities. These studies were conducted with red blood cell ghosts and IOVs from normal individuals and from an individual with hereditary spherocytosis. In vitro phosphorylation with ({gamma}-{sup 32}P) ATP was conducted in the presence and the absence of Zn{sup ++}, or erythrocyte ghosts and IOVs were pretreated for 30 minutes at 37{degree}C and pH 7-11 in the presence and the absence of calf intestine alkaline phosphatase. The resulting phosphoproteins were analyzed by SDS-polyacrylamide gel electrophoresis, stained with Coomassie blue, and fluorographed. In the presence of Zn{sup ++}, the red blood ghosts, with or without pretreatment, demonstrated enhanced phosphorylation of membrane proteins, including band 4.2. Preincubation at pH 10 in the presence of absence of exogenous phosphatase further stimulates phosphorylation of these proteins. Under similar conditions, the erythrocyte membranes also demonstrated the ability to hydrolyze p-nitrophenyl phosphate and to remove {sup 32}P from red blood cell phosphoproteins.

  9. Investigation of gelling behavior of thiolated chitosan in alkaline condition and its application in stent coating.

    PubMed

    Zhao, Wei; Kong, Ming; Feng, Chao; Cheng, Xiaojie; Liu, Ya; Chen, Xiguang

    2016-01-20

    The gelling behaviors of thiolated chitosan (TCS) in alkaline condition were investigated. Thioglycolic acid was conjugated onto chitosan backbone through amide bond formation. The variations of thiol group content were monitored in presence of H2O2 or different pH values (pH 7.0, 8.0, 9.0) in dialysis mode. Different from the decreasing thiol group content upon time in acidic condition, increasing amount of thiol groups was detected in alkaline pH during 120 min dialysis attributed to alkaline hydrolysis of intra-molecular disulfide bonds. The extent of which was larger at higher pH values. Higher degree of thiolation, thiomer concentration or pH values promoted gelation of TCS. Entanglement and coagulation of chitosan molecule chains and re-arrangement of disulfide bonds acted closely and dynamically in the gelation process. Disulfide bonds, especially inter-molecular type, are formed by synergetic effects of thiol/disulfide interchange and thiol/thiol oxidation reactions. TCS coated vascular stent displayed wave-like microstructure of parallel ridges and grooves, which favored HUVECs adhesion and proliferation. The biocompatibility, peculiar morphology and thiol moieties of TCS as stent coating material appear application potential for vascular stent. PMID:26572360

  10. Method of determining pH by the alkaline absorption of carbon dioxide

    DOEpatents

    Hobbs, D.T.

    1992-10-06

    A method is described for measuring the concentration of hydroxides in alkaline solutions in a remote location using the tendency of hydroxides to absorb carbon dioxide. The method includes the passing of carbon dioxide over the surface of an alkaline solution in a remote tank before and after measurements of the carbon dioxide solution. A comparison of the measurements yields the absorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to absorption fraction. 2 figs.

  11. Detection of Baking Soda in Flat Bread by Direct pH Metery and Alkalinity Measurement

    NASA Astrophysics Data System (ADS)

    Jahed Khaniki, G. H. R.; Vaezi, F.; Yunesian, M.; Nabizadeh, R.; Paseban, G. H. A.

    The objective of this study is evaluation of direct pH metery and alkalinity measurement methods for determination of baking soda in lavash bread (a kind of flat bread) in order to introduce and recommend a good practice of control. For running the experiments, various samples of lavash bread having different concentrations of baking soda were prepared. Ten grams of each sample were mixed with distilled water and then the prepared solutions were filtrated. The filtrates were then analyzed for pH and total alkalinity according to the distractions described in Standard Methods. Results show a significant correlation between the pH values of bread samples and the amount of baking soda. Also, a positive correlation has been observed between the alkalinity of bread samples and used baking soda. By comparing the R2-values specified for these two methods it could be concluded that the direct pH metery method is more reasonable. Furthermore, by this simple method it is possible to accelerate the detection of minute amounts of this chemical in bread.

  12. An extremophile Microbacterium strain and its protease production under alkaline conditions.

    PubMed

    Lü, Jin; Wu, Xiaodan; Jiang, Yali; Cai, Xiaofeng; Huang, Luyao; Yang, Yongbo; Wang, Huili; Zeng, Aibing; Li, Aiying

    2014-05-01

    Extremophiles are potential resources for alkaline protease production. In order to search for alkaline protease producers, we isolated and screened alkaliphilic microorganisms from alkaline saline environments. The microorganism HSL10 was identified as a member of the genus Microbacterium by morphological observation, Gram staining and sequence analysis of the 16S rRNA gene and the 16S-23S rRNA intergenic spacer region. By colony-forming unit counting under alkali or salt stress, it was further identified as an alkaliphilic microbe with mild halotolerance. In addition, it was capable of secreting alkaline proteases, evidenced by larger hydrolyzation zones in the skim milk-containing medium at pH 9.0 than at pH 7.0. Subsequently, we demonstrated that both NaCl and yeast extract significantly promoted protease production by HSL10. Finally, we established a sensitive colorimetric method for the detection of protease production by HSL10 under neutral and alkaline conditions, by using the Bradford reagent for substrate staining to improve the contrast between the hydrolyzation zone and the substrate background on agar plates. HSL10 was the first example of an alkaliphilic protease-producing member in Microbacterium, and its isolation and characterization have both academic and commercial importance. PMID:23686381

  13. Anditalea andensis ANESC-ST--An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions.

    PubMed

    Shi, Wei; Wang, Victor Bochuan; Zhao, Cui-E; Zhang, Qichun; Loo, Say Chye Joachim; Yang, Liang; Xu, Chenjie

    2015-01-01

    A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T), which is capable of generating bioelectricity in alkaline-saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0-11.0 and also under high salt condition (up to 4 wt% NaCl). Electrical output was further demonstrated in microbial fuel cells (MFCs) with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline-saline conditions points towards a solution for bioelectricity recovery from alkaline-saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH. PMID:26171779

  14. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH. PMID:24681408

  15. Catalytically active alkaline molten globular enzyme: Effect of pH and temperature on the structural integrity of 5-aminolevulinate synthase.

    PubMed

    Stojanovski, Bosko M; Breydo, Leonid; Hunter, Gregory A; Uversky, Vladimir N; Ferreira, Gloria C

    2014-12-01

    5-Aminolevulinate synthase (ALAS), a pyridoxal-5'phosphate (PLP)-dependent enzyme, catalyzes the first step of heme biosynthesis in mammals. Circular dichroism (CD) and fluorescence spectroscopies were used to examine the effects of pH (1.0-3.0 and 7.5-10.5) and temperature (20 and 37°C) on the structural integrity of ALAS. The secondary structure, as deduced from far-UV CD, is mostly resilient to pH and temperature changes. Partial unfolding was observed at pH2.0, but further decreasing pH resulted in acid-induced refolding of the secondary structure to nearly native levels. The tertiary structure rigidity, monitored by near-UV CD, is lost under acidic and specific alkaline conditions (pH10.5 and pH9.5/37°C), where ALAS populates a molten globule state. As the enzyme becomes less structured with increased alkalinity, the chiral environment of the internal aldimine is also modified, with a shift from a 420nm to 330nm dichroic band. Under acidic conditions, the PLP cofactor dissociates from ALAS. Reaction with 8-anilino-1-naphthalenesulfonic acid corroborates increased exposure of hydrophobic clusters in the alkaline and acidic molten globules, although the reaction is more pronounced with the latter. Furthermore, quenching the intrinsic fluorescence of ALAS with acrylamide at pH1.0 and 9.5 yielded subtly different dynamic quenching constants. The alkaline molten globule state of ALAS is catalytically active (pH9.5/37°C), although the kcat value is significantly decreased. Finally, the binding of 5-aminolevulinate restricts conformational fluctuations in the alkaline molten globule. Overall, our findings prove how the structural plasticity of ALAS contributes to reaching a functional enzyme. PMID:25240868

  16. Multidrug resistance protein MdtM adds to the repertoire of antiporters involved in alkaline pH homeostasis in Escherichia coli

    PubMed Central

    2013-01-01

    Background In neutralophilic bacteria, monovalent metal cation/H+ antiporters play a key role in pH homeostasis. In Escherichia coli, only four antiporters (NhaA, NhaB, MdfA and ChaA) are identified to function in maintenance of a stable cytoplasmic pH under conditions of alkaline stress. We hypothesised that the multidrug resistance protein MdtM, a recently characterised homologue of MdfA and a member of the major facilitator superfamily, also functions in alkaline pH homeostasis. Results Assays that compared the growth of an E. coli ΔmdtM deletion mutant transformed with a plasmid encoding wild-type MdtM or the dysfunctional MdtM D22A mutant at different external alkaline pH values (ranging from pH 8.5 to 10) revealed a potential contribution by MdtM to alkaline pH tolerance, but only when millimolar concentrations of sodium or potassium was present in the growth medium. Fluorescence-based activity assays using inverted vesicles generated from transformants of antiporter-deficient (ΔnhaA, ΔnhaB, ΔchaA) E. coli TO114 cells defined MdtM as a low-affinity antiporter that catalysed electrogenic exchange of Na+, K+, Rb+ or Li+ for H+. The K+/H+ antiport reaction had a pH optimum at 9.0, whereas the Na+/H+ exchange activity was optimum at pH 9.25. Measurement of internal cellular pH confirmed MdtM as contributing to maintenance of a stable cytoplasmic pH, acid relative to the external pH, under conditions of alkaline stress. Conclusions Taken together, the results support a role for MdtM in alkaline pH tolerance. MdtM can therefore be added to the currently limited list of antiporters known to function in pH homeostasis in the model organism E. coli. PMID:23701827

  17. Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration.

    PubMed

    Bispo, Jose Ailton Conceicao; Landini, Gustavo Fraga; Santos, Jose Luis Rocha; Norberto, Douglas Ricardo; Bonafe, Carlos Francisco Sampaio

    2005-08-01

    The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1/2) changed from -65.3 to +146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins. PMID:15982915

  18. The Effects of Alkaline pH on Microleakage of Mineral Trioxide Aggregate and Calcium Enriched Mixture Apical Plugs

    PubMed Central

    Mirhadi, Hossein; Moazzami, Fariborz; Rangani Jahromi, Saeed; Safarzade, Sareh

    2016-01-01

    Statement of the Problem Alkaline pH can affect the physical and chemical properties and sealing ability of apical plug material. Calcium hydroxide is used as an intracanal medication to complete disinfection of root canals. It raises the pH of environment to alkaline value. Purpose The aim of this in vitro study was to evaluate and compare the effect of alkaline pH on the sealing ability of calcium-enriched mixture (CEM) cement and mineral trioxide aggregate (MTA) apical plugs. Materials and Method Seventy single-rooted human maxillary anterior teeth were randomly divided to two experimental groups for Angelus MTA and CEM cement (n=30) and two control groups (n=5). Each group was divided into two subgroups of 15 for neutral and alkaline pH, and 1 negative and 1 positive control groups of 5. The root canals were cleaned and shaped by using ProTaper rotary system (Dentsply Maillefer; Ballaigues, Switzerland) and the terminal 3mm of the roots were resected. Then, MTA and CEM cement were condensed in apical region with 3mm thickness. The samples were exposed to two environments with different pH values of 13 and 7.4. The leakage was assessed by using the fluid filtration technique at 1, 7, 14, 30 days intervals. Data were analyzed by the repeated measures MANOVA. Results There was no statistically significant difference in the rate of microleakage between neutral and alkaline pH of CEM cement and MTA (p> 0.05). The sealing ability of MTA in an alkaline pH of 13 was significantly less than CEM cement in this pH (p< 0.05). Conclusion An environment with alkaline pH had no adverse effect on the sealing ability of MTA and CEM cement used as apical plugs. CEM cement had better sealing ability in alkaline pH. PMID:26966703

  19. An experimental study of magnesite precipitation rates at neutral to alkaline conditions and 100-200 °C as a function of pH, aqueous solution composition and chemical affinity

    NASA Astrophysics Data System (ADS)

    Saldi, Giuseppe D.; Schott, Jacques; Pokrovsky, Oleg S.; Gautier, Quentin; Oelkers, Eric H.

    2012-04-01

    Magnesite precipitation rates were measured at temperatures from 100 to 200 °C as a function of saturation state and reactive fluid composition in mixed flow reactors. Measured rates were found to increase systematically with increasing saturation state but to decrease with increasing reactive fluid aqueous CO32- activity and pH. Measured rates are interpreted through a combination of surface complexation models and transition state theory. In accord with this formalism, constant saturation state BET surface area normalized magnesite precipitation rates (rMg) are a function of the concentration of protonated Mg sites at the surface (>MgOH2+) and can be described using: rMg=kMg-Kn 1-ΩMgn where kMg- represents a rate constant, KOH and KCO3 stand for equilibrium constants, ai designates the activity of the subscripted aqueous species, n refers to a reaction order equal to 2, and ΩMg denotes the saturation state of the reactive solution with respect to magnesite. Retrieved values of n are consistent with magnesite precipitation control by a spiral growth mechanism. The temperature variation of the rate constant can be described using kMg-=Aaexp(-Ea/RT), where Aa represents a pre-exponential factor equal to 5.9 × 10-5 mol/cm2/s, Ea designates an activation energy equal to 80.2 kJ/mol, R denotes the gas constant, and T corresponds to the absolute temperature. Comparison of measured magnesite precipitation rates with corresponding forsterite dissolution rates suggest that the relatively slow rates of magnesite precipitation may be the rate limiting step in mineral carbonation efforts in ultramafic rocks.

  20. Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau

    PubMed Central

    Xiong, Jinbo; Liu, Yongqin; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Hou, Juzhi; Yang, Yongping; Yao, Tandong; Knight, Rob; Chu, Haiyan

    2012-01-01

    Continent-scale biogeography has been extensively studied in soils and marine systems, but little is known about biogeographical patterns in non-marine sediments. We used barcode pyrosequencing to quantify the effects of local geochemical properties and geographic distance for bacterial community structure and membership, using sediment samples from 15 lakes on the Tibetan Plateau (4–1670 km apart). Bacterial communities were surprisingly diverse, and distinct from soil communities. Four of 26 phyla detected were dominant: Proteobacteria, Bacteroidetes, Firmicutes and Actinobacteria, albeit 20.2% of sequences were unclassified at the phylum level. As previously observed in acidic soil, pH was the dominant factor influencing alkaline sediment community structure, phylotype richness and phylogenetic diversity. In contrast, archaeal communities were less affected by pH. More geographically distant sites had more dissimilar communities (r = 0.443, P = 0.030). Variance partitioning analysis showed that geographic distance (historical contingencies) contributed more to bacterial community variation (12.2%) than any other factor, although the environmental factors explained more variance when combined (28.9%). Together, our results show that pH is the best predictor of bacterial community structure in alkaline sediments, and confirm that both geographic distance and chemical factors govern bacterial biogeography in lake sediments. PMID:22676420

  1. Alkalinity, pH, and copper corrosion by-product release

    SciTech Connect

    Edwards, M.; Meyer, T.E.; Schock, M.R.

    1996-03-01

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water increases linearly with bicarbonate concentration at constant pH. This relationship implicates cupric hydroxide solubility in control of copper release from relatively new (less than a few years old) copper plumbing. Decision-marking guidance from a traditional Larson`s ratio or Langelier index approach can aggravate copper corrosion problems; consequently, their use should be discontinued for copper corrosion mitigation. In contrast, aeration-CO{sub 2} stripping is a particularly attractive strategy because benefits from higher pH are realized without adverse effects from higher alkalinity.

  2. Isolation of a Sulfur-oxidizing Bacterium That can Grow under Alkaline pH, from Corroded Concrete.

    PubMed

    Maeda, T; Negishi, A; Oshima, Y; Nogami, Y; Kamimura, K; Sugio, T

    1998-01-01

    To study the early stages of concrete corrosion by bacteria, sulfur-oxidizing bacterium strain RO-1, which grows in an alkaline thiosulfate medium (pH 10.0) was isolated from corroded concreate and characterized. Strain RO-1 was a Gram negative, rod-shaped bacterium (0.5-0.6×0.9-1.5 μm). The mean G+C content of the DNA of strain RO-1 was 65.0 mol%. Optimum pH and temperature for growth were 8.0. and 30-37°C, respectively. When grown in thiosulfate medium with pH 10.0, growth rate of the strain was 48% of that observed at the optimum pH for growth. Strain RO-1 used sulfide, thiosulfate, and glucose, but not elemental sulfur or tetrathionate, as a sole energy source. Strain RO-1 grew under anaerobic conditions in pepton-NO3 (-) medium containing sodium nitrate as an electron acceptor, and had enzyme activities that oxidized sulfide, elemental sulfur, thiosulfate, sulfite, and glucose, but not tetrathionate. The bacterium had an activity to assimilate (14)CO2 into the cells when thiosulfate was used as an energy source. These results suggest that strain RO-1 is Thiobacillus versutus. Strain RO-1 exuded Ca(2+) from concrete blocks added to thiosulfate medium with pH 9.0 and the pH of the medium decreased from 9.0 to 5.5 after 22 days of cultivation. In contrast, Thiobacillus thiooxidans strain NB1-3 could not exude Ca(2+) in the same thiosulfate medium, suggesting that strain RO-1, but not T. thiooxidans NB1-3, is involved in the early stage of concrete corrosion because concrete structures just after construction contain calcium hydroxide and have a pH of 12-13. PMID:27388643

  3. Use of natural mordenite to remove chromium (III) and to neutralize pH of alkaline waste waters.

    PubMed

    Córdova-Rodríguez, Valduvina; Rodríguez-Iznaga, Inocente; Acosta-Chávez, Raquel María; Chávez-Rivas, Fernando; Petranovskii, Vitalii; Pestryakov, Alexey

    2016-01-01

    The natural mordenite from Palmarito de Cauto deposit (PZ), Cuba, was studied in this work as an ion exchanger to remove Cr(3+) cations from alkaline aqueous solutions at different pH and chromium concentrations. The mordenite stability under cyclic treatment processes with alkaline solutions and its capacity to decrease the pH of the solutions was also analyzed. It was shown that PZ removes Cr(3+) ions from alkaline solutions, and it happens independently of the starting chromium concentration and the pH of the exchange solution used. This material has an important neutralizing effect on alkaline solutions, expressed in a significant pH decrease from the early stages of the treatments. For solutions with initial pH equal to 11, it decreases to a value of around seven. The stability of this material is not affected significantly after continuous cyclic treatment with NaOH solution, which shows that mordenite, in particular from Palmarito de Cauto deposit, has high stability in alkaline solutions. The results are important as they suggest that natural zeolites may be of interest in treatments of alkaline industrial waste effluents. PMID:26818904

  4. Estimation and Comparison of Salivary Calcium, Phosphorous, Alkaline Phosphatase and pH Levels in Periodontal Health and Disease: A Cross-sectional Biochemical Study

    PubMed Central

    Patel, Rufi Murad; Suragimath, Girish; Zope, Sameer

    2016-01-01

    Introduction In oral diagnostics there is a great challenge to determine biomarkers for screening and evaluating the disease activity. Biomarkers can also serve as a useful tool to measure the efficacy of the therapy. Aim To evaluate and compare the levels of salivary calcium, phosphorous, alkaline phosphatase and pH levels in periodontally healthy subjects and patients with gingivitis and periodontitis. Materials and Methods The present study consisted of 150 subjects aged between 20-45 years who were divided into three groups; periodontally healthy, gingivitis and chronic periodontitis. Prior to the clinical examination the demographic details, relevant information of the subject, gingival index, plaque index, Oral Hygiene Index (OHI) and pH were recorded. Biochemical assay of saliva i.e., inorganic calcium, phosphorous and alkaline phosphatase were estimated by colorimetric method. ANOVA and Tukey’s test were applied for statistical analysis. Results The mean levels of biomarkers studied were; inorganic calcium (12.55μg/dl), phosphorous (14.50μg/dl), alkaline phosphatase (49.62μg/dl) and pH (11.65). There was a gradual increase in these levels as the condition progressed from health to gingivitis or periodontitis which was statistically significant at p<0.001. Conclusion Based on these results, it can be concluded that, the biomarkers like salivary calcium, phosphorous, alkaline phosphatase and pH can be considered for evaluating the diagnosis and prognosis of periodontal tissues in disease and health.

  5. Molecular level mechanisms of quartz dissolution at neutral and alkaline conditions with the presence of electrolytes

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Zhang, S.

    2012-12-01

    The mechanisms of quartz dissolution are intricately affected by pH and electrolyte types. While most of previous studies have focused on mechanisms of quartz dissolution under a single specific condition (e.g., temperature, pH, saturation, or electrolyte type), this study investigates the molecular level mechanisms at combinations of electrolyte and pH conditions, which are more complicated but closer to the reality. Under neutral and alkaline pH conditions, with one of the Ca2+, Mg2+ or Na+ electrolytes in the solution, the dissolution of Q1(Si) and Q2(Si) sites on quartz surface, which represents the most important part of the quartz dissolution story, were investigated by first-principles quantum chemistry calculation methods. Also, large cluster models were used to represent the surface structures of quartz. The M05-2X/6-311+G** level DFT (Density Functional Theory) calculations and the STQN (Synchronous Transit-Guided Quasi-Newton) method (i.e., the QST3 method in Gaussian 03) were used to search transition-state structures and calculate energy barriers of the elementary Si-O bond breaking steps. Our results confirm that the dissolution of quartz can be significantly enhanced with the presence of electrolytes under neutral pH conditions, while under alkaline pH conditions, the behaviors of electrolytes are complicated, depending on where and how the electrolytes bond to quartz surfaces. Under neutral conditions, almost all types of electrolytes can directly bond to the bridging oxygen (BO) sites, leading to a weakened Si-Obr bonding and an increase of quartz dissolution. At alkaline conditions, however, electrolytes can no longer link to BO sites but rather link to terminal oxygen sites, leading to different dissolution mechanisms of quartz. The behaviors of specific electrolytes Na+, Ca2+, and Mg2+ on Q1(Si) and Q2 (Si) sites are also different, leading to more complicated dissolution mechanisms. Finally, the calculated energy barriers of possible hydrolysis

  6. BEHAVIOR OF DDT, KEPONE, AND PERMETHRIN IN SEDIMENT-WATER SYSTEMS UNDER DIFFERENT OXIDATION-REDUCTION AND PH CONDITIONS

    EPA Science Inventory

    A study was conducted to determine the effects of pH and oxidation-reduction (redox) conditions of soil and sediment-water systems on the persistence of three insecticide compounds. Three pH levels, ranging from moderately acid to mildy alkaline, were studied for each compound. F...

  7. Application of a fluidized bed reactor charged with aragonite for control of alkalinity, pH and carbon dioxide in marine recirculating aquaculture systems

    USGS Publications Warehouse

    Paul S Wills, PhD; Pfeiffer, Timothy; Baptiste, Richard; Watten, Barnaby J.

    2016-01-01

    Control of alkalinity, dissolved carbon dioxide (dCO2), and pH are critical in marine recirculating aquaculture systems (RAS) in order to maintain health and maximize growth. A small-scale prototype aragonite sand filled fluidized bed reactor was tested under varying conditions of alkalinity and dCO2 to develop and model the response of dCO2 across the reactor. A large-scale reactor was then incorporated into an operating marine recirculating aquaculture system to observe the reactor as the system moved toward equilibrium. The relationship between alkalinity dCO2, and pH across the reactor are described by multiple regression equations. The change in dCO2 across the small-scale reactor indicated a strong likelihood that an equilibrium alkalinity would be maintained by using a fluidized bed aragonite reactor. The large-scale reactor verified this observation and established equilibrium at an alkalinity of approximately 135 mg/L as CaCO3, dCO2 of 9 mg/L, and a pH of 7.0 within 4 days that was stable during a 14 day test period. The fluidized bed aragonite reactor has the potential to simplify alkalinity and pH control, and aid in dCO2 control in RAS design and operation. Aragonite sand, purchased in bulk, is less expensive than sodium bicarbonate and could reduce overall operating production costs.

  8. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome.

    PubMed

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na(+)). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L(-1) day(-1) organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the "ML635J-40 aquatic group" while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  9. Exposure to the Proton Scavenger Glycine under Alkaline Conditions Induces Escherichia coli Viability Loss

    PubMed Central

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  10. Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss.

    PubMed

    Vanhauteghem, Donna; Janssens, Geert Paul Jules; Lauwaerts, Angelo; Sys, Stanislas; Boyen, Filip; Cox, Eric; Meyer, Evelyne

    2013-01-01

    Our previous work described a clear loss of Escherichia coli (E. coli) membrane integrity after incubation with glycine or its N-methylated derivatives N-methylglycine (sarcosine) and N,N-dimethylglycine (DMG), but not N,N,N-trimethylglycine (betaine), under alkaline stress conditions. The current study offers a thorough viability analysis, based on a combination of real-time physiological techniques, of E. coli exposed to glycine and its N-methylated derivatives at alkaline pH. Flow cytometry was applied to assess various physiological parameters such as membrane permeability, esterase activity, respiratory activity and membrane potential. ATP and inorganic phosphate concentrations were also determined. Membrane damage was confirmed through the measurement of nucleic acid leakage. Results further showed no loss of esterase or respiratory activity, while an instant and significant decrease in the ATP concentration occurred upon exposure to either glycine, sarcosine or DMG, but not betaine. There was a clear membrane hyperpolarization as well as a significant increase in cellular inorganic phosphate concentration. Based on these results, we suggest that the inability to sustain an adequate level of ATP combined with a decrease in membrane functionality leads to the loss of bacterial viability when exposed to the proton scavengers glycine, sarcosine and DMG at alkaline pH. PMID:23544135

  11. Fluorescent probes and bioimaging: alkali metals, alkaline earth metals and pH.

    PubMed

    Yin, Jun; Hu, Ying; Yoon, Juyoung

    2015-07-21

    All living species and life forms have an absolute requirement for bio-functional metals and acid-base equilibrium chemistry owing to the critical roles they play in biological processes. Hence, a great need exists for efficient methods to detect and monitor biometals and acids. In the last few years, great attention has been paid to the development of organic molecule based fluorescent chemosensors. The availability of new synthetic fluorescent probes has made fluorescence microscopy an indispensable tool for tracing biologically important molecules and in the area of clinical diagnostics. This review highlights the recent advances that have been made in the design and bioimaging applications of fluorescent probes for alkali metals and alkaline earth metal cations, including lithium, sodium and potassium, magnesium and calcium, and for pH determination within biological systems. PMID:25317749

  12. Sorption Behavior of Iodine on Allophane under Acid and Alkaline Conditions - 12203

    SciTech Connect

    Amemiya, Kiyoshi; Nakano, Masashi

    2012-07-01

    In the safety assessment of TRU geological disposal, Iodine-129 (I-129) is considered a key radionuclide. In Japan the reference buffer material within the repository is a bentonite based sand mixture, which is lacking in iodine adsorbent capacity. Additives or alternative buffer materials that can enhance iodine adsorption are desired. Allophane, a common soil material in Japan, is a potential candidate to aid in iodine retention. In order to assess the potential for improvement of buffer and backfill material to limit release of I-129, the sorption behavior of iodine (IO{sub 3}{sup -} and I{sup -}) on allophane was examined in this research. The sorption behavior of IO{sub 3}{sup -} by allophane is strong in acidic conditions, and markedly reduced in alkaline conditions. The K{sub d} values of IO{sub 3}{sup -} are approximately 0.4 m{sup 3}/kg (pH=5), 0.03 m{sup 3}/kg (pH=8), 0.011 m{sup 3}/kg (pH=9), 0.005 m{sup 3}/kg (pH=10). Conversely, the K{sub d} value of I{sup -} is as small as 0.01 m{sup 3}/kg in acidic conditions, and much smaller in alkaline conditions. The numerical analysis shows that a maximum release rate of I-129 from the engineered barrier in the geological disposal system decreased approximately one order of magnitude and the K{sub d} of the buffer increased up to 0.1 m{sup 3}/kg by applying allophane soils to engineered barriers. (authors)

  13. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease

    PubMed Central

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J.

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  14. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    PubMed

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production. PMID:26716833

  15. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Reduced graphene oxide sheets (rGO) were prepared by hydrothermal treatment of aqueous dispersions of graphite oxide (GtO) applied for short (4 h) and prolonged reaction times (19-24 h). The effect of process duration as well as the alkaline conditions (pH ∼10) by addition of K2CO3 on the quality characteristics of the produced rGO materials was investigated. Both reduction and exfoliation occurred during this process as it was evidenced by FTIR and XRD data. SEM, TEM and HRTEM microscopy displayed highly exfoliated rGO materials. XPS verified that the re-establishment of the conjugated graphene network is more extensive for prolonged times of hydrothermal processing in accordance to Raman spectroscopy measurements. The sample produced under alkaline conditions bore fewer defects and almost 5 times higher BET surface area (∼181 m2/g) than the sample with no pH adjustment (∼34 m2/g) for the same hydrothermal reaction time (19 h), attributed to the developed microporosity. The specific capacitance of this material estimated by electrochemical impedance using three-electrode cell and KCl aqueous solution as an electrolyte was ∼400-500 F/g. When EDLC capacitors were fabricated from rGO materials the electrochemical testing in organic electrolyte i.e. TEABF4 in PC, revealed that the shortest hydrothermal reaction time (4 h) was more efficient resulting in capacitance around 60 F/g.

  16. Microbial reduction of U(VI) under alkaline conditions: implications for radioactive waste geodisposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Law, Gareth T W; Rizoulis, Athanasios; Charnock, John M; Lloyd, Jonathan R

    2014-11-18

    Although there is consensus that microorganisms significantly influence uranium speciation and mobility in the subsurface under circumneutral conditions, microbiologically mediated U(VI) redox cycling under alkaline conditions relevant to the geological disposal of cementitious intermediate level radioactive waste, remains unexplored. Here, we describe microcosm experiments that investigate the biogeochemical fate of U(VI) at pH 10-10.5, using sediments from a legacy lime working site, stimulated with an added electron donor, and incubated in the presence and absence of added Fe(III) as ferrihydrite. In systems without added Fe(III), partial U(VI) reduction occurred, forming a U(IV)-bearing non-uraninite phase which underwent reoxidation in the presence of air (O2) and to some extent nitrate. By contrast, in the presence of added Fe(III), U(VI) was first removed from solution by sorption to the Fe(III) mineral, followed by bioreduction and (bio)magnetite formation coupled to formation of a complex U(IV)-bearing phase with uraninite present, which also underwent air (O2) and partial nitrate reoxidation. 16S rRNA gene pyrosequencing showed that Gram-positive bacteria affiliated with the Firmicutes and Bacteroidetes dominated in the post-reduction sediments. These data provide the first insights into uranium biogeochemistry at high pH and have significant implications for the long-term fate of uranium in geological disposal in both engineered barrier systems and the alkaline, chemically disturbed geosphere. PMID:25231875

  17. INFLUENCE OF PH AND REDOX CONDITIONS ON COPPER LEACHING

    EPA Science Inventory

    Leaching behavior of metals from a mineral processing waste at varying pH and redox conditions was studies. Effect of combinations of pH and Eh on leaching of copper is described. Leaching of copper was found to be dependent on both pH and Eh. Higher concentrations of Cu were ...

  18. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. II. THE EFFECT OF TEMPERATURE, PH, ALKALINITY, AND DOM PROPERTIES

    EPA Science Inventory

    The influence of temperature, pH, alkalinity, and type and concentration of the dissolved organic matter (DOM) on the rate of ozone (O3) decomposition, O3-exposure, .OH-exposure and the ratio Rct of the concentrations of .OH and O3 has been studied. For a standardized single ozon...

  19. Effect of pH alkaline salts of fatty acids on the inhibition of bacteria associated with poultry processing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The agar diffusion assay was used to examine the effect of pH on the ability of alkaline salts of three fatty acids (FA) to inhibit growth of bacteria associated with poultry processing. FA solutions were prepared by dissolving 0.5 M concentrations of caprylic, capric, or lauric acid in separate ali...

  20. Cyanide Degradation under Alkaline Conditions by a Strain of Fusarium solani Isolated from Contaminated Soils

    PubMed Central

    Dumestre, A.; Chone, T.; Portal, J.; Gerard, M.; Berthelin, J.

    1997-01-01

    Several cyanide-tolerant microorganisms have been selected from alkaline wastes and soils contaminated with cyanide. Among them, a fungus identified as Fusarium solani IHEM 8026 shows a good potential for cyanide biodegradation under alkaline conditions (pH 9.2 to 10.7). Results of K(sup14)CN biodegradation studies show that fungal metabolism seems to proceed by a two-step hydrolytic mechanism: (i) the first reaction involves the conversion of cyanide to formamide by a cyanide-hydrolyzing enzyme, cyanide hydratase (EC 4.2.1.66); and (ii) the second reaction consists of the conversion of formamide to formate, which is associated with fungal growth. No growth occurred during the first step of cyanide degradation, suggesting that cyanide is toxic to some degree even in cyanide-degrading microorganisms, such as F. solani. The presence of organic nutrients in the medium has a major influence on the occurrence of the second step. Addition of small amounts of yeast extract led to fungal growth, whereas no growth was observed in media containing cyanide as the sole source of carbon and nitrogen. The simple hydrolytic detoxification pathway identified in the present study could be used for the treatment of many industrial alkaline effluents and wastes containing free cyanide without a prior acidification step, thus limiting the risk of cyanhydric acid volatilization; this should be of great interest from an environmental and health point of view. PMID:16535647

  1. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.

    PubMed

    Cao, Baichuan; Gao, Baoyu; Liu, Xin; Wang, Mengmeng; Yang, Zhonglian; Yue, Qinyan

    2011-11-15

    The adjustment of pH is an important way to enhance removal efficiency in coagulation units, and in this process, the floc size, strength and structure can be changed, influencing the subsequent solid/liquid separation effect. In this study, an inorganic polymer coagulant, polyferric chloride (PFC) was used in a low dissolved organic carbon (DOC) and high alkalinity surface water treatment. The influence of coagulation pH on removal efficiency, floc growth, strength, re-growth capability and fractal dimension was examined. The optimum dosage was predetermined as 0.150 mmol/L, and excellent particle and organic matter removal appeared in the pH range of 5.50-5.75. The structure characteristics of flocs formed under four pH conditions were investigated through the analysis of floc size, effect of shear and particle scattering properties by a laser scattering instrument. The results indicated that flocs formed at neutral pH condition gave the largest floc size and the highest growth rate. During the coagulation period, the fractal dimension of floc aggregates increased in the first minutes and then decreased and larger flocs generally had smaller fractal dimensions. The floc strength, which was assessed by the relationship of floc diameter and velocity gradient, decreased with the increase of coagulation pH. Flocs formed at pH 4.00 had better recovery capability when exposed to lower shear forces, while flocs formed at neutral and alkaline conditions had better performance under higher shear forces. PMID:21959092

  2. Low temperature alkaline pH hydrolysis of oxygen-free Titan tholins

    NASA Astrophysics Data System (ADS)

    Brassé, Coralie; Buch, Arnaud; Raulin, François; Coll, Patrice; Poch, Olivier; Ramirez, Sandra

    2014-05-01

    The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan's atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma[1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan tholins (produced by an experimental setup using a plasma DC discharge named PLASMA) at low temperature. Urea has been identified as one of the main product of tholins hydrolysis along with several amino acids (alanine, glycine and aspartic acid). However, those molecules have also been detected in non-hydrolyzed tholins. One explanation is a possible oxygen leak in the PLASMA reactor during the tholins synthesis[2]. Following this preliminary study the synthesis protocol has been improved by isolating the whole device in a specially designed glove box which protect the PLASMA experiment from the laboratory atmosphere. Once we confirmed the non-presence of oxygen in tholins, we performed alkaline pH hydrolysis of oxygen-free tholins. Then we verify that the organic compounds cited above are still produced in-situ. Moreover, a recent study shows that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less[3]), than the one used until now in this kind of experimental study[2, 4]. Thus, we have carried out new hydrolysis experiments which take this lower value into account. Additional studies have provided new highlights on the bulk composition of Titan for various gas species. Indeed, the observed Saturn's atmosphere enrichment constrains the composition of the planetesimals present in the feeding zone of Saturn. The enrichment in volatiles in Saturn's atmosphere has been reproduced by assuming the presence of specific gas species[5, 6], in particular CO2 and H2S. In the present study we assume that those gas species have

  3. Combined effects of carbonate alkalinity and pH on survival, growth and haemocyte parameters of the Venus clam Cyclina sinensis.

    PubMed

    Lin, Tingting; Lai, Qifang; Yao, Zongli; Lu, Jianxue; Zhou, Kai; Wang, Hui

    2013-08-01

    Carbonate alkalinity (CA) and pH are considered to be two important stress factors that determine the response of aquatic animals to sudden transfers into saline-alkaline water. To evaluate the potential for aquaculture production of Venus clams (Cyclina sinensis) farmed in saline-alkaline water, the combined effects of CA (2.5 (control), 10.0, 20.0 and 40.0 meq/l) and pH (8.0 (control), 8.5, 9.0 and 9.5) on survival rate was monitored every day for 10 days. Length gain rate (LGR) and weight gain rate (WGR) were also monitored for two months, and total haemocyte count (THC), phagocytic rate (PR) and haemocyte mortality (HM) were measured for 3, 6, 12 and 24 days under the same water temperature (20 °C) and salinity (15‰) conditions. The results showed that survival rates in treatments of CA ≤ 20.0, combined with pH ≤ 9.0, were 100%. LGR and WGR in treatments of CA 2.5 & pH 8.0 (control), CA 2.5 & pH 8.5 and CA 10.0 & pH 8.0 exhibited the largest values (P > 0.05), while in other treatments, they showed a decreasing trend with an increase in either CA or pH or both (P < 0.05). Similarly, for THC, PR and HM, no significant differences were observed among the fast growth treatments during the entire experimental period (P > 0.05), however, in other treatments, they presented significant differences, especially on day 3 and 6 (P < 0.05), most notably with increases in CA or pH, but returned to control levels on day 12. In conclusion, in this study, a strong interaction between CA and pH was observed. Additionally, it was ascertained that the Venus clam C. sinensis can withstand the stress of CA 20.0 combined pH 9.0, although individuals grows slowly and may take approximately 12 days to recover to the unstressed condition. PMID:23711470

  4. Anditalea andensis ANESC-ST - An Alkaliphilic Halotolerant Bacterium Capable of Electricity Generation under Alkaline-Saline Conditions

    PubMed Central

    Shi, Wei; Wang, Victor Bochuan; Zhao, Cui-E; Zhang, Qichun; Loo, Say Chye Joachim; Yang, Liang; Xu, Chenjie

    2015-01-01

    A great challenge in wastewater bioremediation is the sustained activity of viable microorganisms, which can contribute to the breakdown of waste contaminants, especially in alkaline pH conditions. Identification of extremophiles with bioremediation capability can improve the efficiency of wastewater treatment. Here, we report the discovery of an electrochemically active alkaliphilic halotolerant bacterium, Anditalea andensis ANESC-ST (=CICC10485T=NCCB 100412T), which is capable of generating bioelectricity in alkaline–saline conditions. A. andensis ANESC-ST was shown to grow in alkaline conditions between pH 7.0–11.0 and also under high salt condition (up to 4 wt% NaCl). Electrical output was further demonstrated in microbial fuel cells (MFCs) with an average current density of ~0.5 µA/cm2, even under the harsh condition of 4 wt% NaCl and pH 9.0. Subsequent introduction of secreted extracellular metabolites into MFCs inoculated with Escherichia coli or Pseudomonas aeruginosa yielded enhanced electrical output. The ability of A. andensis ANESC-ST to generate energy under alkaline–saline conditions points towards a solution for bioelectricity recovery from alkaline–saline wastewater. This is the first report of A.andensis ANESC-ST producing bioelectricity at high salt concentration and pH. PMID:26171779

  5. Sewage sludge pretreatment by microwave irradiation combined with activated carbon fibre at alkaline pH for anaerobic digestion.

    PubMed

    Sun, Dedong; Guo, Sixiao; Ma, Nina; Wang, Guowen; Ma, Chun; Hao, Jun; Xue, Mang; Zhang, Xinxin

    2016-01-01

    This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD. PMID:27332832

  6. Bleb formation is induced by alkaline but not acidic pH in estrogen receptor silenced breast cancer cells.

    PubMed

    Khajah, Maitham A; Mathew, Princy M; Alam-Eldin, Nada S; Luqmani, Yunus A

    2015-04-01

    De novo and acquired resistance to endocrine-based therapies in breast cancer occurs in parallel with epithelial to mesenchymal transition (EMT), which is associated with enhanced proliferative and metastatic potential, and poor clinical outcome. We have established several endocrine insensitive breast cancer lines by shRNA-induced depletion of estrogen receptor (ER) by transfection of MCF7 cells. All of these exhibit EMT. We have previously reported that brief exposure of specifically ER- breast cancer cells, to extracellular alkaline pH, results in cell rounding and segregation, and leads to enhanced invasive potential. In this study we describe more detailed morphological changes and compare these with cell exposure to acidic pH. Morphological changes and localization of various molecules critical for cell adhesion and motility, associated with pH effects, were assessed by live cell microscopy, electron microscopy, and immunofluorescence. Exposure of either ER- or ER+ breast cancer cells to extracellular acidic pH did not induce significant changes in morphological appearance. Conversely, brief exposure of specifically ER silenced cells, to alkaline pH, resulted in cell contractolation and formation of bleb-like actin-rich structures which were evenly distributed on the outer membrane. Integrin α2, FAK, and JAM-1 were found in the cytoplasm streaming into the newly formed blebs. These blebs appear to be related to cell polarity and movement. Pre-treatment with cytochalasin-D or inhibitors of Rho or MLCK prevented both contractolation and bleb formation. Our data suggest that the effect of pH on the microenvironment of endocrine resistant breast cancer cells needs to be more extensively investigated. Alkaline, rather than acidic pH, appears to induce dramatic morphological changes, and enhances their invasive capabilities, through re-organization of cortical actin. PMID:25672508

  7. Phenolic Compounds and Their Fates In Tropical Lepidopteran Larvae: Modifications In Alkaline Conditions.

    PubMed

    Vihakas, Matti; Gómez, Isrrael; Karonen, Maarit; Tähtinen, Petri; Sääksjärvi, Ilari; Salminen, Juha-Pekka

    2015-09-01

    Lepidopteran larvae encounter a variety of phenolic compounds while consuming their host plants. Some phenolics may oxidize under alkaline conditions prevailing in the larval guts, and the oxidation products may cause oxidative stress to the larvae. In this study, we aimed to find new ways to predict how phenolic compounds may be modified in the guts of herbivorous larvae. To do so, we studied the ease of oxidation of phenolic compounds from 12 tropical tree species. The leaf extracts were incubated in vitro in alkaline conditions, and the loss of total phenolics during incubation was used to estimate the oxidizability of extracts. The phenolic profiles of the leaf extracts before and after incubation were compared, revealing that some phenolic compounds were depleted during incubation. The leaves of the 12 tree species were each fed to 12 species of lepidopteran larvae that naturally feed on these trees. The phenolic profiles of larval frass were compared to those of in vitro incubated leaf extracts. These comparisons showed that the phenolic profiles of alkali-treated samples and frass samples were similar in many cases. This suggested that certain phenolics, such as ellagitannins, proanthocyanidins, and galloylquinic acid derivatives were modified by the alkaline pH of the larval gut. In other cases, the chromatographic profiles of frass and in vitro incubated leaf extracts were not similar, and new modifications of phenolics were detected in the frass. We conclude that the actual fates of phenolics in vivo are often more complicated than can be predicted by a simple in vitro method. PMID:26364295

  8. Precision and accuracy of spectrophotometric pH measurements at environmental conditions in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Hammer, Karoline; Schneider, Bernd; Kuliński, Karol; Schulz-Bull, Detlef E.

    2014-06-01

    The increasing uptake of anthropogenic CO2 by the oceans has raised an interest in precise and accurate pH measurement in order to assess the impact on the marine CO2-system. Spectrophotometric pH measurements were refined during the last decade yielding a precision and accuracy that cannot be achieved with the conventional potentiometric method. However, until now the method was only tested in oceanic systems with a relative stable and high salinity and a small pH range. This paper describes the first application of such a pH measurement system at conditions in the Baltic Sea which is characterized by a wide salinity and pH range. The performance of the spectrophotometric system at pH values as low as 7.0 (“total” scale) and salinities between 0 and 35 was examined using TRIS-buffer solutions, certified reference materials, and tests of consistency with measurements of other parameters of the marine CO2 system. Using m-cresol purple as indicator dye and a spectrophotometric measurement system designed at Scripps Institution of Oceanography (B. Carter, A. Dickson), a precision better than ±0.001 and an accuracy between ±0.01 and ±0.02 was achieved within the observed pH and salinity ranges in the Baltic Sea. The influence of the indicator dye on the pH of the sample was determined theoretically and is presented as a pH correction term for the different alkalinity regimes in the Baltic Sea. Because of the encouraging tests, the ease of operation and the fact that the measurements refer to the internationally accepted “total” pH scale, it is recommended to use the spectrophotometric method also for pH monitoring and trend detection in the Baltic Sea.

  9. Environmentally safe treatment of black liquor with Comamonas sp. B-9 under high-alkaline conditions.

    PubMed

    Zheng, Yu; Chai, Liyuan; Yang, Zhihui; Chen, Yuehui; Shi, Yan; Wang, Yangyang

    2014-02-01

    The strain Comamonas sp. B-9 was isolated from steeping fluid of erosive bamboo slips derived from Kingdom Wu during the Three-Kingdoms Dynasty of ancient China (A.D. 220-280). It could be used to treat black liquor (BL) with high-alkaline pH and with an initial chemical oxygen demand (COD) of 18,000-25,000 mg L(-1) , without the addition of other carbon and nitrogen sources. The results revealed that Comamonas sp. B-9 was capable of reducing the COD, color, and lignin content of BL by up to 56.8, 35.3, and 43.5%, respectively. High levels of laccase, manganese peroxidase, cellulase, and xylanase enzymatic activities were also observed, and these enzymes could play an important role in the biotreatment of BL. Further, GC-MS analysis showed that most of the compounds detected in BL after biotreatment with Comamonas sp. B-9 were diminished, while 4-methyl benzaldehyde, 3,4,5-trihydroxybenzoic acid ethyl ester, and 4-hydroxy-3,5-dimethoxy benzaldehyde were produced as metabolites. The presented results indicate that Comamonas sp. B-9 has potential application for the treatment of wastewaters from pulp and paper processing with high COD load under high-alkaline conditions. PMID:23553551

  10. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    PubMed Central

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  11. Unique picoeukaryotic algal community under multiple environmental stress conditions in a shallow, alkaline pan.

    PubMed

    Pálffy, Károly; Felföldi, Tamás; Mentes, Anikó; Horváth, Hajnalka; Márialigeti, Károly; Boros, Emil; Vörös, Lajos; Somogyi, Boglárka

    2014-01-01

    Winter phytoplankton communities in the shallow alkaline pans of Hungary are frequently dominated by picoeukaryotes, sometimes in particularly high abundance. In winter 2012, the ice-covered alkaline Zab-szék pan was found to be extraordinarily rich in picoeukaryotic green algae (42-82 × 10(6) cells ml(-1)) despite the simultaneous presence of multiple stressors (low temperature and light intensity with high pH and salinity). The maximum photosynthetic rate of the picoeukaryote community was 1.4 μg C μg chlorophyll a (-1) h(-1) at 125 μmol m(-2) s(-1). The assimilation rates compared with the available light intensity measured on the field show that the community was considerably light-limited. Estimated areal primary production was 180 mg C m(-2) d(-1). On the basis of the 18S rRNA gene analysis (cloning and DGGE), the community was phylogenetically heterogeneous with several previously undescribed chlorophyte lineages, which indicates the ability of picoeukaryotic communities to maintain high genetic diversity under extreme conditions. PMID:24281914

  12. Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes.

    PubMed

    Cuzman, Oana A; Rescic, Silvia; Richter, Katharina; Wittig, Linda; Tiano, Piero

    2015-11-20

    The ureolytic bacteria are one of the most efficient organisms able to produce high amounts of carbonate that easily react with the free calcium ions from the environment. Sporosarcina pasteurii, a robust microbe in alkaline environments, was tested in this work for its potential use in an eco-cementation process that involves the biomediated calcite precipitation (BCP). Bacterial behavior in extreme alkaline environment (pH values of 9-13) was tested in controlled laboratory conditions and in the presence of solid industry wastes, such as Cement Kiln Dust (CKD) and Lime Kiln Dust (LKD), by evaluating the enzymatic activity and the calcite precipitation capacity. Grain consolidation potential of S. pasteurii was tested for one type of CKD mixed with ground granulated blast-furnace slag (GGBS), with possible bioclogging and biocementation applications. The results revealed the formation of stable biocalcite in the presence of CKD, with a performance depending on the pH-value and free calcium ion content. The BCP induced by S. pasteurii and the recycling of solid wastes, such as CKD with high lime content, is a promising way for different bioclogging and biocementation applications, with benefits in construction costs and reduction of environmental pollution. PMID:26376469

  13. Upper ocean carbon cycling inferred from direct pH observations made by profiling floats and estimated alkalinity

    NASA Astrophysics Data System (ADS)

    Johnson, K. S.; Plant, J. N.; Jannasch, H. W.; Coletti, L. J.; Elrod, V.; Sakamoto, C.; Riser, S.

    2015-12-01

    The annual cycle of dissolved inorganic carbon (DIC) is a key tracer of net community production and carbon export in the upper ocean. In particular, the DIC concentration is much less sensitive to air-sea gas exchange, when compared to oxygen, another key tracer of upper ocean metabolism. However, the annual DIC cycle is observed with a seasonal resolution at only a few time-series stations in the open ocean. Here, we consider the annual carbon cycle that has been observed using profiling floats equipped with pH sensors. Deep-Sea DuraFET pH sensors have been deployed on profiling floats for over three years and they can provide temporal and spatial resolution of 5 to 10 days and 5 to 10 m in the upper ocean over multi-year periods. In addition to pH, a second carbon system parameter is required to compute DIC. Total alkalinity can be derived from the float observations of temperature, salinity and oxygen using equations in these variables that are fitted to shipboard observations of alkalinity obtained in the global repeat hydrography programs (e.g., Juranek et al., GRL, doi:10.1029/2011GL048580, 2011), as the relationships should be stable in time in the open ocean. Profiling floats with pH have been deployed from Hawaii Ocean Time-series (HOT) cruises since late 2012 and an array of floats with pH have been deployed since early 2014 in the Southern Ocean as part of the SOCCOM program. The SOCCOM array should grow to nearly 200 floats over the next 5 years. The sensor data was quality controlled and adjusted by comparing observations at 1500 m depth to the deep climatology of pH (derived from DIC and alkalinity) computed with the GLODAP data set. After adjustment, the surface DIC concentrations were calculated from pH and alkalinity. This yields a data set that is used to examine annual net community production in the oligotrophic North Pacific and in the South Pacific near 150 West from 40 South to 65 South.

  14. The immobilization of all spermatozoa in vitro by bitter lemon drink and the effect of alkaline pH.

    PubMed

    Nwoha, P U

    1992-12-01

    Researchers at Obafemi Awolowo University in Ile-Ife, Nigeria, collected semen samples from 7 healthy men 25-30 years old who had abstained from sex for at least 5 days in order to examine the spermicidal action of 4 soft drinks (Krest bitter lemon, Afri-Cola, Coca-Cola, and Pepsi-Cola), the effect of increased temperature of the drinks on spermicidal action, and the effect of changing the soft drinks from an acid, as it comes from the factory, (ph 2.4) to an alkaline (pH 7.5). Increasing the temperature of the soft drinks from room temperature (22 degrees Celsius) to body temperatures (37 degrees Celsius) did not significantly change the spermicidal action any of the soft drinks. All soft drinks with an acid pH, except Coca-Cola, had a significantly lower percent of sperm motility than those with an alkaline pH (0-42.3% vs. 20-52.1%; p .001). In fact, Krest bitter lemon in its factory form (acid pH) completely immobilized all spermatozoa within 1 minute after the researchers diluted the semen with the soft drink. Alkaline Coca-Cola had a significantly lower percent of sperm motility than did acid Coca-Cola (35.8% vs. 46.5%; p .001). Other than Krest bitter lemon, the significant decreases in sperm motility were not enough to prevent pregnancy. These findings indicated that researchers should test Krest bitter lemon for effectiveness as a postcoital contraceptive. If indeed it proves effective, it has great potential as such a contraceptive among the poor in the densely population developed countries since it is readily available and inexpensive. PMID:1493713

  15. Microbial reduction of Fe(III) under alkaline conditions relevant to geological disposal.

    PubMed

    Williamson, Adam J; Morris, Katherine; Shaw, Sam; Byrne, James M; Boothman, Christopher; Lloyd, Jonathan R

    2013-06-01

    To determine whether biologically mediated Fe(III) reduction is possible under alkaline conditions in systems of relevance to geological disposal of radioactive wastes, a series of microcosm experiments was set up using hyperalkaline sediments (pH ~11.8) surrounding a legacy lime working site in Buxton, United Kingdom. The microcosms were incubated for 28 days and held at pH 10. There was clear evidence for anoxic microbial activity, with consumption of lactate (added as an electron donor) concomitant with the reduction of Fe(III) as ferrihydrite (added as the electron acceptor). The products of microbial Fe(III) reduction were black and magnetic, and a range of analyses, including X-ray diffraction, transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism confirmed the extensive formation of biomagnetite in this system. The addition of soluble exogenous and endogenous electron shuttles such as the humic analogue anthraquinone-2,6-disulfonate and riboflavin increased both the initial rate and the final extent of Fe(III) reduction in comparison to the nonamended experiments. In addition, a soluble humic acid (Aldrich) also increased both the rate and the extent of Fe(III) reduction. These results show that microbial Fe(III) reduction can occur in conditions relevant to a geological disposal facility containing cement-based wasteforms that has evolved into a high pH environment over prolonged periods of time (>100,000 years). The potential impact of such processes on the biogeochemistry of a geological disposal facility is discussed, including possible coupling to the redox conditions and solubility of key radionuclides. PMID:23524677

  16. Microbial Reduction of Fe(III) under Alkaline Conditions Relevant to Geological Disposal

    PubMed Central

    Williamson, Adam J.; Morris, Katherine; Shaw, Sam; Byrne, James M.; Boothman, Christopher

    2013-01-01

    To determine whether biologically mediated Fe(III) reduction is possible under alkaline conditions in systems of relevance to geological disposal of radioactive wastes, a series of microcosm experiments was set up using hyperalkaline sediments (pH ∼11.8) surrounding a legacy lime working site in Buxton, United Kingdom. The microcosms were incubated for 28 days and held at pH 10. There was clear evidence for anoxic microbial activity, with consumption of lactate (added as an electron donor) concomitant with the reduction of Fe(III) as ferrihydrite (added as the electron acceptor). The products of microbial Fe(III) reduction were black and magnetic, and a range of analyses, including X-ray diffraction, transmission electron microscopy, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism confirmed the extensive formation of biomagnetite in this system. The addition of soluble exogenous and endogenous electron shuttles such as the humic analogue anthraquinone-2,6-disulfonate and riboflavin increased both the initial rate and the final extent of Fe(III) reduction in comparison to the nonamended experiments. In addition, a soluble humic acid (Aldrich) also increased both the rate and the extent of Fe(III) reduction. These results show that microbial Fe(III) reduction can occur in conditions relevant to a geological disposal facility containing cement-based wasteforms that has evolved into a high pH environment over prolonged periods of time (>100,000 years). The potential impact of such processes on the biogeochemistry of a geological disposal facility is discussed, including possible coupling to the redox conditions and solubility of key radionuclides. PMID:23524677

  17. Transcriptional analysis of the F0F1 ATPase operon of Corynebacterium glutamicum ATCC 13032 reveals strong induction by alkaline pH.

    PubMed

    Barriuso-Iglesias, Mónica; Barreiro, Carlos; Flechoso, Fabio; Martín, Juan F

    2006-01-01

    Corynebacterium glutamicum, a soil Gram-positive bacterium used for industrial amino acid production, was found to grow optimally at pH 7.0-9.0 when incubated in 5 litre fermenters under pH-controlled conditions. The highest biomass was accumulated at pH 9.0. Growth still occurred at pH 9.5 but at a reduced rate. The expression of the pH-regulated F0 F1 ATPase operon (containing the eight genes atpBEFHAGDC) was induced at alkaline pH. A 7.5 kb transcript, corresponding to the eight-gene operon, was optimally expressed at pH 9.0. The same occurred with a 1.2 kb transcript corresponding to the atpB gene. RT-PCR studies confirmed the alkaline pH induction of the F0 F1 operon and the existence of the atpI gene. The atpI gene, located upstream of the F0 F1 operon, was expressed at a lower level than the polycistronic 7.5 kb mRNA, from a separate promoter (P-atp1). Expression of the major promoter of the F0 F1 operon, designated P-atp2, and the P-atp1 promoter was quantified by coupling them to the pET2 promoter-probe vector. Both P-atp1 and P-atp2 were functional in C. glutamicum and Escherichia coli. Primer extension analysis identified one transcription start point inside each of the two promoter regions. The P-atp1 promoter fitted the consensus sequence of promoters recognized by the vegetative sigma factor of C. glutamicum, whereas the -35 and -10 boxes of P-atp2 fitted the consensus sequence for sigma(H)-recognized Mycobacterium tuberculosis promoters C(C)/(G)GG(A)/(G)AC 17-22 nt (C)/(G)GTT(C)/(G), known to be involved in expression of heat-shock and other stress-response genes. These results suggest that the F0 F1 operon is highly expressed at alkaline pH, probably using a sigma (H) RNA polymerase. PMID:16385111

  18. Geochemical Modeling of pH Neutralization of High Alkaline-Saline Waste Fluids in Unsaturated Sediments

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Zheng, Z.

    2004-12-01

    Leakage of high alkaline-saline fluids, such as those stored in Hanford, a site of the U.S. Department of Energy (DOE) in Washington State, has raised attention of scientific community. These fluids have unique thermodynamic and physical properties. Chemical components in the fluids are incompletely dissociated, especially those containing divalent or polyvalent ions. A number of laboratory experiments through injecting synthetic high alkaline-saline fluids (up to 10M of sodium nitrate, pH >12) into the sediments sampled from the DOE Hanford site were conducted to study the reactive transport processes of the fluids in subsurface environments. The experimental results observed show that the composition of the high alkaline sodium nitrate fluids can be drastically changed due to fluid-rock interactions, and eventually lead to pH neutralization of the fluid in the plume front. The dominant fluid-rock interactions are cation exchanges (Na+-K+-Ca+2-Mg+2-H+), precipitation of calcium and magnesium minerals, and dissolution of silica. In order to precisely model the reactive transport of these processes, a coupling of the Pitzer's ion-interaction geochemical model and a flow and transport model would be highly needed. The extended existing reactive geochemical transport code, BIO-CORE2Dc, incorporating a comprehensive Pitzer ion-interaction model, is capable of predicting the experimental observations. In addition, the developed model was tested against two reported cases. In both cases, the measured mean ionic activity coefficients were well reproduced by our model, while the Debye-Hückel model, usually used to calculate aqueous species activities in dilute solutions, was unable to predict the experimental data. Finally, modeling study based on our laboratory column experiment was performed. Our simulation is able to capture the observed pH trends, changes in exchangeable cations such as Ca+2, Mg+2, and formation of secondary precipitation phases in the plume front.

  19. Preliminary evaluation of a constructed wetland for treating extremely alkaline (pH 12) steel slag drainage.

    PubMed

    Mayes, W M; Aumônier, J; Jarvis, A P

    2009-01-01

    High pH (> 12) leachates are an environmental problem associated with drainage from lime (CaO)-rich industrial residues such as steel slags, lime spoil and coal combustion residues. Recent research has highlighted the potential for natural ('volunteer') wetlands to buffer extremely alkaline influent waters. This appears ascribable to high CO(2) partial pressures in the wetland waters from microbial respiration, which accelerates precipitation of calcium carbonate (CaCO(3)), and the high specific surface area for mineral precipitation offered by macrophytes. The research presented here builds on this and provides preliminary evaluation of a constructed wetland built in March 2008 to buffer drainage from steel slag heaps in north-east England. The drainage water from the slag mounds is characterised by a mean pH of 11.9, high concentrations of Ca (up to 700 mg/L), total alkalinity (up to 800 mg/L as CaCO(3)) and are slightly brackish (Na = 300 mg/L; Cl = 400 mg/L) reflecting native groundwaters at this coastal setting. Documented calcite precipitation rates (mean of 5 g CaCO(3)/m(2)/day) from nearby volunteer sites receiving steel slag drainage were used to scale the constructed wetland planted with Phragmites australis; a species found to spontaneously grow in the vicinity of the discharge. Improved performance of the wetland during summer months may at least in part be due to biological activity which enhances rates of calcite precipitation and thus lowering of pH. Secondary Ca-rich precipitates also serve as a sink for some trace elements present at low concentrations in the slag leachate such as Ni and V. The implications for scaling and applying constructed wetlands for highly alkaline drainage are discussed. PMID:19494466

  20. Review of the complexation of tetravalent actinides by ISA and gluconate under alkaline to hyperalkaline conditions

    NASA Astrophysics Data System (ADS)

    Gaona, X.; Montoya, V.; Colàs, E.; Grivé, M.; Duro, L.

    2008-12-01

    Isosaccharinic (ISA) and gluconic acids (GLU) are polyhydroxy carboxylic compounds showing a high affinity to metal complexation. Both organic ligands are expected in the cementitious environments usually considered for the disposal of low- and intermediate-level radioactive wastes. The hyperalkaline conditions imposed by cementitious materials contribute to the formation of ISA through cellulose degradation, whereas GLU is commonly used as a concrete additive. Despite the high stability attributed to ISA/GLU complexes of tetravalent actinides, the number and reliability of available experimental studies is still limited. This work aims at providing a general and comprehensive overview of the state of the art regarding Th, U(IV), Np(IV), and Pu(IV) complexes with ISA and GLU. In the presence of ISA/GLU concentrations in the range 10 - 5 -10 - 2 M and absence of calcium, An(IV)(OH) x(L) y complexes (An(IV) = Th, U(IV), Np(IV), Pu(IV); L = ISA, GLU) are expected to dominate the aqueous speciation of tetravalent actinides in the alkaline pH range. There is a moderate agreement among their stability, although the stoichiometry of certain An(IV)-GLU complexes is still ill-defined. Under hyperalkaline conditions and presence of calcium, the species CaTh(OH) 4(L) 2(aq) has been described for both ISA and GLU, and similar complexes may be expected to form with other tetravalent actinides. In the present work, the available thermodynamic data for An(IV)-ISA/GLU complexes have been reviewed and re-calculated to ensure the internal consistency of the stability constants assessed. Further modelling exercises, estimations based on Linear Free-Energy Relationships (LFER) among tetravalent actinides, as well as direct analogies between ISA and GLU complexes have also been performed. This approach has led to the definition of a speciation scheme for the complexes of Th, U(IV), Np(IV) and Pu(IV) with ISA and GLU forming in alkaline to hyperalkaline pH conditions, both in the

  1. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    NASA Astrophysics Data System (ADS)

    Luo, W.; Nelson, P. N.; Li, M.-H.; Cai, J.; Zhang, Y.; Zhang, Y.; Shan, Y.; Wang, R.; Han, X.; Jiang, Y.

    2015-08-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate containing soils and 1700 km sub-transect with non-carbonate containing soils) across northern China. Soil pHBC was greater in the carbonate containing soils than in the non-carbonate containing soils. Acid addition decreased soil pH in the non-carbonate containing soils more markedly than in the carbonate containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC), carbonate content and exchangeable sodium (Na) concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC) content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate containing soils and CEC was the main determinant of buffering capacity in the non-carbonate containing soils. Soil pHBC was positively related to aridity index and carbonate content across the carbonate containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate and non-carbonate containing soils, leading to different rates, risks, and impacts of acidification. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  2. Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China

    NASA Astrophysics Data System (ADS)

    Luo, W. T.; Nelson, P. N.; Li, M.-H.; Cai, J. P.; Zhang, Y. Y.; Zhang, Y. G.; Yang, S.; Wang, R. Z.; Wang, Z. W.; Wu, Y. N.; Han, X. G.; Jiang, Y.

    2015-12-01

    Soil pH buffering capacity (pHBC) plays a crucial role in predicting acidification rates, yet its large-scale patterns and controls are poorly understood, especially for neutral-alkaline soils. Here, we evaluated the spatial patterns and drivers of pHBC along a 3600 km long transect (1900 km sub-transect with carbonate-containing soils and 1700 km sub-transect with non-carbonate-containing soils) across northern China. Soil pHBC was greater in the carbonate-containing soils than in the non-carbonate-containing soils. Acid addition decreased soil pH in the non-carbonate-containing soils more markedly than in the carbonate-containing soils. Within the carbonate soil sub-transect, soil pHBC was positively correlated with cation exchange capacity (CEC), carbonate content and exchangeable sodium (Na) concentration, but negatively correlated with initial pH and clay content, and not correlated with soil organic carbon (SOC) content. Within the non-carbonate sub-transect, soil pHBC was positively related to initial pH, clay content, CEC and exchangeable Na concentration, but not related to SOC content. Carbonate content was the primary determinant of pHBC in the carbonate-containing soils and CEC was the main determinant of buffering capacity in the non-carbonate-containing soils. Along the transect, soil pHBC was different in regions with different aridity index. Soil pHBC was positively related to aridity index and carbonate content across the carbonate-containing soil sub-transect. Our results indicated that mechanisms controlling pHBC differ among neutral-alkaline soils of northern China, especially between carbonate- and non-carbonate-containing soils. This understanding should be incorporated into the acidification risk assessment and landscape management in a changing world.

  3. A XPS study of the Mo effect on passivation behaviors for highly controlled stainless steels in neutral and alkaline conditions

    NASA Astrophysics Data System (ADS)

    Mesquita, Thiago J.; Chauveau, Eric; Mantel, Marc; Nogueira, Ricardo P.

    2013-04-01

    The objective of this work is to study the effect of Mo additions on film passive properties of three different stainless steels (SS) types (austenitic, ferritic and duplex alloys). A comparison between Mo containing (3 wt% Mo) and free Mo (0 wt% Mo) grades of highly controlled laboratory heats was done considering their passive film formed in different aggressive conditions, from neutral to alkaline pH. The presence of oxidized Mo on the passive layer was confirmed by X-ray photoelectron Spectroscopy (XPS). The presence of Mo within the passive film improved the passivity breakdown potential for the duplex and ferritic SS, but seemed to have no effect for austenitic SS.

  4. Nanocrystalline hydroxyapatite prepared under various pH conditions

    NASA Astrophysics Data System (ADS)

    Palanivelu, R.; Mary Saral, A.; Ruban Kumar, A.

    2014-10-01

    Hydroxyapatite (HAP) has sovereign biomedical application due to its excellent biocompatibility, chemical and crystallographic similitude with natural human bone. In this present work, we discussed about the role of pH in the synthesis of calcium phosphate compound using calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate as starting materials by chemical precipitation method assisted with ultrasonic irradiation technique. 5% polyethylene glycol (PEG600) is added along with the precursors under various pH condition of 7, 9 and 11 respectively. The functional group analysis, crystallized size and fraction of crystallized size are confirmed using Fourier Transformation Infra-Red spectroscopy and X-ray diffraction pattern. Morphological observations are done by scanning electron microscope. The results revealed the presence of nanocrystalline hydroxyapatite at pH above 9.

  5. Dissolution of Uranium Oxides Under Alkaline Oxidizing Conditions

    SciTech Connect

    Smith, Steven C.; Peper, Shane M.; Douglas, Matthew; Ziegelgruber, Kate L.; Finn, Erin C.

    2009-11-01

    Bench scale experiments were conducted to determine the dissolution characteristics of uranium oxide powders (UO2, U3O8, and UO3) in aqueous peroxide-carbonate solutions. Experimental parameters included H2O2 concentration, carbonate counter cation (NH4+, Na+, K+, and Rb+), and pH. Results indicate the dissolution rate of UO2 in 1 M (NH4)2CO3 increases linearly with peroxide concentration ranging from 0.05 – 2 M. The three uranium oxide powders exhibited different dissolution patterns however, UO3 exhibited prompt complete dissolution. Carbonate counter cation affected the dissolution kinetics. There is minimal impact of solution pH, over the range 8.8 to 10.6, on initial dissolution rate.

  6. Acclimatization of microbial consortia to alkaline conditions and enhanced electricity generation.

    PubMed

    Zhang, Enren; Zhai, Wenjing; Luo, Yue; Scott, Keith; Wang, Xu; Diao, Guowang

    2016-07-01

    Air-cathode microbial fuel cells (MFCs), obtained by inoculating with an aerobic activated sludge, were activated over a one month period, at pH 10.0, to obtain alkaline MFCs. The alkaline MFCs produced stable power of 118mWm(-2) and a maximum power density of 213mWm(-2) at pH 10.0, using glucose as substrate. The performance of the MFCs was enhanced to produce a stable power of 140mWm(-2) and a maximum power density of 235mWm(-2) by increasing pH to 11.0. This is the highest pH for stably operating MFCs reported in the literature. Power production was found to be suppressed at higher pH (12.0) and lower pH (9.0). Microbial analysis indicated that Firmicutes phylum was largely enriched in the anodic biofilms (88%), within which Eremococcus genus was the dominant group (47%). It is the first time that Eremococcus genus was described in bio-electrochemical systems. PMID:27061261

  7. Comparison of Salivary pH, Buffering Capacity and Alkaline Phosphatase in Smokers and Healthy Non-Smokers

    PubMed Central

    Ahmadi-Motamayel, Fatemeh; Falsafi, Parisa; Goodarzi, Mohammad T.; Poorolajal, Jalal

    2016-01-01

    Objectives: Saliva contains alkaline phosphatase (ALP)—a key intracellular enzyme related to destructive processes and cellular damage—and has buffering capacity (BC) against acids due to the presence of bicarbonate and phosphate ions. Smoking may have deleterious effects on the oral environment due to pH changes which can affect ALP activity. This study aimed to evaluate the salivary pH, BC and ALP activity of male smokers and healthy non-smokers. Methods: This retrospective cohort study took place between August 2012 and December 2013. A total of 251 healthy male non-smokers and 259 male smokers from Hamadan, Iran, were selected. Unstimulated whole saliva was collected from each participant and pH and BC were determined using a pH meter. Salivary enzymes were measured by spectrophotometric assay. Results: Mean salivary pH (7.42 ± 0.48 and 7.52 ± 0.43, respectively; P = 0.018) and BC (3.41 ± 0.54 and 4.17 ± 0.71; P = 0.001) was significantly lower in smokers compared to non-smokers. Mean ALP levels were 49.58 ± 23.33 IU/L among smokers and 55.11 ± 27.85 IU/L among non-smokers (P = 0.015). Conclusion: Significantly lower pH, BC and ALP levels were observed among smokers in comparison to a healthy control group. These salivary alterations could potentially be utilised as biochemical markers for the evaluation of oral tissue function and side-effects among smokers. Further longitudinal studies are recommended to evaluate the effects of smoking on salivary components. PMID:27606111

  8. Salinity and Alkaline pH in Irrigation Water Affect Marigold Plants: II. Mineral Ion Relations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Scarcity of water of good quality for landscape irrigation is of outmost importance in arid and semiarid regions due to the competition with urban population. This is forcing the use of degraded waters with high levels of salinity and high pH, which may affect plant establishment and growth. The o...

  9. Diversity and food web structure of nematode communities under high soil salinity and alkaline pH.

    PubMed

    Salamún, Peter; Kucanová, Eva; Brázová, Tímea; Miklisová, Dana; Renčo, Marek; Hanzelová, Vladimíra

    2014-10-01

    A long-term and intensive magnesium (Mg) ore processing in Slovenské Magnezitové Závody a.s. in Jelšava has resulted in a high Mg content and alkaline pH of the soil environment, noticeable mainly in the close vicinity of the smelter. Nematode communities strongly reacted to the contamination mostly by a decrease in abundance of the sensitive groups. Nematodes from c-p 1 group and bacterivores, tolerant to pollution played a significant role in establishing the dominance at all sites. With increasing distance from the pollution source, the nematode communities were more structured and complex, with an increase in proportion of sensitive c-p 4 and 5 nematodes, composed mainly of carnivores and omnivores. Various ecological indices (e.g. MI2-5, SI, H') indicated similar improvement of farther soil ecosystems. PMID:24996531

  10. Investigation on phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions

    SciTech Connect

    Li, Peng Ding, Tian Liu, Liping Xiong, Guang

    2013-12-15

    The phase transformation mechanism of zeolite NaY under alkaline hydrothermal conditions was investigated by UV Raman spectroscopy, X-ray diffraction, X-ray fluorescence and scanning electron microscopy techniques. The results revealed that the products and transformation rate are dependent on the alkalinities. All of the starting and resulting zeolites are constructed with the 4-ring and 6-ring secondary building units. The products have lower Si/Al ratio, higher framework density and smaller pore size, which are more stable under alkaline hydrothermal condition. During the phase transformation the fragments of faujasite are formed, then the fragments combine to form different zeolites depending on basicity. Zeolite NaY crystals are consumed as the reservoir for the transformation products during the recrystallization process. For the first time, a 4-membered ring intermediate was found at the early stage of the recrystallization process. A cooperative interaction of liquid and solid phases is required for inducing the phase transformation. - Graphical Abstract: Phase transformation of NaY zeolite under alkaline hydrothermal condition is achieved by the cooperative interaction of the liquid and solid phases. A 4-membered ring species is an intermediate for recrystallization process. Highlights: • The products and transformation rate are dependent on the alkalinity. • A 4-membered ring species is an intermediate for recrystallization process. • A cooperative interaction of liquid and solid phases is required.

  11. Chemical equilibria model of strontium-90 adsorption and transport in soil in response to dynamic alkaline conditions.

    PubMed

    Spalding, B P; Spalding, I R

    2001-01-15

    Strontium-90 is a major hazardous contaminant of radioactive wastewater and its processing sludges at many Department of Energy (DOE) facilities. In the past, such contaminated wastewater and sludge have been disposed in soil seepage pits, lagoons, or cribs often under highly perturbed alkaline conditions (pH > 12) where 90Sr solubility is low and its adsorption to surrounding soil is high. As natural weathering returns these soils to near-neutral or slightly acidic conditions, the adsorbed and precipitated calcium and magnesium phases, in which 90Sr is carried, change significantly in both nature and amounts. No comprehensive computational method has been formulated previously to quantitatively simulate the dynamics of 90Sr in the soil-groundwater environment under such dynamic and wide-ranging conditions. A computational code, the Hydrologic Utility Model for Demonstrating Integrated Nuclear Geochemical Environmental Responses (HUMDINGER), was composed to describe the changing equilibria of 90Sr in soil based on its causative chemical reactions including soil buffering, pH-dependent cation-exchange capacity, cation selectivity, and the precipitation/dissolution of calcium carbonate, calcium hydroxide, and magnesium hydroxide in response to leaching groundwater characteristics including pH, acid-neutralizing capacity, dissolved cations, and inorganic carbonate species. The code includes a simulation of one-dimensional transport of 90Sr through a soil column as a series of soil mixing cells where the equilibrium soluble output from one cell is applied to the next cell. Unamended soil leaching and highly alkaline soil treatments, including potassium hydroxide, sodium silicate, and sodium aluminate, were simulated and compared with experimental findings using large (10 kg) soil columns that were leached with 90Sr-contaminated groundwater after treatment. HUMDINGER's simulations were in good agreement with dynamic experimental observations of soil exchange capacity

  12. Thermococcus alcaliphilus sp. nov., a new hyperthermophilic archaeum growing on polysulfide at alkaline pH.

    PubMed

    Keller, M; Braun, F J; Dirmeier, R; Hafenbradl, D; Burggraf, S; Rachel, R; Stetter, K O

    1995-12-01

    A novel coccoid-shaped, hyperthermophilic, heterotrophic member of the archaea was isolated from a shallow marine hydrothermal system at Vulcano Island, Italy. The isolate grew between 56 and 90 degrees C with an optimum around 85 degrees C. The pH range for growth was 6.5 to 10.5, with an optimum around 9.0. Polysulfide and elemental sulfur were reduced to H2S. Sulfur stimulated the growth rate. The isolate fermented yeast extract, peptone, meat extract, tryptone, and casein. Isovalerate, isobutyrate, propionate, acetate, CO2, NH3, and H2S (in the presence of S degrees ) were detected as end products. Growth was not inhibited by H2. Based on DNA-DNA hybridization and 16S rRNA partial sequences, the new isolate represents a new species of Thermococcus, which we named Thermococcus alcaliphilus. The type strain is isolate AEDII12 (DSM 10322). PMID:8588740

  13. The Rim101p/PacC pathway and alkaline pH regulate pattern formation in yeast colonies.

    PubMed

    Piccirillo, Sarah; White, Melissa G; Murphy, Jeffrey C; Law, Douglas J; Honigberg, Saul M

    2010-03-01

    Multicellular organisms utilize cell-to-cell signals to build patterns of cell types within embryos, but the ability of fungi to form organized communities has been largely unexplored. Here we report that colonies of the yeast Saccharomyces cerevisiae formed sharply divided layers of sporulating and nonsporulating cells. Sporulation initiated in the colony's interior, and this region expanded upward as the colony matured. Two key activators of sporulation, IME1 and IME2, were initially transcribed in overlapping regions of the colony, and this overlap corresponded to the initial sporulation region. The development of colony sporulation patterns depended on cell-to-cell signals, as demonstrated by chimeric colonies, which contain a mixture of two strains. One such signal is alkaline pH, mediated through the Rim101p/PacC pathway. Meiotic-arrest mutants that increased alkali production stimulated expression of an early meiotic gene in neighboring cells, whereas a mutant that decreased alkali production (cit1Delta) decreased this expression. Addition of alkali to colonies accelerated the expansion of the interior region of sporulation, whereas inactivation of the Rim101p pathway inhibited this expansion. Thus, the Rim101 pathway mediates colony patterning by responding to cell-to-cell pH signals. Cell-to-cell signals coupled with nutrient gradients may allow efficient spore formation and spore dispersal in natural environments. PMID:20038633

  14. EFFECT OF CATIONS ON ALUMINUM SPECIATION UNDER ALKALINE CONDITIONS

    SciTech Connect

    Taylor-Pashow, K.; Hobbs, D.

    2012-07-31

    A series of experiments were performed to examine the effect of metal cations common to high level waste on the phase of aluminum formed. Experiments were performed at temperature of 150 C, 75 C, and room temperature, either without additional metal cation, or with 0.01-0.2 molar equivalents of either Ni{sup 2+}, Fe{sup 3+}, Mn{sup 2+}, or Cr{sup 3+}. Results showed that temperature has the greatest effect on the phase obtained. At 150 C, boehmite is the only phase obtained, independent of the presence of other metal cations, with only one exception where a small amount of gibbsite was also detected in the product when 0.2 equivalents of Ni{sup 2+} was present. At 75 C, a mixture of phases is obtained, most commonly including bayerite and gibbsite; however, boehmite is also formed under some conditions, including in the absence of additional metal ion. At room temperature, in the absence of additional metal ion, a mixture of bayerite and gibbsite is obtained. The addition of another metal cation suppresses the formation of gibbsite, with a couple of exceptions (0.2 equivalents of Ni{sup 2+} or 0.01 equivalents of Cr{sup 3+}) where both phases are still obtained.

  15. Effect of different carbon sources on decolourisation of an industrial textile dye under alkaline-saline conditions.

    PubMed

    Ottoni, Cristiane; Lima, Luis; Santos, Cledir; Lima, Nelson

    2014-01-01

    White-rot fungal strains of Trametes versicolor and Phanerochaete chrysosporium were selected to study the decolourisation of the textile dye, Reactive Black 5, under alkaline-saline conditions. Free and immobilised T. versicolor cells showed 100 % decolourisation in the growth medium supplemented with 15 g l(-1) NaCl, pH 9.5 at 30 °C in liquid batch culture. Continuous culture experiments were performed in a fixed-bed reactor using free and immobilised T. versicolor cells and allowed 85-100 % dye decolourisation. The immobilisation conditions for the biomass and the additional supply of carbon sources improved the decolourisation performance during a long-term trial of 40 days. Lignin peroxidase, laccase and glyoxal oxidase activities were detected during the experiments. The laccase activity varied depending on carbon source utilized and glycerol-enhanced laccase activity compared to sucrose during extended growth. PMID:23982200

  16. Reduction of hexavalent chromium by Pannonibacter phragmitetus LSSE-09 stimulated with external electron donors under alkaline conditions.

    PubMed

    Xu, Lin; Luo, Mingfang; Li, Wangliang; Wei, Xuetuan; Xie, Keng; Liu, Lijun; Jiang, Chengying; Liu, Huizhou

    2011-01-30

    A novel Cr (VI) resistant bacterial strain LSSE-09, identified as Pannonibacter phragmitetus, was isolated from industrial sludge. It has strong aerobic and anaerobic Cr (VI)-reduction potential under alkaline conditions. At 37 °C and pH 9.0, growing cells of strain LSSE-09 could completely reduce 100 and 1000 mg L(-1) Cr (VI)-Cr (III) within 9 and 24h, respectively under aerobic condition. Resting cells showed higher anaerobic reduction potential with the rate of 1.46 mg g(-1)((dry weight))min(-1), comparing with their aerobic reduction rate, 0.21 mg g(-1)min(-1). External electron donors, such as lactate, acetate, formate, pyruvate, citrate and glucose could highly increase the reduction rate, especially for aerobic reduction. The presence of 3000 mg L(-1) acetate enhanced anaerobic and aerobic Cr (VI)-reduction rates up to 9.47 mg g(-1)min(-1) and 4.42 mg g(-1)min(-1), respectively, which were 5 and 20 times faster than those without it. Strain LSSE-09 retained high activities over six batch cycles and NO(3)(-) and SO(4)(2-) had slightly negative effects on Cr (VI)-reduction rates. The results suggest that strain LSSE-09 has potential application for Cr (VI) detoxification in alkaline wastewater. PMID:21041020

  17. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode.

    PubMed

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex(®) fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  18. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    PubMed Central

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-01-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications. PMID:27199163

  19. High-resolution Imaging of pH in Alkaline Sediments and Water Based on a New Rapid Response Fluorescent Planar Optode

    NASA Astrophysics Data System (ADS)

    Han, Chao; Yao, Lei; Xu, Di; Xie, Xianchuan; Zhang, Chaosheng

    2016-05-01

    A new dual-lumophore optical sensor combined with a robust RGB referencing method was developed for two-dimensional (2D) pH imaging in alkaline sediments and water. The pH sensor film consisted of a proton-permeable polymer (PVC) in which two dyes with different pH sensitivities and emission colors: (1) chloro phenyl imino propenyl aniline (CPIPA) and (2) the coumarin dye Macrolex® fluorescence yellow 10 GN (MFY-10 GN) were entrapped. Calibration experiments revealed the typical sigmoid function and temperature dependencies. This sensor featured high sensitivity and fast response over the alkaline working ranges from pH 7.5 to pH 10.5. Cross-sensitivity towards ionic strength (IS) was found to be negligible for freshwater when IS <0.1 M. The sensor had a spatial resolution of approximately 22 μm and aresponse time of <120 s when going from pH 7.0 to 9.0. The feasibility of the sensor was demonstrated using the pH microelectrode. An example of pH image obtained in the natrual freshwater sediment and water associated with the photosynthesis of Vallisneria spiral species was also presented, suggesting that the sensor held great promise for the field applications.

  20. Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2015-07-01

    We report a general concept based on a selective electrochemical ion pump used for creating concentration perturbations in thin layer samples (∼40 μL). As a first example, hydrogen ions are released from a selective polymeric membrane (proton pump) and the resulting pH is assessed potentiometrically with a second membrane placed directly opposite. By applying a constant potential modulation for 30 s, an induced proton concentration of up to 350 mM may be realized. This concept may become an attractive tool for in situ titrations without the need for sampling, because the thin layer eventually re-equilibrates with the contacting bulk sample. Acid-base titrations of NaOH and Na2 CO3 are demonstrated. The determination of total alkalinity in a river water sample is carried out, giving levels (23.1 mM) comparable to that obtained by standard methods (23.6 mM). The concept may be easily extended to other ions (cations, anions, polyions) and may become attractive for environmental and clinical applications. PMID:26014101

  1. Acidic pH conditions induce dissociation of the haem from the protein and destabilise the catalase isolated from Aspergillus terreus.

    PubMed

    Vatsyayan, Preety; Goswami, Pranab

    2011-02-01

    The stability (half-life, t(½)) of the large catalase (CAT) isolated from Aspergillus terreus was decreased under acidic conditions (maximum t(½) approximately 8.5 months at pH ≤ 6) versus alkaline conditions (t(½) approximately 15 months at pH 8-12). Acidic conditions induce the dissociation of haem from CAT, as revealed from a reduction in the Soret peak intensity at 405 nm and an increase in the peak current at Fe(3+)/Fe(2+) redox potentials. This increase in current is attributed to the facile electron transfer from the free haem generated on the electrode surface as a result of its disintegration from the insulating protein matrix. The haem isolated from CAT at acidic condition was reconstituted with apo-CAT at alkaline denaturing conditions to regenerate the CAT activity. PMID:20972700

  2. Alkalinity to calcium flux ratios for corals and coral reef communities: variances between isolated and community conditions

    PubMed Central

    Jokiel, Paul L.

    2014-01-01

    Calcification in reef corals and coral reefs is widely measured using the alkalinity depletion method which is based on the fact that two protons are produced for every mole of CaCO3 precipitated. This assumption was tested by measuring the total alkalinity (TA) flux and Ca2+ flux of isolated components (corals, alga, sediment and plankton) in reference to that of a mixed-community. Experiments were conducted in a flume under natural conditions of sunlight, nutrients, plankton and organic matter. A realistic hydrodynamic regime was provided. Groups of corals were run separately and in conjunction with the other reef components in a mixed-community. The TA flux to Ca2+ flux ratio (ΔTA: ΔCa2+) was consistently higher in the coral-only run (2.06 ± 0.19) than in the mixed-community run (1.60 ± 0.14, p-value = 0.011). The pH was higher and more stable in the mixed-community run (7.94 ± 0.03 vs. 7.52 ± 0.07, p-value = 3 × 10−5). Aragonite saturation state (Ωarag) was also higher in the mixed-community run (2.51 ± 0.2 vs. 1.12 ± 0.14, p-value = 2 × 10−6). The sediment-only run revealed that sediment is the source of TA that can account for the lower ΔTA: ΔCa2+ ratio in the mixed-community run. The macroalgae-only run showed that algae were responsible for the increased pH in the mixed-community run. Corals growing in a mixed-community will experience an environment that is more favorable to calcification (higher daytime pH due to algae photosynthesis, additional TA and inorganic carbon from sediments, higher Ωarag). A paradox is that the alkalinity depletion method will yield a lower net calcification for a mixed-community versus a coral-only community due to TA recycling, even though the corals may be calcifying at a higher rate due to a more optimal environment. PMID:24688834

  3. A dimethacrylate cross-linker cleavable under thermolysis or alkaline hydrolysis conditions: synthesis, polymerization, and degradation.

    PubMed

    Elladiou, Marios; Patrickios, Costas S

    2016-02-11

    We develop a new platform based on 2,6-pyridinediethanol diesters for introducing polymer degradability under thermolysis or alkaline hydrolysis conditions, with the latter being rare in polymers. Such labile diesters can be cross-linkers, bifunctional initiators and inimers. We demonstrate the power of this platform through the synthesis of the 2,6-pyridinediethanol dimethacrylate cross-linker, its controlled (co)polymerization, and the thermal and hydrolytic cleavage of its (co)polymers. PMID:26803938

  4. Optimization and partial characterization of culture conditions for the production of alkaline protease from Bacillus licheniformis P003.

    PubMed

    Sarker, Palash Kumar; Talukdar, Saimon Ahmad; Deb, Promita; Sayem, Sm Abu; Mohsina, Kaniz

    2013-01-01

    Proteolytic enzymes have occupied a pivotal position for their practical applications. The present study was carried out under shake flask conditions for the production of alkaline protease from Bacillus licheniformis P003 in basal medium containing glucose, peptone, K2HPO4, MgSO4 and Na2CO3 at pH 10. The effect of culture conditions and medium components for maximum production of alkaline protease was investigated using one factor constant at a time method along with its characterization. Maximum level of enzyme production was obtained after 48h of incubation with 2% inoculum size at 42°C, under continuous agitation at 150 rpm, in growth medium of pH 9. Highest enzyme production was obtained using 1% rice flour as carbon source and 0.8% beef extract as organic nitrogen source. Results indicated that single organic nitrogen source alone was more suitable than using in combinations and there was no significant positive effect of adding inorganic nitrogen sources in basal medium. After optimization of the parameters, enzyme production was increased about 20 fold than that of in basal medium. The crude enzyme was highly active at pH 10 and stable from pH 7-11. The enzyme showed highest activity (100%) at 50°C, and retained 78% relative activity at 70°C. Stability studies showed that the enzyme retained 75% of its initial activity after heating at 60°C for 1h. The enzyme retained about 66% and 46% of its initial activity after 28 days of storage at 4°C and room temperature (25°C) respectively. Mn(2+) and Mg(2+) increased the residual activity of the enzyme, whereas Fe(2+) moderately inhibited its residual activity. When pre-incubated with Tween-20, Tween-80, SDS and H2O2, each at 0.5% concentration, the enzyme showed increased residual activity. These characteristics may make the enzyme suitable for several industrial applications, especially in leather industries. PMID:24133650

  5. Degradation of cellulose under alkaline conditions: new insights from a 12 years degradation study.

    PubMed

    Glaus, Martin A; Van Loon, Luc R

    2008-04-15

    Cellulose degradation under alkaline conditions is of relevance to the mobility of many cations of the transition metal, lanthanide, and actinide series in the geosphere because strong complexants such as isosaccharinic acids, 3-deoxy-2-C-hydroxymethyl-D-erythro-pentonic acid (alpha-ISA) and 3-deoxy-2-C-hydroxymethyl-D-threo-pentonic acid (beta-ISA) may be formed. In the context of the long-term safety of cementitious repositories for low- and intermediate-level radioactive waste, where large amounts of cellulose may be present, the question of the time scales needed for the complete degradation of cellulose is important. The present paper reports the results of a 12 year study of the degradation of four different cellulosic materials (pure cellulose, tissue, cotton, paper) in an artificial cement pore water under anaerobic conditions at approximately 25 degrees C. The observed reaction characteristics can be divided into a fast reaction phase (2-3 years), dominated by the stepwise conversion of terminal glucose monomeric units to alpha-ISA and beta-ISA, and a very slow reaction phase during which the same products were found. The slow rate of the alkaline degradation of cellulose during this second reaction phase shows that previous kinetic models of cellulose degradation did not adequately describe the long-term behavior under alkaline conditions and need to be reassessed. It is postulated that a previously unknown mechanism by which crystalline or inaccessible reducing end groups of the polysaccharide chain become temporarily susceptible to alkaline attack is responsible for the slow rate of cellulose degradation. PMID:18497142

  6. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

    PubMed Central

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García

    2016-01-01

    Summary Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV–vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. PMID:27335764

  7. Facile synthesis of water-soluble carbon nano-onions under alkaline conditions.

    PubMed

    Ahmed, Gaber Hashem Gaber; Laíño, Rosana Badía; Calzón, Josefa Angela García; García, Marta Elena Díaz

    2016-01-01

    Carbonization of tomatoes at 240 °C using 30% (w/v) NaOH as catalyst produced carbon onions (C-onions), while solely carbon dots (C-dots) were obtained at the same temperature in the absence of the catalyst. Other natural materials, such as carrots and tree leaves (acer saccharum), under the same temperature and alkaline conditions did not produce carbon onions. XRD, FTIR, HRTEM, UV-vis spectroscopy, and photoluminescence analyses were performed to characterize the as-synthesized carbon nanomaterials. Preliminary tests demonstrate a capability of the versatile materials for chemical sensing of metal ions. The high content of lycopene in tomatoes may explain the formation of C-onions in alkaline media and a possible formation mechanism for such structures was outlined. PMID:27335764

  8. The combined effect of temperature and pH on albite dissolution rate under far-from-equilibrium conditions

    NASA Astrophysics Data System (ADS)

    Gruber, Chen; Kutuzov, Ilya; Ganor, Jiwchar

    2016-08-01

    Two of the most studied aspects of albite dissolution kinetics are the effects of temperature and pH. Previous studies quantified the effect of pH on albite dissolution rate under constant temperature. These studies suggested that the effect of pH on dissolution rate can be attributed to three independent dissolution mechanisms that are dominant in different pH region: acidic - proton-promoted, neutral - water-promoted and alkaline - hydroxide-promoted. Based on experimental results, those studies developed a rate law to predict albite dissolution rate as a function of pH, assuming that the effect of pH is temperature independent. The effect of temperature was attributed either to the temperature dependency of the rate under constant pH or that of the rate law coefficients. Nevertheless no unified rate law that combines both effects was suggested. When applying the effects of temperature and pH assuming they are independent of each other in order to predict the dissolution rate at pH of about 5 and various temperatures, the predicted rate overestimate the rate by 0.5-1 order of magnitude. The current study develops and suggests the use of new rate law that is based on two fast adsorption reactions of protons and hydroxides on two different surface sites. The new rate law considers the effect of surface coverage of protons and hydroxides that is temperature dependent. The new rate law successfully describes the variation of albite dissolution rate (about 8 orders of magnitude) under wide temperature (3.6-300 °C) and pH (1.20-12.40) ranges. Under slightly acidic conditions (pH 5-7) the new rate law predicts a minimum rate zone that was not observed before. In order to confirm whether this minimum rate zone does exist, three SPBE (single-point-batch-experiment) of albite dissolution were conducted at pH 5 and temperatures of 3.6, 25 and 50 °C. The SPBE experiments confirm the existence of minimum rate zone predicted by the independent new rate law. The new rate law

  9. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions.

    PubMed

    Santos, A M; Janssen, M; Lamers, P P; Evers, W A C; Wijffels, R H

    2012-01-01

    The effect of elevated pH and salt concentration on the growth of the freshwater microalga Neochloris oleoabundans was investigated. A study was conducted in 24-well plates on the design of a growth medium and subsequently applied in a photobioreactor. An artificial seawater medium with reduced Ca(2+) and PO(4)(3-) could prevent mineral precipitation at high pH levels. Growth was characterized in this new medium at pH 8.1 and at pH 10.0, with 420 mM of total salts. Specific growth rates of 0.08 h(-1) at pH 8.1 and 0.04 h(-1) at pH 10.0 were obtained under controlled turbidostat cultivation. The effect of nitrogen starvation on lipid accumulation was also investigated. Fatty acids content increased not only with nitrogen limitation but also with a pH increase (up to 35% in the dry biomass). Fluorescence microscopy gave visual proof that N. oleoabundans accumulates oil bodies when growing in saline conditions at high pH. PMID:22115529

  10. Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioelectrochemical system (BES) pH imbalances develop due to anodic proton-generating oxidation reactions and cathodic hydroxide-ion-generating reduction reactions. Until now, workers added unsustainable buffers to reduce the pH difference between the anode and cathode because the pH imbalance cont...

  11. Improving the Expression of Recombinant Proteins in E. coli BL21 (DE3) under Acetate Stress: An Alkaline pH Shift Approach

    PubMed Central

    Wang, Hengwei; Wang, Fengqing; Wang, Wei; Yao, Xueling; Wei, Dongzhi; Cheng, Hairong; Deng, Zixin

    2014-01-01

    Excess acetate has long been an issue for the production of recombinant proteins in E. coli cells. Recently, improvements in acetate tolerance have been achieved through the use of genetic strategies and medium supplementation with certain amino acids and pyrimidines. The aim of our study was to evaluate an alternative to improve the acetate tolerance of E. coli BL21 (DE3), a popular strain used to express recombinant proteins. In this work we reported the cultivation of BL21 (DE3) in complex media containing acetate at high concentrations. In the presence of 300 mM acetate, compared with pH 6.5, pH 7.5 improved cell growth by approximately 71%, reduced intracellular acetate by approximately 50%, and restored the expression of glutathione S-transferase (GST), green fluorescent protein (GFP) and cytochrome P450 monooxygenase (CYP). Further experiments showed that alkaline pHs up to 8.5 had little inhibition in the expression of GST, GFP and CYP. In addition, the detrimental effect of acetate on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) by the cell membrane, an index of cellular metabolic capacity, was substantially alleviated by a shift to alkaline pH values of 7.5–8.0. Thus, we suggest an approach of cultivating E. coli BL21 (DE3) at pH 8.0±0.5 to minimize the effects caused by acetate stress. The proposed strategy of an alkaline pH shift is a simple approach to solving similar bioprocessing problems in the production of biofuels and biochemicals from sugars. PMID:25402470

  12. Encapsulation of Pannonibacter phragmitetus LSSE-09 in alginate-carboxymethyl cellulose capsules for reduction of hexavalent chromium under alkaline conditions.

    PubMed

    Xu, Lin; Luo, Mingfang; Yang, Liangrong; Wei, Xuetuan; Lin, Xing; Liu, Huizhou

    2011-10-01

    Cr(VI) was efficiently reduced to Cr(III) by Pannonibacter phragmitetus LSSE-09 encapsulated in liquid-core alginate-carboxymethyl cellulose capsules under alkaline conditions. Taking into account the physical properties of the capsules, the activity of encapsulated cells, and total Cr(III) concentration in the supernatant, optimal conditions (0.5% w/v sodium alginate; 2% w/v sodium carboxymethyl cellulose; 0.1 M CaCl₂; 30-min gelation time) for LSSE-09 encapsulation were determined. At optimal conditions, a relatively high reduction rate of 4.20 mg g ((dry weight))⁻¹ min⁻¹ was obtained. Total Cr(III) concentration in the supernatant was significantly decreased after reduction, because 63.7% of the formed soluble organo-Cr(III) compounds compared with those of free cells were captured by the relatively smaller porous structure of alginate capsules. The optimal pH value (9.0) for Cr(VI) reduction was not changed after encapsulation. In addition, encapsulated LSSE-09 showed no appreciable loss in activity after eight repeated cycles at 37°C, and 85.7% of its initial activity remained after 35-day storage at 4°C. The results suggest that encapsulated LSSE-09 in alginate-carboxymethyl cellulose capsules has potential biotechnological applications for the detoxification of Cr(VI)-contaminated wastewater. PMID:21442414

  13. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life.

    PubMed

    MacLeod, G; McKeown, C; Hall, A J; Russell, M J

    1994-02-01

    Because of the continuous focusing of thermal and chemical energy, ancient submarine hot springs are contenders as sites for the origin of life. But it is generally assumed that these would be of the acid and high-temperature 'black smoker' variety (Corliss et al., 1981). In fact today the greater part of the ocean circulates through off-ridge springs where it issues after modification at temperatures of around 40 degrees C or so but with the potential to reach 200 degrees C. Such offridge or ridge-flank springs remind us that there are other candidate sites for the origin of life. Although there is no firm indication of the pH of these off-ridge springs we have argued that the solutions are likely to be alkaline rather than acid, We test the feasibility of this idea using EQ geochemical water-rock interaction modelling codes (Wolery 1983) and find that for a range of possible initial chemistries of Hadean seawater, the pH of issuing solutions at around 200 degrees C is around one or more units alkaline. Such pH values hold for interaction with both basaltic and komatiitic crust. The robustness of this result suggests to us that alkaline submarine springs of moderate temperature, carrying many hundreds of ppm HS to the ocean basins, are also serious contenders as sites for the origin of life, particularly as Hadean seawater was probably slightly acid, with a dissolved iron concentration approaching 100 ppm. On mixing of these solutions, supersaturation, especially of iron sulphide, would lead to the precipitation of colloidal gels. In our view iron sulphide was the likely substance of, or contributor to, the first vesicle membranes which led to life, as the supply organic molecules would have been limited in the Hadean. Such a membrane would have bid catalytic properties, expansivity, and would have maintained the natural chemiosmotic gradient, a consequence of the acid ocean and the alkaline interior to the vesicles. PMID:11536657

  14. M4FT-15OR03100421: Status Report on Alkaline Conditioning Studies

    SciTech Connect

    Tsouris, Costas; Brown, Suree; Janke, Christopher James; Mayes, Richard T.; Dai, Sheng; Kuo, Li-Jung; Gill, Gary

    2015-05-01

    Significant progress in understanding the role of alkaline conditioning of polyethylene-fiber adsorbent, developed at the Oak Ridge National Laboratory (ORNL), is demonstrated in this report, which is essentially a manuscript prepared for publication in the journal Industrial & Engineering Chemistry Research of the American Chemical Society. The manuscript describes the influence of various parameters involved in adsorbent alkaline conditioning, including base concentration and duration and temperature of conditioning, on the uranium uptake history by the adsorbent. Various solutions have been used to determine the influence of conditioning parameters including (i) a screening solution containing uranyl nitrate at approximately 8 ppm and sodium bicarbonate and sodium chloride at concentrations similar to those found in seawater, (ii) seawater spiked with approximately 75 ppb uranium, and (iii) natural seawater. In addition to concentration measurements by inductively coupled plasma (ICP) spectroscopy to determine the uranium uptake capacity and kinetics, spectroscopic methods such as Fourier transformed infrared (FTIR) spectroscopy and nuclear magnetic resonance (NMR) spectroscopy were employed to investigate the effect of base treatment on the various chemical bonds of the adsorbent. Scanning electron microscopy (SEM) has also been employed to determine structural effects of the alkali on the adsorbent. The results are summarized as follows: 1. Alkali conditioning is necessary to prepare the adsorbent for uranium uptake. ICP analysis showed that without alkali conditioning, no appreciable uranium adsorption occurs. 2. FTIR showed that the base converts amidoxime to carboxylate groups. 3. FTIR showed that formation of carboxylate groups is irreversible and reduces the selectivity of the adsorbent toward uranium. 4. NMR showed that alkali conditioning leads also to the formation of cyclic imidedioxime, which is suspected to bind uranium, vanadium, iron, copper, and

  15. Human ASIC3 channel dynamically adapts its activity to sense the extracellular pH in both acidic and alkaline directions

    PubMed Central

    Delaunay, Anne; Gasull, Xavier; Salinas, Miguel; Noël, Jacques; Friend, Valérie; Lingueglia, Eric; Deval, Emmanuel

    2012-01-01

    In rodent sensory neurons, acid-sensing ion channel 3 (ASIC3) has recently emerged as a particularly important sensor of nonadaptive pain associated with tissue acidosis. However, little is known about the human ASIC3 channel, which includes three splice variants differing in their C-terminal domain (hASIC3a, hASIC3b, and hASIC3c). hASIC3a transcripts represent the main mRNAs expressed in both peripheral and central neuronal tissues (dorsal root ganglia [DRG], spinal cord, and brain), where a small proportion of hASIC3c transcripts is also detected. We show that hASIC3 channels (hASIC3a, hASIC3b, or hASIC3c) are able to directly sense extracellular pH changes not only during acidification (up to pH 5.0), but also during alkalization (up to pH 8.0), an original and inducible property yet unknown. When the external pH decreases, hASIC3 display a transient acid mode with brief activation that is relevant to the classical ASIC currents, as previously described. On the other hand, an external pH increase activates a sustained alkaline mode leading to a constitutive activity at resting pH. Both modes are inhibited by the APETx2 toxin, an ASIC3-type channel inhibitor. The alkaline sensitivity of hASIC3 is an intrinsic property of the channel, which is supported by the extracellular loop and involves two arginines (R68 and R83) only present in the human clone. hASIC3 is thus able to sense the extracellular pH in both directions and therefore to dynamically adapt its activity between pH 5.0 and 8.0, a property likely to participate in the fine tuning of neuronal membrane potential and to neuron sensitization in various pH environments. PMID:22829666

  16. Alkaline-resistance model of subtilisin ALP I, a novel alkaline subtilisin.

    PubMed

    Maeda, H; Mizutani, O; Yamagata, Y; Ichishima, E; Nakajima, T

    2001-05-01

    The alkaline-resistance mechanism of the alkaline-stable enzymes is not yet known. To clarify the mechanism of alkaline-resistance of alkaline subtilisin, structural changes of two typical subtilisins, subtilisin ALP I (ALP I) and subtilisin Sendai (Sendai), were studied by means of physicochemical methods. Subtilisin NAT (NAT), which exhibits no alkaline resistance, was examined as a control. ALP I gradually lost its activity, accompanied by protein degradation, but, on the contrary, Sendai was stable under alkaline conditions. CD spectral measurements at neutral and alkaline pH indicated no apparent differences between ALP I and Sendai. A significant difference was observed on measurement of fluorescence emission spectra of the tryptophan residues of ALP I that were exposed on the enzyme surface. The fluorescence intensity of ALP I was greatly reduced under alkaline conditions; moreover, the reduction was reversed when alkaline-treated ALP I was neutralized. The fluorescence spectrum of Sendai remained unchanged. The enzymatic and optical activities of NAT were lost at high pH, indicating a lack of functional and structural stability in an alkaline environment. Judging from these results, the alkaline resistance is closely related to the surface structure of the enzyme molecule. PMID:11328588

  17. The mycorrhiza fungus Piriformospora indica induces fast root-surface pH signaling and primes systemic alkalinization of the leaf apoplast upon powdery mildew infection.

    PubMed

    Felle, Hubert H; Waller, Frank; Molitor, Alexandra; Kogel, Karl-Heinz

    2009-09-01

    We analyze here, by noninvasive electrophysiology, local and systemic plant responses in the interaction of barley (Hordeum vulgare L.) with the root-colonizing basidiomycete Piriformospora indica. In the short term (seconds, minutes), a constant flow of P. indica chlamydospores along primary roots altered surface pH characteristics; whereas the root-hair zone transiently alkalized-a typical elicitor response-the elongation zone acidified, indicative of enhanced H(+) extrusion and plasma membrane H(+) ATPase stimulation. Eight to 10 min after treating roots with chlamydospores, the apoplastic pH of leaves began to acidify, which contrasts with observations of an alkalinization response to various stressors and microbe-associated molecular patterns (MAMPs). In the long term (days), plants with P. indica-colonized roots responded to inoculation with the leaf-pathogenic powdery mildew fungus Blumeria graminis f. sp. hordei with a leaf apoplastic pH increase of about 2, while the leaf apoplast of noncolonized barley responded to B. graminis f. sp. hordei merely with a pH increase of 0.8. The strong apoplastic pH response is reminiscent of B. graminis f. sp. hordei-triggered pH shifts in resistance gene-mediated resistant barley leaves or upon treatment with a chemical resistance inducer. In contrast, the MAMP N-acetylchito-octaose did not induce resistance to B. graminis f. sp. hordei and did not trigger the primed apoplastic pH shift. We speculate that the primed pH increase is indicative of and supports the potentiated systemic response to B. graminis f. sp. hordei-induced by P. indica in barley. PMID:19656052

  18. Responses of Rat Root ( Raf.) Plants to Salinity and pH Conditions.

    PubMed

    Calvo-Polanco, Monica; Alejandra Equiza, María; Señorans, Jorge; Zwiazek, Janusz J

    2014-03-01

    Growth and physiological parameters were examined in rat root ( Raf.) plants grown under controlled environment conditions in hydroponics and subjected to different pH and salinity treatments to determine whether these environmental factors may contribute to poor establishment of in oil sands constructed wetlands. When plants were subjected to a root zone pH ranging from 6.0 to 9.5, the plants that were growing at pH 7.0 showed the highest relative growth rates and chlorophyll concentrations compared with lower and higher pH levels. The greatest inhibition of growth occurred at pH ranging from 8.0 to 9.5. High pH also triggered significant reductions in tissue concentrations of N, P, and microelements, whereas the concentrations of Mg increased at pH >8. When NaCl (25, 50, and 100 mmol L) was added to the nutrient solution at pH 7.0 and 8.5, higher mortality and greater tissue concentrations of Na and Cl were measured in plants growing at pH 8.5 compared with pH 7.0. The results show that plants growing at the optimum pH of 7.0 can better tolerate salinity compared with plants exposed to high root zone pH. Both pH and salinity may present important environmental constraints to growth and establishment of plants in oil sands constructed wetlands. PMID:25602659

  19. Transport-controlled kinetics of dissolution and precipitation in the sediments under alkaline and saline conditions

    NASA Astrophysics Data System (ADS)

    Qafoku, Nikolla P.; Ainsworth, Calvin C.; Szecsody, James E.; Qafoku, Odeta S.

    2004-07-01

    Over 1.6 million liters of radioactive, high-temperature, Al-rich, alkaline and saline high-level waste (HLW) fluids were accidentally discharged from tank leaks onto the sediments at the Hanford Site, Washington. In order to better understand processes that might occur during the migration of HLW through sediments and to estimate their extents, we studied the effects of Al-rich, alkaline and saline solutions on soil mineral dissolution and precipitation during reactive transport. Metal- and glass-free systems were used to conduct miscible-displacement experiments at 50 °C under CO 2 and O 2 free conditions. Results showed significant release of Si, K, Al, Fe, Ca, Mg, and Ba into the aqueous phase. The transport-controlled release of these elements was time dependent as evidenced by its extent varying with the fluid residence time. Silica initial dissolution rates (6.08 × 10 -11 and 5.38 × 10 -13 mol m -2 s -1) increased with base concentration, decreased with Al concentration, and decreased with fluid residence time. Aluminum precipitation rates varied in the range from 0.44 to 1.07 × 10 -6 mol s -1 and were faster in these column experiments than in previous batch studies. The initial rate constant of Al precipitation reaction was 0.07 h -1 (half-life of 9.9 h at about 3 PV); it increased up to 0.137 h -1 (half-life of 5.1 h at about 20 PV). The precipitates identified with SEM and suggested from the modeling results were mainly NO 3-cancrinite. SEM analyses also indicated the formation of sodalite when Al was not present in the leaching solution. In addition, results from modeling suggested the precipitation of brucite, goethite and gibbsite; the latter may precipitate in the presence of high Al concentrations. Aqueous and solid phase transformations caused by base-induced dissolution and subsequent secondary phases precipitation should be important determinants of the fate of contaminants and radionuclides in the vadose zone under alkaline and saline

  20. Computer simulation of immobilized pH gradients at acidic and alkaline extremes - A quest for extended pH intervals

    NASA Technical Reports Server (NTRS)

    Mosher, Richard A.; Bier, Milan; Righetti, Pier Giorgio

    1986-01-01

    Computer simulations of the concentration profiles of simple biprotic ampholytes with Delta pKs 1, 2, and 3, on immobilized pH gradients (IPG) at extreme pH values (pH 3-4 and pH 10-11) show markedly skewed steady-state profiles with increasing kurtosis at higher Delta pK values. Across neutrality, all the peaks are symmetric irrespective of their Delta pK values, but they show very high contribution to the conductivity of the background gel and significant alteration of the local buffering capacity. The problems of skewness, due to the exponential conductivity profiles at low and high pHs, and of gel burning due to a strong electroosmotic flow generated by the net charges in the gel matrix, also at low and high pHs, are solved by incorporating in the IPG gel a strong viscosity gradient. This is generated by a gradient of linear polyacrylamide which is trapped in the gel by the polymerization process.

  1. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.

    PubMed Central

    MacLeod, R A; Wisse, G A; Stejskal, F L

    1988-01-01

    The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5. PMID:3045092

  2. Sensitivity of some marine bacteria, a moderate halophile, and Escherichia coli to uncouplers at alkaline pH.

    PubMed

    MacLeod, R A; Wisse, G A; Stejskal, F L

    1988-09-01

    The inhibitory effects of uncouplers on amino acid transport into three marine bacteria, Vibrio alginolyticus 118, Vibrio parahaemolyticus 113, and Alteromonas haloplanktis 214, into a moderate halophile, Vibrio costicola NRC 37001, and into Escherichia coli K-12 were found to vary depending upon the uncoupler tested, its concentration, and the pH. Higher concentrations of all of the uncouplers were required to inhibit transport at pH 8.5 than at pH 7.0. The protonophore carbonyl cyanide m-chlorophenylhydrazone showed the greatest reduction in inhibitory capacity as the pH was increased, carbonyl cyanide p-trifluoromethoxyphenylhydrazone showed less reduction, and 3,3',4',5-tetrachlorosalicylanilide was almost as effective as an inhibitor of amino acid transport at pH 8.5 as at pH 7.0 for all of the organisms except A. haloplanktis 214. Differences between the protonophores in their relative activities at pHs 7.0 and 8.5 were attributed to differences in their pK values. 3,3',4',5-Tetrachlorosalicylanilide, carbonyl cyanide m-chlorophenylhydrazone, 2-heptyl-4-hydroxyquinoline-N-oxide, and NaCN all inhibited Na+ extrusion from Na+-loaded cells of V. alginolyticus 118 at pH 8.5. The results support the conclusion that Na+ extrusion from this organism at pH 8.5 occurs as a result of Na+/H+ antiport activity. Data are presented indicating the presence in V. alginolyticus 118 of an NADH oxidase which is stimulated by Na+ at pH 8.5. PMID:3045092

  3. Effects of cement alkalinity, exposure conditions and steel-concrete interface on the time-to-corrosion and chloride threshold for reinforcing steel in concrete

    NASA Astrophysics Data System (ADS)

    Nam, Jingak

    Effects of (1) cement alkalinity (low, normal and high), (2) exposure conditions (RH and temperature), (3) rebar surface condition (as-received versus cleaned) and (4) density and distribution of air voids at the steel-concrete interface on the chloride threshold and time-to-corrosion for reinforcing steel in concrete have been studied. Also, experiments were performed to evaluate effects of RH and temperature on the diffusion of chloride in concrete and develop a method for ex-situ pH measurement of concrete pore water. Once specimens were fabricated and exposed to a corrosive chloride solution, various experimental techniques were employed to determine time-to-corrosion, chloride threshold, diffusion coefficient and void density along the rebar trace as well as pore water pH. Based upon the resultant data, several findings related to the above parameters have been obtained as summarized below. First, time for the corrosion initiation was longest for G109 concrete specimens with high alkalinity cement (HA). Also, chloride threshold increased with increasing time-to-corrosion and cement alkalinity. Consequently, the HA specimens exhibited the highest chloride threshold compared to low and normal alkalinity ones. Second, high temperature and temperature variations reduced time-to-corrosion of reinforcing steel in concrete since chloride diffusion was accelerated at higher temperature and possibly by temperature variations. The lowest chloride threshold values were found for outdoor exposed specimens suggesting that variation of RH or temperature (or both) facilitated rapid chloride diffusion. Third, an elevated time-to-corrosion and chloride threshold values were found for the wire brushed steel specimens compared to as-received ones. The higher ratio of [OH-]/[Fe n+] on the wire brushed steel surface compared to that of as-received case can be the possible cause because the higher ratio of this parameter enables the formation of a more protective passive film on

  4. Roles of iron species and pH optimization on sewage sludge conditioning with Fenton's reagent and lime.

    PubMed

    Yu, Wenbo; Yang, Jiakuan; Shi, Yafei; Song, Jian; Shi, Yao; Xiao, Jun; Li, Chao; Xu, Xinyu; He, Shu; Liang, Sha; Wu, Xu; Hu, Jingping

    2016-05-15

    Conditioning sewage sludge with Fenton's reagent could effectively improve its dewaterability. However, drawbacks of conditioning with Fenton's reagent are requirement of acidic conditions to prevent iron precipitation and subsequent neutralization with alkaline additive to obtain the pH of the filtrate close to neutrality. In this study, roles of pH were thoroughly investigated in the acidification pretreatment, Fenton reaction, and the final filtrate after conditioning. Through the response surface methodology (RSM), the optimal dosages of H2SO4, Fe(2+), H2O2, and lime acted as a neutralizer were found to be 0 (no acidification), 47.9, 34.3 and 43.2 mg/g DS (dry solids). With those optimal doses, water content of the dewatered sludge cakes could be reduced to 55.8 ± 0.6 wt%, and pH of the final filtrate was 6.6 ± 0.2. Fenton conditioning without initial acidification can simplify the conditioning process and reduce the usage of lime. The Fe(3+) content in the sludge cakes showed a close correlation with the dewaterability of conditioned sludge, i.e., the water content of sludge cakes, SRF (specific resistance to filtration), CST (capillary suction time), bound water content, and specific surface area. It indicated that the coagulation by Fe(3+) species in Fenton reaction could play an important role, compared to traditional Fenton oxidation effect on sludge conditioning. Thus, a two-step mechanism of Fenton oxidation and Fe(III) coagulation was proposed in sewage sludge conditioning. The mechanisms include the following: (1) extracellular polymeric substances (EPS) were firstly degraded into dissolved organics by Fenton oxidation; (2) bound water was converted to free water due to degradation of EPS; (3) the sludge particles were disintegrated into small ones by oxidation; (4) Fe(3+) generated from Fenton reaction acted as a coagulant to agglomerate smaller sludge particles into larger dense particles with less bond water; (5) finally, the dewatered

  5. Hydrolysis of Indole-3-Acetic Acid Esters Exposed to Mild Alkaline Conditions 1

    PubMed Central

    Baldi, Bruce G.; Maher, Barbara R.; Cohen, Jerry D.

    1989-01-01

    Ester conjugates of indole-3-acetic acid are hydrolyzed easily in basic solutions; however, quantitative data have not been available on the relationship between pH and rate of hydrolysis of the known ester conjugates. The use of basic conditions during extraction or purification of IAA by several laboratories suggested that a more systematic analysis of this process was needed. In this report we present data indicating: (a) that measurable hydrolysis of IAA-glucose (from standard solutions) and IAA-esters (from maize kernel extracts) occurs with only a few hours of treatment at pH 9 or above; (b) that the lability of some ester conjugates is even greater than that of IAA-glucose; and (c) that ester hydrolysis of standard compounds, IAA-glucose and IAA-p-nitrophenol, occurs in the `three phase extraction system' proposed by Liu and Tillberg ([1983] Physiol Plant 57: 441-447). These data indicate that the potential for problems with inadvertent hydrolysis of ester conjugates of IAA exists even at moderate pH values and in the multiphase system where exposure to basic conditions was thought to be limited. PMID:16667049

  6. Density of alkaline magmas at crustal and upper mantle conditions by X-ray absorption

    NASA Astrophysics Data System (ADS)

    Seifert, R.; Malfait, W.; Petitgirard, S.; Sanchez-Valle, C.

    2011-12-01

    Silicate melts are essential components of igneous processes and are directly involved in differentiation processes and heat transfer within the Earth. Studies of the physical properties of magmas (e.g., density, viscosity, conductivity, etc) are however challenging and experimental data at geologically relevant pressure and temperature conditions remain scarce. For example, there is virtually no data on the density at high pressure of alkaline magmas (e.g., phonolites) typically found in continental rift zone settings. We present in situ density measurements of alkaline magmas at crustal and upper mantle conditions using synchrotron X-ray absorption. Measurements were conducted on ID27 beamline at ESRF using a panoramic Paris-Edinburgh Press (PE Press). The starting material is a synthetic haplo-phonolite glass similar in composition to the Plateau flood phonolites from the Kenya rift [1]. The glass was synthesized at 1673 K and 2.0 GPa in a piston-cylinder apparatus at ETH Zurich and characterized using EPMA, FTIR and density measurements. The sample contains less than 200 ppm water and is free of CO2. Single-crystal diamond cylinders (Øin = 0.5 mm, height = 1 mm) were used as sample containers and placed in an assembly formed by hBN spacers, a graphite heater and a boron epoxy gasket [2]. The density was determined as a function of pressure (1.0 to 3.1 GPa) and temperature (1630-1860 K) from the X-ray absorption contrast at 20 keV between the sample and the diamond capsule. The molten state of the sample during the data collection was confirmed by X-ray diffraction measurements. Pressure and temperature were determined simultaneously from the equation of state of hBN and platinum using the the double isochor method [3].The results are combined with available density data at room conditions to derive the first experimental equation of state (EOS) of phonolitic liquids at crustal and upper mantle conditions. We will compare our results with recent reports of the

  7. Alkaline pH- and cAMP-induced V-ATPase membrane accumulation is mediated by protein kinase A in epididymal clear cells.

    PubMed

    Pastor-Soler, Núria M; Hallows, Kenneth R; Smolak, Christy; Gong, Fan; Brown, Dennis; Breton, Sylvie

    2008-02-01

    In the epididymis, low luminal bicarbonate and acidic pH maintain sperm quiescent during maturation and storage. The vacuolar H(+)-ATPase (V-ATPase) in epididymal clear cells plays a major role in luminal acidification. We have shown previously that cAMP, luminal alkaline pH, and activation of the bicarbonate-regulated soluble adenylyl cyclase (sAC) induce V-ATPase apical accumulation in these cells, thereby stimulating proton secretion into the epididymal lumen. Here we examined whether protein kinase A (PKA) is involved in this response. Confocal immunofluorescence labeling on rat epididymis perfused in vivo showed that at luminal acidic pH (6.5), V-ATPase was distributed between short apical microvilli and subapical endosomes. The specific PKA activator N(6)-monobutyryl-3'-5'-cyclic monophosphate (6-MB-cAMP, 1 mM) induced elongation of apical microvilli and accumulation of V-ATPase in these structures. The PKA inhibitor myristoylated-PKI (mPKI, 10 microM) inhibited the apical accumulation of V-ATPase induced by 6-MB-cAMP. Perfusion at pH 6.5 with 8-(4-chlorophenylthio)-2-O-methyl-cAMP (8CPT-2-O-Me-cAMP; 10 microM), an activator of the exchange protein activated by cAMP (Epac), did not induce V-ATPase apical accumulation. When applied at a higher concentration (100 microM), 8CPT-2-O-Me-cAMP induced V-ATPase apical accumulation, but this effect was completely inhibited by mPKI, suggesting crossover effects on the PKA pathway with this compound at high concentrations. Importantly, the physiologically relevant alkaline pH-induced apical V-ATPase accumulation was completely inhibited by pretreatment with mPKI. We conclude that direct stimulation of PKA activity by cAMP is necessary and sufficient for the alkaline pH-induced accumulation of V-ATPase in clear cell apical microvilli. PMID:18160485

  8. A low-temperature-active alkaline pectate lyase from Xanthomonas campestris ACCC 10048 with high activity over a wide pH range.

    PubMed

    Yuan, Peng; Meng, Kun; Wang, Yaru; Luo, Huiying; Shi, Pengjun; Huang, Huoqing; Tu, Tao; Yang, Peilong; Yao, Bin

    2012-11-01

    Alkaline pectate lyases are favorable for the textile industry. Here, we report the gene cloning and expression of a low-temperature-active alkaline pectate lyase (PL D) from Xanthomonas campestris ACCC 10048. Deduced PL D consists of a putative 27-residue signal peptide and a catalytic domain of 320 residues belonging to family PF09492. Recombinant PL D (r-PL D) produced in Escherichia coli was purified to electrophoretic homogeneity with a single step of Ni(2+)-NTA affinity chromatography and showed an apparent molecular weight of ~38 kDa. The pH and temperature optima of r-PL D were found to be 9.0 °C and 30 °C, respectively. Compared with its microbial counterparts, r-PL D had higher activity over a wide pH range (>45 % of the maximum activity at pH 3.0-12.0) and at lower temperatures (>35 % of activity even at 0 °C). The K(m) and V(max) values of r-PL D for polygalacturonic acid were 4.9 gl(-1) and 30.1 μmolmin(-1) mg(-1), respectively. Compared with the commercial compound pectinase from Novozymes, r-PL D showed similar efficacy in reducing the intrinsic viscosity of polygalacturonic acid (35.1 % vs. 36.5 %) and in bioscouring of jute (10.25 % vs. 10.82 %). Thus, r-PL D is a valuable additive candidate for the textile industry. PMID:22983714

  9. Microbial population responses to pH and salt shock during phenols degradation under high salt conditions revealed by RISA and AFDRA.

    PubMed

    Yan, Bin; Wang, Ping; Liao, Wenchao; Ye, Qian; Xu, Meilan; Zhou, Jiti

    2013-01-01

    The responses of microbial community to pH and salt shock during phenols degradation under high salt conditions were revealed by two DNA fingerprint methods, i.e. ribosomal intergenic spacer analysis (RISA) and amplified functional DNA restriction analysis (AFDRA), together with 16S rDNA clone library analysis. It was shown that the phenols removal rate was improved with increasing NaCl concentration from 0 to 50 mg/L, and could remain at a high level even in the presence of 100 mg/L NaCl. The degradation efficiency remained stable under neutral conditions (pH 7.0-9.0), but decreased sharply under acidic (below pH 5.0) or more alkaline conditions (above pH 10.0). The community structure was dramatically changed during salt fluctuations, with Halomonas sp. and Marinobacter sp. as the predominant salt-tolerant species. Meanwhile, Marinobacter sp. and Alcaligenes faecalis sp. were the major species which might play the key role for stabilizing the treatment systems under different pH conditions. Moreover, the changes of phenol hydroxylase genes were analyzed by AFDRA, which showed that these functional genes were substantially different under any shock conditions. PMID:23202556

  10. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions

    PubMed Central

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries. PMID:26114758

  11. Streptococcus oligofermentans Inhibits Streptococcus mutans in Biofilms at Both Neutral pH and Cariogenic Conditions.

    PubMed

    Bao, Xudong; de Soet, Johannes Jacob; Tong, Huichun; Gao, Xuejun; He, Libang; van Loveren, Cor; Deng, Dong Mei

    2015-01-01

    Homeostasis of oral microbiota can be maintained through microbial interactions. Previous studies showed that Streptococcus oligofermentans, a non-mutans streptococci frequently isolated from caries-free subjects, inhibited the cariogenic Streptococcus mutans by the production of hydrogen peroxide (HP). Since pH is a critical factor in caries formation, we aimed to study the influence of pH on the competition between S. oligofermentans and S. mutans in biofilms. To this end, S. mutans and S. oligofermentans were inoculated alone or mixed at 1:1 ratio in buffered biofilm medium in a 96-well active attachment model. The single- and dual-species biofilms were grown under either constantly neutral pH or pH-cycling conditions. The latter includes two cycles of 8 h neutral pH and 16 h pH 5.5, used to mimic cariogenic condition. The 48 h biofilms were analysed for the viable cell counts, lactate and HP production. The last two measurements were carried out after incubating the 48 h biofilms in buffers supplemented with 1% glucose (pH 7.0) for 4 h. The results showed that S. oligofermentans inhibited the growth of S. mutans in dual-species biofilms under both tested pH conditions. The lactic acid production of dual-species biofilms was significantly lower than that of single-species S. mutans biofilms. Moreover, dual-species and single-species S. oligofermentans biofilms grown under pH-cycling conditions (with a 16 h low pH period) produced a significantly higher amount of HP than those grown under constantly neutral pH. In conclusion, S. oligofermentans inhibited S. mutans in biofilms not only under neutral pH, but also under pH-cycling conditions, likely through HP production. S. oligofermentans may be a compelling probiotic candidate against caries. PMID:26114758

  12. Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters

    NASA Astrophysics Data System (ADS)

    Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C. R.; Marwick, T. R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; Borges, A. V.

    2015-01-01

    Inland waters have been recognized as a significant source of carbon dioxide (CO2) to the atmosphere at the global scale. Fluxes of CO2 between aquatic systems and the atmosphere are calculated from the gas transfer velocity and the water-air gradient of the partial pressure of CO2 (pCO2). Currently, direct measurements of water pCO2 remain scarce in freshwaters, and most published pCO2 data are calculated from temperature, pH and total alkalinity (TA). Here, we compare calculated (pH and TA) and measured (equilibrator and headspace) water pCO2 in a large array of temperate and tropical freshwaters. The 761 data points cover a wide range of values for TA (0 to 14 200 μmol L-1), pH (3.94 to 9.17), measured pCO2 (36 to 23 000 ppmv), and dissolved organic carbon (DOC) (29 to 3970 μmol L-1). Calculated pCO2 were >10% higher than measured pCO2 in 60% of the samples (with a median overestimation of calculated pCO2 compared to measured pCO2 of 2560 ppmv) and were >100% higher in the 25% most organic-rich and acidic samples (with a median overestimation of 9080 ppmv). We suggest these large overestimations of calculated pCO2 with respect to measured pCO2 are due to the combination of two cumulative effects: (1) a more significant contribution of organic acids anions to TA in waters with low carbonate alkalinity and high DOC concentrations; (2) a lower buffering capacity of the carbonate system at low pH, which increases the sensitivity of calculated pCO2 to TA in acidic and organic-rich waters. No empirical relationship could be derived from our data set in order to correct calculated pCO2 for this bias. Owing to the widespread distribution of acidic, organic-rich freshwaters, we conclude that regional and global estimates of CO2 outgassing from freshwaters based on pH and TA data only are most likely overestimated, although the magnitude of the overestimation needs further quantitative analysis. Direct measurements of pCO2 are recommended in inland waters in general

  13. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH.

    PubMed

    Chen, Yinguang; Liu, Kun; Su, Yinglong; Zheng, Xiong; Wang, Qin

    2013-07-01

    This work reported the enhancement of continuous SCFA production from sludge by the combined use of surfactant (sodium dodecylbenzene sulfonate (SDBS)) and pH 10 (i.e., SDBS & pH 10). The maximal SCFA production (2056 mg COD/L) was achieved under the SDBS & pH 10 condition at a sludge retention time (SRT) of 12d, which was much higher than that of the blank, sole SDBS, or pH 10. The mechanisms investigation showed that the combined strategy had greater sludge solubilization, higher protein hydrolysis, and lower activity of methanogens. Fluorescence in situ hybridization analysis revealed that the abundance of bacteria was increased, whereas that of archaea was decreased by SDBS & pH 10. The excitation emission matrix fluorescence spectroscopy assay further suggested that SBDS caused protein structure change, which benefited protein hydrolysis. PMID:23685363

  14. Extending the working pH of nitrobenzene degradation using ultrasonic/heterogeneous Fenton to the alkaline range via amino acid modification.

    PubMed

    ElShafei, Gamal M S; Yehia, F Z; Dimitry, O I H; Badawi, A M; Eshaq, Gh

    2015-11-01

    Oxides of iron, α-Fe2O3 (I), and copper, CuO (II) prepared by usual precipitation method without surfactant were used at room temperature in the process of nitrobenzene (10mgL(-1)) degradation at different pH values with ultrasonic at 20kHz. The degradation was complete in 20 and 30min for (I) and (II), respectively in the pH range 2-7 using1.0gL(-1) of solids and 10mM of H2O2. A remarkable decrease in degradation efficiency was recorded on increasing the pH to values higher than the neutral range. This loss in efficiency was cancelled to a great extent through modifying the used oxides with amino acids. Arginine showed higher improving effect to (II) (1:1 weight ration) than glycine or glutamic acid. Modification of both oxides with increasing amounts of arginine increased the degradation efficiency of (I) in a more regular way than in case of (II). However, the extent of improvement due to amino acid modification was higher in case of (II) because of its originally low degradation efficiency in strongly alkaline media. PMID:25592465

  15. Chemical equilibrium model for interfacial activity of crude oil in aqueous alkaline solution: the effects of pH, alkali and salt

    SciTech Connect

    Chan, M.; Yen, T.F.

    1980-11-01

    A chemical equilibrium model for interfacial activity of crude in aqueous alkaline solution is proposed. The model predicts the observed effects of pH and concentrations of alkali and salt on the interfacial tension (IFT). The model proposed was shown to describe the observed effects of acid content, pH, and sodium ions on the interfacial activity of crude oil in water. Once the pH of the interface reaches the pKa of the acids, sometimes with the help of addition of some salt, the IFT experiences a sudden steep drop to the range of 10/sup -2/ dynes/cm. After that, further addition of sodium either in the form of NaOH or NaCl is going to increase the IFT due to a shift of equilibriumn to the formation of undissociated soap. This was confirmed by the difference in the observed effect of sodium on the IFT of the extracted soap molecules which are dissociated easily and those which are associated highly and precipitated easily. These soap molecules have dissociation constant values ranging from below 10/sup -2/ to above one. 13 references.

  16. Modifying the Cold Gelation Properties of Quinoa Protein Isolate: Influence of Heat-Denaturation pH in the Alkaline Range.

    PubMed

    Mäkinen, Outi E; Zannini, Emanuele; Arendt, Elke K

    2015-09-01

    Heat-denaturation of quinoa protein isolate (QPI) at alkali pH and its influence on the physicochemical and cold gelation properties was investigated. Heating QPI at pH 8.5 led to increased surface hydrophobicity and decreases in free and bound sulfhydryl group contents. Heating at pH 10.5 caused a lesser degree of changes in sulfhydryl groups and surface hydrophobicity, and the resulting solutions showed drastically increased solubility. SDS PAGE revealed the presence of large aggregates only in the sample heated at pH 8.5, suggesting that any aggregates present in the sample heated at pH 10.5 were non-covalently bound and disintegrated in the presence of SDS. Reducing conditions partially dissolved the aggregates in the pH 8.5 heated sample indicating the occurrence of disulphide bonding, but caused no major alterations in the separation pattern of the pH 10.5 heated sample. Denaturation pH influenced the cold gelation properties greatly. Solutions heated at pH 8.5 formed a coarse coagulum with maximum G' of 5 Pa. Heat-denaturation at 10.5 enabled the proteins to form a finer and regularly structured gel with a maximum G' of 1140 Pa. Particle size analysis showed that the pH 10.5 heated sample contained a higher level of very small particles (0.1-2 μm), and these readily aggregated into large particles (30-200 μm) when pH was lowered to 5.5. Differences in the nature of aggregates formed during heating may explain the large variation in gelation properties. PMID:25986749

  17. Biodegradation of cyanide by a new isolated strain under alkaline conditions and optimization by response surface methodology (RSM)

    PubMed Central

    2014-01-01

    Background Biodegradation of free cyanide from industrial wastewaters has been proven as a viable and robust method for treatment of wastewaters containing cyanide. Results Cyanide degrading bacteria were isolated from a wastewater treatment plant for coke-oven-gas condensate by enrichment culture technique. Five strains were able to use cyanide as the sole nitrogen source under alkaline conditions and among them; one strain (C2) was selected for further studies on the basis of the higher efficiency of cyanide degradation. The bacterium was able to tolerate free cyanide at concentrations of up to 500 ppm which makes it a good potentially candidate for the biological treatment of cyanide contaminated residues. Cyanide degradation corresponded with growth and reached a maximum level 96% during the exponential phase. The highest growth rate (1.23 × 108) was obtained on day 4 of the incubation time. Both glucose and fructose were suitable carbon sources for cyanotrophic growth. No growth was detected in media with cyanide as the sole carbon source. Four control factors including, pH, temperature, agitation speed and glucose concentration were optimized according to central composite design in response surface method. Cyanide degradation was optimum at 34.2°C, pH 10.3 and glucose concentration 0.44 (g/l). Conclusions Bacterial species degrade cyanide into less toxic products as they are able to use the cyanide as a nitrogen source, forming ammonia and carbon dioxide as end products. Alkaliphilic bacterial strains screened in this study evidentially showed the potential to possess degradative activities that can be harnessed to remediate cyanide wastes. PMID:24921051

  18. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    DOE PAGESBeta

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; Brown, Suree; Janke, Christopher James; Mayes, Richard T.; Kuo, Li -Jung; Gill, Gary; Dai, Sheng; Kim, J.; et al

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration ofmore » ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long

  19. Enhancing uranium uptake by amidoxime adsorbent in seawater: An investigation for optimum alkaline conditioning parameters

    SciTech Connect

    Das, Sadananda; Tsouris, Costas; Zhang, Chenxi; Brown, Suree; Janke, Christopher James; Mayes, Richard T.; Kuo, Li -Jung; Gill, Gary; Dai, Sheng; Kim, J.; Oyola, Y.; Wood, J. R.

    2015-09-07

    A high-surface-area polyethylene-fiber adsorbent (AF160-2) has been developed at the Oak Ridge National Laboratory by radiation-induced graft polymerization of acrylonitrile and itaconic acid. The grafted nitriles were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with potassium hydroxide (KOH) by varying different reaction parameters such as KOH concentration (0.2, 0.44, and 0.6 M), duration (1, 2, and 3 h), and temperature (60, 70, and 80 °C). Adsorbent screening was then performed with simulated seawater solutions containing sodium chloride and sodium bicarbonate, at concentrations found in seawater, and uranium nitrate at a uranium concentration of ~7–8 ppm and pH 8. Fourier transform infrared spectroscopy and solid-state NMR analyses indicated that a fraction of amidoxime groups was hydrolyzed to carboxylate during KOH conditioning. The uranium adsorption capacity in the simulated seawater screening solution gradually increased with conditioning time and temperature for all KOH concentrations. It was also observed that the adsorption capacity increased with an increase in concentration of KOH for all the conditioning times and temperatures. AF160-2 adsorbent samples were also tested with natural seawater using flow-through experiments to determine uranium adsorption capacity with varying KOH conditioning time and temperature. Based on uranium loading capacity values of several AF160-2 samples, it was observed that changing KOH conditioning time from 3 to 1 h at 60, 70, and 80 °C resulted in an increase of the uranium loading capacity in seawater, which did not follow the trend found in laboratory screening with stimulated solutions. Longer KOH conditioning times lead to significantly higher uptake of divalent metal ions, such as calcium and magnesium, which is a result of amidoxime conversion into less selective carboxylate. The scanning electron microscopy showed that long conditioning

  20. Acute and chronic toxicity of tetrabromobisphenol A to three aquatic species under different pH conditions.

    PubMed

    He, Qun; Wang, Xinghao; Sun, Ping; Wang, Zunyao; Wang, Liansheng

    2015-07-01

    Tetrabromobisphenol A (TBBPA) is a well-known brominated flame retardant. It has been detected in the environment and shows high acute toxicity to different organisms at high concentrations. In this work, the effects of pH and dimethyl sulfoxide (DMSO) on the acute toxicity of TBBPA to Daphnia magna and Limnodrilus hoffmeisteri were tested, and the oxidative stress induced by TBBPA in livers of Carassius auratus was assessed using four biomarkers. The integrated biomarker response (IBR) was applied to assess the overall antioxidant status in fish livers. Moreover, fish tissues (gills and livers) were also studied histologically. The results showed that low pH and DMSO enhanced the toxicity of TBBPA. Furthermore, changes in the activity of antioxidant enzymes and glutathione level suggested that TBBPA generates oxidative stress in fish livers. The IBR index revealed that fish exposed to 3mg/L TBBPA experienced more serious oxidative stress than exposed to acidic or alkaline conditions. The histopathological analysis revealed lesions caused by TBBPA. This study provides valuable toxicological information of TBBPA and will facilitate a deeper understanding on its potential toxicity in realistic aquatic environments. PMID:25980965

  1. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions

    NASA Astrophysics Data System (ADS)

    Ivančić, Ingrid; Pfannkuchen, Martin; Godrijan, Jelena; Djakovac, Tamara; Marić Pfannkuchen, Daniela; Korlević, Marino; Gašparović, Blaženka; Najdek, Mirjana

    2016-08-01

    The northern Adriatic (NA) is a favorable basin for studying the adaptive strategies of plankton to a variety of conditions along the steep gradients of environmental parameters over the year. Earlier studies identified phosphorus (P)-limitation as one of the key stresses within the NA that shape the biological response in terms of biodiversity and metabolic adjustments. A wide range of reports supports the notion that P-limitation is a globally important phenomenon in aquatic ecosystems. In this study P stress of marine microphytoplankton was determined at species level along a trophic gradient in the NA. In P-limitation all species with considerable contributions to the diatom community expressed alkaline phosphatase activity (APA), compared to only a few marginal dinoflagellate species. Nevertheless, APA expressing species did not always dominate the phytoplankton community, suggesting that APA is also an important strategy for species to survive and maintain active metabolism outside of their mass abundances. A symbiotic relationship could be supposed for diatoms that did not express APA themselves and probably benefited from APA expressed by attached bacteria. APA was not expressed by any microphytoplankton species during the autumn when P was not limiting, while most of the species did express APA during the P-limitation. This suggests that APA expression is regulated by orthophosphate availability. The methods employed in this study allowed the microscopic detection of APA for each microphytoplankton cell with simultaneous morphologic/taxonomic analysis. This approach uncovered a set of strategies to compete in P-limited conditions within the marine microphytoplankton community. This study confirms the role of P-limitation as a shaping factor in marine ecosystems.

  2. Solar light (hv) and H2O2/hv photo-disinfection of natural alkaline water (pH 8.6) in a compound parabolic collector at different day periods in Sahelian region.

    PubMed

    Ndounla, J; Pulgarin, C

    2015-11-01

    The photo-disinfection of natural alkaline surface water (pH 8.6 ± 0.3) for drinking purposes was carried out under solar radiation treatments. The enteric bacteria studied were the wild total coliforms/Escherichia coli (10(4) CFU/ml) and Salmonella spp. (10(4) CFU/ml) naturally present in the water. The photo-disinfection of a 25-l water sample was carried out in a solar compound parabolic collector (CPC) in the absence and in the presence of hydrogen peroxide (H2O2). The addition of H2O2 (10 mg/L) to the sample water was sufficient to enhance the photo-disinfection and ensure an irreversible lethal action on the wild enteric bacteria contents of the sample. The inactivation kinetic of the system was significantly enhanced compared to the one carried out without H2O2 addition. The effect of the solar radiation parameters on the efficiency of the photo-disinfection were assessed. The pH has increased during the treatment in all the photo-disinfection processes (hv and H2O2/hv). The Salmonella spp strain has shown the best effective inactivate time in alkaline water than the one recorded under acidic or near-neutral conditions. The evolution of some physico-chemical parameters of the water (turbidity, NO2(-), NO3(-), NH4(+), HPO4(2-), and bicarbonate (HCO3(-))) was monitored during the treatment. Finally, the possible mechanistic process involved during the enteric bacteria inactivation was suggested. PMID:26122565

  3. AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells.

    PubMed

    Hallows, Kenneth R; Alzamora, Rodrigo; Li, Hui; Gong, Fan; Smolak, Christy; Neumann, Dietbert; Pastor-Soler, Núria M

    2009-04-01

    Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accumulation in clear cells. Here we examined whether the metabolic sensor AMP-activated protein kinase (AMPK) regulates this PKA-induced V-ATPase apical membrane accumulation. Immunofluorescence labeling of rat and non-human primate epididymides revealed specific AMPK expression in epithelial cells. Immunofluorescence labeling of rat epididymis showed that perfusion in vivo with the AMPK activators 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) or A-769662 induced a redistribution of the V-ATPase into subapical vesicles, even in the presence of a luminal alkaline (pH 7.8) buffer compared with that of controls perfused without drug. Moreover, preperfusion with AICAR blocked the PKA-mediated V-ATPase translocation to clear cell apical membranes induced by N(6)-monobutyryl-cAMP (6-MB-cAMP). Purified PKA and AMPK both phosphorylated V-ATPase A subunit in vitro. In HEK-293 cells [(32)P]orthophosphate in vivo labeling of the A subunit increased following PKA stimulation and decreased following RNA interference-mediated knockdown of AMPK. Finally, the extent of PKA-dependent in vivo phosphorylation of the A subunit increased with AMPK knockdown. In summary, our findings suggest that AMPK inhibits PKA-mediated V-ATPase apical accumulation in epididymal clear cells, that both kinases directly phosphorylate the V-ATPase A subunit in vitro and in vivo, and that AMPK inhibits PKA-dependent phosphorylation of this subunit. V-ATPase activity may be coupled to the sensing of acid-base status via PKA and to metabolic status via AMPK. PMID:19211918

  4. PhD Students' Work Conditions and Study Environment in University- and Industry-Based PhD Programmes

    ERIC Educational Resources Information Center

    Kolmos, A.; Kofoed, L. B.; Du, X. Y.

    2008-01-01

    During the last 10 years, new models of funding and training PhD students have been established in Denmark in order to integrate industry into the entire PhD education. Several programmes have been conducted where it is possible to co-finance PhD scholarships or to become an employee as an industrial PhD in a company. An important question is what…

  5. Quantitative proteomic analyses of the response of acidophilic microbial communities to different pH conditions

    SciTech Connect

    Belnap, Christopher P.; Pan, Chongle; Denef, Vincent; Samatova, Nagiza F; Hettich, Robert {Bob} L; Banfield, Jillian F.

    2011-01-01

    Extensive genomic characterization of multi-species acid mine drainage microbial consortia combined with laboratory cultivation has enabled the application of quantitative proteomic analyses at the community level. In this study, quantitative proteomic comparisons were used to functionally characterize laboratory-cultivated acidophilic communities sustained in pH 1.45 or 0.85 conditions. The distributions of all proteins identified for individual organisms indicated biases for either high or low pH, and suggests pH-specific niche partitioning for low abundance bacteria and archaea. Although the proteome of the dominant bacterium, Leptospirillum group II, was largely unaffected by pH treatments, analysis of functional categories indicated proteins involved in amino acid and nucleotide metabolism, as well as cell membrane/envelope biogenesis were overrepresented at high pH. Comparison of specific protein abundances indicates higher pH conditions favor Leptospirillum group III, whereas low pH conditions promote the growth of certain archaea. Thus, quantitative proteomic comparisons revealed distinct differences in community composition and metabolic function of individual organisms during different pH treatments. Proteomic analysis revealed other aspects of community function. Different numbers of phage proteins were identified across biological replicates, indicating stochastic spatial heterogeneity of phage outbreaks. Additionally, proteomic data were used to identify a previously unknown genotypic variant of Leptospirillum group II, an indication of selection for a specific Leptospirillum group II population in laboratory communities. Our results confirm the importance of pH and related geochemical factors in fine-tuning acidophilic microbial community structure and function at the species and strain level, and demonstrate the broad utility of proteomics in laboratory community studies.

  6. Drilling the Mediterranean Messinian Evaporites to Answer Key Questions Related to Massive Microbial Dolomite Formation under Hypersaline Alkaline Conditions

    NASA Astrophysics Data System (ADS)

    McKenzie, Judith A.; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2014-05-01

    Deep-sea drilling in the Mediterranean during DSSP Leg 13 in 1970 revealed the basin-wide occurrence of a Messinian evaporite formation. This spectacular discovery was pursued further during a subsequent drilling program, DSDP Leg 42A, in 1975, which was designed, in part, to obtain continuous cores to study the evolution of the salinity crisis itself (Hsü, Montadert, et al., 1978). Specifically, drilling at a water depth of 4,088 m in the Ionian Sea, DSDP Site 374: Messina Abyssal Plain, penetrated about 80 m into the uppermost part of the Messinian upper evaporite formation. The sedimentary sequence comprises dolomitic mudstone overlying dolomitic mudstone/gypsum cycles, which in turn overlie anhydrite and halite. The non-fossiliferous dolomitic mudstone is generally rich in organic carbon, with TOC values ranging from 0.9% to 5.3%, of possible marine origin with a good source rock potential. Commonly laminated dolomitic mudstones contain preserved filamentous cyanobacterial remains suggesting that conditions were conducive for microbial mat growth. The Ca-dolomite, composed of fine-grained anhedral crystals in the size range of 2-4 μm, is probably a primary precipitate. The unusual interstitial brines of the dolomitic mudstone units have very high alkalinities with a low pH of 5 to 6. The Mg concentration (2250 mmoles/l) is extremely elevated, whereas the Ca concentration is nearly zero. Finally, the drilled evaporite sedimentary sequence was interpreted as being deposited in an alkaline lake/sea ("Lago Mare"), which covered the area during the latest Messinian. Projecting forward 40 years since the DSDP Leg 42A drilling campaign, research into the factors controlling dolomite precipitation under Earth surface conditions has led to the development of new models involving the metabolism of microorganisms and associated biofilms to overcome the kinetic inhibitions associated with primary dolomite precipitation. Together with laboratory experiments, microbial

  7. Amperometric Nitric Oxide Sensors with Enhanced Selectivity Over Carbon Monoxide via Platinum Oxide Formation Under Alkaline Conditions

    PubMed Central

    Meyerhoff, Mark E.

    2013-01-01

    An improved planar amperometric nitric oxide (NO) sensor with enhanced selectivity over carbon monoxide (CO), a volatile interfering species for NO sensors that has been largely overlooked until recently, is described. Formation of an oxide film on the inner platinum working electrode via anodic polarization using an inner alkaline electrolyte solution provides the basis for improved selectivity. Cyclic voltammetry reveals that formation of oxidized Pt film inhibits adsorption of CO to the electrode surface, which is a necessary initial step in the electrocatalytic oxidation of CO on Pt. Previous NO gas sensors that employ internal electrolyte solutions have been assembled using acidic internal solutions, that inhibit the formation of a dense platinum oxide film on the working electrode surface. It is demonstrated herein that increasing the internal electrolyte pH promotes oxidized platinum film formation, resulting in improved selectivity over CO. Selectivity coefficients (log KNO,j) for sensors assembled with internal solutions at various pH values range from −0.08 at pH 2.0 to −2.06 at pH 11.7 with average NO sensitivities of 1.24 nA/μM and LOD of <1 nM. PMID:24067100

  8. Transparent ZnO Films Deposited by Aqueous Solution Process Under Various pH Conditions

    NASA Astrophysics Data System (ADS)

    Hong, Jeong Soo; Wagata, Hajime; Ohashi, Naoki; Katsumata, Ken-ichi; Okada, Kiyoshi; Matsushita, Nobuhiro

    2015-08-01

    ZnO films were deposited using a spin-spray method with the source solution containing zinc nitrate and an oxidizing solution containing trisodium citrate onto glass substrates under various pH conditions. A ZnO film with a columnar structure was obtained at pH higher than 7.0, while no ZnO film was formed at a mixed solution pH of 6.7. The transparent and conductive ZnO film obtained from a mixed solution with pH 10.7 exhibited the lowest resistivity of 9.9 × 10-3 Ω cm with a high transmittance above 90%.

  9. Effect of Sulfur Concentration and PH Conditions on Akaganeite Formation: Understanding Akaganeite Formation Conditions in Yellowknife Bay, Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Fox, A.; Peretyazhko, T.; Sutter, B.; Niles, P.; Ming, D. W.; Morris, R. V.

    2015-01-01

    The Chemistry and Mineralogy Instrument (CHEMIN) on board the Mars Science Laboratory (MSL) Curiosity Rover identified minor amounts of akaganeite (beta-FeOOH) at Yellowknife Bay, Mars. There is also evidence for akaganeite at other localities on Mars from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Akaganeite is an iron(III) hydroxide with a hollandite- like structure and Cl in its tunnels. Terrestrial akaganeite usually forms in Cl-rich environments under acidic, oxidizing conditions. Previous studies of akaganeite have revealed that akaganeite formation is affected by the presence of sulfate (hereafter denoted as S. The prediction of circumneutral pH coupled with the detection of S at Yellowknife Bay dictate that work is needed to determine how S and pH together affect akaganeite formation. The goal of this work is to study how changes in both S concentration and pH influence akaganeite precipitation. Akaganeite formation was investigated at S/Cl molar ratios of 0, 0.017, 0.083, 0.17 and 0.33 at pH 1.5, 2, and 4. Results are anticipated to provide combined S concentration and pH constraints on akaganeite formation in Yellowknife Bay and elsewhere on Mars. Knowledge of solution pH and S concentrations can be utilized in understanding microbial habitability potential on the Martian surface.

  10. Tested Demonstrations. The Stepwise Reduction of Permanganate in Alkaline Conditions: A Lecture Demonstration.

    ERIC Educational Resources Information Center

    Ruoff, Peter; Riley, Megan

    1987-01-01

    Describes a chemistry experiment where an alkaline ice-cold permanganate solution is reduced by adding dropwise a cold diluted hydrogen peroxide solution. Outlines the course of the reduction through the various oxidation states of manganese with their characteristic colors. (TW)

  11. Changes in Major Peanut Allergens Under Different pH Conditions.

    PubMed

    Kim, Jihyun; Lee, Jeongok; Seo, Won Hee; Han, Youngshin; Ahn, Kangmo; Lee, Sang-Il

    2012-05-01

    Regional dietary habits and cooking methods affect the prevalence of specific food allergies; therefore, we determined the effects of various pH conditions on major peanut allergens. Peanut kernels were soaked overnight in commercial vinegar (pH 2.3) or acetic acid solutions at pH 1.0, 3.0, or 5.0. Protein extracts from the sera of seven patients with peanut-specific IgE levels >15 kU(A)/L were analyzed by SDS-PAGE and immunolabeling. A densitometer was used to quantify and compare the allergenicity of each protein. The density of Ara h 1 was reduced by treatment with pH 1.0, 3.0, or 5.0 acetic acid, or commercial vinegar. Ara h 2 remained largely unchanged after treatment with pH 5.0 acetic acid, and was decreased following treatment with pH 1.0, 2.3, or 3.0 acetic acid. Ara h 3 and Ara h 6 appeared as a thick band after treatment with pH 1.0 acetic acid and commercial vinegar. IgE-binding intensities to Ara h 1, Ara h 2, and Ara h 3 were significantly reduced after treatment with pH 1.0 acetic acid or commercial vinegar. These data suggest that treatment with acetic acid at various pH values affects peanut allergenicity and may explain the low prevalence of peanut allergy in Korea. PMID:22548209

  12. Chemical speciation of neptunium(VI) under strongly alkaline conditions. Structure, composition, and oxo ligand exchange.

    PubMed

    Clark, David L; Conradson, Steven D; Donohoe, Robert J; Gordon, Pamela L; Keogh, D Webster; Palmer, Phillip D; Scott, Brian L; Tait, C Drew

    2013-04-01

    Hexavalent neptunium can be solubilized in 0.5-3.5 M aqueous MOH (M = Li(+), Na(+), NMe4(+) = TMA(+)) solutions. Single crystals were obtained from cooling of a dilute solution of Co(NH3)6Cl3 and NpO2(2+) in 3.5 M [N(Me)4]OH to 5 °C. A single-crystal X-ray diffraction study revealed the molecular formula of [Co(NH3)6]2[NpO2(OH)4]3·H2O, isostructural with the uranium analogue. The asymmetric unit contains three distinct NpO2(OH)4(2-) ions, each with pseudooctahedral coordination geometry with trans-oxo ligands. The average Np═O and Np-OH distances were determined to be 1.80(1) and 2.24(1) Å, respectively. EXAFS data and fits at the Np L(III)-edge on solid [Co(NH3)6]2[NpO2(OH)4]3·H2O and aqueous solutions of NpO2(2+) in 2.5 and 3.5 M (TMA)OH revealed bond lengths nearly identical with those determined by X-ray diffraction but with an increase in the number of equatorial ligands with increasing (TMA)OH concentration. Raman spectra of single crystals of [Co(NH3)6]2[NpO2(OH)4]3·H2O reveal a ν1(O═Np═O) symmetric stretch at 741 cm(-1). Raman spectra of NpO2(2+) recorded in a 0.6-2.2 M LiOH solution reveal a single ν1 frequency of 769 cm(-1). Facile exchange of the neptunyl oxo ligands with the water solvent was also observed with Raman spectroscopy performed with (16)O- and (18)O-enriched water solvent. The combination of EXAFS and Raman data suggests that NpO2(OH)4(2-) is the dominant solution species under the conditions of study and that a small amount of a second species, NpO2(OH)5(3-), may also be present at higher alkalinity. Crystal data for [Co(NH3)6]2[NpO2(OH)4]3·H2O: monoclinic, space group C2/c, a = 17.344(4) Å, b = 12.177(3) Å, c = 15.273 Å, β = 120.17(2)°, Z = 4, R1 = 0.0359, wR2 = 0.0729. PMID:23485079

  13. Free energy distribution and hydrothermal mineral precipitation in Hadean submarine alkaline vent systems: Importance of iron redox reactions under anoxic conditions

    NASA Astrophysics Data System (ADS)

    Shibuya, Takazo; Russell, Michael J.; Takai, Ken

    2016-02-01

    Thermodynamic calculations of mixing between hypothetical seawater and hydrothermal fluid in the Hadean deep ocean were carried out to predict saturation states of mineral precipitates and redox reactions that could occur in Hadean submarine alkaline hydrothermal systems associated with the serpentinization of ultramafic rocks. In the calculations, the seawater was assumed to be weakly acidic (pH = 5.5) and to include carbon dioxide, ferrous iron and silica, with or without nitrate, while the Hadean hydrothermal fluid was assumed to be highly alkaline (pH = 11) and to contain abundant molecular hydrogen, methane and bisulfide, based on the Archean geologic record, the modern low-temperature alkaline hydrothermal vent fluid (Lost City field), and experimental and theoretical considerations. The modeling indicates that potential mineral precipitates in the mixing zone (hydrothermal chimney structures) could consist mainly of iron sulfides but also of ferrous serpentine and brucite, siderite, and ferric iron-bearing minerals such as goethite, hematite and/or magnetite as minor phases. The precipitation of ferric iron-bearing minerals suggests that chemical iron oxidation would be made possible by pH shift even under anoxic condition. In the mixing zone, comprising an inorganic barrier precipitated at the interface of the two contrasting solutions, various redox reactions release free energy with the potential to drive endergonic reactions, assuming the involvement of coupling inorganic protoenzymes. Hydrogenotrophic methanogenesis and acetogenesis - long considered the most ancient forms of biological energy metabolisms - are able to achieve higher maximum energy yield (>0.5 kJ/kg hydrothermal fluid) than those in the modern serpentinization-associated seafloor hydrothermal systems (e.g., Kairei field). Furthermore, the recently proposed methanotrophic acetogenesis pathway was also thermodynamically investigated. It is known that methanotrophic acetogenesis would

  14. Influence of pH and Redox Conditions on Copper Leaching

    SciTech Connect

    Kavanaugh, Rathi; Al-Abed, Souhail R.; Purandare, Jaydeep; Allen, Derrick

    2004-03-31

    The Toxicity Characteristic Leaching Procedure (TCLP) is a regulatory leach test in the RCRA programs. It was developed to determine the leaching potential of landfilled waste in order to assess the hazards associated with the leachates. The test was developed to study concentration of hazardous materials in leachates, under a mismanagement scenario, when they are co-disposed with municipal waste. The test uses leaching of waste at either of two acidic pH values i.e., 2.8 and 4.93. While low pH leachant can extract many metals, some metals soluble at higher pH values are either underestimated or totally unaccounted for. The method also has limitations for application to different waste matrices. The procedure does not take into account the effect of redox conditions on leaching. Leaching studies are, therefore, being conducted to determine the effect of combinations of Eh and pH on the leaching potential of mineral and organic wastes. The goal of this study is to propose alternate methods applicable for a variety of waste matrices. The presentation will discuss the effects of combinations of pH and redox conditions on the leaching behavior of copper from a mineral processing waste.

  15. Formation of neptunium(IV)-silica colloids at near-neutral and slightly alkaline pH.

    PubMed

    Husar, Richard; Weiss, Stephan; Hennig, Christoph; Hübner, René; Ikeda-Ohno, Atsushi; Zänker, Harald

    2015-01-01

    The reducing conditions in a nuclear waste repository render neptunium tetravalent. Thus, Np is often assumed to be immobile in the subsurface. However, tetravalent actinides can also become mobile if they occur as colloids. We show that Np(IV) is able to form silica-rich colloids in solutions containing silicic acid at concentrations of both the regions above and below the "mononuclear wall" of silicic acid at 2 × 10(-3) M (where silicic acid is expected to start polymerization). These Np(IV)-silica colloids have a size of only very few nanometers and can reach significantly higher concentrations than Np(IV) oxyhydroxide colloids. They can be stable in the waterborne form over longer spans of time. In the Np(IV)-silica colloids, the actinide--oxygen--actinide bonds are increasingly replaced by actinide--oxygen--silicon bonds due to structural incorporation of Si. Possible implications of the formation of such colloids for environmental scenarios are discussed. PMID:25401282

  16. Production of Retrovirus-Based Vectors in Mildly Acidic pH Conditions.

    PubMed

    Holic, Nathalie; Fenard, David

    2016-01-01

    Gene transfer vectors based on retroviridae are increasingly becoming a tool of choice for biomedical research and for the development of biotherapies in rare diseases or cancers. To meet the challenges of preclinical and clinical production, different steps of the production process of self-inactivating γ-retroviral (RVs) and lentiviral vectors (LVs) have been improved (e.g., transfection, media optimization, cell culture conditions). However, the increasing need for mass production of such vectors is still a challenge and could hamper their availability for therapeutic use. Recently, we observed that the use of a neutral pH during vector production is not optimal. The use of mildly acidic pH conditions (pH 6) can increase by two- to threefold the production of RVs and LVs pseudotyped with the vesicular stomatitis virus G (VSV-G) or gibbon ape leukemia virus (GALV) glycoproteins. Here, we describe the production protocol in mildly acidic pH conditions of GALVTR- and VSV-G-pseudotyped LVs using the transient transfection of HEK293T cells and the production protocol of GALV-pseudotyped RVs produced from a murine producer cell line. These protocols should help to achieve higher titers of vectors, thereby facilitating experimental research and therapeutic applications. PMID:27317171

  17. Preparation in Acidic and Alkaline Conditions and Characterization of α-Bi2Mo3O12 and γ-Bi2MoO6 Powders

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Wang, Mao-Hua; Ma, Xiao-Yu

    2016-08-01

    α-Bi2Mo3O12 and γ-Bi2MoO6 powders have been successfully fabricated via a sol-gel method starting from bismuth nitrate and ammonium molybdate. The as-synthesized samples were characterized by x-ray powder diffraction analysis, thermogravimetry and differential thermogravimetry, scanning electron microscopy, and ultraviolet-visible (UV-Vis) absorption spectroscopy. The results indicated the formation of α-Bi2Mo3O12 and γ-Bi2MoO6 powders in acidic (pH 5) and alkaline (pH 9) conditions, respectively. α-Bi2Mo3O12 exhibited irregular shape, while γ-Bi2MoO6 showed approximately flake-like morphology. The bandgap of pure α-Bi2Mo3O12 and γ-Bi2MoO6 was estimated to be about 2.83 eV and 2.85 eV, respectively, according to UV-Vis studies. The slight shift of the absorption edge towards longer wavelength for α-Bi2Mo3O12 indicated a decrease of the optical bandgap. Photocatalytic experiments showed that γ-Bi2MoO6 exhibited higher photodegradation activity of methylene blue compared with α-Bi2Mo3O12.

  18. Preparation in Acidic and Alkaline Conditions and Characterization of α-Bi2Mo3O12 and γ-Bi2MoO6 Powders

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Wang, Mao-Hua; Ma, Xiao-Yu

    2016-05-01

    α-Bi2Mo3O12 and γ-Bi2MoO6 powders have been successfully fabricated via a sol-gel method starting from bismuth nitrate and ammonium molybdate. The as-synthesized samples were characterized by x-ray powder diffraction analysis, thermogravimetry and differential thermogravimetry, scanning electron microscopy, and ultraviolet-visible (UV-Vis) absorption spectroscopy. The results indicated the formation of α-Bi2Mo3O12 and γ-Bi2MoO6 powders in acidic (pH 5) and alkaline (pH 9) conditions, respectively. α-Bi2Mo3O12 exhibited irregular shape, while γ-Bi2MoO6 showed approximately flake-like morphology. The bandgap of pure α-Bi2Mo3O12 and γ-Bi2MoO6 was estimated to be about 2.83 eV and 2.85 eV, respectively, according to UV-Vis studies. The slight shift of the absorption edge towards longer wavelength for α-Bi2Mo3O12 indicated a decrease of the optical bandgap. Photocatalytic experiments showed that γ-Bi2MoO6 exhibited higher photodegradation activity of methylene blue compared with α-Bi2Mo3O12.

  19. Identification of a novel carotenoid, 2'-isopentenylsaproxanthin, by Jejuia pallidilutea strain 11shimoA1 and its increased production under alkaline condition.

    PubMed

    Takatani, N; Nishida, K; Sawabe, T; Maoka, T; Miyashita, K; Hosokawa, M

    2014-08-01

    Carotenoids are a class of naturally occurring pigment, carrying out important biological functions in photosynthesis and involved in environmental responses including nutrition in organisms. Saproxanthin and myxol, which have monocyclic carotenoids with a γ-carotene skeleton, have been reported to show a stronger antioxidant activity than those with β-carotene and zeaxanthin. In this research, a yellow-orange bacterium of strain 11shimoA1 (JCM19538) was isolated from a seaweed collected at Nabeta Bay (Shizuoka, Japan). The 16S rRNA gene sequence of strain 11shimoA1 revealed more than 99.99 % similarity with those of Jejuia pallidilutea strains in the family Flavobacteriaceae. Strain 11shimoA1 synthesized two types of carotenoids. One of them was (3R, 3'R)-zeaxanthin with dicyclic structure and another was identified as (3R, 2'S)-2'-isopentenylsaproxanthin, a novel monocyclic carotenoid with pentenyl residue at C-2' position of saproxanthin, using FAB-MS, (1)H NMR, and CD analyses. Culturing strain 11shimoA1 in an alkaline medium at pH 9.2 resulted in a markedly increased in production of 2'-isopentenylsaproxanthin per dry cell weight, but a decreased in zeaxanthin production as compared to their respective production levels in medium with pH 7.0. These carotenoids are likely to play some roles in the adaptation of the bacterium to the environmental conditions. PMID:24723292

  20. Living organisms influence on environmental conditions: pH modulation by amphibian embryos versus aluminum toxicity.

    PubMed

    Herkovits, Jorge; Castañaga, Luis Alberto; D'Eramo, José Luis; Jourani, Victoria Platonova

    2015-11-01

    The LC10, 50 and 90/24h of aluminum for Rhinella arenarum embryos at complete operculum stage were 0.55, 0.75 and 1mgAl(3+)/L respectively. Those values did not change significantly by expanding the exposure period till 168h. The aluminum toxicity was evaluated in different pH conditions by means of a citrate buffer resulting for instance, 1mgAl(3+)/L at pH 4, 4.1, 5 and 6 in 100%, 70%, 35% and 0% of lethality respectively. As an outstanding feature, the embryos changed the pH of the maintaining media both in the case of Al(3+) or citrate buffer treatments toward neutral. 10 embryos in 40mL of AMPHITOX solution were able to increase the pH from 4.2 to 7.05, a fact related with a metabolic shift resulting in an increase in nitrogen loss as ammonia. Our study point out the natural selection of the most resistant amphibian embryos both for pH or aluminum as well as the capacity of living organisms (as a population) to alter their chemical environment toward optimal conditions for their survival. As these facts occur at early life stages, it expand the concept that living organisms at ontogenic stages are biomarker of environmental signatures of the evolutionary process (Herkovits, 2006) to a global Onto-Evo concept which imply also the feedback mechanisms from living organisms to shape environmental conditions in a way that benefits them. PMID:26126231

  1. Intracellular pH Recovery Rates in Bivalve Hemocytes Following Exposure to Acidic Environmental Conditions

    NASA Astrophysics Data System (ADS)

    Croxton, A.; Wikfors, G. H.

    2012-12-01

    Predictions of ocean acidification effects upon carbonate shell-forming species have caused great concern for the future of shellfisheries. Nevertheless, bivalve species inhabiting an estuarine environment have evolved in these environments with fluctuating pH levels. Previous experimental studies conducted in our laboratory have demonstrated the ability of oyster hemocytes to maintain intracellular homeostasis under acidic external conditions. However, little information is known of this homeostatic mechanism in other molluscan shellfish species present in these same habitats. In the current study we propose to determine if other bivalve species of aquaculture interest also possess this intracellular regulation by applying an in vitro hemocyte pH-recovery assay, previously developed for oysters, on the northern quahog, Mercenaria mercenaria, the blue mussel, Mytilus edulis, and the softshell clam, Mya arenaria. Preliminary results from the determination of initial intracellular pH levels, the initial step in the rate recovery assay, indicated a pH range between 7.0-7.4. This range was comparable to initial values measured in oysters, and consistent with data reported in the current literature. The second step of the hemocyte pH-recovery assay involves exposing oyster hemocytes to acidic external conditions and measuring the ability of the hemocyte intracellular pH to maintain homeostasis (i.e. recovery rate). Results from the recovery rate process will be presented.

  2. Recruitment and development of back-reef communities in response to low pH conditions

    NASA Astrophysics Data System (ADS)

    Crook, E. D.; Paytan, A.; Rebolledo-Vieyra, M.; Hernandez, L.

    2012-12-01

    Coral reef ecosystems are currently threatened by the anthropogenic loading of CO2 to the oceans, resulting in a reduction of surface water pH. Model predictions and laboratory experiments indicate that as the pH of the oceans drops, the ability of corals and other calcifying organisms to build their carbonate skeletons will be significantly reduced. Here, we investigate community level responses to extreme conditions of natural ocean acidification in a reef lagoon at Puerto Morelos, Mexico. The lagoon experiences localized, continuously low pH (6.8 to 7.6) conditions in the vicinity of submarine springs. The close proximity of these organisms to those living under ambient conditions provides a unique opportunity to study the impacts of ocean acidification on community development in a natural setting. Organismal recruitment and subsequent individual and community succession were studied over a 14 month period at Puerto Morelos, Mexico. We address how ocean acidification may impact reef communities in a high CO2 world.

  3. Evaluation of infectious bursal disease virus stability at different conditions of temperature and pH.

    PubMed

    Rani, Surabhi; Kumar, Sachin

    2015-11-01

    Infectious bursal disease (IBD) is one of the highly pathogenic viral diseases of poultry. The disease poses a serious threat to the economy of many developing countries where agriculture serves as the primary source of national income. Infectious bursal disease virus (IBDV) belongs to the family Birnaviridae. The IBDV is well characterized to cause immunosuppression in poultry. The live attenuated vaccine is the only way to protect the chickens from IBDV infection. The ineffectiveness of vaccine is one of the major causes of IBDV outbreaks in field condition. In the present study, we discuss briefly about the biology of IBDV genome and its proteins under different conditions of temperature and pH in order to evaluate its infectivity under adverse physical conditions. Our results indicate that the IBDV is non-infective above 42 °C and unstable above 72 °C. However, the change in pH does not significantly contribute to the IBDV stability. The study will be useful in estimating an optimum storage condition for IBDV vaccines without causing any deterioration in its viability and effectiveness. PMID:26265229

  4. In vivo measurements of the internal pH of Hediste (Nereis) diversicolor (Annelida, Polychaeta) exposed to ambient sulphidic conditions using pH microelectrodes

    NASA Astrophysics Data System (ADS)

    Sommer, Stefan; Jahn, Andreas; Funke, Friederike; Brenke, Nils

    The effect of different ambient sulphide concentrations on the internal pH regime of Hediste (Nereis) diversicolor was studied under in vivo conditions using liquid membrane pH microelectrodes, a method which is new to marine sciences. As a case study, the hypothesis was tested whether organisms exposed to ambient sulphidic conditions are able to lower their internal pH which, in effect, would reduce sulphide influx into the animals and thus could represent an effective detoxification mechanism. It was shown that a significant lowering of the internal pH occurred within only 20min after adding sulphide. This pH lowering appeared to be dependent on the external sulphide concentration of the ambient medium and showed a saturation beyond a threshold level of about 130μM. It is discussed whether this sulphide-induced pH drop is an active regulatory mechanism and acts as an effective protection mechanism against sulphide during short-term exposures.

  5. Kinetic hindrance of Fe(II) oxidation at alkaline pH and in the presence of nitrate and oxygen in a facultative wastewater stabilization pond.

    PubMed

    Rockne, Karl J

    2007-02-15

    To better understand the dynamics of Fe2 + oxidation in facultative wastewater stabilization ponds, water samples from a three-pond system were taken throughout the period of transition from anoxic conditions with high aqueous Fe2 + levels in the early spring to fully aerobic conditions in late spring. Fe2 + levels showed a highly significant correlation with pH but were not correlated with dissolved oxygen (DO). Water column Fe2 + levels were modeled using the kinetic rate law for Fe2 + oxidation of Sung and Morgan.[5] The fitted kinetic coefficients were 5 +/- 3 x 10(6) M(- 2) atm(-1) min(-1); more than six orders of magnitude lower than typically reported. Comparison of four potential Fe redox couples demonstrated that the rhoepsilon was at least 3-4 orders of magnitude higher than would be expected based on internal equilibrium. Surprisingly, measured nitrate and DO (when present) were typically consistent with both nitrate (from denitrification) and DO levels (from aerobic respiration) predicted from equilibrium. Although the hydrous Fe oxide/FeCO3 couple was closest to equilibrium and most consistent with the observed pH dependence (in contrast to predicted lepidocrocite), Fe2 + oxidation is kinetically hindered, resulting in up to 10(7)-fold higher levels than expected based on both kinetic and equilibrium analyses. PMID:17365293

  6. Effect of chelating agent concentration in alkaline Cu CMP process under the condition of different applied pressures

    NASA Astrophysics Data System (ADS)

    Haobo, Yuan; Yuling, Liu; Mengting, Jiang; Weijuan, Liu; Guodong, Chen

    2014-11-01

    We propose the action mechanism of Cu chemical mechanical planarization (CMP) in an alkaline solution. Meanwhile, the effect of abrasive mass fraction on the copper removal rate and within wafer non-uniformity (WIWNU) have been researched. In addition, we have also investigated the synergistic effect between the applied pressure and the FA/O chelating agent on the copper removal rate and WIWNU in the CMP process. Based on the experimental results, we chose several concentrations of the FA/O chelating agent, which added in the slurry can obtain a relatively high removal rate and a low WIWNU after polishing, to investigate the planarization performance of the copper slurry under different applied pressure conditions. The results demonstrate that the copper removal rate can reach 6125 Å/min when the abrasive concentration is 3 wt.%. From the planarization experimental results, we can see that the residual step height is 562 Å after excessive copper of the wafer surface is eliminated. It denotes that a good polishing result is acquired when the FA/O chelating agent concentration and applied pressure are fixed at 3 vol% and 1 psi, respectively. All the results set forth here are very valuable for the research and development of alkaline slurry.

  7. Analysis of l-DOPA-derived melanin and a novel degradation product formed under alkaline conditions.

    PubMed

    Omotani, Hidetoshi; Yasuda, Makoto; Ishii, Ritsuko; Ikarashi, Tsukasa; Fukuuchi, Tomoko; Yamaoka, Noriko; Mawatari, Ken-Ichi; Kaneko, Kiyoko; Nakagomi, Kazuya

    2016-06-01

    When the therapeutic drug l-DOPA, which is used to treat Parkinson's disease, is combined with magnesium oxide (MgO), a formulation change produces a dark substance. Infrared spectroscopy reveals that this substance is melanin. After allowing the l-DOPA and MgO mixture to stand, the l-DOPA content decreases significantly, and a new degradation product (the final degradation product of l-DOPA, FDP-D) is generated. Formation of this product requires a solution with a pH of >10, and the presence of MgO is not necessary. FDP-D is not produced by tyrosinase decomposition of l-DOPA and is therefore not a melanin-related compound. Pure FDP-D is isolated by adjusting the l-DOPA solution to pH 10 with ammonium hydroxide, allowing it to stand for 3 days at room temperature, adding trifluoroacetic acid (TFA), filtering the precipitate, and separating the supernatant with high-performance liquid chromatography (HPLC). Mass spectrometry indicates that the isolated FDP-D has a molecular formula of C9H9NO7. On the basis of NMR analysis ((1)H NMR, (13)C NMR, DEPT, H-H COSY, HMQC, and HMBC), FDP-D appears to be a substance with the novel structure 7a-hydroxy-5-oxo-1,2,3,5,7,7a-hexahydropyrano [3,4-b]pyrrole-2,7-dicarboxylic acid. PMID:26999318

  8. Physiological functions at single-cell level of Lactobacillus spp. isolated from traditionally fermented cabbage in response to different pH conditions.

    PubMed

    Olszewska, Magdalena A; Kocot, Aleksandra M; Łaniewska-Trokenheim, Łucja

    2015-04-20

    Changes in pH are significant environmental stresses that may be encountered by lactobacilli during fermentation processes or passage through the gastrointestinal tract. Here, we report the cell response of Lactobacillus spp. isolated from traditionally fermented cabbage subjected to acid/alkaline treatments at pH 2.5, 7.4 and 8.1, which represented pH conditions of the gastrointestinal tract. Among six isolates, four species of Lactobacillus plantarum and two of Lactobacillus brevis were identified by fluorescence in situ hybridization (FISH). The fluorescence-based strategy of combining carboxyfluorescein diacetate (CFDA) and propidium iodine (PI) into a dual-staining assay was used together with epifluorescence microscopy (EFM) and flow cytometry (FCM) for viability assessment. The results showed that the cells maintained esterase activity and membrane integrity at pH 8.1 and 7.4. There was also no loss of culturability as shown by plate counts. In contrast, the majority of 2.5 pH-treated cells had a low extent of esterase activity, and experienced membrane perturbation. For these samples, an extensive loss of culturability was demonstrated. Comparison of the results of an in situ assessment with that of the conventional culturing method has revealed that although part of the stressed population was unable to grow on the growth media, it was deemed viable using a CFDA/PI assay. However, there was no significant change in the cell morphology among pH-treated lactobacilli populations. These analyses are expected to be useful in understanding the cell response of Lactobacillus strains to pH stress and may facilitate future investigation into functional and industrial aspects of this response. PMID:25747276

  9. Bridging the Reef gaps: first evidence for corals surviving under low pH conditions

    NASA Astrophysics Data System (ADS)

    Tchernov, D.; Fine, M.

    2007-12-01

    Following two major extinction events, the late Permian and Triassic/Jurassic, there is a long absence of corals from the geological record followed by a recurrence coral fossils. This unusual disappearance and reappearance, referred to commonly as 'reef gaps', was explained as a failure in sampling effort, and/or the movement of these species into geographic 'refugia' that have not been found. Because the phylogeny of recent corals suggests their origin in the pre-Permian-extinction , an alternative explanation for reef gaps hypothesized that corals have a means of alternating between soft bodies and fossilizing forms. This study supports this hypothesis. Thirty coral fragments from 5 coral colonies of the scleractinian Mediterranean corals Oculina patagonica (encrusting) and Madracis pharencis (bulbous) were subjected to pH 7.4-7.6 (in accordance with the pH projected by the IPCC for the year 2300) and 30 fragments to pH 8.0-8.3 (ambient) over a period of 12 months. 100% of the colonies in the experiment and 90% of all polyps survived to the end the experiment. The corals grown in acidified conditions, where skeleton-building conditions were absent, maintained basic life functions as a solitary skeleton-less ecophenotype resembling a sea anemone. On an evolutionary scale, these results provide a possible explanation to coral survival over major extinction events such as the Permian/Triassic and Triassic/Jurassic events. It is important to note that these results only demonstrate that corals can persist as soft bodied ecophoenotypes, but the loss of reef framework has major ramifications to the entire structure and function of coral reef ecosystems, ultimately impacting the services they provide to human society.

  10. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions.

    PubMed

    Marshall, Timothy A; Morris, Katherine; Law, Gareth T W; Mosselmans, J Frederick W; Bots, Pieter; Parry, Stephen A; Shaw, Samuel

    2014-10-21

    Technetium incorporation into magnetite and its behavior during subsequent oxidation has been investigated at high pH to determine the technetium retention mechanism(s) on formation and oxidative perturbation of magnetite in systems relevant to radioactive waste disposal. Ferrihydrite was exposed to Tc(VII)(aq) containing cement leachates (pH 10.5-13.1), and crystallization of magnetite was induced via addition of Fe(II)aq. A combination of X-ray diffraction (XRD), chemical extraction, and X-ray absorption spectroscopy (XAS) techniques provided direct evidence that Tc(VII) was reduced and incorporated into the magnetite structure. Subsequent air oxidation of the magnetite particles for up to 152 days resulted in only limited remobilization of the incorporated Tc(IV). Analysis of both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data indicated that the Tc(IV) was predominantly incorporated into the magnetite octahedral site in all systems studied. On reoxidation in air, the incorporated Tc(IV) was recalcitrant to oxidative dissolution with less than 40% remobilization to solution despite significant oxidation of the magnetite to maghemite/goethite: All solid associated Tc remained as Tc(IV). The results of this study provide the first direct evidence for significant Tc(IV) incorporation into the magnetite structure and confirm that magnetite incorporated Tc(IV) is recalcitrant to oxidative dissolution. Immobilization of Tc(VII) by reduction and incorporation into magnetite at high pH and with significant stability upon reoxidation has clear and important implications for limiting technetium migration under conditions where magnetite is formed including in geological disposal of radioactive wastes. PMID:25236360

  11. Speciation and Release Kinetics of Cadmium in an Alkaline Paddy Soil Under Various Flooding Periods and Draining Conditions

    SciTech Connect

    S Khaokaew; R Chaney; G Landrot; M Ginder-Vogel; D Sparks

    2011-12-31

    This study determined Cd speciation and release kinetics in a Cd-Zn cocontaminated alkaline paddy soil, under various flooding periods and draining conditions, by employing synchrotron-based techniques, and a stirred-flow kinetic method. Results revealed that varying flooding periods and draining conditions affected Cd speciation and its release kinetics. Linear least-squares fitting (LLSF) of bulk X-ray absorption fine structure (XAFS) spectra of the air-dried, and the 1 day-flooded soil samples, showed that at least 50% of Cd was bound to humic acid. Cadmium carbonates were found as the major species at most flooding periods, while a small amount of cadmium sulfide was found after the soils were flooded for longer periods. Under all flooding and draining conditions, at least 14 mg/kg Cd was desorbed from the soil after a 2-hour desorption experiment. The results obtained by micro X-ray fluorescence ({mu}-XRF) spectroscopy showed that Cd was less associated with Zn than Ca, in most soil samples. Therefore, it is more likely that Cd and Ca will be present in the same mineral phases rather than Cd and Zn, although the source of these two latter elements may originate from the same surrounding Zn mines in the Mae Sot district.

  12. Hydrolysis and acidification of dewatered sludge under mesophilic, thermophilic and extreme thermophilic conditions: effect of pH.

    PubMed

    Liu, Xiaoguang; Dong, Bin; Dai, Xiaohu

    2013-11-01

    This study investigated the effect of pH (uncontrolled, 8.0, 10.0 and 12.0) and temperature (mesophilic, thermophilic and extreme thermophilic) on hydrolysis and acidification of dewatered sludge in 7-day batch fermentation experiment. Solublization of COD, protein and carbohydrates as well as concentration and composition of VFAs were investigated. Sludge hydrolysis was enhanced with higher pH and temperature. The maximum SCOD, soluble protein and carbohydrates was observed at pH 12.0 at extreme thermophilic condition. The maximum VFAs yield was obtained at thermophilic and was 2.15 times that at mesophilic condition, but it took more time to reach the maximum. The VFAs consisted of acetic, propionic, iso-butyric, n-butyric, iso-valeric, and n-valeric acids, and acetic acid was the prevalent product in most cases except for uncontrolled pH and pH 8.0 at mesophilic condition. The methane production was as follows: pH 8.0>pH 10.0>uncontrolled (0.015)>pH 12.0; mesophilic>thermophilic>extreme thermophilic. PMID:24077155

  13. Arsenic in an Alkaline AMD Treatment Sludge: Characterization and Stability Under Prolonged Anoxic Conditions

    SciTech Connect

    Beauchemin, S.; Fiset, J; Poirier, G; Ablett, J

    2010-01-01

    Lime treatment of acid mine drainage (AMD) generates large volumes of neutralization sludge that are often stored under water covers. The sludge consists mainly of calcite, gypsum and a widespread ferrihydrite-like Fe phase with several associated species of metal(loid) contaminants. The long-term stability of metal(loid)s in this chemically ill-defined material remains unknown. In this study, the stability and speciation of As in AMD sludge subjected to prolonged anoxic conditions is determined. The total As concentration in the sludge is 300 mg kg{sup -1}. In the laboratory, three distinct water cover treatments were imposed on the sludge to induce different redox conditions (100%N{sub 2}, 100%N{sub 2} + glucose, 95%N{sub 2}:5%H{sub 2}). These treatments were compared against a control of oxidized, water-saturated sludge. Electron micro-probe (EMP) analysis and spatially resolved synchrotron X-ray fluorescence (SXRF) results indicate that As is dominantly associated with Fe in the sludge. In all treatments and throughout the experiment, measured concentrations of dissolved As were less than 5 {micro}g L{sup -1}. Dissolved Mn concentration in the N{sub 2} + glucose treatment increased significantly compared to other treatments. Manganese and As K-edge X-ray absorption near edge structure spectroscopy (XANES) analyses showed that Mn was the redox-active element in the solid-phase, while As was stable. Arsenic(V) was still the dominant species in all water-covered sludges after 9 months of anoxic treatments. In contrast, Mn(IV) in the original sludge was partially reduced into Mn(II) in all water-covered sludges. The effect was most pronounced in the N{sub 2} + glucose treatment, suggesting microbial reduction. Micro-scale SXRF and XANES analysis of the treated sludge showed that Mn(II) accumulated in areas already enriched in Fe and As. Overall, the study shows that AMD sludges remain stable under prolonged anoxic conditions. External sources of chemical reductants

  14. Deletions of Endocytic Components VPS28 and VPS32 Affect Growth at Alkaline pH and Virulence through both RIM101-Dependent and RIM101-Independent Pathways in Candida albicans

    PubMed Central

    Cornet, Muriel; Bidard, Frédérique; Schwarz, Patrick; Da Costa, Grégory; Blanchin-Roland, Sylvie; Dromer, Françoise; Gaillardin, Claude

    2005-01-01

    Ambient pH signaling involves a cascade of conserved Rim or Pal products in ascomycetous yeasts or filamentous fungi, respectively. Recent evidences in the fungi Aspergillus nidulans, Saccharomyces cerevisiae, Yarrowia lipolytica, and Candida albicans suggested that components of endosomal sorting complexes required for transport (ESCRT) involved in endocytic trafficking were needed for signal transduction along the Rim pathway. In this study, we confirm these findings with C. albicans and show that Vps28p (ESCRT-I) and Vps32p/Snf7p (ESCRT-III) are required for the transcriptional regulation of known targets of the Rim pathway, such as the PHR1 and PHR2 genes encoding cell surface proteins, which are expressed at alkaline and acidic pH, respectively. We additionally show that deletion of these two VPS genes, particularly VPS32, has a more drastic effect than a RIM101 deletion on growth at alkaline pH and that this effect is only partially suppressed by expression of a constitutively active form of Rim101p. Finally, in an in vivo mouse model, both vps null mutants were significantly less virulent than a rim101 mutant, suggesting that VPS28 and VPS32 gene products affect virulence both through Rim-dependent and Rim-independent pathways. PMID:16299290

  15. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  16. Salt- and alkaline-tolerance are linked in Acacia.

    PubMed

    Bui, Elisabeth N; Thornhill, Andrew; Miller, Joseph T

    2014-07-01

    Saline or alkaline soils present a strong stress on plants that together may be even more deleterious than alone. Australia's soils are old and contain large, sometimes overlapping, areas of high salt and alkalinity. Acacia and other Australian plant lineages have evolved in this stressful soil environment and present an opportunity to understand the evolution of salt and alkalinity tolerance. We investigate this evolution by predicting the average soil salinity and pH for 503 Acacia species and mapping the response onto a maximum-likelihood phylogeny. We find that salinity and alkalinity tolerance have evolved repeatedly and often together over 25 Ma of the Acacia radiation in Australia. Geographically restricted species are often tolerant of extreme conditions. Distantly related species are sympatric in the most extreme soil environments, suggesting lack of niche saturation. There is strong evidence that many Acacia have distributions affected by salinity and alkalinity and that preference is lineage specific. PMID:25079493

  17. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    PubMed

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin )]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26467547

  18. Strong-Coupled Cobalt Borate Nanosheets/Graphene Hybrid as Electrocatalyst for Water Oxidation Under Both Alkaline and Neutral Conditions.

    PubMed

    Chen, Pengzuo; Xu, Kun; Zhou, Tianpei; Tong, Yun; Wu, Junchi; Cheng, Han; Lu, Xiuli; Ding, Hui; Wu, Changzheng; Xie, Yi

    2016-02-12

    Developing highly active catalysts for the oxygen evolution reaction (OER) is of paramount importance for designing various renewable energy storage and conversion devices. Herein, we report the synthesis of a category of Co-Pi analogue, namely cobalt-based borate (Co-Bi ) ultrathin nanosheets/graphene hybrid by a room-temperature synthesis approach. Benefiting from the high surface active sites exposure yield, enhanced electron transfer capacity, and strong synergetic coupled effect, this Co-Bi NS/G hybrid shows high catalytic activity with current density of 10 mA cm(-2) at overpotential of 290 mV and Tafel slope of 53 mV dec(-1) in alkaline medium. Moreover, Co-Bi NS/G electrocatalysts also exhibit promising performance under neutral conditions, with a low onset potential of 235 mV and high current density of 14.4 mA cm(-2) at 1.8 V, which is the best OER performance among well-developed Co-based OER electrocatalysts to date. Our finding paves a way to develop highly active OER electrocatalysts. PMID:26757358

  19. Growth and condition of bluegills in Wisconsin lakes: effects of population density and lake pH

    USGS Publications Warehouse

    Wiener, J.G.; Hanneman, W.R.

    1982-01-01

    Growth and condition of bluegills epomis macrochirusfrom five acidic lakes (pH 5.1-6.0) and six circumneutral lakes (pH 6.7-7.5) in northern Wisconsin were compared. Although mean condition factors and mean back-calculated total lengths at ages 1 to 4 varied significantly among lakes, the differences were not related to lake pH. Rather, the ranks of mean condition factors and back-calculated lengths at ages 2, 3, and 4 were negatively correlated with relative density of bluegills among the lakes. Because of the dominating effect of density, growth rates and condition factors are not useful as indicators of chronic, pH-related stress on bluegill populations.

  20. Catalysis of Glyceraldehyde Synthesis by Primary or Secondary Amino Acids Under Prebiotic Conditions as a Function of pH

    NASA Astrophysics Data System (ADS)

    Breslow, Ronald; Ramalingam, Vijayakumar; Appayee, Chandrakumar

    2013-10-01

    The synthesis of an excess of D-glyceraldehyde by coupling glycolaldehyde with formaldehyde under prebiotic conditions is catalyzed by L amino acids having primary amino groups at acidic pH's, but at neutral or higher pH's they preferentially form L-glyceraldehyde. L Amino acids having secondary amino groups, such as proline, have the reverse preferences, affording excess L-glyceraldehyde at low pH but excess D-glyceraldehyde at higher pHs. Detailed mechanistic proposals make these preferences understandable. The relevance of these findings to the origin of D sugars on prebiotic Earth is described.

  1. Net alkalinity and net acidity 1: Theoretical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    Net acidity and net alkalinity are widely used, poorly defined, and commonly misunderstood parameters for the characterization of mine drainage. The authors explain theoretical expressions of 3 types of alkalinity (caustic, phenolphthalein, and total) and acidity (mineral, CO2, and total). Except for rarely-invoked negative alkalinity, theoretically defined total alkalinity is closely analogous to measured alkalinity and presents few practical interpretation problems. Theoretically defined "CO 2-acidity" is closely related to most standard titration methods with an endpoint pH of 8.3 used for determining acidity in mine drainage, but it is unfortunately named because CO2 is intentionally driven off during titration of mine-drainage samples. Using the proton condition/mass- action approach and employing graphs to illustrate speciation with changes in pH, the authors explore the concept of principal components and how to assign acidity contributions to aqueous species commonly present in mine drainage. Acidity is defined in mine drainage based on aqueous speciation at the sample pH and on the capacity of these species to undergo hydrolysis to pH 8.3. Application of this definition shows that the computed acidity in mg L -1 as CaCO3 (based on pH and analytical concentrations of dissolved FeII, FeIII, Mn, and Al in mg L -1):aciditycalculated=50{1000(10-pH)+[2(FeII)+3(FeIII)]/56+2(Mn)/ 55+3(Al)/27}underestimates contributions from HSO4- and H+, but overestimates the acidity due to Fe3+ and Al3+. However, these errors tend to approximately cancel each other. It is demonstrated that "net alkalinity" is a valid mathematical construction based on theoretical definitions of alkalinity and acidity. Further, it is shown that, for most mine-drainage solutions, a useful net alkalinity value can be derived from: (1) alkalinity and acidity values based on aqueous speciation, (2) measured alkalinity minus calculated acidity, or (3) taking the negative of the value obtained in a

  2. A study of the efficiency of edible oils degraded in alkaline conditions by Pseudomonas aeruginosa SS-219 and Acinetobacter sp. SS-192 bacteria isolated from Japanese soil.

    PubMed

    Sugimori, Daisuke; Utsue, Tomohiro

    2012-03-01

    High lipid concentration contained in wastewater inhibits the activity of microorganisms in biological wastewater treatment systems such as activated sludge and methane fermentation. To reduce the inhibitory effects, microorganisms capable of efficiently degrading edible oils were screened from various environmental sources. From Japanese soil, we isolated 2 bacteria strains with high degradation abilities at an alkaline pH without consumption of biological oxygen demand (BOD) constituents. Acinetobacter sp. strain SS-192 and Pseudomonas aeruginosa strain SS-219 degraded 77.5 ± 0.6% and 89.5 ± 1.5%, respectively, of 3,000 ppm of mixed oil consisting of salad oil/lard/beef tallow (1/1/1, w/w/w) at 37°C and pH 9.0 in 24 h. Efficient degradation by the two strains occurred at pH 8-9 and 25-40°C. Strain SS-219 degraded lipids even at pH 3. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-192 was 79.9 ± 2.6%, 63.6 ± 1.9%, and 70.1 ± 1.2%, respectively, during a 24-h cultivation. The degradation rate of 3,000 ppm of salad oil, lard, and beef tallow by strain SS-219 was 82.3 ± 2.1%, 71.9 ± 2.2%, and 71.0 ± 1.1%, respectively, during a 24-h cultivation. After mixed oil degradation by both strains, the BOD value of the cell culture increased from 2,100 ppm to 3,200-4,000 ppm. The fact that neither strain utilizes BOD ingredients will be beneficial to pretreatment of methane fermentation systems such as upflow anaerobic sludge blanket reactors. In addition, the growth of usual heterotrophic microorganisms utilizing soluble BOD can be suppressed under alkaline pH. PMID:22805803

  3. Conditions of accumulation of radioactive metals in the process of differentiation of ultrabasic alkaline-carbonatite rock associations

    NASA Astrophysics Data System (ADS)

    Kogarko, L. N.

    2014-07-01

    The distribution of radioactive elements in alkaline rocks from Polar Siberia and Ukraine shows that U and Th are markedly concentrated in carbonatite complex and nepheline syenite as final products of magma fractionation. Peralkaline nepheline syenites from Polar Siberia are characterized by very high contents of radioactive elements, which are close to the economic level. Radioactive elements are also concentrated in rocks of the carbonatite complex. For example, some soevites contain up to 294 × 10-4%U and 916 × 10-4% Th. In late dolomite carbonatites, the contents of radioactive elements are appreciably lower. The Th/U ratio in alkaline rocks of Polar Siberia is close to the chondrite value in primary high-Mg rocks and increases in late derivatives: phoscorite, calcite and dolomite carbonatites. The main amount of radioactive elements is contained in rare-metal accessory minerals: perovskite, pyrochlore, calzirtite, and apatite. Rock-forming minerals are distinguished by very low concentrations of radioactive elements. In alkaline series of the Chernigovka massif (Ukraine), U and Th also accumulate in the course of crystal fractionation, especially in phoscorites from the carbonatite complex. Mantle xenoliths and alkaline rocks from Ukraine reveal uranium specialization. Most likely, the discrepancy in fractionation of radioactive elements between Polar Siberia and Ukraine is caused by different geodynamic regimes of these provinces. The Mesozoic alkaline magmatism of Polar Siberia is a part of the Siberian superplume, whereas the Proterozoic alkaline complex in Ukraine is related to subduction of the oceanic crust.

  4. Field screening of cowpea cultivars for alkaline soil tolerance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  5. Yield performance of cowpea genotypes grown in alkaline soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cowpea or Southernpea [Vigna unguiculata (L.) Walp.] is an important legume crop used as a feed for livestock, as a green vegetable and for consumption of its dry beans which provide 22-25% protein. The crop is very sensitive to alkaline soil conditions. When grown at soil pH of 7.5 or higher, cowp...

  6. Use of palladium touch microelectrodes under field conditions for in vivo assessment of dental plaque pH in children.

    PubMed

    Scheie, A A; Fejerskov, O; Lingström, P; Birkhed, D; Manji, F

    1992-01-01

    The aim of this study was to assess the applicability of palladium touch microelectrodes, connected to battery-run pH meters, for in vivo plaque pH measurements in children. The pH was assessed in 20 7-year-old and in 19 14-year-old caries-active and caries-inactive rural Kenyan children. The resting pH was measured at non-carious interproximal and occlusal sites and in open dentine cavities. Independent repeated measurements were performed at given sites at intervals of 15 s and 5 min and on different days. The resting plaque pH varied widely among the children, and there was no significant difference between caries-active and caries-inactive groups. The most striking feature was the considerable erratic fluctuations of pH at a given site with time, both in resting and in sucrose-challenged plaque. These fluctuations were sensitively recorded by palladium touch microelectrodes. After a sucrose rinse, not all sites in the same mouth behaved in a similar fashion, and thus the classical 'Stephan curve' was not always apparent. In conclusion, the palladium touch microelectrodes are highly applicable for plaque pH measurements in children, even under extreme field conditions. PMID:1568236

  7. Inhibition Effect of pH on the Hatchability of Fasciola Miracidia under Laboratory Conditions

    PubMed Central

    YAKHCHALI, Mohammad; BAHRAMNEJAD, Kia

    2016-01-01

    Background: Fasciolosis, caused by the liver flukes of the genus Fasciola, is one of the most prevalent diseases of domestic livestock and human throughout the world, imposing considerable economic losses. The present study was aimed to assess the effects of different pH values on hatching rate of Fasciola miracidia. Methods: The flukes were isolated from the infected livers of the slaughtered ruminants at the abattoir of Urmia City, Iran, crushed thoroughly and sieved for isolation of the Fasciola eggs. The eggs were washed up several times by PBS (0.01N, pH 7.2). They were incubated at different pH values of 7±0.1 (control) and 3–9.5 (treatments) at 28°C for 16 days. Results: The maximum hatching rate was observed at pH 7 (14.93±0.65%), while no miracidia were hatched at pH 3 and/or pH 9–9.5. There were significant differences between the hatching rate of the treatments and that of the control group. Conclusion: Water pH is proven to be a crucial factor affecting the life cycle of Fasciola and its epidemiology. PMID:27095966

  8. Signs of adaptation to local pH conditions across an environmental mosaic in the California Current Ecosystem.

    PubMed

    Pespeni, M H; Chan, F; Menge, B A; Palumbi, S R

    2013-11-01

    Little is known about the potential for rapid evolution in natural populations in response to the high rate of contemporary climatic change. Organisms that have evolved in environments that experience high variability across space and time are of particular interest as they may harbor genetic variation that can facilitate evolutionary response to changing conditions. Here we review what is known about genetic capacity for adaptation in the purple sea urchin, Strongylocentrotus purpuratus, a species that has evolved in the upwelling ecosystem of the Northeast Pacific Ocean. We also present new results testing for adaptation to local pH conditions in six populations from Oregon to southern California. We integrate data on 19,493 genetic polymorphisms with data on local pH conditions. We find correlations between allele frequency and rank average time spent at pH <7.8 in 318 single-nucleotide polymorphisms in 275 genes. Two of the genes most correlated with local pH are a protein associated with the cytoskeleton and a proton pump, with functional roles in maintenance of cell volume and with internal regulation of pH, respectively. Across all loci tested, high correlations with local pH were concentrated in genes related to transport of ions, biomineralization, lipid metabolism, and cell-cell adhesion, functional pathways important for maintaining homeostasis at low pH. We identify a set of seven genes as top candidates for rapid evolutionary response to acidification of the ocean. In these genes, the putative low-pH-adapted allele, based on allele frequencies in natural populations, rapidly increases in frequency in purple sea urchin larvae raised at low pH. We also found that populations from localities with high pH show a greater change in allele frequency toward putative low-pH-adapted alleles under experimental acidification, compared with low-pH populations, suggesting that both natural and artificial selection favor the same alleles for response to low pH. These

  9. Measurement of secretory vesicle pH reveals intravesicular alkalinization by vesicular monoamine transporter type 2 resulting in inhibition of prohormone cleavage

    PubMed Central

    Blackmore, Colin G; Varro, Andrea; Dimaline, Rod; Bishop, Lisa; Gallacher, David V; Dockray, Graham J

    2001-01-01

    The acidic interior of neuroendocrine secretory vesicles provides both an energy gradient for amine-proton exchangers (VMATs) to concentrate small transmitter molecules, for example catecholamines, and an optimal pH for the prohormone convertases which cleave hormone precursors. There is evidence that VMAT activity modulates prohormone cleavage, but in the absence of measurements of pH in secretory vesicles in intact cells, it has not been possible to establish whether these effects are attributable to raised intravesicular pH due to proton transport through VMATs. Clones were generated of the hamster insulinoma cell line HIT-T15 expressing a pH-sensitive form of green fluorescent protein (GFP-F64L/S65T) targeted to secretory vesicles, with and without co-expression of VMAT2. In order to study prohormone cleavage, further clones were generated that expressed preprogastrin with and without co-expression of VMAT2. Confocal microscopy of GFP fluorescence indicated that the pH in the secretory vesicles was 5.6 in control cells, compared with 6.6 in cells expressing VMAT2; the latter was reduced to 5.8 by the VMAT inhibitor reserpine. Using a pulse-chase labelling protocol, cleavage of 34-residue gastrin (G34) was found to be inhibited by co-expression with VMAT2, and this was reversed by reserpine. Similar effects on vesicle pH and G34 cleavage were produced by ammonium chloride. We conclude that VMAT expression confers the linked abilities to store biogenic amines and modulate secretory vesicle pH over a range influencing prohormone cleavage and therefore determining the identity of regulatory peptide secretory products. PMID:11251044

  10. The Effects of Culture Conditions on the Glycosylation of Secreted Human Placental Alkaline Phosphatase Produced in Chinese Hamster Ovary Cells

    PubMed Central

    Nam, Jong Hyun; Zhang, Fuming; Ermonval, Myriam; Linhardt, Robert J.; Sharfstein, Susan T.

    2009-01-01

    The effects of different culture conditions, suspension and microcarrier culture and temperature reduction on the structures of N-linked glycans attached to secreted human placental alkaline phosphatase (SEAP) were investigated for CHO cells grown in a controlled bioreactor. Both mass spectrometry and anion-exchange chromatography were used to probe the N-linked glycan structures and distribution. Complex-type glycans were the dominant structures with small amounts of high mannose glycans observed in suspension and reduced temperature cultures. Biantennary glycans were the most common structures detected by mass spectrometry, but triantennary and tetraantennary forms were also detected. The amount of sialic acid present was relatively low, approximately 0.4 mol sialic acid/mol SEAP for suspension cultures. Microcarrier cultures exhibited a decrease in productivity compared with suspension culture due to a decrease in both maximum viable cell density (15-20%) and specific productivity (30-50%). In contrast, a biphasic suspension culture in which the temperature was reduced at the beginning of the stationary phase from 37 to 33°C, showed a 7% increase in maximum viable cell density, a 62% increase in integrated viable cell density, and a 133% increase in specific productivity, leading to greater than threefold increase in total productivity. Both microcarrier and reduced temperature cultures showed increased sialylation and decreased fucosylation when compared to suspension culture. Our results highlight the importance of glycoform analysis after process modification as even subtle changes (e.g., changing from one microcarrier to another) may affect glycan distributions. PMID:18553404

  11. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions.

    PubMed

    Jiang, Shasha; Huang, Longbin; Nguyen, Tuan A H; Ok, Yong Sik; Rudolph, Victor; Yang, Hong; Zhang, Dongke

    2016-01-01

    Biochar adsorption may lower concentrations of soluble metals in pore water of sulphidic Cu/Pb-Zn mine tailings. Unlike soil, high levels of salinity and soluble cations are present in tailing pore water, which may affect biochar adsorption of metals from solution. In the present study, removal of soluble copper (Cu) and zinc (Zn) ions by soft- (pine) and hard-wood (jarrah) biochars pyrolysed at high temperature (about 700 °C) was evaluated under typical ranges of pH and salinity conditions resembling those in pore water of sulphidic tailings, prior to their direct application into the tailings. Surface alkalinity, cation exchange capacity, and negative surface charge of biochars affected Cu and Zn adsorption capacities. Quantitative comparisons were provided by fitting the adsorption equilibrium data with either the homogeneous or heterogeneous surface adsorption models (i.e. Langmuir and Freundlich, respectively). Accordingly, the jarrah biochar showed higher Cu and Zn adsorption capacity (Qmax=4.39 and 2.31 mg/g, respectively) than the softwood pine biochar (Qmax=1.47 and 1.00 mg/g). Copper and Zn adsorption by the biochars was favoured by high pH conditions under which they carried more negative charges and Cu and Zn ions were predicted undergoing hydrolysis and polymerization. Within the tested range, salinity had relatively weak effects on the adsorption, which perhaps influenced the surface charge and induced competition for negative charged sites between Na(+) and exchangeable Ca(2+) and/or heavy metal ions. Large amounts of waste wood/timber at many mine sites present a cost-effective opportunity to produce biochars for remediation of sulphidic tailings and seepage water. PMID:26206747

  12. Evaluating the role of metal ions in the bathochromic and hyperchromic responses of cyanidin derivatives in acidic and alkaline pH.

    PubMed

    Sigurdson, G T; Robbins, R J; Collins, T M; Giusti, M M

    2016-10-01

    In many food products, colorants derived from natural sources are increasingly popular due to consumer demand. Anthocyanins are one class of versatile and abundant naturally occurring chromophores that produce different hues in nature, especially with metal ions and other copigments assisting. The effects of chelation of metal ions (Mg(2+), Al(3+), Cr(3+), Fe(3+), and Ga(3+)) in factorial excesses to anthocyanin concentration (0-500×) on the spectral characteristics (380-700nm) of cyanidin and acylated cyanidin derivatives were evaluated to better understand the color evolution of anthocyanin-metal chelates in pH 3-8. In all pH, anthocyanins exhibited bathochromic and hyperchromic shifts. Largest bathochromic shifts most often occurred in pH 6; while largest hyperchromic shifts occurred in pH 5. Divalent Mg(2+) showed no observable effect on anthocyanin color while trivalent metal ions caused bathochromic shifts and hue changes. Generally, bathochromic shifts on anthocyanins were greatest with more electron rich metal ions (Fe(3+)≈Ga(3+)>Al(3+)>Cr(3+)). PMID:27132820

  13. Effect of pH and temperature on stability and kinetics of novel extracellular serine alkaline protease (70 kDa).

    PubMed

    Bhunia, Biswanath; Basak, Bikram; Mandal, Tamal; Bhattacharya, Pinaki; Dey, Apurba

    2013-03-01

    A novel extracellular serine protease (70 kDa by SDS-PAGE) was purified and characterized. This enzyme retained more than 93% of its initial activity after preincubation for 30 min at 37 °C in the presence of 25% (v/v) tested organic solvents and showed feather degradation activity. The purified enzyme was deactivated at various combinations of pH and temperature to examine the interactive effect of them on enzyme activity. The deactivation process was modeled as first-order kinetics and the deactivation rate constant (k(d)) was found to be minimum at pH 9 and 37 °C. The kinetic analysis of enzyme over a range of pH values indicated two pK values at 6.21 and at 10.92. The lower pK value was likely due to the catalytic histidine in the free enzyme and higher pK value likely reflected deprotonation of the proline moiety of the substrate but ionization of the active site serine is another possibility. Inhibition kinetic showed that enzyme is serine protease because enzyme was competitively inhibited by antipain and aprotinin as these compounds are known to be competitive inhibitors of serine protease. The organic solvent, thermal and pH tolerances of enzyme suggested that it may have potential for use as a biocatalyst in industry. PMID:23219732

  14. Abiotic peptide synthesis of glycine adsorbed on saponite at various pH and dry-thermal conditions

    NASA Astrophysics Data System (ADS)

    Mizuno, Y.; Fuchida, S.; Masuda, H.

    2012-12-01

    Amino acids are the most fundamental substances of life, and the stability of amino acids and the polymerization process on the primitive earth are important to the origin of life. The heat of submarine hydrothermal systems would be the driving force of amino acids polymerization, and the clay minerals in the system may be a field of polymerization. The polymerization of amino acids must be promoted under dry condition, since it is dehydration reaction, which is promoted at high pressure and temperature condition appearing in deep sediments. Adsorption behavior of amino acids on clay minerals depends on pH. In hydrothermal, there are various pH conditions and it would be effective in amino acids behavior. To observe the role of clay minerals and effect of pH on peptide formation under dehydration environments, glycine (Gly) was heated with saponite at 150 degree C, and observed the peptization reaction. Gly was adsorbed on saponite in Gly solutions (100mM), of which the pH was controlled at 3, 8, 12 by HCl and NaOH. After drying in a vacuum oven, the saponite was heated at 150 degree C for 72 hrs. The concentrations of DKP, GlyGly and GlyGlyGly remaining in the saponite controlled at pH3 were 193.39μmol/g, 28.32μmol/g and 22.13μmol/g respectively. Those controlled at pH8 and 12 were 141.22μmol/g, 25.00μmol/g and 18.82μmol/g, and the concentrations of DKP, GlyGly in the saponite controlled at pH12 were 2.47μmol/g, 43.07μmol/g and GlyGlyGly was not detected. The observation indicated that the DKP formation is promoted under acidic condition rather than neutral. GlyGly is abundantly formed under basic condition, although the following peptization to form the trimer does not occur. Polymerization of tri and/or the heavier glycine would be passed through the formation of cyclic peptides. Thus, the condensation of DKP must be important for the polymerization of amino acids as the precursor of life. Also, the pH, acidic to neutral condition, must be important to

  15. Enhanced reductive dechlorination of tetrachloroethene by nano-sized mackinawite with cyanocobalamin in a highly alkaline condition.

    PubMed

    Kim, Sangwoo; Park, Taehyung; Lee, Woojin

    2015-03-15

    In this study, we characterize the reductive dechlorination of tetrachloroethene (PCE) by nano-sized mackinawite (nFeS) with cobalamin (Cbl(III)) at a high pH and investigate the effects of environmental factors, including the concentrations of the target contaminant, reductant, and catalyst and suspension ions on the dechlorination kinetics of PCE. Ninety five percent of the PCE was degraded by nFeS with Cbl(III) in 15 h. Cyclic voltammetry conducted with regard to the reductive dechlorination showed a higher redox potential of mackinawite under a high-pH condition (-1.01 V), suggesting that the oxidation state of the central cobalt ion in the cobalamin could be reduced to Cbl(I). The change of cobalamin species on the nFeS surface was verified under different pH conditions by UV-vis spectroscopy. The rate constant of PCE dechlorination increased from 0.1582 to 0.4284 h(-1) due to the increase in the nFeS content (2.085-20.85 g/L). As the concentration of Cbl(III) increased from 0 to 0.5 mM, the dechlorination kinetics of PCE was accelerated (0-1.4091 h(-1)) but reached a state of equilibrium from 0.5 to 1 mM. The increase in the initial PCE concentration (0.035-1.0 mM) slowed down the dechlorination kinetics (0.2036-0.0962 h(-1)). The dechlorination kinetics was enhanced by 1.5-11 times when 10 mM of ions (Na(+), K(+), Mg(2+), Ca(2+), CO3(2-), SO4(2-), and NO3(-)) were added, while an addition of HCO3 decelerated it by 10 times. This study can provide background knowledge pertaining to the PCE dechlorination by a natural reductant under a high-pH condition and the effect of environmental factors on the dechlorination kinetics for the development of novel remediation technologies. PMID:25590608

  16. TRANSFORMATION OF PB(II FROM CERRUSITE TO CHLOROPYROMORPHITE IN THE PRESENCE OF HYDROXYAPATITE UNDER VARYING CONDITIONS OF PH

    EPA Science Inventory

    The soluble Pb concentration and formation of chloropyromorphite [Pb5(PO4)3Cl] were monitored during the reaction of cerrusite (PbCO3), a highly bioavailable soil Pb species, and hydroxyapatite [Ca5(PO4)3OH] at various P/Pb molar ratios under constant and dynamic pH conditions. ...

  17. Electrokinetic remediation of a Cu-Zn contaminated red soil by controlling the voltage and conditioning catholyte pH.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Cang, Long; Alshawabkeh, Akram N

    2005-10-01

    Electrokinetics is an innovative technique for treating heavy metals contaminated soil, especially low pH soils such as the Chinese red soil (Udic Ferrisols). In this paper, a Cu-Zn contaminated red soil is treated by electrokinetics. When the Cu-Zn contaminated red soil was treated without control of catholyte pH during the electrokinetic treatment, the soil pH in the soil sections near cathode after the experiment was high above 6, which resulted in accumulation of large amounts of Cu and Zn in the soil sections with such high pH values. Compared to soil Cu, soil Zn was more efficiently removed from the soil by a controlled electrokinetic method. Application of lactic acid as catholyte pH conditioning solution caused an efficient removal of Cu and Zn from the soil. Increasing the electrolyte strength (salt concentration) of the conditioning solution further increased Cu removal, but did not cause a significant improvement for soil Zn. Soil Cu and Zn fractions after the electrokinetic treatments were analyzed using sequential extraction method, which indicated that Cu and Zn precipitation in the soil section closest to the cathode in the treatments without catholyte pH control limited their removal from the soil column. When the catholyte pH was controlled by lactic acid and CaCl(2), the soil Cu and Zn removal percentage after 554 h running reached 63% and 65%, respectively. Moreover, both the residual soil Cu and Zn concentrations were lower than 100 mg kg(-1), which is adequate and meets the requirement of the Chinese soil environmental quality standards. PMID:16202805

  18. Speciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the chemical forms in which Cd is present in paddy soils is needed to develop efficient and cost-effective strategies to clean up the soils, and/or minimize Cd uptake by rice. This study aims to determine Cd speciation and release kinetics in an alkaline paddy soil, at various flooding...

  19. Selection method of pH conditions to establish Pseudomonas taetrolens physiological states and lactobionic acid production.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2013-05-01

    Microbial physiological responses resulting from inappropriate bioprocessing conditions may have a marked impact on process performance within any fermentation system. The influence of different pH-control strategies on physiological status, microbial growth and lactobionic acid production from whey by Pseudomonas taetrolens during bioreactor cultivations has been investigated for the first time in this work. Both cellular behaviour and bioconversion efficiency from P. taetrolens were found to be negatively influenced by pH-control modes carried out at values lower than 6.0 and higher than 7.0. Production schemes were also influenced by the operational pH employed, with asynchronous production from damaged and metabolically active subpopulations at pH values lower than 6.0. Moreover, P. taetrolens showed reduced cellular proliferation and a subsequent delay in the onset of the production phase under acidic conditions (pH < 6.0). Unlike cultivations performed at 6.5, both pH-shift and pH-stat cultivation strategies performed at pH values lower than 6.0 resulted in decreased lactobionic acid production. Whereas the cellular response showed a stress-induced physiological response under acidic conditions, healthy functional cells were predominant at medium operational pH values (6.5-7.0). P. taetrolens thus displayed a robust physiological status at initial pH value of 6.5, resulting in an enhanced bioconversion yield and lactobionic acid productivity (7- and 4-fold higher compared to those attained at initial pH values of 4.5 and 5.0, respectively). These results have shown that pH-control modes strongly affected both the physiological response of cells and the biological performance of P. taetrolens, providing key information for bio-production of lactobionic acid on an industrial scale. PMID:23254761

  20. Response of a continuous biomethanation process to transient organic shock loads under controlled and uncontrolled pH conditions.

    PubMed

    Kim, Jaai; Lee, Changsoo

    2015-04-15

    The organic loading rate (OLR) is a critical factor that controls the treatment efficiency and biogas production in anaerobic digestion (AD). Therefore, organic shock loads may cause significant process imbalances accompanied by a drop in pH and acid accumulation or even failure. This study investigated the response of a continuous mesophilic anaerobic bioreactor to a series of transient organic shock loads of the substrate whey permeate, a high-strength organic wastewater from cheese making. The reactor was subjected to organic shock loads of increasing magnitude (a one-day pulse of elevated feed organic concentration) under controlled (near 7) and uncontrolled pH conditions at a fixed HRT of 10 days. The reactor was resilient to up to a shock load of up to 8.0 g SCOD/L·d under controlled pH conditions but failed to recover from the serious imbalance caused by a 3.0-g SCOD/L·d shock load, thus indicating the critical effect of pH on system resilience. The acidified reactor was not restored by interrupted feeding under the acidic conditions that were formed (pH ≤ 4.5) but was successfully restored after pH adjustment to 7. The reactor subsequently reverted to continuous mode without pH control and showed a performance comparable to the stable performance at the design OLR of 1.0 g SCOD/L·d. The bacterial community structure shifted dynamically in association with disturbances in the reactor conditions, whereas the archaeal community structure remained simple and less variable during the shock loading experiments. The structural shifts of the bacterial community were well correlated with the process performance changes, and performance recovery was generally accompanied by recovery of the bacterial community structure. The overall results suggest that the reactor pH, rather than simply acting as an accumulation of organic acids, had a crucial effect on the resilience and robustness of the microbial community and thus on the reactor performance under organic

  1. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium

    PubMed Central

    Watts, Mathew P.; Khijniak, Tatiana V.; Boothman, Christopher

    2015-01-01

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  2. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    PubMed

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  3. Discovery of Unforeseen Lead Level Optimization Issues for High pH and Low DIC Conditions

    EPA Science Inventory

    A large northeast water utility serving over 500,000 retail and wholesale customers had historically been slightly below the 90th percentile Action Level for lead. The system had been operating at a pH of approximately 10.3, a DIC concentration of approximately 5 mg/L as C, and ...

  4. Isolated secretion granules from parotid glands of chronically stimulated rats possess an alkaline internal pH and inward-directed H/sup +/ pump activity

    SciTech Connect

    Arvan, P.; Castle, J.D.

    1986-10-01

    Secretion granules have been isolated from the parotid glands of rats that have been chronically stimulated with the ..beta..-adrenergic agonist, isoproterenol. These granules are of interest because they package a quantitatively different set of secretory proteins in comparison with granules from the normal gland. Polypeptides enriched in proline, glycine, and glutamine, which are known to have pI's >10, replace ..cap alpha..-amylase (pI's = 6.8) as the principal content species. The internal pH of granules from the treated rats changes from 7.8 in a potassium sulfate medium to 6.9 in a choline chloride medium. The increased pH over that of normal parotid granules (approx.6.8) appears to protect the change in composition of the secretory contents. Whereas normal mature parotide granules have practically negligible levels of H/sup +/ pumping ATPase activity, the isolated granules from isoproterenol-treated rats undergo a time-dependent internal acidification that requires the presence of ATP and is abolished by an H/sup +/ ionophore. Additionally, an inside-positive granule transmembrane potential develops after ATP addition that depends upon ATP hydrolysis. Two independent methods have been used that exclude the possibility that contaminating organelles are the source of the H/sup +/-ATPase activity. Together these data provide clear evidence for the presence of an H/sup +/ pump in the membranes of parotid granules from chronically stimulated rats. However, despite the presence of H/sup +/-pump activity, fluorescence microscopy with the weak base, acridine orange, reveals that the intragranular pH in live cells is greater than that of the cytoplasm.

  5. Short communication: The effect of storage conditions over time on bovine colostral immunoglobulin G concentration, bacteria, and pH.

    PubMed

    Cummins, C; Lorenz, I; Kennedy, E

    2016-06-01

    The objective of the present study was to measure the effect of storing colostrum in different conditions for varying amounts of time on IgG concentration, bacteria, and pH. In experiment 1, colostrum from 12 Holstein-Friesian cows (6 primiparous and 6 multiparous) was collected within 3h of calving, and colostrum from another 12 multiparous cows was collected within 3h of calving (6 cows) and >9h postpartum (6 cows). Aliquots were refrigerated or stored at room temperature for up to 72h, depending on treatment. In experiment 2, colostrum was collected from 6 multiparous cows within 9h of calving, and aliquots were stored for up to 72h in temperature-controlled units set at 4, 13, and 20°C. All colostrum samples were analyzed for IgG concentration, total bacteria count, and pH after 0, 6, 12, 24, 36, 48, 60, and 72h of storage. Storage conditions did not affect the IgG concentration of colostrum. Bacterial growth was most rapid in the first 6h of storage, reducing thereafter, but bacteria multiplied at a significantly greater rate when stored in warmer conditions (i.e., >4°C). The pH of colostrum was not significantly altered when stored at temperatures <13°C, but when stored at 20°C the pH significantly decreased after 24h of storage. Storing colostrum in warmer conditions significantly alters both total bacteria count and pH; consequently, colostrum should be stored at ≤4°C. PMID:26995126

  6. Alkaline battery operational methodology

    DOEpatents

    Sholklapper, Tal; Gallaway, Joshua; Steingart, Daniel; Ingale, Nilesh; Nyce, Michael

    2016-08-16

    Methods of using specific operational charge and discharge parameters to extend the life of alkaline batteries are disclosed. The methods can be used with any commercial primary or secondary alkaline battery, as well as with newer alkaline battery designs, including batteries with flowing electrolyte. The methods include cycling batteries within a narrow operating voltage window, with minimum and maximum cut-off voltages that are set based on battery characteristics and environmental conditions. The narrow voltage window decreases available capacity but allows the batteries to be cycled for hundreds or thousands of times.

  7. Investigation on the interaction between isorhamnetin and bovine liver catalase by spectroscopic techniques under different pH conditions.

    PubMed

    Yang, Yumin; Li, Daojin

    2016-08-01

    The binding of isorhamnetin to bovine liver catalase (BLC) was first investigated at 302, 310 and 318 K at pH 7.4 using spectroscopic methods including fluorescence spectra, circular dichroism (CD) and UV-vis absorption. Spectrophotometric observations are rationalized mainly in terms of a static quenching process. The binding constants and binding sites were evaluated by fluorescence quenching methods. Enzymatic activity of BLC in the absence and presence of isorhamnetin was measured using a UV/vis spectrophotometer. The result revealed that the binding of isorhamnetin to BLC led to a reduction in the activity of BLC. The positive entropy change and enthalpy change indicated that the interaction of isorhamnetin with BLC was mainly driven by hydrophobic forces. The distance r between the donor (BLC) and acceptor (isorhamnetin) was estimated to be 2.99 nm according to fluorescence resonance energy transfer. Fluorescence, synchronous fluorescence, and CD spectra showed no obvious change in the conformation of BLC upon the binding of isorhamnetin. In addition, the influence of pH on the binding of isorhamnetin to BLC was investigated and the binding ability of the drug to BLC deceased under other pH conditions (pH 9.0, 6.5, 5.0, 3.5, or 2.0) as compared with that at pH 7.4. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26748824

  8. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions.

    PubMed

    Liu, Tingting; Liu, Qian; Asiri, Abdullah M; Luo, Yonglan; Sun, Xuping

    2015-12-01

    It is attractive but still remains a big challenge to develop non-noble metal bifunctional electrocatalysts efficient for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) under alkaline conditions. Herein, an amorphous CoSe film electrodeposited on a Ti mesh (a-CoSe/Ti) is demonstrated to exhibit high electrocatalytic activity and stability for both reactions in 1.0 M KOH. It needs overpotentials of 292 and 121 mV to drive 10 mA cm(-2) for OER and HER, respectively. The two-electrode alkaline water electrolyzer affords a water-splitting current of 10 mA cm(-2) at a cell voltage of 1.65 V. This work offers an attractive cost-effective catalytic material toward full water splitting applications. PMID:26431349

  9. Influence of coolant pH on corrosion of 6061 aluminum under reactor heat transfer conditions

    SciTech Connect

    Pawel, S.J.; Felde, D.K.; Pawel, R.E.

    1995-10-01

    To support the design of the Advanced Neutron Source (ANS), an experimental program was conducted wherein aluminum alloy specimens were exposed at high heat fluxes to high-velocity aqueous coolants in a corrosion test loop. The aluminum alloys selected for exposure were candidate fuel cladding materials, and the loop system was constructed to emulate the primary coolant system for the proposed ANS reactor. One major result of this program has been the generation of an experimental database defining oxide film growth on 6061 aluminum alloy cladding. Additionally, a data correlation was developed from the database to permit the prediction of film growth for any reasonable thermal-hydraulic excursion. This capability was utilized effectively during the conceptual design stages of the reactor. During the course of this research, it became clear that the kinetics of film growth on the aluminum alloy specimens were sensitively dependent on the chemistry of the aqueous coolant and that relatively small deviations from the intended pH 5 operational level resulted in unexpectedly large changes in the corrosion behavior. Examination of the kinetic influences and the details of the film morphology suggested that a mechanism involving mass transport from other parts of the test loop was involved. Such a mechanism would also be expected to be active in the operating reactor. This report emphasizes the results of experiments that best illustrate the influence of the nonthermal-hydraulic parameters on film growth and presents data to show that comparatively small variations in pH near 5.0 invoke a sensitive response. Simply, for operation in the temperature and heat flux range appropriate for the ANS studies, coolant pH levels from 4.5 to 4.9 produced significantly less film growth than those from pH 5.1 to 6. A mechanism for this behavior based on the concept of treating the entire loop as an active corrosion system is presented.

  10. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis.

    PubMed

    Kvitt, Hagit; Kramarsky-Winter, Esti; Maor-Landaw, Keren; Zandbank, Keren; Kushmaro, Ariel; Rosenfeld, Hanna; Fine, Maoz; Tchernov, Dan

    2015-02-17

    Certain stony corals can alternate between a calcifying colonial form and noncalcifying solitary polyps, supporting the hypothesis that corals have survived through geologic timescale periods of unfavorable calcification conditions. However, the mechanisms enabling this biological plasticity are yet to be identified. Here we show that incubation of two coral species (Pocillopora damicornis and Oculina patagonica) under reduced pH conditions (pH 7.2) simulating past ocean acidification induce tissue-specific apoptosis that leads to the dissociation of polyps from coenosarcs. This in turn leads to the breakdown of the coenosarc and, as a consequence, to loss of coloniality. Our data show that apoptosis is initiated in the polyps and that once dissociation between polyp and coenosarc terminates, apoptosis subsides. After reexposure of the resulting solitary polyps to normal pH (pH 8.2), both coral species regenerated coenosarc tissues and resumed calcification. These results indicate that regulation of coloniality is under the control of the polyp, the basic modular unit of the colony. A mechanistic explanation for several key evolutionarily important phenomena that occurred throughout coral evolution is proposed, including mechanisms that permitted species to survive the third tier of mass extinctions. PMID:25646434

  11. Breakdown of coral colonial form under reduced pH conditions is initiated in polyps and mediated through apoptosis

    PubMed Central

    Kvitt, Hagit; Kramarsky-Winter, Esti; Maor-Landaw, Keren; Zandbank, Keren; Kushmaro, Ariel; Rosenfeld, Hanna; Fine, Maoz; Tchernov, Dan

    2015-01-01

    Certain stony corals can alternate between a calcifying colonial form and noncalcifying solitary polyps, supporting the hypothesis that corals have survived through geologic timescale periods of unfavorable calcification conditions. However, the mechanisms enabling this biological plasticity are yet to be identified. Here we show that incubation of two coral species (Pocillopora damicornis and Oculina patagonica) under reduced pH conditions (pH 7.2) simulating past ocean acidification induce tissue-specific apoptosis that leads to the dissociation of polyps from coenosarcs. This in turn leads to the breakdown of the coenosarc and, as a consequence, to loss of coloniality. Our data show that apoptosis is initiated in the polyps and that once dissociation between polyp and coenosarc terminates, apoptosis subsides. After reexposure of the resulting solitary polyps to normal pH (pH 8.2), both coral species regenerated coenosarc tissues and resumed calcification. These results indicate that regulation of coloniality is under the control of the polyp, the basic modular unit of the colony. A mechanistic explanation for several key evolutionarily important phenomena that occurred throughout coral evolution is proposed, including mechanisms that permitted species to survive the third tier of mass extinctions. PMID:25646434

  12. Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions.

    PubMed

    Soares, Thereza A; Boschek, Curt B; Apiyo, David; Baird, Cheryl; Straatsma, T P

    2010-06-01

    The development of stable biomolecular scaffolds that can tolerate environmental extremes has considerable potential for industrial and defense-related applications. However, most natural proteins are not sufficiently stable to withstand non-physiological conditions. We have recently engineered the de novo designed Top7 protein to specifically recognize the glycoprotein CD4 by insertion of an eight-residue loop. The engineered variant exhibited remarkable stability under chemical and thermal denaturation conditions. In the present study, far-UV CD spectroscopy and explicit-solvent MD simulations are used to investigate the structural stability of Top7 and the engineered variant under extreme conditions of temperature and pH. Circular dichroism measurements suggest that the engineered variant Top7(CB1), like Top7, retains its structure at high temperatures. Changes in CD spectra suggest that there are minor structural rearrangements between neutral and acidic environments for both proteins but that these do not make the proteins less stable at high temperatures. The anti-parallel beta-sheet is well conserved within the timescale simulated whereas there is a decrease of helical content when low pH and high-temperature conditions are combined. Concerted alanine mutations along the alpha-helices of the engineered Top7 variant did not revert this trend when at pH 2 and 400K. The structural resilience of the anti-parallel beta-sheet suggests that the protein scaffold can accommodate varying sequences. The robustness of the Top7 scaffold under extreme conditions of pH and temperature and its amenability to production in inexpensive bacterial expression systems reveal great potential for novel biotechnological applications. PMID:20185346

  13. Anaerobic methanethiol degradation and methanogenic community analysis in an alkaline (pH 10) biological process for liquefied petroleum gas desulfurization.

    PubMed

    van Leerdam, Robin C; Bonilla-Salinas, Monica; de Bok, Frank A M; Bruning, H; Lens, Piet N L; Stams, Alfons J M; Janssen, Albert J H

    2008-11-01

    Anaerobic methanethiol (MT) degradation by mesophilic (30 degrees C) alkaliphilic (pH 10) communities was studied in a lab-scale Upflow Anaerobic Sludge Bed (UASB) reactor inoculated with a mixture of sediments from the Wadden Sea (The Netherlands), Soap Lake (Central Washington), and Russian soda lakes. MT degradation started after 32 days of incubation. During the first 252 days, complete degradation was achieved till a volumetric loading rate of 7.5 mmol MT/L/day, and sulfide, methane, and carbon dioxide were the main reaction products. Temporary inhibition of MT degradation occurred after MT peak loads and in the presence of dimethyl disulfide (DMDS), which is the autooxidation product of MT. From day 252 onwards, methanol was dosed to the reactor as co-substrate at a loading rate of 3-6 mmol/L/day to stimulate growth of methylotrophic methanogens. Methanol was completely degraded and also a complete MT degradation was achieved till a volumetric loading rate of 13 mmol MT/L/day (0.77 mmol MT/gVSS/day). However, from day 354 till the end of the experimental run (day 365), acetate was formed and MT was not completely degraded anymore, indicating that methanol-degrading homoacetogenic bacteria had partially outcompeted the methanogenic MT-degrading archea. The archeal community in the reactor sludge was analyzed by DGGE and sequencing of 16S rRNA genes. The methanogenic archea responsible for the degradation of MT in the reactor were related to Methanolobus oregonensis. A pure culture, named strain SODA, was obtained by serial dilutions in medium containing both trimethyl amine and dimethyl sulfide (DMS). Strain SODA degraded MT, DMS, trimethyl amine, and methanol. Flow sheet simulations revealed that for sufficient MT removal from liquefied petroleum gas, the extraction and biological degradation process should be operated above pH 9. PMID:18814290

  14. Characterization of two glycoside hydrolase family 36 α-galactosidases: novel transglycosylation activity, lead-zinc tolerance, alkaline and multiple pH optima, and low-temperature activity.

    PubMed

    Zhou, Junpei; Lu, Qian; Zhang, Rui; Wang, Yiyan; Wu, Qian; Li, Junjun; Tang, Xianghua; Xu, Bo; Ding, Junmei; Huang, Zunxi

    2016-03-01

    Two α-galactosidases, AgaAJB07 from Mesorhizobium and AgaAHJG4 from Streptomyces, were expressed in Escherichia coli. Recombinant AgaAJB07 showed a 2.9-fold and 22.6-fold increase in kcat with a concomitant increase of 2.3-fold and 16.3-fold in Km in the presence of 0.5mM ZnSO4 and 30.0mM Pb(CH3COO)2, respectively. Recombinant AgaAHJG4 showed apparent optimal activity at pH 8.0 in McIlvaine or Tris-HCl buffer and 9.5 in glycine-NaOH or HCl-borax-NaOH buffer, retention of 23.6% and 43.2% activity when assayed at 10 and 20°C, respectively, and a half-life of approximately 2min at 50°C. The activation energies for p-nitrophenyl-α-d-galactopyranoside hydrolysis by AgaAJB07 and AgaAHJG4 were 71.9±0.8 and 48.2±2.0kJmol(-1), respectively. Both AgaAJB07 and AgaAHJG4 exhibited transglycosylation activity, but they required different acceptors and produced different compounds. Furthermore, potential factors for alkaline and multiple pH optima and low-temperature adaptations of AgaAHJG4 were presumed. PMID:26471539

  15. Effect of pH and chemical mechanical planarization process conditions on the copper–benzotriazole complex formation

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Jun; Kim, Jin-Yong; Hamada, Satomi; Shima, Shohei; Park, Jin-Goo

    2016-06-01

    Benzotriazole (BTA) has been used to protect copper (Cu) from corrosion during Cu chemical mechanical planarization (CMP) processes. However, an undesirable Cu–BTA complex is deposited after Cu CMP processes and it should be completely removed at post-Cu CMP cleaning for next fabrication process. Therefore, it is very important to understand of Cu–BTA complex formation behavior for its applications such as Cu CMP and post-Cu CMP cleaning. The present study investigated the effect of pH and polisher conditions on the formation of Cu–BTA complex layers using electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy) and the surface contact angle. The wettability was not a significant factor for the polishing interface, as no difference in the contact angles was observed for these processes. Both electrochemical techniques revealed that BTA had a unique advantage of long-term protection for Cu corrosion in an acidic condition (pH 3).

  16. Experimental Study on the pH of Pore water in Compacted Bentonite under Reducing Conditions with Electromigration

    SciTech Connect

    Nessa, S.A.; Idemitsu, K.; Yamazaki, S.; Ikeuchi, H.; Inagaki, Y.; Arima, T.

    2008-07-01

    Compacted bentonite and carbon steel are considered a good buffer and over-pack materials in the repositories of high-level radioactive waste disposal. Sodium bentonite, Kunipia-F contains approximately 95 wt% of montmorillonite. Bentonites prominent properties of high swelling, sealing ability and cation exchange capacity provide retardation against the transport of radionuclides from the waste into the surrounding rocks in the repository and its properties determine the behavior of bentonite. In this regards, the pH of pore water in compacted bentonite is measured with pH test paper wrapped with semi-permeable membrane of collodion sheet under reducing conditions. On 30 days, the pH test paper in the experimental apparatus indicated that the pH of pore water in compacted bentonite is around 8.0 at saturated state. The carbon steel coupon is connected as the working electrode to the potentiostat and is held at a constant supplied potential between +300 and -300 mV vs. Ag/AgCl electrode for up to 7 days. During applying electromigration the pH of pore water in bentonite decreased and it reached 6.0{approx}6.0 on 7 days. The concentration of iron and sodium showed nearly complementary distribution in the bentonite specimen after electromigration. It is expected that iron could migrate as ferrous ion through the interlayer of montmorillonite replacing exchangeable sodium ions in the interlayer. Semi-permeable membrane of collodion sheet does not affect the color change of pH test paper during the experiment. (authors)

  17. Effects of CO2 (aq), pH, and Salinity on Biotite Dissolution Kinetics under Hydrothermal Conditions

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Jun, Y.

    2010-12-01

    A holistic understanding of dissolution and precipitation rates of Fe-bearing clay minerals under hydrothermal conditions is crucial for sustainable geological CO2 sequestration, underground nuclear waste disposal, and reclaimed reuse at aquifer recharge. In this study, batch dissolution experiments under high temperature (35-95 °C) and high pressure (PCO2 or PN2 = 1100 psi-1500 psi) were conducted to study the effect of CO2 (aq), pH, salinity, and temperature on the dissolution kinetics of biotite, which serves as a representative Fe-bearing clay mineral. To investigate the effect of dissolved CO2, dissolution rates of biotite under high CO2 pressure and HCl-pH-adjusted high N2 pressure condition were compared. Biotite intrinsic dissolution rates under PCO2 = 1100 psi-1500 psi (pH = 2.94-3.00) and 35 °C were conducted and they were similar within experimental error ranges. Thus, the effect of dissolved CO2 mostly results from the pH effect, the dissolved total inorganic carbon (CO2) concentration (2.18-3 M) and the pressure of CO2 does not alter the biotite dissolution rates significantly. The effect of pH during the range of 2.94-4.47 was also studied by conducting dissolution experiments in NaHCO3 solution (0-50 mM) under 35 °C and PCO2 = 1500 psi. The effect of ionic strength was studied using 0.1 and 1 M NaCl solutions. Higher Na+ concentration in solution accelerated K+ dissolution through Na+-K+ ion exchange. The ion exchange exfoliated the biotite layers, exposing more surfaces into acidic solution and accelerating the dissolution. Arrhenius equation was used to describe the temperature effect and to extract activation energy of dissolution. The results will provide important information for a more accurate reactive-transport modeling of Fe-bearing clay mineral behavior under hydrothermal conditions.

  18. The physiology of the midgut of Lutzomyia longipalpis (Lutz and Neiva 1912): pH in different physiological conditions and mechanisms involved in its control.

    PubMed

    Santos, Vânia C; Araujo, Ricardo N; Machado, Luciane A D; Pereira, Marcos H; Gontijo, Nelder F

    2008-09-01

    Nutrient digestion and absorption after blood feeding are important events for Lutzomyia longipalpis, which uses these nutrients to produce eggs. In this context, the pH inside the digestive tract is an important physiological feature as it can markedly influence the digestive process as well as interfere with Leishmania development in infected phlebotomines. It was described previously that unfed females have an acidic midgut (pH 6). In this study, the pH inside the midgut of blood-fed females was measured. The abdominal midgut (AM) pH varied from 8.15+/-0.31 in the first 10 h post-blood meal to 7.7+/-0.17 after 24 h. While the AM was alkaline during blood digestion, the pH in the thoracic midgut (TM) remained acidic (5.5-6.0). In agreement with these findings, the enzyme alpha-glucosidase, which has an optimum pH of 5.8, is mainly encountered in the acidic TM. The capacity of unfed females to maintain the acidic intestinal pH was also evaluated. Our results showed the presence of an efficient mechanism that maintains the pH almost constant at about 6 in the midgut, but not in the crop. This mechanism is promptly interrupted in the AM by blood ingestion. RT-PCR results indicated the presence of carbonic anhydrase in the midgut cells, which apparently is required to maintain the pH at 6 in the midgut of unfed females. Investigations on the phenomenon of alkalization observed after blood ingestion indicated that two mechanisms are involved: in addition to the alkalization promoted by CO2 volatilization there is a minor contribution from a second mechanism not yet characterized. Some inferences concerning Leishmania development and pH in the digestive tube are presented. PMID:18723537

  19. Ammonia volatilization from soils amended with biochars of different pH

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A significant amount of nitrogen fertilizer applied to agricultural land is in the form of ammonium. Ammonium nitrogen can be lost through volatilization if applied under certain conditions, mainly to soils with a pH greater than 8. The pH of biochar varies from slightly acidic to highly alkaline ...

  20. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings.

    PubMed

    Wei, Li-Xing; Lv, Bing-Sheng; Wang, Ming-Ming; Ma, Hong-Yuan; Yang, Hao-Yu; Liu, Xiao-Long; Jiang, Chang-Jie; Liang, Zheng-Wei

    2015-05-01

    Saline-alkaline stress is characterized by high salinity and high alkalinity (high pH); alkaline stress has been shown to be the primary factor inhibiting rice seedling growth. In this study, we investigated the potential priming effect of abscisic acid (ABA) on tolerance of rice seedlings to alkaline stress simulated by Na2CO3. Seedlings were pretreated with ABA at concentrations of 0 (control), 10, and 50 μM by root-drench for 24 h and then transferred to a Na2CO3 solution that did not contain ABA. Compared to control treatment, pretreatment with ABA substantially improved the survival rate of rice seedlings and increased biomass accumulation after 7 days under the alkaline condition. ABA application at 10 μM also alleviated the inhibitory effects of alkaline stress on the total root length and root surface area. Physiologically, ABA increased relative water content (RWC) and decreased cell membrane injury degree (MI) and Na(+)/K(+) ratios. In contrast, fluridone (an ABA biosynthesis inhibitor) decreased the RWC and increased MI in shoots under the alkaline conditions. These data suggest that ABA has a potent priming effect on the adaptive response to alkaline stress in rice and may be useful for improving rice growth in saline-alkaline paddy fields. PMID:25780993

  1. Decontamination of metals, pentachlorophenol, and polychlorined dibenzo-p-dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant.

    PubMed

    Reynier, Nicolas; Blais, Jean-François; Mercier, Guy; Besner, Simon

    2014-01-01

    In this paper, flotation in acidic conditions and alkaline leaching soil washing processes were compared to decontaminate four soils with variable contamination with metals, pentachlorophenol (PCP), and polychlorodibenzo dioxins and furans (PCDD/F). The measured concentrations of the four soils prior treatment were between 50 and 250 mg/kg for As, 35 and 220mg/kg for Cr, 80 and 350mg/kg for Cu, and 2.5 and 30mg/kg for PCP. PCDD/F concentrations reached 1394, 1375, 3730, and 6289ng/kg for F1, S1, S2, and S3 soils, respectively. The tests were carried out with masses of 100g of soil (fraction 0-2 mm) in a 2 L beaker or in a 1 L flotation cell. Soil flotation in sulphuric acid for 1 h at 60 degreeC with three flotation cycles using the surfactant cocamidopropyl betaine (BW) at 1% allows the solubilization of metals and PCP with average removal yields of 85%, 51%, 90%, and 62% for As, Cr, Cu, and PCP, respectively. The alkaline leaching for 2 h at 80 degreeC solubilizes As, Cr, Cu, and PCP with average removal yields of 60%, 32%, 77%, and 87%, respectively. Tests on PCDD/F solubilization with different surfactants were carried out in combination with the alkaline leaching process. PCDD/F removal yields of 25%, 72%, 70%, and 74% for F1, S1, S2, and S3 soils, respectively, were obtained using the optimized conditions. PMID:24600855

  2. The Fate Of Silicon During Glass Corrosion Under Alkaline Conditions: A Mechanistic And Kinetic Study With The International Simple Glass

    SciTech Connect

    Gin, Stephane; Jollivet, Patrick; Fournie, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre V.; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90°C in a solution initially saturated with respect to amorphous 29-SiO2. The pH90°C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous and isovolumic amorphous alteration layer. The mechanisms responsible for this transformation are water diffusion through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it inherits from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to transport-limiting phenomenon within the amorphous alteration layer, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  3. The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90 °C in a solution initially saturated with respect to amorphous 29SiO2. The pH90°C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OH- and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  4. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation

    PubMed Central

    Bai, Wenqin; Zhou, Cheng; Zhao, Yueju; Wang, Qinhong; Ma, Yanhe

    2015-01-01

    To understand the molecular basis of higher pH catalytic adaptation of family 11 xylanases, we compared the structures of alkaline, neutral, and acidic active xylanases and analyzed mutants of xylanase Xyn11A-LC from alkalophilic Bacillus sp. SN5. It was revealed that alkaline active xylanases have increased charged residue content, an increased ratio of negatively to positively charged residues, and decreased Ser, Thr, and Tyr residue content relative to non-alkaline active counterparts. Between strands β6 and β7, alkaline xylanases substitute an α-helix for a coil or turn found in their non-alkaline counterparts. Compared with non-alkaline xylanases, alkaline active enzymes have an inserted stretch of seven amino acids rich in charged residues, which may be beneficial for xylanase function in alkaline conditions. Positively charged residues on the molecular surface and ionic bonds may play important roles in higher pH catalytic adaptation of family 11 xylanases. By structure comparison, sequence alignment and mutational analysis, six amino acids (Glu16, Trp18, Asn44, Leu46, Arg48, and Ser187, numbering based on Xyn11A-LC) adjacent to the acid/base catalyst were found to be responsible for xylanase function in higher pH conditions. Our results will contribute to understanding the molecular mechanisms of higher pH catalytic adaptation in family 11 xylanases and engineering xylanases to suit industrial applications. PMID:26161643

  5. Electrokinetic remediation of a Cu contaminated red soil by conditioning catholyte pH with different enhancing chemical reagents.

    PubMed

    Zhou, Dong-Mei; Deng, Chang-Fen; Cang, Long

    2004-07-01

    The effect of enhancement reagents on the efficiency of electrokinetic remediation of Cu contaminated red soil is evaluated. The enhancement agents were a mix of organic acids, including lactic acid+NaOH, HAc-NaAc and HAc-NaAc+EDTA. The soil was prepared to an initial Cu concentration of 438 mgkg(-1) by incubating the soil with CuSO4 solution in a flooded condition for 1 month. Sequential extraction showed that Cu was partitioned in the soil as follows: 195 mgkg(-1) as water soluble and exchangeable, 71 mgkg(-1) as carbonate bound and 105 mgkg(-1) as Fe and Mn oxides. The results indicate that neutralizing the catholyte pH maintains a lower soil pH compared to that without electrokinetic treatment. The electric currents varied depending upon the conditioning solutions and increased with an increasing applied voltage potential. The electroosmotic flow rate changed significantly when different conditioning enhancing reagents were used. It was observed that lactic acid+NaOH treatments resulted in higher soil electric conductivities than HAc-NaAc and HAc-NaAc+EDTA treatments. Ultimately, enhancement by lactic acid+NaOH resulted in highest removal efficiency (81% Cu removal) from the red soil. The presence of EDTA did not enhance Cu removal efficiencies from the red soil, because EDTA complexed with Cu to form negatively charge complexes, which slowly migrated toward the anode chamber retarding Cu2+ transport towards the cathode. PMID:15172599

  6. Reduction of Chromium(VI) mediated by zero-valent magnesium under neutral pH conditions.

    PubMed

    Lee, Giehyeon; Park, Jaeseon; Harvey, Omar R

    2013-03-01

    In an effort to assess the potential use of ZVMg in contaminant treatments, we examined Cr(VI) reduction mediated by ZVMg particles under neutral pH conditions. The reduction of Cr(VI) was tested with batch experiments by varying [Cr(VI)](0) (4.9, 9.6, 49.9 or 96.9 μM) in the presence of 50 mg/L ZVMg particles ([Mg(0)](0) = 2.06 mM) at pH 7 buffered with 50 mM Na-MOPS. When [Cr(VI)](0) = 4.9 or 9.6 μM, Cr(VI) was completely reduced within 60 min. At higher [Cr(VI)](0) (49.9 or 96.9 μM), by contrast, the reduction became retarded at >120 min likely due to rapid ZVMg dissolution in water and surface precipitation of Cr(III) on ZVMg particles. Surface precipitation was observed only when [Cr(VI)](0) = 49.9 or 96.9 μM and increased with increasing [Cr(VI)](0). The effect of dissolved oxygen was negligible on the rate and extent of Cr(VI) reduction. Experimental results indicated that Cr(VI) was reduced not directly by ZVMg but by reactive intermediates produced from ZVMg-water reaction under the experimental conditions employed in this study. In addition, the observed rates of Cr(VI) reduction appeared to follow an order below unity (0.19) with respect to [Cr(VI)](0). These results imply that ZVMg-mediated Cr(VI) reduction likely occurred via an alternative mechanism to the direct surface-mediated reduction typically observed for other zero-valent metals. Rapid and complete Cr(VI) reduction was achieved when a mass ratio of [ZVMg](0):[Cr(VI)](0) ≥ 100 at neutral pH under both oxic and anoxic conditions. Our results highlights the potential for ZVMg to be used in Cr(VI) treatments especially under neutral pH conditions in the presence of dissolved oxygen. PMID:23253471

  7. Intracellular release of doxorubicin from core-crosslinked polypeptide micelles triggered by both pH and reduction conditions.

    PubMed

    Wu, Liangliang; Zou, Yan; Deng, Chao; Cheng, Ru; Meng, Fenghua; Zhong, Zhiyuan

    2013-07-01

    Reduction and pH dual-sensitive reversibly core-crosslinked polypeptide micelles were developed from lipoic acid (LA) and cis-1,2-cyclohexanedicarboxylic acid (CCA) decorated poly(ethylene glycol)-b-poly(L-lysine) (PEG-P(LL-CCA/LA)) block copolymers for active loading and triggered intracellular release of doxorubicin (DOX). PEG-P(LL18-CCA4/LA14) and PEG-P(LL18-CCA8/LA10) (M(n PEG) = 5.0 kg/mol) formed nano-sized micelles that were readily crosslinked in the presence of a catalytic amount of dithiothreitol (DTT) in phosphate buffer (pH 7.4, 10 mM). PEG-P(LL18-CCA4/LA14) micelles displayed an elevated DOX loading over PEG-P(LL14-LA14) controls likely due to presence of ionic interactions between DOX and CCA. These core-crosslinked polypeptide micelles while exhibiting high stability against extensive dilution and high salt concentration were quickly dissociated into unimers in the presence of 10 mM DTT. The in vitro release studies showed that DOX release from PEG-P(LL18-CCA4/LA14) micelles at pH 7.4 and 37 °C was significantly inhibited by crosslinking (i.e. less than 20% release in 24 h). The release of DOX was, however, doubled under endosomal pH of 5.0, possibly triggered by cleavage of the acid-labile amide bonds of CCA. In particular, rapid DOX release was observed under a reductive condition containing 10 mm glutathione (GSH), in which 86.0% and 96.7% of DOX were released in 24 h at pH 7.4 and 5.0, respectively, under otherwise the same conditions. MTT assays demonstrated that these core-crosslinked polypeptide micelles were practically non-toxic up to a tested concentration of 1.0 mg/mL, while DOX-loaded micelles caused pronounced cytotoxic effects to HeLa and HepG2 tumor cells with IC50 (inhibitory concentration to produce 50% cell death) of ca. 12.5 μg DOX equiv/mL following 48 h incubation. Confocal microscopy observations revealed that DOX-loaded crosslinked PEG-P(LL18-CCA4/LA14) micelles more efficiently delivered and released DOX into the nuclei of

  8. Fe-N-Doped Carbon Capsules with Outstanding Electrochemical Performance and Stability for the Oxygen Reduction Reaction in Both Acid and Alkaline Conditions.

    PubMed

    Ferrero, Guillermo A; Preuss, Kathrin; Marinovic, Adam; Jorge, Ana Belen; Mansor, Noramalina; Brett, Dan J L; Fuertes, Antonio B; Sevilla, Marta; Titirici, Maria-Magdalena

    2016-06-28

    High surface area N-doped mesoporous carbon capsules with iron traces exhibit outstanding electrocatalytic activity for the oxygen reduction reaction in both alkaline and acidic media. In alkaline conditions, they exhibit more positive onset (0.94 V vs RHE) and half-wave potentials (0.83 V vs RHE) than commercial Pt/C, while in acidic media the onset potential is comparable to that of commercial Pt/C with a peroxide yield lower than 10%. The Fe-N-doped carbon catalyst combines high catalytic activity with remarkable performance stability (3500 cycles between 0.6 and 1.0 V vs RHE), which stems from the fact that iron is coordinated to nitrogen. Additionally, the newly developed electrocatalyst is unaffected by the methanol crossover effect in both acid and basic media, contrary to commercial Pt/C. The excellent catalytic behavior of the Fe-N-doped carbon, even in the more relevant acid medium, is attributable to the combination of chemical functions (N-pyridinic, N-quaternary, and Fe-N coordination sites) and structural properties (large surface area, open mesoporous structure, and short diffusion paths), which guarantees a large number of highly active and fully accessible catalytic sites and rapid mass-transfer kinetics. Thus, this catalyst represents an important step forward toward replacing Pt catalysts with cheaper alternatives. In this regard, an alkaline anion exchange membrane fuel cell was assembled with Fe-N-doped mesoporous carbon capsules as the cathode catalyst to provide current and power densities matching those of a commercial Pt/C, which indicates the practical applicability of the Fe-N-carbon catalyst. PMID:27214056

  9. Alkaline protease production by a strain of marine yeasts

    NASA Astrophysics Data System (ADS)

    Ping, Wang; Zhenming, Chi; Chunling, Ma

    2006-07-01

    Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45°C. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5g soluble starch and 2.0g NaNO3 in 100mL seawater with initial pH 6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5°C, aeration rate 8.0L min-1 and agitation speed 150r min-1 Under the optimal conditions, 623.1 U mg-1 protein of alkaline protease was reached in the culture within 30h of fermentation.

  10. Oxidizing dissolution mechanism of an irradiated MOX fuel in underwater aerated conditions at slightly acidic pH

    NASA Astrophysics Data System (ADS)

    Magnin, M.; Jégou, C.; Caraballo, R.; Broudic, V.; Tribet, M.; Peuget, S.; Talip, Z.

    2015-07-01

    The (U,Pu)O2 matrix behavior of an irradiated MIMAS-type (MIcronized MASter blend) MOX fuel, under radiolytic oxidation in aerated pure water at pH 5-5.5 was studied by combining chemical and radiochemical analyses of the alteration solution with Raman spectroscopy characterizations of the surface state. Two leaching experiments were performed on segments of irradiated fuel under different conditions: with or without an external γ irradiation field, over long periods (222 and 604 days, respectively). The gamma irradiation field was intended to be representative of the irradiation conditions for a fuel assembly in an underwater interim storage situation. The data acquired enabled an alteration mechanism to be established, characterized by uranium (UO22+) release mainly controlled by solubility of studtite over the long-term. The massive precipitation of this phase was observed for the two experiments based on high uranium oversaturation indexes of the solution and the kinetics involved depended on the irradiation conditions. External gamma irradiation accelerated the precipitation kinetics and the uranium concentrations (2.9 × 10-7 mol/l) were lower than for the non-irradiated reference experiment (1.4 × 10-5 mol/l), as the quantity of hydrogen peroxide was higher. Under slightly acidic pH conditions, the formation of an oxidized UO2+x phase was not observed on the surface and did not occur in the radiolysis dissolution mechanism of the fuel matrix. The Raman spectroscopy performed on the heterogeneous MOX fuel matrix surface, showed that the fluorite structure of the mainly UO2 phase surrounding the Pu-enriched aggregates had not been particularly impacted by any major structural change compared to the data obtained prior to leaching. For the plutonium, its behavior in solution involved a continuous release up to concentrations of approximately 3 × 10-6 mol L-1 with negligible colloid formation. This data appears to support a predominance of the +V oxidation

  11. Influence of pH on bile sensitivity amongst various strains of Listeria monocytogenes under aerobic and anaerobic conditions

    PubMed Central

    White, Sally J.; McClung, Daniel M.; Wilson, Jessica G.; Roberts, Brandy N.

    2015-01-01

    Listeria monocytogenes is a dangerous bacterium that causes the food-borne disease listeriosis and accounts for nearly 20 % of food-borne deaths. This organism can survive the body's natural defences within the digestive tract, including acidic conditions and bile. Although the bile response has been analysed, limited information is available concerning the ability of L. monocytogenes to resist bile under anaerobic conditions, especially at acidic pH, which mimics conditions within the duodenum. Additionally, it is not known how the bile response varies between serotypes. In this study, the survival of strains representing six serotypes was analysed under aerobic and anaerobic conditions following exposure to bile. Exposure to bile salts at acidic pH increased toxicity of bile, resulting in a significant reduction in survival for all strains tested. However, following this initial reduction, no significant reduction was observed for an additional 2 h except for strain 10403S (P = 0.002). Anaerobic cultivation increased bile resistance, but a significant increase was only observed in virulent strains when exposed to bile at pH 5.5. Exposure to pH 3.0 prior to bile decreased viability amongst avirulent strains in bile in acidic conditions; oxygen availability did not influence viability. Together, the data suggested that being able to sense and respond to oxygen availability may influence the expression of stress response mechanisms, and this response may correspond to disease outcome. Further research is needed on additional strains to determine how L. monocytogenes senses and responds to oxygen and how this varies between invasive and non-invasive strains. PMID:26307079

  12. Influence of pH on bile sensitivity amongst various strains of Listeria monocytogenes under aerobic and anaerobic conditions.

    PubMed

    White, Sally J; McClung, Daniel M; Wilson, Jessica G; Roberts, Brandy N; Donaldson, Janet R

    2015-11-01

    Listeria monocytogenes is a dangerous bacterium that causes the food-borne disease listeriosis and accounts for nearly 20% of food-borne deaths. This organism can survive the body's natural defences within the digestive tract, including acidic conditions and bile. Although the bile response has been analysed, limited information is available concerning the ability of L. monocytogenes to resist bile under anaerobic conditions, especially at acidic pH, which mimics conditions within the duodenum. Additionally, it is not known how the bile response varies between serotypes. In this study, the survival of strains representing six serotypes was analysed under aerobic and anaerobic conditions following exposure to bile. Exposure to bile salts at acidic pH increased toxicity of bile, resulting in a significant reduction in survival for all strains tested. However, following this initial reduction, no significant reduction was observed for an additional 2 h except for strain 10403S (P = 0.002). Anaerobic cultivation increased bile resistance, but a significant increase was only observed in virulent strains when exposed to bile at pH 5.5. Exposure to pH 3.0 prior to bile decreased viability amongst avirulent strains in bile in acidic conditions; oxygen availability did not influence viability. Together, the data suggested that being able to sense and respond to oxygen availability may influence the expression of stress response mechanisms, and this response may correspond to disease outcome. Further research is needed on additional strains to determine how L. monocytogenes senses and responds to oxygen and how this varies between invasive and non-invasive strains. PMID:26307079

  13. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  14. DEVELOPMENT OF AN IMPROVED TITANATE-BASED SORBENT FOR STRONTIUM AND ACTINIDE SEPARATIONS UNDER STRONGLY ALKALINE CONDITIONS

    SciTech Connect

    Hobbs, D.; Peters, T.; Taylor-Pashow, K.; Fink, S.

    2010-02-18

    High-level nuclear waste produced from fuel reprocessing operations at the Savannah River Site (SRS) requires pretreatment to remove {sup 134,137}Cs, {sup 90}Sr, and alpha-emitting radionuclides (i.e., actinides) prior to disposal onsite as low level waste. Separation processes at SRS include the sorption of {sup 90}Sr and alpha-emitting radionuclides onto monosodium titanate (MST) and caustic side solvent extraction of {sup 137}Cs. The MST and separated {sup 137}Cs is encapsulated along with the sludge fraction of high-level waste (HLW) into a borosilicate glass waste form for eventual entombment at a federal repository. The predominant alpha-emitting radionuclides in the highly alkaline waste solutions include plutonium isotopes {sup 238}Pu, {sup 239}Pu, and {sup 240}Pu; {sup 237}Np; and uranium isotopes, {sup 235}U and {sup 238}U. This paper describes recent results evaluating the performance of an improved sodium titanate material that exhibits increased removal kinetics and capacity for {sup 90}Sr and alpha-emitting radionuclides compared to the current baseline material, MST.

  15. Impacts of variable pH on stability and nutrient removal efficiency of aerobic granular sludge.

    PubMed

    Lashkarizadeh, Monireh; Munz, Giulio; Oleszkiewicz, Jan A

    2016-01-01

    The impact of pH variation on aerobic granular sludge stability and performance was investigated. A 9-day alkaline (pH=9) and acidic (pH=6) pH shocks were imposed on mature granules with simultaneous chemical oxygen demand (COD), nitrogen and phosphorus removal. The imposed alkaline pH shock (pH 9) reduced nitrogen and phosphorus removal efficiency from 88% and 98% to 66% and 50%, respectively, with no further recovery. However, acidic pH shock (pH 6) did not have a major impact on nutrient removal and the removal efficiencies recovered to their initial values after 3 days of operation under the new pH condition. Operating the reactors under alkaline pH induced granules breakage and resulted in an increased solids concentration in the effluent and a significant decrease in the size of the bio-particles, while acidic pH did not have significant impacts on granules stability. Changes in chemical structure and composition of extracellular polymeric substances (EPS) matrix were suggested as the main factors inducing granules instability under high pH. PMID:26744935

  16. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  17. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    PubMed

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. PMID:26481412

  18. The oxygen isotope signature of sulfate derived from abiotic sulfite oxidation under different pH conditions

    NASA Astrophysics Data System (ADS)

    Mueller, I.; Brunner, B.; Ferdelman, T. G.

    2011-12-01

    The oxygen isotope composition of sulfate serves as an archive of past oxidative sulfur cycling. It carries information about the oxidants as well as the biochemical pathway involved in the oxidation of reduced sulfur compounds, because oxygen sources can be traced by their distinct oxygen isotope composition. Studies on the aerobic oxidation of pyrite determined varying relative contributions of oxygen from dissolved molecular oxygen (O2) and water (H2O). These discrepancies were assumed to be due to slight differences in the production and consumption of sulfur intermediates which can exchange oxygen isotopes with water. Additionally, changing pH conditions influence the oxidation rate of sulfur intermediates to sulfate as well as the rate of oxygen exchange between sulfur intermediates and water. Consequently, this affects the oxygen isotope signature of produced sulfate. However, very little is known about the oxygen isotope effects during the oxidation of sulfur intermediates. We performed experiments to assess the abiotic oxidation of sulfite to sulfate under different pH conditions, as sulfite is assumed to be an intermediate during the oxidation of reduced sulfur compounds. Dissolved sulfite was oxidized with differently isotopically labeled O2, as well as in differently labeled H2O. The relative contribution of oxygen from O2 and water in produced sulfate was determined, along with the respective oxygen isotope fractionation. Our results provide a more detailed mechanistic understanding of the aerobic oxidation of reduced sulfur species.

  19. The effect of flunarizine on erythrocyte suspension viscosity under conditions of extreme hypoxia, low pH, and lactate treatment.

    PubMed Central

    Kavanagh, B. D.; Coffey, B. E.; Needham, D.; Hochmuth, R. M.; Dewhirst, M. W.

    1993-01-01

    Flunarizine is a class IV calcium channel blocker which increases oxygen delivery to hypoxic regions in solid tumours, exerting a radiosensitising effect in vivo in animal tumour models. Precisely how the drug improves oxygenation is not well understood. We hypothesised that metabolic conditions present within solid tumours reduce red blood cell (RBC) deformability and that flunarizine exerts its in vivo effect by preventing this loss of RBC deformability. A microrheometer was used to compare the viscosity of rat and human RBC suspensions in conditions of hypoxia (pO2 < 10 mmHg), acidic environment (pH 6.8), and elevated lactate concentration (lactate 5 mMol l-1), without or with flunarizine at concentrations of 5, 10, and 50 mg l-1. The effects of flunarizine on RBC density and morphology were also recorded. Hypoxia, low pH, and lactate exposure together increased both human and rat RBC suspension viscosity. Flunarizine at concentrations of 5 and 10 mg l-1 prevented the increases in viscosity. The drug caused dose-dependent shifts toward lower cell density while inducing a characteristic cupped shape (stomatcytic morphology), suggesting a mechanism involving calmodulin inhibition. The results support the hypothesis that flunarizine improves tumour blood flow and oxygenation by enhancing flow properties of RBC's in solid tumours. Images Figure 5 PMID:8471430

  20. Urine pH test

    MedlinePlus

    A urine pH test measures the level of acid in urine. ... pH - urine ... meat products, or cheese can decrease your urine pH. ... to check for changes in your urine acid levels. It may be done to ... more effective when urine is acidic or non-acidic (alkaline).

  1. Critical body residues for pentachlorophenol in the zebra mussel under varying conditions of pH and temperature

    SciTech Connect

    Fisher, S.W.; Hwang, H.; Atanasoff, M.; Landrum, P.F.

    1995-12-31

    The toxicity of pentachlorophenol (PCP), an ionizable phenol, is strongly dependent on environmental pH and temperature. Using the invertebrate species, the zebra mussel (Dreissena polymorpha), the authors tested whether CBRs could be used to resolve the differences in toxicity under varying conditions. The authors simultaneously measured acute toxicity and tissue concentrations of PCP under 9 different combinations of pH and temperature. CBRs were determined from tissue residues as LD{sub 50}, values and were also calculated from LC{sub 50}s in conjunction with toxicokinetic parameters determined under each set of conditions. The data show that when toxicity is based on aqueous concentrations of PCP needed to cause mortality (LC{sub 50}s), that the resulting LC{sub 50}s varied by a factor of 372 X across the range of conditions tested. However, when LD{sub 50}s were calculated from tissue residues in the mussel, the latter varied only by a factor of 12.7 across the range of conditions examined. When CBRs were determined toxicokinetically, instead of from direct measurement of tissue concentrations, these CBRs were both higher than the measured LD{sub 50}s and more variable. The authors believe this is a result of the animals having a higher filtering rate and a greater tolerance for PCP in the short-term exposures from which the toxicokinetic values were obtained. Their data generally support the utility of CBRs in minimizing variation attributable to environmental variables but also demonstrate that the method of determining a CBR will be critical.

  2. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    PubMed

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. PMID:25668417

  3. The effects of intermittent exposure to low pH and oxygen conditions on survival and growth of juvenile red abalone

    NASA Astrophysics Data System (ADS)

    Kim, T. W.; Barry, J. P.; Micheli, F.

    2013-02-01

    Exposure of nearshore animals to hypoxic, low pH waters upwelled from below the continental shelf and advected near the coast may be stressful to marine organisms and lead to impaired physiological performance. We mimicked upwelling conditions in the laboratory and tested the effect of fluctuating exposure to water with low pH and/or low oxygen levels on the mortality and growth of juvenile red abalone (Haliotis rufescens, shell length 5-10 mm). Mortality rates of juvenile abalone exposed to low pH (7.5, total scale) and low O2 (40% saturation, 5 mg L-1) conditions for periods of 3 to 6 h every 3-5 days over 2 weeks did not differ from those exposed to control conditions (O2: 100% saturation, 12 mg L-1; pH 8.0). However, when exposure was extended to 24 h repeated twice over a 15 day period, juveniles experienced higher mortality in the low oxygen treatments compared to control conditions, regardless of pH levels (pH 7.5 vs. 8.0). Growth rates were reduced significantly when juveniles were exposed to low pH or low oxygen treatments and the growth was lowest when low pH exposure was combined with low O2. Furthermore, individual variation of growth rate increased when they were exposed to low pH and low O2 conditions. These results indicate that prolonged exposure to low oxygen levels is detrimental for the survival of red abalone, whereas both pH and oxygen is a crucial factor for their growth. However, given the higher individual variation in growth rate, they may have an ability to adapt to extended exposure to upwelling conditions.

  4. C and O stable isotopic signatures of fast-growing dripstones on alkaline substrates: reflection of growth mechanism, carbonate sources and environmental conditions.

    PubMed

    Zavadlav, Saša; Mazej, Darja; Zavašnik, Janez; Rečnik, Aleksander; Dominguez-Víllar, David; Cukrov, Neven; Lojen, Sonja

    2012-06-01

    Secondary carbonate precipitates (dripstones) formed on concrete surfaces in four different environments--Mediterranean and continental open-space and indoor environments (inside a building and in a karstic cave)--were studied. The fabric of dripstones depends upon water supply, pH of mother solution and carbonate-resulting precipitation rate. Very low δ(13)C (average-28.2‰) and δ(18)O (average-18.4‰) values showed a strong positive correlation, typical for carbonate precipitated by rapid dissolution of CO(2) in a highly alkaline solution and consequent disequilibrium precipitation of CaCO(3). The main source of carbon is atmospheric or biogenic CO(2) in the poorly ventilated karstic cave, which is reflected in even lower δ(13)C values. Statistical analysis of δ(13)C and δ(18)O values of the four groups of samples showed that the governing factor of isotope fractionation is not the temperature, but rather the precipitation rate. PMID:22316094

  5. Effects of solution pH and complexing reagents on uranium and thorium desorption under saturated equilibrium conditions

    SciTech Connect

    Wang, Yug-Yea; Yu, C.

    1992-08-01

    Three contaminated bulk surface soils were used for investigating the effect of solution pH and complexing reagents on uranium and thorium desorption. At a low solution pH, the major chemical species of uranium and thorium, uranyl UO{sub 2}{sup +2}, thorium dihydroxide Th(OH){sub 2}{sup +2}, and thorium hydroxide Th(OH){sup +3}, tend to form complexes with acetates in the solution phase, which increases the fractions of uranium and thorium desorbed into this phase. At a high solution pH, important uranium and thorium species such as uranyl tricarbonate complex UO{sub 2}(CO){sub 3}{sub 3}{sup {minus}4} and thorium tetrahydroxide complex Th(OH){sub 4} tend to resist complexation with acetates. The presence of complexing reagents in solution can release radionuclides such as uranium and/or thorium from the soil to the solution by forming soluble complexes. Sodium bicarbonate (NaHCO{sub 3}) and diethylenetriaminepentaacetic acid (DTPA) are strong complex formers that released 38% to 62% of total uranium activity and 78% to 86% of total thorium activity, respectively, from the soil samples investigated. Solutions of 0.1 molar sodium nitrate (NaNO{sub 3}) and 0.1 molar sodium sulfate (Na{sub 2}SO{sub 4}) were not effective complex formers with uranium and thorium under the experimental conditions. Fractions of uranium and thorium desorbed by 0.15g/200ml humic acid ranged from 4.62% to 6.17% and 1.59% to 7.09%, respectively. This work demonstrates the importance of a knowledge of solution chemistry in investigating the desorption of radionuclides.

  6. Effects of solution pH and complexing reagents on uranium and thorium desorption under saturated equilibrium conditions

    SciTech Connect

    Wang, Yug-Yea; Yu, C.

    1992-01-01

    Three contaminated bulk surface soils were used for investigating the effect of solution pH and complexing reagents on uranium and thorium desorption. At a low solution pH, the major chemical species of uranium and thorium, uranyl UO{sub 2}{sup +2}, thorium dihydroxide Th(OH){sub 2}{sup +2}, and thorium hydroxide Th(OH){sup +3}, tend to form complexes with acetates in the solution phase, which increases the fractions of uranium and thorium desorbed into this phase. At a high solution pH, important uranium and thorium species such as uranyl tricarbonate complex UO{sub 2}(CO){sub 3}{sub 3}{sup {minus}4} and thorium tetrahydroxide complex Th(OH){sub 4} tend to resist complexation with acetates. The presence of complexing reagents in solution can release radionuclides such as uranium and/or thorium from the soil to the solution by forming soluble complexes. Sodium bicarbonate (NaHCO{sub 3}) and diethylenetriaminepentaacetic acid (DTPA) are strong complex formers that released 38% to 62% of total uranium activity and 78% to 86% of total thorium activity, respectively, from the soil samples investigated. Solutions of 0.1 molar sodium nitrate (NaNO{sub 3}) and 0.1 molar sodium sulfate (Na{sub 2}SO{sub 4}) were not effective complex formers with uranium and thorium under the experimental conditions. Fractions of uranium and thorium desorbed by 0.15g/200ml humic acid ranged from 4.62% to 6.17% and 1.59% to 7.09%, respectively. This work demonstrates the importance of a knowledge of solution chemistry in investigating the desorption of radionuclides.

  7. Technetium recovery from high alkaline solution

    DOEpatents

    Nash, Charles A.

    2016-07-12

    Disclosed are methods for recovering technetium from a highly alkaline solution. The highly alkaline solution can be a liquid waste solution from a nuclear waste processing system. Methods can include combining the solution with a reductant capable of reducing technetium at the high pH of the solution and adding to or forming in the solution an adsorbent capable of adsorbing the precipitated technetium at the high pH of the solution.

  8. Temperature dependence of the absorbance of alkaline solutions of 4-nitrophenyl phosphate--a potential source of error in the measurement of alkaline phosphatase activity.

    PubMed

    Burtis, C A; Seibert, L E; Baird, M A; Sampson, E J

    1977-09-01

    The absorbance of an alkaline solution of 4-nitrophenyl phosphate is a function of temperature. Quantitative evaluation of this phenomenon indicates that it (a) depends on the concentration of the compound and is independent of source, buffer concentration, and pH above 9.0; (b) is reversible; (c) is not a result of alkaline hydrolysis or 4-nitrophenol contamination; and (d) correlates with a temperature-induced shift of its absorbance spectrum. The phenomenon may represent a potential analytical problem in methods for alkaline phosphatase in which this compound is the substrate. If thermal equilibrium is not reached and maintained during an alkaline phosphatase assay, the thermochromic response will be included in the measured rate. The magnitude of this error depends on the thermal response and control characteristics of each particular instrument and the reaction conditions under which such an analysis is performed. PMID:19164

  9. 2′-Deoxymugineic acid promotes growth of rice (Oryza sativa L.) by orchestrating iron and nitrate uptake processes under high pH conditions

    PubMed Central

    Araki, Ryoichi; Kousaka, Kayoko; Namba, Kosuke; Murata, Yoshiko; Murata, Jun

    2015-01-01

    Poaceae plants release 2′-deoxymugineic acid (DMA) and related phytosiderophores to chelate iron (Fe), which often exists as insoluble Fe(III) in the rhizosphere, especially under high pH conditions. Although the molecular mechanisms behind the biosynthesis and secretion of DMA have been studied extensively, little information is known about whether DMA has biological roles other than chelating Fe in vivo. Here, we demonstrate that hydroponic cultures of rice (Oryza sativa) seedlings show almost complete restoration in shoot height and soil-plant analysis development (SPAD) values after treatment with 3–30 μm DMA at high pH (pH 8.0), compared with untreated control seedlings at normal pH (pH 5.8). These changes were accompanied by selective accumulation of Fe over other metals. While this enhanced growth was evident under high pH conditions, DMA application also enhanced seedling growth under normal pH conditions in which Fe was fairly accessible. Microarray and qRT-PCR analyses revealed that exogenous DMA application attenuated the increased expression levels of various genes related to Fe transport and accumulation. Surprisingly, despite the preferential utilization of ammonium over nitrate as a nitrogen source by rice, DMA application also increased nitrate reductase activity and the expression of genes encoding high-affinity nitrate transporters and nitrate reductases, all of which were otherwise considerably lower under high pH conditions. These data suggest that exogenous DMA not only plays an important role in facilitating the uptake of environmental Fe, but also orchestrates Fe and nitrate assimilation for optimal growth under high pH conditions. PMID:25393516

  10. Alkaline flooding injection strategy

    SciTech Connect

    French, T.R.; Josephson, C.B.

    1992-03-01

    The objective of this project is to improved alkali-surfactant flooding methods, and this includes determining the proper design of injection strategy. Several different injection strategies have been used or suggested for recovering heavy oils with surfactant-enhanced alkaline flooding methods. Oil recovery was compared for four different injection strategies: (1) surfactant followed by polymer, (2) surfactant followed by alkaline polymer, (3) alkaline surfactant followed by polymer, and (4) alkali, surfactant, and polymer mixed in a single formulation. The effect of alkaline preflush was also studied under two different conditions. All of the oil recovery experiments were conducted under optimal conditions with a viscous, non-acidic oil from Hepler (KS) oil field. The coreflood experiments were conducted with Berea sandstone cores since field core was not available in sufficient quantity for coreflood tests. The Tucker sand of Hepler field is a Class I fluvial dominated deltaic reservoir, as classified by the Department of Energy, which has been selected as the site of a DOE-sponsored field pilot test.

  11. MudPIT analysis of alkaline tolerance by Listeria monocytogenes strains recovered as persistent food factory contaminants.

    PubMed

    Nilsson, Rolf E; Latham, Roger; Mellefont, Lyndal; Ross, Tom; Bowman, John P

    2012-05-01

    Alkaline solutions are used to clean food production environments but the role of alkaline resistance in persistent food factory contamination by Listeria monocytogenes is unknown. We used shotgun proteomics to characterise alkaline adapted L. monocytogenes recovered as persistent and transient food factory contaminants. Three unrelated strains were studied including two persistent and a transient food factory contaminant determined using multilocus sequence typing (MLST). The strains were adapted to growth at pH 8.5 and harvested in exponential phase. Protein extracts were analysed using multidimensional protein identification technology (MudPIT) and protein abundance compared by spectra counting. The strains elicited core responses to alkaline growth including modulation of intracellular pH, stabilisation of cellular processes and reduced cell-division, independent to lineage, MLST or whether the strains were transient or persistent contaminants. Alkaline adaptation by all strains corresponded to that expected in stringent-response induced cells, with protein expression supporting metabolic shifts concordant with elevated alarmone production and indicating that the alkaline-stringent response results from energy rather than nutrient limitation. We believe this is the first report describing induction of a stringent response in different L. monocytogenes strains by alkaline pH under non-limiting growth conditions. The work emphasises the need for early intervention to avoid persistent food factory contamination by L. monocytogenes. PMID:22265300

  12. Recovery of phosphorus and nitrogen from alkaline hydrolysis supernatant of excess sludge by magnesium ammonium phosphate.

    PubMed

    Bi, Wei; Li, Yiyong; Hu, Yongyou

    2014-08-01

    Magnesium ammonium phosphate (MAP) method was used to recover orthophosphate (PO₄(3-)-P) and ammonium nitrogen (NH4(+)-N) from the alkaline hydrolysis supernatant of excess sludge. To reduce alkali consumption and decrease the pH of the supernatant, two-stage alkaline hydrolysis process (TSAHP) was designed. The results showed that the release efficiencies of PO₄(3-)-P and NH₄(+)-N were 41.96% and 7.78%, respectively, and the pH of the supernatant was below 10.5 under the running conditions with initial pH of 13, volume ratio (sludge dosage/water dosage) of 1.75 in second-stage alkaline hydrolysis reactor, 20 g/L of sludge concentration in first-stage alkaline hydrolysis reactor. The order of parameters influencing MAP reaction was analyzed and the optimized conditions of MAP reaction were predicted through the response surface methodology. The recovery rates of PO₄(3-)-P and NH₄(+)-N were 46.88% and 16.54%, respectively under the optimized conditions of Mg/P of 1.8, pH 9.7 and reaction time of 15 min. PMID:24880806

  13. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures.

    PubMed

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2014-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth. PMID:26535110

  14. Effect of environmental and cultural conditions on medium pH and explant growth performance of Douglas-fir ( Pseudotsuga menziesii) shoot cultures

    PubMed Central

    Chen, Chien-Chih; Bates, Rick; Carlson, John

    2015-01-01

    The medium pH level of plant tissue cultures has been shown to be essential to many aspects of explant development and growth. Sensitivity or tolerance of medium pH change in vitro varies according to specific requirements of individual species. The objectives of this study are to 1) determine medium pH change over time in storage conditions and with presence of explants, 2) evaluate the effects of medium pH change on explant growth performance and 3) assess the effects of adding a pH stabilizer, 2-(N-morpholino)ethanesulfonic acid (MES) that is commonly used in Douglas-fir micropropagation medium. Vegetative buds were collected in the spring before breaking dormancy from juvenile and mature donor trees for conducting these evaluations. Medium, with or without MES, was pre-adjusted to five pH levels before adding MES, agar and autoclaving. Medium pH changes and explant growth parameters were measured at eight different incubation times. Overall, MES provided a more stable medium pH, relative to starting pH values, under both light and dark storage conditions as well as with presence of explants. A general trend of decreasing medium pH over time was found comparing explants from juvenile and mature donor genotypes. Explant height and weight growth increased over time, but differ among explants from juvenile and mature donor genotypes. Our findings suggest that a 21-day subculture practice may best sustain medium freshness, medium pH level and desirable explant growth. PMID:26535110

  15. Evaluation of Experimentally Measured and Model-Calculated pH for Rock-Brine-CO2 Systems under Geologic CO2 Sequestration Conditions

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    Reliable pH estimation is essential for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies of formation reactivities conducted under geologic CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH; however, the accuracy of these model predictions is typically uncertain. In this study, we expanded the measurement range of a spectrophotometric method for pH determination, and we applied the method to measure the pH in batch-reactor experiments utilizing rock samples from five ongoing GCS demonstration projects. A combination of color-changing pH indicators, bromophenol blue and bromocresol green, was shown to enable measurements over the pH range of 2.5-5.2. In-situ pH measurements were compared with pH values calculated using geochemical models. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. For rocks comprised of carbonate, siltstone, and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain proton consuming and producing reactions that occur between the basalt minerals and CO2-saturated brine solutions.

  16. A cow-level association of ruminal pH on body condition score, serum beta-hydroxybutyrate and postpartum disorders in Thai dairy cattle.

    PubMed

    Chaidate, Inchaisri; Somchai, Chanpongsang; Jos, Noordhuizen; Henk, Hogeveen

    2014-09-01

    Subacute ruminal acidosis in dairy cows occurs when ruminal pH is below about 5.5. However, the exact threshold level of ruminal pH affecting cow health is still in debate. This investigation was carried out in 505 cows within 31 farms. The postpartum disorders, including dystocia, retained placenta, anestrus, cystic ovary, metritis, clinical mastitis and lameness, were analyzed. Ruminal pH, serum beta-hydroxy butyrate (SBHB), serum urea nitrogen and body condition score (BCS) were measured once during the 3 to 6 weeks postpartum, while BCS was determined once more at 1 week before calving. Ruminal pH was determined by ruminocentesis technique. The ruminal pH was evaluated to study the association with BCS, SBHB and postpartum disorders using linear regression in a generalized linear mixed model with farm as a random effect. The results show that low ruminal pH was associated with dystocia, metritis and lameness. Moreover, a low ruminal pH can be found in cows with a high loss of BCS after calving and also in cows with low SBHB postpartum. These findings confirmed the feasibility of the ruminocentesis technique and the association of low ruminal pH on various postpartum disorders at the individual cow level. However, the consequences of low ruminal pH on dairy cow health still needs more exploration for a better understanding of the physiological mechanisms. PMID:24961478

  17. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments

    NASA Astrophysics Data System (ADS)

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids.

  18. Energetics of Amino Acid Synthesis in Alkaline Hydrothermal Environments.

    PubMed

    Kitadai, Norio

    2015-12-01

    Alkaline hydrothermal systems have received considerable attention as candidates for the origin and evolution of life on the primitive Earth. Nevertheless, sufficient information has not yet been obtained for the thermodynamic properties of amino acids, which are necessary components for life, at high temperatures and alkaline pH. These properties were estimated using experimental high-temperature volume and heat capacity data reported in the literature for several amino acids, together with correlation algorithms and the revised Helgeson-Kirkham-Flowers (HKF) equations of state. This approach enabled determination of a complete set of the standard molal thermodynamic data and the revised HKF parameters for the 20 protein amino acids in their zwitterionic and ionization states. The obtained dataset was then used to evaluate the energetics of amino acid syntheses from simple inorganic precursors (CO2, H2, NH3 and H2S) in a simulated alkaline hydrothermal system on the Hadean Earth. Results show that mixing between CO2-rich seawater and the H2-rich hydrothermal fluid can produce energetically favorable conditions for amino acid syntheses, particularly in the lower-temperature region of such systems. Together with data related to the pH and temperature dependences of the energetics of amino acid polymerizations presented in earlier reports, these results suggest the following. Hadean alkaline hydrothermal settings, where steep pH and temperature gradients may have existed between cool, slightly acidic Hadean ocean water and hot, alkaline hydrothermal fluids at the vent-ocean interface, may be energetically the most suitable environment for the synthesis and polymerization of amino acids. PMID:25796392

  19. FINAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Investigation of behavior of actinides in alkaline media containing Al(III) showed that no aluminate complexes of actinides in oxidation states (III-VII) were formed in alkaline solutions. At alkaline precipitation (pH 10-14) of actinides in presence of Al(III) formation of alumi...

  20. Investigating mechanisms of alkalinization for reducing primary breast tumor invasion.

    PubMed

    Robey, Ian F; Nesbit, Lance A

    2013-01-01

    The extracellular pH (pHe) of many solid tumors is acidic as a result of glycolytic metabolism and poor perfusion. Acidity promotes invasion and enhances metastatic potential. Tumor acidity can be buffered by systemic administration of an alkaline agent such as sodium bicarbonate. Tumor-bearing mice maintained on sodium bicarbonate drinking water exhibit fewer metastases and survive longer than untreated controls. We predict this effect is due to inhibition of tumor invasion. Reducing tumor invasion should result in fewer circulating tumor cells (CTCs). We report that bicarbonate-treated MDA-MB-231 tumor-bearing mice exhibited significantly lower numbers of CTCs than untreated mice (P < 0.01). Tumor pHe buffering may reduce optimal conditions for enzymes involved in tumor invasion such as cathepsins and matrix metalloproteases (MMPs). To address this, we tested the effect of transient alkalinization on cathepsin and MMP activity using enzyme activatable fluorescence agents in mice bearing MDA-MB-231 mammary xenografts. Transient alkalinization significantly reduced the fluorescent signal of protease-specific activatable agents in vivo (P ≤ 0.003). Alkalinization, however, did not affect expression of carbonic anhydrase IX (CAIX). The findings suggest a possible mechanism in a live model system for breast cancer where systemic alkalinization slows the rate of invasion. PMID:23936808

  1. Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions.

    PubMed

    Wall, M; Fietzke, J; Schmidt, G M; Fink, A; Hofmann, L C; de Beer, D; Fabricius, K E

    2016-01-01

    The resilience of tropical corals to ocean acidification depends on their ability to regulate the pH within their calcifying fluid (pHcf). Recent work suggests pHcf homeostasis under short-term exposure to pCO2 conditions predicted for 2100, but it is still unclear if pHcf homeostasis can be maintained throughout a corals lifetime. At CO2 seeps in Papua New Guinea, massive Porites corals have grown along a natural seawater pH gradient for decades. This natural gradient, ranging from pH 8.1-7.4, provides an ideal platform to determine corals' pHcf (using boron isotopes). Porites maintained a similar pHcf (~8.24) at both a control (pH 8.1) and seep-influenced site (pH 7.9). Internal pHcf was slightly reduced (8.12) at seawater pH 7.6, and decreased to 7.94 at a site with a seawater pH of 7.4. A growth response model based on pHcf mirrors the observed distribution patterns of this species in the field. We suggest Porites has the capacity to acclimate after long-time exposure to end-of-century reduced seawater pH conditions and that strong control over pHcf represents a key mechanism to persist in future oceans. Only beyond end-of-century pCO2 conditions do they face their current physiological limit of pH homeostasis and pHcf begins to decrease. PMID:27477963

  2. Internal pH regulation facilitates in situ long-term acclimation of massive corals to end-of-century carbon dioxide conditions

    PubMed Central

    Wall, M.; Fietzke, J.; Schmidt, G. M.; Fink, A; Hofmann, L. C.; de Beer, D.; Fabricius, K. E.

    2016-01-01

    The resilience of tropical corals to ocean acidification depends on their ability to regulate the pH within their calcifying fluid (pHcf). Recent work suggests pHcf homeostasis under short-term exposure to pCO2 conditions predicted for 2100, but it is still unclear if pHcf homeostasis can be maintained throughout a corals lifetime. At CO2 seeps in Papua New Guinea, massive Porites corals have grown along a natural seawater pH gradient for decades. This natural gradient, ranging from pH 8.1–7.4, provides an ideal platform to determine corals’ pHcf (using boron isotopes). Porites maintained a similar pHcf (~8.24) at both a control (pH 8.1) and seep-influenced site (pH 7.9). Internal pHcf was slightly reduced (8.12) at seawater pH 7.6, and decreased to 7.94 at a site with a seawater pH of 7.4. A growth response model based on pHcf mirrors the observed distribution patterns of this species in the field. We suggest Porites has the capacity to acclimate after long-time exposure to end-of-century reduced seawater pH conditions and that strong control over pHcf represents a key mechanism to persist in future oceans. Only beyond end-of-century pCO2 conditions do they face their current physiological limit of pH homeostasis and pHcf begins to decrease. PMID:27477963

  3. Characterization of size, strength and structure of aluminum-polymer dual-coagulant flocs under different pH and hydraulic conditions.

    PubMed

    Rong, Hongyan; Gao, Baoyu; Dong, Min; Zhao, Yanxia; Sun, Shenglei; Yanwang; Yue, Qinyan; Li, Qian

    2013-05-15

    The objectives of this study are to investigate the impact of papermaking sludge product (LA) on coagulation performance and floc properties under different solution pH and hydraulic conditions. LA was synthetized by grafting acrylamide onto the lignin that contained in papermaking sludge. Characterization of LA, such as FTIR, SEM, zeta potential and molecular weight, showed that target product was obtained successfully. LA was used in combination with aluminum sulfate or polyaluminum chloride, namely Al-LA (Al was dosed firstly) and LA-Al (LA was dosed firstly), in humic acid water treatment. Floc properties and coagulation behaviors of aluminum salts and the dual-coagulants were comparatively evaluated. Results showed that DOC removal was improved by LA at pH 4 ~ 9 and the removal variations caused by different pH were decreased. Flocs formed at pH 5 and pH 8 gave quite large floc size. Floc recoverability declined as initial pH increased. Floc size, growth rate and recoverability were in the order of Al-LA>LA-Al>Al. Furthermore, flocs formed at pH 7 showed the weakest resistance to increasing shear force. Fractal dimension was rather high at pH 7 and 8 and it was in the following order: Al>LA-Al>Al-LA. PMID:23542601

  4. Evaluation of experimentally measured and model-calculated pH for rock-brine-CO2 systems under geologic CO2 sequestration conditions

    SciTech Connect

    Shao, Hongbo; Thompson, Christopher J.; Cantrell, Kirk J.

    2013-11-14

    pH is an essential parameter for understanding the geochemical reactions that occur in rock-brine-CO2 systems when CO2 is injected into deep geologic formations for long-term storage. Due to a lack of reliable experimental methods, most laboratory studies conducted under geological CO2 sequestration (GCS) conditions have relied on thermodynamic modeling to estimate pH. The accuracy of these model predictions is typically uncertain. In our previous work, we have developed a method for pH determination by in-situ spectrophotometry. In the present work, we expanded the applicable pH range for this method and measured the pH of several rock-brine-CO2 systems at GCS conditions for five rock samples collected from ongoing GCS demonstration projects. Experimental measurements were compared with pH values calculated using several geochemical modeling approaches. The effect of different thermodynamic databases on the accuracy of model prediction was evaluated. Results indicate that the accuracy of model calculations is rock-dependent. For rocks comprised of carbonate and sandstone, model results generally agreed well with experimentally measured pH; however, for basalt, significant differences were observed. These discrepancies may be due to the models’ failure to fully account for certain reaction occurring between the basalt minerals the CO2-saturated brine solutions.

  5. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson

    2004-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Neither aluminum citrate-polyacrylamide nor silicate-polyacrylamide gel systems produced significant incremental oil in linear corefloods. Both flowing and rigid flowing chromium acetate-polyacrylamide gels produced incremental oil with the rigid flowing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. None of the gels tested

  6. A streptococcal NRAMP homologue is crucial for the survival of Streptococcus agalactiae under low pH conditions.

    PubMed

    Shabayek, Sarah; Bauer, Richard; Mauerer, Stefanie; Mizaikoff, Boris; Spellerberg, Barbara

    2016-05-01

    Streptococcus agalactiae or Group B Streptococcus (GBS) is a commensal bacterium of the human gastrointestinal and urogenital tracts as well as a leading cause of neonatal sepsis, pneumonia and meningitis. Maternal vaginal carriage is the main source for GBS transmission and thus the most important risk factor for neonatal disease. Several studies in eukaryotes identified a group of proteins natural resistance-associated macrophage protein (NRAMP) that function as divalent cation transporters for Fe(2+) and Mn(2+) and confer on macrophages the ability to control replication of bacterial pathogens. Genome sequencing predicted potential NRAMP homologues in several prokaryotes. Here we describe for the first time, a pH-regulated NRAMP Mn(2+) /Fe(2+) transporter in GBS, designated MntH, which confers resistance to reactive oxygen species (ROS) and is crucial for bacterial growth and survival under low pH conditions. Our investigation implicates MntH as an important colonization determinant for GBS in the maternal vagina as it helps bacteria to adapt to the harsh acidic environment, facilitates bacterial adherence, contributes to the coexistence with the vaginal microbiota and plays a role in GBS intracellular survival inside macrophages. PMID:27150893

  7. Arsenite oxidation and removal driven by a bio-electro-Fenton process under neutral pH conditions.

    PubMed

    Wang, Xiang-Qin; Liu, Chuan-Ping; Yuan, Yong; Li, Fang-bai

    2014-06-30

    The iron-catalyzed oxidation of arsenite (As(III)) associated with Fenton or Fenton-like reactions is one of the most efficient arsenic removal methods. However, the conventional chemical or electro-Fenton systems for the oxidation of As(III) are only efficient under acid conditions. In the present study, a cost-effective and efficient bio-electro-Fenton process was performed for As(III) oxidation in a dual-chamber microbial fuel cell (MFC) under neutral pH conditions. In such a system, the Fenton reagents, including H2O2 and Fe(II), were generated in situ by microbial-driven electro-reduction of O2 and γ-FeOOH, respectively, without an electricity supply. The results indicated that the process was capable of inducing As(III) oxidation with an apparent As(III) depletion first-order rate constant of 0.208 h(-1). The apparent oxidation current efficiency was calculated to be as high as 73.1%. The γ-FeOOH dosage in the cathode was an important factor in determining the system performance. Fourier-transform infrared spectroscopy (FT-IR) analysis indicated that As(V) was bound to the solid surface as a surface complex but not as a precipitated solid phase. The mechanism of bio-E-Fenton reaction for As(III) oxidation was also proposed. The bio-electro-Fenton system makes it potentially attractive method for the detoxification of As(III) from aqueous solution. PMID:24857903

  8. Differences in the Effect of Coal Pile Runoff (Low pH, High Metal Concentrations) Versus Natural Carolina Bay Water (Low pH, Low Metal Concentrations) on Plant Condition and Associated Bacterial Epiphytes of Salvinia minima.

    PubMed

    Lindell, A H; Tuckfield, R C; McArthur, J V

    2016-05-01

    Numerous wetlands and streams have been impacted by acid mine drainage (AMD) resulting in lowered pH and increased levels of toxic heavy metals. Remediation of these contaminated sites requires knowledge on the response of microbial communities (especially epiphytic) and aquatic plants to these altered environmental conditions. We examined the effect of coal pile runoff waters as an example of AMD in contrast to natural water from Carolina Bays with low pH and levels of metals on Salvinia minima, a non-native, metal accumulating plant and associated epiphytic bacteria. Treatments included water from two Carolina Bays, one AMD basin and Hoagland's Solution at two pH levels (natural and adjusted to 5.0-5.5). Using controlled replicated microcosms (N = 64) we determined that the combination of low pH and high metal concentrations has a significant negative impact (p < 0.05) on plant condition and epiphytes. Solution metal concentrations dropped indicating removal from solution by S. minima in all microcosms. PMID:26908369

  9. Effects of pH adjustment with phosphates on attributes and functionalities of normal and high pH beef.

    PubMed

    Young, O A; Zhang, S X; Farouk, M M; Podmore, C

    2005-05-01

    Longissimus dorsi muscles from six normal- and six high-ultimate pH bulls were selected for fine mincing and subsequent pH adjustment with acid and alkaline pyrophosphate. Four pH treatments were prepared: initially high remains high (mean of pH 6.37), high becomes normal (5.62); initially normal remains normal (5.65), and normal becomes high (6.21). The addition level of phosphate as P(2)O(5) was the same in all replicates. Before pH adjustment, colour and water holding capacity (WHC) values were strongly affected by higher (initial) pH in expected ways: darker, lower chroma, higher capacity. After pH adjustment, these values were affected only by the final pH, not the initial pH (the pH history). Total protein solubility was likewise affected by final pH but not initial pH. In contrast, the combination high initial pH-high final pH improved sarcoplasmic protein solubility by 20% over the combination normal initial pH-high final pH. Sarcoplasmic protein solubility is an indicator of strain required to fracture cooked batters made from the minced meats; in the event, the rank order of the four treatments for strain-to-fracture matched that of sarcoplasmic protein solubility. Statistically, sarcoplasmic protein solubility and strain-to-fracture were both affected by initial pH (P<0.01) and final pH (P<0.001). However, stress required to fracture cooked batters was entirely controlled by initial pH (P<0.01). In other words, the stress-to-fracture advantage of initially high pH meat was not matched by upward pH adjustment of initially normal pH meat. Emulsion stability, which is better with higher pH meat, was affected by initial and final pH (both P<0.01). Cook yield, like WHC of pH-adjusted raw meat, was more due to final pH than initial pH, similarly cooked batter colour, whereas final pH had a significant effect on quality attributes (generally better when higher). An initially high pH history conferred an enduring advantage on three important batter attributes

  10. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  11. Biodegradation of beet molasses vinasse by a mixed culture of micro organisms: effect of aeration conditions and pH control.

    PubMed

    Lutosławski, Krzysztof; Ryznar-Luty, Agnieszka; Cibis, Edmund; Krzywonos, Małgorzata; Miśkiewicz, Tadeusz

    2011-01-01

    The effect of aeration conditions and pH control on the progress and efficiency of beet molasses vinasse biodegradation was investigated during four batch processes at 38 degrees C with the mixed microbial culture composed of Bifidobacterium, Lactobacillus, Lactococcus, Streptococcus, Bacillus, Rhodopseudomonas, and Saccharomyces. The four processes were carried out in a shake flask with no pH control, an aerobic bioreactor without mixing with no pH control, and a stirred-tank reactor (STR) with aeration with and without pH control, respectively. All experiments were started with an initial pH 8.0. The highest efficiency of biodegradation was achieved through the processes conducted in the STR, where betaine (an organic pollutant occurring in beet molasses in very large quantities) was completely degraded by the microorganisms. The process with no pH control carried out in the STR produced the highest reduction in the following pollution measures: organic matter expressed as chemical oxygen demand determined by the dichromatic method + theoretical COD of betaine (COD(sum), 85.5%), total organic carbon (TOC, 78.8%) and five-day biological oxygen demand (BOD5, 98.6%). The process conditions applied in the shake flask experiments, as well as those used in the aerobic bioreactor without mixing, failed to provide complete betaine assimilation. As a consequence, reduction in COD(sum), TOC and BOD5 was approximately half that obtained with STR. PMID:22432306

  12. The Role of the pH Conditions of Growth on the Bioadhesion of Individual and Lawns of Pathogenic L. monocytogenes Cells

    PubMed Central

    Park, Bong-Jae; Abu-Lail, Nehal I.

    2011-01-01

    The work of adhesion that governs the interactions between pathogenic Listeria monocytogenes and silicon nitride in water was probed for individual cells using atomic force microscopy and for lawns of cells using contact angle measurements combined with a thermodynamic-based harmonic mean model. The work of adhesion was probed for cells cultured under variable pH conditions of growth that ranged from pH 5 to pH 9. Our results indicated that L. monocytogenes cells survived and adapted well to the chemical stresses applied. For all pH conditions investigated, a transition was observed in the generation time, physiochemical properties, biopolymer grafting density and bioadhesion for cells cultured in media adjusted to pH 7 of growth. In media with pH 7, the generation time for the bacterial cells was lowest, the specific growth rate constant was highest, the cells were the most polar, cells displayed the highest grafting density of surface biopolymers and the highest bioadhesion to silicon nitride in water represented in terms of the work of adhesion. When compared, the work of adhesion values quantified between silicon nitride and lawns of L. monocytogenes cells were linearly correlated with the work of adhesion values quantified between silicon nitride and individual L. monocytogenes cells. PMID:21459385

  13. High expression and biosilica encapsulation of alkaline-active carbonic anhydrase for CO2 sequestration system development.

    PubMed

    Min, Ki-Ha; Son, Ryeo Gang; Ki, Mi-Ran; Choi, Yoo Seong; Pack, Seung Pil

    2016-01-01

    Carbonic anhydrase (CA) is a biocatalyst for CO2 sequestration because of its distinctive ability to accelerate CO2 hydration. High production and efficient immobilization of alkaline-active CAs are required, because one potential application of CA is its use in the alkaline solvent-based CO2 absorption/desorption process. Here, we designed and applied an α-type CA from Hahella chejuensis (HCA), which was reported as highly active in alkaline conditions, but was mostly expressed as insoluble forms. We found that the signal peptide-removed form of HCA [HCA(SP-)] was successfully expressed in the soluble form [∼70mg of purified HCA(SP-) per L of culture]. HCA(SP-) also displayed high pH stability in alkaline conditions, with maximal activity at pH 10; at this pH, ∼90% activity was maintained for 2h. Then, we prepared HCA(SP-)-encapsulated silica particles [HCA(SP-)@silica] via a spermine-mediated bio-inspired silicification method. HCA(SP-)@silica exhibited high-loading and highly stable CA activity. In addition, HCA(SP-)@silica retained more than 90% of the CA activity even after 10 cycles of use in mild conditions, and ∼80% in pH 10 conditions. These results will be useful for the development of practical CO2 sequestration processes employing CA. PMID:26206748

  14. Tribological efficacy and stability of phospholipid-based membrane lubricants in varying pH chemical conditions.

    PubMed

    Pawlak, Zenon; Urbaniak, Wieslaw; Afara, Isaac O; Yusuf, Kehinde Q; Banaszak-Piechowska, Agnieszka; Oloyede, Adekunle

    2016-03-01

    In this study, the authors examine the influence of joint chemical environment by measuring changes in the tribological properties (friction coefficient and charge density) of contacting surfaces of normal and degenerated cartilage samples in bath solutions of varying pH (2.0-9.0). Bovine articular cartilage samples (n = 54) were subjected to several surface measurements, including interfacial energy, contact angle, and friction coefficient, at varying pH. The samples were delipidized and then subjected to the same measurement protocols. Our results reveal that the interfacial energy and charge density, which have been shown to be related to friction coefficient, decrease with pH in the acidic range and approach constant values at physiological (or synovial fluid) pH of 7.4 and beyond it, i.e., toward basic pH domain. The authors conclude that this rather complex response explains the long-term efficacy with respect to ageing and associated pH changes, of the phospholipid layers that facilitate the almost frictionless, hydration-lubrication involving contact in the mammalian musculoskeletal system. PMID:26727914

  15. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, April 1, 1995--June 30, 1995

    SciTech Connect

    Wasan, D.T.

    1995-09-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested.

  16. Statistical optimization of alkaline protease production from Penicillium citrinum YL-1 under solid-state fermentation.

    PubMed

    Xiao, Yun-Zhu; Wu, Duan-Kai; Zhao, Si-Yang; Lin, Wei-Min; Gao, Xiang-Yang

    2015-01-01

    Proteases from halotolerant and halophilic microorganisms were found in traditional Chinese fish sauce. In this study, 30 fungi were isolated from fermented fish sauce in five growth media based on their morphology. However, only one strain, YL-1, which was identified as Penicillium citrinum by internal transcribed spacer (ITS) sequence analysis, can produce alkaline protease. This study is the first to report that a protease-producing fungus strain was isolated and identified in traditional Chinese fish sauce. Furthermore, the culture conditions of alkaline protease production by P. citrinum YL-1 in solid-state fermentation were optimized by response surface methodology. First, three variables including peptone, initial pH, and moisture content were selected by Plackett-Burman design as the significant variables for alkaline protease production. The Box-Behnken design was then adopted to further investigate the interaction effects between the three variables on alkaline protease production and determine the optimal values of the variables. The maximal production (94.30 U/mL) of alkaline protease by P. citrinum YL-1 took place under the optimal conditions of peptone, initial pH, and moisture content (v/w) of 35.5 g/L, 7.73, and 136%, respectively. PMID:24840211

  17. Kinetic study of the reaction of sulfamethoxazole and glucose under acidic conditions: I. Effect of pH and temperature.

    PubMed

    Lucida, H; Parkin, J E; Sunderland, V B

    2000-07-20

    The kinetics of the reaction of sulfamethoxazole (SMX) in 5% w/v glucose to form the corresponding alpha- and beta-glucosylamines over the pH range of 0.80-6.88 at 37 degrees C has been investigated. The identity of the glucosylamines was determined by 1H-nuclear magnetic resonance spectroscopy of an authentic sample of the alpha-glucosylamine (USP) and the reaction products, and by interconversion of this compound to the corresponding beta-anomer. The reaction followed pseudo first-order reversible kinetics and involved specific acid and general acid-base catalysis. The pH-rate profile demonstrated that over the pH range of 0.80-2.90 and 5.50-6. 88 the reactions were dependent on H(+) concentration but pH independent between pH 3.00-5.45, which reflects the influence of ionization of SMX and the glucosylamines on the reversible reaction. Interpretation of the data with respect to kinetic models and rate equations for the formation and hydrolysis of the glucosylamines was investigated. Temperature dependence studies followed the Arrhenius equation with an Ea of 49.28 kJ mol(-1) for the forward and 63.46 kJ mol(-1) for the reverse reaction at pH 2.89 respectively. PMID:10915926

  18. Impact of Environmental Conditions (pH, Ionic Strength, And Electrolyte Type) On The Surface Charge And Aggregation Of Silver Nanoparticles Suspensions

    EPA Science Inventory

    The impact of capping agents and environmental conditions (pH, ionic strength, and background electrolytes) on surface charge and aggregation potential of silver nanoparticles (AgNPs) suspensions were investigated. Capping agents are chemicals used in the synthesis of nanopartic...

  19. Effects of pH and sugar concentration in Zygosaccharomyces rouxii growth and time for spoilage in concentrated grape juice at isothermal and non-isothermal conditions.

    PubMed

    Rojo, M C; Arroyo López, F N; Lerena, M C; Mercado, L; Torres, A; Combina, M

    2014-04-01

    The effect of pH (1.7-3.2) and sugar concentration (64-68 °Brix) on the growth of Zygosaccharomyces rouxii MC9 using response surface methodology was studied. Experiments were carried out in concentrated grape juice inoculated with Z. rouxii at isothermal conditions (23 °C) for 60 days. pH was the variable with the highest effect on growth parameters (potential maximum growth rate and lag phase duration), although the effect of sugar concentration were also significant. In a second experiment, the time for spoilage by this microorganism in concentrated grape juice was evaluated at isothermal (23 °C) and non-isothermal conditions, in an effort to reproduce standard storage and overseas shipping temperature conditions, respectively. Results show that pH was again the environmental factor with the highest impact on delaying the spoilage of the product. Thereby, a pH value below 2.0 was enough to increase the shelf life of the product for more than 60 days in both isothermal and non-isothermal conditions. The information obtained in the present work could be used by producers and buyers to predict the growth and time for spoilage of Z. rouxii in concentrated grape juice. PMID:24290637

  20. Survival and growth of Salmonella Enteritidis in membrane processed liquid egg white with pH, temperature and storage conditions as controlling factors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was undertaken to determine the effect of variation in solution pH and process temperature on the removal and regrowth of Salmonella Enteritidis in liquid egg white (LEW) by microfiltration (MF) membrane process. Influence of various storage conditions on growth of Salmonella in membrane sep...

  1. An Efficient Protocol for the Oxidative Hydrolysis of Ketone SAMP Hydrazones Employing SeO(2) and H(2)O(2) under Buffered (pH 7) Conditions.

    PubMed

    Smith, Amos B; Liu, Zhuqing; Simov, Vladimir

    2009-06-01

    An effective oxidative protocol for the liberation of ketones from SAMP hydrazones employing peroxyselenous acid under aqueous buffered conditions (pH 7) has been developed. The procedure proceeds without epimerization of adjacent stereocenters or dehydration, respectively, in representative SAMP alkylation and aldol reaction adducts. PMID:20657727

  2. Akaline, saline and mixed saline-alkaline stresses induce physiological and morpho-anatomical changes in Lotus tenuis shoots.

    PubMed

    Paz, R C; Reinoso, H; Espasandin, F D; González Antivilo, F A; Sansberro, P A; Rocco, R A; Ruiz, O A; Menéndez, A B

    2014-11-01

    Saline, alkaline and mixed saline-alkaline conditions frequently co-occur in soil. In this work, we compared these plant stress sources on the legume Lotus tenuis, regarding their effects on shoot growth and leaf and stem anatomy. In addition, we aimed to gain insight on the plant physiological status of stressed plants. We performed pot experiments with four treatments: control without salt (pH = 5.8; EC = 1.2 dS·m(-1)) and three stress conditions, saline (100 mM NaCl, pH = 5.8; EC = 11.0 dS·m(-1)), alkaline (10 mM NaHCO3, pH = 8.0, EC = 1.9 dS·m(-1)) and mixed salt-alkaline (10 mM NaHCO3 + 100 mM NaCl, pH = 8.0, EC = 11.0 dS·m(-1)). Neutral and alkaline salts produced a similar level of growth inhibition on L. tenuis shoots, whereas their mixture exacerbated their detrimental effects. Our results showed that none of the analysed morpho-anatomical parameters categorically differentiated one stress from the other. However, NaCl- and NaHCO3 -derived stress could be discriminated to different extents and/or directions of changes in some of the anatomical traits. For example, alkalinity led to increased stomatal opening, unlike NaCl-treated plants, where a reduction in stomatal aperture was observed. Similarly, plants from the mixed saline-alkaline treatment characteristically lacked palisade mesophyll in their leaves. The stem cross-section and vessel areas, as well as the number of vascular bundles in the sectioned stem were reduced in all treatments. A rise in the number of vessel elements in the xylem was recorded in NaCl-treated plants, but not in those treated exclusively with NaHCO3. PMID:24597843

  3. The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration

    NASA Astrophysics Data System (ADS)

    Barry, J. P.; Buck, K. R.; Lovera, C.; Brewer, P. G.; Seibel, B. A.; Drazen, J. C.; Tamburri, M. N.; Whaling, P. J.; Kuhnz, L.; Pane, E. F.

    2013-08-01

    The effects of low-pH, high-pCO2 conditions on deep-sea organisms were examined during four deep-sea CO2 release experiments simulating deep-ocean C sequestration by the direct injection of CO2 into the deep sea. We examined the survival of common deep-sea, benthic organisms (microbes; macrofauna, dominated by Polychaeta, Nematoda, Crustacea, Mollusca; megafauna, Echinodermata, Mollusca, Pisces) exposed to low-pH waters emanating as a dissolution plume from pools of liquid carbon dioxide released on the seabed during four abyssal CO2-release experiments. Microbial abundance in deep-sea sediments was unchanged in one experiment, but increased under environmental hypercapnia during another, where the microbial assemblage may have benefited indirectly from the negative impact of low-pH conditions on other taxa. Lower abyssal metazoans exhibited low survival rates near CO2 pools. No urchins or holothurians survived during 30-42 days of exposure to episodic, but severe environmental hypercapnia during one experiment (E1; pH reduced by as much as ca. 1.4 units). These large pH reductions also caused 75% mortality for the deep-sea amphipod, Haploops lodo, near CO2 pools. Survival under smaller pH reductions (ΔpH<0.4 units) in other experiments (E2, E3, E5) was higher for all taxa, including echinoderms. Gastropods, cephalopods, and fish were more tolerant than most other taxa. The gastropod Retimohnia sp. and octopus Benthoctopus sp. survived exposure to pH reductions that episodically reached -0.3 pH units. Ninety percent of abyssal zoarcids (Pachycara bulbiceps) survived exposure to pH changes reaching ca. -0.3 pH units during 30-42 day-long experiments.

  4. Crystallization conditions of porphyritic high-K calc-alkaline granitoids in the extreme northeastern Borborema Province, NE Brazil, and geodynamic implications

    NASA Astrophysics Data System (ADS)

    Campos, Benedita Cleide Souza; Vilalva, Frederico Castro Jobim; Nascimento, Marcos Antônio Leite do; Galindo, Antônio Carlos

    2016-10-01

    An integrated textural and chemical study on amphibole, biotite, plagioclase, titanite, epidote, and magnetite was conducted in order to estimate crystallization conditions, along with possible geodynamic implications, for six Ediacaran porphyritic high-K calc-alkaline granite plutons (Monte das Gameleiras, Barcelona, Acari, Caraúbas, Tourão, and Catolé do Rocha) intrusive into Archean to Paleoproterozoic rocks of the São José do Campestre (SJCD) and Rio Piranhas-Seridó (RPSD) domains, northern Borborema Province. The studied rocks include mainly porphyritic leucocratic monzogranites, as well as quartz-monzonites and granodiorites. Textures are marked by K-feldspar megacrysts (5-15 cm long) in a fine-to medium-grained matrix composed of quartz, plagioclase, amphibole, biotite, as well as titanite, epidote, Fesbnd Ti oxides, allanite, apatite, and zircon as accessory minerals. Amphibole, biotite and titanite share similar compositional variations defined by increasing Al and Fe, and decreasing Mg contents from the plutons emplaced into the SJCP (Monte das Gameleiras and Barcelona) towards those in the RPSD (Acari, Caraúbas, Tourão, and Catolé do Rocha). Estimated intensive crystallization parameters reveal a weak westward range of increasing depth of emplacement, pressure and temperature in the study area. The SJCD plutons (to the east) crystallized at shallower crustal depths (14-21 km), under slightly lower pressure (3.8-5.5 kbar) and temperature (701-718 °C) intervals, and high to moderate oxygen fugacity conditions (+0.8 < ΔFQM < +2.0). On the other hand, the RPSD plutons (to the west) were emplaced at slightly deeper depths (18-23 km), under higher, yet variable pressures (4.8-6.2 kbar), temperatures (723-776 °C), and moderate to low oxygen fugacity conditions (-1.0 < ΔFQM < +1.8). These results reinforce the contrasts between the tectono-strutuctural domains of São José do Campestre and Rio Piranhas-Seridó in the northern Borborema Province.

  5. Alkaline transition of horse heart cytochrome c in the presence of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Šimšíková, Michaela; Antalík, Marián

    2013-01-01

    The effect of zinc oxide nanoparticles (ZnO NPs) on cytochrome c (cyt c) in alkaline pH was studied with absorption spectroscopy and UV circular dichroism (CD). Spectral data from UV-vis spectroscopy and circular dichroism indicate only small changes in the native structure of the protein at neutral pH after the interaction with ZnO nanoparticles. The stability around the heme crevice of cyt c and therefore the switch of the axial ligand Met80 to Lys which occurs in conditions of higher pH was proven following the interaction of cytochrome c with ZnO nanoparticles. The formation of cyt c-ZnO NPs complex based on electrostatic attraction was accompanied by a significant increase in the apparent pKa constant of the alkaline transition of cyt c.

  6. Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake, Washington.

    PubMed

    VanEngelen, Michael R; Peyton, Brent M; Mormile, Melanie R; Pinkart, Holly C

    2008-11-01

    Hexavalent chromium is one of the most widely distributed environmental contaminants. Given the carcinogenic and mutagenic consequences of Cr(VI) exposure, the release of Cr(VI) into the environment has long been a major concern. While many reports of microbial Cr(VI) reduction are in circulation, very few have demonstrated Cr(VI) reduction under alkaline conditions. Since Cr(VI) exhibits higher mobility in alkaline soils relative to pH neutral soils, and since Cr contamination of alkaline soils is associated with a number of industrial activities, microbial Cr(VI) reduction under alkaline conditions requires attention.Soda lakes are the most stable alkaline environments on earth, and contain a wide diversity of alkaliphilic organisms. In this study, a bacterial isolate belonging to the Halomonas genus was obtained from Soap Lake, a chemically stratified alkaline lake located in central Washington State. The ability of this isolate to reduce Cr(VI) and Fe(III) was assessed under alkaline (pH = 9), anoxic, non-growth conditions with acetate as an electron donor. Metal reduction rates were quantified using Monod kinetics. In addition, Cr(VI) reduction experiments were carried out in the presence of Fe(III) to evaluate the possible enhancement of Cr(VI) reduction rates through electron shuttling mechanisms. While Fe(III) reduction rates were slow compared to previously reported rates, Cr(VI) reduction rates fell within range of previously reported rates. PMID:18401687

  7. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-04-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  8. Doctoral Education as Social Practice for Knowledge Development: Conditions and Demands Encountered by Industry PhD Students

    ERIC Educational Resources Information Center

    Wallgren, Lillemor; Dahlgren, Lars Owe

    2005-01-01

    This article reports on an empirical study of industry PhD students in the Swedish Graduate School for Applied IT and Software Engineering. The students were questioned in semi-structured interviews about their experiences of sharing their postgraduate studies between industrial and academic environments. The results from the first analysis…

  9. [Degradation of the absorbed methyl mercaptan by persulfate in alkaline solution].

    PubMed

    Yang, Shi-Ying; Wang, Lei-Lei; Feng, Lin-Yu; Zhao, La-Juan; Shi, Chao

    2013-11-01

    Methyl mercaptan (CH3SH) is considered to be an important contributor to odors. It is a toxic, corrosive and acid gas. The absorption of CH3SH by alkaline solution is one of the most widely used processes, but the remained solution should be further treated. The degradation of dissolved CH3S- by persulfate (PS) oxidation has not been reported. CH3SH is absorbed in alkaline solution and degraded by PS oxidation using a recycling continuous system for absorption and degradation. The stability of PS under alkaline conditions is discussed. The influence of different reaction conditions on the absorption rate and degradation rate is also studied. It was observed that PS was relatively stability under alkaline conditions and the dissolved CH3S- could be degraded effectively by PS. The absorption rate of CH3SH first increased and then decreased with the increasing concentration of PS. The degradation rate of CH3S- increased with the increasing concentration of PS. It was also observed that the efficiency between absorption and degradation had been significantly increased with the increasing of pH. In the conditions of pH = 12, fixed CH3SH concentration of 80 mg x m(-3) with a fixed gas flow rate of 1.5 L x min(-1), 1.4 g x L(-1) PS, 90% of the dissolved CH3S- can be degraded. PMID:24455922

  10. pH up-regulation as a potential mechanism for the cold-water coral Lophelia pertusa to sustain growth in aragonite undersaturated conditions

    NASA Astrophysics Data System (ADS)

    Wall, M.; Ragazzola, F.; Foster, L. C.; Form, A.; Schmidt, D. N.

    2015-12-01

    Cold-water corals are important habitat formers in deep-water ecosystems and at high latitudes. Ocean acidification and the resulting change in aragonite saturation are expected to affect these habitats and impact coral growth. Counter to expectations, the deep water coral Lophelia pertusa has been found to be able to sustain growth even in undersaturated conditions. However, it is important to know whether such undersaturation modifies the skeleton and thus its ecosystem functioning. Here we used Synchrotron X-Ray Tomography and Raman spectroscopy to examine changes in skeleton morphology and fibre orientation. We combined the morphological assessment with boron isotope analysis to determine if changes in growth are related to changes in control of calcification pH. We compared the isotopic composition and structure formed in their natural environment to material grown in culture at lower pH conditions. Skeletal morphology is highly variable but shows no distinctive differences between natural and low pH conditions. Raman investigations found no difference in macromorphological skeletal arrangement of early mineralization zones and secondary thickening between the treatments. The δ11B analyses show that L. pertusa up-regulates the internal calcifying fluid pH (pHcf) during calcification compared to ambient seawater pH and maintains a similar elevated pHcf at increased pCO2 conditions. We suggest that as long as the energy is available to sustain the up-regulation, i.e. individuals are well fed, there is no detrimental effect to the skeletal morphology.

  11. Sorption of dissolved lead from shooting range soils using hydroxyapatite amendments synthesized from industrial byproducts as affected by varying pH conditions.

    PubMed

    Hashimoto, Yohey; Taki, Tomohiro; Sato, Takeshi

    2009-04-01

    For immobilization technologies to be successful, the use of readily available and cost advantageous amendment is important when the remediation targets vast amounts of contaminated soils. The objectives of this study were to investigate whether the byproduct-synthesized hydroxyapatite can be used as an immobilizing amendment for dissolved Pb from a shooting range soil, and to model the kinetic data collected from dissolution experiments. A soil-solution kinetic experiment was conducted under fixed pH conditions as a function of time. A Pb-contaminated soil was reacted with various hydroxyapatite amendments to determine the dissolution rate and mineral products of soil Pb. Three types of amendments used were pure hydroxyapatite (HA), and poorly crystalline hydroxyapatites synthesized from gypsum waste (CHA), and synthesized from incinerated poultry litter (PHA). The dissolved Pb concentration decreased with the addition of amendments at pH 3-7. Both CHA and PHA were more effective than HA for attenuating Pb dissolution at pH 6 and above. According to the thermodynamic calculation at pH 6, the dissolved Pb concentration for CHA and PHA treatments was predicted to be 66% and 50% lower than that of HA treatment, respectively. A better Pb immobilization effect demonstrated by CHA and PHA resulted in their greater solubility at higher pH, which may promote the formation of chloropyromorphite precipitates. Dissolution kinetics of soil Pb was adequately explained by pseudo-first order and pseudo-second order equations in acid pH ranges. According to the ion exchange model, an adequate agreement between the experimental data and regression curves was shown in the initial 40 min of the reaction process, but the accuracy of model predictability decreased thereafter. According to kinetic models and dissolution phenomena, CHA and PHA amendments had better Pb sorption capacity with rapid kinetics than pure hydroxyapatite at weak acid to neutral pH. PMID:19111967

  12. Proton Transport and pH Control in Fungi.

    PubMed

    Kane, Patricia M

    2016-01-01

    Despite diverse and changing extracellular environments, fungi maintain a relatively constant cytosolic pH and numerous organelles of distinct lumenal pH. Key players in fungal pH control are V-ATPases and the P-type proton pump Pma1. These two proton pumps act in concert with a large array of other transporters and are highly regulated. The activities of Pma1 and the V-ATPase are coordinated under some conditions, suggesting that pH in the cytosol and organelles is not controlled independently. Genomic studies, particularly in the highly tractable S. cerevisiae, are beginning to provide a systems-level view of pH control, including transcriptional responses to acid or alkaline ambient pH and definition of the full set of regulators required to maintain pH homeostasis. Genetically encoded pH sensors have provided new insights into localized mechanisms of pH control, as well as highlighting the dynamic nature of pH responses to the extracellular environment. Recent studies indicate that cellular pH plays a genuine signaling role that connects nutrient availability and growth rate through a number of mechanisms. Many of the pH control mechanisms found in S. cerevisiae are shared with other fungi, with adaptations for their individual physiological contexts. Fungi deploy certain proton transport and pH control mechanisms not shared with other eukaryotes; these regulators of cellular pH are potential antifungal targets. This review describes current and emerging knowledge proton transport and pH control mechanisms in S. cerevisiae and briefly discusses how these mechanisms vary among fungi. PMID:26721270

  13. Multivariate statistical analysis of water chemistry conditions in three wastewater stabilization ponds with algae blooms and pH fluctuations.

    PubMed

    Wallace, Jack; Champagne, Pascale; Hall, Geof

    2016-06-01

    The wastewater stabilization ponds (WSPs) at a wastewater treatment facility in eastern Ontario, Canada, have experienced excessive algae growth and high pH levels in the summer months. A full range of parameters were sampled from the system and the chemical dynamics in the three WSPs were assessed through multivariate statistical analysis. The study presents a novel approach for exploratory analysis of a comprehensive water chemistry dataset, incorporating principal components analysis (PCA) and principal components (PC) and partial least squares (PLS) regressions. The analyses showed strong correlations between chl-a and sunlight, temperature, organic matter, and nutrients, and weak and negative correlations between chl-a and pH and chl-a and DO. PCA reduced the data from 19 to 8 variables, with a good fit to the original data matrix (similarity measure of 0.73). Multivariate regressions to model system pH in terms of these key parameters were performed on the reduced variable set and the PCs generated, for which strong fits (R(2) > 0.79 with all data) were observed. The methodologies presented in this study are applicable to a wide range of natural and engineered systems where a large number of water chemistry parameters are monitored resulting in the generation of large data sets. PMID:27038585

  14. Genetically Engineered Phage-Templated MnO2 Nanowires: Synthesis and Their Application in Electrochemical Glucose Biosensor Operated at Neutral pH Condition.

    PubMed

    Han, Lei; Shao, Changxu; Liang, Bo; Liu, Aihua

    2016-06-01

    To conveniently obtain one-dimensional MnO2 nanowires (NWs) with controlled structure and unique properties for electron transfer, the genetically engineered M13 phages were used as templates for precise nucleation and growth of MnO2 crystals in filamentous phage scaffolds, via the spontaneous oxidation of Mn(2+) in alkaline solution. It was found that the morphology of NWs could be tailored by the surface charge of M13 mutants. MnO2 crystals were uniformly distributed on the surface of negatively charged tetraglutamate-fused phage (M13-E4), significantly different from irregular MnO2 agglomeration on the weakly negatively charged wild-type phage and positively charged tetraarginine-fused phage. The as-synthesized M13-E4@MnO2 NWs could catalyze the electro-oxidation of H2O2 at neutral pH. To demonstrate the superiority of the electrocatalytic activity in the solution containing plenty of chloride ions at neutral pH, both glucose oxidase and as-prepared MnO2 NWs were used for fabricating the glucose biosensor. The proposed biosensor showed a wide linear range (5 μM to 2 mM glucose), a low limit of detection of 1.8 μM glucose (S/N = 3), good interassay and intra-assay reproducibility and satisfactory storage stability. Due to the superiorities of synthesis and electrochemical performance, the as-prepared MnO2 NWs are promising for applications in electrocatalysis, electrochemical sensor, and supercapacitor. PMID:27228383

  15. A Constructed Alkaline Consortium and Its Dynamics in Treating Alkaline Black Liquor with Very High Pollution Load

    PubMed Central

    Yang, Chunyu; Cao, Guangchun; Li, Yang; Zhang, Xiaojun; Ren, Hongyan; Wang, Xia; Feng, Jinhui; Zhao, Liping; Xu, Ping

    2008-01-01

    Background Paper pulp wastewater resulting from alkaline extraction of wheat straw, known as black liquor, is very difficult to be treated and causes serious environmental problems due to its high pH value and chemical oxygen demand (COD) pollution load. Lignin, semicellulose and cellulose are the main contributors to the high COD values in black liquor. Very few microorganisms can survive in such harsh environments of the alkaline wheat straw black liquor. A naturally developed microbial community was found accidentally in a black liquor storing pool in a paper pulp mill of China. The community was effective in pH decreasing, color and COD removing from the high alkaline and high COD black liquor. Findings Thirty-eight strains of bacteria were isolated from the black liquor storing pool, and were grouped as eleven operational taxonomy units (OTUs) using random amplified polymorphic DNA-PCR profiles (RAPD). Eleven representative strains of each OTU, which were identified as genera of Halomonas and Bacillus, were used to construct a consortium to treat black liquor with a high pH value of 11.0 and very high COD pollution load of 142,600 mg l−1. After treatment by the constructed consortium, about 35.4% of color and 39,000 mg l−1 (27.3%) CODcr were removed and the pH decreased to 7.8. 16S rRNA gene polymerase chain reaction denaturant gradient gel electrophoresis (PCR-DGGE) and gas chromatography/mass spectrometry (GC/MS) analysis suggested a two-stage treatment mechanism to elucidate the interspecies collaboration: Halomonas isolates were important in the first stage to produce organic acids that contributed to the pH decline, while Bacillus isolates were involved in the degradation of lignin derivatives in the second stage under lower pH conditions. Conclusions/Significance Tolerance to the high alkaline environment and good controllability of the simple consortium suggested that the constructed consortium has good potential for black liquor treatment

  16. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; Phil Dowling; David Stewart; Bill Jones

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in

  17. Influence of Urinary pH on the Pharmacokinetics of Cinoxacin in Humans and on Antibacterial Activity In Vitro

    PubMed Central

    Barbhaiya, Rashmi H.; Gerber, Andreas U.; Craig, William A.; Welling, Peter G.

    1982-01-01

    The impact of acidification and alkalinization of the urine on the pharmacokinetics of cinoxacin was examined after single 500-mg oral doses were administered to nine healthy male volunteers. Acidic and alkaline conditions were achieved by repeated oral doses of ammonium chloride or sodium bicarbonate, respectively. Plasma cinoxacin levels in all subjects were adequately described in terms of one-compartment-model kinetics with first-order absorption and elimination. Acidification and alkalinization treatment had no effect on cinoxacin absorption or distribution. The mean elimination half-life of cinoxacin in plasma was 1.1, 2.0, and 0.6 h in control subjects and with acidification and alkalinization of urine, respectively. Recovery of intact cinoxacin in samples of urine collected 0 to 36 h after cinoxacin administration represented 65% of the dose in control subjects and urine acidification and 80% of the dose with alkalinization of urine. The mean renal clearance of cinoxacin was 76, 118, and 278 ml/min with acidification, control, and alkalinization, respectively, and renal clearance was highly correlated with urinary pH. Urine concentrations of cinoxacin were significantly higher with alkalinization compared with control values during the first 4 h after drug administration. Urine cinoxacin concentrations were reduced somewhat by acidification, but these tended not to be significantly different from control values. Changes in cinoxacin elimination owing to urine pH are less pronounced in humans than in dogs. The antibacterial activity of cinoxacin against some common urinary tract pathogens was pH dependent. A four- to eightfold reduction in cinoxacin activity was generally observed at pH 8 compared with lower pH values. However, in view of the high levels of cinoxacin which are obtained in both acidic and basic urine, the impact of urine pH on cinoxacin antibacterial efficacy would be of minor clinical importance. PMID:7103450

  18. Effect of organics and alkalinity on the sulfur oxidizing bacteria (SOB) biosensor.

    PubMed

    Hassan, Sedky H A; Van Ginkel, Steven W; Oh, Sang-Eun

    2013-01-01

    The environmental risk assessment of toxic chemicals in stream water requires the use of a low cost standardized toxicity bioassay. Here, a biosensor for detection of toxic chemicals in stream water was studied using sulfur oxidizing bacteria (SOB) in continuous mode. The biosensor depends on the ability of SOB to oxidize sulfur particles under aerobic conditions to produce sulfuric acid. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. The biosensor is based on the inhibition of SOB in the presence of toxic chemicals by measuring changes in EC and pH. We found that the SOB biosensor can detect Cr(6+)at a low concentration (50 ppb) which is lower than many whole-cell biosensors. The effect of organic material in real stream water on SOB activity was studied. Due to the presence of mixotrophic SOB, we found that the presence of organic matter increases SOB activity which decreases the biosensor start up period. Low alkalinity (22 mg L(-1) CaCO(3)) increased effluent EC and decreased effluent pH which is optimal for biosensor operation. While at high alkalinity (820 mg L(-1) CaCO(3), the activity of SOB little decreased. We found that system can detect 50 ppb of Cr(6+) at low alkalinity (22 mg L(-1) CaCO(3)) in few hours while, complete inhibition was observed after 35 h of operation at high alkalinity (820 mg L(-1) CaCO(3)). PMID:22840537

  19. A newly high alkaline lipase: an ideal choice for application in detergent formulations

    PubMed Central

    2011-01-01

    Background Bacterial lipases received much attention for their substrate specificity and their ability to function in extreme environments (pH, temperature...). Many staphylococci produced lipases which were released into the culture medium. Reports of thermostable lipases from Staphylococcus sp. and active in alkaline conditions are not previously described. Results A newly soil-isolated Staphylococcus sp. strain ESW secretes an induced lipase in the culture medium. The effects of temperature, pH and various components in a detergent on the activity and stability of Staphylococcus sp. lipase (SL1) were studied in a preliminary evaluation for use in detergent formulation solutions. The enzyme was highly active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 12.0. The relative activity at pH 13.0 was about 60% of that obtained at pH 12.0. It exhibited maximal activity at 60°C. This novel lipase, showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40°C, and relative stability towards oxidizing agents. Additionally, the crude enzyme showed excellent stability and compatibility with various commercial solid and liquid detergents. Conclusions These properties added to the high activity in high alkaline pH make this novel lipase an ideal choice for application in detergent formulations. PMID:22123072

  20. Net alkalinity and net acidity 2: Practical considerations

    USGS Publications Warehouse

    Kirby, C.S.; Cravotta, C.A., III

    2005-01-01

    The pH, alkalinity, and acidity of mine drainage and associated waters can be misinterpreted because of the chemical instability of samples and possible misunderstandings of standard analytical method results. Synthetic and field samples of mine drainage having various initial pH values and concentrations of dissolved metals and alkalinity were titrated by several methods, and the results were compared to alkalinity and acidity calculated based on dissolved solutes. The pH, alkalinity, and acidity were compared between fresh, unoxidized and aged, oxidized samples. Data for Pennsylvania coal mine drainage indicates that the pH of fresh samples was predominantly acidic (pH 2.5-4) or near neutral (pH 6-7); ??? 25% of the samples had pH values between 5 and 6. Following oxidation, no samples had pH values between 5 and 6. The Standard Method Alkalinity titration is constrained to yield values >0. Most calculated and measured alkalinities for samples with positive alkalinities were in close agreement. However, for low-pH samples, the calculated alkalinity can be negative due to negative contributions by dissolved metals that may oxidize and hydrolyze. The Standard Method hot peroxide treatment titration for acidity determination (Hot Acidity) accurately indicates the potential for pH to decrease to acidic values after complete degassing of CO2 and oxidation of Fe and Mn, and it indicates either the excess alkalinity or that required for neutralization of the sample. The Hot Acidity directly measures net acidity (= -net alkalinity). Samples that had near-neutral pH after oxidation had negative Hot Acidity; samples that had pH < 6.3 after oxidation had positive Hot Acidity. Samples with similar pH values before oxidation had dissimilar Hot Acidities due to variations in their alkalinities and dissolved Fe, Mn, and Al concentrations. Hot Acidity was approximately equal to net acidity calculated based on initial pH and dissolved concentrations of Fe, Mn, and Al minus the

  1. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am - the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting ...

  2. Dolomite Dissolution in Alkaline Cementious Media

    NASA Astrophysics Data System (ADS)

    Mittermayr, Florian; Klammer, Dietmar; Köhler, Stephan; Dietzel, Martin

    2010-05-01

    Chemical alteration of concrete has gained much attention over the past years as many cases of deterioration due to sulphate attack, thaumasite formation (TSA) or alkali silica reactions (ASR) have been reported in various constructions (Schmidt et al, 2009). Much less is known about the so called alkali carbonate reaction (ACR). It is believed that dolomite aggregates can react with the alkalis from the cement, dissolve and form calcite and brucite (Katayama, 2004). Due to very low solubility of dolomite in alkaline solutions this reaction seems doubtful. In this study we are trying to gain new insides about the conditions that can lead to the dissolution of dolomite in concrete. Therefore we investigated concrete samples from Austrian tunnels that show partially dissolved dolomite aggregates. Petrological analysis such as microprobe, SEM and Raman spectroscopy as well as a hydrochemical analysis of interstitial solutions and ground water and modelling with PhreeqC (Parkhurst and Appelo, 1999) are carried out. In addition a series of batch experiments is set up. Modelling approaches by PhreeqC show a thermodynamically possibility in the alkaline range when additional Ca2+ in solution causes dolomite to become more and more undersaturated as calcite gets supersaturated. Interacting ground water is enriched in Ca2+and saturated with respect to gypsum as marine evaporites are found in situ rocks. Furthermore it is more likely that Portlandite (Ca(OH)2) plays a more important role than Na and K in the cement. Portlandite acts as an additional Ca2+ source and is much more abundant than the alkalies. Some interstitial solutions are dominated mainly by Na+ and SO42- and reach concentrations up to 30 g/l TDS. It is believed that solutions can even reach thenardite saturation as efflorescences are found on the tunnel walls. In consequence dolomite solubility increases with increasing ionic strength. pH > 11 further accelerate the process of dedolomitization by the removal

  3. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    SciTech Connect

    John E. Aston; William A. Apel; Brady D. Lee; Brent M. Peyton

    2010-12-01

    This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells at pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.

  4. Dependence of particle concentration effect on pH and redox for arsenic removal by FeS-coated sand under anoxic conditions.

    PubMed

    Han, Young-Soo; Demond, Avery H; Gallegos, Tanya J; Hayes, Kim F

    2015-09-01

    FeS has been recognized as a good scavenger for arsenic under anoxic conditions. To create a suitable adsorbent for flow-through reactors such as permeable reactive barriers, it has been suggested that this material may be coated onto sand. However, previous work on FeS-coated sand has focused on batch reactors, while flow-through reactors usually have higher solid-solution ratios. To ascertain whether differences in the solid-solution ratio (SSR) are important in this system, batch sorption experiments were conducted as a function of pH using As(III) and FeS-coated sands at various solid-solution ratios. The results showed little variation in the distribution coefficient with SSR at pH 7 and 9. However, at pH 5, the results showed lower values of the distribution coefficient at lower SSRs, the reverse of typically reported SSR effects. Measured pe values showed a dependence on SSR, which, when coupled with chemical modeling of the Fe-As-S-H2O system, suggested a change in the removal mechanism with SSR, from adsorption to a reduced Fe(II) oxyhydroxide phase (represented by Fe2(OH)5) to precipitation as As2S3 or AsS. On the other hand, at pH 7 and 9, arsenite adsorption is the most probable removal mechanism regardless of the pe. Thus, this study identified variations in pH and redox conditions, and the removal mechanisms that these parameters govern, as the reason for the apparent SSR effect. PMID:25553897

  5. ALP (Alkaline Phosphatase) Test

    MedlinePlus

    ... known as: ALK PHOS; Alkp Formal name: Alkaline Phosphatase Related tests: AST ; ALT ; GGT ; Bilirubin ; Liver Panel ; Bone Markers ; Alkaline Phosphatase Isoenzymes; Bone Specific ALP All content on Lab ...

  6. Antilisterial activity of bacteriocinogenic Pediococcus acidilactici HA6111-2 and Lactobacillus plantarum ESB 202 grown under pH and osmotic stress conditions.

    PubMed

    Engelhardt, Tekla; Albano, Helena; Kiskó, Gabriella; Mohácsi-Farkas, Csilla; Teixeira, Paula

    2015-06-01

    Bacteriocin producing lactic acid bacteria (LAB) cultures can be used as biopreservatives in fermented food products; thus the food industry is interested in stable cultures that produce bacteriocins consistently. Inhibtion of Listeria spp. by bacteriocinogenic Pediococcus acidilactici and Lactobacillus plantarum (both isolated from fermented meats) was investigated under conditions of stress induced by low pH and high salt concentrations. Listeria monocytogenes serogroup IIb (from cheese), L. monocytogenes serogroup IVb (from cheese), L. monocytogenes serogroup IIb (from ground beef) and Listeria innocua NCTC 11288 were used as target strains. P. acidilactici and Lb. plantarum demonstrated antilisterial activity under the stress conditions investigated (pH 3.5; pH 8.5; 7.5% NaCl). However, activity was dependent on the stress conditions applied and on the target organism. L. monocytogenes serogroup IIb (from ground beef) and L. innocua C 11288 were, respectively the most sensitive and the most resistant to the cell-free supernatants produced by the LAB investigated. PMID:25790998

  7. The ANAMMOX reactor under transient-state conditions: process stability with fluctuations of the nitrogen concentration, inflow rate, pH and sodium chloride addition.

    PubMed

    Yu, Jin-Jin; Jin, Ren-Cun

    2012-09-01

    The process stability of an anaerobic ammonium oxidation (ANAMMOX) was investigated in an upflow anaerobic sludge blanket reactor subjected to overloads of 2.0- to 3.0-fold increases in substrate concentrations, inflow rates lasting 12 or 24h, extreme pH levels of 4 and 10 for 12h and a 12-h 30 g l(-1) NaCl addition. During the overloads, the nitrogen removal rate improved, and the shock period was an important factor affecting the reactor performance. In the high pH condition, the reactor performance significantly degenerated; while in the low pH condition, it did not happen. The NaCl addition caused the most serious deterioration in the reactor, which took 108 h to recover and was accompanied by a stoichiometric ratio divergence. There are well correlations between the total nitrogen and the electrical conductivity which is considered to be a convenient signal for controlling and monitoring the ANAMMOX process under transient-state conditions. PMID:22728197

  8. Effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase from white rot fungi.

    PubMed

    Zhao, Yuechun; Yi, Xiaoyun

    2010-04-01

    High residues of DDT in agricultural soils are of concern because they present serious threats to food security and human health. This article focuses on remediation of DDT-contaminated soil using laccase under different soil oxygen and soil pH conditions. The laboratory experiment results showed significant effects of soil oxygen conditions and soil pH on remediation of DDT-contaminated soil by laccase at the end of a 25-d incubation period. This study found the positive correlation between the concentration of oxygen in soil and the degradation of DDT by laccase. The residue of DDTs in soil under the atmosphere of oxygen decreased by 28.1% compared with the atmosphere of nitrogen at the end of the incubation with laccase. A similar pattern was observed in the remediation of DDT-contaminated soil by laccase under different flooding conditions, the higher the concentrations of oxygen in soil, the lower the residues of four DDT components and DDTs in soils. The residue of DDTs in the nonflooding soil declined by 16.7% compared to the flooded soil at the end of the incubation. The residues of DDTs in soils treated with laccase were lower in the pH range 2.5-4.5. PMID:20617049

  9. Molecular and biochemical characterization of a new alkaline active multidomain xylanase from alkaline wastewater sludge.

    PubMed

    Zhao, Yanyu; Meng, Kun; Luo, Huiying; Huang, Huoqing; Yuan, Tiezheng; Yang, Peilong; Yao, Bin

    2013-02-01

    A xylanase gene, xyn-b39, coding for a multidomain glycoside hydrolase (GH) family 10 protein was cloned from the genomic DNA of the alkaline wastewater sludge of a paper mill. Its deduced amino acid sequence of 1,481 residues included two carbohydrate-binding modules (CBM) of family CBM_4_9, one catalytic domain of GH 10, one family 9 CBM and three S-layer homology (SLH) domains. xyn-b39 was expressed heterologously in Escherichia coli, and the recombinant enzyme was purified and characterized. Xyn-b39 exhibited maximum activity at pH 7.0 and 60 °C, and remained highly active under alkaline conditions (more than 80 % activity at pH 9.0 and 40 % activity at pH 10.0). The enzyme was thermostable at 55 °C, retaining more than 90 % of the initial activity after 2 h pre-incubation. Xyn-b39 had wide substrate specificity and hydrolyzed soluble substrates (birchwood xylan, beechwood xylan, oat spelt xylan, wheat arabinoxylan) and insoluble substrates (oat spelt xylan and wheat arabinoxylan). Hydrolysis product analysis indicated that Xyn-b39 was an endo-type xylanase. The K (m) and V (max) values of Xyn-b39 for birchwood xylan were 1.01 mg/mL and 73.53 U/min/mg, respectively. At the charge of 10 U/g reed pulp for 1 h, Xyn-b39 significantly reduced the Kappa number (P < 0.05) with low consumption of chlorine dioxide alone. PMID:23117673

  10. Pyrite Oxidation under initially neutral pH conditions and in the presence of Acidithiobacillus ferrooxidans and micromolar hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Lin, C.

    2012-01-01

    Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system was cyclically exposed to 50 μM H2O2, the colonization of Acidithiobacillus ferrooxidans onto the mineral surface was markedly enhanced, as compared to the control (no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nano- to micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes.

  11. Polypeptide micelles with dual pH activatable dyes for sensing cells and cancer imaging

    NASA Astrophysics Data System (ADS)

    Gong, Ping; Yang, Yueting; Yi, Huqiang; Fang, Shengtao; Zhang, Pengfei; Sheng, Zonghai; Gao, Guanhui; Gao, Duyang; Cai, Lintao

    2014-04-01

    pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence in an alkaline environment. Hence, DPNs exhibited a dual response signal with strong red fluorescence and weak green fluorescence under acidic conditions; in contrast, they showed strong green fluorescence and almost no red fluorescence under alkaline and neutral conditions. The favorable inverse pH responses of the two fluorescent dyes resulted in ratiometric pH determination for DPNs with an optimized pH-sensitive range of pH 4.5-7.5. Quantitative analysis of the intracellular pH of intact MCF-7 cells has been successfully demonstrated with our nanosensor. Moreover, single acid activatable fluorescent dye doped polypeptide nanoparticles that only contained RBLC can distinguish tumor tissue from normal tissue by monitoring the acidic extracellular environment.pH is an important control parameter for maintenance of cell viability and tissue functions. pH monitoring provides valuable information on cell metabolic processes and the living environment. In this study, we prepared dual pH-sensitive, fluorescent dye-loaded polypeptide nanoparticles (DPNs) for ratiometric sensing of pH changes in living cells. DPNs contain two types of dyes: N-(rhodamine B) lactam cystamine (RBLC), an acid activatable fluorescent dye with increased fluorescence in an acidic environment, and fluorescein isothiocyanate (FITC), a base activatable fluorescent dye with enhanced fluorescence

  12. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.

    PubMed

    Peretyazhko, Tanya S; Zhang, Qingbo; Colvin, Vicki L

    2014-10-21

    Silver nanoparticles (Ag(NP)) are widely utilized in increasing number of medical and consumer products due to their antibacterial properties. Once released to aquatic system, Ag(NP) undergoes oxidative dissolution leading to production of toxic Ag(+). Dissolved Ag(+) can have a severe impact on various organisms, including indigenous microbial communities, fungi, alga, plants, vertebrates, invertebrates, and human cells. Therefore, it is important to investigate fate of Ag(NP) and determine physico-chemicals parameters that control Ag(NP) behavior in the natural environment. Nanoparticle size might have a dominant effect on Ag(NP) dissolution in natural waters. In this work, we investigated size-dependent dissolution of AgNP exposed to ultrapure deionized water (pH ≈ 7) and acetic acid (pH 3) and determined changes in nanoparticle size after dissolution. Silver nanoparticles stabilized by thiol functionalized methoxyl polyethylene glycol (PEGSH) of 6 nm (Ag(NP_)6), 9 nm (Ag(NP_)9), 13 nm (Ag(NP_)13), and 70 nm (Ag(NP_)70) were prepared. The results of dissolution experiments showed that the extent of AgNP dissolution in acetic acid was larger than in water. Solubility of Ag(NP) increased with the size decrease and followed the order Ag(NP_)6 > Ag(NP_)9 > Ag(NP_)13 > Ag(NP_)70 in both water and acetic acid. Transmission electron microscopy (TEM) was applied to characterize changes in size and morphology of the AgNP after dissolution in water. Analysis of Ag(NP) by TEM revealed that the particle morphology did not change during dissolution. The particles remained approximately spherical in shape, and no visible aggregation was observed in the samples. TEM analysis also demonstrated that Ag(NP_)6, Ag(NP_)9, and Ag(NP_)13 increased in size after dissolution likely due to Ostwald ripening. PMID:25265014

  13. Geochemical Data for Upper Mineral Creek, Colorado, Under Existing Ambient Conditions and During an Experimental pH Modification, August 2005

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A.; Steiger, Judy I.; Walton-Day, Katherine

    2009-01-01

    Mineral Creek, an acid mine drainage stream in south-western Colorado, was the subject of a water-quality study that employed a paired synoptic approach. Under the paired synoptic approach, two synoptic sampling campaigns were conducted on the same study reach. The initial synoptic campaign, conducted August 22, 2005, documented stream-water quality under existing ambient conditions. A second synoptic campaign, conducted August 24, 2005, documented stream-water quality during a pH-modification experiment that elevated the pH of Mineral Creek. The experimental pH modification was designed to determine the potential reductions in dissolved constituent concentrations that would result from the implementation of an active treatment system for acid mine drainage. During both synoptic sampling campaigns, a solution containing lithium bromide was injected continuously to allow for the calculation of streamflow using the tracer-dilution method. Synoptic water-quality samples were collected from 30 stream sites and 11 inflow locations along the 2-kilometer study reach. Data from the study provide spatial profiles of pH, concentration, and streamflow under both existing and experimentally-altered conditions. This report presents the data obtained August 21-24, 2005, as well as the methods used for sample collection and data analysis.

  14. Modeling growth for predicting the contamination level of guava nectar by Candida pelliculosa under different conditions of pH and storage temperature.

    PubMed

    Tchango Tchango, J; Watier, D; Eb, P; Tailliez, R; Njine, T; Hornez, J P

    1997-01-01

    The combined effects of temperature (2-46 degrees C) and pH (1.55-6.25) on the growth of Candida pelliculosa isolated from guava nectar produced in Cameroon were studied using a turbidity method, ie measurement of optical density at 630 nm. A quadratic polynomial model was constructed to predict the effects and interactions of these two environmental conditions on the maximal optical density obtained (i2 = 0.97). The relation between optical density and population density of C. pelliculosa (CFU ml-1) was also established using an exponential regression (2 = 0.99). According to the model, maximal growth conditions were 37 degrees C and pH 6.25 for obtaining the maximal optical density of 1.25 corresponding to about 60 x 10(6) CFU ml-1. A good agreement of the model was found between the predicted values and the observed values of maximal optical density. The model was validated by the experimental values of maximal optical density obtained in the growth of C. pelliculosa in commercial guava nectar (pH 3.15). PMID:9079285

  15. Analysis of peptides and protein digests by reversed phase high performance liquid chromatography-electrospray ionisation mass spectrometry using neutral pH elution conditions.

    PubMed

    Yang, Yuanzhong; Boysen, Reinhard I; Chowdhury, Jamil; Alam, Asif; Hearn, Milton T W

    2015-05-01

    In this study, the advantages of carrying out the analysis of peptides and tryptic digests of proteins under gradient elution conditions at pH 6.5 by reversed-phase liquid chromatography (RP-HPLC) and in-line electrospray ionisation mass spectrometry (ESI-MS) are documented. For these RP separations, a double endcapped, bidentate anchored n-octadecyl wide pore silica adsorbent was employed in a capillary column format. Compared to the corresponding analysis of the same peptides and protein tryptic digests using low pH elution conditions for their RP-HPLC separation, this alternative approach provides improved selectivity and more efficient separation of these analytes, thus allowing a more sensitive identification of proteins at different abundance levels, i.e. more tryptic peptides from the same protein could be confidently identified, enabling higher sequence coverage of the protein to be obtained. This approach was further evaluated with very complex tryptic digests derived from a human plasma protein sample using an online two-dimensional (2D) strong cation-exchange (SCX)-RP-HPLC-ESI-MS/MS system. Again, at pH 6.5, with mobile phases of different compositions, improved chromatographic selectivities were obtained, concomitant with more sensitive on-line electrospray ionisation tandem mass spectrometric (ESI-MS/MS) analysis. As a consequence, more plasma proteins could be confidently identified, highlighting the potential of these RP-HPLC methods with elution at pH 6.5 to extend further the scope of proteomic investigations. PMID:25892073

  16. Role of chemical composition in the enhanced catalytic activity of Pt-based alloyed ultrathin nanowires for the hydrogen oxidation reaction under alkaline conditions

    DOE PAGESBeta

    Megan E. Scofield; Wong, Stanislaus S.; Zhou, Yuchen; Yue, Shiyu; Wang, Lei; Su, Dong; Tong, Xiao; Vukmirovic, Miomir B.; Adzic, Radoslav R.

    2016-05-19

    With the increased interest in the development of hydrogen fuel cells as a plausible alternative to internal combustion engines, recent work has focused on creating alkaline fuel cells (AFC), which employ an alkaline environment. Working in alkaline as opposed to acidic media yields a number of tangible benefits, including (i) the ability to use cheaper and plentiful precious-metal-free catalysts, due to their increased stability, (ii) a reduction in the amount of degradation and corrosion of Pt-based catalysts, and (iii) a longer operational lifetime for the overall fuel cell configuration. However, in the absence of Pt, no catalyst has achieved activitiesmore » similar to those of Pt. Herein, we have synthesized a number of crystalline ultrathin PtM alloy nanowires (NWs) (M = Fe, Co, Ru, Cu, Au) in order to replace a portion of the costly Pt metal without compromising on activity while simultaneously adding in metals known to exhibit favorable synergistic ligand and strain effects with respect to the host lattice. In fact, our experiments confirm theoretical insights about a clear and correlative dependence between measured activity and chemical composition. We have conclusively demonstrated that our as-synthesized alloy NW catalysts yield improved hydrogen oxidation reaction (HOR) activities as compared with a commercial Pt standard as well as with our as-synthesized Pt NWs. The Pt7Ru3 NW system, in particular, quantitatively achieved an exchange current density of 0.493 mA/cm2, which is higher than the corresponding data for Pt NWs alone. In addition, the HOR activities follow the same expected trend as their calculated hydrogen binding energy (HBE) values, thereby confirming the critical importance and correlation of HBE with the observed activities.« less

  17. The use of alkaline hydrolysis as a novel strategy for chloroform remediation: the feasibility of using construction wastes and evaluation of carbon isotopic fractionation.

    PubMed

    Torrentó, Clara; Audí-Miró, Carme; Bordeleau, Geneviève; Marchesi, Massimo; Rosell, Mònica; Otero, Neus; Soler, Albert

    2014-01-01

    Laboratory and field-scale pilot experiments were performed to evaluate the feasibility of chloroform degradation by alkaline hydrolysis and the potential of δ(13)C values to assess this induced reaction process at contaminated sites. In batch experiments, alkaline conditions were induced by adding crushed concrete (pH 12.33 ± 0.07), a filtered concrete solution (pH 12.27 ± 0.04), a filtered cement solution (pH 12.66 ± 0.02) and a pH 12 buffer solution (pH 11.92 ± 0.11). The resulting chloroform degradation after 28 days was 94, 96, 99, and 72%, respectively. The experimental data were described using a pseudo-first-order kinetic model, resulting in pseudo-first-order rate constant values of 0.10, 0.12, 0.20, and 0.05 d(-1), respectively. Furthermore, the significant chloroform carbon isotopic fractionation associated with alkaline hydrolysis of chloroform (-53 ± 3‰) and its independence from pH in the admittedly limited tested pH range imply a great potential for the use of δ(13)C values for in situ monitoring of the efficacy of remediation approaches based on alkaline hydrolysis. The carbon isotopic fractionation obtained at the lab scale allowed the calculation of the percentage of chloroform degradation in field-scale pilot experiments where alkaline conditions were induced in two recharge water interception trenches filled with concrete-based construction wastes. A maximum of approximately 30-40% of chloroform degradation was achieved during the two studied recharge periods. Although further research is required, the treatment of chloroform in groundwater through the use of concrete-based construction wastes is proposed. This strategy would also imply the recycling of construction and demolition wastes for use in value-added applications to increase economic and environmental benefits. PMID:24410407

  18. Tensile Properties of 17-7 PH and 12 MoV Stainless-Steel Sheet under Rapid-Heating and Constant-Temperature Conditions

    NASA Technical Reports Server (NTRS)

    Manning, Charles R., Jr.; Price, Howard L.

    1961-01-01

    Results are presented of rapid-heating tests of 17-7 PH and 12 MoV stainless-steel sheet heated to failure at temperature rates from about 1 F to 170 F per second under constant-load conditions. Yield and rupture strengths obtained from rapid-heating tests are compared with yield and tensile strengths obtained from short-time elevated-temperature tensile tests (30-minute exposure). A rate-temperature parameter was used to construct master curves from which yield and rupture stresses or temperatures can be predicted. A method for measuring strain by optical means is described.

  19. Unprecedented one-pot sequential thiolate substitutions under mild conditions leading to a red emissive BODIPY dye 3,5,8-tris(PhS)-BODIPY.

    PubMed

    Roacho, Robinson I; Metta-Magaña, Alejandro; Peña-Cabrera, Eduardo; Pannell, Keith

    2015-01-28

    The simple reaction of phenylthiol with 8-MeS-BODIPY (1) in dichloromethane was readily accomplished to form 8-PhS-BODIPY (2). If the reaction is performed in THF 3,8-bis(phenylthio)-BODIPY (3) and 3,5,8-tris(phenylthio)-BODIPY (4) are sequentially formed in an unprecedented reaction. This provides a simple new methodology for the introduction of the phenylthio-moiety in the 3- and 5-positions. Alkyl thiols do not form multi-thiolated products under identical conditions, as exemplified using EtSH, where only 8-EtS-BODIPY (5) is formed. PMID:25429697

  20. Kinetic studies of the [NpO₂ (CO₃)₃]⁴⁻ ion at alkaline conditions using ¹³C NMR

    SciTech Connect

    Panasci, Adele F.; Harley, Stephen J.; Zavarin, Mavrik; Casey, William H.

    2014-04-21

    Carbonate ligand-exchange rates on the [NpO₂ (CO₃)₃]⁴⁻ ion were determined using a saturation-transfer ¹³C nuclear magnetic resonance (NMR) pulse sequence in the pH range of 8.1 ≤ pH ≤ 10.5. Over the pH range 9.3 ≤ pH ≤ 10.5, which compares most directly with previous work of Stout et al.,1 we find an average rate, activation energy, enthalpy, and entropy of k298ex = 40.6(±4.3) s⁻¹, Ea =45.1(±3.8) kJ mol⁻¹, ΔH = 42.6(±3.8) kJ mol⁻¹, and ΔS = -72(±13) J mol⁻¹ K⁻¹, respectively. These activation parameters are similar to the Stout et al. results at pH 9.4. However, their room-temperature rate at pH 9.4, k298ex = 143(±1.0) s⁻¹, is ~3 times faster than what we experimentally determined at pH 9.3: k298ex = 45.4(±5.3) s⁻¹. Our rates for [NpO₂ (CO₃)₃]⁴⁻ are also faster by a factor of ~3 relative to the isoelectronic [UO₂(CO₃)₃]⁴⁻ as reported by Brucher et al.2 of k298ex = 13(±3) s⁻¹. Consistent with results for the [UO₂(CO₃)₃]⁴⁻ ion, we find evidence for a proton-enhanced pathway for carbonate exchange for the [NpO₂(CO₃)₃]⁴⁻ ion at pH < 9.0.

  1. Isolation and molecular characterisation of alkaline protease producing Bacillus thuringiensis.

    PubMed

    Agasthya, Annapurna S; Sharma, Naresh; Mohan, Anand; Mahal, Prabhpreet

    2013-05-01

    Proteases are of particular interest because of their action on insoluble keratin substrates and generally on a broad range of protein substrates. Proteases are one of the most important groups of industrial enzymes used in detergent, protein, brewing, meat, photographic, leather, dairy, pharmaceutical and food industry. In the present study, the organism isolated from the protein rich soil sample was identified by biochemical and molecular characterisation as Bacillus thuringiensis and further optimum conditions for alkaline protease synthesis were determined. The growth conditions for B. thuringiensis was optimised by inoculating into yeast extract casein medium at different pH and incubating at different temperatures. The maximum protease production occurred at pH 8 and at 37 °C. B. thuringiensis showed proteolytic activity at various culture conditions. Optimum conditions for the protease activity were found to be 47 °C and pH 8. In the later stage, the blood removing action of crude and partially purified protease was found to be effective within 25 min in the presence of commercial detergents indicating the possible use of this enzyme in detergent industry. Enzyme also showed good activity against hair substrate keratin and can be used for dehairing. PMID:22826099

  2. Influence of pH and media composition on suspension stability of silver, zinc oxide, and titanium dioxide nanoparticles and immobilization of Daphnia magna under guideline testing conditions.

    PubMed

    Cupi, Denisa; Hartmann, Nanna B; Baun, Anders

    2016-05-01

    In aquatic toxicity testing of engineered nanoparticles (ENPs) the process of agglomeration is very important as it may alter bioavailability and toxicity. In the present study, we aimed to identify test conditions that are favorable for maintaining stable ENP suspensions. We evaluated the influence of key environmental parameters: pH (2-12) and ionic strength using M7, Soft EPA (S EPA) medium, and Very Soft EPA (VS EPA) medium; and observed the influence of these parameters on zeta potential, zeta average, and acute immobilization of Daphnia magna for three different ENPs. Despite being sterically stabilized, test suspensions of silver (Ag) ENPs formed large agglomerates in both VS EPA and M7 media; and toxicity was found to be higher in VS EPA medium due to increased dissolution. Low-agglomerate suspensions for zinc oxide (ZnO) could be obtained at pH 7 in VS EPA medium, but the increase in dissolution caused higher toxicity than in M7 medium. Titanium dioxide (TiO2) ENPs had a point of zero charge in the range of pH 7-8. At pH 7 in VS EPA, agglomerates with smaller hydrodynamic diameters (~200nm) were present compared to the high ionic strength M7 medium where hydrodynamic diameters reached micrometer range. The stable suspensions of TiO2 ENPs caused immobilization of D. magna, 48-h EC50 value of 13.7mgL(-1) (95% CI, 2.4mg-79.1mgL(-1)); whereas no toxicity was seen in the unstable, highly agglomerated M7 medium suspensions, 48-h EC50 >100mgL(-1). The current study provides a preliminary approach for methodology in testing and assessing stability and toxicity of ENPs in aquatic toxicity tests of regulatory relevance. PMID:26829068

  3. The Origin of Life in Alkaline Hydrothermal Vents.

    PubMed

    Sojo, Victor; Herschy, Barry; Whicher, Alexandra; Camprubí, Eloi; Lane, Nick

    2016-02-01

    Over the last 70 years, prebiotic chemists have been very successful in synthesizing the molecules of life, from amino acids to nucleotides. Yet there is strikingly little resemblance between much of this chemistry and the metabolic pathways of cells, in terms of substrates, catalysts, and synthetic pathways. In contrast, alkaline hydrothermal vents offer conditions similar to those harnessed by modern autotrophs, but there has been limited experimental evidence that such conditions could drive prebiotic chemistry. In the Hadean, in the absence of oxygen, alkaline vents are proposed to have acted as electrochemical flow reactors, in which alkaline fluids saturated in H2 mixed with relatively acidic ocean waters rich in CO2, through a labyrinth of interconnected micropores with thin inorganic walls containing catalytic Fe(Ni)S minerals. The difference in pH across these thin barriers produced natural proton gradients with equivalent magnitude and polarity to the proton-motive force required for carbon fixation in extant bacteria and archaea. How such gradients could have powered carbon reduction or energy flux before the advent of organic protocells with genes and proteins is unknown. Work over the last decade suggests several possible hypotheses that are currently being tested in laboratory experiments, field observations, and phylogenetic reconstructions of ancestral metabolism. We analyze the perplexing differences in carbon and energy metabolism in methanogenic archaea and acetogenic bacteria to propose a possible ancestral mechanism of CO2 reduction in alkaline hydrothermal vents. Based on this mechanism, we show that the evolution of active ion pumping could have driven the deep divergence of bacteria and archaea. PMID:26841066

  4. Alkaline protease from Thermoactinomyces sp. RS1 mitigates industrial pollution.

    PubMed

    Verma, Amit; Ansari, Mohammad W; Anwar, Mohmmad S; Agrawal, Ruchi; Agrawal, Sanjeev

    2014-05-01

    Proteases have found a wide application in the several industrial processes, such as laundry detergents, protein recovery or solubilization, prion degradation, meat tenderizations, and in bating of hides and skins in leather industries. But the main hurdle in industrial application of proteases is their economical production on a large scale. The present investigation aimed to exploit the locally available inexpensive agricultural and household wastes for alkaline protease production using Thermoactinomyces sp. RS1 via solid-state fermentation (SSF) technique. The alkaline enzyme is potentially useful as an additive in commercial detergents to mitigate pollution load due to extensive use of caustic soda-based detergents. Thermoactinomyces sp. RS1 showed good protease production under SSF conditions of 55 °C, pH 9, and 50 % moisture content with potato peels as solid substrate. The presented findings revealed that crude alkaline protease produced by Thermoactinomyces sp. RS1 via SSF is of potential application in silver recovery from used X-ray films. PMID:24122212

  5. Influence of pH on yeast immobilization on polystyrene surfaces modified by energetic ion bombardment.

    PubMed

    Tran, Clara T H; Kondyurin, Alexey; Chrzanowski, Wojciech; Bilek, Marcela M M; McKenzie, David R

    2013-04-01

    Plasma immersion ion implantation (PIII) treatment is a novel method for immobilizing yeast on polymer surfaces by covalent linkage. This study of the immobilization of Saccharomyces cerevisiae in both rehydrated and cultured forms showed that the density of cell attachment on PIII treated polystyrene (PS) was strongly dependent on the pH of the incubation medium and was higher for rehydrated yeast. A study of the surface charge was undertaken to explain this result. A high density of cell attachment occurs in acidic conditions (pH 3-5) and a significantly reduced cell density occurs in neutral and alkaline buffers (pH 6-10) for both types of yeast. Force measurements using atomic force microscopy show that a negative charge is present on polystyrene after PIII treatment. The charge is close to zero at pH 3 to pH 5 and increasingly negative from pH 6 to pH 10. Both rehydrated yeast and cultured yeast have negative electrophoretic mobility in the pH range studied. The repulsive forces are weak in acidic buffers and stronger in neutral and alkaline buffers, in good agreement with the cell densities observed. Rehydrated yeast cells are found to be more hydrophobic than cultured yeasts in the same buffer. The higher hydrophobicity explains the higher attachment of rehydrated yeast compared to cultured yeast. PMID:23298600

  6. Surfactant-enhanced alkaline flooding for light oil recovery. Quarterly report, January 1--March 31, 1994

    SciTech Connect

    Wasan, D.T.

    1994-06-01

    The overall objective of this project is to develop a very cost-effective method for formulating a successful surfactant-enhanced alkaline flood by appropriately choosing mixed alkalis which form inexpensive buffers to obtain the desired pH (between 8.5 and 12.0) for ultimate spontaneous emulsification and ultra-low tension. In addition, the novel concept of pH gradient design to optimize flood water conditions will be tested. Last quarter we investigated the phase behavior and the regions where in the middle phase occurs. The optimum phase was found to go through a maximum with pH, sodium concentration and surfactant concentration. The optimum pH is about 12.0 to 13.5, the optimum sodium concentration is about 0.513 mol/liter, and the optimum surfactant concentration is about 0.2%. The effect of surfactant type was also investigated. Petrostep B-105 was found to give the most middle phase production. This quarter, we investigated the contact angle of Long Beach oil, Adena oil, and a model oil on a solid glass surface in contact with an aqueous alkaline solution both with and without added preformed surfactant. The contact angle with Long Beach and Adena oils showed oil-wet conditions, whereas the model oil showed both oil-wet and water-wet conditions depending on the pH of the aqueous phase. The addition of surfactant to the alkaline solution resulted in making the system less oil-wet. Spreading of the oil on the glass surface was observed in all three systems investigated.

  7. Effects of various pH conditions on authigenic chlorite and kaolinite surface characteristics using SEM and x-ray microanalysis

    SciTech Connect

    Dogan, A.U.; Leung, W.K.

    1987-05-01

    Authigenic chlorite and kaolinite are major diagenetic minerals in petroleum-bearing sandstone units. Authigenic chlorite in marine sandstone units of the Upper Cretaceous Parkman formation of Wyoming occurs as grain coatings which line pores. Chlorite plates developed on grain surfaces perpendicular to grain margins, with individual crystals being about 3 to 5 microns in diameter and 0.1 micron thick. Authigenic kaolinite occurs as stacked pseudohexagonal booklets that fill pores. Its crystal diameter is about 10 microns. Well-developed chlorite and kaolinite crystals coexist in many sandstone units. Some workers claim that chlorite is extremely sensitive to acid, and some claim that acidic conditions are required to form kaolinite, although fresh water need not be the only source of acidity. In the Parkman formation, chlorite is well preserved in pores. Therefore, it appears that the chlorite-bearing units may not have been subjected to acidic conditions after chlorite was formed. However, kaolinite in these units appears to have precipitated after chlorite formation. If this is so, then acidic conditions required to form kaolinite would have destroyed earlier formed chlorite. To test this problem, a laboratory experiment was designed to show effects of varying pH conditions on these crystals. Experiments were done under atmospheric conditions. Solutions were maintained with pH of 4, 6, 7, 8, and 10. Physical chemical changes on crystal surfaces were studied using scanning electron microscopy, x-ray microanalysis, and Shape Analyzer. Details of the precipitation mechanism and kinetics of equilibrium of these minerals will be discussed.

  8. Unraveling a Single-Step Simultaneous Two-Electron Transfer Process from Semiconductor to Molecular Catalyst in a CoPy/CdS Hybrid System for Photocatalytic H2 Evolution under Strong Alkaline Conditions.

    PubMed

    Xu, Yuxing; Ye, Yun; Liu, Taifeng; Wang, Xiuli; Zhang, Bingqing; Wang, Mei; Han, Hongxian; Li, Can

    2016-08-31

    Electron transfer processes from semiconductor to molecular catalysts was studied in a model hybrid photocatalytic hydrogen evolution system composed of [Co((III))(dmgH)2PyCl] (CoPy) and CdS under different pH conditions. Thermodynamic and kinetic studies revealed that photocatalytic H2 evolution under high pH conditions (pH 13.5) can only account for the thermodynamically more favorable single-step simultaneous two-electron transfer from photoirradiated CdS to Co(III)Py to produce unavoidable intermediate Co(I)Py, rather than a two-step successive one-electron transfer process. This finding not only provides new insight into the charge transfer processes between semiconductors and molecular catalysts but also opens up a new avenue for the assembly and optimization of semiconductor-molecular catalyst hybrid systems processed through multielectron transfer processes. PMID:27529565

  9. Influences of pH and CO2 on the formation of Metasilicate mineral water in Changbai Mountain, Northeast China

    NASA Astrophysics Data System (ADS)

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2015-07-01

    Mineral dissolution reactions actively participate in controlling the composition of mineral water. In this study, water soluble, acidic-alkaline and carbonated solution experiments were designed, and mineral reaction mechanisms were researched using chemical kinetics and the minimum free-energy method. The results showed that the release of metasilicate was controlled by pH, CO2, and rock characteristics. In the water soluble experiment, the release process of metasilicate in powdered rocks reached equilibrium after 40 days, while metasilicate in solid rocks took 170 days. The release process of metasilicate in solid rocks satisfied an asymptotic model, while in powdered rocks it accorded with the Stanford reaction kinetic model. In the acidic-alkaline experiment, metasilicate was released earlier under acidic conditions (2.46 < pH < 7) than under alkaline conditions (7 < pH < 10.61). The release process of metasilicate under acidic conditions reached equilibrium in 40 days, compared with 60 days for alkaline conditions. The addition of CO2 to the water solution was beneficial to the formation of metasilicate. Under neutral pH conditions, the reaction barely occurred. Under alkaline conditions, metasilicate was produced by the hydrolysis of metasilicate minerals. Under acidic and additional CO2 conditions, metasilicate formation was mainly via the reaction of H+, CO2, and metasilicate minerals. From these results, we concluded that the metasilicate mineral water from the Changbai Mountains, Jingyu County, is generated by a combination of the hydrolysis of metasilicate minerals and the reaction of H+, CO2, and metasilicate minerals. These results can contribute to a better development and protection of the mineral water resources in the Changbai Mountains.

  10. Alkaline Band Formation in Chara corallina

    PubMed Central

    Lucas, William J.

    1979-01-01

    The nature of the transport system responsible for the establishment of alkaline bands on cells of Chara corallina was investigated. The transport process was found to be insensitive to external pH, provided the value was above a certain threshold. At this threshold (pH 5.1 to 4.8) the transport process was inactivated. Transport function could be recovered by raising the pH value of the external solution. The fastest rate of recovery was always obtained in the presence of exogenous HCO3−. Experiments in which plasmalemma integrity was modified using 10 millimolar K+ treatment were also performed. Alkaline band transport was significantly reduced in the presence of 10 millimolar K+, but the system did not recover, following return to 0.2 millimolar K+ solutions, until the transport site was reexposed to exogenous HCO3−. The influence of presence and absence of various cations on both alkaline band transport and total H14CO3− assimilation was examined. No specific cation requirement (mono- or divalent) was found for either process, except the previously established role of Ca2+ at the HCO3− transport site. The alkaline band transport process exhibited a general requirement for cations. This transport system could be partially or completely stalled in low cation solutions, or glass-distilled water, respectively. The results indicate that no cationic flux occurs across the plasmalemma in direct association with either the alkaline band or HCO3− transport systems. It is felt that the present results offer support for the hypothesis that an OH− efflux transport system (rather than a H+ influx system) is responsible for alkaline band development in C. corallina. The results support the hypothesis that OH− efflux is an electrogenic process. This OH− transport system also appears to contain two allosteric effector sites, involving an acidic group and a HCO3− ion. PMID:16660706

  11. pH. Agricultural Lesson Plans.

    ERIC Educational Resources Information Center

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This lesson plan is intended for use in conducting classes on the effect of pH on plant growth. Presented first are an attention step/problem statement and a series of questions and answers designed to convey general information about soil pH and its effect on plants. The following topics are among those discussed: acidity and alkalinity; the…

  12. Cloning and high-level expression of β-xylosidase from Selenomonas ruminantium in Pichia pastoris by optimizing of pH, methanol concentration and temperature conditions.

    PubMed

    Dehnavi, Ehsan; Ranaei Siadat, Seyed Omid; Fathi Roudsari, Mehrnoosh; Khajeh, Khosro

    2016-08-01

    β-xylosidase and several other glycoside hydrolase family members, including xylanase, cooperate together to degrade hemicelluloses, a commonly found xylan polymer of plant-cell wall. β-d-xylosidase/α-l-arabinofuranosidase from the ruminal anaerobic bacterium Selenomonas ruminantium (SXA) has potential utility in industrial processes such as production of fuel ethanol and other bioproducts. The optimized synthetic SXA gene was overexpressed in methylotrophic Pichia pastoris under the control of alcohol oxidase I (AOX1) promoter and secreted into the medium. Recombinant protein showed an optimum pH 4.8 and optimum temperature 50 °C. Furthermore, optimization of growth and induction conditions in shake flask was carried out. Using the optimum expression condition (pH 6, temperature 20 °C and 1% methanol induction), protein production was increased by about three times in comparison to the control. The recombinant SXA we have expressed here showed higher turnover frequency using ρ-nitrophenyl β-xylopyranoside (PNPX) substrate, in contrast to most xylosidase experiments reported previously. This is the first report on the cloning and expression of a β-xylosidase gene from glycoside hydrolase (GH) family 43 in Pichia pastoris. Our results confirm that P. pastoris is an appropriate host for high level expression and production of SXA for industrial applications. PMID:27154901

  13. Persistent and non-persistent strains of Listeria monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers.

    PubMed

    Magalhães, R; Ferreira, V; Brandão, T R S; Palencia, R Casquete; Almeida, G; Teixeira, P

    2016-08-01

    This study aimed to investigate the effect of different conditions, including temperature (37 °C, 22 °C, and 4 °C), NaCl concentrations (2.5%, 4%, and 8%), and acidity (pH = 5), on the growth response of persistent and non-persistent isolates of Listeria monocytogenes. The resistance to two common sanitizers (benzalkonium chloride and hydrogen peroxide) was also investigated. A selected group of 41 persistent and non-persistent L. monocytogenes isolates recovered from three cheese processing plants during a previous longitudinal study was assembled. Average lag time was similar for persistent and non-persistent isolates grown at 37 °C, 22 °C and 4 °C but significantly shorter (p < 0.05) for persistent isolates grown at 2.5%, 4% and 8% NaCl, and at pH 5. Average growth rates were significantly higher (p < 0.05) for persistent than for non-persistent isolates when grown at 22 °C, 2.5%, 4% and 8% NaCl, and at pH 5. These results suggest that persistent strains may be better adapted to grow under stressful conditions frequently encountered in food processing environments than non-persistent strains. No relation between persistence and resistance to the tested sanitizers was found. PMID:27052708

  14. Defluoridation of drinking water by combined electrocoagulation: effects of the molar ratio of alkalinity and fluoride to Al(III).

    PubMed

    Zhao, Hua-Zhang; Yang, Wei; Zhu, Jun; Ni, Jin-Ren

    2009-03-01

    The defluoridation efficiency (epsilon(F)) of electrocoagulation (EC) is closely related to the pH level of the F(-)-containing solution. The pH level usually needs to be adjusted by adding acid in order to obtain the highest epsilon(F) for the F(-)-containing groundwater. The use of combined EC (CEC), which is the combination of chemical coagulation with EC, was proposed to remove fluoride from drinking water for the first time in this study. The optimal scheme for the design and operation of CEC were obtained through experiments on the treatment of F(-)-containing groundwater. It was found, with OH(-) being the only alkalinity of the raw water, that the highest efficiency would be obtained when the molar ratio of alkalinity and fluoride to Al(III) (gamma(Alkalinity+F)) was controlled at 3.0. However, when the raw water contained HCO(3)(-) alkalinity, a correction coefficient was needed to correct the concentration of HCO(3)(-) to obtain the optimal defluoridation condition of gamma(Alkalinity+F)=3.0 for CEC. The correction coefficient of HCO(3)(-) concentration was concluded as 0.60 from the experiment. For the practical F(-)-containing groundwater treatment, CEC can achieve similar epsilon(F) as an acid-adding EC process. The consumption of aluminum electrode was decreased in CEC. The energy consumption also declined greatly in CEC, which is less than one third of that in the acid-adding EC process. PMID:19128818

  15. Release of copper from sintered tungsten-bronze shot under different pH conditions and its potential toxicity to aquatic organisms.

    PubMed

    Thomas, Vernon G; Santore, Robert C; McGill, Ian

    2007-03-01

    Sintered tungsten-bronze is a new substitute for lead shot, and is about to be deposited in and around the wetlands of North America. This material contains copper in the alloyed form of bronze. This in vitro study was performed according to U.S. Fish and Wildlife Service criteria to determine the dissolution rate of copper from the shot, and to assess the toxic risk that it may present to aquatic organisms. The dissolution of copper from tungsten-bronze shot, pure copper shot, and glass beads was measured in a buffered, moderately hard, synthetic water of pH 5.5, 6.6, and 7.8 over a 28-day period. The dissolution of copper from both the control copper shot and the tungsten-bronze shot was affected significantly by the pH of the water and the duration of dissolution (all p values<0.000). The rate of copper release from tungsten bronze shot was 30 to 50 times lower than that from the copper shot, depending on pH (p<0.0000). The observed expected environmental concentration of copper released from tungsten-bronze shot after 28 days was 0.02 microg/L at pH 7.8, and 0.4 microg/L at pH 5.6, using a loading and exposure scenario specific in a U.S. Fish and Wildlife Service protocol. Ratio Quotient values derived from the highest EEC observed in this study (0.4 microg/L), and the copper toxic effect levels for all aquatic species listed in the U.S. Environmental Protection Agency ambient water quality criteria database, were all far less than the 0.1 criterion value. Given the conditions stipulated by the U.S. Fish and Wildlife Service and the U.S. Environmental Protection Agency, heavy loading from discharged tungsten-bronze shot would not pose a toxic risk to potable water, or to soil. Consequently, it would appear that no toxic risks to aquatic organisms will attend the use of tungsten-bronze shot of the approved composition. Given the likelihood that sintered tungsten-bronze of the same formula will be used for fishing weights, bullets, and wheel balance weights, it

  16. Viability of Ascaris and other helminth genera non larval eggs in different conditions of temperature, lime (pH) and humidity.

    PubMed

    Maya, C; Ortiz, M; Jiménez, B

    2010-01-01

    Helminth eggs are the pathogens most resistant to inactivation during sludge and wastewater treatment. For this reason, in several regulations and the WHO guidelines for wastewater and excreta reuse for agriculture and aquaculture they are considered as indicators of the performance of the treatment process. Conditions required to inactivate helminth eggs, notably Ascaris lumbricoides, are recommended in the literature, but in practice these have not always proven effective, not only for Ascaris but also other genera of helminth eggs. The objective of this research was to study the inactivation of a high total content of non larval Ascaris and other genera of helminth eggs of medical importance to developing countries under controlled conditions of (a) temperature (30 °C to 80 °C) and humidity (80, 90 and 95%) and (b) lime doses (15 and 20% of CaO w/w dry basis) and humidity (90 and 80%), using different contact times in both cases. The inactivation data obtained for different genera of non larval helminth eggs is presented. Results showed that there is a combination of conditions (temperature, pH and humidity) that is optimal for inactivation. To completely inactivate any genera of non larval helminth eggs: (a) a temperature above 70 °C and 80% humidity for a duration of 120 min; and, (b) a 20% CaO dose (pH 12.5) and a humidity level of 80% for a duration of 8 months are needed. With regard to the resistance of different genera of helminth eggs, Ascaris, Toxocara and Taenia, in that order, were the most resistant, while the most sensitive were Trichuris and Hymenolepis. For most of the conditions tested Ascaris showed the highest resistance, probably due to the chemical arrangement of its membrane. PMID:21099049

  17. Gene transcription patterns of pH- and salt-stressed Listeria monocytogenes cells in simulated gastric and pancreatic conditions.

    PubMed

    Mataragas, Marios; Greppi, Anna; Rantsiou, Kalliopi; Cocolin, Luca

    2014-02-01

    A Listeria monocytogenes subgenomic array, targeting 54 genes involved in the adhesion, adaptation, intracellular life cycle, invasion, and regulation of the infection cycle was used to investigate the gene expression patterns of acid- and salt-stressed Listeria cells after exposure to conditions similar to those in gastric and pancreatic fluids. Three L. monocytogenes strains, one laboratory reference strain (EGDe) and two food isolates (wild strain 12 isolated from milk and wild strain 3 isolated from fermented sausage), were used during the studies. Differences in the expressed genes were observed between the gastric and pancreatic treatments and also between the serotypes. Increased transcripts were observed of the genes belonging to the adaptation and regulation group for serotype 4b (strain 12) and to the invasion and regulation group for serotype 1/2a (strain EGDe). Interestingly, no significantly differentially expressed genes were found for serotype 3c (strain 3) in most cases. The genes related to adaptation (serotype 1/2a) and to intracellular life cycle and invasion (serotype 4b) were down-regulated in order to cope with the hostile environment of the gastric and pancreatic fluids. These findings may provide experimental evidence for the dominance of serotypes 1/2a and 4b in clinical cases of listeriosis and for the sporadic occurrence of serotype 3c. PMID:24490919

  18. Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities.

    PubMed

    Tu, Xiang; Li, Jianjun; Feng, Rongfang; Sun, Guoping; Guo, Jun

    2016-01-01

    Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability. PMID:27196300

  19. Comparison of Removal Behavior of Two Biotrickling Filters under Transient Condition and Effect of pH on the Bacterial Communities

    PubMed Central

    Tu, Xiang; Li, Jianjun; Feng, Rongfang; Sun, Guoping; Guo, Jun

    2016-01-01

    Although biotrickling filters (BTFs) applied under acidic condition to remove H2S from waste gases have been reported, the removal behavior of the acidic BTF under transient condition which was normal in most industry processes, and corresponding bacterial community have not been thoroughly studied. In the present study, two BTFs were run under neutral (BTFn) and acidic (BTFa) conditions, respectively. The results revealed that the removal performance of BTFa under transient condition was superior to that of BTFn; the maximum H2S eliminating capacities (ECs) achieved by BTFa and BTFn were 489.9 g/m3 h and 443.6 g/m3 h, respectively. High-throughput sequencing suggested that pH was the critical factor and several other factors including nutrient and the inlet loadings also had roles in shaping bacterial community structure. Acidithiobacillus was the most abundant bacterial group. The results indicated that BTF acclimation under acidic condition may facilitate generating microbial community with high H2S-degrading capability. PMID:27196300

  20. Evolution of extreme stomach pH in bilateria inferred from gastric alkalization mechanisms in basal deuterostomes

    PubMed Central

    Stumpp, Meike; Hu, Marian Y.; Tseng, Yung-Che; Guh, Ying-Jeh; Chen, Yi-Chih; Yu, Jr-Kai; Su, Yi-Hsien; Hwang, Pung-Pung

    2015-01-01

    The stomachs of most vertebrates operate at an acidic pH of 2 generated by the gastric H+/K+-ATPase located in parietal cells. The acidic pH in stomachs of vertebrates is believed to aid digestion and to protect against environmental pathogens. Little attention has been placed on whether acidic gastric pH regulation is a vertebrate character or a deuterostome ancestral trait. Here, we report alkaline conditions up to pH 10.5 in the larval digestive systems of ambulacraria (echinoderm + hemichordate), the closest relative of the chordate. Microelectrode measurements in combination with specific inhibitors for acid-base transporters and ion pumps demonstrated that the gastric alkalization machinery in sea urchin larvae is mainly based on direct H+ secretion from the stomach lumen and involves a conserved set of ion pumps and transporters. Hemichordate larvae additionally utilized HCO3− transport pathways to generate even more alkaline digestive conditions. Molecular analyses in combination with acidification experiments supported these findings and identified genes coding for ion pumps energizing gastric alkalization. Given that insect larval guts were also reported to be alkaline, our discovery raises the hypothesis that the bilaterian ancestor utilized alkaline digestive system while the vertebrate lineage has evolved a strategy to strongly acidify their stomachs. PMID:26051042

  1. Effect of synthesis conditions on characteristics of the precursor material used in NiO·OH/Ni(OH) 2 electrodes of alkaline batteries

    NASA Astrophysics Data System (ADS)

    Freitas, M. B. J. G.; Silva, R. K. Silva e.; Anjos, D. M.; Rozário, A.; Manoel, P. G.

    The synthesis of nickel hydroxide occurs by many stages. When the precipitating reagent is NH 4OH solution, the precipitation of nickel hydroxide occurs between pH 8.0 and 8.6. For pH between 8.6 and 10.0, a soluble complex such as [Ni(NH 3) 6] 2+ is formed. The precipitation of nickel hydroxide happens again after the pH equals 10.0. Finally, there occurs the ageing of α-Ni(OH) 2. A mixture of α-Ni(OH) 2 and β-Ni(OH) 2 phases is formed when the solid state reaction is not totally completed. One adsorbed layer becomes very hard with the exit of the water intercalated in the α-Ni(OH) 2. In presence of KOH solution occurs the formation and the ageing of α-Ni(OH) 2. Synthesis was characterized by the following techniques: X-ray diffraction, Fourier transform infrared spectroscopy (FT-IR), differential thermal analysis (DTA) and gravimetric thermal analysis (GTA), and specific surface area and UV-vis spectroscopy.

  2. Characterization of citrus pectin samples extracted under different conditions: influence of acid type and pH of extraction

    PubMed Central

    Kaya, Merve; Sousa, António G.; Crépeau, Marie-Jeanne; Sørensen, Susanne O.; Ralet, Marie-Christine

    2014-01-01

    Background and Aims Pectin is a complex macromolecule, the fine structure of which is influenced by many factors. It is used as a gelling, thickening and emulsifying agent in a wide range of applications, from food to pharmaceutical products. Current industrial pectin extraction processes are based on fruit peel, a waste product from the juicing industry, in which thousands of tons of citrus are processed worldwide every year. This study examines how pectin components vary in relation to the plant source (orange, lemon, lime, grapefruit) and considers the influence of extraction conditions on the chemical and macromolecular characteristics of pectin samples. Methods Citrus peel (orange, lemon, lime and grapefruit) from a commercial supplier was used as raw material. Pectin samples were obtained on a bulk plant scale (kilograms; harsh nitric acid, mild nitric acid and harsh oxalic acid extraction) and on a laboratory scale (grams; mild oxalic acid extraction). Pectin composition (acidic and neutral sugars) and physicochemical properties (molar mass and intrinsic viscosity) were determined. Key Results Oxalic acid extraction allowed the recovery of pectin samples of high molecular weight. Mild oxalic acid-extracted pectins were rich in long homogalacturonan stretches and contained rhamnogalacturonan I stretches with conserved side chains. Nitric acid-extracted pectins exhibited lower molecular weights and contained rhamnogalacturonan I stretches encompassing few and/or short side chains. Grapefruit pectin was found to have short side chains compared with orange, lime and lemon. Orange and grapefruit pectin samples were both particularly rich in rhamnogalacturonan I backbones. Conclusions Structural, and hence macromolecular, variations within the different citrus pectin samples were mainly related to their rhamnogalacturonan I contents and integrity, and, to a lesser extent, to the length of their homogalacturonan domains. PMID:25081519

  3. Alkaline "Permanent" Paper.

    ERIC Educational Resources Information Center

    Pacey, Antony

    1991-01-01

    Discussion of paper manufacturing processes and their effects on library materials focuses on the promotion of alkaline "permanent" paper, with less acid, by Canadian library preservation specialists. Standards for paper acidity are explained; advantages of alkaline paper are described, including decreased manufacturing costs; and recyclability is…

  4. Anodes for alkaline electrolysis

    DOEpatents

    Soloveichik, Grigorii Lev

    2011-02-01

    A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

  5. Alkaline igneous rocks

    SciTech Connect

    Fitton, J.G.; Upton, B.G.J.

    1987-01-01

    In this volume, an international team of scientists provides an up-to-date overview of the nature, origin, and evolution of alkaline magmas. Particular attention is paid to carbonatites, lamprophyres, and lamproites which are rock suites of current interest not recently reviewed elsewhere. Recent work on the classical alkaline provinces of East Africa, South Greenland, and the Kola Peninsula is included together with reviews of other areas of alkaline magmatism in North and South America, East Greenland, Europe, West Africa, and the ocean basins. Other papers discuss the impact of experimental isotopic and geochemical studies of the petrogenesis of alkaline rocks. This book will be of interest to petrologists and geochemists studying alkaline igneous rocks, and to other earth scientists as a reference on the rapidly expanding field of igneous petrology.

  6. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: hydrogen-bonding interactions with water.

    PubMed

    Poopari, Mohammad Reza; Zhu, Peiyan; Dezhahang, Zahra; Xu, Yunjie

    2012-11-21

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy have been used to study leucine, a flexible branched-chain amino acid, in aqueous solution. The VA spectra in the range of 1800-1250 cm(-1) of leucine in D(2)O under three representative pHs from strongly acidic (pH = 1), near neutral (pH = 6), to strongly basic (pH = 13), have been measured. The related VCD spectrum has been obtained under near neutral condition. Searches have been carried out to identify the most stable conformers of the Zwitterionic, protonated, and deprotonated forms of leucine in water. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities have been computed at the B3LYP/6-311++G(d,p) level with the implicit polarizable continuum solvation model. While the observed VA spectra under three pHs can be well interpreted with the inclusion of the implicit solvation model, both implicit and explicit solvation models have been found to be crucial for the adequate interpretation of the complex VCD features observed. Molecular dynamics simulations and radial distribution functions have been used to aid the modeling of the leucine-(water)(N) clusters. It has been recognized that the insertion of a water molecule between the COO(-) and NH(3) (+) functional groups in the explicit solvated clusters is critical to reproduce the VCD signatures observed. Furthermore, the inclusion of the implicit bulk water environment has been found to be essential to lock water molecules, which are directly hydrogen bonded to leucine, into the positions expected in solution. The application of the explicit and implicit solvation models simultaneously allows new insights into the hydrogen bonding network surrounding leucine in aqueous solution and the role of the surrounding bulk water in stabilizing such hydrogen-bonding network. PMID:23181307

  7. Thermal inactivation of Alicyclobacillus acidoterrestris spores under different temperature, soluble solids and pH conditions for the design of fruit processes.

    PubMed

    Silva, F M; Gibbs, P; Vieira, M C; Silva, C L

    1999-10-15

    Alicyclobacillus acidoterrestris, a thermoacidophilic, non-pathogenic and spore-forming bacterium has been detected in several spoiled commercial pasteurised fruit juices. A. acidoterrestris spores, besides being resistant to the pasteurisation treatment conditions normally applied to acidic fruit products, can germinate and grow causing spoilage. Therefore, this microorganism was suggested as the target to be used in the design of adequate pasteurisation processes. The objectives of this work were to investigate the influence of temperature (T: 85-97 degrees C), total soluble solids (SS: 5-60 degrees Brix or % by weight) and pH (2.5-6.0) on D-values (decimal reduction time) of Alicyclobacillus acidoterrestris (type strain, NCIMB 13137) spores, and to fit a model using response surface methodology. A central composite face-centred experimental design was used, and the response, D-value determined in malt extract broth, ranged between 0.498+/-0.045 and 94.9+/-6.7 min. Within the factor ranges studied, temperature was the parameter that most affected the D-value. Following this was the SS and, lastly, the pH value. A linear decrease in D-value was observed with decreasing SS and pH, and a non-linear decrease in D-value was noticed with increasing temperature. A second order polynomial was successfully fitted to the data (R2 = 0.98). In general, D-values measured in real fruit systems, such as orange, apple and grape juices, blackcurrant concentrates, cupuaçu (exotic fruit) extract and orange juice drink, were higher than those predicted by the malt extract broth model. This result emphasises the importance of experimental validation of any model-derived process. PMID:10574085

  8. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: Hydrogen-bonding interactions with water

    NASA Astrophysics Data System (ADS)

    Poopari, Mohammad Reza; Zhu, Peiyan; Dezhahang, Zahra; Xu, Yunjie

    2012-11-01

    Vibrational absorption (VA) and vibrational circular dichroism (VCD) spectroscopy have been used to study leucine, a flexible branched-chain amino acid, in aqueous solution. The VA spectra in the range of 1800-1250 cm-1 of leucine in D2O under three representative pHs from strongly acidic (pH = 1), near neutral (pH = 6), to strongly basic (pH = 13), have been measured. The related VCD spectrum has been obtained under near neutral condition. Searches have been carried out to identify the most stable conformers of the Zwitterionic, protonated, and deprotonated forms of leucine in water. The geometry optimization, harmonic frequency calculations, and VA and VCD intensities have been computed at the B3LYP/6-311++G(d,p) level with the implicit polarizable continuum solvation model. While the observed VA spectra under three pHs can be well interpreted with the inclusion of the implicit solvation model, both implicit and explicit solvation models have been found to be crucial for the adequate interpretation of the complex VCD features observed. Molecular dynamics simulations and radial distribution functions have been used to aid the modeling of the leucine-(water)N clusters. It has been recognized that the insertion of a water molecule between the COO- and NH3+ functional groups in the explicit solvated clusters is critical to reproduce the VCD signatures observed. Furthermore, the inclusion of the implicit bulk water environment has been found to be essential to lock water molecules, which are directly hydrogen bonded to leucine, into the positions expected in solution. The application of the explicit and implicit solvation models simultaneously allows new insights into the hydrogen bonding network surrounding leucine in aqueous solution and the role of the surrounding bulk water in stabilizing such hydrogen-bonding network.

  9. Seawater neutralization of alkaline bauxite residue and implications for revegetation.

    PubMed

    Menzies, N W; Fulton, I M; Morrell, W J

    2004-01-01

    Reaction of bauxite residue with seawater results in neutralization of alkalinity through precipitation of Mg-, Ca-, and Al-hydroxide and carbonate minerals. In batch studies, the initial pH neutralization reaction was rapid (<5 min), with further reaction continuing to reduce pH for several weeks. Reaction with seawater produced a residue pH of 8 to 8.5. Laboratory leaching column studies were undertaken to provide information on seawater neutralization of the coarse-textured fraction of the waste, residue sand (RS), under conditions comparable with those that might be applied in the field. An 0.80-m-deep column of RS was neutralized by the application of the equivalent of 2-m depth of seawater. In addition to lowering the pH and Na content of the residue, seawater neutralization resulted in the addition of substantial amounts of the plant nutrients Ca, Mg, and K to the profile. Similar results were also obtained from a field-scale assessment of neutralization. However, the accumulation of precipitate, consisting of hydrotalcite, aragonite, and pyroaurite, in the drainage system may preclude the use of in situ seawater neutralization as a routine rehabilitation practice. Following seawater neutralization, RS remains too saline to support plant growth and would require fresh water leaching before revegetation. PMID:15356249

  10. The role of pe, pH, and carbonate on the solubility of UO{sub 2} and uraninite under nominally reducing conditions

    SciTech Connect

    Casas, I.; Pablo, J. de; Gimenez, J.; Torrero, M.E.; Bruno, J.; Cera, E.; Finch, R.J.; Ewing, R.C.

    1998-07-01

    Experimental data obtained from uranium dioxide solubility studies as a function of pH and under nominally reducing conditions in a 0.008 mol/dm{sup 3} perchlorate medium and in a 1 mol/dm{sup 3} chloride solution are presented. The solubility of extensively characterized uraninite samples from Cigar Lake (Canada), Jachymov (Czech Republic), and Oklo (Gabon) was determined in a solution matching the composition of a groundwater associated with granitic terrain. The redox potential of the test solution was monitored throughout the experimental period. The results obtained were modeled using aqueous formation constants compiled by the NEA, using stability constants corrected to appropriate ionic strengths. A lower value of the solubility product of the uranium dioxide phase defined as fuel in the SKB uranium database provides reasonable solubilities for a wide span of experimental results at near to neutral pH. Differences in solubility between natural and synthetic samples are attributed to the presence of carbonate in the experiments performed with uraninites, while differences in solubility observed among the natural samples can be correlated to radiation effects at atomic scale.

  11. Improvement of chemical monitoring of water-chemistry conditions at thermal power stations based on electric conductivity and pH measurements

    NASA Astrophysics Data System (ADS)

    Larin, A. B.; Larin, B. M.

    2016-05-01

    The increased requirements to the quality of the water heat conductor for working superhigh (SHP) and supercritical (SCP) pressure power plants and promising units, including combined-cycle gas turbine (CCGT) units and power plants with ultrasupercritical parameters (USCPs), can largely be satisfied through specific electric conductivity and pH measurements for cooled heat conductor samples combined with calculations of ionic equilibria and indirect measurements of several specified and diagnostic parameters. The possibility of calculating the ammonia and chloride concentrations and the total concentration of hardness and sodium cations in the feed water of drum-type boilers and the phosphate and salt contents in boiler water was demonstrated. An equation for evaluating the content of potentially acid substances in the feed water of monotube boilers was suggested. The potential of the developed procedure for evaluating the state of waterchemistry conditions (WCCs) in power plants with CCGT units was shown.

  12. Eukaryotic diversity at pH extremes

    PubMed Central

    Amaral-Zettler, Linda A.

    2013-01-01

    Extremely acidic (pH < 3) and extremely alkaline (pH > 9) environments support a diversity of single-cell and to a lesser extent, multicellular eukaryotic life. This study compared alpha and beta diversity in eukaryotic communities from seven diverse aquatic environments with pH values ranging from 2 to 11 using massively-parallel pyrotag sequencing targeting the V9 hypervariable region of the 18S ribosomal RNA (rRNA) gene. A total of 946 operational taxonomic units (OTUs) were recovered at a 6% cut-off level (94% similarity) across the sampled environments. Hierarchical clustering of the samples segregated the communities into acidic and alkaline groups. Similarity percentage (SIMPER) analysis followed by indicator OTU analysis (IOA) and non-metric multidimensional scaling (NMDS) were used to determine which characteristic groups of eukaryotic taxa typify acidic or alkaline extremes and the extent to which pH explains eukaryotic community structure in these environments. Spain's Rio Tinto yielded the fewest observed OTUs while Nebraska Sandhills alkaline lakes yielded the most. Distinct OTUs, including metazoan OTUs, numerically dominated pH extreme sites. Indicator OTUs included the diatom Pinnularia and unidentified opisthokonts (Fungi and Filasterea) in the extremely acidic environments, and the ciliate Frontonia across the extremely alkaline sites. Inferred from NMDS, pH explained only a modest fraction of the variation across the datasets, indicating that other factors influence the underlying community structure in these environments. The findings from this study suggest that the ability for eukaryotes to adapt to pH extremes over a broad range of values may be rare, but further study of taxa that can broadly adapt across diverse acidic and alkaline environments, respectively present good models for understanding adaptation and should be targeted for future investigations. PMID:23335919

  13. Influence of acid and alkaline sources on optical, structural and photovoltaic properties of CdSe nanoparticles precipitated from aqueous solution

    NASA Astrophysics Data System (ADS)

    Coria-Monroy, C. Selene; Sotelo-Lerma, Mérida; Hu, Hailin

    2016-06-01

    CdSe is a widely researched material for photovoltaic applications. One of the most important parameters of the synthesis is the pH value, since it determines the kinetics and the mechanism of the reaction and in consequence, the optical and morphological properties of the products. We present the synthesis of CdSe in solution with strict control of pH and the comparison of ammonia and KOH as alkaline sources and diluted HCl as acid medium. CdSe formation was monitored with photoluminescence emission spectra (main peak in 490 nm, bandgap of CdSe nanoparticles). XRD patterns indicated that CdSe nanoparticles are mainly of cubic structure for ammonia and HCl, but the hexagonal planes appear with KOH. Product yield decreases with pH and also decreases with KOH at constant pH value since ammonia has a double function, as complexing agent and alkaline source. Changes in morphology were observed in SEM images as well with the different alkaline source. The effect of alkaline sources on photovoltaic performance of hybrid organic solar cells with CdSe and poly(3-hexylthiophene) as active layers was clearly observed, indicating the importance of synthesis conditions on optoelectronic properties of promising semiconductor nanomaterials for solar cell applications.

  14. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.

    PubMed

    Yuan, Yong; Zhao, Bo; Zhou, Shungui; Zhong, Shengkui; Zhuang, Li

    2011-07-01

    This study investigates the effects of anodic pH on electricity generation in microbial fuel cells (MFCs) and the intrinsic reasons behind them. In a two-chamber MFC, the maximum power density is 1170 ± 58 mW m(-2) at pH 9.0, which is 29% and 89% higher than those working at pH 7.0 and 5.0, respectively. Electrochemical measurements reveal that pH affects the electron transfer kinetics of anodic biofilms. The apparent electron transfer rate constant (k(app)) and exchange current density (i(0)) are greater whereas the charge transfer resistance (R(ct)) is smaller at pH 9.0 than at other conditions. Scanning electron microscopy verifies that alkaline conditions benefit biofilm formation in MFCs. These results demonstrate that electrochemical interactions between bacteria and electrodes in MFCs are greatly enhanced under alkaline conditions, which can be one of the important reasons for the improved MFC output. PMID:21530241

  15. Hydrocarbon potential of an alkaline lake basin

    SciTech Connect

    Chen Jian Yu; Wang Gijun ); Ma Wanyi )

    1991-03-01

    The Biyan basin is an oil-rich intermountain basin in the central part of China. It is a half graben with a marginal normal fault in the south and a slope in the north. The thickest Eogene reaches 7 km in the center of the depression. This basin became a typical alkaline lake with specific sedimentary sequences composed of oil shale, trona, dolomite, and dark mudstone during Early Tertiary because of dry climate and peripheral source areas rich in Na-containing minerals. The source rock is characterized by abundant organic matter with a mean TOC of 2.5% and kerogen of good quality with H/C 1.4-1.7, and IH up to 800 mg/g. The study of biomarkers reveals a low Pr/Ph ratio and an abundant gammacerane and {minus}carotane, thus indicating an environment of high salinity and reduction. All geochemical data demonstrate multiple provinces of primary organic matter, of which halophilous prokaryotic organisms are likely contributors. Crude oil in the Biyan oil field contains high wax and low sulfur. The low-mature oil is discovered in dolomite beds. The high hydrocarbon potential of this basin is due to particularly favorable conditions for preservation and transformation of organic matter and high subsidence rates.

  16. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes.

    PubMed

    Amich, Jorge; Vicentefranqueira, Rocío; Leal, Fernando; Calera, José Antonio

    2010-03-01

    Aspergillus fumigatus has three zinc transporter-encoding genes whose expression is regulated by both pH and the environmental concentration of zinc. We have previously reported that the zrfA and zrfB genes of A. fumigatus are transcribed at higher levels and are required for fungal growth under acidic zinc-limiting conditions whereas they are dispensable for growth in neutral or alkaline zinc-limiting media. Here we report that the transporter of the zinc uptake system that functions in A. fumigatus growing in neutral or alkaline environments is encoded by zrfC. The transcription of zrfC occurs divergently with respect to the adjacent aspf2 gene, which encodes an immunodominant antigen secreted by A. fumigatus. The two genes-zrfC and aspf2-are required to different extents for fungal growth in alkaline and extreme zinc-limiting media. Indeed, these environmental conditions induce the simultaneous transcription of both genes mediated by the transcriptional regulators ZafA and PacC. ZafA upregulates the expression of zrfC and aspf2 under zinc-limiting conditions regardless of the ambient pH, whereas PacC represses the expression of these genes under acidic growth conditions. Interestingly, the mode of action of PacC for zrfC-aspf2 transcription contrasts with the more widely accepted model for PacC function, according to which under alkaline growth conditions PacC would activate the transcription of alkaline-expressed genes but would repress the transcription of acid-expressed genes. In sum, this report provides a good framework for investigating several important aspects of the biology of species of Aspergillus, including the repression of alkaline genes by PacC at acidic pH and the interrelationship that must exist between tissue pH, metal availability in the host tissue, and fungal virulence. PMID:20038606

  17. pH Optrode Instrumentation

    NASA Technical Reports Server (NTRS)

    Tabacco, Mary Beth; Zhou, Quan

    1995-01-01

    pH-sensitive chromophoric reagents immobilized in porous optical fibers. Optoelectronic instrumentation system measures acidity or alkalinity of aqueous nutrient solution. Includes one or more optrodes, which are optical-fiber chemical sensors, in sense, analogous to electrodes but not subject to some of spurious effects distorting readings taken by pH electrodes. Concept of optrodes also described in "Ethylene-Vapor Optrodes" (KSC-11579). pH optrode sensor head, with lead-in and lead-out optical fibers, convenient for monitoring solutions located away from supporting electronic equipment.

  18. The Martian ocean: First acid, then alkaline

    NASA Technical Reports Server (NTRS)

    Schaefer, M. W.

    1992-01-01

    In Mars' distant past, carbon dioxide and water may have been plentiful. Values of total outgassed CO2 from several to about 10 bar are consistent with present knowledge, and this amount of CO2 implies an amount of water outgassed equal to an equivalent depth of 500 to 1000 m. It is quite reasonable, therefore, to envision an early Mars in which there was a body or bodies of liquid water, perhaps in the northern plains, and a dense carbon dioxide atmosphere. Under such conditions, the pH of the water will be low, due to the dissolution of carbon dioxide in the water to form carbonic acid. This acidic water is capable of weathering the available rock quite intensely, particularly because this rock is likely to be heavily fractured (from meteorite bombardment) or even consist of fine particles (such as pyroclastic deposits). As time goes on, however, the carbon dioxide atmosphere will rapidly pass through the ocean to form carbonate deposits. As the density of the atmosphere decreases, so will the flux of carbonic acid into the ocean. Without this input of carbonic acid, the effect of the dissolved weathering products will be to increase the pH of the water. The ocean will then become alkaline. To study this process, I have developed a geochemical cycle model for the atmosphere-hydrosphere-regolith system of Mars. The treatment of geochemical cycles as complex kinetic chemical reactions has been undertaken for terrestrial systems in recent years with much success. This method is capable of elegantly handling the interactions between the simultaneous chemical reactions needed to understand such a system.

  19. Photo-Fenton degradation of the herbicide 2,4-D in aqueous medium at pH conditions close to neutrality.

    PubMed

    Conte, Leandro O; Schenone, Agustina V; Alfano, Orlando M

    2016-04-01

    A theoretical and experimental study of the photo-Fenton degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in water is presented. A kinetic model derived from a reaction sequence is proposed using the ferrioxalate complex as iron source for conditions of pH = 5. The kinetic model was employed to predict the concentrations of 2,4-D, 2,4-dichlorophenol (2,4-DCP), hydrogen peroxide (HP) and oxalate (Ox) in a flat plate laboratory reactor irradiated with a solar simulator. Two types of incident irradiation levels were tested by different combinations of attenuation filters. The effects of the oxalate/Fe(+3) molar ratio (Ox/Fe), the reaction temperature (T) and the 2,4-D/HP molar ratio (R) on the photo-Fenton process were also investigated. For low radiation level and operating conditions of R = 50 and T = 50 °C, a 2,4-D conversion of 95.6% was obtained after 180 min. Moreover, the 2,4-D conversion was almost 100% in only 120 min when the system was operated under the same operating conditions and high radiation level. From the proposed model and the experimental data, the corresponding kinetic parameters were estimated applying a nonlinear regression method. A good agreement between the kinetic model and experimental data, for a wide range of simulated solar operating conditions, was observed. For 2,4-D, 2,4-DCP, HP and Ox concentrations, the calculated RMSE were 1.21 × 10(-2), 5.45 × 10(-3), 2.86 × 10(-1) and 2.65 × 10(-2) mM, respectively. PMID:26800432

  20. Transpassive electrodissolution of depleted uranium in alkaline electrolytes

    SciTech Connect

    Weisbrod, K.R.; Schake, A.R.; Morgan, A.N.; Purdy, G.M.; Martinez, H.E.; Nelson, T.O.

    1998-03-01

    To aid in removal of oralloy from the nuclear weapons stockpile, scientists at the Los Alamos National Laboratory Plutonium Facility are decontaminating oralloy parts by electrodissolution in neutral to alkaline electrolytes composed of sodium nitrate and sodium sulfate. To improve the process, electrodissolution experiments were performed with depleted uranium to understand the effects of various operating parameters. Sufficient precipitate was also produced to evaluate the feasibility of using ultrafiltration to separate the uranium oxide precipitates from the electrolyte before it enters the decontamination fixture. In preparation for the experiments, a potential-pH diagram for uranium was constructed from thermodynamic data for fully hydrated species. Electrodissolution in unstirred solutions showed that uranium dissolution forms two layers, an acidic bottom layer rich in uranium and an alkaline upper layer. Under stirred conditions results are consistent with the formation of a yellow precipitate of composition UO{sub 3}{center_dot}2H{sub 2}O, a six electron process. Amperometric experiments showed that current efficiency remained near 100% over a wide range of electrolytes, electrolyte concentrations, pH, and stirring conditions.

  1. Effects of Powder Attributes and Laser Powder Bed Fusion (L-PBF) Process Conditions on the Densification and Mechanical Properties of 17-4 PH Stainless Steel

    NASA Astrophysics Data System (ADS)

    Irrinki, Harish; Dexter, Michael; Barmore, Brenton; Enneti, Ravi; Pasebani, Somayeh; Badwe, Sunil; Stitzel, Jason; Malhotra, Rajiv; Atre, Sundar V.

    2016-03-01

    The effects of powders attributes (shape and size distribution) and critical processing conditions (energy density) on the densification and mechanical properties of laser powder bed fusion (L-PBF) 17-4 PH stainless steel were studied using four types of powders. The % theoretical density, ultimate tensile strength and hardness of both water- and gas-atomized powders increased with increased energy density. Gas-atomized powders showed superior densification and mechanical properties when processed at low energy densities. However, the % theoretical density and mechanical properties of water-atomized powders were comparable to gas-atomized powders when sintered at a high energy density of 104 J/mm3. An important result of this study was that, even at high % theoretical density (97% ± 1%), the properties of as-printed parts could vary over a relatively large range (UTS: 500-1100 MPa; hardness: 25-39 HRC; elongation: 10-25%) depending on powder characteristics and process conditions. The results also demonstrate the feasibility of using relatively inexpensive water-atomized powders as starting raw material instead of the typically used gas-atomized powders to fabricate parts using L-PBF techniques by sintering at high energy densities.

  2. The rare-metal ore potential of the Proterozoic alkaline ultramafic massifs from eastern part of the Baltic Shield in the Kola alkaline province.

    NASA Astrophysics Data System (ADS)

    Sorokhtina, Natalia; Kogarko, Lia

    2014-05-01

    The Kola Alkaline Province consists of intrusions of two main stages of the intraplate alkaline magmatism. The early stage of igneous activity occurred in Proterozoic 1.9 billion years ago, the next in Paleozoic at 380 million years. The Proterozoic alkaline magmatism produced Gremyakha-Vyrmes and Elet'ozero large alkaline-ultrabasic massifs, Tiksheozero carbonatite massif and numerous small syenite complexes. Paleozoic magmatism on Baltic Shield exhibited more widely, than Proterozoic. The world largest Khibiny and Lovozero alkaline intrusions, numerous alkaline-ultrabasic massifs with carbonanites, alkaline dike swarms and diatremes were formed. It is well known that carbonatites of Paleozoic alkaline-ultrabasic massifs contain large-scale deposits of rare-metal ores (Afanasiev et al., 1998). The metasomatic rocks on foidolites and carbonatites of Gremyakha-Vyrmes are final products of differentiation of Proterozoic alkaline-ultrabasic magma enriched in incompatible elements, including Nb and Zr similar to Paleozoic carbonatites. The massif Gremyakha-Vyrmes is one of the largest titanomagnetite-ilmenite deposits in Russia associated with ultrabasites. Our investigation showed that albite-microcline and aegirine-albite metasomatites formed rich rare-metal ores consisting of 3.2 wt. % Nb2O5 and 0.7 ZrO2. Zircon and pyrochlore-group minerals represent the main minerals of rare-metal ores. The following evolutionary sequences of pyrochlore group minerals has been observed: betafite or U pyrochlore - Na-Ca pyrochlore - Ba-Sr pyrochlore - "silicified" pyrochlore - Fe-Nb, Al-Nb silicates. Such evolution from primary Nb oxides to secondary silicates under low temperature hydrothermal conditions is similar to the evolution of rare metal phases in Paleozoic alkaline massifs analogous to Lovozero syenites and in carbonatites. The rare metal minerals of Gremyakha-Vyrmes crystallized in high alkaline hydrothermal environment at increased activity of Nb, Ta, Zr, U, Th and at

  3. DNA-based determination of microbial biomass suitable for frozen and alkaline soil samples

    NASA Astrophysics Data System (ADS)

    Semenov, Mikhail; Blagodatskaya, Evgeniya; Kogut, Boris; Kuzyakov, Yakov

    2015-04-01

    Microbial biomass is a sensitive indicator of changes due to soil management, long before other basic soil measures such as Corg or Ntot. Improvement of methods for determination of microbial biomass still remains relevant, and these methods should be correctly applicable for the soil samples being in various state. This study was designed to demonstrate the applicability of DNA-based determination of microbial biomass under conditions when the common basic approaches, namely chloroform fumigation-extraction (CFE) and substrate-induced respiration (SIR), are restricted by certain soil properties, experimental designs or research needs, e.g. in frozen, alkaline or carbonaceous soils. We compared microbial biomass determined by CFE, SIR and by DNA approaches in the range of neutral and slightly alkaline Chernozem and alkaline Calcisol of semi-arid climate. The samples of natural and agricultural ecosystems were taken throughout the soil profile from long-term static field experiments in the European part of Russia. Extraction and subsequent quantification of dsDNA revealed a strong agreement with SIR and CFE when analyzing the microbial biomass content in soils with pH below 8. The conversion factors (FDNA) from dsDNA to SIR-Cmic (5.10) and CFE-Cmic (4.41) were obtained by testing a range of the soil samples down to 1.5 m depth and indicated a good reproducibility of DNA-based estimations. In alkaline soils (pH > 8), CO2 retention due to alkaline pH and exchange with carbonates resulted in a strong underestimation of soil microbial biomass by SIR or even in the absence of any CO2 emission, especially at low absolute values of microbial biomass in subsoil. Correction of CO2 efflux by theoretical retention pH-dependent factors caused overestimation of SIR-biomass. In alkaline conditions, DNA extraction proved to be a reliable alternative for microbial biomass determination. Moreover, the DNA-based approach can serve as an excellent alternative enabling correct

  4. Decolorization of alkaline TNT hydrolysis effluents using UV/H(2)O(2).

    PubMed

    Hwang, Sangchul; Bouwer, Edward J; Larson, Steven L; Davis, Jeffrey L

    2004-04-30

    Effects of H(2)O(2) dosage (0, 10, 50, 100 and 300 mg/l), reaction pH (11.9, 6.5 and 2.5) and initial color intensity (85, 80 and 60 color unit) on decolorization of alkaline 2,4,6-trinitrotoluene (TNT) hydrolysis effluents were investigated at a fixed UV strength (40 W/m(2)). Results indicated that UV/H(2)O(2) oxidation could efficiently achieve decolorization and further mineralization. Pseudo first-order decolorization rate constants, k, ranged between 2.9 and 5.4 h(-1) with higher values for lower H(2)O(2) dosage (i.e., 10 mg/l H(2)O(2)) when the decolorization occurred at the reaction pH of 11.9, whereas a faster decolorization was achieved with increase in H(2)O(2) dosage at both pH 6.5 and 2.5, resulting in the values of k as fast as 15.4 and 26.6 h(-1) with 300 mg/l H(2)O(2) at pH 6.5 and 2.5, respectively. Difference in decolorization rates was attributed to the reaction pH rather than to the initial color intensity, resulting from the scavenging of hydroxyl radical by carbonate ion. About 40% of spontaneous mineralization was achieved with addition of 10 mg/l H(2)O(2) at pH 6.5. Efficient decolorization and extension of H(2)O(2) longevity were observed at pH 6.5 conditions. It is recommended that the colored effluents from alkaline TNT hydrolysis be neutralized prior to a decolorization step. PMID:15081163

  5. Coupling the Alkaline-Surfactant-Polymer Technology and The Gelation Technology to Maximize Oil Production

    SciTech Connect

    Malcolm Pitts; Jie Qi; Dan Wilson; David Stewart; Bill Jones

    2005-10-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency for those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding from swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or those with thief zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. A prior fluid-fluid report discussed interaction of different gel chemical compositions and alkaline-surfactant-polymer solutions. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses. Aluminum-polyacrylamide, flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9. Chromium acetate-polyacrylamide flowing and rigid flowing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid flowing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent

  6. Acid Mine Drainage Passive Remediation: Potential Use of Alkaline Clay, Optimal Mixing Ratio and Long Term Impacts

    NASA Astrophysics Data System (ADS)

    Plaza, F.; Liang, X.; Wen, Y.; Perone, H.

    2015-12-01

    Acid mine drainage (AMD) is one of the most adverse environmental problems of the mine industry. Surface water and ground water affected by this pollution are characterized by their acidity and the high content of sulfates and heavy metals. In this study, alkaline clay, an industrial waste with a high pH, which is utilized in the alumina refining process, was used as the remediation material to inhibit pyrite oxidation. Through a series of batch and column experiments, complemented with field measurements and geochemical modeling, three important issues associated with this passive and auto sustainable acid mine drainage remediation method were investigated: 1) the potential use of alkaline clay as an AMD remediation material, 2) the adequate alkaline clay/coal refuse mixing ratio (AC/CR) to ensure pH values near to neutral conditions, and, 3) the prediction of long term impacts, in terms of the trends of the main parameters involved in this process such as pH, concentrations of sulfate, iron and other dissolved contaminants. Both field measurements and the samples used for the experiments came from a coal waste site located in Mather, Pennsylvania. Alkaline clay proved to be an effective remediation material for AMD. It was found that 10% AC/CR is an adequate mixing ratio (i.e. the upper limit), which has been also indicated by field measurements. The concentrations of some contaminants such as iron, manganese or sulfate are significantly reduced with the remediation approach, compared to those representative concentrations found in mine tailings. Moreover, results suggest a very reliable long-term stability of the remediation (i.e. neutral pH conditions are maintained), thus enhancing the generation of iron precipitates that could produce pyrite grain coating and hardpan (i.e. cemented layer) on the surface. These processes also made the amended layer less porous, thus increasing water retention and hindering oxygen diffusion.

  7. Interacting effects of pH acclimation, and pH and heavy metals on acute and chronic toxicity to Ceriodaphnia dubia (Cladocera)

    SciTech Connect

    Belanger, S.E.; Cherry, D.S. )

    1990-05-01

    Understanding the factors that modify the sensitivity of the zooplankton Ceriodaphnia dubia to toxicants is important to the interpretation of chronic toxicity data generated for granting industrial permits. Early reports of high sensitivity of Ceriodaphnia to brief pH excursions led toxicologists to question the use of C. dubia as a test organism. Acute and chronic toxicity of pH and heavy metals, pH acclimation to acidic and alkaline conditions and the role of pH in modifying heavy metal (copper and zinc) toxicities were investigated. Ceriodaphnia dubia acclimated near neutral pH had acute (48-hr) lethal concentrations of 4.6 and 10.3 SU. Reproduction and mortality were not impaired between pH 6.14-8.99 regardless of pH acclimation history. Reproduction was significantly impaired beyond these extremes. Acute exposures to both heavy metals at pH 6, 8 and 9 and in water hardness of 180, 110 and 100 mg/L showed C dubia was consistently most sensitive in low pH and low hardness waters. Reproduction and mortality were not so affected by pH in chronic exposures. Similar concentrations of metals at all pH levels resulted in equivalent reductions in offspring per female. The results strongly suggest that effluent guidelines for pH at 6-9 are sound, and that toxicant activity in chronic time frames is directed primarily by concentration and water hardness, not by pH. 34 refs., 2 figs., 8 tabs.

  8. Fast and sensitive collagen quantification by alkaline hydrolysis/hydroxyproline assay.

    PubMed

    da Silva, Cassia Maria Lins; Spinelli, Eliani; Rodrigues, Silvana Vianna

    2015-04-15

    A preparative protein alkaline hydrolysis procedure, as part of a spectrophotometric collagen quantification method, is presented. The procedure is suitable for small amounts of fresh solid or liquid samples. Various aspects of the procedure, such as the NaOH concentration, time needed to hydrolyse different collagen contents, buffer strength of the reagent solution, pH control of the hydrolysate and spectrophotometric conditions, were evaluated. Compared to other procedures that use alkaline hydrolysis, the sensitivity of this procedure was increased by a factor of 5. Compared to the conventionally used Association of Official Analytical Chemists (AOAC) acid hydrolysis method, the reaction time was reduced from 16 h to 40 min and the amount of sample from 4 g to 3-20 mg, producing equivalent results when applied to porcine liver and sausage samples. PMID:25466067

  9. Study of total dry matter and protein extraction from canola meal as affected by the pH, salt addition and use of zeta-potential/turbidimetry analysis to optimize the extraction conditions.

    PubMed

    Gerzhova, Alina; Mondor, Martin; Benali, Marzouk; Aider, Mohammed

    2016-06-15

    Total dry matter and proteins were differentially and preferentially extracted from canola meal (CM) under different conditions. The effect of the extraction medium pH, CM concentration and salt concentrations were found to have different influences on the extractability of total dry matter and proteins from CM. The pH of the extracting medium had the most significant effect. The maximal total dry matter (42.8±1.18%) extractability was obtained with 5% CM at pH 12 without salt addition, whereas the maximal for total protein (58.12±1.47%) was obtained with 15% CM under the same conditions. The minimal extractability for the dry matter (26.63±0.67%) was obtained with 5% CM at pH 10 without salt added and the minimal protein extractability was observed in a 10% CM at pH 10, in 0.01 NaCl. Turbidity and ζ-potential measurements indicated that pH 5 was the optimum condition for the highest protein extraction yield. SDS-PAGE analysis showed that salt addition contributes to higher solubility of canola proteins specifically cruciferin fraction, although it reduces napin extraction. PMID:26868572

  10. Engineering of a glycosidase Family 7 cellobiohydrolase to more alkaline pH optimum: the pH behaviour of Trichoderma reesei Cel7A and its E223S/ A224H/L225V/T226A/D262G mutant.

    PubMed Central

    Becker, D; Braet, C; Brumer , H; Claeyssens, M; Divne, C; Fagerström, B R; Harris, M; Jones, T A; Kleywegt, G J; Koivula, A; Mahdi, S; Piens, K; Sinnott, M L; Ståhlberg, J; Teeri, T T; Underwood, M; Wohlfahrt, G

    2001-01-01

    The crystal structures of Family 7 glycohydrolases suggest that a histidine residue near the acid/base catalyst could account for the higher pH optimum of the Humicola insolens endoglucanase Cel7B, than the corresponding Trichoderma reesei enzymes. Modelling studies indicated that introduction of histidine at the homologous position in T. reesei Cel7A (Ala(224)) required additional changes to accommodate the bulkier histidine side chain. X-ray crystallography of the catalytic domain of the E223S/A224H/L225V/T226A/D262G mutant reveals that major differences from the wild-type are confined to the mutations themselves. The introduced histidine residue is in plane with its counterpart in H. insolens Cel7B, but is 1.0 A (=0.1 nm) closer to the acid/base Glu(217) residue, with a 3.1 A contact between N(epsilon2) and O(epsilon1). The pH variation of k(cat)/K(m) for 3,4-dinitrophenyl lactoside hydrolysis was accurately bell-shaped for both wild-type and mutant, with pK(1) shifting from 2.22+/-0.03 in the wild-type to 3.19+/-0.03 in the mutant, and pK(2) shifting from 5.99+/-0.02 to 6.78+/-0.02. With this poor substrate, the ionizations probably represent those of the free enzyme. The relative k(cat) for 2-chloro-4-nitrophenyl lactoside showed similar behaviour. The shift in the mutant pH optimum was associated with lower k(cat)/K(m) values for both lactosides and cellobiosides, and a marginally lower stability. However, k(cat) values for cellobiosides are higher for the mutant. This we attribute to reduced non-productive binding in the +1 and +2 subsites; inhibition by cellobiose is certainly relieved in the mutant. The weaker binding of cellobiose is due to the loss of two water-mediated hydrogen bonds. PMID:11336632

  11. Evaluation of the alkaline electrolysis of zinc

    SciTech Connect

    Meisenhelder, J.H.; Brown, A.P.; Loutfy, R.O.; Yao, N.P.

    1981-05-01

    The alkaline leach and electrolysis process for zinc production is compared to the conventional acid-sulfate process in terms of both energy saving and technical merit. In addition, the potential for industrial application of the alkaline process is discussed on the basis of present market conditions, possible future zinc market scenarios, and the probability of increased secondary zinc recovery. In primary zinc production, the energy-saving potential for the alkaline process was estimated to be greater than 10%, even when significantly larger electrolysis current densities than those required for the sulfate process are used. The principal technical advantages of the alkaline process are that it can handle low-grade, high-iron-content or oxidized ores (like most of those found in the US) in a more cost- and energy-efficient manner than can the sulfate process. Additionally, in the electrowinning operation, the alkaline process should be technically superior because a dendritic or sponge deposit is formed that is amenable to automated collection without interruption of the electrolysis. Also, use of the higher current densities would result in significant capital cost reductions. Alkaline-based electrolytic recovery processes were considered for the recycling of zinc from smelter baghouse dusts and from the potential source of nickel/zinc electric-vehicle batteries. In all comparisons, an alkaline process was shown to be technically superior and, particularly for the baghouse dusts, energetically and economically superior to alternatively proposed recovery methods based on sulfate electrolysis. It is concluded that the alkaline zinc method is an important alternative technology to the conventional acid zinc process. (WHK)

  12. A study of X100 pipeline steel passivation in mildly alkaline bicarbonate solutions using electrochemical impedance spectroscopy under potentiodynamic conditions and Mott-Schottky

    NASA Astrophysics Data System (ADS)

    Gadala, Ibrahim M.; Alfantazi, Akram

    2015-12-01

    The key steps involved in X100 pipeline steel passivation in bicarbonate-based simulated soil solutions from the pre-passive to transpassive potential regions have been analyzed here using a step-wise anodizing-electrochemical impedance spectroscopy (EIS) routine. Pre-passive steps involve parallel dissolution-adsorption in early stages followed by clear diffusion-adsorption control shortly before iron hydroxide formation. Aggressive NS4 chlorides/sulfate promote steel dissolution whilst inhibiting diffusion in pre-passive steps. Diffusive and adsorptive effects remain during iron hydroxide formation, but withdraw shortly thereafter during its removal and the development of the stable iron carbonate passive layer. Passive layer protectiveness is evaluated using EIS fitting, current density analysis, and correlations with semiconductive parameters, consistently revealing improved robustness in colder, bicarbonate-rich, chloride/sulfate-free conditions. Ferrous oxide formation at higher potentials results in markedly lower impedances with disordered behavior, and the involvement of the iron(III) valence state is observed in Mott-Schottky tests exclusively for 75 °C conditions.

  13. Formation of filamentous aerobic granules: role of pH and mechanism.

    PubMed

    Wan, Chunli; Yang, Xue; Lee, Duu-Jong; Zhang, Qinlan; Li, Jieni; Liu, Xiang

    2014-10-01

    Filamentous overgrowth in aerobic granular sludge processes can cause reactor failure. In this work, aerobic granules were cultivated in five identical sequencing batch reactors with acetate or glucose as the carbon source with various values of influent pH (4.5-8). Microscopic observations revealed that acidic pH, rather than the species of carbon source, epistatically controls the aerobic granules with filamentous structure. An acidic pH shifted the structure of the microbial community in the granules, such that the fungus Geotrichum fragrans was the predominant filamentous microorganism therein. The acidic pH reduced the intracellular cyclic diguanylate (c-di-GMP) content for increasing the motility of the bacteria to washout and increase the growth rate of G. fragrans on glucose or acetate, together causing overgrowth of the fungus. Maintaining the suspension under alkaline condition is proposed as an effective way to suppress filamentous overgrowth and maintain granule stability. PMID:24928656

  14. Effect of pH on phosphorus, copper, and zinc elution from swine wastewater activated sludge.

    PubMed

    Waki, Miyoko; Yasuda, Tomoko; Fukumoto, Yasuyuki; Suzuki, Kazuyoshi

    2014-01-01

    With the goal of reducing the amounts of phosphorus (P), copper (Cu), and zinc (Zn) discharged from swine wastewater activated sludge treatment facilities, we studied the elution of these elements from activated sludge at various pH values. Sludge samples with neutral pH collected from three farms were incubated at pH values ranging from 3 to 10. The soluble concentrations of these elements changed dramatically with pH and were highest at pH 3. We assumed that P present in the sludge under neutral and alkaline conditions was in insoluble form bound up with magnesium (Mg) and calcium (Ca), because Ca and Mg also eluted from the sludge at low pH. To clarify forms of Zn and Cu in the sludge, we performed a sequential extraction analysis. Zinc in adsorbed, organically bound, and sulfide fractions made up a large proportion of the total Zn. Copper in organically bound, carbonate, and sulfide fractions made up a large proportion of the total Cu. The soluble P concentrations were lowest at pH 9 or 10 (11-36 mg/L), the soluble Zn concentrations were lowest at pH 8 or 9 (0.07-0.15 mg/L), and the soluble Cu concentrations were lowest at pH 6-9 (0.2 mg/L, the detection limit). PMID:25116486

  15. ALKALINITY, PH, AND COPPER CORROSION BY-PRODUCT RELEASE

    EPA Science Inventory

    Contrary to expectations, higher bicarbonate concentrations exacerbate copper corrosion rates and by-product release. In fact, as illustrated by monitoring experiences of large utilities and by laboratory data, the concentration of copper corrosion by-products in drinking water i...

  16. Alkaline solution absorption of carbon dioxide method and apparatus

    DOEpatents

    Hobbs, D.T.

    1991-01-01

    Disclosed is a method for measuring the concentration of hydroxides (or pH) in alkaline solutions, using the tendency of hydroxides to adsorb CO{sub 2}. The method comprises passing CO{sub 2} over the surface of an alkaline solution in a remote tank before and after measurements of the CO{sub 2} concentration. Comparison of the measurements yields the adsorption fraction from which the hydroxide concentration can be calculated using a correlation of hydroxide or pH to adsorption fraction. A schematic is given of a process system according to a preferred embodiment of the invention. 2 figs.

  17. Alkalinity of neutrophil phagocytic vacuoles is modulated by HVCN1 and has consequences for myeloperoxidase activity.

    PubMed

    Levine, Adam P; Duchen, Michael R; de Villiers, Simon; Rich, Peter R; Segal, Anthony W

    2015-01-01

    The NADPH oxidase of neutrophils, essential for innate immunity, passes electrons across the phagocytic membrane to form superoxide in the phagocytic vacuole. Activity of the oxidase requires that charge movements across the vacuolar membrane are balanced. Using the pH indicator SNARF, we measured changes in pH in the phagocytic vacuole and cytosol of neutrophils. In human cells, the vacuolar pH rose to ~9, and the cytosol acidified slightly. By contrast, in Hvcn1 knock out mouse neutrophils, the vacuolar pH rose above 11, vacuoles swelled, and the cytosol acidified excessively, demonstrating that ordinarily this channel plays an important role in charge compensation. Proton extrusion was not diminished in Hvcn1-/- mouse neutrophils arguing against its role in maintaining pH homeostasis across the plasma membrane. Conditions in the vacuole are optimal for bacterial killing by the neutral proteases, cathepsin G and elastase, and not by myeloperoxidase, activity of which was unphysiologically low at alkaline pH. PMID:25885273

  18. COUPLING THE ALKALINE-SURFACTANT-POLYMER TECHNOLOGY AND THE GELATION TECHNOLOGY TO MAXIMIZE OIL PRODUCTION

    SciTech Connect

    Malcolm Pitts; Jie Qui; Dan Wilson; Phil Dowling

    2004-05-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or more efficient areal sweep efficiency those with high permeability contrast ''thief zones''. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more oil than waterflooding in the swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to the naturally fractured reservoirs or those with thief zones because much of the injected solution bypasses the target pore space containing oil. The objective of this work is to investigate whether combining these two technologies could broaden the applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction with different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium--polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values of 9.2 to 12.9.

  19. Effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin suggest problems with common applications of these compounds in biological systems.

    PubMed Central

    Erdahl, W L; Chapman, C J; Taylor, R W; Pfeiffer, D R

    1995-01-01

    Phospholipid vesicles loaded with Quin-2 and 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF) have been used to investigate the effects of pH conditions on Ca2+ transport catalyzed by ionophores A23187, 4-BrA23187, and ionomycin. At an external pH of 7.0, a delta pH (inside basic) of 0.4-0.6 U decreases the rate of Ca2+ transport into the vesicles by severalfold under some conditions. The apparent extent of transport is also decreased. In contrast, raising the pH by 0.4-0.6 U in the absence of a delta pH increases both of these parameters, although by smaller factors. The relatively large effects of a delta pH on the transport properties of Ca2+ ionophores seem to reflect a partial equilibration of the transmembrane ionophore distribution with the H+ concentration gradient across the vesicle membrane. This unequal distribution of ionophore can cause a very slow or incomplete ionophore-dependent equilibration of delta pCa with delta pH. A second factor of less certain origin retards full equilibration of delta pCa when delta pH = 0. These findings call into question several ionophore-based methods that are used to investigate the regulatory activities of Ca2+ and other divalent cations in biological systems. Notable among these are the null-point titration method for determining the concentration of free cations within cells and the use of ionophores plus external cation buffers to calibrate intracellular cation indicators. The present findings also indicate that the transport mode of Ca2+ ionophores is more strictly electroneutral than was thought, based upon previous studies. PMID:8599641

  20. The synergistic effects of dissolved oxygen and pH on N2O production in biological domestic wastewater treatment under nitrifying conditions.

    PubMed

    Li, Pengzhang; Wang, Shuying; Peng, Yongzhen; Liu, Yue; He, Janzhong

    2015-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas, which is produced during nitrifying and denitrifying processes. Some factors and mechanisms affecting N2O emission have been reported in previous literature, but wastewater biological nitrification is accompanied by a dynamic process of dissolved oxygen (DO) consumption and pH reduction, it is more meaningful to study the synergistic effects between DO and pH on N2O production. In this study, the synergistic effects between DO and pH on N2O production were investigated with real domestic wastewater. The results showed that high DO levels and a high pH could improve the oxidation ratio of NH4+-N and the production ratio of NO2--N, while effectively reducing the accumulation ratio of N2O. The NH4+-N was a prerequisite for nitrifier denitrification; when NH4+-N was oxidized completely, there would be no N2O production and an even higher concentration of NO2- The pH factor is shown to directly affect N2O emission, although free ammonia and free nitrous acid which changed with pH had no correlation with N2O emission. There were two reasons: (1) pH can influence the flow direction of electrons afforded by NH2OH oxidation; at high pH, electrons were mainly used for combining H+ and O2 (O2+4H++4e-=2H2O), the accumulation of NO2- cannot be a result of denitrification, and a higher DO can get more electrons to prefer NO2- and (2) NH4+ was the prerequisite for NH2OH oxidation, since NH2OH oxidation process was the way to provide electrons for nitrifier denitrification. PMID:25619120

  1. Adaptive responses of Bacillus cereus ATCC14579 cells upon exposure to acid conditions involve ATPase activity to maintain their internal pH

    PubMed Central

    Senouci-Rezkallah, Khadidja; Jobin, Michel P; Schmitt, Philippe

    2015-01-01

    This study examined the involvement of ATPase activity in the acid tolerance response (ATR) of Bacillus cereus ATCC14579 strain. In the current work, B. cereus cells were grown in anaerobic chemostat culture at external pH (pHe) 7.0 or 5.5 and at a growth rate of 0.2 h−1. Population reduction and internal pH (pHi) after acid shock at pH 4.0 was examined either with or without ATPase inhibitor N,N’-dicyclohexylcarbodiimide (DCCD) and ionophores valinomycin and nigericin. Population reduction after acid shock at pH 4.0 was strongly limited in cells grown at pH 5.5 (acid-adapted cells) compared with cells grown at pH 7.0 (unadapted cells), indicating that B. cereus cells grown at low pHe were able to induce a significant ATR and Exercise-induced increase in ATPase activity. However, DCCD and ionophores had a negative effect on the ability of B. cereus cells to survive and maintain their pHi during acid shock. When acid shock was achieved after DCCD treatment, pHi was markedly dropped in unadapted and acid-adapted cells. The ATPase activity was also significantly inhibited by DCCD and ionophores in acid-adapted cells. Furthermore, transcriptional analysis revealed that atpB (ATP beta chain) transcripts was increased in acid-adapted cells compared to unadapted cells before and after acid shock. Our data demonstrate that B. cereus is able to induce an ATR during growth at low pH. These adaptations depend on the ATPase activity induction and pHi homeostasis. Our data demonstrate that the ATPase enzyme can be implicated in the cytoplasmic pH regulation and in acid tolerance of B. cereus acid-adapted cells. PMID:25740257

  2. Alkaline assisted thermal oil recovery: Kinetic and displacement studies

    SciTech Connect

    Saneie, S.; Yortsos, Y.C.

    1993-06-01

    This report deals with two major issues of chemical assisted flooding - the interaction of caustic, one of the proposed additives to steam flood, with the reservoir rock, and the displacement of oil by a chemical flood at elevated temperatures. A mathematical model simulating the kinetics of silica dissolution and hydroxyl ion consumption in a typical alkaline flooding environment is first developed. The model is based on the premise that dissolution occurs via hydrolysis of active sites through the formation of an intermediate complex, which is in equilibrium with the silicic acid in solution. Both static (batch) and dynamic (core flood) processes are simulated to examine the sensitivity of caustic consumption and silica dissolution to process parameters, and to determine rates of propagation of pH values. The model presented provides a quantitative description of the quartz-alkali interaction in terms of pH, salinity, ion exchange properties, temperature and contact time, which are of significant importance in the design of soluble silicate flooding processes. The modeling of an adiabatic hot waterflood assisted by the simultaneous injection of a chemical additive is next presented. The model is also applicable to the hot alkaline flooding under conditions of negligible adsorption of the generated anionic surfactant and of hydroxide adsorption being Langmuirian. The theory of generalized simple waves (coherence ) is used to develop solutions for the temperature, concentration, and oil saturation profiles, as well as the oil recovery curves. It is shown that, for Langmuir adsorption kinetics, the chemical resides in the heated region of the reservoir if its injection concentration is below a critical value, and in the unheated region if its concentration exceeds this critical value. Results for a chemical slug injection in a tertiary recovery process indicate recovery performance is maximized when chemical resides in the heated region of the reservior.

  3. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology.

    PubMed

    Dhakar, Kusum; Pandey, Anita

    2016-03-01

    Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance). PMID:26780356

  4. ANNUAL REPORT. ACTINIDE-ALUMINATE SPECIATION IN ALKALINE RADIOACTIVE WASTE

    EPA Science Inventory

    Highly alkaline radioactive waste tanks contain a number of transuranic species, in particular U, Np, Pu, and Am-the exact forms of which are currently unknown. Knowledge of actinide speciation under highly alkaline conditions is essential towards understanding and predicting the...

  5. Modeling CO2 degassing and pH in a stream-aquifer system

    USGS Publications Warehouse

    Choi, J.; Hulseapple, S.M.; Conklin, M.H.; Harvey, J.W.

    1998-01-01

    Pinal Creek, Arizona receives an inflow of ground water with high dissolved inorganic carbon (57-75 mg/l) and low pH (5.8-6.3). There is an observed increase of in-stream pH from approximately 6.0-7.8 over the 3 km downstream of the point of groundwater inflow. We hypothesized that CO2 gas-exchange was the most important factor causing the pH increase in this stream-aquifer system. An existing transport model, for coupled ground water-surface water systems (OTIS), was modified to include carbonate equilibria and CO2 degassing, used to simulate alkalinity, total dissolved inorganic carbon (C(T)), and pH in Pinal Creek. Because of the non-linear relation between pH and C(T), the modified transport model used the numerical iteration method to solve the non-linearity. The transport model parameters were determined by the injection of two tracers, bromide and propane. The resulting simulations of alkalinity, C(T) and pH reproduced, without fitting, the overall trends in downstream concentrations. A multi-parametric sensitivity analysis (MPSA) was used to identify the relative sensitivities of the predictions to six of the physical and chemical parameters used in the transport model. MPSA results implied that C(T) and pH in stream water were controlled by the mixing of ground water with stream water and CO2 degassing. The relative importance of these two processes varied spatially depending on the hydrologic conditions, such as stream flow velocity and whether a reach gained or lost stream water caused by the interaction with the ground water. The coupled transport model with CO2 degassing and generalized sensitivity analysis presented in this study can be applied to evaluate carbon transport and pH in other coupled stream-ground water systems.An existing transport model for coupled groundwater-surface water systems was modified to include carbonate equilibria and CO2 degassing. The modified model was used to simulate alkalinity, total dissolved inorganic carbon (CT) and

  6. A fungal pathogen secretes plant alkalinizing peptides to increase infection.

    PubMed

    Masachis, Sara; Segorbe, David; Turrà, David; Leon-Ruiz, Mercedes; Fürst, Ursula; El Ghalid, Mennat; Leonard, Guy; López-Berges, Manuel S; Richards, Thomas A; Felix, Georg; Di Pietro, Antonio

    2016-01-01

    Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue(1). Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)(2,3) to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity(4,5). Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response(6), displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity. PMID:27572834

  7. Laser direct write of planar alkaline microbatteries

    NASA Astrophysics Data System (ADS)

    Arnold, C. B.; Kim, H.; Piqué, A.

    We are developing a laser engineering approach to fabricate and optimize alkaline microbatteries in planar geometries. The laser direct-write technique enables multicapability for adding, removing and processing material and provides the ability to pattern complicated structures needed for fabricating complete microbattery assemblies. In this paper, we demonstrate the production of planar zinc-silver oxide alkaline cells under ambient conditions. The microbattery cells exhibit 1.55-V open-circuit potentials, as expected for the battery chemistry, and show a flat discharge behavior under constant-current loads. High capacities of over 450 μAhcm-2 are obtained for 5-mm2 microbatteries.

  8. pH dependence of the dissociation of multimeric hemoglobin probed by high hydrostatic pressure.

    PubMed

    Bispo, Jose A C; Santos, Jose L R; Landini, Gustavo F; Goncalves, Juliana M; Bonafe, Carlos F S

    2007-02-01

    We investigated the thermodynamic features of the classic alkaline dissociation of multimeric hemoglobin (3.1 MDa) from Glossoscolex paulistus (Annelidea) using high hydrostatic pressure. Light scattering measurements up to microscopic thermodynamic equilibrium indicated a high pH dependency of dissociation and association. Electron microscopy and gel filtration corroborated these findings. The volume change of dissociation decreased in absolute values from -48.0 mL/mol of subunit at pH 6.0 to -19.2 mL/mol at pH 9.0, suggesting a lack of protein interactions under alkaline conditions. Concomitantly, an increase in pH reduced the Gibbs free energy of dissociation from 37.7 to 27.5 kJ/mol of subunit. The stoichiometry of proton release calculated from the pressure-induced dissociation curves was +0.602 mol of H(+)/mol of subunit. These results provide a direct quantification of proton participation in stabilizing the aggregated state of the hemoglobin, and contribute to our understanding of protein-protein interactions and of the surrounding conditions that modulate the process of aggregation. PMID:17046147

  9. Reductive dechlorination of carbon tetrachloride using buffered alkaline ascorbic acid.

    PubMed

    Lin, Ya-Ting; Liang, Chenju

    2015-10-01

    Alkaline ascorbic acid (AA) was recently discovered as a novel in-situ chemical reduction (ISCR) reagent for remediating chlorinated solvents in the subsurface. For this ISCR process, the maintenance of an alkaline pH is essential. This study investigated the possibility of the reduction of carbon tetrachloride (CT) using alkaline AA solution buffered by phosphate and by NaOH. The results indicated that CT was reduced by AA, and chloroform (CF) was a major byproduct at a phosphate buffered pH of 12. However, CT was completely reduced by AA in 2M NaOH without CF formation. In the presence of iron/soil minerals, iron could be reduced by AA and Fe(2+) tends to precipitate on the mineral surface to accelerate CT degradation. A simultaneous transfer of hydrogenolysis and dichloroelimination would occur under phosphate buffered pH 12. This implies that a high alkaline environment is a crucial factor for maintaining the dominant pathway of two electron transfer from dianionic AA to dehydroascorbic acid, and to undergo dichloroelimination of CT. Moreover, threonic acid and oxalic acid were identified to be the major AA decomposition products in alkaline solutions. PMID:25912910

  10. Chemostat Culture of Escherichia coli K-12 Limited by the Activity of Alkaline Phosphatase

    PubMed Central

    King, Stagg L.; Francis, J. C.

    1975-01-01

    The growth-limiting reaction of a chemostat culture of Escherichia coli K-12 was the hydrolysis of β-glycerophosphate by alkaline phosphatase. The culture was buffered at pH 5.2 where alkaline phosphatase was unable to supply phosphate to the cell at a rate sufficient to sustain the maximum rate of growth. Alkaline phosphatase activity in this system is discussed in terms of the so-called Flip-Flop mechanism. PMID:240310

  11. Acidic pH promotes oligomerization and membrane insertion of the BclXL apoptotic repressor.

    PubMed

    Bhat, Vikas; Kurouski, Dmitry; Olenick, Max B; McDonald, Caleb B; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2012-12-01

    Solution pH is believed to serve as an intricate regulatory switch in the induction of apoptosis central to embryonic development and cellular homeostasis. Herein, using an array of biophysical techniques, we provide evidence that acidic pH promotes the assembly of BclXL apoptotic repressor into a megadalton oligomer with a plume-like appearance and harboring structural features characteristic of a molten globule. Strikingly, our data reveal that pH tightly modulates not only oligomerization but also ligand binding and membrane insertion of BclXL in a highly subtle manner. Thus, while oligomerization and the accompanying molten globular content of BclXL is least favorable at pH 6, both of these structural features become more pronounced under acidic and alkaline conditions. However, membrane insertion of BclXL appears to be predominantly favored under acidic conditions. In a remarkable contrast, while ligand binding to BclXL optimally occurs at pH 6, it is diminished by an order of magnitude at lower and higher pH. This reciprocal relationship between BclXL oligomerization and ligand binding lends new insights into how pH modulates functional versatility of a key apoptotic regulator and strongly argues that the molten globule may serve as an intermediate primed for membrane insertion in response to apoptotic cues. PMID:22960132

  12. Titanium corrosion in alkaline hydrogen peroxide environments

    NASA Astrophysics Data System (ADS)

    Been, Jantje

    1998-12-01

    The corrosion of Grade 2 titanium in alkaline hydrogen peroxide environments has been studied by weight loss corrosion tests, electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) measurements and potentiodynamic polarography. Calcium ions and wood pulp were investigated as corrosion inhibitors. In alkaline peroxide, the titanium corrosion rate increased with increasing pH, temperature, and hydrogen peroxide concentration. The corrosion controlling mechanism is thought to be the reaction of the oxide with the perhydroxyl ion. No evidence of thermodynamically stable calcium titanate was found in the surface film of test coupons exposed to calcium-inhibited alkaline peroxide solutions. Calcium inhibition is probably the result of low local alkali and peroxide concentrations at the metal surface produced by reaction of adsorbed calcium with hydrogen peroxide. It has been shown that the inhibiting effect of calcium is temporary, possibly through an effect of calcium on the chemical and/or physical stability of the surface oxide. Pulp is an effective and stable corrosion inhibitor. Raising the pulp concentration decreased the corrosion rate. The inhibiting effect of pulp may be related to the adsorption and interaction of the pulp fibers with H 2O2, thereby decreasing the peroxide concentration and rendering the solution less corrosive. The presence of both pulp and calcium led to higher corrosion rates than obtained by either one inhibitor alone. Replacement of hydrofluoric acid with alkaline peroxide for pickling of titanium was investigated. Titanium corrosion rates in alkaline peroxide exceeded those obtained in the conventional hydrofluoric acid bath. General corrosion was observed with extensive roughening of the surface giving a dull gray appearance. Preferred dissolution of certain crystallographic planes was investigated through the corrosion of a titanium single crystal. Whereas the overall effect on the corrosion rate was small

  13. Effects of acid/alkaline pretreatment and gamma-ray irradiation on extracellular polymeric substances from sewage sludge

    NASA Astrophysics Data System (ADS)

    Xie, Shuibo; Wu, Yuqi; Wang, Wentao; Wang, Jingsong; Luo, Zhiping; Li, Shiyou

    2014-04-01

    In order to investigate the mechanism of extracellular polymeric substances (EPS) influencing sludge characteristics, variations of extractable EPS from municipal sewage sludge by acid/alkaline pretreatment and gamma-ray irradiation were studied. The changes in constituents of EPS were analyzed by UV-vis spectra and SEM images. The effects of alkaline pretreatment and gamma-ray irradiation on the functional groups in EPS were investigated by Fourier transform infrared (FTIR) spectrometer. Results showed that the extractable EPS increased clearly with increasing irradiation dose from 0 to 15 kGy. UV-vis spectra indicated that a new absorption band from 240 nm to 300 nm existed in all irradiated samples, apart from acid condition. The results of FTIR spectroscopic analysis indicated that, irradiation influenced major functional groups in EPS, such as protein and polysaccharide, and these effects were clearer under alkaline condition. SEM images provided that after alkaline hydrolysis, gamma-ray irradiation was more effective in resulting in the sludge flocs and cells broken, compared with acid pretreatment (pH 2.50).

  14. Evaluation of the solid-phase extraction (SPE) cartridge method in combination with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) for the analysis of different VOCs in liquid matrices in varying pH conditions.

    PubMed

    Pandey, Sudhir Kumar; Kim, Ki-Hyun

    2012-08-01

    In this study, the solid-phase extraction (SPE) method combined with thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method is evaluated for the analysis of liquid-phase volatile organic compounds (LVOCs). Calibration experiments were performed on a number of polar and nonpolar LVOCs (including aromatic compounds, ester, ketones, and alcohol) as a function of solution pH. If the relative sensitivity of the SPE-TD-GC-MS method is compared between different VOCs across a wide range of pH (1, 4, 7, 10, and 13), optimum sensitivities for most VOCs are derived at the neutral pH. However, there were some exceptions to the general trend with the maximum sensitivity occurring either at a moderately basic pH (methyl isobutyl ketone and butyl acetate) or extremely acidic conditions (isobutyl alcohol). It was also noticed that the relative ordering of sensitivity was changed, as the pH conditions of the solution vary. The use of internal standard (IS: chlorobenzene) resulted in a notable improvement in both relative sensitivity and reproducibility for most compounds. PMID:22865756

  15. Alkaline quinone flow battery.

    PubMed

    Lin, Kaixiang; Chen, Qing; Gerhardt, Michael R; Tong, Liuchuan; Kim, Sang Bok; Eisenach, Louise; Valle, Alvaro W; Hardee, David; Gordon, Roy G; Aziz, Michael J; Marshak, Michael P

    2015-09-25

    Storage of photovoltaic and wind electricity in batteries could solve the mismatch problem between the intermittent supply of these renewable resources and variable demand. Flow batteries permit more economical long-duration discharge than solid-electrode batteries by using liquid electrolytes stored outside of the battery. We report an alkaline flow battery based on redox-active organic molecules that are composed entirely of Earth-abundant elements and are nontoxic, nonflammable, and safe for use in residential and commercial environments. The battery operates efficiently with high power density near room temperature. These results demonstrate the stability and performance of redox-active organic molecules in alkaline flow batteries, potentially enabling cost-effective stationary storage of renewable energy. PMID:26404834

  16. Singlet-Oxygen Generation in Alkaline Periodate Solution.

    PubMed

    Bokare, Alok D; Choi, Wonyong

    2015-12-15

    A nonphotochemical generation of singlet oxygen ((1)O2) using potassium periodate (KIO4) in alkaline condition (pH > 8) was investigated for selective oxidation of aqueous organic pollutants. The generation of (1)O2 was initiated by the spontaneous reaction between IO4(-) and hydroxyl ions, along with a stoichiometric conversion of IO4(-) to iodate (IO3(-)). The reactivity of in-situ-generated (1)O2 was monitored by using furfuryl alcohol (FFA) as a model substrate. The formation of (1)O2 in the KIO4/KOH system was experimentally confirmed using electron spin resonance (ESR) measurements in corroboration with quenching studies using azide as a selective (1)O2 scavenger. The reaction in the KIO4/KOH solution in both oxic and anoxic conditions initiated the generation of superoxide ion as a precursor of the singlet oxygen (confirmed by using superoxide scavengers), and the presence of molecular oxygen was not required as a precursor of (1)O2. Although hydrogen peroxide had no direct influence on the FFA oxidation process, the presence of natural organic matter, such as humic and fulvic acids, enhanced the oxidation efficiency. Using the oxidation of simple organic diols as model compounds, the enhanced (1)O2 formation is attributed to periodate-mediated oxidation of vicinal hydroxyl groups present in humic and fulvic constituent moieties. The efficient and simple generation of (1)O2 using the KIO4/KOH system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral and near-alkaline conditions. PMID:26594871

  17. Alkaline detergent recycling via ultrafiltration

    SciTech Connect

    Steffani, C.; Meltzer, M.

    1995-06-01

    The metal finishing industry uses alkaline cleaners and detergents to remove oils and dirt from manufactured parts, often before they are painted or plated. The use of these cleaners has grown because environmental regulations are phasing out ozone depleting substances and placing restrictions on the use and disposal of many hazardous solvents. Lawrence Livermore National Laboratory is examining ultrafiltration as a cleaning approach that reclaims the cleaning solutions and minimizes wastes. The ultrafiltration membrane is made from sheets of polymerized organic film. The sheets are rolled onto a supporting frame and installed in a tube. Spent cleaning solution is pumped into a filter chamber and filtered through the membrane that captures oils and dirt and allows water and detergent to pass. The membrane is monitored and when pressure builds from oil and dirt, an automatic system cleans the surface to maintain solution flow and filtration quality. The results show that the ultrafiltration does not disturb the detergent concentration or alkalinity but removed almost all the oils and dirt leaving the solution in condition to be reused.

  18. Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba.

    PubMed

    Geilfus, Christoph-Martin; Mithöfer, Axel; Ludwig-Müller, Jutta; Zörb, Christian; Muehling, Karl H

    2015-11-01

    Chloride stress causes the leaf apoplast transiently to alkalize, an event that is presumed to contribute to the ability of plants to adapt to saline conditions. However, the initiation of coordinated processes downstream of the alkalinization is unknown. We hypothesize that chloride-inducible pH dynamics are a key chemical feature modulating the compartmental distribution of abscisic acid (ABA) and, as a consequence, affecting stomata aperture. Apoplastic pH and stomata aperture dynamics in intact Vicia faba leaves were monitored by microscopy-based ratio imaging and porometric measurements of stomatal conductance. ABA concentrations in leaf apoplast and guard cells were compared with pH dynamics by gas-chromatography-mass-spectrometry (GC-MS) and liquid-chromatography-tandem-mass spectrometry (LC-MS/MS). Results demonstrate that, upon chloride addition to roots, an alkalizing factor that initiates the pH dynamic propagates from root to leaf in a way similar to xylem-distributed water. In leaves, it induces a systemic transient apoplastic alkalinization that causes apoplastic ABA concentration to increase, followed by an elevation of endogenous guard cell ABA. We conclude that the transient alkalinization, which is a remote effect of chloride stress, modulates the compartmental distribution of ABA between the leaf apoplast and the guard cells and, in this way, is instrumental in inducing stomata closure during the beginning of salinity. PMID:26096890

  19. Archaeal Abundance across a pH Gradient in an Arable Soil and Its Relationship to Bacterial and Fungal Growth Rates

    PubMed Central

    Sterngren, Anna E.; Rousk, Johannes

    2012-01-01

    Soil pH is one of the most influential factors for the composition of bacterial and fungal communities, but the influence of soil pH on the distribution and composition of soil archaeal communities has yet to be systematically addressed. The primary aim of this study was to determine how total archaeal abundance (quantitative PCR [qPCR]-based estimates of 16S rRNA gene copy numbers) is related to soil pH across a pH gradient (pH 4.0 to 8.3). Secondarily, we wanted to assess how archaeal abundance related to bacterial and fungal growth rates across the same pH gradient. We identified two distinct and opposite effects of pH on the archaeal abundance. In the lowest pH range (pH 4.0 to 4.7), the abundance of archaea did not seem to correspond to pH. Above this pH range, there was a sharp, almost 4-fold decrease in archaeal abundance, reaching a minimum at pH 5.1 to 5.2. The low abundance of archaeal 16S rRNA gene copy numbers at this pH range then sharply increased almost 150-fold with pH, resulting in an increase in the ratio between archaeal and bacterial copy numbers from a minimum of 0.002 to more than 0.07 at pH 8. The nonuniform archaeal response to pH could reflect variation in the archaeal community composition along the gradient, with some archaea adapted to acidic conditions and others to neutral to slightly alkaline conditions. This suggestion is reinforced by observations of contrasting outcomes of the (competitive) interactions between archaea, bacteria, and fungi toward the lower and higher ends of the examined pH gradient. PMID:22706045

  20. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  1. Carbon regulation of environmental pH by secreted small molecules that modulate pathogenicity in phytopathogenic fungi.

    PubMed

    Bi, Fangcheng; Barad, Shiri; Ment, Dana; Luria, Neta; Dubey, Amit; Casado, Virginia; Glam, Nofar; Mínguez, Jose Diaz; Espeso, Eduardo A; Fluhr, Robert; Prusky, Dov

    2016-10-01

    Fruit pathogens can contribute to the acidification or alkalinization of the host environment. This capability has been used to divide fungal pathogens into acidifying and/or alkalinizing classes. Here, we show that diverse classes of fungal pathogens-Colletotrichum gloeosporioides, Penicillium expansum, Aspergillus nidulans and Fusarium oxysporum-secrete small pH-affecting molecules. These molecules modify the environmental pH, which dictates acidic or alkaline colonizing strategies, and induce the expression of PACC-dependent genes. We show that, in many organisms, acidification is induced under carbon excess, i.e. 175 mm sucrose (the most abundant sugar in fruits). In contrast, alkalinization occurs under conditions of carbon deprivation, i.e. less than 15 mm sucrose. The carbon source is metabolized by glucose oxidase (gox2) to gluconic acid, contributing to medium acidification, whereas catalysed deamination of non-preferred carbon sources, such as the amino acid glutamate, by glutamate dehydrogenase 2 (gdh2), results in the secretion of ammonia. Functional analyses of Δgdh2 mutants showed reduced alkalinization and pathogenicity during growth under carbon deprivation, but not in high-carbon medium or on fruit rich in sugar, whereas analysis of Δgox2 mutants showed reduced acidification and pathogencity under conditions of excess carbon. The induction pattern of gdh2 was negatively correlated with the expression of the zinc finger global carbon catabolite repressor creA. The present results indicate that differential pH modulation by fruit fungal pathogens is a host-dependent mechanism, affected by host sugar content, that modulates environmental pH to enhance fruit colonization. PMID:26666972

  2. Qualitative aspects of the degradation of mitomycins in alkaline solution.

    PubMed

    Beijnen, J H; den Hartigh, J; Underberg, W J

    1985-01-01

    The major degradation product in alkaline solution of mitomycin A, mitomycin C and porfiromycin is the corresponding 7-hydroxymitosane. The isolation and the physico-chemical and analytical properties of these compounds and their derivatized analogues are discussed. Data are presented on the degradation of mitomycin C at extremely high pH values. PMID:16867711

  3. CONSTRUCTION OF NATURAL NEUTRALIZATION FACILITIES FOR ALKALINE TUNNEL SEEPAGE USING ATMOSPHERIC CARBON DIOXIDE

    NASA Astrophysics Data System (ADS)

    Furuya, Yoshinobu; Igarashi, Toshihumi; Matsumoto, Takayuki; Okawa, Ryo

    Neutralization with liquefied carbon dioxide for alkaline tunnel seepage after construction is one of the issues to be solved by considering the costs of gas and neutralization units and management in the long run. One promising method is to neutralize it by natural processes using atmospheric carbon dioxide. In this study, the hydrological survey and dissolution experiments of atmospheric carbon dioxide in the laboratory and in situ conditions were conducted. Based on the results, natural neutralization facilities using atmospheric carbon dioxide were constructed. The pH of the effluent from the facilities was reduced by 0.13 to 0.18, indicating that the double film theory was effective in predicting the reduction of pH.

  4. The fate of added alkalinity in model scenarios of ocean alkalinization

    NASA Astrophysics Data System (ADS)

    Ferrer González, Miriam; Ilyina, Tatiana

    2014-05-01

    The deliberate large-scale manipulation of the Earth's climate (geo-engineering) has been proposed to mitigate climate change and ocean acidification. Whilst the mitigation potential of these technologies could sound promising, they may also pose many environmental risks. Our research aims at exploring the ocean-based carbon dioxide removal method of alkalinity enhancement. Its mitigation potential to reduce atmospheric CO2 and counteract the consequences of ocean acidification, risks and unintended consequences are studied. In order to tackle these questions, different scenarios are implemented in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology. The model configuration is based on the 5th phase of the coupled model intercomparison project following a high CO2 future climate change scenario RCP8.5 (in which radiative forcing rises to 8.5 W/m² in 2100). Two different scenarios are performed where the alkalinity is artificially added globally uniformly in the upper ocean. In the first scenario, alkalinity is increased as a pulse by doubling natural values of the first 12 meters. In the second scenario we add alkalinity into the same ocean layer such that the atmospheric CO2 concentration is reduced from RCP8.5 to RCP4.5 levels (with the radiative forcing of 4.5 W/m² in 2100). We investigate the fate of the added alkalinity in these two scenarios and compare the differences in alkalinity budgets. In order to increase oceanic CO2 uptake from the atmosphere, enhanced alkalinity has to stay in the upper ocean. Once the alkalinity is added, it will become part of the biogeochemical cycles and it will be distributed with the ocean currents. Therefore, we are particularly interested in the residence time of the added alkalinity at the surface. Variations in CO2 partial pressure, seawater pH and saturation state of carbonate minerals produced in the implemented scenarios will be presented. Collateral changes in ocean biogeochemistry and

  5. TMC-1 Mediates Alkaline Sensation in C. elegans through Nociceptive Neurons.

    PubMed

    Wang, Xiang; Li, Guang; Liu, Jie; Liu, Jianfeng; Xu, X Z Shawn

    2016-07-01

    Noxious pH triggers pungent taste and nocifensive behavior. While the mechanisms underlying acidic pH sensation have been extensively characterized, little is known about how animals sense alkaline pH in the environment. TMC genes encode a family of evolutionarily conserved membrane proteins whose functions are largely unknown. Here, we characterize C. elegans TMC-1, which was suggested to form a Na(+)-sensitive channel mediating salt chemosensation. Interestingly, we find that TMC-1 is required for worms to avoid noxious alkaline environment. Alkaline pH evokes an inward current in nociceptive neurons, which is primarily mediated by TMC-1 and to a lesser extent by the TRP channel OSM-9. However, unlike OSM-9, which is sensitive to both acidic and alkaline pH, TMC-1 is only required for alkali-activated current, revealing a specificity for alkaline sensation. Ectopic expression of TMC-1 confers alkaline sensitivity to alkali-insensitive cells. Our results identify an unexpected role for TMCs in alkaline sensation and nociception. PMID:27321925

  6. Comparative contributions of solution geochemistry, microbial metabolism and aquatic photosynthesis to the development of high pH in ephemeral wetlands in South East Australia.

    PubMed

    Reid, R J; Mosley, L M

    2016-01-15

    The development of alkaline conditions in lakes and wetlands is common but the process of alkalinisation is not well elaborated. In this study we investigated causes of the seasonal alkalinisation of ephemeral wetlands in the South East of South Australia where pH values above 10 are frequently observed. This research combined field observations, geochemical analysis of wetland sediment and surface water, with mesocosm studies under controlled conditions. The results revealed a complex interplay between a number of different processes. A primary cause was attributed to sequestration of CO2 from the water column by plant photosynthesis, coupled with slow diffusion of CO2 from the air which led to its depletion in the water. Abundant plant growth also modified the water chemistry via uptake of nutrient elements, in particular calcium and magnesium and increased carbonate alkalinity in the water. Assessment of field results and geochemical modeling showed that low Ca/(HCO3(-) and CO3(-2)) ratios in the water, coupled with carbonate mineral (calcite, Mg substituted calcite, dolomite) precipitation and evapoconcentration, create a high alkalinity and pH (>9) baseline in many wetlands. The high baseline pH is then further increased by CO2 depletion due to photosynthesis. We could find no evidence that reduction of sulfate to sulfides by sulfur-reducing bacteria significantly contributed to the very high pH conditions. PMID:26519593

  7. Vibrational investigation on the copper(II) binding mode of carcinine and its pH dependence

    NASA Astrophysics Data System (ADS)

    Torreggiani, Armida; Reggiani, Matteo; Manco, Immacolata; Tinti, Anna

    2007-05-01

    A comparative FT-Raman and FT-IR study of Carcinine (Carc), a natural imidazole dipeptide, and its complexes with Cu(II) ions was performed at different pH's. Both Raman and IR spectra present marker bands useful for the identification of the predominant complexes; in particular, Raman spectroscopy appears useful for identifying the metal-coordination site of the imidazole ring (N π or N τ atoms) of Carc. Free Carc shows a strong network of H-bonds and tautomer I (N τ-H) is the preferred form of the imidazolic ring (bands at 1578, 1292 and 988 cm -1). The presence of Cu(II) does not affect the tautomeric equilibrium at pH 7, whereas the deprotonation of both N-imidazolic nitrogens is strongly induced at higher pH. Under neutral and alkaline conditions the primary amino group takes part to the Cu(II) chelation, whereas all the peptidic moieties are involved in coordination only at pH 7. Thus, Carc acts as a tri-dentate ligand at neutral pH, mainly giving a monomeric complex, [CuLH -1], containing tautomer I, whereas an oligonuclear complex, probably [Cu 4L 4H -8], where metal-imidazolate ions connect different ligand molecules, predominates at alkaline pH.

  8. Physiological effects of pH gradients on Escherichia coli during plasmid DNA production.

    PubMed

    Cortés, José T; Flores, Noemí; Bolívar, Francisco; Lara, Alvaro R; Ramírez, Octavio T

    2016-03-01

    A two-compartment scale-down system was used to mimic pH heterogeneities that can occur in large-scale bioreactors. The system consisted of two interconnected stirred tank reactors (STRs) where one of them represented the conditions of the bulk of the fluid and the second one the zone of alkali addition for pH control. The working volumes ratio of the STRs was set to 20:1 in order to simulate the relative sizes of the bulk and alkali addition zones, respectively, in large-scale bioreactors. Residence times (tR ) in the alkali addition STR of 60, 120, 180, and 240 s were simulated during batch cultures of an engineered Escherichia coli strain that produced plasmid DNA (pDNA). pH gradients of up to 0.9 units, between the two compartments, were attained. The kinetic, stoichiometric, and pDNA topological changes due to the pH gradients were studied and compared to cultures at constant pH of 7.2 and 8.0. As the tR increased, the pDNA and biomass yields, as well as pDNA final titer decreased, whereas the accumulation of organic acids increased. Furthermore, the transcriptional response of 10 selected genes to alkaline stress (pH 8.0) and pH gradients was monitored at different stages of the cultures. The selected genes coded for ion transporters, amino acids catabolism enzymes, and transcriptional regulators. The transcriptional response of genes coding for amino acids catabolism, in terms of relative transcription level and stage of maximal expression, was different when the alkaline stress was constant or transient. This suggests the activation of different mechanisms by E. coli to cope with pH fluctuations compared to constant alkaline pH. Moreover, the transcriptional response of genes related to negative control of DNA synthesis did not correlate with the lower pDNA yields. This is the first study that reports the effects of pH gradients on pDNA production by E. coli cultures. The information presented can be useful for the design of better bioreactor scale

  9. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~ 4 and ~ 11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH ~ 14 and brown at pH ~ 2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH ~ 14 and Forms "A", "D", and "P" at pH ~ 2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH ~ 2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450 cm- 1, 616 to 632 cm- 1, 1332 to 1343 cm- 1 etc. Again, the most enhanced peak at ~ 1548 cm- 1 in NRS while in the SERS window this appears at ~ 1580 cm- 1. Similar observation was also made for CZA at pH ~ 14. For example, the 423 cm- 1 band in the NRS profile experience a blue shift and appears at ~ 447 cm- 1 in the SERS spectrum as well as other bands at ~ 850, ~ 1067 and ~ 1214 cm- 1 in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH ~ 2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH ~ 14). The DFT

  10. A pH dependent Raman and surface enhanced Raman spectroscopic studies of citrazinic acid aided by theoretical calculations.

    PubMed

    Sarkar, Sougata; Chowdhury, Joydeep; Dutta, Soumen; Pal, Tarasankar

    2016-12-01

    A pH dependent normal Raman scattering (NRS) and surface enhanced Raman scattering (SERS) spectral patterns of citrazinic acid (CZA), a biologically important molecule, have been investigated. The acid, with different pKa values (~4 and ~11) for the two different functional groups (-COOH and -OH groups), shows interesting range of color changes (yellow at pH~14 and brown at pH~2) with the variation in solution pH. Thus, depending upon the pH of the medium, CZA molecule can exist in various protonated and/or deprotonated forms. Here we have prescribed the existence different possible forms of CZA at different pH (Forms "C", "H" and "Dprot" at pH~14 and Forms "A", "D", and "P" at pH~2 respectively). The NRS spectra of these solutions and their respective SERS spectra over gold nanoparticles were recorded. The spectra clearly differ in their spectral profiles. For example the SERS spectra recorded with the CZA solution at pH~2 shows blue shift for different bands compared to its NRS window e.g. 406 to 450cm(-1), 616 to 632cm(-1), 1332 to 1343cm(-1) etc. Again, the most enhanced peak at ~1548cm(-1) in NRS while in the SERS window this appears at ~1580cm(-1). Similar observation was also made for CZA at pH~14. For example, the 423cm(-1) band in the NRS profile experience a blue shift and appears at ~447cm(-1) in the SERS spectrum as well as other bands at ~850, ~1067 and ~1214cm(-1) in the SERS window are markedly enhanced. It is also worth noting that the SERS spectra at the different pH also differ from each other. These spectral differences indicate the existence of various adsorptive forms of the CZA molecule depending upon the pH of the solution. Therefore based on the experimental findings we propose different possible molecular forms of CZA at different pH (acidic and alkaline) conditions. For example forms 'A', 'D' and 'P' existing in acidic pH (pH~2) and three other deprotonated forms 'C', 'H' and 'Dprot' in alkaline pH (pH~14). The DFT calculations for these

  11. The potential for constructed wetlands to treat alkaline bauxite residue leachate: laboratory investigations.

    PubMed

    R, Buckley; T, Curtin; R, Courtney

    2016-07-01

    High alkalinity (pH > 12) of bauxite residue leachates presents challenges for the long-term storage and managements of the residue. Whilst the use of constructed wetlands is gaining in interest for its use in the treatment of alkaline waters, thus far, there is limited evidence of its suitability for treating NaOH dominated bauxite residue leachate. A series of batch trials were conducted to investigate the potential for constructed wetland conferred mechanisms (dilution water quality, contact with CO2, and substrate type) for treating NaOH solutions to levels permissible for discharge (p < 9). Results demonstrate that significant reductions in solution pH can be achieved depending on the diluting water quality. Levels achieved may not always be suitable for direct discharge (i.e. pH ≤ 9), but further reductions occur with carbonation and soil contact. The extent of pH decrease and the timeframe required are influenced by soil quality, with greater efficiency observed in soils with higher organic matter content. Decrease in solution pH to discharge permit values are possible through a combination of the mechanisms occurring in a constructed wetland. Formation of a calcite precipitate was observed in some treatments and further characterisation by XRD and XPS suggested surface coating with Na2CO3. It is therefore suggested that, under suitable conditions, constructed wetland technology can reduce leachate pH to <9 through mechanisms supporting the precipitation of sodium carbonate from solution. Further trials should investigate the activity under biological conditions representative of an operating constructed wetland. PMID:27048325

  12. Effect of pH on the destruction of complexants with ozone in Hanford nuclear waste

    SciTech Connect

    Winters, W.I.

    1981-06-01

    Chemical processing of nuclear waste at Hanford has generated some waste solutions with high concentration (0.1 to 0.5M) of N-(hydroxyethyl)-ethylenediaminetriacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA), and other organic complexing agents. These complexants must be destroyed bacause they affect radionuclide migration in soils, waste concentration, radionuclide removal, and other waste storage and processing considerations. Previous studies on actual waste solutions demonstrated that preozonation of the alkaline waste significantly improved radionuclide removal. A series of bench-scale experiments using synthetic waste has been performed to determine the optimum pH for most efficient ozone destruction of EDTA. Ozonation of EDTA in synthetic waste was carried out over the pH range of 1 to 14. Potential catalytic materials were examined at different pH levels. The EDTA-ozone reaction rates and stoichiometric requirements were compared and evaluated for the varying conditions.

  13. Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite.

    PubMed

    Reiter, C D; Teng, R J; Beckman, J S

    2000-10-20

    Tyrosine nitration is a widely used marker of peroxynitrite (ONOO(-)) produced from the reaction of nitric oxide with superoxide. Pfeiffer and Mayer (Pfeiffer, S., and Mayer, B. (1998) J. Biol. Chem. 273, 27280-27285) reported that superoxide produced from hypoxanthine plus xanthine oxidase in combination with nitric oxide produced from spermine NONOate did not nitrate tyrosine at neutral pH. They suggested that nitric oxide and superoxide at neutral pH form a less reactive intermediate distinct from preformed alkaline peroxynitrite that does not nitrate tyrosine. Using a stopped-flow spectrophotometer to rapidly mix potassium superoxide with nitric oxide at pH 7.4, we report that an intermediate spectrally and kinetically identical to preformed alkaline cis-peroxynitrite was formed in 100% yield. Furthermore, this intermediate nitrated tyrosine in the same yield and at the same rate as preformed peroxynitrite. Equivalent concentrations of nitric oxide under aerobic conditions in the absence of superoxide did not produce detectable concentrations of nitrotyrosine. Carbon dioxide increased the efficiency of nitration by nitric oxide plus superoxide to the same extent as peroxynitrite. In experiments using xanthine oxidase as a source of superoxide, tyrosine nitration was substantially inhibited by urate formed from hypoxanthine oxidation, which was sufficient to account for the lack of tyrosine nitration previously reported. We conclude that peroxynitrite formed from the reaction of nitric oxide with superoxide at physiological pH remains an important species responsible for tyrosine nitration in vivo. PMID:10906340

  14. Ion release and pH of a new endodontic cement, MTA and Portland cement

    PubMed Central

    Amini Ghazvini, Sara; Abdo Tabrizi, Maryam; Kobarfard, Farzad; Akbarzadeh Baghban, Alireza; Asgary, Saeed

    2009-01-01

    INTRODUCTION: This in vitro study measured and compared pH and phosphate and calcium ions release of a new endodontic material (CEM cement), mineral trioxide aggregate (MTA), and Portland cement (PC) using UV-visible technique, atomic absorption spectrophotometry methods, and pH meter, respectively. MATERIALS AND METHODS: Each material was placed in a plastic tube (n=10) and immersed in a glass flask containing deionized water. Half of the samples were tested for determining pH and released ions after 1h, 3h, 24h, 48h, 7d and 28d. Remaining samples (n=5), were evaluated after 28d. Data was analyzed using one way ANOVA and Tukey tests. RESULTS: Results indicated that all materials were highly alkaline and released calcium and low concentration of phosphate ions in all the time intervals. CEM cement released considerably higher concentration of phosphate during the first hour (P<0.05). CONCLUSION: This novel endodontic cement promoted alkaline pH in a similar manner to MTA and released calcium and phosphate. These conditions can stimulate the calcification process and explain the basic physico-chemical mechanisms of hard tissue regeneration of CEM cement. PMID:23940490

  15. Chemical bath deposition of ZnO nanowires at near-neutral pH conditions without hexamethylenetetramine (HMTA): understanding the role of HMTA in ZnO nanowire growth.

    PubMed

    McPeak, Kevin M; Le, Thinh P; Britton, Nathan G; Nickolov, Zhorro S; Elabd, Yossef A; Baxter, Jason B

    2011-04-01

    Chemical bath deposition (CBD) is an inexpensive and reproducible method for depositing ZnO nanowire arrays over large areas. The aqueous Zn(NO(3))(2)-hexamethylenetetramine (HMTA) chemistry is one of the most common CBD chemistries for ZnO nanowire synthesis, but some details of the reaction mechanism are still not well-understood. Here, we report the use of in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy to study HMTA adsorption from aqueous solutions onto ZnO nanoparticle films and show that HMTA does not adsorb on ZnO. This result refutes earlier claims that the anisotropic morphology arises from HMTA adsorbing onto and capping the ZnO {10 1 0} faces. We conclude that the role of HMTA in the CBD of ZnO nanowires is only to control the saturation index of ZnO. Furthermore, we demonstrate the first deposition of ZnO nanowire arrays at 90 °C and near-neutral pH conditions without HMTA. Nanowires were grown using the pH buffer 2-(N-morpholino)ethanesulfonic acid (MES) and continuous titratation with KOH to maintain the same pH conditions where growth with HMTA occurs. This semi-batch synthetic method opens many new opportunities to tailor the ZnO morphology and properties by independently controlling temperature and pH. PMID:21361384

  16. Alkaline Phosphatase in Stem Cells

    PubMed Central

    Štefková, Kateřina; Procházková, Jiřina; Pacherník, Jiří

    2015-01-01

    Alkaline phosphatase is an enzyme commonly expressed in almost all living organisms. In humans and other mammals, determinations of the expression and activity of alkaline phosphatase have frequently been used for cell determination in developmental studies and/or within clinical trials. Alkaline phosphatase also seems to be one of the key markers in the identification of pluripotent embryonic stem as well as related cells. However, alkaline phosphatases exist in some isoenzymes and isoforms, which have tissue specific expressions and functions. Here, the role of alkaline phosphatase as a stem cell marker is discussed in detail. First, we briefly summarize contemporary knowledge of mammalian alkaline phosphatases in general. Second, we focus on the known facts of its role in and potential significance for the identification of stem cells. PMID:25767512

  17. Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite

    DOE PAGESBeta

    Vandamme, Dries; Pohl, Philip I.; Beuckels, Annelies; Foubert, Imogen; Brady, Patrick Vane; Muylaert, Koenraad; Hewson, John C.

    2015-08-20

    Alkaline flocculation holds great potential as a low-cost harvesting method for marine microalgae biomass production. Alkaline flocculation is induced by an increase in pH and is related to precipitation of calcium and magnesium salts. In this study, we used the diatom Phaeodactylum tricornutum as model organism to study alkaline flocculation of marine microalgae cultured in seawater medium. Flocculation started when pH was increased to 10 and flocculation efficiency reached 90% when pH was 10.5, which was consistent with precipitation modeling for brucite or Mg(OH)2. Compared to freshwater species, more magnesium is needed to achieve flocculation (>7.5 mM). Zeta potential measurementsmore » suggest that brucite precipitation caused flocculation by charge neutralization. When calcium concentration was 12.5 mM, flocculation was also observed at a pH of 10. Furthermore, zeta potential remained negative up to pH 11.5, suggesting that precipitated calcite caused flocculation by a sweeping coagulation mechanism.« less

  18. The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea.

    PubMed

    Moran-Reyna, Aida; Coker, James A

    2014-01-01

    The halophilic archaea (haloarchaea) live in saline environments, which are found across the globe.  In addition to salinity, these niches can be quite dynamic and experience extreme conditions such as low oxygen content, radiation (gamma and UV), pH and temperature.  However, of all the naturally occurring stresses faced by the haloarchaea, only one, pH, has not been previously investigated in regard to the changes induced in the transcriptome. Therefore, we endeavored to determine the responses in three haloarchaea: Halorubrum lacusprofundi (Hla), Haloferax volcanii (Hvo), and Halobacterium sp. NRC-1 (NRC-1) to growth under acidic and alkaline pH. Our observations showed that the transcriptomes of Hvo and NRC-1 regulated stress, motility, and ABC transporters in a similar manner, which is in line with previous reports from other prokaryotes when grown in an acidic environment.  However, the pattern for Hla was more species specific. For alkaline stress, all three haloarchaea responded in a manner similar to well-studied archaea and bacteria showing the haloarchaeal response was general to prokaryotes. Additionally, we performed an analysis on the changes in the transcriptomes of the three haloarchaea when shifting from one pH extreme to the other. The results showed that the transcriptomes of all three haloarchaea respond more similarly when moving from alkaline to acidic conditions compared to a shift in the opposite direction. Interestingly, our studies also showed that individual genes of multiple paralogous gene families ( tbp, tfb, orc/ cdc6, etc.) found in the haloarchaea were regulated under specific stresses thereby providing evidence that they modulate the response to various environmental stresses. The studies described here are the first to catalog the changes in the haloarchaeal transcriptomes under growth in extreme pH and help us understand how life is able to thrive under all conditions present on Earth and, if present, on extraterrestrial

  19. The effects of extremes of pH on the growth and transcriptomic profiles of three haloarchaea

    PubMed Central

    Moran-Reyna, Aida; Coker, James A.

    2014-01-01

    The halophilic archaea (haloarchaea) live in saline environments, which are found across the globe.  In addition to salinity, these niches can be quite dynamic and experience extreme conditions such as low oxygen content, radiation (gamma and UV), pH and temperature.  However, of all the naturally occurring stresses faced by the haloarchaea, only one, pH, has not been previously investigated in regard to the changes induced in the transcriptome. Therefore, we endeavored to determine the responses in three haloarchaea: Halorubrum lacusprofundi (Hla), Haloferax volcanii (Hvo), and Halobacterium sp. NRC-1 (NRC-1) to growth under acidic and alkaline pH. Our observations showed that the transcriptomes of Hvo and NRC-1 regulated stress, motility, and ABC transporters in a similar manner, which is in line with previous reports from other prokaryotes when grown in an acidic environment.  However, the pattern for Hla was more species specific. For alkaline stress, all three haloarchaea responded in a manner similar to well-studied archaea and bacteria showing the haloarchaeal response was general to prokaryotes. Additionally, we performed an analysis on the changes in the transcriptomes of the three haloarchaea when shifting from one pH extreme to the other. The results showed that the transcriptomes of all three haloarchaea respond more similarly when moving from alkaline to acidic conditions compared to a shift in the opposite direction. Interestingly, our studies also showed that individual genes of multiple paralogous gene families ( tbp, tfb, orc/ cdc6, etc.) found in the haloarchaea were regulated under specific stresses thereby providing evidence that they modulate the response to various environmental stresses. The studies described here are the first to catalog the changes in the haloarchaeal transcriptomes under growth in extreme pH and help us understand how life is able to thrive under all conditions present on Earth and, if present, on extraterrestrial

  20. Parameters affecting downhole pH

    SciTech Connect

    Garber, J.D.; Jangama, V.R.; Willmon, J.

    1997-09-01

    The presence of acetic and formic acids in the produced water of gas condensate wells has been known for some time by the industry. In traditional water analysis, it has been titrated and reported as alkalinity. The calculation of accurate downhole pH values requires that these ions be analyzed separately in the water and that an organic acid material balance be performed on all three phases in the separator. In this manner, it is then possible to use phase distribution coefficients involving ionic equilibrium to determine how these acids distribute themselves between phases as the pH calculation proceeds downhole. In this paper, the above method of calculation of pH and {Delta}pH is used to examine the effect that various concentrations of these acids have on the downhole pH. Various concentrations of acids are examined, and two cases are calculated in which the effect of condensate on the pH is examined.

  1. Alkaline fuel cells applications

    NASA Astrophysics Data System (ADS)

    Kordesch, Karl; Hacker, Viktor; Gsellmann, Josef; Cifrain, Martin; Faleschini, Gottfried; Enzinger, Peter; Fankhauser, Robert; Ortner, Markus; Muhr, Michael; Aronson, Robert R.

    On the world-wide automobile market technical developments are increasingly determined by the dramatic restriction on emissions as well as the regimentation of fuel consumption by legislation. Therefore there is an increasing chance of a completely new technology breakthrough if it offers new opportunities, meeting the requirements of resource preservation and emission restrictions. Fuel cell technology offers the possibility to excel in today's motive power techniques in terms of environmental compatibility, consumer's profit, costs of maintenance and efficiency. The key question is economy. This will be decided by the costs of fuel cell systems if they are to be used as power generators for future electric vehicles. The alkaline hydrogen-air fuel cell system with circulating KOH electrolyte and low-cost catalysed carbon electrodes could be a promising alternative. Based on the experiences of Kordesch [K. Kordesch, Brennstoffbatterien, Springer, Wien, 1984, ISBN 3-387-81819-7; K. Kordesch, City car with H 2-air fuel cell and lead-battery, SAE Paper No. 719015, 6th IECEC, 1971], who operated a city car hybrid vehicle on public roads for 3 years in the early 1970s, improved air electrodes plus new variations of the bipolar stack assembly developed in Graz are investigated. Primary fuel choice will be a major issue until such time as cost-effective, on-board hydrogen storage is developed. Ammonia is an interesting option. The whole system, ammonia dissociator plus alkaline fuel cell (AFC), is characterised by a simple design and high efficiency.

  2. Effects of the lampricide 3-trifluoromethyl-4-nitrophenol (TFM) on pH, net oxygen production, and respiration by algae

    USGS Publications Warehouse

    Scholefield, Ronald J.; Fredricks, Kim T.; Slaght, Karen S.; Seelye, James G.

    1999-01-01

    The lampricide 3-trifluoromethyl-4-nitrophenol (TFM) has been used in the United States and Canada for more than 35 years to control larval sea lampreys (Petromyzon marinus) in tributaries of the Great Lakes. Occasionally, during stream treatments with TFM, nontarget-fish mortality reaches unacceptable levels. These losses could be due to the presence of sensitive fish species, excess TFM, or a combination of factors that influence the toxicity of TFM, such as delays in daily stream reaeration by algae resulting in extended periods of low pH and low dissolved oxygen (DO). We determined the effects of a broad range of TFM concentrations on net DO production and respiration by two species of algae, in two culture media (high alkalinity and low alkalinity). The pH and DO in cultures of Chlorella pyrenoidosa and Selenastrum capricornutum were recorded at time zero and again after a 9-h exposure to TFM under either lighted or dark conditions. Algal cultures exposed to TFM concentrations typical of those used to control sea lampreys in streams showed only small changes in pH (<0.1) and small reductions in DO (about 8% in lighted conditions and 11% in dark conditions). Changes in pH and DO of this magnitude probably do not change the efficacy of TFM or cause nontarget fish mortality if algae are the predominant photosynthetic organisms in the stream.

  3. Autonomous in situ measurements of seawater alkalinity.

    PubMed

    Spaulding, Reggie S; DeGrandpre, Michael D; Beck, James C; Hart, Robert D; Peterson, Brittany; De Carlo, Eric H; Drupp, Patrick S; Hammar, Terry R

    2014-08-19

    Total alkalinity (AT) is an important parameter for describing the marine inorganic carbon system and understanding the effects of atmospheric CO2 on the oceans. Measurements of AT are limited, however, because of the laborious process of collecting and analyzing samples. In this work we evaluate the performance of an autonomous instrument for high temporal resolution measurements of seawater AT. The Submersible Autonomous Moored Instrument for alkalinity (SAMI-alk) uses a novel tracer monitored titration method where a colorimetric pH indicator quantifies both pH and relative volumes of sample and titrant, circumventing the need for gravimetric or volumetric measurements. The SAMI-alk performance was validated in the laboratory and in situ during two field studies. Overall in situ accuracy was -2.2 ± 13.1 μmol kg(-1) (n = 86), on the basis of comparison to discrete samples. Precision on duplicate analyses of a carbonate standard was ±4.7 μmol kg(-1) (n = 22). This prototype instrument can measure in situ AT hourly for one month, limited by consumption of reagent and standard solutions. PMID:25051401

  4. Molecular Characterization of a Thermophilic and Salt- and Alkaline-Tolerant Xylanase from Planococcus sp. SL4, a Strain Isolated from the Sediment of a Soda Lake.

    PubMed

    Huang, Xiaoyun; Lin, Juan; Ye, Xiuyun; Wang, Guozeng

    2015-05-01

    To enrich the genetic resource of microbial xylanases with high activity and stability under alkaline conditions, a xylanase gene (xynSL4) was cloned from Planococcus sp. SL4, an alkaline xylanase-producing strain isolated from the sediment of soda lake Dabusu. Deduced XynSL4 consists of a putative signal peptide of 29 residues and a catalytic domain (30-380 residues) of glycosyl hydrolase family 10, and shares the highest identity of 77% with a hypothetical protein from Planomicrobium glaciei CHR43. Phylogenetic analysis indicated that deduced XynSL4 is closely related with thermophilic and alkaline xylanases from Geobacillus and Bacillus species. The gene xynSL4 was expressed heterologously in Escherichia coli and the recombinant enzyme showed some superior properties. Purified recombinant XynSL4 (rXynSL4) was highly active and stable over the neutral and alkaline pH range from 6 to 11, with maximum activity at pH 7 and more than 60% activity at pH 11. It had an apparent temperature optimum of 70°C and retained stable at this temperature in the presence of substrate. rXynSL4 was highly halotolerant, retaining more than 55% activity with 0.25-3.0 M NaCl and was stable at the concentration of NaCl up to 4M. The enzyme activity was significantly enhanced by β-mercaptoethanol and Ca(2+) but strongly inhibited by heavy-metal ions and SDS. This thermophilic and alkaline- and salt-tolerant enzyme has great potential for basic research and industrial applications. PMID:25381738

  5. Transcriptome analysis of Enterococcus faecalis in response to alkaline stress

    PubMed Central

    Ran, Shujun; Liu, Bin; Jiang, Wei; Sun, Zhe; Liang, Jingping

    2015-01-01

    Enterococcus faecalis is the most commonly isolated species from endodontic failure root canals; its persistence in treated root canals has been attributed to its ability to resist high pH stress. The goal of this study was to characterize the E. faecalis transcriptome and to identify candidate genes for response and resistance to alkaline stress using Illumina HiSeq 2000 sequencing. We found that E. faecalis could survive and form biofilms in a pH 10 environment and that alkaline stress had a great impact on the transcription of many genes in the E. faecalis genome. The transcriptome sequencing results revealed that 613 genes were differentially expressed (DEGs) for E. faecalis grown in pH 10 medium; 211 genes were found to be differentially up-regulated and 402 genes differentially down-regulated. Many of the down-regulated genes found are involved in cell energy production and metabolism and carbohydrate and amino acid metabolism, and the up-regulated genes are mostly related to nucleotide transport and metabolism. The results presented here reveal that cultivation of E. faecalis in alkaline stress has a profound impact on its transcriptome. The observed regulation of genes and pathways revealed that E. faecalis reduced its carbohydrate and amino acid metabolism and increased nucleotide synthesis to adapt and grow in alkaline stress. A number of the regulated genes may be useful candidates for the development of new therapeutic approaches for the treatment of E. faecalis infections. PMID:26300863

  6. Effects of ph, carbonate, orthophosphate, and redox potential on cuprosolvency

    SciTech Connect

    Schock, M.R.; Lytle, D.A.; Clement, J.A.

    1995-12-01

    A comprehensive solubility model for copper in drinking water has been developed, that is consistent with available data for copper dissolution and passivation in drinking water systems. Copper solubility (cuprosolvency) is greatly affected by the redox conditions of the systems. The concentration of Cu(I) is dominated by Cu{sub 2}O(s) or CuOH(s) solid phases, plus soluble aqueous ammonia and chloride complexes. In new piping, the concentration of Cu(II) is mainly governed by Cu(OH){sub 2}(s) (cupric hydroxide), rather than CuO(s) (tenorite) or Cu{sub 2}(OH){sub 2}CO{sub 3}(s)(malachite). Complexation of Cu(II) by DIC and hydroxide ion is extremely important. Increases in DIC are predicted to cause significant increases in copper solubility in the pH range of 7.5--10. Utilities may trade off increasing cuprosolvency by DIC addition for ensuring adequate buffering intensity in the finished water. Sufficient dosages of orthophosphate in the pH range of 6.5 to 7.5 may reduce cuprosolvency under oxidizing conditions. Sulfate may decrease cuprosolvency under some conditions, or may interfere with the formation of cupric hydroxide films under mildly alkaline conditions. Dissolved oxygen and chlorine residual play complicated roles in determining copper concentrations after various standing times. Frequently, 48--72 hours are necessary to reach equilibrium levels of copper in disinfected systems.

  7. Biological inverse fluidized-bed reactors for the treatment of low pH- and sulphate-containing wastewaters under different COD/SO4(2-) conditions.

    PubMed

    Papirio, S; Esposito, G; Pirozzi, F

    2013-01-01

    The feasibility of removing sulphate using low-density polypropylene pellets as carrier material in two lactate-fed sulphidogenic inverse fluidized-bed reactors was investigated. Two different COD/sulphate ratios and two different feed-sulphate concentrations were used for the operation of the reactors. During the 242 days of operation, the robustness of the system was studied by suddenly decreasing the feed pH to 3.00. A 10% fluidization degree was used since the carrier material adopted showed not to be adequate to attain a satisfactory immobilization of the biomass with higher fluidization degrees. This resulted in a failure of the process when the feed pH was intentionally decreased to 3.00 in reactor 2, operated with a COD/sulphate ratio of 4.00. On the contrary, when a slightly acidic feed solution was fed to reactor 2, a 97% sulphate reduction efficiency was obtained. In reactor 1, operated with a COD/sulphate ratio of 0.67 throughout the experiment, COD removal and sulphate reduction efficiencies reached the highest values of 75% and 35%, respectively. Higher efficiencies were not achieved also due to the accumulation of acetate and the most likely presence of microbial competition between sulphate reducers and other microorganisms. PMID:24191446

  8. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  9. The amiloride-sensitive Na+/H+ exchange antiporter and control of intracellular pH in hippocampal brain slices.

    PubMed

    Lin, C W; Kalaria, R N; Kroon, S N; Bae, J Y; Sayre, L M; LaManna, J C

    1996-08-26

    The intracellular pH, 7.54 +/- 0.03 (mean +/- S.D., n = 15), determined with the Neutral red method, of the hippocampal brain slice preparation under baseline incubation conditions is considerably more alkaline than the bath buffer pH. Neutralization by amiloride suggests that the alkalinity was due to Na+/H+ exchange antiporter activation. To characterize the brain Na+/H+ exchange antiporter we compared the inhibitory effects of MIA, amiloride and other 5-N substituted analogues on proton extrusion after acid loading by transient exposure to ammonium chloride in the isolated hippocampal brain slice preparation. The potencies of amiloride compounds on the initial recovery rate of intracellular pH after acid-loading were DMA > MIA > HMA = MHA > or = IPA-HCI > IPA > MNPA = Amil > Benzamil. The greater potency of the 5-N substituted analogs of amiloride over amiloride and benzamil strongly suggest that Na+/H+ exchange antiporter is the mechanism responsible for alkalinization in the isolated hippocampal brain slice in vitro. PMID:8883860

  10. Effect of varying pH on protein composition and yield of amaranth seed (Amaranthus blitum).

    PubMed

    Srivastava, Reema; Roy, Bijoy K

    2011-09-01

    The isolation procedure of the seed proteins of Amaranthus blitum have been analyzed at different pH conditions. Qualitative studies were carried out by using electrophoretic technique sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). Mainly four protein fractions i.e. albumin, globulin, prolamin and glutelin were obtained. Protein isolates were prepared by (a) extraction at different alkaline pH (9, 10, 11 and 12) and precipitation atpH 5 and (b) extraction at pH 9 and precipitation atdifferentpH (4, 5, 6 and 7). The composition of isolates, prepared by method (a), depended on extraction pH. The isolate extracted at pH 8 was mainly composed of albumin and globulin, whereas at pH 9, 10 and 11 showed the presence of prolamin and glutelin. Electrophoretic pattern of different isolates had five major bands with molecular weight of 30, 45, 72, 84 and 90 kDt respectively. The increase of the extraction pH led to the increase in protein yield. With method (b) isolates obtained were variable in composition. At pH 7 albumin and prolamine were present, whereas at pH 4, 5 and 6 all 4 protein fractions were precipitated. According to the quantitative estimation of the albumin, globulin, prolamin and glutelin in the seed flour the contents were 26.4, 25, 5.81 and 42.7%, respectively. The results suggest that composition of protein isolates could be controlled by different extraction and precipitation pH. PMID:22319880

  11. The mechanical properties of polyimide films after exposure to high pH

    NASA Technical Reports Server (NTRS)

    Croall, Catharine I.; St.clair, Terry L.

    1992-01-01

    Wiring failures linked to insulation damage have drawn much attention in the aerospace industry and concerns have developed regarding the stability and safety of polyimide insulated electrical wire. Several polyimides were selected for evaluation for resistance to degradation by various aqueous alkaline solutions. The polyimides under evaluation include commercially available films such as Kapton (tk), Apical (tk), LaRC(tk)-TPI, and Upilex(tk)R and S, as well as a number of experimental films prepared by NASA Langley. Thermally imidized films were studied for their retention of mechanical properties after exposure to high pH solutions under stressed conditions.

  12. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis.

    PubMed

    Ismaiel, Mostafa Mahmoud Sami; El-Ayouty, Yassin Mahmoud; Piercey-Normore, Michele

    2016-01-01

    Algae can tolerate a broad range of growing conditions but extreme conditions may lead to the generation of highly dangerous reactive oxygen species (ROS), which may cause the deterioration of cell metabolism and damage cellular components. The antioxidants produced by algae alleviate the harmful effects of ROS. While the enhancement of antioxidant production in blue green algae under stress has been reported, the antioxidant response to changes in pH levels requires further investigation. This study presents the effect of pH changes on the antioxidant activity and productivity of the blue green alga Spirulina (Arthrospira) platensis. The algal dry weight (DW) was greatly enhanced at pH 9.0. The highest content of chlorophyll a and carotenoids (10.6 and 2.4mg/g DW, respectively) was recorded at pH 8.5. The highest phenolic content (12.1mg gallic acid equivalent (GAE)/g DW) was recorded at pH 9.5. The maximum production of total phycobiliprotein (159mg/g DW) was obtained at pH 9.0. The antioxidant activities of radical scavenging activity, reducing power and chelating activity were highest at pH 9.0 with an increase of 567, 250 and 206% compared to the positive control, respectively. Variation in the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) was also reported. While the high alkaline pH may favor the overproduction of antioxidants, normal cell metabolism and membrane function is unaffected, as shown by growth and chlorophyll content, which suggests that these conditions are suitable for further studies on the harvest of antioxidants from S. platensis. PMID:26991300

  13. RNA Binding of T-cell Intracellular Antigen-1 (TIA-1) C-terminal RNA Recognition Motif Is Modified by pH Conditions*

    PubMed Central

    Cruz-Gallardo, Isabel; Aroca, Ángeles; Persson, Cecilia; Karlsson, B. Göran; Díaz-Moreno, Irene

    2013-01-01

    T-cell intracellular antigen-1 (TIA-1) is a DNA/RNA-binding protein that regulates critical events in cell physiology by the regulation of pre-mRNA splicing and mRNA translation. TIA-1 is composed of three RNA recognition motifs (RRMs) and a glutamine-rich domain and binds to uridine-rich RNA sequences through its C-terminal RRM2 and RRM3 domains. Here, we show that RNA binding mediated by either isolated RRM3 or the RRM23 construct is controlled by slight environmental pH changes due to the protonation/deprotonation of TIA-1 RRM3 histidine residues. The auxiliary role of the C-terminal RRM3 domain in TIA-1 RNA recognition is poorly understood, and this work provides insight into its binding mechanisms. PMID:23902765

  14. Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment.

    PubMed

    Summerfield, Tina C; Sherman, Louis A

    2008-09-01

    Many cyanobacterial strains are able to grow at a pH range from neutral to pH 10 or 11. Such alkaline conditions favor cyanobacterial growth (e.g., bloom formation), and cyanobacteria must have developed strategies to adjust to changes in CO2 concentration and ion availability. Synechocystis sp. strain PCC 6803 exhibits similar photoautotrophic growth characteristics at pH 10 and pH 7.5, and we examined global gene expression following transfer from pH 7.5 to pH 10 to determine cellular adaptations at an elevated pH. The strategies used to develop homeostasis at alkaline pH had elements similar to those of many bacteria, as well as components unique to phototrophic microbes. Some of the response mechanisms previously identified in other bacteria included upregulation of Na+/H+ antiporters, deaminases, and ATP synthase. In addition, upregulated genes encoded transporters with the potential to contribute to osmotic, pH, and ion homeostasis (e.g., a water channel protein, a large-conductance mechanosensitive channel, a putative anion efflux transporter, a hexose/proton symporter, and ABC transporters of unidentified substrates). Transcriptional changes specific to photosynthetic microbes involved NADH dehydrogenases and CO2 fixation. The pH transition altered the CO2/HCO3(-) ratio within the cell, and the upregulation of three inducible bicarbonate transporters (BCT1, SbtA, and NDH-1S) likely reflected a response to this perturbed ratio. Consistent with this was increased transcript abundance of genes encoding carboxysome structural proteins and carbonic anhydrase. Interestingly, the transition to pH 10 resulted in increased abundance of transcripts of photosystem II genes encoding extrinsic and low-molecular-weight polypeptides, although there was little change in photosystem I gene transcripts. PMID:18606800

  15. Chronic treatment with anti-bipolar drugs causes intracellular alkalinization in astrocytes, altering their functions.

    PubMed

    Song, Dan; Li, Baoman; Yan, Enzhi; Man, Yi; Wolfson, Marina; Chen, Ye; Peng, Liang

    2012-11-01

    Bipolar disorder I and II are affective disorders with mood changes between depressive and manic (bipolar I) or hypomanic (bipolar II) periods. Current therapy of these conditions is chronic treatment with one or more of the anti-bipolar drugs, Li(+) ('lithium'), carbamazepine and valproic acid. The pathophysiology of bipolar disorder is multifactorial and far from clear. Recent data on the dependence of normal brain function on neuronal-astrocytic interactions raise the possibility of astrocytic involvement. We will discuss our previously published and new results on effects of chronic treatment of primary cultures of normal mouse astrocytes with any of three conventional anti-bipolar drugs. The focus will be on several drug-induced events in relation to therapeutic effects of the drugs, such as myo-inositol uptake, intracellular pH and alkalinization, drug-induced modulation of glutamatergic activity in astrocytes and release of astrocytic 'gliotransmitters'. Finally, we will discuss the importance of phospholipase A2 (PLA(2)) and arachidonic acid cascade in drug-treated astrocytes, partly based on Dr. Barneda Cuirana's published thesis. All three drugs cause gradual intracellular alkalinization through different mechanisms. Alkalinization inhibit myo-inositol uptake, resulting in reduced inositolphosphate/phospholipid signaling. Accordingly, transmitter-induced increase in free intracellular Ca(2+) ([Ca(2+)](i)) becomes inhibited, aborting release of astrocytic 'gliotransmitters'. The reduction of "gliotransmitter" effects on neurons may have therapeutic effects in mania. Alkalinization also up-regulates expression of cPLA(2), an enzyme releasing arachidonic acid, and triggered arachidonic acid cascade and production, but perhaps not release, of prostaglandins. Whenever tested, identical effects were observed in freshly isolated astrocytes, but not neurons, from carbamazepine-treated healthy animals. PMID:22965852

  16. Syntheses of the Water-Dispersible Glycolic Acid Capped ZnS:Mn Nanocrystals at Different pH Conditions, and Their Aggregation and Luminescence Quenching Effects in Aqueous Solution.

    PubMed

    Sim, Yu Jin; Hwang, Cheong-Soo

    2016-06-01

    Water-dispersible ZnS:Mn nanocrystals were prepared by capping their surface with polar glycolic acid molecules at three different pH conditions. The produced ZnS:Mn-GA nanocrystals were characterized by XRD, HR-TEM, ICP-AES, and FT-IR spectroscopy. The optical properties were also measured by UV-Visible and room temperature photoluminescence (PL) spectroscopy. In the PL spectra, theses ZnS:Mn-GA nanocrystals showed broad emission peaks around 595 nm, and the calculated relative quantum efficiencies against an organic dye standard were in the range from 2.16 to 5.52%. The measured particle size from the HR-TEM images was about 3.7 nm on average, which were also supported by the calculations with the Debye-Scherrer methods. In addition, the surface charges of the nanocrystals were determined by an electrophoretic method, which showed pH dependent charge values of the nanocrytals: +0.88 mV (pH 2), +0.82 mV (pH 7), and -0.59 mV (pH 12) respectively. In addition, the degrees of aggregation of the nanocrystals in aqueous solutions were determined by a hydrodynamic light scattering method. As a result, formations of micrometer size agglomerates for all the ZnS:Mn-GA nanocrystals in water was observed at room temperature. This was probably caused by intermolecular attraction between the capping molecules. In addition, the ZnS:Mn-GA with the negative surface charge was presumed to be suitable for further coordination to a transition metal ion on the surface of the nanocrystal. As a result, fast luminescence quenching was observed after addition of aqueous solution containing Cu2+ ions. PMID:27427703

  17. Title: Elucidation of Environmental Fate of Artificial Sweeteners (Aspartame, Acesulfame K and Saccharin) by Determining Bimolecular Rate Constants with Hydroxyl Radical at Various pH and Temperature Conditions and Possible Reaction By-Products

    NASA Astrophysics Data System (ADS)

    Teraji, T.; Arakaki, T.; Suzuka, T.

    2012-12-01

    Use of artificial sweeteners in beverages and food has been rapidly increasing because of their non-calorie nature. In Japan, aspartame, acesulfame K and sucralose are among the most widely used artificial sweeteners. Because the artificial sweeteners are not metabolized in human bodies, they are directly excreted into the environment without chemical transformations. We initiated a study to better understand the fate of artificial sweeteners in the marine environment. The hydroxyl radical (OH), the most potent reactive oxygen species, reacts with various compounds and determines the environmental oxidation capacity and the life-time of many compounds. The steady-state OH concentration and the reaction rate constants between the compound and OH are used to estimate the life-time of the compound. In this study, we determine the bimolecular rate constants between aspartame, acefulfame K and saccharin and OH at various pH and temperature conditions using a competition kinetics technique. We use hydrogen peroxide as a photochemical source of OH. Bimolecular rate constant we obtained so far for aspartame was (2.6±1.2)×109 M-1 s-1 at pH = 3.0 and (4.9±2.3)×109 M-1 s-1 at pH = 5.5. Little effect was seen by changing the temperatures between 15 and 40 oC. Activation energy (Ea) was calculated to be -1.0 kJ mol-1 at pH = 3.0, +8.5 kJ mol-1 at pH = 5.5, which could be regarded as zero. We will report bimolecular rate constants at different pHs and temperatures for acesulfame K and saccharin, as well. Possible reaction by-products for aspartame will be also reported. We will further discuss the fate of aspartame in the coastal environment.

  18. Sensing pH with TMCs.

    PubMed

    Spalthoff, Christian; Göpfert, Martin C

    2016-07-01

    Transmembrane channel-like (TMC) proteins have been implicated in hair cell mechanotransduction, Drosophila proprioception, and sodium sensing in the nematode C. elegans. In this issue of Neuron, Wang et al. (2016) report that C. elegans TMC-1 mediates nociceptor responses to high pH, not sodium, allowing the nematode to avoid strongly alkaline environments in which most animals cannot survive. PMID:27387645

  19. Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22 °C

    NASA Astrophysics Data System (ADS)

    Gudbrandsson, Snorri; Wolff-Boenisch, Domenik; Gislason, Sigurdur R.; Oelkers, Eric H.

    2014-08-01

    The steady-state, far-from-equilibrium dissolution rates of nine distinct plagioclases ranging in composition from An2 to An89 were measured in mixed flow reactors at 22 ± 2 °C and pH from 2 to 11. The dissolution rates of all plagioclases based on silica release show a common U-shaped behaviour as a function of pH, where rates decrease with increasing pH at acid condition but rise with increasing pH at alkaline conditions. Consistent with literature findings, constant pH plagioclase dissolution rates increase with increasing anorthite content at acidic conditions; measured anorthite dissolution rates are ∼2.5 orders of magnitude faster than those of albite at pH ∼2. Perhaps more significantly, rates are independent of plagioclase composition at alkaline conditions. Interpretation and data fitting suggests that plagioclase dissolution rates are consistent with their control by the detachment of Si-rich activated complexes formed by the removal of Al from the mineral framework. Taking account of this mechanism and transition state theory yields equations describing plagioclase dissolution rates (r+) as a function of both the mineral and aqueous fluid compositions found in natural Earth surface systems. For pH ⩾ 6 rates are consistent with Log(r+/(mol/cm/s))=0.35Log(aH3/aAl)-11.53 and for pH < 6 rates are consistent with Log(r+/(mol/cm/s))=nacidLog(aH3/aAl)+0.033An%-14.77 where An% represents the percent anorthite in the plagioclase solid solution, ai corresponds to the activity of the ith aqueous species, and nacid is given by nacid=0.004An%+0.05 .

  20. Genomic and exoproteomic analyses of cold- and alkaline-adapted bacteria reveal an abundance of secreted subtilisin-like proteases.

    PubMed

    Lylloff, Jeanette E; Hansen, Lea B S; Jepsen, Morten; Sanggaard, Kristian W; Vester, Jan K; Enghild, Jan J; Sørensen, Søren J; Stougaard, Peter; Glaring, Mikkel A

    2016-03-01

    Proteases active at low temperature or high pH are used in many commercial applications, including the detergent, food and feed industries, and bacteria specifically adapted to these conditions are a potential source of novel proteases. Environments combining these two extremes are very rare, but offer the promise of proteases ideally suited to work at both high pH and low temperature. In this report, bacteria from two cold and alkaline environments, the ikaite columns in Greenland and alkaline ponds in the McMurdo Dry Valley region, Antarctica, were screened for extracellular protease activity. Two isolates, Arsukibacterium ikkense from Greenland and a related strain, Arsukibacterium sp. MJ3, from Antarctica, were further characterized with respect to protease production. Genome sequencing identified a range of potential extracellular proteases including a number of putative secreted subtilisins. An extensive liquid chromatography-tandem mass spectrometry analysis of proteins secreted by A. ikkense identified six subtilisin-like proteases as abundant components of the exoproteome in addition to other peptidases potentially involved in complete degradation of extracellular protein. Screening of Arsukibacterium genome libraries in Escherichia coli identified two orthologous secreted subtilisins active at pH 10 and 20 °C, which were also present in the A. ikkense exoproteome. Recombinant production of both proteases confirmed the observed activity. PMID:26834075

  1. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.

    PubMed

    Nam, Kwangwoo; Watanabe, Junji; Ishihara, Kazuhiko

    2004-11-01

    Hydrogels bearing a phospholipid polar group, 2-methacryloyloxyethyl phosphorylcholine (MPC), were prepared from two aqueous solutions of polymers, water-soluble poly[MPC-co-methacrylic acid (MA)] (PMA) and poly[MPC-co-n-butyl methacrylate (BMA)] (PMB). The hydrogel, which was formed by physical cross-linking spontaneously without any chemical reactions and/or any physical stimuli, showed a controllable insulin release through a pH change in the medium by changing the hydrogen bonds. In this study, the mechanical strength, erosion of the hydrogel caused by polymer dissociation, and the release of insulin were examined with attention to the following three parameters of the MPC polymer: molecular weight of the polymers, composition of PMA and PMB (PMA/PMB ratio), and polymer concentration inside the hydrogel. The hydrogel with the highest mechanical strength was obtained at a PMA/PMB ratio = 3/7 (v/v, by volume ratio) while the hydrogel with the slowest dissolution was obtained at a ratio of 5/5 (v/v). The release was in good match with the dissolution and followed anomalous transport for all, but the diffusion exponent n changed according to the PMA/PMB ratio. An increase in the polymer concentration inside the hydrogel caused an increase in the mechanical strength of the hydrogel. When the polymer concentration was more than 20 wt.%, the absorption of water under neutral pH condition (pH 6.8) was observed. The release of insulin was suppressed below 10% during the swelling process of the hydrogel under neutral pH condition, while release was accelerated during the erosion process of the hydrogel. The relationship between erosion of the hydrogel and the release of the insulin depended on the erosion process of the hydrogel but differed according to the PMA/PMB ratio. PMID:15489127

  2. Modulators of intestinal alkaline phosphatase.

    PubMed

    Bobkova, Ekaterina V; Kiffer-Moreira, Tina; Sergienko, Eduard A

    2013-01-01

    Small molecule modulators of phosphatases can lead to clinically useful drugs and serve as invaluable tools to study functional roles of various phosphatases in vivo. Here, we describe lead discovery strategies for identification of inhibitors and activators of intestinal alkaline phosphatases. To identify isozyme-selective inhibitors and activators of the human and mouse intestinal alkaline phosphatases, ultrahigh throughput chemiluminescent assays, utilizing CDP-Star as a substrate, were developed for murine intestinal alkaline phosphatase (mIAP), human intestinal alkaline phosphatase (hIAP), human placental alkaline phosphatase (PLAP), and human tissue-nonspecific alkaline phosphatase (TNAP) isozymes. Using these 1,536-well assays, concurrent HTS screens of the MLSMR library of 323,000 compounds were conducted for human and mouse IAP isozymes monitoring both inhibition and activation. This parallel screening approach led to identification of a novel inhibitory scaffold selective for murine intestinal alkaline phosphatase. SAR efforts based on parallel testing of analogs against different AP isozymes generated a potent inhibitor of the murine IAP with IC50 of 540 nM, at least 65-fold selectivity against human TNAP, and >185 selectivity against human PLAP. PMID:23860652

  3. Optimization of culture conditions (sucrose, pH, and photoperiod) for in vitro regeneration and early detection of somaclonal variation in ginger lime (Citrus assamensis).

    PubMed

    Yaacob, Jamilah Syafawati; Mahmad, Noraini; Mat Taha, Rosna; Mohamed, Normadiha; Mad Yussof, Anis Idayu; Saleh, Azani

    2014-01-01

    Various explants (stem, leaf, and root) of Citrus assamensis were cultured on MS media supplemented with various combinations and concentrations (0.5-2.0 mg L(-1)) of NAA and BAP. Optimum shoot and root regeneration were obtained from stem cultures supplemented with 1.5 mg L(-1) NAA and 2.0 mg L(-1) BAP, respectively. Explant type affects the success of tissue culture of this species, whereby stem explants were observed to be the most responsive. Addition of 30 gL(-1) sucrose and pH of 5.8 was most optimum for in vitro regeneration of this species. Photoperiod of 16 hours of light and 8 hours of darkness was most optimum for shoot regeneration, but photoperiod of 24 hours of darkness was beneficial for production of callus. The morphology (macro and micro) and anatomy of in vivo and in vitro/ex vitro Citrus assamensis were also observed to elucidate any irregularities (or somaclonal variation) that may arise due to tissue culture protocols. Several minor micromorphological and anatomical differences were observed, possibly due to stress of tissue culture, but in vitro plantlets are expected to revert back to normal phenotype following full adaptation to the natural environment. PMID:24977187

  4. A soluble alkaline phosphatase from Bacillus licheniformis MC14. Histochemical localization, purification, characterization and comparison with the membrane-associated alkaline phosphatase.

    PubMed

    Hansa, J G; Laporta, M; Kuna, M A; Reimschuessel, R; Hulett, F M

    1981-02-13

    Growth conditions affect the quantity and distribution of alkaline phosphatase (orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1) in Bacillus licheniformis MC14. The soluble alkaline phosphatase, which has been found in biochemical localization studies between the cell wall and cell membrane (Glynn, J.A., Schaffel, S.D., McNicholas, J.M. and Hulett, F.M. (1977) J. Bacteriol. 129, 1010-1019), was localized via electron microscope histochemistry in cells cultured under conditions which result in increased quantities of this activity. This soluble alkaline phosphatase was stabilized with 20% glycerol and purified to homogeneity as determined by sodium dodecyl sulfate(SDS)-polyacrylamide gel electrophoresis. The purified enzyme is soluble in dilute buffer. This soluble alkaline phosphatase has been characterized and compared to the membrane-associated alkaline phosphatase from this organism. PMID:6783099

  5. Alkaline battery, separator therefore

    NASA Technical Reports Server (NTRS)

    Schmidt, George F. (Inventor)

    1980-01-01

    An improved battery separator for alkaline battery cells has low resistance to electrolyte ion transfer and high resistance to electrode ion transfer. The separator is formed by applying an improved coating to an electrolyte absorber. The absorber, preferably, is a flexible, fibrous, and porous substrate that is resistant to strong alkali and oxidation. The coating composition includes an admixture of a polymeric binder, a hydrolyzable polymeric ester and inert fillers. The coating composition is substantially free of reactive fillers and plasticizers commonly employed as porosity promoting agents in separator coatings. When the separator is immersed in electrolyte, the polymeric ester of the film coating reacts with the electrolyte forming a salt and an alcohol. The alcohol goes into solution with the electrolyte while the salt imbibes electrolyte into the coating composition. When the salt is formed, it expands the polymeric chains of the binder to provide a film coating substantially permeable to electrolyte ion transfer but relatively impermeable to electrode ion transfer during use.

  6. Influence of CO2 exposure on pH value, electrochemical properties, and the formation of calcium-phosphate on Ti-6Al-4V under adjusted in vitro conditions in DMEM

    NASA Astrophysics Data System (ADS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-06-01

    Immersion tests for studying biomaterials surface reactions should be carried out at a pH value of 7.4 and an adjusted blood physiological electrolyte to simulate as far as possible in vivo conditions. The present work deals with surface reactivity of the biocompatible Ti-6Al-4V alloy in Dulbecco's Modified Eagle Medium (DMEM) and the influence of different immersion conditions on the pH value of solution and thus on the surface charge and calcium-phosphate formation on the oxide covered alloy surface. More specifically, the influence of the temperature (room temperature vs. 37 °C) and atmospheric exposure (solution open-to-air vs. solution exposed to 5% CO2 in air) was investigated. Electrochemical measurements, XPS and ATR-IR studies were carried out for interface characterization. Precipitations of calcium-phosphate (Ca-P) on Ti-6Al-4V in DMEM are formed depending on the atmospheric conditions (presence or absence of CO2). In the absence of CO2 strong coverage of the surface by a Ca-P layer takes place; in solution exposed to 5% CO2, however, only minor amounts of Ca-P are found on the surface. This drastically different behavior can be explained by different surface terminations of OH and TiO2, induced by atmosphere-dependent pH change in solution. In consequence, different surface charges on Ti-6Al-4V can be formed at the interface depending on the type of hydroxides after contact with the electrolyte. Hence, the surface charge influences the interaction with adsorption of charged species and further modifies the oxide properties. The adsorption of the charged cations (Ca2 +) and anions (PO43 -, HPO42 -, H2PO4 -) leads to the formation of additional calcium phosphate layers. The pH of the solution is also important. At higher pH the titanium surface is more negatively charged leading to an increased electrostatic interaction with Ca2 + and reduced solubility of the calcium phosphates. Additional experiments indicate that the CO2 content in the atmosphere is

  7. Evaluation of Alkaline Cleaner Materials

    NASA Technical Reports Server (NTRS)

    Partz, Earl

    1998-01-01

    Alkaline cleaners used to process aluminum substrates have contained chromium as the corrosion inhibitor. Chromium is a hazardous substance whose use and control are described by environmental laws. Replacement materials that have the characteristics of chromated alkaline cleaners need to be found that address both the cleaning requirements and environmental impacts. This report will review environmentally friendly candidates evaluated as non-chromium alkaline cleaner replacements and methods used to compare those candidates one versus another. The report will also list characteristics used to select candidates based on their declared contents. It will also describe and evaluate methods used to discriminate among the large number of prospective candidates.

  8. Theoretical and Experimental Studies of the Transonic Flow Field and Associated Boundary Conditions near a Longitudinally-Slotted Wind-Tunnel Wall. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Everhart, Joel Lee

    1988-01-01

    A theoretical examination of the slotted-wall flow field is conducted to determine the appropriate wall pressure drop (or boundary condition) equation. This analysis improves the understanding of the fluid physics of these types of flow fields and helps in evaluating the uncertainties and limitations existing in previous mathematical developments. It is shown that the resulting slotted-wall boundary condition contains contributions from the airfoil-induced streamline curvature and the non-linear, quadratic, slot crossflow in addition to an often neglected linear term which results from viscous shearing in the slot. Existing and newly acquired experimental data are examined in the light of this formulation and theoretical developments.

  9. Production of alkaline protease from Cellulosimicrobium cellulans

    PubMed Central

    Ferracini-Santos, Luciana; Sato, Hélia H

    2009-01-01

    Cellulosimicrobium cellulans is one of the microorganisms that produces a wide variety of yeast cell wall-degrading enzymes, β-1,3-glucanase, protease and chitinase. Dried cells of Saccharomyces cerevisiae were used as carbon and nitrogen source for cell growth and protease production. The medium components KH2PO4, KOH and dried yeast cells showed a significant effect (p<0.05) on the factorial fractional design. A second design was prepared using two factors: pH and percentage of dried yeast cells. The results showed that the culture medium for the maximum production of protease was 0.2 g/l of MgSO4.7H2O, 2.0 g/l of (NH4)2SO4 and 8% of dried yeast cells in 0.15M phosphate buffer at pH 8.0. The maximum alkaline protease production was 7.0 ± 0.27 U/ml over the center point. Crude protease showed best activity at 50ºC and pH 7.0-8.0, and was stable at 50ºC. PMID:24031317

  10. Testing Novel pH Proxies through Inorganic Calcite Precipitations and K/Pg Foraminifera

    NASA Astrophysics Data System (ADS)

    Super, J. R.; Pagani, M.; Wang, Z.

    2013-12-01

    Ocean pH proxies help constrain the carbon system in the paleocean and can be used to infer atmospheric CO2 when coupled with estimates of total alkalinity, aqueous pCO2 or dissolved inorganic carbon. This project investigates two novel pH proxies (cerium abundance and kinetically-controlled oxygen isotopes) through a series of precipitations of inorganic calcite, as well as the previously established boron isotope pH proxy. Precipitations are performed using varied pH and carbonate saturation states that span the range of typical ocean values as well as a 'free drift' that allows pH and saturation state to vary. The light rare earth element cerium speciates, depending on local oxidation-reduction conditions, between the soluble Ce3+ and highly insoluble Ce4+ ions, causing a relative depletion of cerium in ocean water. This project demonstrates how a suite rare earth elements, including cerium, partitions into inorganic calcite and how partitioning varies with changing pH and carbonate saturation state. Oxygen isotope fractionation is primarily controlled by temperature, but this project examines how pH and carbonate saturation state correlate with oxygen isotope values under kinetic conditions during the initial stage of precipitation. The effect of diagenesis on each proxy is simulated by dissolution of precipitated calcite in a pressure vessel. Results from the precipitations are used to inform a record of well-preserved benthic and planktonic foraminifera from DSDP Site 356 that range in age from the K/Pg boundary to the period when the δ13C gradient between the surface and deep ocean returned to pre-event levels. The pH record is used to infer the magnitude and length of the perturbation to the oceanic carbon system following the extinction event, particularly in terms of export productivity.

  11. Effects of saline-alkaline stress on benzo[a]pyrene biotransformation and ligninolytic enzyme expression by Bjerkandera adusta SM46.

    PubMed

    Andriani, Ade; Tachibana, Sanro; Itoh, Kazutaka

    2016-03-01

    Benzo[a]pyrene (BaP) accumulates in marine organisms and contaminated coastal areas. The biotreatment of waste water using saline-alkaline-tolerant white rot fungi (WRF) represents a promising method for removing BaP under saline-alkaline conditions based on WRF's ability to produce ligninolytic enzymes. In a pre-screening for degradation of polycyclic aromatic hydrocarbons of 82 fungal strains using Remazol brilliant blue R, Bjerkandera adusta SM46 exhibited the highest tolerance to saline-alkaline stress. Moreover, a B. adusta culture grown in BaP-containing liquid medium exhibited resistance to salinities up to 20 g l(-1). These conditions did not inhibit fungal growth or the expression of manganese peroxidase (MnP) or lignin peroxidase (LiP). The degradation rate also became higher as salinity increased to 20 g l(-1). Fungal growth and enzyme expression were inhibited at a salinity of 35 g l(-1). These inhibitory effects directly decreased the degradation rate (>24%). The presence of MnSO4 as an inducer improved the degradation rate and enzyme expression. MnP and LiP activity also increased by seven- and fivefold, respectively. SM46 degraded BaP (38-89% over 30 days) in an acidic environment (pH 4.5) and under saline-alkaline stress conditions (pH 8.2). Investigating the metabolites produced revealed BaP-1,6-dione as the main product, indicating the important role of ligninolytic enzymes in initializing BaP cleavage. The other metabolites detected, naphthalene acetic acid, hydroxybenzoic acid, benzoic acid, and catechol, may have been ring fission products. The wide range of activities observed suggests that B. adusta SM46 is a potential agent for biodegrading BaP under saline conditions. PMID:26867600

  12. Geochemical modeling of the influence of silicate mineral alteration on alkalinity production and carbonate precipitation

    NASA Astrophysics Data System (ADS)

    Herda, Gerhard; Kraemer, Stephan M.; Gier, Susanne; Meister, Patrick

    2016-04-01

    High CO2 partial pressure (pCO2) in deep rock reservoirs causes acidification of the porefluid. Such conditions occur during injection and subsurface storage of CO2 (to prevent the release of greenhouse gas) but also naturally in zones of strong methanogenic microbial activity in organic matter-rich ocean margin sediments. The acidic fluids are corrosive to carbonates and bear the risk of leakage of CO2 gas to the surface. Porefluid acidification may be moderated by processes that increase the alkalinity, i.e. that produce weak acid anions capable of buffering the acidification imposed by the CO2. Often, alkalinity increases as a result of anaerobic microbial activity, such as anaerobic oxidation of methane. However, on a long term the alteration of silicates, in particular, clay minerals, may be a more efficient mechanism of alkalinity production. Under altered temperature, pressure and porefluid composition at depth, clay minerals may change to thermodynamically more stable states, thereby increasing the alkalinity of the porefluid by partial leaching of Mg-(OH)2 and Ca-(OH)2 (e.g. Wallmann et al., 2008; Mavromatis et al., 2014). This alteration may even be enhanced by a high pCO2. Thus, silicate alteration can be essential for a long-term stabilization of volatile CO2 in the form of bicarbonate or may even induce precipitation of carbonate minerals, but these processes are not fully understood yet. The goal of this study is to simulate the alkalinity effect of silicate alteration under diagenetic conditions and high pCO2 by geochemical modeling. We are using the program PHREEQC (Parkhurst and Appelo, 2013) to generate high rock/fluid ratio characteristics for deep subsurface rock reservoirs. Since we are interested in the long-term evolution of diagenetic processes, over millions of years, we do not consider kinetics but calculate the theoretically possible equilibrium conditions. In a first step we are calculating the saturation state of different clay minerals

  13. Transcriptome Profiling and Functional Analysis of Agrobacterium tumefaciens Reveals a General Conserved Response to Acidic Conditions (pH 5.5) and a Complex Acid-Mediated Signaling Involved in Agrobacterium-Plant Interactions▿

    PubMed Central

    Yuan, Ze-Chun; Liu, Pu; Saenkham, Panatda; Kerr, Kathleen; Nester, Eugene W.

    2008-01-01

    Agrobacterium tumefaciens transferred DNA (T-DNA) transfer requires that the virulence genes (vir regulon) on the tumor-inducing (Ti) plasmid be induced by plant phenolic signals in an acidic environment. Using transcriptome analysis, we found that these acidic conditions elicit two distinct responses: (i) a general and conserved response through which Agrobacterium modulates gene expression patterns to adapt to environmental acidification and (ii) a highly specialized acid-mediated signaling response involved in Agrobacterium-plant interactions. Overall, 78 genes were induced and 74 genes were repressed significantly under acidic conditions (pH 5.5) compared to neutral conditions (pH 7.0). Microarray analysis not only confirmed previously identified acid-inducible genes but also uncovered many new acid-induced genes which may be directly involved in Agrobacterium-plant interactions. These genes include virE0, virE1, virH1, and virH2. Further, the chvG-chvI two-component system, previously shown to be critical for virulence, was also induced under acid conditions. Interestingly, acidic conditions induced a type VI secretion system and a putative nonheme catalase. We provide evidence suggesting that acid-induced gene expression was independent of the VirA-VirG two-component system. Our results, together with previous data, support the hypothesis that there is three-step sequential activation of the vir regulon. This process involves a cascade regulation and hierarchical signaling pathway featuring initial direct activation of the VirA-VirG system by the acid-activated ChvG-ChvI system. Our data strengthen the notion that Agrobacterium has evolved a mechanism to perceive and subvert the acidic conditions of the rhizosphere to an important signal that initiates and directs the early virulence program, culminating in T-DNA transfer. PMID:17993523

  14. Simulation of acid-base condition and copper speciation in the fish gill microenvironment.

    PubMed

    Tao, S; Wen, Y; Long, A; Dawson, R; Cao, J; Xu, F

    2001-05-01

    pH, alkalinity, and mucus content in the fish gill microenvironment of carp (Cyprinus carpio) were measured by exposing fish to copper at various water pH levels using an apparatus which separates inspired and expired water. The relationship between pH levels inside and outside of the gill microenvironment, between pH and alkalinity, and between mucus secretion, pH, and copper exposure concentration were modeled. Copper speciation in the surrounding water and in the fish gill microenvironment was simulated using MINTEQA2 chemical equilibrium calculation software. The results of the modeling for pH, alkalinity, and mucus calculation were then adopted as inputs for purposes of parameter identification in the speciation modeling. The differences observed in the copper species distribution between that of the fish gill microenvironment and the surrounding water were based on the speciation modeling. The change in copper bioavailability for fish uptake was also examined. The results indicate the presence of an experimental pH balance point at 6.9, where the pH in the fish gill microenvironment is identical to that of the surrounding water. The observed deviation range in pH levels between that found at the gills and that of the surrounding water varied from -0.4 to 0.8 units. A sinusoidal model was developed for calculation of gill pH based on the pH of the surrounding water. Models calculating alkalinity either in the gill microenvironment or in the surrounding water and for estimating mucus secretion were also developed. The results of the chemical equilibrium calculations demonstrate that, within a pH range of 6-9, the dominant species of copper in bulk solution shifted from free ions to that of the hydroxo complex. With respect to the fish gill microenvironment, the dominant species found under acidic conditions were the mucus copper complex and free ions. Because of the influence of mucus complexation and pH change, bioavailable copper species in the fish gill

  15. Cystic fibrosis transmembrane conductance regulator contributes to reacidification of alkalinized lysosomes in RPE cells

    PubMed Central

    Liu, Ji; Lu, Wennan; Guha, Sonia; Baltazar, Gabriel C.; Coffey, Erin E.; Laties, Alan M.; Rubenstein, Ronald C.; Reenstra, William W.

    2012-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) in lysosomal acidification has been difficult to determine. We demonstrate here that CFTR contributes more to the reacidification of lysosomes from an elevated pH than to baseline pH maintenance. Lysosomal alkalinization is increasingly recognized as a factor in diseases of accumulation, and we previously showed that cAMP reacidified alkalinized lysosomes in retinal pigmented epithelial (RPE) cells. As the influx of anions to electrically balance proton accumulation may enhance lysosomal acidification, the contribution of the cAMP-activated anion channel CFTR to lysosomal reacidification was probed. The antagonist CFTRinh-172 had little effect on baseline levels of lysosomal pH in cultured human RPE cells but substantially reduced the reacidification of compromised lysosomes by cAMP. Likewise, CFTR activators had a bigger impact on cells whose lysosomes had been alkalinized. Knockdown of CFTR with small interfering RNA had a larger effect on alkalinized lysosomes than on baseline levels. Inhibition of CFTR in isolated lysosomes altered pH. While CFTR and Lamp1 were colocalized, treatment with cAMP did not increase targeting of CFTR to the lysosome. The inhibition of CFTR slowed lysosomal degradation of photoreceptor outer segments while activation of CFTR enhanced their clearance from compromised lysosomes. Activation of CFTR acidified RPE lysosomes from the ABCA4−/− mouse model of recessive Stargardt's disease, whose lysosomes are considerably alkalinized. In summary, CFTR contributes more to reducing lysosomal pH from alkalinized levels than to maintaining baseline pH. Treatment to activate CFTR may thus be of benefit in disorders of accumulation associated with lysosomal alkalinization. PMID:22572847

  16. H. pylori CagL-Y58/E59 Prime Higher Integrin α5β1 in Adverse pH Condition to Enhance Hypochlorhydria Vicious Cycle for Gastric Carcinogenesis

    PubMed Central

    Yang, Hsiao-Bai; Chang, Wei-Lun; Sheu, Bor-Shyang

    2013-01-01

    Background/Aims H. pylori CagL amino acid polymorphisms such as Y58/E59 can increase integrin α5β1 expression and gastric cancer risk. Hypochlorhydria during chronic H. pylori infection promotes gastric carcinogenesis. The study test whether CagL-Y58/E59 isolates may regulate integrin α5β1 to translocate CagA via the type IV secretory system even under adverse pH conditions, and whether the integrin α5β1 expression primed by H. pylori is a pH-dependent process involving hypochlorhydria in a vicious cycle to promote gastric carcinogenesis. Methods The expressions of integrin α5 and β1, CagA phosphorylation, IL-8, FAK, EGFR, and AKT activation of AGS cells exposed to CagL-Y58/E59 H. pylori, isogenic mutants, and different H. pylori CagL amino acid replacement mutants under different pH values were determined. Differences in the pepsinogen I/II ratio (indirectly indicating gastric acidity) and gastric integrin α5β1 expression were compared among the 172 H. pylori-infected patients with different cancer risks. Results Even under adversely low pH condition, H. pylori CagL-Y58/E59 still keep active integrin β1 with stronger binding affinity, CagA translocation, IL-8, FAK, EGFR, and AKT activation than the other mutants (p<0.05). The in vitro assay revealed higher priming of integrin α5β1 by H. pylori under elevated pH as hypochlorhydria (p<0.05). In the H. pylori-infected patients, the gastric integrin α5β1 expressions were higher in those with pepsinogen I/II ratio <6 than in those without (p<0.05). Conclusions H. pylori CagL-Y58/E59 prime higher integrin under adverse pH and may involve to enhance hypochlorhydria vicious cycle for gastric carcinogenesis, and thus require an early eradication. PMID:24009701

  17. Molecular and cellular analysis of the pH response transcription factor PacC in the fungal symbiont Epichloë festucae.

    PubMed

    Lukito, Yonathan; Chujo, Tetsuya; Scott, Barry

    2015-12-01

    In order to survive and adapt to the environment, it is imperative for fungi to be able to sense and respond to changes in extracellular pH conditions. In ascomycetes, sensing of extracellular pH is mediated by the Pal pathway resulting in activation of the PacC transcription factor at alkaline pH. The role of PacC in regulating fungal virulence and pathogenicity has been described in several pathogenic fungi but to date not in a symbiotic fungus. Epichloë festucae is a biotrophic fungal endophyte that forms a stable mutualistic interaction with Lolium perenne. In this study, pacC deletion (ΔpacC) and dominant active (pacC(C)) mutants were generated in order to study the cellular roles of PacC in E. festucae. Deletion of pacC resulted in increased sensitivity of the mutant to salt-stress but surprisingly did not affect the ability of the mutant to grow under alkaline pH conditions. Alkaline pH was observed to induce conidiation in wild-type E. festucae but not in the ΔpacC mutant. On the other hand the pacC(C) mutant had increased conidiation at neutral pH alone. Null pacC mutants had no effect on the symbiotic interaction with ryegrass plants whereas the pacC(C) mutant increased the tiller number. Examination of the growth of the pacC(C) mutant in the plant revealed the formation of aberrant convoluted hyphal structures and an increase in hyphal breakage, which are possible reasons for the altered host interaction phenotype. PMID:26529380

  18. Metabolic Microenvironmental Control by Photosynthetic Biofilms under Changing Macroenvironmental Temperature and pH Conditions▿ †

    PubMed Central

    Bissett, Andrew; Reimer, Andreas; de Beer, Dirk; Shiraishi, Fumito; Arp, Gernot

    2008-01-01

    Ex situ microelectrode experiments, using cyanobacterial biofilms from karst water creeks, were conducted under various pH, temperature, and constant-alkalinity conditions to investigate the effects of changing environmental parameters on cyanobacterial photosynthesis-induced calcification. Microenvironmental chemical conditions around calcifying sites were controlled by metabolic activity over a wide range of photosynthesis and respiration rates, with little influence from overlying water conditions. Regardless of overlying water pH levels (from 7.8 to 8.9), pH at the biofilm surface was approximately 9.4 in the light and 7.8 in the dark. The same trend was observed at various temperatures (4°C and 17°C). Biological processes control the calcium carbonate saturation state (Ω) in these and similar systems and are able to maintain Ω at approximately constant levels over relatively wide environmental fluctuations. Temperature did, however, have an effect on calcification rate. Calcium flux in this system is limited by its diffusion coefficient, resulting in a higher calcium flux (calcification and dissolution) at higher temperatures, despite the constant, biologically mediated pH. The ability of biological systems to mitigate the effects of environmental perturbation is an important factor that must